inode.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/highuid.h>
  25. #include <linux/quotaops.h>
  26. #include <linux/writeback.h>
  27. #include <linux/mpage.h>
  28. #include <linux/namei.h>
  29. #include <linux/aio.h>
  30. #include "ext3.h"
  31. #include "xattr.h"
  32. #include "acl.h"
  33. static int ext3_writepage_trans_blocks(struct inode *inode);
  34. static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  35. /*
  36. * Test whether an inode is a fast symlink.
  37. */
  38. static int ext3_inode_is_fast_symlink(struct inode *inode)
  39. {
  40. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  41. (inode->i_sb->s_blocksize >> 9) : 0;
  42. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  43. }
  44. /*
  45. * The ext3 forget function must perform a revoke if we are freeing data
  46. * which has been journaled. Metadata (eg. indirect blocks) must be
  47. * revoked in all cases.
  48. *
  49. * "bh" may be NULL: a metadata block may have been freed from memory
  50. * but there may still be a record of it in the journal, and that record
  51. * still needs to be revoked.
  52. */
  53. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  54. struct buffer_head *bh, ext3_fsblk_t blocknr)
  55. {
  56. int err;
  57. might_sleep();
  58. trace_ext3_forget(inode, is_metadata, blocknr);
  59. BUFFER_TRACE(bh, "enter");
  60. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  61. "data mode %lx\n",
  62. bh, is_metadata, inode->i_mode,
  63. test_opt(inode->i_sb, DATA_FLAGS));
  64. /* Never use the revoke function if we are doing full data
  65. * journaling: there is no need to, and a V1 superblock won't
  66. * support it. Otherwise, only skip the revoke on un-journaled
  67. * data blocks. */
  68. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  69. (!is_metadata && !ext3_should_journal_data(inode))) {
  70. if (bh) {
  71. BUFFER_TRACE(bh, "call journal_forget");
  72. return ext3_journal_forget(handle, bh);
  73. }
  74. return 0;
  75. }
  76. /*
  77. * data!=journal && (is_metadata || should_journal_data(inode))
  78. */
  79. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  80. err = ext3_journal_revoke(handle, blocknr, bh);
  81. if (err)
  82. ext3_abort(inode->i_sb, __func__,
  83. "error %d when attempting revoke", err);
  84. BUFFER_TRACE(bh, "exit");
  85. return err;
  86. }
  87. /*
  88. * Work out how many blocks we need to proceed with the next chunk of a
  89. * truncate transaction.
  90. */
  91. static unsigned long blocks_for_truncate(struct inode *inode)
  92. {
  93. unsigned long needed;
  94. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  95. /* Give ourselves just enough room to cope with inodes in which
  96. * i_blocks is corrupt: we've seen disk corruptions in the past
  97. * which resulted in random data in an inode which looked enough
  98. * like a regular file for ext3 to try to delete it. Things
  99. * will go a bit crazy if that happens, but at least we should
  100. * try not to panic the whole kernel. */
  101. if (needed < 2)
  102. needed = 2;
  103. /* But we need to bound the transaction so we don't overflow the
  104. * journal. */
  105. if (needed > EXT3_MAX_TRANS_DATA)
  106. needed = EXT3_MAX_TRANS_DATA;
  107. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  108. }
  109. /*
  110. * Truncate transactions can be complex and absolutely huge. So we need to
  111. * be able to restart the transaction at a conventient checkpoint to make
  112. * sure we don't overflow the journal.
  113. *
  114. * start_transaction gets us a new handle for a truncate transaction,
  115. * and extend_transaction tries to extend the existing one a bit. If
  116. * extend fails, we need to propagate the failure up and restart the
  117. * transaction in the top-level truncate loop. --sct
  118. */
  119. static handle_t *start_transaction(struct inode *inode)
  120. {
  121. handle_t *result;
  122. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  123. if (!IS_ERR(result))
  124. return result;
  125. ext3_std_error(inode->i_sb, PTR_ERR(result));
  126. return result;
  127. }
  128. /*
  129. * Try to extend this transaction for the purposes of truncation.
  130. *
  131. * Returns 0 if we managed to create more room. If we can't create more
  132. * room, and the transaction must be restarted we return 1.
  133. */
  134. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  135. {
  136. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  137. return 0;
  138. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  139. return 0;
  140. return 1;
  141. }
  142. /*
  143. * Restart the transaction associated with *handle. This does a commit,
  144. * so before we call here everything must be consistently dirtied against
  145. * this transaction.
  146. */
  147. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  148. {
  149. int ret;
  150. jbd_debug(2, "restarting handle %p\n", handle);
  151. /*
  152. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  153. * At this moment, get_block can be called only for blocks inside
  154. * i_size since page cache has been already dropped and writes are
  155. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  156. */
  157. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  158. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  159. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  160. return ret;
  161. }
  162. /*
  163. * Called at inode eviction from icache
  164. */
  165. void ext3_evict_inode (struct inode *inode)
  166. {
  167. struct ext3_inode_info *ei = EXT3_I(inode);
  168. struct ext3_block_alloc_info *rsv;
  169. handle_t *handle;
  170. int want_delete = 0;
  171. trace_ext3_evict_inode(inode);
  172. if (!inode->i_nlink && !is_bad_inode(inode)) {
  173. dquot_initialize(inode);
  174. want_delete = 1;
  175. }
  176. /*
  177. * When journalling data dirty buffers are tracked only in the journal.
  178. * So although mm thinks everything is clean and ready for reaping the
  179. * inode might still have some pages to write in the running
  180. * transaction or waiting to be checkpointed. Thus calling
  181. * journal_invalidatepage() (via truncate_inode_pages()) to discard
  182. * these buffers can cause data loss. Also even if we did not discard
  183. * these buffers, we would have no way to find them after the inode
  184. * is reaped and thus user could see stale data if he tries to read
  185. * them before the transaction is checkpointed. So be careful and
  186. * force everything to disk here... We use ei->i_datasync_tid to
  187. * store the newest transaction containing inode's data.
  188. *
  189. * Note that directories do not have this problem because they don't
  190. * use page cache.
  191. *
  192. * The s_journal check handles the case when ext3_get_journal() fails
  193. * and puts the journal inode.
  194. */
  195. if (inode->i_nlink && ext3_should_journal_data(inode) &&
  196. EXT3_SB(inode->i_sb)->s_journal &&
  197. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
  198. inode->i_ino != EXT3_JOURNAL_INO) {
  199. tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
  200. journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
  201. log_start_commit(journal, commit_tid);
  202. log_wait_commit(journal, commit_tid);
  203. filemap_write_and_wait(&inode->i_data);
  204. }
  205. truncate_inode_pages(&inode->i_data, 0);
  206. ext3_discard_reservation(inode);
  207. rsv = ei->i_block_alloc_info;
  208. ei->i_block_alloc_info = NULL;
  209. if (unlikely(rsv))
  210. kfree(rsv);
  211. if (!want_delete)
  212. goto no_delete;
  213. handle = start_transaction(inode);
  214. if (IS_ERR(handle)) {
  215. /*
  216. * If we're going to skip the normal cleanup, we still need to
  217. * make sure that the in-core orphan linked list is properly
  218. * cleaned up.
  219. */
  220. ext3_orphan_del(NULL, inode);
  221. goto no_delete;
  222. }
  223. if (IS_SYNC(inode))
  224. handle->h_sync = 1;
  225. inode->i_size = 0;
  226. if (inode->i_blocks)
  227. ext3_truncate(inode);
  228. /*
  229. * Kill off the orphan record created when the inode lost the last
  230. * link. Note that ext3_orphan_del() has to be able to cope with the
  231. * deletion of a non-existent orphan - ext3_truncate() could
  232. * have removed the record.
  233. */
  234. ext3_orphan_del(handle, inode);
  235. ei->i_dtime = get_seconds();
  236. /*
  237. * One subtle ordering requirement: if anything has gone wrong
  238. * (transaction abort, IO errors, whatever), then we can still
  239. * do these next steps (the fs will already have been marked as
  240. * having errors), but we can't free the inode if the mark_dirty
  241. * fails.
  242. */
  243. if (ext3_mark_inode_dirty(handle, inode)) {
  244. /* If that failed, just dquot_drop() and be done with that */
  245. dquot_drop(inode);
  246. clear_inode(inode);
  247. } else {
  248. ext3_xattr_delete_inode(handle, inode);
  249. dquot_free_inode(inode);
  250. dquot_drop(inode);
  251. clear_inode(inode);
  252. ext3_free_inode(handle, inode);
  253. }
  254. ext3_journal_stop(handle);
  255. return;
  256. no_delete:
  257. clear_inode(inode);
  258. dquot_drop(inode);
  259. }
  260. typedef struct {
  261. __le32 *p;
  262. __le32 key;
  263. struct buffer_head *bh;
  264. } Indirect;
  265. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  266. {
  267. p->key = *(p->p = v);
  268. p->bh = bh;
  269. }
  270. static int verify_chain(Indirect *from, Indirect *to)
  271. {
  272. while (from <= to && from->key == *from->p)
  273. from++;
  274. return (from > to);
  275. }
  276. /**
  277. * ext3_block_to_path - parse the block number into array of offsets
  278. * @inode: inode in question (we are only interested in its superblock)
  279. * @i_block: block number to be parsed
  280. * @offsets: array to store the offsets in
  281. * @boundary: set this non-zero if the referred-to block is likely to be
  282. * followed (on disk) by an indirect block.
  283. *
  284. * To store the locations of file's data ext3 uses a data structure common
  285. * for UNIX filesystems - tree of pointers anchored in the inode, with
  286. * data blocks at leaves and indirect blocks in intermediate nodes.
  287. * This function translates the block number into path in that tree -
  288. * return value is the path length and @offsets[n] is the offset of
  289. * pointer to (n+1)th node in the nth one. If @block is out of range
  290. * (negative or too large) warning is printed and zero returned.
  291. *
  292. * Note: function doesn't find node addresses, so no IO is needed. All
  293. * we need to know is the capacity of indirect blocks (taken from the
  294. * inode->i_sb).
  295. */
  296. /*
  297. * Portability note: the last comparison (check that we fit into triple
  298. * indirect block) is spelled differently, because otherwise on an
  299. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  300. * if our filesystem had 8Kb blocks. We might use long long, but that would
  301. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  302. * i_block would have to be negative in the very beginning, so we would not
  303. * get there at all.
  304. */
  305. static int ext3_block_to_path(struct inode *inode,
  306. long i_block, int offsets[4], int *boundary)
  307. {
  308. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  309. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  310. const long direct_blocks = EXT3_NDIR_BLOCKS,
  311. indirect_blocks = ptrs,
  312. double_blocks = (1 << (ptrs_bits * 2));
  313. int n = 0;
  314. int final = 0;
  315. if (i_block < 0) {
  316. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  317. } else if (i_block < direct_blocks) {
  318. offsets[n++] = i_block;
  319. final = direct_blocks;
  320. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  321. offsets[n++] = EXT3_IND_BLOCK;
  322. offsets[n++] = i_block;
  323. final = ptrs;
  324. } else if ((i_block -= indirect_blocks) < double_blocks) {
  325. offsets[n++] = EXT3_DIND_BLOCK;
  326. offsets[n++] = i_block >> ptrs_bits;
  327. offsets[n++] = i_block & (ptrs - 1);
  328. final = ptrs;
  329. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  330. offsets[n++] = EXT3_TIND_BLOCK;
  331. offsets[n++] = i_block >> (ptrs_bits * 2);
  332. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  333. offsets[n++] = i_block & (ptrs - 1);
  334. final = ptrs;
  335. } else {
  336. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  337. }
  338. if (boundary)
  339. *boundary = final - 1 - (i_block & (ptrs - 1));
  340. return n;
  341. }
  342. /**
  343. * ext3_get_branch - read the chain of indirect blocks leading to data
  344. * @inode: inode in question
  345. * @depth: depth of the chain (1 - direct pointer, etc.)
  346. * @offsets: offsets of pointers in inode/indirect blocks
  347. * @chain: place to store the result
  348. * @err: here we store the error value
  349. *
  350. * Function fills the array of triples <key, p, bh> and returns %NULL
  351. * if everything went OK or the pointer to the last filled triple
  352. * (incomplete one) otherwise. Upon the return chain[i].key contains
  353. * the number of (i+1)-th block in the chain (as it is stored in memory,
  354. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  355. * number (it points into struct inode for i==0 and into the bh->b_data
  356. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  357. * block for i>0 and NULL for i==0. In other words, it holds the block
  358. * numbers of the chain, addresses they were taken from (and where we can
  359. * verify that chain did not change) and buffer_heads hosting these
  360. * numbers.
  361. *
  362. * Function stops when it stumbles upon zero pointer (absent block)
  363. * (pointer to last triple returned, *@err == 0)
  364. * or when it gets an IO error reading an indirect block
  365. * (ditto, *@err == -EIO)
  366. * or when it notices that chain had been changed while it was reading
  367. * (ditto, *@err == -EAGAIN)
  368. * or when it reads all @depth-1 indirect blocks successfully and finds
  369. * the whole chain, all way to the data (returns %NULL, *err == 0).
  370. */
  371. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  372. Indirect chain[4], int *err)
  373. {
  374. struct super_block *sb = inode->i_sb;
  375. Indirect *p = chain;
  376. struct buffer_head *bh;
  377. *err = 0;
  378. /* i_data is not going away, no lock needed */
  379. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  380. if (!p->key)
  381. goto no_block;
  382. while (--depth) {
  383. bh = sb_bread(sb, le32_to_cpu(p->key));
  384. if (!bh)
  385. goto failure;
  386. /* Reader: pointers */
  387. if (!verify_chain(chain, p))
  388. goto changed;
  389. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  390. /* Reader: end */
  391. if (!p->key)
  392. goto no_block;
  393. }
  394. return NULL;
  395. changed:
  396. brelse(bh);
  397. *err = -EAGAIN;
  398. goto no_block;
  399. failure:
  400. *err = -EIO;
  401. no_block:
  402. return p;
  403. }
  404. /**
  405. * ext3_find_near - find a place for allocation with sufficient locality
  406. * @inode: owner
  407. * @ind: descriptor of indirect block.
  408. *
  409. * This function returns the preferred place for block allocation.
  410. * It is used when heuristic for sequential allocation fails.
  411. * Rules are:
  412. * + if there is a block to the left of our position - allocate near it.
  413. * + if pointer will live in indirect block - allocate near that block.
  414. * + if pointer will live in inode - allocate in the same
  415. * cylinder group.
  416. *
  417. * In the latter case we colour the starting block by the callers PID to
  418. * prevent it from clashing with concurrent allocations for a different inode
  419. * in the same block group. The PID is used here so that functionally related
  420. * files will be close-by on-disk.
  421. *
  422. * Caller must make sure that @ind is valid and will stay that way.
  423. */
  424. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  425. {
  426. struct ext3_inode_info *ei = EXT3_I(inode);
  427. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  428. __le32 *p;
  429. ext3_fsblk_t bg_start;
  430. ext3_grpblk_t colour;
  431. /* Try to find previous block */
  432. for (p = ind->p - 1; p >= start; p--) {
  433. if (*p)
  434. return le32_to_cpu(*p);
  435. }
  436. /* No such thing, so let's try location of indirect block */
  437. if (ind->bh)
  438. return ind->bh->b_blocknr;
  439. /*
  440. * It is going to be referred to from the inode itself? OK, just put it
  441. * into the same cylinder group then.
  442. */
  443. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  444. colour = (current->pid % 16) *
  445. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  446. return bg_start + colour;
  447. }
  448. /**
  449. * ext3_find_goal - find a preferred place for allocation.
  450. * @inode: owner
  451. * @block: block we want
  452. * @partial: pointer to the last triple within a chain
  453. *
  454. * Normally this function find the preferred place for block allocation,
  455. * returns it.
  456. */
  457. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  458. Indirect *partial)
  459. {
  460. struct ext3_block_alloc_info *block_i;
  461. block_i = EXT3_I(inode)->i_block_alloc_info;
  462. /*
  463. * try the heuristic for sequential allocation,
  464. * failing that at least try to get decent locality.
  465. */
  466. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  467. && (block_i->last_alloc_physical_block != 0)) {
  468. return block_i->last_alloc_physical_block + 1;
  469. }
  470. return ext3_find_near(inode, partial);
  471. }
  472. /**
  473. * ext3_blks_to_allocate - Look up the block map and count the number
  474. * of direct blocks need to be allocated for the given branch.
  475. *
  476. * @branch: chain of indirect blocks
  477. * @k: number of blocks need for indirect blocks
  478. * @blks: number of data blocks to be mapped.
  479. * @blocks_to_boundary: the offset in the indirect block
  480. *
  481. * return the total number of blocks to be allocate, including the
  482. * direct and indirect blocks.
  483. */
  484. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  485. int blocks_to_boundary)
  486. {
  487. unsigned long count = 0;
  488. /*
  489. * Simple case, [t,d]Indirect block(s) has not allocated yet
  490. * then it's clear blocks on that path have not allocated
  491. */
  492. if (k > 0) {
  493. /* right now we don't handle cross boundary allocation */
  494. if (blks < blocks_to_boundary + 1)
  495. count += blks;
  496. else
  497. count += blocks_to_boundary + 1;
  498. return count;
  499. }
  500. count++;
  501. while (count < blks && count <= blocks_to_boundary &&
  502. le32_to_cpu(*(branch[0].p + count)) == 0) {
  503. count++;
  504. }
  505. return count;
  506. }
  507. /**
  508. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  509. * @handle: handle for this transaction
  510. * @inode: owner
  511. * @goal: preferred place for allocation
  512. * @indirect_blks: the number of blocks need to allocate for indirect
  513. * blocks
  514. * @blks: number of blocks need to allocated for direct blocks
  515. * @new_blocks: on return it will store the new block numbers for
  516. * the indirect blocks(if needed) and the first direct block,
  517. * @err: here we store the error value
  518. *
  519. * return the number of direct blocks allocated
  520. */
  521. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  522. ext3_fsblk_t goal, int indirect_blks, int blks,
  523. ext3_fsblk_t new_blocks[4], int *err)
  524. {
  525. int target, i;
  526. unsigned long count = 0;
  527. int index = 0;
  528. ext3_fsblk_t current_block = 0;
  529. int ret = 0;
  530. /*
  531. * Here we try to allocate the requested multiple blocks at once,
  532. * on a best-effort basis.
  533. * To build a branch, we should allocate blocks for
  534. * the indirect blocks(if not allocated yet), and at least
  535. * the first direct block of this branch. That's the
  536. * minimum number of blocks need to allocate(required)
  537. */
  538. target = blks + indirect_blks;
  539. while (1) {
  540. count = target;
  541. /* allocating blocks for indirect blocks and direct blocks */
  542. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  543. if (*err)
  544. goto failed_out;
  545. target -= count;
  546. /* allocate blocks for indirect blocks */
  547. while (index < indirect_blks && count) {
  548. new_blocks[index++] = current_block++;
  549. count--;
  550. }
  551. if (count > 0)
  552. break;
  553. }
  554. /* save the new block number for the first direct block */
  555. new_blocks[index] = current_block;
  556. /* total number of blocks allocated for direct blocks */
  557. ret = count;
  558. *err = 0;
  559. return ret;
  560. failed_out:
  561. for (i = 0; i <index; i++)
  562. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  563. return ret;
  564. }
  565. /**
  566. * ext3_alloc_branch - allocate and set up a chain of blocks.
  567. * @handle: handle for this transaction
  568. * @inode: owner
  569. * @indirect_blks: number of allocated indirect blocks
  570. * @blks: number of allocated direct blocks
  571. * @goal: preferred place for allocation
  572. * @offsets: offsets (in the blocks) to store the pointers to next.
  573. * @branch: place to store the chain in.
  574. *
  575. * This function allocates blocks, zeroes out all but the last one,
  576. * links them into chain and (if we are synchronous) writes them to disk.
  577. * In other words, it prepares a branch that can be spliced onto the
  578. * inode. It stores the information about that chain in the branch[], in
  579. * the same format as ext3_get_branch() would do. We are calling it after
  580. * we had read the existing part of chain and partial points to the last
  581. * triple of that (one with zero ->key). Upon the exit we have the same
  582. * picture as after the successful ext3_get_block(), except that in one
  583. * place chain is disconnected - *branch->p is still zero (we did not
  584. * set the last link), but branch->key contains the number that should
  585. * be placed into *branch->p to fill that gap.
  586. *
  587. * If allocation fails we free all blocks we've allocated (and forget
  588. * their buffer_heads) and return the error value the from failed
  589. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  590. * as described above and return 0.
  591. */
  592. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  593. int indirect_blks, int *blks, ext3_fsblk_t goal,
  594. int *offsets, Indirect *branch)
  595. {
  596. int blocksize = inode->i_sb->s_blocksize;
  597. int i, n = 0;
  598. int err = 0;
  599. struct buffer_head *bh;
  600. int num;
  601. ext3_fsblk_t new_blocks[4];
  602. ext3_fsblk_t current_block;
  603. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  604. *blks, new_blocks, &err);
  605. if (err)
  606. return err;
  607. branch[0].key = cpu_to_le32(new_blocks[0]);
  608. /*
  609. * metadata blocks and data blocks are allocated.
  610. */
  611. for (n = 1; n <= indirect_blks; n++) {
  612. /*
  613. * Get buffer_head for parent block, zero it out
  614. * and set the pointer to new one, then send
  615. * parent to disk.
  616. */
  617. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  618. if (unlikely(!bh)) {
  619. err = -ENOMEM;
  620. goto failed;
  621. }
  622. branch[n].bh = bh;
  623. lock_buffer(bh);
  624. BUFFER_TRACE(bh, "call get_create_access");
  625. err = ext3_journal_get_create_access(handle, bh);
  626. if (err) {
  627. unlock_buffer(bh);
  628. brelse(bh);
  629. goto failed;
  630. }
  631. memset(bh->b_data, 0, blocksize);
  632. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  633. branch[n].key = cpu_to_le32(new_blocks[n]);
  634. *branch[n].p = branch[n].key;
  635. if ( n == indirect_blks) {
  636. current_block = new_blocks[n];
  637. /*
  638. * End of chain, update the last new metablock of
  639. * the chain to point to the new allocated
  640. * data blocks numbers
  641. */
  642. for (i=1; i < num; i++)
  643. *(branch[n].p + i) = cpu_to_le32(++current_block);
  644. }
  645. BUFFER_TRACE(bh, "marking uptodate");
  646. set_buffer_uptodate(bh);
  647. unlock_buffer(bh);
  648. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  649. err = ext3_journal_dirty_metadata(handle, bh);
  650. if (err)
  651. goto failed;
  652. }
  653. *blks = num;
  654. return err;
  655. failed:
  656. /* Allocation failed, free what we already allocated */
  657. for (i = 1; i <= n ; i++) {
  658. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  659. ext3_journal_forget(handle, branch[i].bh);
  660. }
  661. for (i = 0; i < indirect_blks; i++)
  662. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  663. ext3_free_blocks(handle, inode, new_blocks[i], num);
  664. return err;
  665. }
  666. /**
  667. * ext3_splice_branch - splice the allocated branch onto inode.
  668. * @handle: handle for this transaction
  669. * @inode: owner
  670. * @block: (logical) number of block we are adding
  671. * @where: location of missing link
  672. * @num: number of indirect blocks we are adding
  673. * @blks: number of direct blocks we are adding
  674. *
  675. * This function fills the missing link and does all housekeeping needed in
  676. * inode (->i_blocks, etc.). In case of success we end up with the full
  677. * chain to new block and return 0.
  678. */
  679. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  680. long block, Indirect *where, int num, int blks)
  681. {
  682. int i;
  683. int err = 0;
  684. struct ext3_block_alloc_info *block_i;
  685. ext3_fsblk_t current_block;
  686. struct ext3_inode_info *ei = EXT3_I(inode);
  687. struct timespec now;
  688. block_i = ei->i_block_alloc_info;
  689. /*
  690. * If we're splicing into a [td]indirect block (as opposed to the
  691. * inode) then we need to get write access to the [td]indirect block
  692. * before the splice.
  693. */
  694. if (where->bh) {
  695. BUFFER_TRACE(where->bh, "get_write_access");
  696. err = ext3_journal_get_write_access(handle, where->bh);
  697. if (err)
  698. goto err_out;
  699. }
  700. /* That's it */
  701. *where->p = where->key;
  702. /*
  703. * Update the host buffer_head or inode to point to more just allocated
  704. * direct blocks blocks
  705. */
  706. if (num == 0 && blks > 1) {
  707. current_block = le32_to_cpu(where->key) + 1;
  708. for (i = 1; i < blks; i++)
  709. *(where->p + i ) = cpu_to_le32(current_block++);
  710. }
  711. /*
  712. * update the most recently allocated logical & physical block
  713. * in i_block_alloc_info, to assist find the proper goal block for next
  714. * allocation
  715. */
  716. if (block_i) {
  717. block_i->last_alloc_logical_block = block + blks - 1;
  718. block_i->last_alloc_physical_block =
  719. le32_to_cpu(where[num].key) + blks - 1;
  720. }
  721. /* We are done with atomic stuff, now do the rest of housekeeping */
  722. now = CURRENT_TIME_SEC;
  723. if (!timespec_equal(&inode->i_ctime, &now) || !where->bh) {
  724. inode->i_ctime = now;
  725. ext3_mark_inode_dirty(handle, inode);
  726. }
  727. /* ext3_mark_inode_dirty already updated i_sync_tid */
  728. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  729. /* had we spliced it onto indirect block? */
  730. if (where->bh) {
  731. /*
  732. * If we spliced it onto an indirect block, we haven't
  733. * altered the inode. Note however that if it is being spliced
  734. * onto an indirect block at the very end of the file (the
  735. * file is growing) then we *will* alter the inode to reflect
  736. * the new i_size. But that is not done here - it is done in
  737. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  738. */
  739. jbd_debug(5, "splicing indirect only\n");
  740. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  741. err = ext3_journal_dirty_metadata(handle, where->bh);
  742. if (err)
  743. goto err_out;
  744. } else {
  745. /*
  746. * OK, we spliced it into the inode itself on a direct block.
  747. * Inode was dirtied above.
  748. */
  749. jbd_debug(5, "splicing direct\n");
  750. }
  751. return err;
  752. err_out:
  753. for (i = 1; i <= num; i++) {
  754. BUFFER_TRACE(where[i].bh, "call journal_forget");
  755. ext3_journal_forget(handle, where[i].bh);
  756. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  757. }
  758. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  759. return err;
  760. }
  761. /*
  762. * Allocation strategy is simple: if we have to allocate something, we will
  763. * have to go the whole way to leaf. So let's do it before attaching anything
  764. * to tree, set linkage between the newborn blocks, write them if sync is
  765. * required, recheck the path, free and repeat if check fails, otherwise
  766. * set the last missing link (that will protect us from any truncate-generated
  767. * removals - all blocks on the path are immune now) and possibly force the
  768. * write on the parent block.
  769. * That has a nice additional property: no special recovery from the failed
  770. * allocations is needed - we simply release blocks and do not touch anything
  771. * reachable from inode.
  772. *
  773. * `handle' can be NULL if create == 0.
  774. *
  775. * The BKL may not be held on entry here. Be sure to take it early.
  776. * return > 0, # of blocks mapped or allocated.
  777. * return = 0, if plain lookup failed.
  778. * return < 0, error case.
  779. */
  780. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  781. sector_t iblock, unsigned long maxblocks,
  782. struct buffer_head *bh_result,
  783. int create)
  784. {
  785. int err = -EIO;
  786. int offsets[4];
  787. Indirect chain[4];
  788. Indirect *partial;
  789. ext3_fsblk_t goal;
  790. int indirect_blks;
  791. int blocks_to_boundary = 0;
  792. int depth;
  793. struct ext3_inode_info *ei = EXT3_I(inode);
  794. int count = 0;
  795. ext3_fsblk_t first_block = 0;
  796. trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
  797. J_ASSERT(handle != NULL || create == 0);
  798. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  799. if (depth == 0)
  800. goto out;
  801. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  802. /* Simplest case - block found, no allocation needed */
  803. if (!partial) {
  804. first_block = le32_to_cpu(chain[depth - 1].key);
  805. clear_buffer_new(bh_result);
  806. count++;
  807. /*map more blocks*/
  808. while (count < maxblocks && count <= blocks_to_boundary) {
  809. ext3_fsblk_t blk;
  810. if (!verify_chain(chain, chain + depth - 1)) {
  811. /*
  812. * Indirect block might be removed by
  813. * truncate while we were reading it.
  814. * Handling of that case: forget what we've
  815. * got now. Flag the err as EAGAIN, so it
  816. * will reread.
  817. */
  818. err = -EAGAIN;
  819. count = 0;
  820. break;
  821. }
  822. blk = le32_to_cpu(*(chain[depth-1].p + count));
  823. if (blk == first_block + count)
  824. count++;
  825. else
  826. break;
  827. }
  828. if (err != -EAGAIN)
  829. goto got_it;
  830. }
  831. /* Next simple case - plain lookup or failed read of indirect block */
  832. if (!create || err == -EIO)
  833. goto cleanup;
  834. /*
  835. * Block out ext3_truncate while we alter the tree
  836. */
  837. mutex_lock(&ei->truncate_mutex);
  838. /*
  839. * If the indirect block is missing while we are reading
  840. * the chain(ext3_get_branch() returns -EAGAIN err), or
  841. * if the chain has been changed after we grab the semaphore,
  842. * (either because another process truncated this branch, or
  843. * another get_block allocated this branch) re-grab the chain to see if
  844. * the request block has been allocated or not.
  845. *
  846. * Since we already block the truncate/other get_block
  847. * at this point, we will have the current copy of the chain when we
  848. * splice the branch into the tree.
  849. */
  850. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  851. while (partial > chain) {
  852. brelse(partial->bh);
  853. partial--;
  854. }
  855. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  856. if (!partial) {
  857. count++;
  858. mutex_unlock(&ei->truncate_mutex);
  859. if (err)
  860. goto cleanup;
  861. clear_buffer_new(bh_result);
  862. goto got_it;
  863. }
  864. }
  865. /*
  866. * Okay, we need to do block allocation. Lazily initialize the block
  867. * allocation info here if necessary
  868. */
  869. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  870. ext3_init_block_alloc_info(inode);
  871. goal = ext3_find_goal(inode, iblock, partial);
  872. /* the number of blocks need to allocate for [d,t]indirect blocks */
  873. indirect_blks = (chain + depth) - partial - 1;
  874. /*
  875. * Next look up the indirect map to count the totoal number of
  876. * direct blocks to allocate for this branch.
  877. */
  878. count = ext3_blks_to_allocate(partial, indirect_blks,
  879. maxblocks, blocks_to_boundary);
  880. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  881. offsets + (partial - chain), partial);
  882. /*
  883. * The ext3_splice_branch call will free and forget any buffers
  884. * on the new chain if there is a failure, but that risks using
  885. * up transaction credits, especially for bitmaps where the
  886. * credits cannot be returned. Can we handle this somehow? We
  887. * may need to return -EAGAIN upwards in the worst case. --sct
  888. */
  889. if (!err)
  890. err = ext3_splice_branch(handle, inode, iblock,
  891. partial, indirect_blks, count);
  892. mutex_unlock(&ei->truncate_mutex);
  893. if (err)
  894. goto cleanup;
  895. set_buffer_new(bh_result);
  896. got_it:
  897. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  898. if (count > blocks_to_boundary)
  899. set_buffer_boundary(bh_result);
  900. err = count;
  901. /* Clean up and exit */
  902. partial = chain + depth - 1; /* the whole chain */
  903. cleanup:
  904. while (partial > chain) {
  905. BUFFER_TRACE(partial->bh, "call brelse");
  906. brelse(partial->bh);
  907. partial--;
  908. }
  909. BUFFER_TRACE(bh_result, "returned");
  910. out:
  911. trace_ext3_get_blocks_exit(inode, iblock,
  912. depth ? le32_to_cpu(chain[depth-1].key) : 0,
  913. count, err);
  914. return err;
  915. }
  916. /* Maximum number of blocks we map for direct IO at once. */
  917. #define DIO_MAX_BLOCKS 4096
  918. /*
  919. * Number of credits we need for writing DIO_MAX_BLOCKS:
  920. * We need sb + group descriptor + bitmap + inode -> 4
  921. * For B blocks with A block pointers per block we need:
  922. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  923. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  924. */
  925. #define DIO_CREDITS 25
  926. static int ext3_get_block(struct inode *inode, sector_t iblock,
  927. struct buffer_head *bh_result, int create)
  928. {
  929. handle_t *handle = ext3_journal_current_handle();
  930. int ret = 0, started = 0;
  931. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  932. if (create && !handle) { /* Direct IO write... */
  933. if (max_blocks > DIO_MAX_BLOCKS)
  934. max_blocks = DIO_MAX_BLOCKS;
  935. handle = ext3_journal_start(inode, DIO_CREDITS +
  936. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  937. if (IS_ERR(handle)) {
  938. ret = PTR_ERR(handle);
  939. goto out;
  940. }
  941. started = 1;
  942. }
  943. ret = ext3_get_blocks_handle(handle, inode, iblock,
  944. max_blocks, bh_result, create);
  945. if (ret > 0) {
  946. bh_result->b_size = (ret << inode->i_blkbits);
  947. ret = 0;
  948. }
  949. if (started)
  950. ext3_journal_stop(handle);
  951. out:
  952. return ret;
  953. }
  954. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  955. u64 start, u64 len)
  956. {
  957. return generic_block_fiemap(inode, fieinfo, start, len,
  958. ext3_get_block);
  959. }
  960. /*
  961. * `handle' can be NULL if create is zero
  962. */
  963. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  964. long block, int create, int *errp)
  965. {
  966. struct buffer_head dummy;
  967. int fatal = 0, err;
  968. J_ASSERT(handle != NULL || create == 0);
  969. dummy.b_state = 0;
  970. dummy.b_blocknr = -1000;
  971. buffer_trace_init(&dummy.b_history);
  972. err = ext3_get_blocks_handle(handle, inode, block, 1,
  973. &dummy, create);
  974. /*
  975. * ext3_get_blocks_handle() returns number of blocks
  976. * mapped. 0 in case of a HOLE.
  977. */
  978. if (err > 0) {
  979. WARN_ON(err > 1);
  980. err = 0;
  981. }
  982. *errp = err;
  983. if (!err && buffer_mapped(&dummy)) {
  984. struct buffer_head *bh;
  985. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  986. if (unlikely(!bh)) {
  987. *errp = -ENOMEM;
  988. goto err;
  989. }
  990. if (buffer_new(&dummy)) {
  991. J_ASSERT(create != 0);
  992. J_ASSERT(handle != NULL);
  993. /*
  994. * Now that we do not always journal data, we should
  995. * keep in mind whether this should always journal the
  996. * new buffer as metadata. For now, regular file
  997. * writes use ext3_get_block instead, so it's not a
  998. * problem.
  999. */
  1000. lock_buffer(bh);
  1001. BUFFER_TRACE(bh, "call get_create_access");
  1002. fatal = ext3_journal_get_create_access(handle, bh);
  1003. if (!fatal && !buffer_uptodate(bh)) {
  1004. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1005. set_buffer_uptodate(bh);
  1006. }
  1007. unlock_buffer(bh);
  1008. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1009. err = ext3_journal_dirty_metadata(handle, bh);
  1010. if (!fatal)
  1011. fatal = err;
  1012. } else {
  1013. BUFFER_TRACE(bh, "not a new buffer");
  1014. }
  1015. if (fatal) {
  1016. *errp = fatal;
  1017. brelse(bh);
  1018. bh = NULL;
  1019. }
  1020. return bh;
  1021. }
  1022. err:
  1023. return NULL;
  1024. }
  1025. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  1026. int block, int create, int *err)
  1027. {
  1028. struct buffer_head * bh;
  1029. bh = ext3_getblk(handle, inode, block, create, err);
  1030. if (!bh)
  1031. return bh;
  1032. if (bh_uptodate_or_lock(bh))
  1033. return bh;
  1034. get_bh(bh);
  1035. bh->b_end_io = end_buffer_read_sync;
  1036. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  1037. wait_on_buffer(bh);
  1038. if (buffer_uptodate(bh))
  1039. return bh;
  1040. put_bh(bh);
  1041. *err = -EIO;
  1042. return NULL;
  1043. }
  1044. static int walk_page_buffers( handle_t *handle,
  1045. struct buffer_head *head,
  1046. unsigned from,
  1047. unsigned to,
  1048. int *partial,
  1049. int (*fn)( handle_t *handle,
  1050. struct buffer_head *bh))
  1051. {
  1052. struct buffer_head *bh;
  1053. unsigned block_start, block_end;
  1054. unsigned blocksize = head->b_size;
  1055. int err, ret = 0;
  1056. struct buffer_head *next;
  1057. for ( bh = head, block_start = 0;
  1058. ret == 0 && (bh != head || !block_start);
  1059. block_start = block_end, bh = next)
  1060. {
  1061. next = bh->b_this_page;
  1062. block_end = block_start + blocksize;
  1063. if (block_end <= from || block_start >= to) {
  1064. if (partial && !buffer_uptodate(bh))
  1065. *partial = 1;
  1066. continue;
  1067. }
  1068. err = (*fn)(handle, bh);
  1069. if (!ret)
  1070. ret = err;
  1071. }
  1072. return ret;
  1073. }
  1074. /*
  1075. * To preserve ordering, it is essential that the hole instantiation and
  1076. * the data write be encapsulated in a single transaction. We cannot
  1077. * close off a transaction and start a new one between the ext3_get_block()
  1078. * and the commit_write(). So doing the journal_start at the start of
  1079. * prepare_write() is the right place.
  1080. *
  1081. * Also, this function can nest inside ext3_writepage() ->
  1082. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1083. * has generated enough buffer credits to do the whole page. So we won't
  1084. * block on the journal in that case, which is good, because the caller may
  1085. * be PF_MEMALLOC.
  1086. *
  1087. * By accident, ext3 can be reentered when a transaction is open via
  1088. * quota file writes. If we were to commit the transaction while thus
  1089. * reentered, there can be a deadlock - we would be holding a quota
  1090. * lock, and the commit would never complete if another thread had a
  1091. * transaction open and was blocking on the quota lock - a ranking
  1092. * violation.
  1093. *
  1094. * So what we do is to rely on the fact that journal_stop/journal_start
  1095. * will _not_ run commit under these circumstances because handle->h_ref
  1096. * is elevated. We'll still have enough credits for the tiny quotafile
  1097. * write.
  1098. */
  1099. static int do_journal_get_write_access(handle_t *handle,
  1100. struct buffer_head *bh)
  1101. {
  1102. int dirty = buffer_dirty(bh);
  1103. int ret;
  1104. if (!buffer_mapped(bh) || buffer_freed(bh))
  1105. return 0;
  1106. /*
  1107. * __block_prepare_write() could have dirtied some buffers. Clean
  1108. * the dirty bit as jbd2_journal_get_write_access() could complain
  1109. * otherwise about fs integrity issues. Setting of the dirty bit
  1110. * by __block_prepare_write() isn't a real problem here as we clear
  1111. * the bit before releasing a page lock and thus writeback cannot
  1112. * ever write the buffer.
  1113. */
  1114. if (dirty)
  1115. clear_buffer_dirty(bh);
  1116. ret = ext3_journal_get_write_access(handle, bh);
  1117. if (!ret && dirty)
  1118. ret = ext3_journal_dirty_metadata(handle, bh);
  1119. return ret;
  1120. }
  1121. /*
  1122. * Truncate blocks that were not used by write. We have to truncate the
  1123. * pagecache as well so that corresponding buffers get properly unmapped.
  1124. */
  1125. static void ext3_truncate_failed_write(struct inode *inode)
  1126. {
  1127. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1128. ext3_truncate(inode);
  1129. }
  1130. /*
  1131. * Truncate blocks that were not used by direct IO write. We have to zero out
  1132. * the last file block as well because direct IO might have written to it.
  1133. */
  1134. static void ext3_truncate_failed_direct_write(struct inode *inode)
  1135. {
  1136. ext3_block_truncate_page(inode, inode->i_size);
  1137. ext3_truncate(inode);
  1138. }
  1139. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1140. loff_t pos, unsigned len, unsigned flags,
  1141. struct page **pagep, void **fsdata)
  1142. {
  1143. struct inode *inode = mapping->host;
  1144. int ret;
  1145. handle_t *handle;
  1146. int retries = 0;
  1147. struct page *page;
  1148. pgoff_t index;
  1149. unsigned from, to;
  1150. /* Reserve one block more for addition to orphan list in case
  1151. * we allocate blocks but write fails for some reason */
  1152. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1153. trace_ext3_write_begin(inode, pos, len, flags);
  1154. index = pos >> PAGE_CACHE_SHIFT;
  1155. from = pos & (PAGE_CACHE_SIZE - 1);
  1156. to = from + len;
  1157. retry:
  1158. page = grab_cache_page_write_begin(mapping, index, flags);
  1159. if (!page)
  1160. return -ENOMEM;
  1161. *pagep = page;
  1162. handle = ext3_journal_start(inode, needed_blocks);
  1163. if (IS_ERR(handle)) {
  1164. unlock_page(page);
  1165. page_cache_release(page);
  1166. ret = PTR_ERR(handle);
  1167. goto out;
  1168. }
  1169. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1170. if (ret)
  1171. goto write_begin_failed;
  1172. if (ext3_should_journal_data(inode)) {
  1173. ret = walk_page_buffers(handle, page_buffers(page),
  1174. from, to, NULL, do_journal_get_write_access);
  1175. }
  1176. write_begin_failed:
  1177. if (ret) {
  1178. /*
  1179. * block_write_begin may have instantiated a few blocks
  1180. * outside i_size. Trim these off again. Don't need
  1181. * i_size_read because we hold i_mutex.
  1182. *
  1183. * Add inode to orphan list in case we crash before truncate
  1184. * finishes. Do this only if ext3_can_truncate() agrees so
  1185. * that orphan processing code is happy.
  1186. */
  1187. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1188. ext3_orphan_add(handle, inode);
  1189. ext3_journal_stop(handle);
  1190. unlock_page(page);
  1191. page_cache_release(page);
  1192. if (pos + len > inode->i_size)
  1193. ext3_truncate_failed_write(inode);
  1194. }
  1195. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1196. goto retry;
  1197. out:
  1198. return ret;
  1199. }
  1200. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1201. {
  1202. int err = journal_dirty_data(handle, bh);
  1203. if (err)
  1204. ext3_journal_abort_handle(__func__, __func__,
  1205. bh, handle, err);
  1206. return err;
  1207. }
  1208. /* For ordered writepage and write_end functions */
  1209. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1210. {
  1211. /*
  1212. * Write could have mapped the buffer but it didn't copy the data in
  1213. * yet. So avoid filing such buffer into a transaction.
  1214. */
  1215. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1216. return ext3_journal_dirty_data(handle, bh);
  1217. return 0;
  1218. }
  1219. /* For write_end() in data=journal mode */
  1220. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1221. {
  1222. if (!buffer_mapped(bh) || buffer_freed(bh))
  1223. return 0;
  1224. set_buffer_uptodate(bh);
  1225. return ext3_journal_dirty_metadata(handle, bh);
  1226. }
  1227. /*
  1228. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1229. * for the whole page but later we failed to copy the data in. Update inode
  1230. * size according to what we managed to copy. The rest is going to be
  1231. * truncated in write_end function.
  1232. */
  1233. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1234. {
  1235. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1236. if (pos + copied > inode->i_size)
  1237. i_size_write(inode, pos + copied);
  1238. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1239. EXT3_I(inode)->i_disksize = pos + copied;
  1240. mark_inode_dirty(inode);
  1241. }
  1242. }
  1243. /*
  1244. * We need to pick up the new inode size which generic_commit_write gave us
  1245. * `file' can be NULL - eg, when called from page_symlink().
  1246. *
  1247. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1248. * buffers are managed internally.
  1249. */
  1250. static int ext3_ordered_write_end(struct file *file,
  1251. struct address_space *mapping,
  1252. loff_t pos, unsigned len, unsigned copied,
  1253. struct page *page, void *fsdata)
  1254. {
  1255. handle_t *handle = ext3_journal_current_handle();
  1256. struct inode *inode = file->f_mapping->host;
  1257. unsigned from, to;
  1258. int ret = 0, ret2;
  1259. trace_ext3_ordered_write_end(inode, pos, len, copied);
  1260. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1261. from = pos & (PAGE_CACHE_SIZE - 1);
  1262. to = from + copied;
  1263. ret = walk_page_buffers(handle, page_buffers(page),
  1264. from, to, NULL, journal_dirty_data_fn);
  1265. if (ret == 0)
  1266. update_file_sizes(inode, pos, copied);
  1267. /*
  1268. * There may be allocated blocks outside of i_size because
  1269. * we failed to copy some data. Prepare for truncate.
  1270. */
  1271. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1272. ext3_orphan_add(handle, inode);
  1273. ret2 = ext3_journal_stop(handle);
  1274. if (!ret)
  1275. ret = ret2;
  1276. unlock_page(page);
  1277. page_cache_release(page);
  1278. if (pos + len > inode->i_size)
  1279. ext3_truncate_failed_write(inode);
  1280. return ret ? ret : copied;
  1281. }
  1282. static int ext3_writeback_write_end(struct file *file,
  1283. struct address_space *mapping,
  1284. loff_t pos, unsigned len, unsigned copied,
  1285. struct page *page, void *fsdata)
  1286. {
  1287. handle_t *handle = ext3_journal_current_handle();
  1288. struct inode *inode = file->f_mapping->host;
  1289. int ret;
  1290. trace_ext3_writeback_write_end(inode, pos, len, copied);
  1291. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1292. update_file_sizes(inode, pos, copied);
  1293. /*
  1294. * There may be allocated blocks outside of i_size because
  1295. * we failed to copy some data. Prepare for truncate.
  1296. */
  1297. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1298. ext3_orphan_add(handle, inode);
  1299. ret = ext3_journal_stop(handle);
  1300. unlock_page(page);
  1301. page_cache_release(page);
  1302. if (pos + len > inode->i_size)
  1303. ext3_truncate_failed_write(inode);
  1304. return ret ? ret : copied;
  1305. }
  1306. static int ext3_journalled_write_end(struct file *file,
  1307. struct address_space *mapping,
  1308. loff_t pos, unsigned len, unsigned copied,
  1309. struct page *page, void *fsdata)
  1310. {
  1311. handle_t *handle = ext3_journal_current_handle();
  1312. struct inode *inode = mapping->host;
  1313. struct ext3_inode_info *ei = EXT3_I(inode);
  1314. int ret = 0, ret2;
  1315. int partial = 0;
  1316. unsigned from, to;
  1317. trace_ext3_journalled_write_end(inode, pos, len, copied);
  1318. from = pos & (PAGE_CACHE_SIZE - 1);
  1319. to = from + len;
  1320. if (copied < len) {
  1321. if (!PageUptodate(page))
  1322. copied = 0;
  1323. page_zero_new_buffers(page, from + copied, to);
  1324. to = from + copied;
  1325. }
  1326. ret = walk_page_buffers(handle, page_buffers(page), from,
  1327. to, &partial, write_end_fn);
  1328. if (!partial)
  1329. SetPageUptodate(page);
  1330. if (pos + copied > inode->i_size)
  1331. i_size_write(inode, pos + copied);
  1332. /*
  1333. * There may be allocated blocks outside of i_size because
  1334. * we failed to copy some data. Prepare for truncate.
  1335. */
  1336. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1337. ext3_orphan_add(handle, inode);
  1338. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1339. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  1340. if (inode->i_size > ei->i_disksize) {
  1341. ei->i_disksize = inode->i_size;
  1342. ret2 = ext3_mark_inode_dirty(handle, inode);
  1343. if (!ret)
  1344. ret = ret2;
  1345. }
  1346. ret2 = ext3_journal_stop(handle);
  1347. if (!ret)
  1348. ret = ret2;
  1349. unlock_page(page);
  1350. page_cache_release(page);
  1351. if (pos + len > inode->i_size)
  1352. ext3_truncate_failed_write(inode);
  1353. return ret ? ret : copied;
  1354. }
  1355. /*
  1356. * bmap() is special. It gets used by applications such as lilo and by
  1357. * the swapper to find the on-disk block of a specific piece of data.
  1358. *
  1359. * Naturally, this is dangerous if the block concerned is still in the
  1360. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1361. * filesystem and enables swap, then they may get a nasty shock when the
  1362. * data getting swapped to that swapfile suddenly gets overwritten by
  1363. * the original zero's written out previously to the journal and
  1364. * awaiting writeback in the kernel's buffer cache.
  1365. *
  1366. * So, if we see any bmap calls here on a modified, data-journaled file,
  1367. * take extra steps to flush any blocks which might be in the cache.
  1368. */
  1369. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1370. {
  1371. struct inode *inode = mapping->host;
  1372. journal_t *journal;
  1373. int err;
  1374. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1375. /*
  1376. * This is a REALLY heavyweight approach, but the use of
  1377. * bmap on dirty files is expected to be extremely rare:
  1378. * only if we run lilo or swapon on a freshly made file
  1379. * do we expect this to happen.
  1380. *
  1381. * (bmap requires CAP_SYS_RAWIO so this does not
  1382. * represent an unprivileged user DOS attack --- we'd be
  1383. * in trouble if mortal users could trigger this path at
  1384. * will.)
  1385. *
  1386. * NB. EXT3_STATE_JDATA is not set on files other than
  1387. * regular files. If somebody wants to bmap a directory
  1388. * or symlink and gets confused because the buffer
  1389. * hasn't yet been flushed to disk, they deserve
  1390. * everything they get.
  1391. */
  1392. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1393. journal = EXT3_JOURNAL(inode);
  1394. journal_lock_updates(journal);
  1395. err = journal_flush(journal);
  1396. journal_unlock_updates(journal);
  1397. if (err)
  1398. return 0;
  1399. }
  1400. return generic_block_bmap(mapping,block,ext3_get_block);
  1401. }
  1402. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1403. {
  1404. get_bh(bh);
  1405. return 0;
  1406. }
  1407. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1408. {
  1409. put_bh(bh);
  1410. return 0;
  1411. }
  1412. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1413. {
  1414. return !buffer_mapped(bh);
  1415. }
  1416. /*
  1417. * Note that we always start a transaction even if we're not journalling
  1418. * data. This is to preserve ordering: any hole instantiation within
  1419. * __block_write_full_page -> ext3_get_block() should be journalled
  1420. * along with the data so we don't crash and then get metadata which
  1421. * refers to old data.
  1422. *
  1423. * In all journalling modes block_write_full_page() will start the I/O.
  1424. *
  1425. * Problem:
  1426. *
  1427. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1428. * ext3_writepage()
  1429. *
  1430. * Similar for:
  1431. *
  1432. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1433. *
  1434. * Same applies to ext3_get_block(). We will deadlock on various things like
  1435. * lock_journal and i_truncate_mutex.
  1436. *
  1437. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1438. * allocations fail.
  1439. *
  1440. * 16May01: If we're reentered then journal_current_handle() will be
  1441. * non-zero. We simply *return*.
  1442. *
  1443. * 1 July 2001: @@@ FIXME:
  1444. * In journalled data mode, a data buffer may be metadata against the
  1445. * current transaction. But the same file is part of a shared mapping
  1446. * and someone does a writepage() on it.
  1447. *
  1448. * We will move the buffer onto the async_data list, but *after* it has
  1449. * been dirtied. So there's a small window where we have dirty data on
  1450. * BJ_Metadata.
  1451. *
  1452. * Note that this only applies to the last partial page in the file. The
  1453. * bit which block_write_full_page() uses prepare/commit for. (That's
  1454. * broken code anyway: it's wrong for msync()).
  1455. *
  1456. * It's a rare case: affects the final partial page, for journalled data
  1457. * where the file is subject to bith write() and writepage() in the same
  1458. * transction. To fix it we'll need a custom block_write_full_page().
  1459. * We'll probably need that anyway for journalling writepage() output.
  1460. *
  1461. * We don't honour synchronous mounts for writepage(). That would be
  1462. * disastrous. Any write() or metadata operation will sync the fs for
  1463. * us.
  1464. *
  1465. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1466. * we don't need to open a transaction here.
  1467. */
  1468. static int ext3_ordered_writepage(struct page *page,
  1469. struct writeback_control *wbc)
  1470. {
  1471. struct inode *inode = page->mapping->host;
  1472. struct buffer_head *page_bufs;
  1473. handle_t *handle = NULL;
  1474. int ret = 0;
  1475. int err;
  1476. J_ASSERT(PageLocked(page));
  1477. /*
  1478. * We don't want to warn for emergency remount. The condition is
  1479. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1480. * avoid slow-downs.
  1481. */
  1482. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1483. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1484. /*
  1485. * We give up here if we're reentered, because it might be for a
  1486. * different filesystem.
  1487. */
  1488. if (ext3_journal_current_handle())
  1489. goto out_fail;
  1490. trace_ext3_ordered_writepage(page);
  1491. if (!page_has_buffers(page)) {
  1492. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1493. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1494. page_bufs = page_buffers(page);
  1495. } else {
  1496. page_bufs = page_buffers(page);
  1497. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1498. NULL, buffer_unmapped)) {
  1499. /* Provide NULL get_block() to catch bugs if buffers
  1500. * weren't really mapped */
  1501. return block_write_full_page(page, NULL, wbc);
  1502. }
  1503. }
  1504. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1505. if (IS_ERR(handle)) {
  1506. ret = PTR_ERR(handle);
  1507. goto out_fail;
  1508. }
  1509. walk_page_buffers(handle, page_bufs, 0,
  1510. PAGE_CACHE_SIZE, NULL, bget_one);
  1511. ret = block_write_full_page(page, ext3_get_block, wbc);
  1512. /*
  1513. * The page can become unlocked at any point now, and
  1514. * truncate can then come in and change things. So we
  1515. * can't touch *page from now on. But *page_bufs is
  1516. * safe due to elevated refcount.
  1517. */
  1518. /*
  1519. * And attach them to the current transaction. But only if
  1520. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1521. * and generally junk.
  1522. */
  1523. if (ret == 0) {
  1524. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1525. NULL, journal_dirty_data_fn);
  1526. if (!ret)
  1527. ret = err;
  1528. }
  1529. walk_page_buffers(handle, page_bufs, 0,
  1530. PAGE_CACHE_SIZE, NULL, bput_one);
  1531. err = ext3_journal_stop(handle);
  1532. if (!ret)
  1533. ret = err;
  1534. return ret;
  1535. out_fail:
  1536. redirty_page_for_writepage(wbc, page);
  1537. unlock_page(page);
  1538. return ret;
  1539. }
  1540. static int ext3_writeback_writepage(struct page *page,
  1541. struct writeback_control *wbc)
  1542. {
  1543. struct inode *inode = page->mapping->host;
  1544. handle_t *handle = NULL;
  1545. int ret = 0;
  1546. int err;
  1547. J_ASSERT(PageLocked(page));
  1548. /*
  1549. * We don't want to warn for emergency remount. The condition is
  1550. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1551. * avoid slow-downs.
  1552. */
  1553. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1554. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1555. if (ext3_journal_current_handle())
  1556. goto out_fail;
  1557. trace_ext3_writeback_writepage(page);
  1558. if (page_has_buffers(page)) {
  1559. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1560. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1561. /* Provide NULL get_block() to catch bugs if buffers
  1562. * weren't really mapped */
  1563. return block_write_full_page(page, NULL, wbc);
  1564. }
  1565. }
  1566. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1567. if (IS_ERR(handle)) {
  1568. ret = PTR_ERR(handle);
  1569. goto out_fail;
  1570. }
  1571. ret = block_write_full_page(page, ext3_get_block, wbc);
  1572. err = ext3_journal_stop(handle);
  1573. if (!ret)
  1574. ret = err;
  1575. return ret;
  1576. out_fail:
  1577. redirty_page_for_writepage(wbc, page);
  1578. unlock_page(page);
  1579. return ret;
  1580. }
  1581. static int ext3_journalled_writepage(struct page *page,
  1582. struct writeback_control *wbc)
  1583. {
  1584. struct inode *inode = page->mapping->host;
  1585. handle_t *handle = NULL;
  1586. int ret = 0;
  1587. int err;
  1588. J_ASSERT(PageLocked(page));
  1589. /*
  1590. * We don't want to warn for emergency remount. The condition is
  1591. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1592. * avoid slow-downs.
  1593. */
  1594. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1595. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1596. if (ext3_journal_current_handle())
  1597. goto no_write;
  1598. trace_ext3_journalled_writepage(page);
  1599. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1600. if (IS_ERR(handle)) {
  1601. ret = PTR_ERR(handle);
  1602. goto no_write;
  1603. }
  1604. if (!page_has_buffers(page) || PageChecked(page)) {
  1605. /*
  1606. * It's mmapped pagecache. Add buffers and journal it. There
  1607. * doesn't seem much point in redirtying the page here.
  1608. */
  1609. ClearPageChecked(page);
  1610. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1611. ext3_get_block);
  1612. if (ret != 0) {
  1613. ext3_journal_stop(handle);
  1614. goto out_unlock;
  1615. }
  1616. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1617. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1618. err = walk_page_buffers(handle, page_buffers(page), 0,
  1619. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1620. if (ret == 0)
  1621. ret = err;
  1622. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1623. atomic_set(&EXT3_I(inode)->i_datasync_tid,
  1624. handle->h_transaction->t_tid);
  1625. unlock_page(page);
  1626. } else {
  1627. /*
  1628. * It may be a page full of checkpoint-mode buffers. We don't
  1629. * really know unless we go poke around in the buffer_heads.
  1630. * But block_write_full_page will do the right thing.
  1631. */
  1632. ret = block_write_full_page(page, ext3_get_block, wbc);
  1633. }
  1634. err = ext3_journal_stop(handle);
  1635. if (!ret)
  1636. ret = err;
  1637. out:
  1638. return ret;
  1639. no_write:
  1640. redirty_page_for_writepage(wbc, page);
  1641. out_unlock:
  1642. unlock_page(page);
  1643. goto out;
  1644. }
  1645. static int ext3_readpage(struct file *file, struct page *page)
  1646. {
  1647. trace_ext3_readpage(page);
  1648. return mpage_readpage(page, ext3_get_block);
  1649. }
  1650. static int
  1651. ext3_readpages(struct file *file, struct address_space *mapping,
  1652. struct list_head *pages, unsigned nr_pages)
  1653. {
  1654. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1655. }
  1656. static void ext3_invalidatepage(struct page *page, unsigned int offset,
  1657. unsigned int length)
  1658. {
  1659. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1660. trace_ext3_invalidatepage(page, offset, length);
  1661. /*
  1662. * If it's a full truncate we just forget about the pending dirtying
  1663. */
  1664. if (offset == 0 && length == PAGE_CACHE_SIZE)
  1665. ClearPageChecked(page);
  1666. journal_invalidatepage(journal, page, offset, length);
  1667. }
  1668. static int ext3_releasepage(struct page *page, gfp_t wait)
  1669. {
  1670. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1671. trace_ext3_releasepage(page);
  1672. WARN_ON(PageChecked(page));
  1673. if (!page_has_buffers(page))
  1674. return 0;
  1675. return journal_try_to_free_buffers(journal, page, wait);
  1676. }
  1677. /*
  1678. * If the O_DIRECT write will extend the file then add this inode to the
  1679. * orphan list. So recovery will truncate it back to the original size
  1680. * if the machine crashes during the write.
  1681. *
  1682. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1683. * crashes then stale disk data _may_ be exposed inside the file. But current
  1684. * VFS code falls back into buffered path in that case so we are safe.
  1685. */
  1686. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1687. const struct iovec *iov, loff_t offset,
  1688. unsigned long nr_segs)
  1689. {
  1690. struct file *file = iocb->ki_filp;
  1691. struct inode *inode = file->f_mapping->host;
  1692. struct ext3_inode_info *ei = EXT3_I(inode);
  1693. handle_t *handle;
  1694. ssize_t ret;
  1695. int orphan = 0;
  1696. size_t count = iov_length(iov, nr_segs);
  1697. int retries = 0;
  1698. trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  1699. if (rw == WRITE) {
  1700. loff_t final_size = offset + count;
  1701. if (final_size > inode->i_size) {
  1702. /* Credits for sb + inode write */
  1703. handle = ext3_journal_start(inode, 2);
  1704. if (IS_ERR(handle)) {
  1705. ret = PTR_ERR(handle);
  1706. goto out;
  1707. }
  1708. ret = ext3_orphan_add(handle, inode);
  1709. if (ret) {
  1710. ext3_journal_stop(handle);
  1711. goto out;
  1712. }
  1713. orphan = 1;
  1714. ei->i_disksize = inode->i_size;
  1715. ext3_journal_stop(handle);
  1716. }
  1717. }
  1718. retry:
  1719. ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  1720. ext3_get_block);
  1721. /*
  1722. * In case of error extending write may have instantiated a few
  1723. * blocks outside i_size. Trim these off again.
  1724. */
  1725. if (unlikely((rw & WRITE) && ret < 0)) {
  1726. loff_t isize = i_size_read(inode);
  1727. loff_t end = offset + iov_length(iov, nr_segs);
  1728. if (end > isize)
  1729. ext3_truncate_failed_direct_write(inode);
  1730. }
  1731. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1732. goto retry;
  1733. if (orphan) {
  1734. int err;
  1735. /* Credits for sb + inode write */
  1736. handle = ext3_journal_start(inode, 2);
  1737. if (IS_ERR(handle)) {
  1738. /* This is really bad luck. We've written the data
  1739. * but cannot extend i_size. Truncate allocated blocks
  1740. * and pretend the write failed... */
  1741. ext3_truncate_failed_direct_write(inode);
  1742. ret = PTR_ERR(handle);
  1743. goto out;
  1744. }
  1745. if (inode->i_nlink)
  1746. ext3_orphan_del(handle, inode);
  1747. if (ret > 0) {
  1748. loff_t end = offset + ret;
  1749. if (end > inode->i_size) {
  1750. ei->i_disksize = end;
  1751. i_size_write(inode, end);
  1752. /*
  1753. * We're going to return a positive `ret'
  1754. * here due to non-zero-length I/O, so there's
  1755. * no way of reporting error returns from
  1756. * ext3_mark_inode_dirty() to userspace. So
  1757. * ignore it.
  1758. */
  1759. ext3_mark_inode_dirty(handle, inode);
  1760. }
  1761. }
  1762. err = ext3_journal_stop(handle);
  1763. if (ret == 0)
  1764. ret = err;
  1765. }
  1766. out:
  1767. trace_ext3_direct_IO_exit(inode, offset,
  1768. iov_length(iov, nr_segs), rw, ret);
  1769. return ret;
  1770. }
  1771. /*
  1772. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1773. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1774. * much here because ->set_page_dirty is called under VFS locks. The page is
  1775. * not necessarily locked.
  1776. *
  1777. * We cannot just dirty the page and leave attached buffers clean, because the
  1778. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1779. * or jbddirty because all the journalling code will explode.
  1780. *
  1781. * So what we do is to mark the page "pending dirty" and next time writepage
  1782. * is called, propagate that into the buffers appropriately.
  1783. */
  1784. static int ext3_journalled_set_page_dirty(struct page *page)
  1785. {
  1786. SetPageChecked(page);
  1787. return __set_page_dirty_nobuffers(page);
  1788. }
  1789. static const struct address_space_operations ext3_ordered_aops = {
  1790. .readpage = ext3_readpage,
  1791. .readpages = ext3_readpages,
  1792. .writepage = ext3_ordered_writepage,
  1793. .write_begin = ext3_write_begin,
  1794. .write_end = ext3_ordered_write_end,
  1795. .bmap = ext3_bmap,
  1796. .invalidatepage = ext3_invalidatepage,
  1797. .releasepage = ext3_releasepage,
  1798. .direct_IO = ext3_direct_IO,
  1799. .migratepage = buffer_migrate_page,
  1800. .is_partially_uptodate = block_is_partially_uptodate,
  1801. .error_remove_page = generic_error_remove_page,
  1802. };
  1803. static const struct address_space_operations ext3_writeback_aops = {
  1804. .readpage = ext3_readpage,
  1805. .readpages = ext3_readpages,
  1806. .writepage = ext3_writeback_writepage,
  1807. .write_begin = ext3_write_begin,
  1808. .write_end = ext3_writeback_write_end,
  1809. .bmap = ext3_bmap,
  1810. .invalidatepage = ext3_invalidatepage,
  1811. .releasepage = ext3_releasepage,
  1812. .direct_IO = ext3_direct_IO,
  1813. .migratepage = buffer_migrate_page,
  1814. .is_partially_uptodate = block_is_partially_uptodate,
  1815. .error_remove_page = generic_error_remove_page,
  1816. };
  1817. static const struct address_space_operations ext3_journalled_aops = {
  1818. .readpage = ext3_readpage,
  1819. .readpages = ext3_readpages,
  1820. .writepage = ext3_journalled_writepage,
  1821. .write_begin = ext3_write_begin,
  1822. .write_end = ext3_journalled_write_end,
  1823. .set_page_dirty = ext3_journalled_set_page_dirty,
  1824. .bmap = ext3_bmap,
  1825. .invalidatepage = ext3_invalidatepage,
  1826. .releasepage = ext3_releasepage,
  1827. .is_partially_uptodate = block_is_partially_uptodate,
  1828. .error_remove_page = generic_error_remove_page,
  1829. };
  1830. void ext3_set_aops(struct inode *inode)
  1831. {
  1832. if (ext3_should_order_data(inode))
  1833. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1834. else if (ext3_should_writeback_data(inode))
  1835. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1836. else
  1837. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1838. }
  1839. /*
  1840. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1841. * up to the end of the block which corresponds to `from'.
  1842. * This required during truncate. We need to physically zero the tail end
  1843. * of that block so it doesn't yield old data if the file is later grown.
  1844. */
  1845. static int ext3_block_truncate_page(struct inode *inode, loff_t from)
  1846. {
  1847. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1848. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  1849. unsigned blocksize, iblock, length, pos;
  1850. struct page *page;
  1851. handle_t *handle = NULL;
  1852. struct buffer_head *bh;
  1853. int err = 0;
  1854. /* Truncated on block boundary - nothing to do */
  1855. blocksize = inode->i_sb->s_blocksize;
  1856. if ((from & (blocksize - 1)) == 0)
  1857. return 0;
  1858. page = grab_cache_page(inode->i_mapping, index);
  1859. if (!page)
  1860. return -ENOMEM;
  1861. length = blocksize - (offset & (blocksize - 1));
  1862. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1863. if (!page_has_buffers(page))
  1864. create_empty_buffers(page, blocksize, 0);
  1865. /* Find the buffer that contains "offset" */
  1866. bh = page_buffers(page);
  1867. pos = blocksize;
  1868. while (offset >= pos) {
  1869. bh = bh->b_this_page;
  1870. iblock++;
  1871. pos += blocksize;
  1872. }
  1873. err = 0;
  1874. if (buffer_freed(bh)) {
  1875. BUFFER_TRACE(bh, "freed: skip");
  1876. goto unlock;
  1877. }
  1878. if (!buffer_mapped(bh)) {
  1879. BUFFER_TRACE(bh, "unmapped");
  1880. ext3_get_block(inode, iblock, bh, 0);
  1881. /* unmapped? It's a hole - nothing to do */
  1882. if (!buffer_mapped(bh)) {
  1883. BUFFER_TRACE(bh, "still unmapped");
  1884. goto unlock;
  1885. }
  1886. }
  1887. /* Ok, it's mapped. Make sure it's up-to-date */
  1888. if (PageUptodate(page))
  1889. set_buffer_uptodate(bh);
  1890. if (!bh_uptodate_or_lock(bh)) {
  1891. err = bh_submit_read(bh);
  1892. /* Uhhuh. Read error. Complain and punt. */
  1893. if (err)
  1894. goto unlock;
  1895. }
  1896. /* data=writeback mode doesn't need transaction to zero-out data */
  1897. if (!ext3_should_writeback_data(inode)) {
  1898. /* We journal at most one block */
  1899. handle = ext3_journal_start(inode, 1);
  1900. if (IS_ERR(handle)) {
  1901. clear_highpage(page);
  1902. flush_dcache_page(page);
  1903. err = PTR_ERR(handle);
  1904. goto unlock;
  1905. }
  1906. }
  1907. if (ext3_should_journal_data(inode)) {
  1908. BUFFER_TRACE(bh, "get write access");
  1909. err = ext3_journal_get_write_access(handle, bh);
  1910. if (err)
  1911. goto stop;
  1912. }
  1913. zero_user(page, offset, length);
  1914. BUFFER_TRACE(bh, "zeroed end of block");
  1915. err = 0;
  1916. if (ext3_should_journal_data(inode)) {
  1917. err = ext3_journal_dirty_metadata(handle, bh);
  1918. } else {
  1919. if (ext3_should_order_data(inode))
  1920. err = ext3_journal_dirty_data(handle, bh);
  1921. mark_buffer_dirty(bh);
  1922. }
  1923. stop:
  1924. if (handle)
  1925. ext3_journal_stop(handle);
  1926. unlock:
  1927. unlock_page(page);
  1928. page_cache_release(page);
  1929. return err;
  1930. }
  1931. /*
  1932. * Probably it should be a library function... search for first non-zero word
  1933. * or memcmp with zero_page, whatever is better for particular architecture.
  1934. * Linus?
  1935. */
  1936. static inline int all_zeroes(__le32 *p, __le32 *q)
  1937. {
  1938. while (p < q)
  1939. if (*p++)
  1940. return 0;
  1941. return 1;
  1942. }
  1943. /**
  1944. * ext3_find_shared - find the indirect blocks for partial truncation.
  1945. * @inode: inode in question
  1946. * @depth: depth of the affected branch
  1947. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1948. * @chain: place to store the pointers to partial indirect blocks
  1949. * @top: place to the (detached) top of branch
  1950. *
  1951. * This is a helper function used by ext3_truncate().
  1952. *
  1953. * When we do truncate() we may have to clean the ends of several
  1954. * indirect blocks but leave the blocks themselves alive. Block is
  1955. * partially truncated if some data below the new i_size is referred
  1956. * from it (and it is on the path to the first completely truncated
  1957. * data block, indeed). We have to free the top of that path along
  1958. * with everything to the right of the path. Since no allocation
  1959. * past the truncation point is possible until ext3_truncate()
  1960. * finishes, we may safely do the latter, but top of branch may
  1961. * require special attention - pageout below the truncation point
  1962. * might try to populate it.
  1963. *
  1964. * We atomically detach the top of branch from the tree, store the
  1965. * block number of its root in *@top, pointers to buffer_heads of
  1966. * partially truncated blocks - in @chain[].bh and pointers to
  1967. * their last elements that should not be removed - in
  1968. * @chain[].p. Return value is the pointer to last filled element
  1969. * of @chain.
  1970. *
  1971. * The work left to caller to do the actual freeing of subtrees:
  1972. * a) free the subtree starting from *@top
  1973. * b) free the subtrees whose roots are stored in
  1974. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1975. * c) free the subtrees growing from the inode past the @chain[0].
  1976. * (no partially truncated stuff there). */
  1977. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1978. int offsets[4], Indirect chain[4], __le32 *top)
  1979. {
  1980. Indirect *partial, *p;
  1981. int k, err;
  1982. *top = 0;
  1983. /* Make k index the deepest non-null offset + 1 */
  1984. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1985. ;
  1986. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1987. /* Writer: pointers */
  1988. if (!partial)
  1989. partial = chain + k-1;
  1990. /*
  1991. * If the branch acquired continuation since we've looked at it -
  1992. * fine, it should all survive and (new) top doesn't belong to us.
  1993. */
  1994. if (!partial->key && *partial->p)
  1995. /* Writer: end */
  1996. goto no_top;
  1997. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1998. ;
  1999. /*
  2000. * OK, we've found the last block that must survive. The rest of our
  2001. * branch should be detached before unlocking. However, if that rest
  2002. * of branch is all ours and does not grow immediately from the inode
  2003. * it's easier to cheat and just decrement partial->p.
  2004. */
  2005. if (p == chain + k - 1 && p > chain) {
  2006. p->p--;
  2007. } else {
  2008. *top = *p->p;
  2009. /* Nope, don't do this in ext3. Must leave the tree intact */
  2010. #if 0
  2011. *p->p = 0;
  2012. #endif
  2013. }
  2014. /* Writer: end */
  2015. while(partial > p) {
  2016. brelse(partial->bh);
  2017. partial--;
  2018. }
  2019. no_top:
  2020. return partial;
  2021. }
  2022. /*
  2023. * Zero a number of block pointers in either an inode or an indirect block.
  2024. * If we restart the transaction we must again get write access to the
  2025. * indirect block for further modification.
  2026. *
  2027. * We release `count' blocks on disk, but (last - first) may be greater
  2028. * than `count' because there can be holes in there.
  2029. */
  2030. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  2031. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  2032. unsigned long count, __le32 *first, __le32 *last)
  2033. {
  2034. __le32 *p;
  2035. if (try_to_extend_transaction(handle, inode)) {
  2036. if (bh) {
  2037. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2038. if (ext3_journal_dirty_metadata(handle, bh))
  2039. return;
  2040. }
  2041. ext3_mark_inode_dirty(handle, inode);
  2042. truncate_restart_transaction(handle, inode);
  2043. if (bh) {
  2044. BUFFER_TRACE(bh, "retaking write access");
  2045. if (ext3_journal_get_write_access(handle, bh))
  2046. return;
  2047. }
  2048. }
  2049. /*
  2050. * Any buffers which are on the journal will be in memory. We find
  2051. * them on the hash table so journal_revoke() will run journal_forget()
  2052. * on them. We've already detached each block from the file, so
  2053. * bforget() in journal_forget() should be safe.
  2054. *
  2055. * AKPM: turn on bforget in journal_forget()!!!
  2056. */
  2057. for (p = first; p < last; p++) {
  2058. u32 nr = le32_to_cpu(*p);
  2059. if (nr) {
  2060. struct buffer_head *bh;
  2061. *p = 0;
  2062. bh = sb_find_get_block(inode->i_sb, nr);
  2063. ext3_forget(handle, 0, inode, bh, nr);
  2064. }
  2065. }
  2066. ext3_free_blocks(handle, inode, block_to_free, count);
  2067. }
  2068. /**
  2069. * ext3_free_data - free a list of data blocks
  2070. * @handle: handle for this transaction
  2071. * @inode: inode we are dealing with
  2072. * @this_bh: indirect buffer_head which contains *@first and *@last
  2073. * @first: array of block numbers
  2074. * @last: points immediately past the end of array
  2075. *
  2076. * We are freeing all blocks referred from that array (numbers are stored as
  2077. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  2078. *
  2079. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2080. * blocks are contiguous then releasing them at one time will only affect one
  2081. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2082. * actually use a lot of journal space.
  2083. *
  2084. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2085. * block pointers.
  2086. */
  2087. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2088. struct buffer_head *this_bh,
  2089. __le32 *first, __le32 *last)
  2090. {
  2091. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2092. unsigned long count = 0; /* Number of blocks in the run */
  2093. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2094. corresponding to
  2095. block_to_free */
  2096. ext3_fsblk_t nr; /* Current block # */
  2097. __le32 *p; /* Pointer into inode/ind
  2098. for current block */
  2099. int err;
  2100. if (this_bh) { /* For indirect block */
  2101. BUFFER_TRACE(this_bh, "get_write_access");
  2102. err = ext3_journal_get_write_access(handle, this_bh);
  2103. /* Important: if we can't update the indirect pointers
  2104. * to the blocks, we can't free them. */
  2105. if (err)
  2106. return;
  2107. }
  2108. for (p = first; p < last; p++) {
  2109. nr = le32_to_cpu(*p);
  2110. if (nr) {
  2111. /* accumulate blocks to free if they're contiguous */
  2112. if (count == 0) {
  2113. block_to_free = nr;
  2114. block_to_free_p = p;
  2115. count = 1;
  2116. } else if (nr == block_to_free + count) {
  2117. count++;
  2118. } else {
  2119. ext3_clear_blocks(handle, inode, this_bh,
  2120. block_to_free,
  2121. count, block_to_free_p, p);
  2122. block_to_free = nr;
  2123. block_to_free_p = p;
  2124. count = 1;
  2125. }
  2126. }
  2127. }
  2128. if (count > 0)
  2129. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2130. count, block_to_free_p, p);
  2131. if (this_bh) {
  2132. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2133. /*
  2134. * The buffer head should have an attached journal head at this
  2135. * point. However, if the data is corrupted and an indirect
  2136. * block pointed to itself, it would have been detached when
  2137. * the block was cleared. Check for this instead of OOPSing.
  2138. */
  2139. if (bh2jh(this_bh))
  2140. ext3_journal_dirty_metadata(handle, this_bh);
  2141. else
  2142. ext3_error(inode->i_sb, "ext3_free_data",
  2143. "circular indirect block detected, "
  2144. "inode=%lu, block=%llu",
  2145. inode->i_ino,
  2146. (unsigned long long)this_bh->b_blocknr);
  2147. }
  2148. }
  2149. /**
  2150. * ext3_free_branches - free an array of branches
  2151. * @handle: JBD handle for this transaction
  2152. * @inode: inode we are dealing with
  2153. * @parent_bh: the buffer_head which contains *@first and *@last
  2154. * @first: array of block numbers
  2155. * @last: pointer immediately past the end of array
  2156. * @depth: depth of the branches to free
  2157. *
  2158. * We are freeing all blocks referred from these branches (numbers are
  2159. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2160. * appropriately.
  2161. */
  2162. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2163. struct buffer_head *parent_bh,
  2164. __le32 *first, __le32 *last, int depth)
  2165. {
  2166. ext3_fsblk_t nr;
  2167. __le32 *p;
  2168. if (is_handle_aborted(handle))
  2169. return;
  2170. if (depth--) {
  2171. struct buffer_head *bh;
  2172. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2173. p = last;
  2174. while (--p >= first) {
  2175. nr = le32_to_cpu(*p);
  2176. if (!nr)
  2177. continue; /* A hole */
  2178. /* Go read the buffer for the next level down */
  2179. bh = sb_bread(inode->i_sb, nr);
  2180. /*
  2181. * A read failure? Report error and clear slot
  2182. * (should be rare).
  2183. */
  2184. if (!bh) {
  2185. ext3_error(inode->i_sb, "ext3_free_branches",
  2186. "Read failure, inode=%lu, block="E3FSBLK,
  2187. inode->i_ino, nr);
  2188. continue;
  2189. }
  2190. /* This zaps the entire block. Bottom up. */
  2191. BUFFER_TRACE(bh, "free child branches");
  2192. ext3_free_branches(handle, inode, bh,
  2193. (__le32*)bh->b_data,
  2194. (__le32*)bh->b_data + addr_per_block,
  2195. depth);
  2196. /*
  2197. * Everything below this this pointer has been
  2198. * released. Now let this top-of-subtree go.
  2199. *
  2200. * We want the freeing of this indirect block to be
  2201. * atomic in the journal with the updating of the
  2202. * bitmap block which owns it. So make some room in
  2203. * the journal.
  2204. *
  2205. * We zero the parent pointer *after* freeing its
  2206. * pointee in the bitmaps, so if extend_transaction()
  2207. * for some reason fails to put the bitmap changes and
  2208. * the release into the same transaction, recovery
  2209. * will merely complain about releasing a free block,
  2210. * rather than leaking blocks.
  2211. */
  2212. if (is_handle_aborted(handle))
  2213. return;
  2214. if (try_to_extend_transaction(handle, inode)) {
  2215. ext3_mark_inode_dirty(handle, inode);
  2216. truncate_restart_transaction(handle, inode);
  2217. }
  2218. /*
  2219. * We've probably journalled the indirect block several
  2220. * times during the truncate. But it's no longer
  2221. * needed and we now drop it from the transaction via
  2222. * journal_revoke().
  2223. *
  2224. * That's easy if it's exclusively part of this
  2225. * transaction. But if it's part of the committing
  2226. * transaction then journal_forget() will simply
  2227. * brelse() it. That means that if the underlying
  2228. * block is reallocated in ext3_get_block(),
  2229. * unmap_underlying_metadata() will find this block
  2230. * and will try to get rid of it. damn, damn. Thus
  2231. * we don't allow a block to be reallocated until
  2232. * a transaction freeing it has fully committed.
  2233. *
  2234. * We also have to make sure journal replay after a
  2235. * crash does not overwrite non-journaled data blocks
  2236. * with old metadata when the block got reallocated for
  2237. * data. Thus we have to store a revoke record for a
  2238. * block in the same transaction in which we free the
  2239. * block.
  2240. */
  2241. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2242. ext3_free_blocks(handle, inode, nr, 1);
  2243. if (parent_bh) {
  2244. /*
  2245. * The block which we have just freed is
  2246. * pointed to by an indirect block: journal it
  2247. */
  2248. BUFFER_TRACE(parent_bh, "get_write_access");
  2249. if (!ext3_journal_get_write_access(handle,
  2250. parent_bh)){
  2251. *p = 0;
  2252. BUFFER_TRACE(parent_bh,
  2253. "call ext3_journal_dirty_metadata");
  2254. ext3_journal_dirty_metadata(handle,
  2255. parent_bh);
  2256. }
  2257. }
  2258. }
  2259. } else {
  2260. /* We have reached the bottom of the tree. */
  2261. BUFFER_TRACE(parent_bh, "free data blocks");
  2262. ext3_free_data(handle, inode, parent_bh, first, last);
  2263. }
  2264. }
  2265. int ext3_can_truncate(struct inode *inode)
  2266. {
  2267. if (S_ISREG(inode->i_mode))
  2268. return 1;
  2269. if (S_ISDIR(inode->i_mode))
  2270. return 1;
  2271. if (S_ISLNK(inode->i_mode))
  2272. return !ext3_inode_is_fast_symlink(inode);
  2273. return 0;
  2274. }
  2275. /*
  2276. * ext3_truncate()
  2277. *
  2278. * We block out ext3_get_block() block instantiations across the entire
  2279. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2280. * simultaneously on behalf of the same inode.
  2281. *
  2282. * As we work through the truncate and commit bits of it to the journal there
  2283. * is one core, guiding principle: the file's tree must always be consistent on
  2284. * disk. We must be able to restart the truncate after a crash.
  2285. *
  2286. * The file's tree may be transiently inconsistent in memory (although it
  2287. * probably isn't), but whenever we close off and commit a journal transaction,
  2288. * the contents of (the filesystem + the journal) must be consistent and
  2289. * restartable. It's pretty simple, really: bottom up, right to left (although
  2290. * left-to-right works OK too).
  2291. *
  2292. * Note that at recovery time, journal replay occurs *before* the restart of
  2293. * truncate against the orphan inode list.
  2294. *
  2295. * The committed inode has the new, desired i_size (which is the same as
  2296. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2297. * that this inode's truncate did not complete and it will again call
  2298. * ext3_truncate() to have another go. So there will be instantiated blocks
  2299. * to the right of the truncation point in a crashed ext3 filesystem. But
  2300. * that's fine - as long as they are linked from the inode, the post-crash
  2301. * ext3_truncate() run will find them and release them.
  2302. */
  2303. void ext3_truncate(struct inode *inode)
  2304. {
  2305. handle_t *handle;
  2306. struct ext3_inode_info *ei = EXT3_I(inode);
  2307. __le32 *i_data = ei->i_data;
  2308. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2309. int offsets[4];
  2310. Indirect chain[4];
  2311. Indirect *partial;
  2312. __le32 nr = 0;
  2313. int n;
  2314. long last_block;
  2315. unsigned blocksize = inode->i_sb->s_blocksize;
  2316. trace_ext3_truncate_enter(inode);
  2317. if (!ext3_can_truncate(inode))
  2318. goto out_notrans;
  2319. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2320. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2321. handle = start_transaction(inode);
  2322. if (IS_ERR(handle))
  2323. goto out_notrans;
  2324. last_block = (inode->i_size + blocksize-1)
  2325. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2326. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2327. if (n == 0)
  2328. goto out_stop; /* error */
  2329. /*
  2330. * OK. This truncate is going to happen. We add the inode to the
  2331. * orphan list, so that if this truncate spans multiple transactions,
  2332. * and we crash, we will resume the truncate when the filesystem
  2333. * recovers. It also marks the inode dirty, to catch the new size.
  2334. *
  2335. * Implication: the file must always be in a sane, consistent
  2336. * truncatable state while each transaction commits.
  2337. */
  2338. if (ext3_orphan_add(handle, inode))
  2339. goto out_stop;
  2340. /*
  2341. * The orphan list entry will now protect us from any crash which
  2342. * occurs before the truncate completes, so it is now safe to propagate
  2343. * the new, shorter inode size (held for now in i_size) into the
  2344. * on-disk inode. We do this via i_disksize, which is the value which
  2345. * ext3 *really* writes onto the disk inode.
  2346. */
  2347. ei->i_disksize = inode->i_size;
  2348. /*
  2349. * From here we block out all ext3_get_block() callers who want to
  2350. * modify the block allocation tree.
  2351. */
  2352. mutex_lock(&ei->truncate_mutex);
  2353. if (n == 1) { /* direct blocks */
  2354. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2355. i_data + EXT3_NDIR_BLOCKS);
  2356. goto do_indirects;
  2357. }
  2358. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2359. /* Kill the top of shared branch (not detached) */
  2360. if (nr) {
  2361. if (partial == chain) {
  2362. /* Shared branch grows from the inode */
  2363. ext3_free_branches(handle, inode, NULL,
  2364. &nr, &nr+1, (chain+n-1) - partial);
  2365. *partial->p = 0;
  2366. /*
  2367. * We mark the inode dirty prior to restart,
  2368. * and prior to stop. No need for it here.
  2369. */
  2370. } else {
  2371. /* Shared branch grows from an indirect block */
  2372. ext3_free_branches(handle, inode, partial->bh,
  2373. partial->p,
  2374. partial->p+1, (chain+n-1) - partial);
  2375. }
  2376. }
  2377. /* Clear the ends of indirect blocks on the shared branch */
  2378. while (partial > chain) {
  2379. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2380. (__le32*)partial->bh->b_data+addr_per_block,
  2381. (chain+n-1) - partial);
  2382. BUFFER_TRACE(partial->bh, "call brelse");
  2383. brelse (partial->bh);
  2384. partial--;
  2385. }
  2386. do_indirects:
  2387. /* Kill the remaining (whole) subtrees */
  2388. switch (offsets[0]) {
  2389. default:
  2390. nr = i_data[EXT3_IND_BLOCK];
  2391. if (nr) {
  2392. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2393. i_data[EXT3_IND_BLOCK] = 0;
  2394. }
  2395. case EXT3_IND_BLOCK:
  2396. nr = i_data[EXT3_DIND_BLOCK];
  2397. if (nr) {
  2398. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2399. i_data[EXT3_DIND_BLOCK] = 0;
  2400. }
  2401. case EXT3_DIND_BLOCK:
  2402. nr = i_data[EXT3_TIND_BLOCK];
  2403. if (nr) {
  2404. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2405. i_data[EXT3_TIND_BLOCK] = 0;
  2406. }
  2407. case EXT3_TIND_BLOCK:
  2408. ;
  2409. }
  2410. ext3_discard_reservation(inode);
  2411. mutex_unlock(&ei->truncate_mutex);
  2412. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2413. ext3_mark_inode_dirty(handle, inode);
  2414. /*
  2415. * In a multi-transaction truncate, we only make the final transaction
  2416. * synchronous
  2417. */
  2418. if (IS_SYNC(inode))
  2419. handle->h_sync = 1;
  2420. out_stop:
  2421. /*
  2422. * If this was a simple ftruncate(), and the file will remain alive
  2423. * then we need to clear up the orphan record which we created above.
  2424. * However, if this was a real unlink then we were called by
  2425. * ext3_evict_inode(), and we allow that function to clean up the
  2426. * orphan info for us.
  2427. */
  2428. if (inode->i_nlink)
  2429. ext3_orphan_del(handle, inode);
  2430. ext3_journal_stop(handle);
  2431. trace_ext3_truncate_exit(inode);
  2432. return;
  2433. out_notrans:
  2434. /*
  2435. * Delete the inode from orphan list so that it doesn't stay there
  2436. * forever and trigger assertion on umount.
  2437. */
  2438. if (inode->i_nlink)
  2439. ext3_orphan_del(NULL, inode);
  2440. trace_ext3_truncate_exit(inode);
  2441. }
  2442. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2443. unsigned long ino, struct ext3_iloc *iloc)
  2444. {
  2445. unsigned long block_group;
  2446. unsigned long offset;
  2447. ext3_fsblk_t block;
  2448. struct ext3_group_desc *gdp;
  2449. if (!ext3_valid_inum(sb, ino)) {
  2450. /*
  2451. * This error is already checked for in namei.c unless we are
  2452. * looking at an NFS filehandle, in which case no error
  2453. * report is needed
  2454. */
  2455. return 0;
  2456. }
  2457. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2458. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2459. if (!gdp)
  2460. return 0;
  2461. /*
  2462. * Figure out the offset within the block group inode table
  2463. */
  2464. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2465. EXT3_INODE_SIZE(sb);
  2466. block = le32_to_cpu(gdp->bg_inode_table) +
  2467. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2468. iloc->block_group = block_group;
  2469. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2470. return block;
  2471. }
  2472. /*
  2473. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2474. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2475. * data in memory that is needed to recreate the on-disk version of this
  2476. * inode.
  2477. */
  2478. static int __ext3_get_inode_loc(struct inode *inode,
  2479. struct ext3_iloc *iloc, int in_mem)
  2480. {
  2481. ext3_fsblk_t block;
  2482. struct buffer_head *bh;
  2483. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2484. if (!block)
  2485. return -EIO;
  2486. bh = sb_getblk(inode->i_sb, block);
  2487. if (unlikely(!bh)) {
  2488. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2489. "unable to read inode block - "
  2490. "inode=%lu, block="E3FSBLK,
  2491. inode->i_ino, block);
  2492. return -ENOMEM;
  2493. }
  2494. if (!buffer_uptodate(bh)) {
  2495. lock_buffer(bh);
  2496. /*
  2497. * If the buffer has the write error flag, we have failed
  2498. * to write out another inode in the same block. In this
  2499. * case, we don't have to read the block because we may
  2500. * read the old inode data successfully.
  2501. */
  2502. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2503. set_buffer_uptodate(bh);
  2504. if (buffer_uptodate(bh)) {
  2505. /* someone brought it uptodate while we waited */
  2506. unlock_buffer(bh);
  2507. goto has_buffer;
  2508. }
  2509. /*
  2510. * If we have all information of the inode in memory and this
  2511. * is the only valid inode in the block, we need not read the
  2512. * block.
  2513. */
  2514. if (in_mem) {
  2515. struct buffer_head *bitmap_bh;
  2516. struct ext3_group_desc *desc;
  2517. int inodes_per_buffer;
  2518. int inode_offset, i;
  2519. int block_group;
  2520. int start;
  2521. block_group = (inode->i_ino - 1) /
  2522. EXT3_INODES_PER_GROUP(inode->i_sb);
  2523. inodes_per_buffer = bh->b_size /
  2524. EXT3_INODE_SIZE(inode->i_sb);
  2525. inode_offset = ((inode->i_ino - 1) %
  2526. EXT3_INODES_PER_GROUP(inode->i_sb));
  2527. start = inode_offset & ~(inodes_per_buffer - 1);
  2528. /* Is the inode bitmap in cache? */
  2529. desc = ext3_get_group_desc(inode->i_sb,
  2530. block_group, NULL);
  2531. if (!desc)
  2532. goto make_io;
  2533. bitmap_bh = sb_getblk(inode->i_sb,
  2534. le32_to_cpu(desc->bg_inode_bitmap));
  2535. if (unlikely(!bitmap_bh))
  2536. goto make_io;
  2537. /*
  2538. * If the inode bitmap isn't in cache then the
  2539. * optimisation may end up performing two reads instead
  2540. * of one, so skip it.
  2541. */
  2542. if (!buffer_uptodate(bitmap_bh)) {
  2543. brelse(bitmap_bh);
  2544. goto make_io;
  2545. }
  2546. for (i = start; i < start + inodes_per_buffer; i++) {
  2547. if (i == inode_offset)
  2548. continue;
  2549. if (ext3_test_bit(i, bitmap_bh->b_data))
  2550. break;
  2551. }
  2552. brelse(bitmap_bh);
  2553. if (i == start + inodes_per_buffer) {
  2554. /* all other inodes are free, so skip I/O */
  2555. memset(bh->b_data, 0, bh->b_size);
  2556. set_buffer_uptodate(bh);
  2557. unlock_buffer(bh);
  2558. goto has_buffer;
  2559. }
  2560. }
  2561. make_io:
  2562. /*
  2563. * There are other valid inodes in the buffer, this inode
  2564. * has in-inode xattrs, or we don't have this inode in memory.
  2565. * Read the block from disk.
  2566. */
  2567. trace_ext3_load_inode(inode);
  2568. get_bh(bh);
  2569. bh->b_end_io = end_buffer_read_sync;
  2570. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2571. wait_on_buffer(bh);
  2572. if (!buffer_uptodate(bh)) {
  2573. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2574. "unable to read inode block - "
  2575. "inode=%lu, block="E3FSBLK,
  2576. inode->i_ino, block);
  2577. brelse(bh);
  2578. return -EIO;
  2579. }
  2580. }
  2581. has_buffer:
  2582. iloc->bh = bh;
  2583. return 0;
  2584. }
  2585. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2586. {
  2587. /* We have all inode data except xattrs in memory here. */
  2588. return __ext3_get_inode_loc(inode, iloc,
  2589. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2590. }
  2591. void ext3_set_inode_flags(struct inode *inode)
  2592. {
  2593. unsigned int flags = EXT3_I(inode)->i_flags;
  2594. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2595. if (flags & EXT3_SYNC_FL)
  2596. inode->i_flags |= S_SYNC;
  2597. if (flags & EXT3_APPEND_FL)
  2598. inode->i_flags |= S_APPEND;
  2599. if (flags & EXT3_IMMUTABLE_FL)
  2600. inode->i_flags |= S_IMMUTABLE;
  2601. if (flags & EXT3_NOATIME_FL)
  2602. inode->i_flags |= S_NOATIME;
  2603. if (flags & EXT3_DIRSYNC_FL)
  2604. inode->i_flags |= S_DIRSYNC;
  2605. }
  2606. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2607. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2608. {
  2609. unsigned int flags = ei->vfs_inode.i_flags;
  2610. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2611. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2612. if (flags & S_SYNC)
  2613. ei->i_flags |= EXT3_SYNC_FL;
  2614. if (flags & S_APPEND)
  2615. ei->i_flags |= EXT3_APPEND_FL;
  2616. if (flags & S_IMMUTABLE)
  2617. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2618. if (flags & S_NOATIME)
  2619. ei->i_flags |= EXT3_NOATIME_FL;
  2620. if (flags & S_DIRSYNC)
  2621. ei->i_flags |= EXT3_DIRSYNC_FL;
  2622. }
  2623. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2624. {
  2625. struct ext3_iloc iloc;
  2626. struct ext3_inode *raw_inode;
  2627. struct ext3_inode_info *ei;
  2628. struct buffer_head *bh;
  2629. struct inode *inode;
  2630. journal_t *journal = EXT3_SB(sb)->s_journal;
  2631. transaction_t *transaction;
  2632. long ret;
  2633. int block;
  2634. uid_t i_uid;
  2635. gid_t i_gid;
  2636. inode = iget_locked(sb, ino);
  2637. if (!inode)
  2638. return ERR_PTR(-ENOMEM);
  2639. if (!(inode->i_state & I_NEW))
  2640. return inode;
  2641. ei = EXT3_I(inode);
  2642. ei->i_block_alloc_info = NULL;
  2643. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2644. if (ret < 0)
  2645. goto bad_inode;
  2646. bh = iloc.bh;
  2647. raw_inode = ext3_raw_inode(&iloc);
  2648. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2649. i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2650. i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2651. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2652. i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2653. i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2654. }
  2655. i_uid_write(inode, i_uid);
  2656. i_gid_write(inode, i_gid);
  2657. set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
  2658. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2659. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2660. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2661. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2662. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2663. ei->i_state_flags = 0;
  2664. ei->i_dir_start_lookup = 0;
  2665. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2666. /* We now have enough fields to check if the inode was active or not.
  2667. * This is needed because nfsd might try to access dead inodes
  2668. * the test is that same one that e2fsck uses
  2669. * NeilBrown 1999oct15
  2670. */
  2671. if (inode->i_nlink == 0) {
  2672. if (inode->i_mode == 0 ||
  2673. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2674. /* this inode is deleted */
  2675. brelse (bh);
  2676. ret = -ESTALE;
  2677. goto bad_inode;
  2678. }
  2679. /* The only unlinked inodes we let through here have
  2680. * valid i_mode and are being read by the orphan
  2681. * recovery code: that's fine, we're about to complete
  2682. * the process of deleting those. */
  2683. }
  2684. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2685. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2686. #ifdef EXT3_FRAGMENTS
  2687. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2688. ei->i_frag_no = raw_inode->i_frag;
  2689. ei->i_frag_size = raw_inode->i_fsize;
  2690. #endif
  2691. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2692. if (!S_ISREG(inode->i_mode)) {
  2693. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2694. } else {
  2695. inode->i_size |=
  2696. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2697. }
  2698. ei->i_disksize = inode->i_size;
  2699. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2700. ei->i_block_group = iloc.block_group;
  2701. /*
  2702. * NOTE! The in-memory inode i_data array is in little-endian order
  2703. * even on big-endian machines: we do NOT byteswap the block numbers!
  2704. */
  2705. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2706. ei->i_data[block] = raw_inode->i_block[block];
  2707. INIT_LIST_HEAD(&ei->i_orphan);
  2708. /*
  2709. * Set transaction id's of transactions that have to be committed
  2710. * to finish f[data]sync. We set them to currently running transaction
  2711. * as we cannot be sure that the inode or some of its metadata isn't
  2712. * part of the transaction - the inode could have been reclaimed and
  2713. * now it is reread from disk.
  2714. */
  2715. if (journal) {
  2716. tid_t tid;
  2717. spin_lock(&journal->j_state_lock);
  2718. if (journal->j_running_transaction)
  2719. transaction = journal->j_running_transaction;
  2720. else
  2721. transaction = journal->j_committing_transaction;
  2722. if (transaction)
  2723. tid = transaction->t_tid;
  2724. else
  2725. tid = journal->j_commit_sequence;
  2726. spin_unlock(&journal->j_state_lock);
  2727. atomic_set(&ei->i_sync_tid, tid);
  2728. atomic_set(&ei->i_datasync_tid, tid);
  2729. }
  2730. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2731. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2732. /*
  2733. * When mke2fs creates big inodes it does not zero out
  2734. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2735. * so ignore those first few inodes.
  2736. */
  2737. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2738. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2739. EXT3_INODE_SIZE(inode->i_sb)) {
  2740. brelse (bh);
  2741. ret = -EIO;
  2742. goto bad_inode;
  2743. }
  2744. if (ei->i_extra_isize == 0) {
  2745. /* The extra space is currently unused. Use it. */
  2746. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2747. EXT3_GOOD_OLD_INODE_SIZE;
  2748. } else {
  2749. __le32 *magic = (void *)raw_inode +
  2750. EXT3_GOOD_OLD_INODE_SIZE +
  2751. ei->i_extra_isize;
  2752. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2753. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2754. }
  2755. } else
  2756. ei->i_extra_isize = 0;
  2757. if (S_ISREG(inode->i_mode)) {
  2758. inode->i_op = &ext3_file_inode_operations;
  2759. inode->i_fop = &ext3_file_operations;
  2760. ext3_set_aops(inode);
  2761. } else if (S_ISDIR(inode->i_mode)) {
  2762. inode->i_op = &ext3_dir_inode_operations;
  2763. inode->i_fop = &ext3_dir_operations;
  2764. } else if (S_ISLNK(inode->i_mode)) {
  2765. if (ext3_inode_is_fast_symlink(inode)) {
  2766. inode->i_op = &ext3_fast_symlink_inode_operations;
  2767. nd_terminate_link(ei->i_data, inode->i_size,
  2768. sizeof(ei->i_data) - 1);
  2769. } else {
  2770. inode->i_op = &ext3_symlink_inode_operations;
  2771. ext3_set_aops(inode);
  2772. }
  2773. } else {
  2774. inode->i_op = &ext3_special_inode_operations;
  2775. if (raw_inode->i_block[0])
  2776. init_special_inode(inode, inode->i_mode,
  2777. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2778. else
  2779. init_special_inode(inode, inode->i_mode,
  2780. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2781. }
  2782. brelse (iloc.bh);
  2783. ext3_set_inode_flags(inode);
  2784. unlock_new_inode(inode);
  2785. return inode;
  2786. bad_inode:
  2787. iget_failed(inode);
  2788. return ERR_PTR(ret);
  2789. }
  2790. /*
  2791. * Post the struct inode info into an on-disk inode location in the
  2792. * buffer-cache. This gobbles the caller's reference to the
  2793. * buffer_head in the inode location struct.
  2794. *
  2795. * The caller must have write access to iloc->bh.
  2796. */
  2797. static int ext3_do_update_inode(handle_t *handle,
  2798. struct inode *inode,
  2799. struct ext3_iloc *iloc)
  2800. {
  2801. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2802. struct ext3_inode_info *ei = EXT3_I(inode);
  2803. struct buffer_head *bh = iloc->bh;
  2804. int err = 0, rc, block;
  2805. int need_datasync = 0;
  2806. __le32 disksize;
  2807. uid_t i_uid;
  2808. gid_t i_gid;
  2809. again:
  2810. /* we can't allow multiple procs in here at once, its a bit racey */
  2811. lock_buffer(bh);
  2812. /* For fields not not tracking in the in-memory inode,
  2813. * initialise them to zero for new inodes. */
  2814. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2815. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2816. ext3_get_inode_flags(ei);
  2817. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2818. i_uid = i_uid_read(inode);
  2819. i_gid = i_gid_read(inode);
  2820. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2821. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
  2822. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
  2823. /*
  2824. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2825. * re-used with the upper 16 bits of the uid/gid intact
  2826. */
  2827. if(!ei->i_dtime) {
  2828. raw_inode->i_uid_high =
  2829. cpu_to_le16(high_16_bits(i_uid));
  2830. raw_inode->i_gid_high =
  2831. cpu_to_le16(high_16_bits(i_gid));
  2832. } else {
  2833. raw_inode->i_uid_high = 0;
  2834. raw_inode->i_gid_high = 0;
  2835. }
  2836. } else {
  2837. raw_inode->i_uid_low =
  2838. cpu_to_le16(fs_high2lowuid(i_uid));
  2839. raw_inode->i_gid_low =
  2840. cpu_to_le16(fs_high2lowgid(i_gid));
  2841. raw_inode->i_uid_high = 0;
  2842. raw_inode->i_gid_high = 0;
  2843. }
  2844. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2845. disksize = cpu_to_le32(ei->i_disksize);
  2846. if (disksize != raw_inode->i_size) {
  2847. need_datasync = 1;
  2848. raw_inode->i_size = disksize;
  2849. }
  2850. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2851. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2852. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2853. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2854. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2855. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2856. #ifdef EXT3_FRAGMENTS
  2857. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2858. raw_inode->i_frag = ei->i_frag_no;
  2859. raw_inode->i_fsize = ei->i_frag_size;
  2860. #endif
  2861. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2862. if (!S_ISREG(inode->i_mode)) {
  2863. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2864. } else {
  2865. disksize = cpu_to_le32(ei->i_disksize >> 32);
  2866. if (disksize != raw_inode->i_size_high) {
  2867. raw_inode->i_size_high = disksize;
  2868. need_datasync = 1;
  2869. }
  2870. if (ei->i_disksize > 0x7fffffffULL) {
  2871. struct super_block *sb = inode->i_sb;
  2872. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2873. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2874. EXT3_SB(sb)->s_es->s_rev_level ==
  2875. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2876. /* If this is the first large file
  2877. * created, add a flag to the superblock.
  2878. */
  2879. unlock_buffer(bh);
  2880. err = ext3_journal_get_write_access(handle,
  2881. EXT3_SB(sb)->s_sbh);
  2882. if (err)
  2883. goto out_brelse;
  2884. ext3_update_dynamic_rev(sb);
  2885. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2886. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2887. handle->h_sync = 1;
  2888. err = ext3_journal_dirty_metadata(handle,
  2889. EXT3_SB(sb)->s_sbh);
  2890. /* get our lock and start over */
  2891. goto again;
  2892. }
  2893. }
  2894. }
  2895. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2896. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2897. if (old_valid_dev(inode->i_rdev)) {
  2898. raw_inode->i_block[0] =
  2899. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2900. raw_inode->i_block[1] = 0;
  2901. } else {
  2902. raw_inode->i_block[0] = 0;
  2903. raw_inode->i_block[1] =
  2904. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2905. raw_inode->i_block[2] = 0;
  2906. }
  2907. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2908. raw_inode->i_block[block] = ei->i_data[block];
  2909. if (ei->i_extra_isize)
  2910. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2911. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2912. unlock_buffer(bh);
  2913. rc = ext3_journal_dirty_metadata(handle, bh);
  2914. if (!err)
  2915. err = rc;
  2916. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2917. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2918. if (need_datasync)
  2919. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  2920. out_brelse:
  2921. brelse (bh);
  2922. ext3_std_error(inode->i_sb, err);
  2923. return err;
  2924. }
  2925. /*
  2926. * ext3_write_inode()
  2927. *
  2928. * We are called from a few places:
  2929. *
  2930. * - Within generic_file_write() for O_SYNC files.
  2931. * Here, there will be no transaction running. We wait for any running
  2932. * transaction to commit.
  2933. *
  2934. * - Within sys_sync(), kupdate and such.
  2935. * We wait on commit, if tol to.
  2936. *
  2937. * - Within prune_icache() (PF_MEMALLOC == true)
  2938. * Here we simply return. We can't afford to block kswapd on the
  2939. * journal commit.
  2940. *
  2941. * In all cases it is actually safe for us to return without doing anything,
  2942. * because the inode has been copied into a raw inode buffer in
  2943. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2944. * knfsd.
  2945. *
  2946. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2947. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2948. * which we are interested.
  2949. *
  2950. * It would be a bug for them to not do this. The code:
  2951. *
  2952. * mark_inode_dirty(inode)
  2953. * stuff();
  2954. * inode->i_size = expr;
  2955. *
  2956. * is in error because a kswapd-driven write_inode() could occur while
  2957. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2958. * will no longer be on the superblock's dirty inode list.
  2959. */
  2960. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2961. {
  2962. if (current->flags & PF_MEMALLOC)
  2963. return 0;
  2964. if (ext3_journal_current_handle()) {
  2965. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2966. dump_stack();
  2967. return -EIO;
  2968. }
  2969. if (wbc->sync_mode != WB_SYNC_ALL)
  2970. return 0;
  2971. return ext3_force_commit(inode->i_sb);
  2972. }
  2973. /*
  2974. * ext3_setattr()
  2975. *
  2976. * Called from notify_change.
  2977. *
  2978. * We want to trap VFS attempts to truncate the file as soon as
  2979. * possible. In particular, we want to make sure that when the VFS
  2980. * shrinks i_size, we put the inode on the orphan list and modify
  2981. * i_disksize immediately, so that during the subsequent flushing of
  2982. * dirty pages and freeing of disk blocks, we can guarantee that any
  2983. * commit will leave the blocks being flushed in an unused state on
  2984. * disk. (On recovery, the inode will get truncated and the blocks will
  2985. * be freed, so we have a strong guarantee that no future commit will
  2986. * leave these blocks visible to the user.)
  2987. *
  2988. * Called with inode->sem down.
  2989. */
  2990. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2991. {
  2992. struct inode *inode = dentry->d_inode;
  2993. int error, rc = 0;
  2994. const unsigned int ia_valid = attr->ia_valid;
  2995. error = inode_change_ok(inode, attr);
  2996. if (error)
  2997. return error;
  2998. if (is_quota_modification(inode, attr))
  2999. dquot_initialize(inode);
  3000. if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
  3001. (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
  3002. handle_t *handle;
  3003. /* (user+group)*(old+new) structure, inode write (sb,
  3004. * inode block, ? - but truncate inode update has it) */
  3005. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  3006. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  3007. if (IS_ERR(handle)) {
  3008. error = PTR_ERR(handle);
  3009. goto err_out;
  3010. }
  3011. error = dquot_transfer(inode, attr);
  3012. if (error) {
  3013. ext3_journal_stop(handle);
  3014. return error;
  3015. }
  3016. /* Update corresponding info in inode so that everything is in
  3017. * one transaction */
  3018. if (attr->ia_valid & ATTR_UID)
  3019. inode->i_uid = attr->ia_uid;
  3020. if (attr->ia_valid & ATTR_GID)
  3021. inode->i_gid = attr->ia_gid;
  3022. error = ext3_mark_inode_dirty(handle, inode);
  3023. ext3_journal_stop(handle);
  3024. }
  3025. if (attr->ia_valid & ATTR_SIZE)
  3026. inode_dio_wait(inode);
  3027. if (S_ISREG(inode->i_mode) &&
  3028. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  3029. handle_t *handle;
  3030. handle = ext3_journal_start(inode, 3);
  3031. if (IS_ERR(handle)) {
  3032. error = PTR_ERR(handle);
  3033. goto err_out;
  3034. }
  3035. error = ext3_orphan_add(handle, inode);
  3036. if (error) {
  3037. ext3_journal_stop(handle);
  3038. goto err_out;
  3039. }
  3040. EXT3_I(inode)->i_disksize = attr->ia_size;
  3041. error = ext3_mark_inode_dirty(handle, inode);
  3042. ext3_journal_stop(handle);
  3043. if (error) {
  3044. /* Some hard fs error must have happened. Bail out. */
  3045. ext3_orphan_del(NULL, inode);
  3046. goto err_out;
  3047. }
  3048. rc = ext3_block_truncate_page(inode, attr->ia_size);
  3049. if (rc) {
  3050. /* Cleanup orphan list and exit */
  3051. handle = ext3_journal_start(inode, 3);
  3052. if (IS_ERR(handle)) {
  3053. ext3_orphan_del(NULL, inode);
  3054. goto err_out;
  3055. }
  3056. ext3_orphan_del(handle, inode);
  3057. ext3_journal_stop(handle);
  3058. goto err_out;
  3059. }
  3060. }
  3061. if ((attr->ia_valid & ATTR_SIZE) &&
  3062. attr->ia_size != i_size_read(inode)) {
  3063. truncate_setsize(inode, attr->ia_size);
  3064. ext3_truncate(inode);
  3065. }
  3066. setattr_copy(inode, attr);
  3067. mark_inode_dirty(inode);
  3068. if (ia_valid & ATTR_MODE)
  3069. rc = ext3_acl_chmod(inode);
  3070. err_out:
  3071. ext3_std_error(inode->i_sb, error);
  3072. if (!error)
  3073. error = rc;
  3074. return error;
  3075. }
  3076. /*
  3077. * How many blocks doth make a writepage()?
  3078. *
  3079. * With N blocks per page, it may be:
  3080. * N data blocks
  3081. * 2 indirect block
  3082. * 2 dindirect
  3083. * 1 tindirect
  3084. * N+5 bitmap blocks (from the above)
  3085. * N+5 group descriptor summary blocks
  3086. * 1 inode block
  3087. * 1 superblock.
  3088. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  3089. *
  3090. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  3091. *
  3092. * With ordered or writeback data it's the same, less the N data blocks.
  3093. *
  3094. * If the inode's direct blocks can hold an integral number of pages then a
  3095. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3096. * and dindirect block, and the "5" above becomes "3".
  3097. *
  3098. * This still overestimates under most circumstances. If we were to pass the
  3099. * start and end offsets in here as well we could do block_to_path() on each
  3100. * block and work out the exact number of indirects which are touched. Pah.
  3101. */
  3102. static int ext3_writepage_trans_blocks(struct inode *inode)
  3103. {
  3104. int bpp = ext3_journal_blocks_per_page(inode);
  3105. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3106. int ret;
  3107. if (ext3_should_journal_data(inode))
  3108. ret = 3 * (bpp + indirects) + 2;
  3109. else
  3110. ret = 2 * (bpp + indirects) + indirects + 2;
  3111. #ifdef CONFIG_QUOTA
  3112. /* We know that structure was already allocated during dquot_initialize so
  3113. * we will be updating only the data blocks + inodes */
  3114. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3115. #endif
  3116. return ret;
  3117. }
  3118. /*
  3119. * The caller must have previously called ext3_reserve_inode_write().
  3120. * Give this, we know that the caller already has write access to iloc->bh.
  3121. */
  3122. int ext3_mark_iloc_dirty(handle_t *handle,
  3123. struct inode *inode, struct ext3_iloc *iloc)
  3124. {
  3125. int err = 0;
  3126. /* the do_update_inode consumes one bh->b_count */
  3127. get_bh(iloc->bh);
  3128. /* ext3_do_update_inode() does journal_dirty_metadata */
  3129. err = ext3_do_update_inode(handle, inode, iloc);
  3130. put_bh(iloc->bh);
  3131. return err;
  3132. }
  3133. /*
  3134. * On success, We end up with an outstanding reference count against
  3135. * iloc->bh. This _must_ be cleaned up later.
  3136. */
  3137. int
  3138. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3139. struct ext3_iloc *iloc)
  3140. {
  3141. int err = 0;
  3142. if (handle) {
  3143. err = ext3_get_inode_loc(inode, iloc);
  3144. if (!err) {
  3145. BUFFER_TRACE(iloc->bh, "get_write_access");
  3146. err = ext3_journal_get_write_access(handle, iloc->bh);
  3147. if (err) {
  3148. brelse(iloc->bh);
  3149. iloc->bh = NULL;
  3150. }
  3151. }
  3152. }
  3153. ext3_std_error(inode->i_sb, err);
  3154. return err;
  3155. }
  3156. /*
  3157. * What we do here is to mark the in-core inode as clean with respect to inode
  3158. * dirtiness (it may still be data-dirty).
  3159. * This means that the in-core inode may be reaped by prune_icache
  3160. * without having to perform any I/O. This is a very good thing,
  3161. * because *any* task may call prune_icache - even ones which
  3162. * have a transaction open against a different journal.
  3163. *
  3164. * Is this cheating? Not really. Sure, we haven't written the
  3165. * inode out, but prune_icache isn't a user-visible syncing function.
  3166. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3167. * we start and wait on commits.
  3168. */
  3169. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3170. {
  3171. struct ext3_iloc iloc;
  3172. int err;
  3173. might_sleep();
  3174. trace_ext3_mark_inode_dirty(inode, _RET_IP_);
  3175. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3176. if (!err)
  3177. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3178. return err;
  3179. }
  3180. /*
  3181. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3182. *
  3183. * We're really interested in the case where a file is being extended.
  3184. * i_size has been changed by generic_commit_write() and we thus need
  3185. * to include the updated inode in the current transaction.
  3186. *
  3187. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3188. * are allocated to the file.
  3189. *
  3190. * If the inode is marked synchronous, we don't honour that here - doing
  3191. * so would cause a commit on atime updates, which we don't bother doing.
  3192. * We handle synchronous inodes at the highest possible level.
  3193. */
  3194. void ext3_dirty_inode(struct inode *inode, int flags)
  3195. {
  3196. handle_t *current_handle = ext3_journal_current_handle();
  3197. handle_t *handle;
  3198. handle = ext3_journal_start(inode, 2);
  3199. if (IS_ERR(handle))
  3200. goto out;
  3201. if (current_handle &&
  3202. current_handle->h_transaction != handle->h_transaction) {
  3203. /* This task has a transaction open against a different fs */
  3204. printk(KERN_EMERG "%s: transactions do not match!\n",
  3205. __func__);
  3206. } else {
  3207. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3208. current_handle);
  3209. ext3_mark_inode_dirty(handle, inode);
  3210. }
  3211. ext3_journal_stop(handle);
  3212. out:
  3213. return;
  3214. }
  3215. #if 0
  3216. /*
  3217. * Bind an inode's backing buffer_head into this transaction, to prevent
  3218. * it from being flushed to disk early. Unlike
  3219. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3220. * returns no iloc structure, so the caller needs to repeat the iloc
  3221. * lookup to mark the inode dirty later.
  3222. */
  3223. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3224. {
  3225. struct ext3_iloc iloc;
  3226. int err = 0;
  3227. if (handle) {
  3228. err = ext3_get_inode_loc(inode, &iloc);
  3229. if (!err) {
  3230. BUFFER_TRACE(iloc.bh, "get_write_access");
  3231. err = journal_get_write_access(handle, iloc.bh);
  3232. if (!err)
  3233. err = ext3_journal_dirty_metadata(handle,
  3234. iloc.bh);
  3235. brelse(iloc.bh);
  3236. }
  3237. }
  3238. ext3_std_error(inode->i_sb, err);
  3239. return err;
  3240. }
  3241. #endif
  3242. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3243. {
  3244. journal_t *journal;
  3245. handle_t *handle;
  3246. int err;
  3247. /*
  3248. * We have to be very careful here: changing a data block's
  3249. * journaling status dynamically is dangerous. If we write a
  3250. * data block to the journal, change the status and then delete
  3251. * that block, we risk forgetting to revoke the old log record
  3252. * from the journal and so a subsequent replay can corrupt data.
  3253. * So, first we make sure that the journal is empty and that
  3254. * nobody is changing anything.
  3255. */
  3256. journal = EXT3_JOURNAL(inode);
  3257. if (is_journal_aborted(journal))
  3258. return -EROFS;
  3259. journal_lock_updates(journal);
  3260. journal_flush(journal);
  3261. /*
  3262. * OK, there are no updates running now, and all cached data is
  3263. * synced to disk. We are now in a completely consistent state
  3264. * which doesn't have anything in the journal, and we know that
  3265. * no filesystem updates are running, so it is safe to modify
  3266. * the inode's in-core data-journaling state flag now.
  3267. */
  3268. if (val)
  3269. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3270. else
  3271. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3272. ext3_set_aops(inode);
  3273. journal_unlock_updates(journal);
  3274. /* Finally we can mark the inode as dirty. */
  3275. handle = ext3_journal_start(inode, 1);
  3276. if (IS_ERR(handle))
  3277. return PTR_ERR(handle);
  3278. err = ext3_mark_inode_dirty(handle, inode);
  3279. handle->h_sync = 1;
  3280. ext3_journal_stop(handle);
  3281. ext3_std_error(inode->i_sb, err);
  3282. return err;
  3283. }