perf_event.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/slab.h>
  24. #include <linux/highmem.h>
  25. #include <linux/cpu.h>
  26. #include <linux/bitops.h>
  27. #include <asm/apic.h>
  28. #include <asm/stacktrace.h>
  29. #include <asm/nmi.h>
  30. #include <asm/compat.h>
  31. #if 0
  32. #undef wrmsrl
  33. #define wrmsrl(msr, val) \
  34. do { \
  35. trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
  36. (unsigned long)(val)); \
  37. native_write_msr((msr), (u32)((u64)(val)), \
  38. (u32)((u64)(val) >> 32)); \
  39. } while (0)
  40. #endif
  41. /*
  42. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  43. */
  44. static unsigned long
  45. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  46. {
  47. unsigned long offset, addr = (unsigned long)from;
  48. unsigned long size, len = 0;
  49. struct page *page;
  50. void *map;
  51. int ret;
  52. do {
  53. ret = __get_user_pages_fast(addr, 1, 0, &page);
  54. if (!ret)
  55. break;
  56. offset = addr & (PAGE_SIZE - 1);
  57. size = min(PAGE_SIZE - offset, n - len);
  58. map = kmap_atomic(page);
  59. memcpy(to, map+offset, size);
  60. kunmap_atomic(map);
  61. put_page(page);
  62. len += size;
  63. to += size;
  64. addr += size;
  65. } while (len < n);
  66. return len;
  67. }
  68. struct event_constraint {
  69. union {
  70. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  71. u64 idxmsk64;
  72. };
  73. u64 code;
  74. u64 cmask;
  75. int weight;
  76. };
  77. struct amd_nb {
  78. int nb_id; /* NorthBridge id */
  79. int refcnt; /* reference count */
  80. struct perf_event *owners[X86_PMC_IDX_MAX];
  81. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  82. };
  83. #define MAX_LBR_ENTRIES 16
  84. struct cpu_hw_events {
  85. /*
  86. * Generic x86 PMC bits
  87. */
  88. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  89. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  90. unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  91. int enabled;
  92. int n_events;
  93. int n_added;
  94. int n_txn;
  95. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  96. u64 tags[X86_PMC_IDX_MAX];
  97. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  98. unsigned int group_flag;
  99. /*
  100. * Intel DebugStore bits
  101. */
  102. struct debug_store *ds;
  103. u64 pebs_enabled;
  104. /*
  105. * Intel LBR bits
  106. */
  107. int lbr_users;
  108. void *lbr_context;
  109. struct perf_branch_stack lbr_stack;
  110. struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
  111. /*
  112. * AMD specific bits
  113. */
  114. struct amd_nb *amd_nb;
  115. };
  116. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  117. { .idxmsk64 = (n) }, \
  118. .code = (c), \
  119. .cmask = (m), \
  120. .weight = (w), \
  121. }
  122. #define EVENT_CONSTRAINT(c, n, m) \
  123. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  124. /*
  125. * Constraint on the Event code.
  126. */
  127. #define INTEL_EVENT_CONSTRAINT(c, n) \
  128. EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
  129. /*
  130. * Constraint on the Event code + UMask + fixed-mask
  131. *
  132. * filter mask to validate fixed counter events.
  133. * the following filters disqualify for fixed counters:
  134. * - inv
  135. * - edge
  136. * - cnt-mask
  137. * The other filters are supported by fixed counters.
  138. * The any-thread option is supported starting with v3.
  139. */
  140. #define FIXED_EVENT_CONSTRAINT(c, n) \
  141. EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
  142. /*
  143. * Constraint on the Event code + UMask
  144. */
  145. #define PEBS_EVENT_CONSTRAINT(c, n) \
  146. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
  147. #define EVENT_CONSTRAINT_END \
  148. EVENT_CONSTRAINT(0, 0, 0)
  149. #define for_each_event_constraint(e, c) \
  150. for ((e) = (c); (e)->weight; (e)++)
  151. union perf_capabilities {
  152. struct {
  153. u64 lbr_format : 6;
  154. u64 pebs_trap : 1;
  155. u64 pebs_arch_reg : 1;
  156. u64 pebs_format : 4;
  157. u64 smm_freeze : 1;
  158. };
  159. u64 capabilities;
  160. };
  161. /*
  162. * struct x86_pmu - generic x86 pmu
  163. */
  164. struct x86_pmu {
  165. /*
  166. * Generic x86 PMC bits
  167. */
  168. const char *name;
  169. int version;
  170. int (*handle_irq)(struct pt_regs *);
  171. void (*disable_all)(void);
  172. void (*enable_all)(int added);
  173. void (*enable)(struct perf_event *);
  174. void (*disable)(struct perf_event *);
  175. int (*hw_config)(struct perf_event *event);
  176. int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
  177. unsigned eventsel;
  178. unsigned perfctr;
  179. u64 (*event_map)(int);
  180. int max_events;
  181. int num_counters;
  182. int num_counters_fixed;
  183. int cntval_bits;
  184. u64 cntval_mask;
  185. int apic;
  186. u64 max_period;
  187. struct event_constraint *
  188. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  189. struct perf_event *event);
  190. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  191. struct perf_event *event);
  192. struct event_constraint *event_constraints;
  193. void (*quirks)(void);
  194. int perfctr_second_write;
  195. int (*cpu_prepare)(int cpu);
  196. void (*cpu_starting)(int cpu);
  197. void (*cpu_dying)(int cpu);
  198. void (*cpu_dead)(int cpu);
  199. /*
  200. * Intel Arch Perfmon v2+
  201. */
  202. u64 intel_ctrl;
  203. union perf_capabilities intel_cap;
  204. /*
  205. * Intel DebugStore bits
  206. */
  207. int bts, pebs;
  208. int bts_active, pebs_active;
  209. int pebs_record_size;
  210. void (*drain_pebs)(struct pt_regs *regs);
  211. struct event_constraint *pebs_constraints;
  212. /*
  213. * Intel LBR
  214. */
  215. unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
  216. int lbr_nr; /* hardware stack size */
  217. };
  218. static struct x86_pmu x86_pmu __read_mostly;
  219. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  220. .enabled = 1,
  221. };
  222. static int x86_perf_event_set_period(struct perf_event *event);
  223. /*
  224. * Generalized hw caching related hw_event table, filled
  225. * in on a per model basis. A value of 0 means
  226. * 'not supported', -1 means 'hw_event makes no sense on
  227. * this CPU', any other value means the raw hw_event
  228. * ID.
  229. */
  230. #define C(x) PERF_COUNT_HW_CACHE_##x
  231. static u64 __read_mostly hw_cache_event_ids
  232. [PERF_COUNT_HW_CACHE_MAX]
  233. [PERF_COUNT_HW_CACHE_OP_MAX]
  234. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  235. /*
  236. * Propagate event elapsed time into the generic event.
  237. * Can only be executed on the CPU where the event is active.
  238. * Returns the delta events processed.
  239. */
  240. static u64
  241. x86_perf_event_update(struct perf_event *event)
  242. {
  243. struct hw_perf_event *hwc = &event->hw;
  244. int shift = 64 - x86_pmu.cntval_bits;
  245. u64 prev_raw_count, new_raw_count;
  246. int idx = hwc->idx;
  247. s64 delta;
  248. if (idx == X86_PMC_IDX_FIXED_BTS)
  249. return 0;
  250. /*
  251. * Careful: an NMI might modify the previous event value.
  252. *
  253. * Our tactic to handle this is to first atomically read and
  254. * exchange a new raw count - then add that new-prev delta
  255. * count to the generic event atomically:
  256. */
  257. again:
  258. prev_raw_count = local64_read(&hwc->prev_count);
  259. rdmsrl(hwc->event_base + idx, new_raw_count);
  260. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  261. new_raw_count) != prev_raw_count)
  262. goto again;
  263. /*
  264. * Now we have the new raw value and have updated the prev
  265. * timestamp already. We can now calculate the elapsed delta
  266. * (event-)time and add that to the generic event.
  267. *
  268. * Careful, not all hw sign-extends above the physical width
  269. * of the count.
  270. */
  271. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  272. delta >>= shift;
  273. local64_add(delta, &event->count);
  274. local64_sub(delta, &hwc->period_left);
  275. return new_raw_count;
  276. }
  277. static atomic_t active_events;
  278. static DEFINE_MUTEX(pmc_reserve_mutex);
  279. #ifdef CONFIG_X86_LOCAL_APIC
  280. static bool reserve_pmc_hardware(void)
  281. {
  282. int i;
  283. if (nmi_watchdog == NMI_LOCAL_APIC)
  284. disable_lapic_nmi_watchdog();
  285. for (i = 0; i < x86_pmu.num_counters; i++) {
  286. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  287. goto perfctr_fail;
  288. }
  289. for (i = 0; i < x86_pmu.num_counters; i++) {
  290. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  291. goto eventsel_fail;
  292. }
  293. return true;
  294. eventsel_fail:
  295. for (i--; i >= 0; i--)
  296. release_evntsel_nmi(x86_pmu.eventsel + i);
  297. i = x86_pmu.num_counters;
  298. perfctr_fail:
  299. for (i--; i >= 0; i--)
  300. release_perfctr_nmi(x86_pmu.perfctr + i);
  301. if (nmi_watchdog == NMI_LOCAL_APIC)
  302. enable_lapic_nmi_watchdog();
  303. return false;
  304. }
  305. static void release_pmc_hardware(void)
  306. {
  307. int i;
  308. for (i = 0; i < x86_pmu.num_counters; i++) {
  309. release_perfctr_nmi(x86_pmu.perfctr + i);
  310. release_evntsel_nmi(x86_pmu.eventsel + i);
  311. }
  312. if (nmi_watchdog == NMI_LOCAL_APIC)
  313. enable_lapic_nmi_watchdog();
  314. }
  315. #else
  316. static bool reserve_pmc_hardware(void) { return true; }
  317. static void release_pmc_hardware(void) {}
  318. #endif
  319. static void reserve_ds_buffers(void);
  320. static void release_ds_buffers(void);
  321. static void hw_perf_event_destroy(struct perf_event *event)
  322. {
  323. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  324. release_pmc_hardware();
  325. release_ds_buffers();
  326. mutex_unlock(&pmc_reserve_mutex);
  327. }
  328. }
  329. static inline int x86_pmu_initialized(void)
  330. {
  331. return x86_pmu.handle_irq != NULL;
  332. }
  333. static inline int
  334. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  335. {
  336. unsigned int cache_type, cache_op, cache_result;
  337. u64 config, val;
  338. config = attr->config;
  339. cache_type = (config >> 0) & 0xff;
  340. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  341. return -EINVAL;
  342. cache_op = (config >> 8) & 0xff;
  343. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  344. return -EINVAL;
  345. cache_result = (config >> 16) & 0xff;
  346. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  347. return -EINVAL;
  348. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  349. if (val == 0)
  350. return -ENOENT;
  351. if (val == -1)
  352. return -EINVAL;
  353. hwc->config |= val;
  354. return 0;
  355. }
  356. static int x86_setup_perfctr(struct perf_event *event)
  357. {
  358. struct perf_event_attr *attr = &event->attr;
  359. struct hw_perf_event *hwc = &event->hw;
  360. u64 config;
  361. if (!hwc->sample_period) {
  362. hwc->sample_period = x86_pmu.max_period;
  363. hwc->last_period = hwc->sample_period;
  364. local64_set(&hwc->period_left, hwc->sample_period);
  365. } else {
  366. /*
  367. * If we have a PMU initialized but no APIC
  368. * interrupts, we cannot sample hardware
  369. * events (user-space has to fall back and
  370. * sample via a hrtimer based software event):
  371. */
  372. if (!x86_pmu.apic)
  373. return -EOPNOTSUPP;
  374. }
  375. if (attr->type == PERF_TYPE_RAW)
  376. return 0;
  377. if (attr->type == PERF_TYPE_HW_CACHE)
  378. return set_ext_hw_attr(hwc, attr);
  379. if (attr->config >= x86_pmu.max_events)
  380. return -EINVAL;
  381. /*
  382. * The generic map:
  383. */
  384. config = x86_pmu.event_map(attr->config);
  385. if (config == 0)
  386. return -ENOENT;
  387. if (config == -1LL)
  388. return -EINVAL;
  389. /*
  390. * Branch tracing:
  391. */
  392. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  393. (hwc->sample_period == 1)) {
  394. /* BTS is not supported by this architecture. */
  395. if (!x86_pmu.bts_active)
  396. return -EOPNOTSUPP;
  397. /* BTS is currently only allowed for user-mode. */
  398. if (!attr->exclude_kernel)
  399. return -EOPNOTSUPP;
  400. }
  401. hwc->config |= config;
  402. return 0;
  403. }
  404. static int x86_pmu_hw_config(struct perf_event *event)
  405. {
  406. if (event->attr.precise_ip) {
  407. int precise = 0;
  408. /* Support for constant skid */
  409. if (x86_pmu.pebs_active) {
  410. precise++;
  411. /* Support for IP fixup */
  412. if (x86_pmu.lbr_nr)
  413. precise++;
  414. }
  415. if (event->attr.precise_ip > precise)
  416. return -EOPNOTSUPP;
  417. }
  418. /*
  419. * Generate PMC IRQs:
  420. * (keep 'enabled' bit clear for now)
  421. */
  422. event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
  423. /*
  424. * Count user and OS events unless requested not to
  425. */
  426. if (!event->attr.exclude_user)
  427. event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
  428. if (!event->attr.exclude_kernel)
  429. event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
  430. if (event->attr.type == PERF_TYPE_RAW)
  431. event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
  432. return x86_setup_perfctr(event);
  433. }
  434. /*
  435. * Setup the hardware configuration for a given attr_type
  436. */
  437. static int __x86_pmu_event_init(struct perf_event *event)
  438. {
  439. int err;
  440. if (!x86_pmu_initialized())
  441. return -ENODEV;
  442. err = 0;
  443. if (!atomic_inc_not_zero(&active_events)) {
  444. mutex_lock(&pmc_reserve_mutex);
  445. if (atomic_read(&active_events) == 0) {
  446. if (!reserve_pmc_hardware())
  447. err = -EBUSY;
  448. else
  449. reserve_ds_buffers();
  450. }
  451. if (!err)
  452. atomic_inc(&active_events);
  453. mutex_unlock(&pmc_reserve_mutex);
  454. }
  455. if (err)
  456. return err;
  457. event->destroy = hw_perf_event_destroy;
  458. event->hw.idx = -1;
  459. event->hw.last_cpu = -1;
  460. event->hw.last_tag = ~0ULL;
  461. return x86_pmu.hw_config(event);
  462. }
  463. static void x86_pmu_disable_all(void)
  464. {
  465. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  466. int idx;
  467. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  468. u64 val;
  469. if (!test_bit(idx, cpuc->active_mask))
  470. continue;
  471. rdmsrl(x86_pmu.eventsel + idx, val);
  472. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  473. continue;
  474. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  475. wrmsrl(x86_pmu.eventsel + idx, val);
  476. }
  477. }
  478. static void x86_pmu_disable(struct pmu *pmu)
  479. {
  480. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  481. if (!x86_pmu_initialized())
  482. return;
  483. if (!cpuc->enabled)
  484. return;
  485. cpuc->n_added = 0;
  486. cpuc->enabled = 0;
  487. barrier();
  488. x86_pmu.disable_all();
  489. }
  490. static void x86_pmu_enable_all(int added)
  491. {
  492. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  493. int idx;
  494. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  495. struct perf_event *event = cpuc->events[idx];
  496. u64 val;
  497. if (!test_bit(idx, cpuc->active_mask))
  498. continue;
  499. val = event->hw.config;
  500. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  501. wrmsrl(x86_pmu.eventsel + idx, val);
  502. }
  503. }
  504. static struct pmu pmu;
  505. static inline int is_x86_event(struct perf_event *event)
  506. {
  507. return event->pmu == &pmu;
  508. }
  509. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  510. {
  511. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  512. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  513. int i, j, w, wmax, num = 0;
  514. struct hw_perf_event *hwc;
  515. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  516. for (i = 0; i < n; i++) {
  517. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  518. constraints[i] = c;
  519. }
  520. /*
  521. * fastpath, try to reuse previous register
  522. */
  523. for (i = 0; i < n; i++) {
  524. hwc = &cpuc->event_list[i]->hw;
  525. c = constraints[i];
  526. /* never assigned */
  527. if (hwc->idx == -1)
  528. break;
  529. /* constraint still honored */
  530. if (!test_bit(hwc->idx, c->idxmsk))
  531. break;
  532. /* not already used */
  533. if (test_bit(hwc->idx, used_mask))
  534. break;
  535. __set_bit(hwc->idx, used_mask);
  536. if (assign)
  537. assign[i] = hwc->idx;
  538. }
  539. if (i == n)
  540. goto done;
  541. /*
  542. * begin slow path
  543. */
  544. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  545. /*
  546. * weight = number of possible counters
  547. *
  548. * 1 = most constrained, only works on one counter
  549. * wmax = least constrained, works on any counter
  550. *
  551. * assign events to counters starting with most
  552. * constrained events.
  553. */
  554. wmax = x86_pmu.num_counters;
  555. /*
  556. * when fixed event counters are present,
  557. * wmax is incremented by 1 to account
  558. * for one more choice
  559. */
  560. if (x86_pmu.num_counters_fixed)
  561. wmax++;
  562. for (w = 1, num = n; num && w <= wmax; w++) {
  563. /* for each event */
  564. for (i = 0; num && i < n; i++) {
  565. c = constraints[i];
  566. hwc = &cpuc->event_list[i]->hw;
  567. if (c->weight != w)
  568. continue;
  569. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  570. if (!test_bit(j, used_mask))
  571. break;
  572. }
  573. if (j == X86_PMC_IDX_MAX)
  574. break;
  575. __set_bit(j, used_mask);
  576. if (assign)
  577. assign[i] = j;
  578. num--;
  579. }
  580. }
  581. done:
  582. /*
  583. * scheduling failed or is just a simulation,
  584. * free resources if necessary
  585. */
  586. if (!assign || num) {
  587. for (i = 0; i < n; i++) {
  588. if (x86_pmu.put_event_constraints)
  589. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  590. }
  591. }
  592. return num ? -ENOSPC : 0;
  593. }
  594. /*
  595. * dogrp: true if must collect siblings events (group)
  596. * returns total number of events and error code
  597. */
  598. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  599. {
  600. struct perf_event *event;
  601. int n, max_count;
  602. max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
  603. /* current number of events already accepted */
  604. n = cpuc->n_events;
  605. if (is_x86_event(leader)) {
  606. if (n >= max_count)
  607. return -ENOSPC;
  608. cpuc->event_list[n] = leader;
  609. n++;
  610. }
  611. if (!dogrp)
  612. return n;
  613. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  614. if (!is_x86_event(event) ||
  615. event->state <= PERF_EVENT_STATE_OFF)
  616. continue;
  617. if (n >= max_count)
  618. return -ENOSPC;
  619. cpuc->event_list[n] = event;
  620. n++;
  621. }
  622. return n;
  623. }
  624. static inline void x86_assign_hw_event(struct perf_event *event,
  625. struct cpu_hw_events *cpuc, int i)
  626. {
  627. struct hw_perf_event *hwc = &event->hw;
  628. hwc->idx = cpuc->assign[i];
  629. hwc->last_cpu = smp_processor_id();
  630. hwc->last_tag = ++cpuc->tags[i];
  631. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  632. hwc->config_base = 0;
  633. hwc->event_base = 0;
  634. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  635. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  636. /*
  637. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  638. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  639. */
  640. hwc->event_base =
  641. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  642. } else {
  643. hwc->config_base = x86_pmu.eventsel;
  644. hwc->event_base = x86_pmu.perfctr;
  645. }
  646. }
  647. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  648. struct cpu_hw_events *cpuc,
  649. int i)
  650. {
  651. return hwc->idx == cpuc->assign[i] &&
  652. hwc->last_cpu == smp_processor_id() &&
  653. hwc->last_tag == cpuc->tags[i];
  654. }
  655. static void x86_pmu_start(struct perf_event *event, int flags);
  656. static void x86_pmu_stop(struct perf_event *event, int flags);
  657. static void x86_pmu_enable(struct pmu *pmu)
  658. {
  659. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  660. struct perf_event *event;
  661. struct hw_perf_event *hwc;
  662. int i, added = cpuc->n_added;
  663. if (!x86_pmu_initialized())
  664. return;
  665. if (cpuc->enabled)
  666. return;
  667. if (cpuc->n_added) {
  668. int n_running = cpuc->n_events - cpuc->n_added;
  669. /*
  670. * apply assignment obtained either from
  671. * hw_perf_group_sched_in() or x86_pmu_enable()
  672. *
  673. * step1: save events moving to new counters
  674. * step2: reprogram moved events into new counters
  675. */
  676. for (i = 0; i < n_running; i++) {
  677. event = cpuc->event_list[i];
  678. hwc = &event->hw;
  679. /*
  680. * we can avoid reprogramming counter if:
  681. * - assigned same counter as last time
  682. * - running on same CPU as last time
  683. * - no other event has used the counter since
  684. */
  685. if (hwc->idx == -1 ||
  686. match_prev_assignment(hwc, cpuc, i))
  687. continue;
  688. /*
  689. * Ensure we don't accidentally enable a stopped
  690. * counter simply because we rescheduled.
  691. */
  692. if (hwc->state & PERF_HES_STOPPED)
  693. hwc->state |= PERF_HES_ARCH;
  694. x86_pmu_stop(event, PERF_EF_UPDATE);
  695. }
  696. for (i = 0; i < cpuc->n_events; i++) {
  697. event = cpuc->event_list[i];
  698. hwc = &event->hw;
  699. if (!match_prev_assignment(hwc, cpuc, i))
  700. x86_assign_hw_event(event, cpuc, i);
  701. else if (i < n_running)
  702. continue;
  703. if (hwc->state & PERF_HES_ARCH)
  704. continue;
  705. x86_pmu_start(event, PERF_EF_RELOAD);
  706. }
  707. cpuc->n_added = 0;
  708. perf_events_lapic_init();
  709. }
  710. cpuc->enabled = 1;
  711. barrier();
  712. x86_pmu.enable_all(added);
  713. }
  714. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
  715. u64 enable_mask)
  716. {
  717. wrmsrl(hwc->config_base + hwc->idx, hwc->config | enable_mask);
  718. }
  719. static inline void x86_pmu_disable_event(struct perf_event *event)
  720. {
  721. struct hw_perf_event *hwc = &event->hw;
  722. wrmsrl(hwc->config_base + hwc->idx, hwc->config);
  723. }
  724. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  725. /*
  726. * Set the next IRQ period, based on the hwc->period_left value.
  727. * To be called with the event disabled in hw:
  728. */
  729. static int
  730. x86_perf_event_set_period(struct perf_event *event)
  731. {
  732. struct hw_perf_event *hwc = &event->hw;
  733. s64 left = local64_read(&hwc->period_left);
  734. s64 period = hwc->sample_period;
  735. int ret = 0, idx = hwc->idx;
  736. if (idx == X86_PMC_IDX_FIXED_BTS)
  737. return 0;
  738. /*
  739. * If we are way outside a reasonable range then just skip forward:
  740. */
  741. if (unlikely(left <= -period)) {
  742. left = period;
  743. local64_set(&hwc->period_left, left);
  744. hwc->last_period = period;
  745. ret = 1;
  746. }
  747. if (unlikely(left <= 0)) {
  748. left += period;
  749. local64_set(&hwc->period_left, left);
  750. hwc->last_period = period;
  751. ret = 1;
  752. }
  753. /*
  754. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  755. */
  756. if (unlikely(left < 2))
  757. left = 2;
  758. if (left > x86_pmu.max_period)
  759. left = x86_pmu.max_period;
  760. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  761. /*
  762. * The hw event starts counting from this event offset,
  763. * mark it to be able to extra future deltas:
  764. */
  765. local64_set(&hwc->prev_count, (u64)-left);
  766. wrmsrl(hwc->event_base + idx, (u64)(-left) & x86_pmu.cntval_mask);
  767. /*
  768. * Due to erratum on certan cpu we need
  769. * a second write to be sure the register
  770. * is updated properly
  771. */
  772. if (x86_pmu.perfctr_second_write) {
  773. wrmsrl(hwc->event_base + idx,
  774. (u64)(-left) & x86_pmu.cntval_mask);
  775. }
  776. perf_event_update_userpage(event);
  777. return ret;
  778. }
  779. static void x86_pmu_enable_event(struct perf_event *event)
  780. {
  781. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  782. if (cpuc->enabled)
  783. __x86_pmu_enable_event(&event->hw,
  784. ARCH_PERFMON_EVENTSEL_ENABLE);
  785. }
  786. /*
  787. * Add a single event to the PMU.
  788. *
  789. * The event is added to the group of enabled events
  790. * but only if it can be scehduled with existing events.
  791. */
  792. static int x86_pmu_add(struct perf_event *event, int flags)
  793. {
  794. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  795. struct hw_perf_event *hwc;
  796. int assign[X86_PMC_IDX_MAX];
  797. int n, n0, ret;
  798. hwc = &event->hw;
  799. perf_pmu_disable(event->pmu);
  800. n0 = cpuc->n_events;
  801. ret = n = collect_events(cpuc, event, false);
  802. if (ret < 0)
  803. goto out;
  804. hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
  805. if (!(flags & PERF_EF_START))
  806. hwc->state |= PERF_HES_ARCH;
  807. /*
  808. * If group events scheduling transaction was started,
  809. * skip the schedulability test here, it will be peformed
  810. * at commit time (->commit_txn) as a whole
  811. */
  812. if (cpuc->group_flag & PERF_EVENT_TXN)
  813. goto done_collect;
  814. ret = x86_pmu.schedule_events(cpuc, n, assign);
  815. if (ret)
  816. goto out;
  817. /*
  818. * copy new assignment, now we know it is possible
  819. * will be used by hw_perf_enable()
  820. */
  821. memcpy(cpuc->assign, assign, n*sizeof(int));
  822. done_collect:
  823. cpuc->n_events = n;
  824. cpuc->n_added += n - n0;
  825. cpuc->n_txn += n - n0;
  826. ret = 0;
  827. out:
  828. perf_pmu_enable(event->pmu);
  829. return ret;
  830. }
  831. static void x86_pmu_start(struct perf_event *event, int flags)
  832. {
  833. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  834. int idx = event->hw.idx;
  835. if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
  836. return;
  837. if (WARN_ON_ONCE(idx == -1))
  838. return;
  839. if (flags & PERF_EF_RELOAD) {
  840. WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
  841. x86_perf_event_set_period(event);
  842. }
  843. event->hw.state = 0;
  844. cpuc->events[idx] = event;
  845. __set_bit(idx, cpuc->active_mask);
  846. __set_bit(idx, cpuc->running);
  847. x86_pmu.enable(event);
  848. perf_event_update_userpage(event);
  849. }
  850. void perf_event_print_debug(void)
  851. {
  852. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  853. u64 pebs;
  854. struct cpu_hw_events *cpuc;
  855. unsigned long flags;
  856. int cpu, idx;
  857. if (!x86_pmu.num_counters)
  858. return;
  859. local_irq_save(flags);
  860. cpu = smp_processor_id();
  861. cpuc = &per_cpu(cpu_hw_events, cpu);
  862. if (x86_pmu.version >= 2) {
  863. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  864. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  865. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  866. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  867. rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
  868. pr_info("\n");
  869. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  870. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  871. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  872. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  873. pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
  874. }
  875. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  876. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  877. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  878. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  879. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  880. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  881. cpu, idx, pmc_ctrl);
  882. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  883. cpu, idx, pmc_count);
  884. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  885. cpu, idx, prev_left);
  886. }
  887. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
  888. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  889. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  890. cpu, idx, pmc_count);
  891. }
  892. local_irq_restore(flags);
  893. }
  894. static void x86_pmu_stop(struct perf_event *event, int flags)
  895. {
  896. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  897. struct hw_perf_event *hwc = &event->hw;
  898. if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
  899. x86_pmu.disable(event);
  900. cpuc->events[hwc->idx] = NULL;
  901. WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
  902. hwc->state |= PERF_HES_STOPPED;
  903. }
  904. if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
  905. /*
  906. * Drain the remaining delta count out of a event
  907. * that we are disabling:
  908. */
  909. x86_perf_event_update(event);
  910. hwc->state |= PERF_HES_UPTODATE;
  911. }
  912. }
  913. static void x86_pmu_del(struct perf_event *event, int flags)
  914. {
  915. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  916. int i;
  917. /*
  918. * If we're called during a txn, we don't need to do anything.
  919. * The events never got scheduled and ->cancel_txn will truncate
  920. * the event_list.
  921. */
  922. if (cpuc->group_flag & PERF_EVENT_TXN)
  923. return;
  924. x86_pmu_stop(event, PERF_EF_UPDATE);
  925. for (i = 0; i < cpuc->n_events; i++) {
  926. if (event == cpuc->event_list[i]) {
  927. if (x86_pmu.put_event_constraints)
  928. x86_pmu.put_event_constraints(cpuc, event);
  929. while (++i < cpuc->n_events)
  930. cpuc->event_list[i-1] = cpuc->event_list[i];
  931. --cpuc->n_events;
  932. break;
  933. }
  934. }
  935. perf_event_update_userpage(event);
  936. }
  937. static int x86_pmu_handle_irq(struct pt_regs *regs)
  938. {
  939. struct perf_sample_data data;
  940. struct cpu_hw_events *cpuc;
  941. struct perf_event *event;
  942. int idx, handled = 0;
  943. u64 val;
  944. perf_sample_data_init(&data, 0);
  945. cpuc = &__get_cpu_var(cpu_hw_events);
  946. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  947. if (!test_bit(idx, cpuc->active_mask)) {
  948. /*
  949. * Though we deactivated the counter some cpus
  950. * might still deliver spurious interrupts still
  951. * in flight. Catch them:
  952. */
  953. if (__test_and_clear_bit(idx, cpuc->running))
  954. handled++;
  955. continue;
  956. }
  957. event = cpuc->events[idx];
  958. val = x86_perf_event_update(event);
  959. if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
  960. continue;
  961. /*
  962. * event overflow
  963. */
  964. handled++;
  965. data.period = event->hw.last_period;
  966. if (!x86_perf_event_set_period(event))
  967. continue;
  968. if (perf_event_overflow(event, 1, &data, regs))
  969. x86_pmu_stop(event, 0);
  970. }
  971. if (handled)
  972. inc_irq_stat(apic_perf_irqs);
  973. return handled;
  974. }
  975. void perf_events_lapic_init(void)
  976. {
  977. if (!x86_pmu.apic || !x86_pmu_initialized())
  978. return;
  979. /*
  980. * Always use NMI for PMU
  981. */
  982. apic_write(APIC_LVTPC, APIC_DM_NMI);
  983. }
  984. struct pmu_nmi_state {
  985. unsigned int marked;
  986. int handled;
  987. };
  988. static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
  989. static int __kprobes
  990. perf_event_nmi_handler(struct notifier_block *self,
  991. unsigned long cmd, void *__args)
  992. {
  993. struct die_args *args = __args;
  994. unsigned int this_nmi;
  995. int handled;
  996. if (!atomic_read(&active_events))
  997. return NOTIFY_DONE;
  998. switch (cmd) {
  999. case DIE_NMI:
  1000. case DIE_NMI_IPI:
  1001. break;
  1002. case DIE_NMIUNKNOWN:
  1003. this_nmi = percpu_read(irq_stat.__nmi_count);
  1004. if (this_nmi != __get_cpu_var(pmu_nmi).marked)
  1005. /* let the kernel handle the unknown nmi */
  1006. return NOTIFY_DONE;
  1007. /*
  1008. * This one is a PMU back-to-back nmi. Two events
  1009. * trigger 'simultaneously' raising two back-to-back
  1010. * NMIs. If the first NMI handles both, the latter
  1011. * will be empty and daze the CPU. So, we drop it to
  1012. * avoid false-positive 'unknown nmi' messages.
  1013. */
  1014. return NOTIFY_STOP;
  1015. default:
  1016. return NOTIFY_DONE;
  1017. }
  1018. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1019. handled = x86_pmu.handle_irq(args->regs);
  1020. if (!handled)
  1021. return NOTIFY_DONE;
  1022. this_nmi = percpu_read(irq_stat.__nmi_count);
  1023. if ((handled > 1) ||
  1024. /* the next nmi could be a back-to-back nmi */
  1025. ((__get_cpu_var(pmu_nmi).marked == this_nmi) &&
  1026. (__get_cpu_var(pmu_nmi).handled > 1))) {
  1027. /*
  1028. * We could have two subsequent back-to-back nmis: The
  1029. * first handles more than one counter, the 2nd
  1030. * handles only one counter and the 3rd handles no
  1031. * counter.
  1032. *
  1033. * This is the 2nd nmi because the previous was
  1034. * handling more than one counter. We will mark the
  1035. * next (3rd) and then drop it if unhandled.
  1036. */
  1037. __get_cpu_var(pmu_nmi).marked = this_nmi + 1;
  1038. __get_cpu_var(pmu_nmi).handled = handled;
  1039. }
  1040. return NOTIFY_STOP;
  1041. }
  1042. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  1043. .notifier_call = perf_event_nmi_handler,
  1044. .next = NULL,
  1045. .priority = 1
  1046. };
  1047. static struct event_constraint unconstrained;
  1048. static struct event_constraint emptyconstraint;
  1049. static struct event_constraint *
  1050. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  1051. {
  1052. struct event_constraint *c;
  1053. if (x86_pmu.event_constraints) {
  1054. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1055. if ((event->hw.config & c->cmask) == c->code)
  1056. return c;
  1057. }
  1058. }
  1059. return &unconstrained;
  1060. }
  1061. #include "perf_event_amd.c"
  1062. #include "perf_event_p6.c"
  1063. #include "perf_event_p4.c"
  1064. #include "perf_event_intel_lbr.c"
  1065. #include "perf_event_intel_ds.c"
  1066. #include "perf_event_intel.c"
  1067. static int __cpuinit
  1068. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1069. {
  1070. unsigned int cpu = (long)hcpu;
  1071. int ret = NOTIFY_OK;
  1072. switch (action & ~CPU_TASKS_FROZEN) {
  1073. case CPU_UP_PREPARE:
  1074. if (x86_pmu.cpu_prepare)
  1075. ret = x86_pmu.cpu_prepare(cpu);
  1076. break;
  1077. case CPU_STARTING:
  1078. if (x86_pmu.cpu_starting)
  1079. x86_pmu.cpu_starting(cpu);
  1080. break;
  1081. case CPU_DYING:
  1082. if (x86_pmu.cpu_dying)
  1083. x86_pmu.cpu_dying(cpu);
  1084. break;
  1085. case CPU_UP_CANCELED:
  1086. case CPU_DEAD:
  1087. if (x86_pmu.cpu_dead)
  1088. x86_pmu.cpu_dead(cpu);
  1089. break;
  1090. default:
  1091. break;
  1092. }
  1093. return ret;
  1094. }
  1095. static void __init pmu_check_apic(void)
  1096. {
  1097. if (cpu_has_apic)
  1098. return;
  1099. x86_pmu.apic = 0;
  1100. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1101. pr_info("no hardware sampling interrupt available.\n");
  1102. }
  1103. void __init init_hw_perf_events(void)
  1104. {
  1105. struct event_constraint *c;
  1106. int err;
  1107. pr_info("Performance Events: ");
  1108. switch (boot_cpu_data.x86_vendor) {
  1109. case X86_VENDOR_INTEL:
  1110. err = intel_pmu_init();
  1111. break;
  1112. case X86_VENDOR_AMD:
  1113. err = amd_pmu_init();
  1114. break;
  1115. default:
  1116. return;
  1117. }
  1118. if (err != 0) {
  1119. pr_cont("no PMU driver, software events only.\n");
  1120. return;
  1121. }
  1122. pmu_check_apic();
  1123. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1124. if (x86_pmu.quirks)
  1125. x86_pmu.quirks();
  1126. if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
  1127. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1128. x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
  1129. x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
  1130. }
  1131. x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
  1132. if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
  1133. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1134. x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
  1135. x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
  1136. }
  1137. x86_pmu.intel_ctrl |=
  1138. ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
  1139. perf_events_lapic_init();
  1140. register_die_notifier(&perf_event_nmi_notifier);
  1141. unconstrained = (struct event_constraint)
  1142. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
  1143. 0, x86_pmu.num_counters);
  1144. if (x86_pmu.event_constraints) {
  1145. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1146. if (c->cmask != X86_RAW_EVENT_MASK)
  1147. continue;
  1148. c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
  1149. c->weight += x86_pmu.num_counters;
  1150. }
  1151. }
  1152. pr_info("... version: %d\n", x86_pmu.version);
  1153. pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
  1154. pr_info("... generic registers: %d\n", x86_pmu.num_counters);
  1155. pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
  1156. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1157. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
  1158. pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
  1159. perf_pmu_register(&pmu);
  1160. perf_cpu_notifier(x86_pmu_notifier);
  1161. }
  1162. static inline void x86_pmu_read(struct perf_event *event)
  1163. {
  1164. x86_perf_event_update(event);
  1165. }
  1166. /*
  1167. * Start group events scheduling transaction
  1168. * Set the flag to make pmu::enable() not perform the
  1169. * schedulability test, it will be performed at commit time
  1170. */
  1171. static void x86_pmu_start_txn(struct pmu *pmu)
  1172. {
  1173. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1174. perf_pmu_disable(pmu);
  1175. cpuc->group_flag |= PERF_EVENT_TXN;
  1176. cpuc->n_txn = 0;
  1177. }
  1178. /*
  1179. * Stop group events scheduling transaction
  1180. * Clear the flag and pmu::enable() will perform the
  1181. * schedulability test.
  1182. */
  1183. static void x86_pmu_cancel_txn(struct pmu *pmu)
  1184. {
  1185. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1186. cpuc->group_flag &= ~PERF_EVENT_TXN;
  1187. /*
  1188. * Truncate the collected events.
  1189. */
  1190. cpuc->n_added -= cpuc->n_txn;
  1191. cpuc->n_events -= cpuc->n_txn;
  1192. perf_pmu_enable(pmu);
  1193. }
  1194. /*
  1195. * Commit group events scheduling transaction
  1196. * Perform the group schedulability test as a whole
  1197. * Return 0 if success
  1198. */
  1199. static int x86_pmu_commit_txn(struct pmu *pmu)
  1200. {
  1201. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1202. int assign[X86_PMC_IDX_MAX];
  1203. int n, ret;
  1204. n = cpuc->n_events;
  1205. if (!x86_pmu_initialized())
  1206. return -EAGAIN;
  1207. ret = x86_pmu.schedule_events(cpuc, n, assign);
  1208. if (ret)
  1209. return ret;
  1210. /*
  1211. * copy new assignment, now we know it is possible
  1212. * will be used by hw_perf_enable()
  1213. */
  1214. memcpy(cpuc->assign, assign, n*sizeof(int));
  1215. cpuc->group_flag &= ~PERF_EVENT_TXN;
  1216. perf_pmu_enable(pmu);
  1217. return 0;
  1218. }
  1219. /*
  1220. * validate that we can schedule this event
  1221. */
  1222. static int validate_event(struct perf_event *event)
  1223. {
  1224. struct cpu_hw_events *fake_cpuc;
  1225. struct event_constraint *c;
  1226. int ret = 0;
  1227. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1228. if (!fake_cpuc)
  1229. return -ENOMEM;
  1230. c = x86_pmu.get_event_constraints(fake_cpuc, event);
  1231. if (!c || !c->weight)
  1232. ret = -ENOSPC;
  1233. if (x86_pmu.put_event_constraints)
  1234. x86_pmu.put_event_constraints(fake_cpuc, event);
  1235. kfree(fake_cpuc);
  1236. return ret;
  1237. }
  1238. /*
  1239. * validate a single event group
  1240. *
  1241. * validation include:
  1242. * - check events are compatible which each other
  1243. * - events do not compete for the same counter
  1244. * - number of events <= number of counters
  1245. *
  1246. * validation ensures the group can be loaded onto the
  1247. * PMU if it was the only group available.
  1248. */
  1249. static int validate_group(struct perf_event *event)
  1250. {
  1251. struct perf_event *leader = event->group_leader;
  1252. struct cpu_hw_events *fake_cpuc;
  1253. int ret, n;
  1254. ret = -ENOMEM;
  1255. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1256. if (!fake_cpuc)
  1257. goto out;
  1258. /*
  1259. * the event is not yet connected with its
  1260. * siblings therefore we must first collect
  1261. * existing siblings, then add the new event
  1262. * before we can simulate the scheduling
  1263. */
  1264. ret = -ENOSPC;
  1265. n = collect_events(fake_cpuc, leader, true);
  1266. if (n < 0)
  1267. goto out_free;
  1268. fake_cpuc->n_events = n;
  1269. n = collect_events(fake_cpuc, event, false);
  1270. if (n < 0)
  1271. goto out_free;
  1272. fake_cpuc->n_events = n;
  1273. ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
  1274. out_free:
  1275. kfree(fake_cpuc);
  1276. out:
  1277. return ret;
  1278. }
  1279. int x86_pmu_event_init(struct perf_event *event)
  1280. {
  1281. struct pmu *tmp;
  1282. int err;
  1283. switch (event->attr.type) {
  1284. case PERF_TYPE_RAW:
  1285. case PERF_TYPE_HARDWARE:
  1286. case PERF_TYPE_HW_CACHE:
  1287. break;
  1288. default:
  1289. return -ENOENT;
  1290. }
  1291. err = __x86_pmu_event_init(event);
  1292. if (!err) {
  1293. /*
  1294. * we temporarily connect event to its pmu
  1295. * such that validate_group() can classify
  1296. * it as an x86 event using is_x86_event()
  1297. */
  1298. tmp = event->pmu;
  1299. event->pmu = &pmu;
  1300. if (event->group_leader != event)
  1301. err = validate_group(event);
  1302. else
  1303. err = validate_event(event);
  1304. event->pmu = tmp;
  1305. }
  1306. if (err) {
  1307. if (event->destroy)
  1308. event->destroy(event);
  1309. }
  1310. return err;
  1311. }
  1312. static struct pmu pmu = {
  1313. .pmu_enable = x86_pmu_enable,
  1314. .pmu_disable = x86_pmu_disable,
  1315. .event_init = x86_pmu_event_init,
  1316. .add = x86_pmu_add,
  1317. .del = x86_pmu_del,
  1318. .start = x86_pmu_start,
  1319. .stop = x86_pmu_stop,
  1320. .read = x86_pmu_read,
  1321. .start_txn = x86_pmu_start_txn,
  1322. .cancel_txn = x86_pmu_cancel_txn,
  1323. .commit_txn = x86_pmu_commit_txn,
  1324. };
  1325. /*
  1326. * callchain support
  1327. */
  1328. static void
  1329. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1330. {
  1331. /* Ignore warnings */
  1332. }
  1333. static void backtrace_warning(void *data, char *msg)
  1334. {
  1335. /* Ignore warnings */
  1336. }
  1337. static int backtrace_stack(void *data, char *name)
  1338. {
  1339. return 0;
  1340. }
  1341. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1342. {
  1343. struct perf_callchain_entry *entry = data;
  1344. perf_callchain_store(entry, addr);
  1345. }
  1346. static const struct stacktrace_ops backtrace_ops = {
  1347. .warning = backtrace_warning,
  1348. .warning_symbol = backtrace_warning_symbol,
  1349. .stack = backtrace_stack,
  1350. .address = backtrace_address,
  1351. .walk_stack = print_context_stack_bp,
  1352. };
  1353. void
  1354. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  1355. {
  1356. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1357. /* TODO: We don't support guest os callchain now */
  1358. return;
  1359. }
  1360. perf_callchain_store(entry, regs->ip);
  1361. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1362. }
  1363. #ifdef CONFIG_COMPAT
  1364. static inline int
  1365. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1366. {
  1367. /* 32-bit process in 64-bit kernel. */
  1368. struct stack_frame_ia32 frame;
  1369. const void __user *fp;
  1370. if (!test_thread_flag(TIF_IA32))
  1371. return 0;
  1372. fp = compat_ptr(regs->bp);
  1373. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1374. unsigned long bytes;
  1375. frame.next_frame = 0;
  1376. frame.return_address = 0;
  1377. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1378. if (bytes != sizeof(frame))
  1379. break;
  1380. if (fp < compat_ptr(regs->sp))
  1381. break;
  1382. perf_callchain_store(entry, frame.return_address);
  1383. fp = compat_ptr(frame.next_frame);
  1384. }
  1385. return 1;
  1386. }
  1387. #else
  1388. static inline int
  1389. perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1390. {
  1391. return 0;
  1392. }
  1393. #endif
  1394. void
  1395. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  1396. {
  1397. struct stack_frame frame;
  1398. const void __user *fp;
  1399. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1400. /* TODO: We don't support guest os callchain now */
  1401. return;
  1402. }
  1403. fp = (void __user *)regs->bp;
  1404. perf_callchain_store(entry, regs->ip);
  1405. if (perf_callchain_user32(regs, entry))
  1406. return;
  1407. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1408. unsigned long bytes;
  1409. frame.next_frame = NULL;
  1410. frame.return_address = 0;
  1411. bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
  1412. if (bytes != sizeof(frame))
  1413. break;
  1414. if ((unsigned long)fp < regs->sp)
  1415. break;
  1416. perf_callchain_store(entry, frame.return_address);
  1417. fp = frame.next_frame;
  1418. }
  1419. }
  1420. unsigned long perf_instruction_pointer(struct pt_regs *regs)
  1421. {
  1422. unsigned long ip;
  1423. if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
  1424. ip = perf_guest_cbs->get_guest_ip();
  1425. else
  1426. ip = instruction_pointer(regs);
  1427. return ip;
  1428. }
  1429. unsigned long perf_misc_flags(struct pt_regs *regs)
  1430. {
  1431. int misc = 0;
  1432. if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
  1433. if (perf_guest_cbs->is_user_mode())
  1434. misc |= PERF_RECORD_MISC_GUEST_USER;
  1435. else
  1436. misc |= PERF_RECORD_MISC_GUEST_KERNEL;
  1437. } else {
  1438. if (user_mode(regs))
  1439. misc |= PERF_RECORD_MISC_USER;
  1440. else
  1441. misc |= PERF_RECORD_MISC_KERNEL;
  1442. }
  1443. if (regs->flags & PERF_EFLAGS_EXACT)
  1444. misc |= PERF_RECORD_MISC_EXACT_IP;
  1445. return misc;
  1446. }