slub.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/memory.h>
  23. /*
  24. * Lock order:
  25. * 1. slab_lock(page)
  26. * 2. slab->list_lock
  27. *
  28. * The slab_lock protects operations on the object of a particular
  29. * slab and its metadata in the page struct. If the slab lock
  30. * has been taken then no allocations nor frees can be performed
  31. * on the objects in the slab nor can the slab be added or removed
  32. * from the partial or full lists since this would mean modifying
  33. * the page_struct of the slab.
  34. *
  35. * The list_lock protects the partial and full list on each node and
  36. * the partial slab counter. If taken then no new slabs may be added or
  37. * removed from the lists nor make the number of partial slabs be modified.
  38. * (Note that the total number of slabs is an atomic value that may be
  39. * modified without taking the list lock).
  40. *
  41. * The list_lock is a centralized lock and thus we avoid taking it as
  42. * much as possible. As long as SLUB does not have to handle partial
  43. * slabs, operations can continue without any centralized lock. F.e.
  44. * allocating a long series of objects that fill up slabs does not require
  45. * the list lock.
  46. *
  47. * The lock order is sometimes inverted when we are trying to get a slab
  48. * off a list. We take the list_lock and then look for a page on the list
  49. * to use. While we do that objects in the slabs may be freed. We can
  50. * only operate on the slab if we have also taken the slab_lock. So we use
  51. * a slab_trylock() on the slab. If trylock was successful then no frees
  52. * can occur anymore and we can use the slab for allocations etc. If the
  53. * slab_trylock() does not succeed then frees are in progress in the slab and
  54. * we must stay away from it for a while since we may cause a bouncing
  55. * cacheline if we try to acquire the lock. So go onto the next slab.
  56. * If all pages are busy then we may allocate a new slab instead of reusing
  57. * a partial slab. A new slab has noone operating on it and thus there is
  58. * no danger of cacheline contention.
  59. *
  60. * Interrupts are disabled during allocation and deallocation in order to
  61. * make the slab allocator safe to use in the context of an irq. In addition
  62. * interrupts are disabled to ensure that the processor does not change
  63. * while handling per_cpu slabs, due to kernel preemption.
  64. *
  65. * SLUB assigns one slab for allocation to each processor.
  66. * Allocations only occur from these slabs called cpu slabs.
  67. *
  68. * Slabs with free elements are kept on a partial list and during regular
  69. * operations no list for full slabs is used. If an object in a full slab is
  70. * freed then the slab will show up again on the partial lists.
  71. * We track full slabs for debugging purposes though because otherwise we
  72. * cannot scan all objects.
  73. *
  74. * Slabs are freed when they become empty. Teardown and setup is
  75. * minimal so we rely on the page allocators per cpu caches for
  76. * fast frees and allocs.
  77. *
  78. * Overloading of page flags that are otherwise used for LRU management.
  79. *
  80. * PageActive The slab is frozen and exempt from list processing.
  81. * This means that the slab is dedicated to a purpose
  82. * such as satisfying allocations for a specific
  83. * processor. Objects may be freed in the slab while
  84. * it is frozen but slab_free will then skip the usual
  85. * list operations. It is up to the processor holding
  86. * the slab to integrate the slab into the slab lists
  87. * when the slab is no longer needed.
  88. *
  89. * One use of this flag is to mark slabs that are
  90. * used for allocations. Then such a slab becomes a cpu
  91. * slab. The cpu slab may be equipped with an additional
  92. * freelist that allows lockless access to
  93. * free objects in addition to the regular freelist
  94. * that requires the slab lock.
  95. *
  96. * PageError Slab requires special handling due to debug
  97. * options set. This moves slab handling out of
  98. * the fast path and disables lockless freelists.
  99. */
  100. #define FROZEN (1 << PG_active)
  101. #ifdef CONFIG_SLUB_DEBUG
  102. #define SLABDEBUG (1 << PG_error)
  103. #else
  104. #define SLABDEBUG 0
  105. #endif
  106. static inline int SlabFrozen(struct page *page)
  107. {
  108. return page->flags & FROZEN;
  109. }
  110. static inline void SetSlabFrozen(struct page *page)
  111. {
  112. page->flags |= FROZEN;
  113. }
  114. static inline void ClearSlabFrozen(struct page *page)
  115. {
  116. page->flags &= ~FROZEN;
  117. }
  118. static inline int SlabDebug(struct page *page)
  119. {
  120. return page->flags & SLABDEBUG;
  121. }
  122. static inline void SetSlabDebug(struct page *page)
  123. {
  124. page->flags |= SLABDEBUG;
  125. }
  126. static inline void ClearSlabDebug(struct page *page)
  127. {
  128. page->flags &= ~SLABDEBUG;
  129. }
  130. /*
  131. * Issues still to be resolved:
  132. *
  133. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  134. *
  135. * - Variable sizing of the per node arrays
  136. */
  137. /* Enable to test recovery from slab corruption on boot */
  138. #undef SLUB_RESILIENCY_TEST
  139. #if PAGE_SHIFT <= 12
  140. /*
  141. * Small page size. Make sure that we do not fragment memory
  142. */
  143. #define DEFAULT_MAX_ORDER 1
  144. #define DEFAULT_MIN_OBJECTS 4
  145. #else
  146. /*
  147. * Large page machines are customarily able to handle larger
  148. * page orders.
  149. */
  150. #define DEFAULT_MAX_ORDER 2
  151. #define DEFAULT_MIN_OBJECTS 8
  152. #endif
  153. /*
  154. * Mininum number of partial slabs. These will be left on the partial
  155. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  156. */
  157. #define MIN_PARTIAL 5
  158. /*
  159. * Maximum number of desirable partial slabs.
  160. * The existence of more partial slabs makes kmem_cache_shrink
  161. * sort the partial list by the number of objects in the.
  162. */
  163. #define MAX_PARTIAL 10
  164. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_STORE_USER)
  166. /*
  167. * Set of flags that will prevent slab merging
  168. */
  169. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  170. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  171. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  172. SLAB_CACHE_DMA)
  173. #ifndef ARCH_KMALLOC_MINALIGN
  174. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  175. #endif
  176. #ifndef ARCH_SLAB_MINALIGN
  177. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  178. #endif
  179. /* Internal SLUB flags */
  180. #define __OBJECT_POISON 0x80000000 /* Poison object */
  181. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  182. #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
  183. #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
  184. /* Not all arches define cache_line_size */
  185. #ifndef cache_line_size
  186. #define cache_line_size() L1_CACHE_BYTES
  187. #endif
  188. static int kmem_size = sizeof(struct kmem_cache);
  189. #ifdef CONFIG_SMP
  190. static struct notifier_block slab_notifier;
  191. #endif
  192. static enum {
  193. DOWN, /* No slab functionality available */
  194. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  195. UP, /* Everything works but does not show up in sysfs */
  196. SYSFS /* Sysfs up */
  197. } slab_state = DOWN;
  198. /* A list of all slab caches on the system */
  199. static DECLARE_RWSEM(slub_lock);
  200. static LIST_HEAD(slab_caches);
  201. /*
  202. * Tracking user of a slab.
  203. */
  204. struct track {
  205. void *addr; /* Called from address */
  206. int cpu; /* Was running on cpu */
  207. int pid; /* Pid context */
  208. unsigned long when; /* When did the operation occur */
  209. };
  210. enum track_item { TRACK_ALLOC, TRACK_FREE };
  211. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  212. static int sysfs_slab_add(struct kmem_cache *);
  213. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  214. static void sysfs_slab_remove(struct kmem_cache *);
  215. #else
  216. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  217. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  218. { return 0; }
  219. static inline void sysfs_slab_remove(struct kmem_cache *s)
  220. {
  221. kfree(s);
  222. }
  223. #endif
  224. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  225. {
  226. #ifdef CONFIG_SLUB_STATS
  227. c->stat[si]++;
  228. #endif
  229. }
  230. /********************************************************************
  231. * Core slab cache functions
  232. *******************************************************************/
  233. int slab_is_available(void)
  234. {
  235. return slab_state >= UP;
  236. }
  237. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  238. {
  239. #ifdef CONFIG_NUMA
  240. return s->node[node];
  241. #else
  242. return &s->local_node;
  243. #endif
  244. }
  245. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  246. {
  247. #ifdef CONFIG_SMP
  248. return s->cpu_slab[cpu];
  249. #else
  250. return &s->cpu_slab;
  251. #endif
  252. }
  253. static inline int check_valid_pointer(struct kmem_cache *s,
  254. struct page *page, const void *object)
  255. {
  256. void *base;
  257. if (!object)
  258. return 1;
  259. base = page_address(page);
  260. if (object < base || object >= base + s->objects * s->size ||
  261. (object - base) % s->size) {
  262. return 0;
  263. }
  264. return 1;
  265. }
  266. /*
  267. * Slow version of get and set free pointer.
  268. *
  269. * This version requires touching the cache lines of kmem_cache which
  270. * we avoid to do in the fast alloc free paths. There we obtain the offset
  271. * from the page struct.
  272. */
  273. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  274. {
  275. return *(void **)(object + s->offset);
  276. }
  277. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  278. {
  279. *(void **)(object + s->offset) = fp;
  280. }
  281. /* Loop over all objects in a slab */
  282. #define for_each_object(__p, __s, __addr) \
  283. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  284. __p += (__s)->size)
  285. /* Scan freelist */
  286. #define for_each_free_object(__p, __s, __free) \
  287. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  288. /* Determine object index from a given position */
  289. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  290. {
  291. return (p - addr) / s->size;
  292. }
  293. #ifdef CONFIG_SLUB_DEBUG
  294. /*
  295. * Debug settings:
  296. */
  297. #ifdef CONFIG_SLUB_DEBUG_ON
  298. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  299. #else
  300. static int slub_debug;
  301. #endif
  302. static char *slub_debug_slabs;
  303. /*
  304. * Object debugging
  305. */
  306. static void print_section(char *text, u8 *addr, unsigned int length)
  307. {
  308. int i, offset;
  309. int newline = 1;
  310. char ascii[17];
  311. ascii[16] = 0;
  312. for (i = 0; i < length; i++) {
  313. if (newline) {
  314. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  315. newline = 0;
  316. }
  317. printk(KERN_CONT " %02x", addr[i]);
  318. offset = i % 16;
  319. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  320. if (offset == 15) {
  321. printk(KERN_CONT " %s\n", ascii);
  322. newline = 1;
  323. }
  324. }
  325. if (!newline) {
  326. i %= 16;
  327. while (i < 16) {
  328. printk(KERN_CONT " ");
  329. ascii[i] = ' ';
  330. i++;
  331. }
  332. printk(KERN_CONT " %s\n", ascii);
  333. }
  334. }
  335. static struct track *get_track(struct kmem_cache *s, void *object,
  336. enum track_item alloc)
  337. {
  338. struct track *p;
  339. if (s->offset)
  340. p = object + s->offset + sizeof(void *);
  341. else
  342. p = object + s->inuse;
  343. return p + alloc;
  344. }
  345. static void set_track(struct kmem_cache *s, void *object,
  346. enum track_item alloc, void *addr)
  347. {
  348. struct track *p;
  349. if (s->offset)
  350. p = object + s->offset + sizeof(void *);
  351. else
  352. p = object + s->inuse;
  353. p += alloc;
  354. if (addr) {
  355. p->addr = addr;
  356. p->cpu = smp_processor_id();
  357. p->pid = current ? current->pid : -1;
  358. p->when = jiffies;
  359. } else
  360. memset(p, 0, sizeof(struct track));
  361. }
  362. static void init_tracking(struct kmem_cache *s, void *object)
  363. {
  364. if (!(s->flags & SLAB_STORE_USER))
  365. return;
  366. set_track(s, object, TRACK_FREE, NULL);
  367. set_track(s, object, TRACK_ALLOC, NULL);
  368. }
  369. static void print_track(const char *s, struct track *t)
  370. {
  371. if (!t->addr)
  372. return;
  373. printk(KERN_ERR "INFO: %s in ", s);
  374. __print_symbol("%s", (unsigned long)t->addr);
  375. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  376. }
  377. static void print_tracking(struct kmem_cache *s, void *object)
  378. {
  379. if (!(s->flags & SLAB_STORE_USER))
  380. return;
  381. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  382. print_track("Freed", get_track(s, object, TRACK_FREE));
  383. }
  384. static void print_page_info(struct page *page)
  385. {
  386. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  387. page, page->inuse, page->freelist, page->flags);
  388. }
  389. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  390. {
  391. va_list args;
  392. char buf[100];
  393. va_start(args, fmt);
  394. vsnprintf(buf, sizeof(buf), fmt, args);
  395. va_end(args);
  396. printk(KERN_ERR "========================================"
  397. "=====================================\n");
  398. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  399. printk(KERN_ERR "----------------------------------------"
  400. "-------------------------------------\n\n");
  401. }
  402. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  403. {
  404. va_list args;
  405. char buf[100];
  406. va_start(args, fmt);
  407. vsnprintf(buf, sizeof(buf), fmt, args);
  408. va_end(args);
  409. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  410. }
  411. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  412. {
  413. unsigned int off; /* Offset of last byte */
  414. u8 *addr = page_address(page);
  415. print_tracking(s, p);
  416. print_page_info(page);
  417. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  418. p, p - addr, get_freepointer(s, p));
  419. if (p > addr + 16)
  420. print_section("Bytes b4", p - 16, 16);
  421. print_section("Object", p, min(s->objsize, 128));
  422. if (s->flags & SLAB_RED_ZONE)
  423. print_section("Redzone", p + s->objsize,
  424. s->inuse - s->objsize);
  425. if (s->offset)
  426. off = s->offset + sizeof(void *);
  427. else
  428. off = s->inuse;
  429. if (s->flags & SLAB_STORE_USER)
  430. off += 2 * sizeof(struct track);
  431. if (off != s->size)
  432. /* Beginning of the filler is the free pointer */
  433. print_section("Padding", p + off, s->size - off);
  434. dump_stack();
  435. }
  436. static void object_err(struct kmem_cache *s, struct page *page,
  437. u8 *object, char *reason)
  438. {
  439. slab_bug(s, reason);
  440. print_trailer(s, page, object);
  441. }
  442. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  443. {
  444. va_list args;
  445. char buf[100];
  446. va_start(args, fmt);
  447. vsnprintf(buf, sizeof(buf), fmt, args);
  448. va_end(args);
  449. slab_bug(s, fmt);
  450. print_page_info(page);
  451. dump_stack();
  452. }
  453. static void init_object(struct kmem_cache *s, void *object, int active)
  454. {
  455. u8 *p = object;
  456. if (s->flags & __OBJECT_POISON) {
  457. memset(p, POISON_FREE, s->objsize - 1);
  458. p[s->objsize - 1] = POISON_END;
  459. }
  460. if (s->flags & SLAB_RED_ZONE)
  461. memset(p + s->objsize,
  462. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  463. s->inuse - s->objsize);
  464. }
  465. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  466. {
  467. while (bytes) {
  468. if (*start != (u8)value)
  469. return start;
  470. start++;
  471. bytes--;
  472. }
  473. return NULL;
  474. }
  475. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  476. void *from, void *to)
  477. {
  478. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  479. memset(from, data, to - from);
  480. }
  481. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  482. u8 *object, char *what,
  483. u8 *start, unsigned int value, unsigned int bytes)
  484. {
  485. u8 *fault;
  486. u8 *end;
  487. fault = check_bytes(start, value, bytes);
  488. if (!fault)
  489. return 1;
  490. end = start + bytes;
  491. while (end > fault && end[-1] == value)
  492. end--;
  493. slab_bug(s, "%s overwritten", what);
  494. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  495. fault, end - 1, fault[0], value);
  496. print_trailer(s, page, object);
  497. restore_bytes(s, what, value, fault, end);
  498. return 0;
  499. }
  500. /*
  501. * Object layout:
  502. *
  503. * object address
  504. * Bytes of the object to be managed.
  505. * If the freepointer may overlay the object then the free
  506. * pointer is the first word of the object.
  507. *
  508. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  509. * 0xa5 (POISON_END)
  510. *
  511. * object + s->objsize
  512. * Padding to reach word boundary. This is also used for Redzoning.
  513. * Padding is extended by another word if Redzoning is enabled and
  514. * objsize == inuse.
  515. *
  516. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  517. * 0xcc (RED_ACTIVE) for objects in use.
  518. *
  519. * object + s->inuse
  520. * Meta data starts here.
  521. *
  522. * A. Free pointer (if we cannot overwrite object on free)
  523. * B. Tracking data for SLAB_STORE_USER
  524. * C. Padding to reach required alignment boundary or at mininum
  525. * one word if debuggin is on to be able to detect writes
  526. * before the word boundary.
  527. *
  528. * Padding is done using 0x5a (POISON_INUSE)
  529. *
  530. * object + s->size
  531. * Nothing is used beyond s->size.
  532. *
  533. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  534. * ignored. And therefore no slab options that rely on these boundaries
  535. * may be used with merged slabcaches.
  536. */
  537. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  538. {
  539. unsigned long off = s->inuse; /* The end of info */
  540. if (s->offset)
  541. /* Freepointer is placed after the object. */
  542. off += sizeof(void *);
  543. if (s->flags & SLAB_STORE_USER)
  544. /* We also have user information there */
  545. off += 2 * sizeof(struct track);
  546. if (s->size == off)
  547. return 1;
  548. return check_bytes_and_report(s, page, p, "Object padding",
  549. p + off, POISON_INUSE, s->size - off);
  550. }
  551. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  552. {
  553. u8 *start;
  554. u8 *fault;
  555. u8 *end;
  556. int length;
  557. int remainder;
  558. if (!(s->flags & SLAB_POISON))
  559. return 1;
  560. start = page_address(page);
  561. end = start + (PAGE_SIZE << s->order);
  562. length = s->objects * s->size;
  563. remainder = end - (start + length);
  564. if (!remainder)
  565. return 1;
  566. fault = check_bytes(start + length, POISON_INUSE, remainder);
  567. if (!fault)
  568. return 1;
  569. while (end > fault && end[-1] == POISON_INUSE)
  570. end--;
  571. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  572. print_section("Padding", start, length);
  573. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  574. return 0;
  575. }
  576. static int check_object(struct kmem_cache *s, struct page *page,
  577. void *object, int active)
  578. {
  579. u8 *p = object;
  580. u8 *endobject = object + s->objsize;
  581. if (s->flags & SLAB_RED_ZONE) {
  582. unsigned int red =
  583. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  584. if (!check_bytes_and_report(s, page, object, "Redzone",
  585. endobject, red, s->inuse - s->objsize))
  586. return 0;
  587. } else {
  588. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  589. check_bytes_and_report(s, page, p, "Alignment padding",
  590. endobject, POISON_INUSE, s->inuse - s->objsize);
  591. }
  592. }
  593. if (s->flags & SLAB_POISON) {
  594. if (!active && (s->flags & __OBJECT_POISON) &&
  595. (!check_bytes_and_report(s, page, p, "Poison", p,
  596. POISON_FREE, s->objsize - 1) ||
  597. !check_bytes_and_report(s, page, p, "Poison",
  598. p + s->objsize - 1, POISON_END, 1)))
  599. return 0;
  600. /*
  601. * check_pad_bytes cleans up on its own.
  602. */
  603. check_pad_bytes(s, page, p);
  604. }
  605. if (!s->offset && active)
  606. /*
  607. * Object and freepointer overlap. Cannot check
  608. * freepointer while object is allocated.
  609. */
  610. return 1;
  611. /* Check free pointer validity */
  612. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  613. object_err(s, page, p, "Freepointer corrupt");
  614. /*
  615. * No choice but to zap it and thus loose the remainder
  616. * of the free objects in this slab. May cause
  617. * another error because the object count is now wrong.
  618. */
  619. set_freepointer(s, p, NULL);
  620. return 0;
  621. }
  622. return 1;
  623. }
  624. static int check_slab(struct kmem_cache *s, struct page *page)
  625. {
  626. VM_BUG_ON(!irqs_disabled());
  627. if (!PageSlab(page)) {
  628. slab_err(s, page, "Not a valid slab page");
  629. return 0;
  630. }
  631. if (page->inuse > s->objects) {
  632. slab_err(s, page, "inuse %u > max %u",
  633. s->name, page->inuse, s->objects);
  634. return 0;
  635. }
  636. /* Slab_pad_check fixes things up after itself */
  637. slab_pad_check(s, page);
  638. return 1;
  639. }
  640. /*
  641. * Determine if a certain object on a page is on the freelist. Must hold the
  642. * slab lock to guarantee that the chains are in a consistent state.
  643. */
  644. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  645. {
  646. int nr = 0;
  647. void *fp = page->freelist;
  648. void *object = NULL;
  649. while (fp && nr <= s->objects) {
  650. if (fp == search)
  651. return 1;
  652. if (!check_valid_pointer(s, page, fp)) {
  653. if (object) {
  654. object_err(s, page, object,
  655. "Freechain corrupt");
  656. set_freepointer(s, object, NULL);
  657. break;
  658. } else {
  659. slab_err(s, page, "Freepointer corrupt");
  660. page->freelist = NULL;
  661. page->inuse = s->objects;
  662. slab_fix(s, "Freelist cleared");
  663. return 0;
  664. }
  665. break;
  666. }
  667. object = fp;
  668. fp = get_freepointer(s, object);
  669. nr++;
  670. }
  671. if (page->inuse != s->objects - nr) {
  672. slab_err(s, page, "Wrong object count. Counter is %d but "
  673. "counted were %d", page->inuse, s->objects - nr);
  674. page->inuse = s->objects - nr;
  675. slab_fix(s, "Object count adjusted.");
  676. }
  677. return search == NULL;
  678. }
  679. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  680. {
  681. if (s->flags & SLAB_TRACE) {
  682. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  683. s->name,
  684. alloc ? "alloc" : "free",
  685. object, page->inuse,
  686. page->freelist);
  687. if (!alloc)
  688. print_section("Object", (void *)object, s->objsize);
  689. dump_stack();
  690. }
  691. }
  692. /*
  693. * Tracking of fully allocated slabs for debugging purposes.
  694. */
  695. static void add_full(struct kmem_cache_node *n, struct page *page)
  696. {
  697. spin_lock(&n->list_lock);
  698. list_add(&page->lru, &n->full);
  699. spin_unlock(&n->list_lock);
  700. }
  701. static void remove_full(struct kmem_cache *s, struct page *page)
  702. {
  703. struct kmem_cache_node *n;
  704. if (!(s->flags & SLAB_STORE_USER))
  705. return;
  706. n = get_node(s, page_to_nid(page));
  707. spin_lock(&n->list_lock);
  708. list_del(&page->lru);
  709. spin_unlock(&n->list_lock);
  710. }
  711. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  712. void *object)
  713. {
  714. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  715. return;
  716. init_object(s, object, 0);
  717. init_tracking(s, object);
  718. }
  719. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  720. void *object, void *addr)
  721. {
  722. if (!check_slab(s, page))
  723. goto bad;
  724. if (!on_freelist(s, page, object)) {
  725. object_err(s, page, object, "Object already allocated");
  726. goto bad;
  727. }
  728. if (!check_valid_pointer(s, page, object)) {
  729. object_err(s, page, object, "Freelist Pointer check fails");
  730. goto bad;
  731. }
  732. if (!check_object(s, page, object, 0))
  733. goto bad;
  734. /* Success perform special debug activities for allocs */
  735. if (s->flags & SLAB_STORE_USER)
  736. set_track(s, object, TRACK_ALLOC, addr);
  737. trace(s, page, object, 1);
  738. init_object(s, object, 1);
  739. return 1;
  740. bad:
  741. if (PageSlab(page)) {
  742. /*
  743. * If this is a slab page then lets do the best we can
  744. * to avoid issues in the future. Marking all objects
  745. * as used avoids touching the remaining objects.
  746. */
  747. slab_fix(s, "Marking all objects used");
  748. page->inuse = s->objects;
  749. page->freelist = NULL;
  750. }
  751. return 0;
  752. }
  753. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  754. void *object, void *addr)
  755. {
  756. if (!check_slab(s, page))
  757. goto fail;
  758. if (!check_valid_pointer(s, page, object)) {
  759. slab_err(s, page, "Invalid object pointer 0x%p", object);
  760. goto fail;
  761. }
  762. if (on_freelist(s, page, object)) {
  763. object_err(s, page, object, "Object already free");
  764. goto fail;
  765. }
  766. if (!check_object(s, page, object, 1))
  767. return 0;
  768. if (unlikely(s != page->slab)) {
  769. if (!PageSlab(page)) {
  770. slab_err(s, page, "Attempt to free object(0x%p) "
  771. "outside of slab", object);
  772. } else if (!page->slab) {
  773. printk(KERN_ERR
  774. "SLUB <none>: no slab for object 0x%p.\n",
  775. object);
  776. dump_stack();
  777. } else
  778. object_err(s, page, object,
  779. "page slab pointer corrupt.");
  780. goto fail;
  781. }
  782. /* Special debug activities for freeing objects */
  783. if (!SlabFrozen(page) && !page->freelist)
  784. remove_full(s, page);
  785. if (s->flags & SLAB_STORE_USER)
  786. set_track(s, object, TRACK_FREE, addr);
  787. trace(s, page, object, 0);
  788. init_object(s, object, 0);
  789. return 1;
  790. fail:
  791. slab_fix(s, "Object at 0x%p not freed", object);
  792. return 0;
  793. }
  794. static int __init setup_slub_debug(char *str)
  795. {
  796. slub_debug = DEBUG_DEFAULT_FLAGS;
  797. if (*str++ != '=' || !*str)
  798. /*
  799. * No options specified. Switch on full debugging.
  800. */
  801. goto out;
  802. if (*str == ',')
  803. /*
  804. * No options but restriction on slabs. This means full
  805. * debugging for slabs matching a pattern.
  806. */
  807. goto check_slabs;
  808. slub_debug = 0;
  809. if (*str == '-')
  810. /*
  811. * Switch off all debugging measures.
  812. */
  813. goto out;
  814. /*
  815. * Determine which debug features should be switched on
  816. */
  817. for (; *str && *str != ','; str++) {
  818. switch (tolower(*str)) {
  819. case 'f':
  820. slub_debug |= SLAB_DEBUG_FREE;
  821. break;
  822. case 'z':
  823. slub_debug |= SLAB_RED_ZONE;
  824. break;
  825. case 'p':
  826. slub_debug |= SLAB_POISON;
  827. break;
  828. case 'u':
  829. slub_debug |= SLAB_STORE_USER;
  830. break;
  831. case 't':
  832. slub_debug |= SLAB_TRACE;
  833. break;
  834. default:
  835. printk(KERN_ERR "slub_debug option '%c' "
  836. "unknown. skipped\n", *str);
  837. }
  838. }
  839. check_slabs:
  840. if (*str == ',')
  841. slub_debug_slabs = str + 1;
  842. out:
  843. return 1;
  844. }
  845. __setup("slub_debug", setup_slub_debug);
  846. static unsigned long kmem_cache_flags(unsigned long objsize,
  847. unsigned long flags, const char *name,
  848. void (*ctor)(struct kmem_cache *, void *))
  849. {
  850. /*
  851. * Enable debugging if selected on the kernel commandline.
  852. */
  853. if (slub_debug && (!slub_debug_slabs ||
  854. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  855. flags |= slub_debug;
  856. return flags;
  857. }
  858. #else
  859. static inline void setup_object_debug(struct kmem_cache *s,
  860. struct page *page, void *object) {}
  861. static inline int alloc_debug_processing(struct kmem_cache *s,
  862. struct page *page, void *object, void *addr) { return 0; }
  863. static inline int free_debug_processing(struct kmem_cache *s,
  864. struct page *page, void *object, void *addr) { return 0; }
  865. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  866. { return 1; }
  867. static inline int check_object(struct kmem_cache *s, struct page *page,
  868. void *object, int active) { return 1; }
  869. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  870. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  871. unsigned long flags, const char *name,
  872. void (*ctor)(struct kmem_cache *, void *))
  873. {
  874. return flags;
  875. }
  876. #define slub_debug 0
  877. #endif
  878. /*
  879. * Slab allocation and freeing
  880. */
  881. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  882. {
  883. struct page *page;
  884. int pages = 1 << s->order;
  885. flags |= s->allocflags;
  886. if (node == -1)
  887. page = alloc_pages(flags, s->order);
  888. else
  889. page = alloc_pages_node(node, flags, s->order);
  890. if (!page)
  891. return NULL;
  892. mod_zone_page_state(page_zone(page),
  893. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  894. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  895. pages);
  896. return page;
  897. }
  898. static void setup_object(struct kmem_cache *s, struct page *page,
  899. void *object)
  900. {
  901. setup_object_debug(s, page, object);
  902. if (unlikely(s->ctor))
  903. s->ctor(s, object);
  904. }
  905. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  906. {
  907. struct page *page;
  908. struct kmem_cache_node *n;
  909. void *start;
  910. void *last;
  911. void *p;
  912. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  913. page = allocate_slab(s,
  914. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  915. if (!page)
  916. goto out;
  917. n = get_node(s, page_to_nid(page));
  918. if (n)
  919. atomic_long_inc(&n->nr_slabs);
  920. page->slab = s;
  921. page->flags |= 1 << PG_slab;
  922. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  923. SLAB_STORE_USER | SLAB_TRACE))
  924. SetSlabDebug(page);
  925. start = page_address(page);
  926. if (unlikely(s->flags & SLAB_POISON))
  927. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  928. last = start;
  929. for_each_object(p, s, start) {
  930. setup_object(s, page, last);
  931. set_freepointer(s, last, p);
  932. last = p;
  933. }
  934. setup_object(s, page, last);
  935. set_freepointer(s, last, NULL);
  936. page->freelist = start;
  937. page->inuse = 0;
  938. out:
  939. return page;
  940. }
  941. static void __free_slab(struct kmem_cache *s, struct page *page)
  942. {
  943. int pages = 1 << s->order;
  944. if (unlikely(SlabDebug(page))) {
  945. void *p;
  946. slab_pad_check(s, page);
  947. for_each_object(p, s, page_address(page))
  948. check_object(s, page, p, 0);
  949. ClearSlabDebug(page);
  950. }
  951. mod_zone_page_state(page_zone(page),
  952. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  953. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  954. -pages);
  955. __free_pages(page, s->order);
  956. }
  957. static void rcu_free_slab(struct rcu_head *h)
  958. {
  959. struct page *page;
  960. page = container_of((struct list_head *)h, struct page, lru);
  961. __free_slab(page->slab, page);
  962. }
  963. static void free_slab(struct kmem_cache *s, struct page *page)
  964. {
  965. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  966. /*
  967. * RCU free overloads the RCU head over the LRU
  968. */
  969. struct rcu_head *head = (void *)&page->lru;
  970. call_rcu(head, rcu_free_slab);
  971. } else
  972. __free_slab(s, page);
  973. }
  974. static void discard_slab(struct kmem_cache *s, struct page *page)
  975. {
  976. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  977. atomic_long_dec(&n->nr_slabs);
  978. reset_page_mapcount(page);
  979. __ClearPageSlab(page);
  980. free_slab(s, page);
  981. }
  982. /*
  983. * Per slab locking using the pagelock
  984. */
  985. static __always_inline void slab_lock(struct page *page)
  986. {
  987. bit_spin_lock(PG_locked, &page->flags);
  988. }
  989. static __always_inline void slab_unlock(struct page *page)
  990. {
  991. __bit_spin_unlock(PG_locked, &page->flags);
  992. }
  993. static __always_inline int slab_trylock(struct page *page)
  994. {
  995. int rc = 1;
  996. rc = bit_spin_trylock(PG_locked, &page->flags);
  997. return rc;
  998. }
  999. /*
  1000. * Management of partially allocated slabs
  1001. */
  1002. static void add_partial(struct kmem_cache_node *n,
  1003. struct page *page, int tail)
  1004. {
  1005. spin_lock(&n->list_lock);
  1006. n->nr_partial++;
  1007. if (tail)
  1008. list_add_tail(&page->lru, &n->partial);
  1009. else
  1010. list_add(&page->lru, &n->partial);
  1011. spin_unlock(&n->list_lock);
  1012. }
  1013. static void remove_partial(struct kmem_cache *s,
  1014. struct page *page)
  1015. {
  1016. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1017. spin_lock(&n->list_lock);
  1018. list_del(&page->lru);
  1019. n->nr_partial--;
  1020. spin_unlock(&n->list_lock);
  1021. }
  1022. /*
  1023. * Lock slab and remove from the partial list.
  1024. *
  1025. * Must hold list_lock.
  1026. */
  1027. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1028. {
  1029. if (slab_trylock(page)) {
  1030. list_del(&page->lru);
  1031. n->nr_partial--;
  1032. SetSlabFrozen(page);
  1033. return 1;
  1034. }
  1035. return 0;
  1036. }
  1037. /*
  1038. * Try to allocate a partial slab from a specific node.
  1039. */
  1040. static struct page *get_partial_node(struct kmem_cache_node *n)
  1041. {
  1042. struct page *page;
  1043. /*
  1044. * Racy check. If we mistakenly see no partial slabs then we
  1045. * just allocate an empty slab. If we mistakenly try to get a
  1046. * partial slab and there is none available then get_partials()
  1047. * will return NULL.
  1048. */
  1049. if (!n || !n->nr_partial)
  1050. return NULL;
  1051. spin_lock(&n->list_lock);
  1052. list_for_each_entry(page, &n->partial, lru)
  1053. if (lock_and_freeze_slab(n, page))
  1054. goto out;
  1055. page = NULL;
  1056. out:
  1057. spin_unlock(&n->list_lock);
  1058. return page;
  1059. }
  1060. /*
  1061. * Get a page from somewhere. Search in increasing NUMA distances.
  1062. */
  1063. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1064. {
  1065. #ifdef CONFIG_NUMA
  1066. struct zonelist *zonelist;
  1067. struct zone **z;
  1068. struct page *page;
  1069. /*
  1070. * The defrag ratio allows a configuration of the tradeoffs between
  1071. * inter node defragmentation and node local allocations. A lower
  1072. * defrag_ratio increases the tendency to do local allocations
  1073. * instead of attempting to obtain partial slabs from other nodes.
  1074. *
  1075. * If the defrag_ratio is set to 0 then kmalloc() always
  1076. * returns node local objects. If the ratio is higher then kmalloc()
  1077. * may return off node objects because partial slabs are obtained
  1078. * from other nodes and filled up.
  1079. *
  1080. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1081. * defrag_ratio = 1000) then every (well almost) allocation will
  1082. * first attempt to defrag slab caches on other nodes. This means
  1083. * scanning over all nodes to look for partial slabs which may be
  1084. * expensive if we do it every time we are trying to find a slab
  1085. * with available objects.
  1086. */
  1087. if (!s->remote_node_defrag_ratio ||
  1088. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1089. return NULL;
  1090. zonelist = &NODE_DATA(
  1091. slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
  1092. for (z = zonelist->zones; *z; z++) {
  1093. struct kmem_cache_node *n;
  1094. n = get_node(s, zone_to_nid(*z));
  1095. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1096. n->nr_partial > MIN_PARTIAL) {
  1097. page = get_partial_node(n);
  1098. if (page)
  1099. return page;
  1100. }
  1101. }
  1102. #endif
  1103. return NULL;
  1104. }
  1105. /*
  1106. * Get a partial page, lock it and return it.
  1107. */
  1108. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1109. {
  1110. struct page *page;
  1111. int searchnode = (node == -1) ? numa_node_id() : node;
  1112. page = get_partial_node(get_node(s, searchnode));
  1113. if (page || (flags & __GFP_THISNODE))
  1114. return page;
  1115. return get_any_partial(s, flags);
  1116. }
  1117. /*
  1118. * Move a page back to the lists.
  1119. *
  1120. * Must be called with the slab lock held.
  1121. *
  1122. * On exit the slab lock will have been dropped.
  1123. */
  1124. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1125. {
  1126. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1127. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1128. ClearSlabFrozen(page);
  1129. if (page->inuse) {
  1130. if (page->freelist) {
  1131. add_partial(n, page, tail);
  1132. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1133. } else {
  1134. stat(c, DEACTIVATE_FULL);
  1135. if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1136. add_full(n, page);
  1137. }
  1138. slab_unlock(page);
  1139. } else {
  1140. stat(c, DEACTIVATE_EMPTY);
  1141. if (n->nr_partial < MIN_PARTIAL) {
  1142. /*
  1143. * Adding an empty slab to the partial slabs in order
  1144. * to avoid page allocator overhead. This slab needs
  1145. * to come after the other slabs with objects in
  1146. * order to fill them up. That way the size of the
  1147. * partial list stays small. kmem_cache_shrink can
  1148. * reclaim empty slabs from the partial list.
  1149. */
  1150. add_partial(n, page, 1);
  1151. slab_unlock(page);
  1152. } else {
  1153. slab_unlock(page);
  1154. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1155. discard_slab(s, page);
  1156. }
  1157. }
  1158. }
  1159. /*
  1160. * Remove the cpu slab
  1161. */
  1162. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1163. {
  1164. struct page *page = c->page;
  1165. int tail = 1;
  1166. if (c->freelist)
  1167. stat(c, DEACTIVATE_REMOTE_FREES);
  1168. /*
  1169. * Merge cpu freelist into freelist. Typically we get here
  1170. * because both freelists are empty. So this is unlikely
  1171. * to occur.
  1172. */
  1173. while (unlikely(c->freelist)) {
  1174. void **object;
  1175. tail = 0; /* Hot objects. Put the slab first */
  1176. /* Retrieve object from cpu_freelist */
  1177. object = c->freelist;
  1178. c->freelist = c->freelist[c->offset];
  1179. /* And put onto the regular freelist */
  1180. object[c->offset] = page->freelist;
  1181. page->freelist = object;
  1182. page->inuse--;
  1183. }
  1184. c->page = NULL;
  1185. unfreeze_slab(s, page, tail);
  1186. }
  1187. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1188. {
  1189. stat(c, CPUSLAB_FLUSH);
  1190. slab_lock(c->page);
  1191. deactivate_slab(s, c);
  1192. }
  1193. /*
  1194. * Flush cpu slab.
  1195. * Called from IPI handler with interrupts disabled.
  1196. */
  1197. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1198. {
  1199. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1200. if (likely(c && c->page))
  1201. flush_slab(s, c);
  1202. }
  1203. static void flush_cpu_slab(void *d)
  1204. {
  1205. struct kmem_cache *s = d;
  1206. __flush_cpu_slab(s, smp_processor_id());
  1207. }
  1208. static void flush_all(struct kmem_cache *s)
  1209. {
  1210. #ifdef CONFIG_SMP
  1211. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1212. #else
  1213. unsigned long flags;
  1214. local_irq_save(flags);
  1215. flush_cpu_slab(s);
  1216. local_irq_restore(flags);
  1217. #endif
  1218. }
  1219. /*
  1220. * Check if the objects in a per cpu structure fit numa
  1221. * locality expectations.
  1222. */
  1223. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1224. {
  1225. #ifdef CONFIG_NUMA
  1226. if (node != -1 && c->node != node)
  1227. return 0;
  1228. #endif
  1229. return 1;
  1230. }
  1231. /*
  1232. * Slow path. The lockless freelist is empty or we need to perform
  1233. * debugging duties.
  1234. *
  1235. * Interrupts are disabled.
  1236. *
  1237. * Processing is still very fast if new objects have been freed to the
  1238. * regular freelist. In that case we simply take over the regular freelist
  1239. * as the lockless freelist and zap the regular freelist.
  1240. *
  1241. * If that is not working then we fall back to the partial lists. We take the
  1242. * first element of the freelist as the object to allocate now and move the
  1243. * rest of the freelist to the lockless freelist.
  1244. *
  1245. * And if we were unable to get a new slab from the partial slab lists then
  1246. * we need to allocate a new slab. This is slowest path since we may sleep.
  1247. */
  1248. static void *__slab_alloc(struct kmem_cache *s,
  1249. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1250. {
  1251. void **object;
  1252. struct page *new;
  1253. if (!c->page)
  1254. goto new_slab;
  1255. slab_lock(c->page);
  1256. if (unlikely(!node_match(c, node)))
  1257. goto another_slab;
  1258. stat(c, ALLOC_REFILL);
  1259. load_freelist:
  1260. object = c->page->freelist;
  1261. if (unlikely(!object))
  1262. goto another_slab;
  1263. if (unlikely(SlabDebug(c->page)))
  1264. goto debug;
  1265. object = c->page->freelist;
  1266. c->freelist = object[c->offset];
  1267. c->page->inuse = s->objects;
  1268. c->page->freelist = NULL;
  1269. c->node = page_to_nid(c->page);
  1270. unlock_out:
  1271. slab_unlock(c->page);
  1272. stat(c, ALLOC_SLOWPATH);
  1273. return object;
  1274. another_slab:
  1275. deactivate_slab(s, c);
  1276. new_slab:
  1277. new = get_partial(s, gfpflags, node);
  1278. if (new) {
  1279. c->page = new;
  1280. stat(c, ALLOC_FROM_PARTIAL);
  1281. goto load_freelist;
  1282. }
  1283. if (gfpflags & __GFP_WAIT)
  1284. local_irq_enable();
  1285. new = new_slab(s, gfpflags, node);
  1286. if (gfpflags & __GFP_WAIT)
  1287. local_irq_disable();
  1288. if (new) {
  1289. c = get_cpu_slab(s, smp_processor_id());
  1290. stat(c, ALLOC_SLAB);
  1291. if (c->page)
  1292. flush_slab(s, c);
  1293. slab_lock(new);
  1294. SetSlabFrozen(new);
  1295. c->page = new;
  1296. goto load_freelist;
  1297. }
  1298. /*
  1299. * No memory available.
  1300. *
  1301. * If the slab uses higher order allocs but the object is
  1302. * smaller than a page size then we can fallback in emergencies
  1303. * to the page allocator via kmalloc_large. The page allocator may
  1304. * have failed to obtain a higher order page and we can try to
  1305. * allocate a single page if the object fits into a single page.
  1306. * That is only possible if certain conditions are met that are being
  1307. * checked when a slab is created.
  1308. */
  1309. if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
  1310. return kmalloc_large(s->objsize, gfpflags);
  1311. return NULL;
  1312. debug:
  1313. object = c->page->freelist;
  1314. if (!alloc_debug_processing(s, c->page, object, addr))
  1315. goto another_slab;
  1316. c->page->inuse++;
  1317. c->page->freelist = object[c->offset];
  1318. c->node = -1;
  1319. goto unlock_out;
  1320. }
  1321. /*
  1322. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1323. * have the fastpath folded into their functions. So no function call
  1324. * overhead for requests that can be satisfied on the fastpath.
  1325. *
  1326. * The fastpath works by first checking if the lockless freelist can be used.
  1327. * If not then __slab_alloc is called for slow processing.
  1328. *
  1329. * Otherwise we can simply pick the next object from the lockless free list.
  1330. */
  1331. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1332. gfp_t gfpflags, int node, void *addr)
  1333. {
  1334. void **object;
  1335. struct kmem_cache_cpu *c;
  1336. unsigned long flags;
  1337. local_irq_save(flags);
  1338. c = get_cpu_slab(s, smp_processor_id());
  1339. if (unlikely(!c->freelist || !node_match(c, node)))
  1340. object = __slab_alloc(s, gfpflags, node, addr, c);
  1341. else {
  1342. object = c->freelist;
  1343. c->freelist = object[c->offset];
  1344. stat(c, ALLOC_FASTPATH);
  1345. }
  1346. local_irq_restore(flags);
  1347. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1348. memset(object, 0, c->objsize);
  1349. return object;
  1350. }
  1351. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1352. {
  1353. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1354. }
  1355. EXPORT_SYMBOL(kmem_cache_alloc);
  1356. #ifdef CONFIG_NUMA
  1357. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1358. {
  1359. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1360. }
  1361. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1362. #endif
  1363. /*
  1364. * Slow patch handling. This may still be called frequently since objects
  1365. * have a longer lifetime than the cpu slabs in most processing loads.
  1366. *
  1367. * So we still attempt to reduce cache line usage. Just take the slab
  1368. * lock and free the item. If there is no additional partial page
  1369. * handling required then we can return immediately.
  1370. */
  1371. static void __slab_free(struct kmem_cache *s, struct page *page,
  1372. void *x, void *addr, unsigned int offset)
  1373. {
  1374. void *prior;
  1375. void **object = (void *)x;
  1376. struct kmem_cache_cpu *c;
  1377. c = get_cpu_slab(s, raw_smp_processor_id());
  1378. stat(c, FREE_SLOWPATH);
  1379. slab_lock(page);
  1380. if (unlikely(SlabDebug(page)))
  1381. goto debug;
  1382. checks_ok:
  1383. prior = object[offset] = page->freelist;
  1384. page->freelist = object;
  1385. page->inuse--;
  1386. if (unlikely(SlabFrozen(page))) {
  1387. stat(c, FREE_FROZEN);
  1388. goto out_unlock;
  1389. }
  1390. if (unlikely(!page->inuse))
  1391. goto slab_empty;
  1392. /*
  1393. * Objects left in the slab. If it
  1394. * was not on the partial list before
  1395. * then add it.
  1396. */
  1397. if (unlikely(!prior)) {
  1398. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1399. stat(c, FREE_ADD_PARTIAL);
  1400. }
  1401. out_unlock:
  1402. slab_unlock(page);
  1403. return;
  1404. slab_empty:
  1405. if (prior) {
  1406. /*
  1407. * Slab still on the partial list.
  1408. */
  1409. remove_partial(s, page);
  1410. stat(c, FREE_REMOVE_PARTIAL);
  1411. }
  1412. slab_unlock(page);
  1413. stat(c, FREE_SLAB);
  1414. discard_slab(s, page);
  1415. return;
  1416. debug:
  1417. if (!free_debug_processing(s, page, x, addr))
  1418. goto out_unlock;
  1419. goto checks_ok;
  1420. }
  1421. /*
  1422. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1423. * can perform fastpath freeing without additional function calls.
  1424. *
  1425. * The fastpath is only possible if we are freeing to the current cpu slab
  1426. * of this processor. This typically the case if we have just allocated
  1427. * the item before.
  1428. *
  1429. * If fastpath is not possible then fall back to __slab_free where we deal
  1430. * with all sorts of special processing.
  1431. */
  1432. static __always_inline void slab_free(struct kmem_cache *s,
  1433. struct page *page, void *x, void *addr)
  1434. {
  1435. void **object = (void *)x;
  1436. struct kmem_cache_cpu *c;
  1437. unsigned long flags;
  1438. local_irq_save(flags);
  1439. c = get_cpu_slab(s, smp_processor_id());
  1440. debug_check_no_locks_freed(object, c->objsize);
  1441. if (likely(page == c->page && c->node >= 0)) {
  1442. object[c->offset] = c->freelist;
  1443. c->freelist = object;
  1444. stat(c, FREE_FASTPATH);
  1445. } else
  1446. __slab_free(s, page, x, addr, c->offset);
  1447. local_irq_restore(flags);
  1448. }
  1449. void kmem_cache_free(struct kmem_cache *s, void *x)
  1450. {
  1451. struct page *page;
  1452. page = virt_to_head_page(x);
  1453. slab_free(s, page, x, __builtin_return_address(0));
  1454. }
  1455. EXPORT_SYMBOL(kmem_cache_free);
  1456. /* Figure out on which slab object the object resides */
  1457. static struct page *get_object_page(const void *x)
  1458. {
  1459. struct page *page = virt_to_head_page(x);
  1460. if (!PageSlab(page))
  1461. return NULL;
  1462. return page;
  1463. }
  1464. /*
  1465. * Object placement in a slab is made very easy because we always start at
  1466. * offset 0. If we tune the size of the object to the alignment then we can
  1467. * get the required alignment by putting one properly sized object after
  1468. * another.
  1469. *
  1470. * Notice that the allocation order determines the sizes of the per cpu
  1471. * caches. Each processor has always one slab available for allocations.
  1472. * Increasing the allocation order reduces the number of times that slabs
  1473. * must be moved on and off the partial lists and is therefore a factor in
  1474. * locking overhead.
  1475. */
  1476. /*
  1477. * Mininum / Maximum order of slab pages. This influences locking overhead
  1478. * and slab fragmentation. A higher order reduces the number of partial slabs
  1479. * and increases the number of allocations possible without having to
  1480. * take the list_lock.
  1481. */
  1482. static int slub_min_order;
  1483. static int slub_max_order = DEFAULT_MAX_ORDER;
  1484. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1485. /*
  1486. * Merge control. If this is set then no merging of slab caches will occur.
  1487. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1488. */
  1489. static int slub_nomerge;
  1490. /*
  1491. * Calculate the order of allocation given an slab object size.
  1492. *
  1493. * The order of allocation has significant impact on performance and other
  1494. * system components. Generally order 0 allocations should be preferred since
  1495. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1496. * be problematic to put into order 0 slabs because there may be too much
  1497. * unused space left. We go to a higher order if more than 1/8th of the slab
  1498. * would be wasted.
  1499. *
  1500. * In order to reach satisfactory performance we must ensure that a minimum
  1501. * number of objects is in one slab. Otherwise we may generate too much
  1502. * activity on the partial lists which requires taking the list_lock. This is
  1503. * less a concern for large slabs though which are rarely used.
  1504. *
  1505. * slub_max_order specifies the order where we begin to stop considering the
  1506. * number of objects in a slab as critical. If we reach slub_max_order then
  1507. * we try to keep the page order as low as possible. So we accept more waste
  1508. * of space in favor of a small page order.
  1509. *
  1510. * Higher order allocations also allow the placement of more objects in a
  1511. * slab and thereby reduce object handling overhead. If the user has
  1512. * requested a higher mininum order then we start with that one instead of
  1513. * the smallest order which will fit the object.
  1514. */
  1515. static inline int slab_order(int size, int min_objects,
  1516. int max_order, int fract_leftover)
  1517. {
  1518. int order;
  1519. int rem;
  1520. int min_order = slub_min_order;
  1521. for (order = max(min_order,
  1522. fls(min_objects * size - 1) - PAGE_SHIFT);
  1523. order <= max_order; order++) {
  1524. unsigned long slab_size = PAGE_SIZE << order;
  1525. if (slab_size < min_objects * size)
  1526. continue;
  1527. rem = slab_size % size;
  1528. if (rem <= slab_size / fract_leftover)
  1529. break;
  1530. }
  1531. return order;
  1532. }
  1533. static inline int calculate_order(int size)
  1534. {
  1535. int order;
  1536. int min_objects;
  1537. int fraction;
  1538. /*
  1539. * Attempt to find best configuration for a slab. This
  1540. * works by first attempting to generate a layout with
  1541. * the best configuration and backing off gradually.
  1542. *
  1543. * First we reduce the acceptable waste in a slab. Then
  1544. * we reduce the minimum objects required in a slab.
  1545. */
  1546. min_objects = slub_min_objects;
  1547. while (min_objects > 1) {
  1548. fraction = 8;
  1549. while (fraction >= 4) {
  1550. order = slab_order(size, min_objects,
  1551. slub_max_order, fraction);
  1552. if (order <= slub_max_order)
  1553. return order;
  1554. fraction /= 2;
  1555. }
  1556. min_objects /= 2;
  1557. }
  1558. /*
  1559. * We were unable to place multiple objects in a slab. Now
  1560. * lets see if we can place a single object there.
  1561. */
  1562. order = slab_order(size, 1, slub_max_order, 1);
  1563. if (order <= slub_max_order)
  1564. return order;
  1565. /*
  1566. * Doh this slab cannot be placed using slub_max_order.
  1567. */
  1568. order = slab_order(size, 1, MAX_ORDER, 1);
  1569. if (order <= MAX_ORDER)
  1570. return order;
  1571. return -ENOSYS;
  1572. }
  1573. /*
  1574. * Figure out what the alignment of the objects will be.
  1575. */
  1576. static unsigned long calculate_alignment(unsigned long flags,
  1577. unsigned long align, unsigned long size)
  1578. {
  1579. /*
  1580. * If the user wants hardware cache aligned objects then
  1581. * follow that suggestion if the object is sufficiently
  1582. * large.
  1583. *
  1584. * The hardware cache alignment cannot override the
  1585. * specified alignment though. If that is greater
  1586. * then use it.
  1587. */
  1588. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1589. size > cache_line_size() / 2)
  1590. return max_t(unsigned long, align, cache_line_size());
  1591. if (align < ARCH_SLAB_MINALIGN)
  1592. return ARCH_SLAB_MINALIGN;
  1593. return ALIGN(align, sizeof(void *));
  1594. }
  1595. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1596. struct kmem_cache_cpu *c)
  1597. {
  1598. c->page = NULL;
  1599. c->freelist = NULL;
  1600. c->node = 0;
  1601. c->offset = s->offset / sizeof(void *);
  1602. c->objsize = s->objsize;
  1603. }
  1604. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1605. {
  1606. n->nr_partial = 0;
  1607. atomic_long_set(&n->nr_slabs, 0);
  1608. spin_lock_init(&n->list_lock);
  1609. INIT_LIST_HEAD(&n->partial);
  1610. #ifdef CONFIG_SLUB_DEBUG
  1611. INIT_LIST_HEAD(&n->full);
  1612. #endif
  1613. }
  1614. #ifdef CONFIG_SMP
  1615. /*
  1616. * Per cpu array for per cpu structures.
  1617. *
  1618. * The per cpu array places all kmem_cache_cpu structures from one processor
  1619. * close together meaning that it becomes possible that multiple per cpu
  1620. * structures are contained in one cacheline. This may be particularly
  1621. * beneficial for the kmalloc caches.
  1622. *
  1623. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1624. * likely able to get per cpu structures for all caches from the array defined
  1625. * here. We must be able to cover all kmalloc caches during bootstrap.
  1626. *
  1627. * If the per cpu array is exhausted then fall back to kmalloc
  1628. * of individual cachelines. No sharing is possible then.
  1629. */
  1630. #define NR_KMEM_CACHE_CPU 100
  1631. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1632. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1633. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1634. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1635. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1636. int cpu, gfp_t flags)
  1637. {
  1638. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1639. if (c)
  1640. per_cpu(kmem_cache_cpu_free, cpu) =
  1641. (void *)c->freelist;
  1642. else {
  1643. /* Table overflow: So allocate ourselves */
  1644. c = kmalloc_node(
  1645. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1646. flags, cpu_to_node(cpu));
  1647. if (!c)
  1648. return NULL;
  1649. }
  1650. init_kmem_cache_cpu(s, c);
  1651. return c;
  1652. }
  1653. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1654. {
  1655. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1656. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1657. kfree(c);
  1658. return;
  1659. }
  1660. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1661. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1662. }
  1663. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1664. {
  1665. int cpu;
  1666. for_each_online_cpu(cpu) {
  1667. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1668. if (c) {
  1669. s->cpu_slab[cpu] = NULL;
  1670. free_kmem_cache_cpu(c, cpu);
  1671. }
  1672. }
  1673. }
  1674. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1675. {
  1676. int cpu;
  1677. for_each_online_cpu(cpu) {
  1678. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1679. if (c)
  1680. continue;
  1681. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1682. if (!c) {
  1683. free_kmem_cache_cpus(s);
  1684. return 0;
  1685. }
  1686. s->cpu_slab[cpu] = c;
  1687. }
  1688. return 1;
  1689. }
  1690. /*
  1691. * Initialize the per cpu array.
  1692. */
  1693. static void init_alloc_cpu_cpu(int cpu)
  1694. {
  1695. int i;
  1696. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1697. return;
  1698. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1699. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1700. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1701. }
  1702. static void __init init_alloc_cpu(void)
  1703. {
  1704. int cpu;
  1705. for_each_online_cpu(cpu)
  1706. init_alloc_cpu_cpu(cpu);
  1707. }
  1708. #else
  1709. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1710. static inline void init_alloc_cpu(void) {}
  1711. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1712. {
  1713. init_kmem_cache_cpu(s, &s->cpu_slab);
  1714. return 1;
  1715. }
  1716. #endif
  1717. #ifdef CONFIG_NUMA
  1718. /*
  1719. * No kmalloc_node yet so do it by hand. We know that this is the first
  1720. * slab on the node for this slabcache. There are no concurrent accesses
  1721. * possible.
  1722. *
  1723. * Note that this function only works on the kmalloc_node_cache
  1724. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1725. * memory on a fresh node that has no slab structures yet.
  1726. */
  1727. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1728. int node)
  1729. {
  1730. struct page *page;
  1731. struct kmem_cache_node *n;
  1732. unsigned long flags;
  1733. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1734. page = new_slab(kmalloc_caches, gfpflags, node);
  1735. BUG_ON(!page);
  1736. if (page_to_nid(page) != node) {
  1737. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1738. "node %d\n", node);
  1739. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1740. "in order to be able to continue\n");
  1741. }
  1742. n = page->freelist;
  1743. BUG_ON(!n);
  1744. page->freelist = get_freepointer(kmalloc_caches, n);
  1745. page->inuse++;
  1746. kmalloc_caches->node[node] = n;
  1747. #ifdef CONFIG_SLUB_DEBUG
  1748. init_object(kmalloc_caches, n, 1);
  1749. init_tracking(kmalloc_caches, n);
  1750. #endif
  1751. init_kmem_cache_node(n);
  1752. atomic_long_inc(&n->nr_slabs);
  1753. /*
  1754. * lockdep requires consistent irq usage for each lock
  1755. * so even though there cannot be a race this early in
  1756. * the boot sequence, we still disable irqs.
  1757. */
  1758. local_irq_save(flags);
  1759. add_partial(n, page, 0);
  1760. local_irq_restore(flags);
  1761. return n;
  1762. }
  1763. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1764. {
  1765. int node;
  1766. for_each_node_state(node, N_NORMAL_MEMORY) {
  1767. struct kmem_cache_node *n = s->node[node];
  1768. if (n && n != &s->local_node)
  1769. kmem_cache_free(kmalloc_caches, n);
  1770. s->node[node] = NULL;
  1771. }
  1772. }
  1773. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1774. {
  1775. int node;
  1776. int local_node;
  1777. if (slab_state >= UP)
  1778. local_node = page_to_nid(virt_to_page(s));
  1779. else
  1780. local_node = 0;
  1781. for_each_node_state(node, N_NORMAL_MEMORY) {
  1782. struct kmem_cache_node *n;
  1783. if (local_node == node)
  1784. n = &s->local_node;
  1785. else {
  1786. if (slab_state == DOWN) {
  1787. n = early_kmem_cache_node_alloc(gfpflags,
  1788. node);
  1789. continue;
  1790. }
  1791. n = kmem_cache_alloc_node(kmalloc_caches,
  1792. gfpflags, node);
  1793. if (!n) {
  1794. free_kmem_cache_nodes(s);
  1795. return 0;
  1796. }
  1797. }
  1798. s->node[node] = n;
  1799. init_kmem_cache_node(n);
  1800. }
  1801. return 1;
  1802. }
  1803. #else
  1804. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1805. {
  1806. }
  1807. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1808. {
  1809. init_kmem_cache_node(&s->local_node);
  1810. return 1;
  1811. }
  1812. #endif
  1813. /*
  1814. * calculate_sizes() determines the order and the distribution of data within
  1815. * a slab object.
  1816. */
  1817. static int calculate_sizes(struct kmem_cache *s)
  1818. {
  1819. unsigned long flags = s->flags;
  1820. unsigned long size = s->objsize;
  1821. unsigned long align = s->align;
  1822. /*
  1823. * Round up object size to the next word boundary. We can only
  1824. * place the free pointer at word boundaries and this determines
  1825. * the possible location of the free pointer.
  1826. */
  1827. size = ALIGN(size, sizeof(void *));
  1828. #ifdef CONFIG_SLUB_DEBUG
  1829. /*
  1830. * Determine if we can poison the object itself. If the user of
  1831. * the slab may touch the object after free or before allocation
  1832. * then we should never poison the object itself.
  1833. */
  1834. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1835. !s->ctor)
  1836. s->flags |= __OBJECT_POISON;
  1837. else
  1838. s->flags &= ~__OBJECT_POISON;
  1839. /*
  1840. * If we are Redzoning then check if there is some space between the
  1841. * end of the object and the free pointer. If not then add an
  1842. * additional word to have some bytes to store Redzone information.
  1843. */
  1844. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1845. size += sizeof(void *);
  1846. #endif
  1847. /*
  1848. * With that we have determined the number of bytes in actual use
  1849. * by the object. This is the potential offset to the free pointer.
  1850. */
  1851. s->inuse = size;
  1852. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1853. s->ctor)) {
  1854. /*
  1855. * Relocate free pointer after the object if it is not
  1856. * permitted to overwrite the first word of the object on
  1857. * kmem_cache_free.
  1858. *
  1859. * This is the case if we do RCU, have a constructor or
  1860. * destructor or are poisoning the objects.
  1861. */
  1862. s->offset = size;
  1863. size += sizeof(void *);
  1864. }
  1865. #ifdef CONFIG_SLUB_DEBUG
  1866. if (flags & SLAB_STORE_USER)
  1867. /*
  1868. * Need to store information about allocs and frees after
  1869. * the object.
  1870. */
  1871. size += 2 * sizeof(struct track);
  1872. if (flags & SLAB_RED_ZONE)
  1873. /*
  1874. * Add some empty padding so that we can catch
  1875. * overwrites from earlier objects rather than let
  1876. * tracking information or the free pointer be
  1877. * corrupted if an user writes before the start
  1878. * of the object.
  1879. */
  1880. size += sizeof(void *);
  1881. #endif
  1882. /*
  1883. * Determine the alignment based on various parameters that the
  1884. * user specified and the dynamic determination of cache line size
  1885. * on bootup.
  1886. */
  1887. align = calculate_alignment(flags, align, s->objsize);
  1888. /*
  1889. * SLUB stores one object immediately after another beginning from
  1890. * offset 0. In order to align the objects we have to simply size
  1891. * each object to conform to the alignment.
  1892. */
  1893. size = ALIGN(size, align);
  1894. s->size = size;
  1895. if ((flags & __KMALLOC_CACHE) &&
  1896. PAGE_SIZE / size < slub_min_objects) {
  1897. /*
  1898. * Kmalloc cache that would not have enough objects in
  1899. * an order 0 page. Kmalloc slabs can fallback to
  1900. * page allocator order 0 allocs so take a reasonably large
  1901. * order that will allows us a good number of objects.
  1902. */
  1903. s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
  1904. s->flags |= __PAGE_ALLOC_FALLBACK;
  1905. s->allocflags |= __GFP_NOWARN;
  1906. } else
  1907. s->order = calculate_order(size);
  1908. if (s->order < 0)
  1909. return 0;
  1910. s->allocflags = 0;
  1911. if (s->order)
  1912. s->allocflags |= __GFP_COMP;
  1913. if (s->flags & SLAB_CACHE_DMA)
  1914. s->allocflags |= SLUB_DMA;
  1915. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1916. s->allocflags |= __GFP_RECLAIMABLE;
  1917. /*
  1918. * Determine the number of objects per slab
  1919. */
  1920. s->objects = (PAGE_SIZE << s->order) / size;
  1921. return !!s->objects;
  1922. }
  1923. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1924. const char *name, size_t size,
  1925. size_t align, unsigned long flags,
  1926. void (*ctor)(struct kmem_cache *, void *))
  1927. {
  1928. memset(s, 0, kmem_size);
  1929. s->name = name;
  1930. s->ctor = ctor;
  1931. s->objsize = size;
  1932. s->align = align;
  1933. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1934. if (!calculate_sizes(s))
  1935. goto error;
  1936. s->refcount = 1;
  1937. #ifdef CONFIG_NUMA
  1938. s->remote_node_defrag_ratio = 100;
  1939. #endif
  1940. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1941. goto error;
  1942. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1943. return 1;
  1944. free_kmem_cache_nodes(s);
  1945. error:
  1946. if (flags & SLAB_PANIC)
  1947. panic("Cannot create slab %s size=%lu realsize=%u "
  1948. "order=%u offset=%u flags=%lx\n",
  1949. s->name, (unsigned long)size, s->size, s->order,
  1950. s->offset, flags);
  1951. return 0;
  1952. }
  1953. /*
  1954. * Check if a given pointer is valid
  1955. */
  1956. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1957. {
  1958. struct page *page;
  1959. page = get_object_page(object);
  1960. if (!page || s != page->slab)
  1961. /* No slab or wrong slab */
  1962. return 0;
  1963. if (!check_valid_pointer(s, page, object))
  1964. return 0;
  1965. /*
  1966. * We could also check if the object is on the slabs freelist.
  1967. * But this would be too expensive and it seems that the main
  1968. * purpose of kmem_ptr_valid is to check if the object belongs
  1969. * to a certain slab.
  1970. */
  1971. return 1;
  1972. }
  1973. EXPORT_SYMBOL(kmem_ptr_validate);
  1974. /*
  1975. * Determine the size of a slab object
  1976. */
  1977. unsigned int kmem_cache_size(struct kmem_cache *s)
  1978. {
  1979. return s->objsize;
  1980. }
  1981. EXPORT_SYMBOL(kmem_cache_size);
  1982. const char *kmem_cache_name(struct kmem_cache *s)
  1983. {
  1984. return s->name;
  1985. }
  1986. EXPORT_SYMBOL(kmem_cache_name);
  1987. /*
  1988. * Attempt to free all slabs on a node. Return the number of slabs we
  1989. * were unable to free.
  1990. */
  1991. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  1992. struct list_head *list)
  1993. {
  1994. int slabs_inuse = 0;
  1995. unsigned long flags;
  1996. struct page *page, *h;
  1997. spin_lock_irqsave(&n->list_lock, flags);
  1998. list_for_each_entry_safe(page, h, list, lru)
  1999. if (!page->inuse) {
  2000. list_del(&page->lru);
  2001. discard_slab(s, page);
  2002. } else
  2003. slabs_inuse++;
  2004. spin_unlock_irqrestore(&n->list_lock, flags);
  2005. return slabs_inuse;
  2006. }
  2007. /*
  2008. * Release all resources used by a slab cache.
  2009. */
  2010. static inline int kmem_cache_close(struct kmem_cache *s)
  2011. {
  2012. int node;
  2013. flush_all(s);
  2014. /* Attempt to free all objects */
  2015. free_kmem_cache_cpus(s);
  2016. for_each_node_state(node, N_NORMAL_MEMORY) {
  2017. struct kmem_cache_node *n = get_node(s, node);
  2018. n->nr_partial -= free_list(s, n, &n->partial);
  2019. if (atomic_long_read(&n->nr_slabs))
  2020. return 1;
  2021. }
  2022. free_kmem_cache_nodes(s);
  2023. return 0;
  2024. }
  2025. /*
  2026. * Close a cache and release the kmem_cache structure
  2027. * (must be used for caches created using kmem_cache_create)
  2028. */
  2029. void kmem_cache_destroy(struct kmem_cache *s)
  2030. {
  2031. down_write(&slub_lock);
  2032. s->refcount--;
  2033. if (!s->refcount) {
  2034. list_del(&s->list);
  2035. up_write(&slub_lock);
  2036. if (kmem_cache_close(s))
  2037. WARN_ON(1);
  2038. sysfs_slab_remove(s);
  2039. } else
  2040. up_write(&slub_lock);
  2041. }
  2042. EXPORT_SYMBOL(kmem_cache_destroy);
  2043. /********************************************************************
  2044. * Kmalloc subsystem
  2045. *******************************************************************/
  2046. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2047. EXPORT_SYMBOL(kmalloc_caches);
  2048. #ifdef CONFIG_ZONE_DMA
  2049. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2050. #endif
  2051. static int __init setup_slub_min_order(char *str)
  2052. {
  2053. get_option(&str, &slub_min_order);
  2054. return 1;
  2055. }
  2056. __setup("slub_min_order=", setup_slub_min_order);
  2057. static int __init setup_slub_max_order(char *str)
  2058. {
  2059. get_option(&str, &slub_max_order);
  2060. return 1;
  2061. }
  2062. __setup("slub_max_order=", setup_slub_max_order);
  2063. static int __init setup_slub_min_objects(char *str)
  2064. {
  2065. get_option(&str, &slub_min_objects);
  2066. return 1;
  2067. }
  2068. __setup("slub_min_objects=", setup_slub_min_objects);
  2069. static int __init setup_slub_nomerge(char *str)
  2070. {
  2071. slub_nomerge = 1;
  2072. return 1;
  2073. }
  2074. __setup("slub_nomerge", setup_slub_nomerge);
  2075. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2076. const char *name, int size, gfp_t gfp_flags)
  2077. {
  2078. unsigned int flags = 0;
  2079. if (gfp_flags & SLUB_DMA)
  2080. flags = SLAB_CACHE_DMA;
  2081. down_write(&slub_lock);
  2082. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2083. flags | __KMALLOC_CACHE, NULL))
  2084. goto panic;
  2085. list_add(&s->list, &slab_caches);
  2086. up_write(&slub_lock);
  2087. if (sysfs_slab_add(s))
  2088. goto panic;
  2089. return s;
  2090. panic:
  2091. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2092. }
  2093. #ifdef CONFIG_ZONE_DMA
  2094. static void sysfs_add_func(struct work_struct *w)
  2095. {
  2096. struct kmem_cache *s;
  2097. down_write(&slub_lock);
  2098. list_for_each_entry(s, &slab_caches, list) {
  2099. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2100. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2101. sysfs_slab_add(s);
  2102. }
  2103. }
  2104. up_write(&slub_lock);
  2105. }
  2106. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2107. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2108. {
  2109. struct kmem_cache *s;
  2110. char *text;
  2111. size_t realsize;
  2112. s = kmalloc_caches_dma[index];
  2113. if (s)
  2114. return s;
  2115. /* Dynamically create dma cache */
  2116. if (flags & __GFP_WAIT)
  2117. down_write(&slub_lock);
  2118. else {
  2119. if (!down_write_trylock(&slub_lock))
  2120. goto out;
  2121. }
  2122. if (kmalloc_caches_dma[index])
  2123. goto unlock_out;
  2124. realsize = kmalloc_caches[index].objsize;
  2125. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2126. (unsigned int)realsize);
  2127. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2128. if (!s || !text || !kmem_cache_open(s, flags, text,
  2129. realsize, ARCH_KMALLOC_MINALIGN,
  2130. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2131. kfree(s);
  2132. kfree(text);
  2133. goto unlock_out;
  2134. }
  2135. list_add(&s->list, &slab_caches);
  2136. kmalloc_caches_dma[index] = s;
  2137. schedule_work(&sysfs_add_work);
  2138. unlock_out:
  2139. up_write(&slub_lock);
  2140. out:
  2141. return kmalloc_caches_dma[index];
  2142. }
  2143. #endif
  2144. /*
  2145. * Conversion table for small slabs sizes / 8 to the index in the
  2146. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2147. * of two cache sizes there. The size of larger slabs can be determined using
  2148. * fls.
  2149. */
  2150. static s8 size_index[24] = {
  2151. 3, /* 8 */
  2152. 4, /* 16 */
  2153. 5, /* 24 */
  2154. 5, /* 32 */
  2155. 6, /* 40 */
  2156. 6, /* 48 */
  2157. 6, /* 56 */
  2158. 6, /* 64 */
  2159. 1, /* 72 */
  2160. 1, /* 80 */
  2161. 1, /* 88 */
  2162. 1, /* 96 */
  2163. 7, /* 104 */
  2164. 7, /* 112 */
  2165. 7, /* 120 */
  2166. 7, /* 128 */
  2167. 2, /* 136 */
  2168. 2, /* 144 */
  2169. 2, /* 152 */
  2170. 2, /* 160 */
  2171. 2, /* 168 */
  2172. 2, /* 176 */
  2173. 2, /* 184 */
  2174. 2 /* 192 */
  2175. };
  2176. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2177. {
  2178. int index;
  2179. if (size <= 192) {
  2180. if (!size)
  2181. return ZERO_SIZE_PTR;
  2182. index = size_index[(size - 1) / 8];
  2183. } else
  2184. index = fls(size - 1);
  2185. #ifdef CONFIG_ZONE_DMA
  2186. if (unlikely((flags & SLUB_DMA)))
  2187. return dma_kmalloc_cache(index, flags);
  2188. #endif
  2189. return &kmalloc_caches[index];
  2190. }
  2191. void *__kmalloc(size_t size, gfp_t flags)
  2192. {
  2193. struct kmem_cache *s;
  2194. if (unlikely(size > PAGE_SIZE))
  2195. return kmalloc_large(size, flags);
  2196. s = get_slab(size, flags);
  2197. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2198. return s;
  2199. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2200. }
  2201. EXPORT_SYMBOL(__kmalloc);
  2202. #ifdef CONFIG_NUMA
  2203. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2204. {
  2205. struct kmem_cache *s;
  2206. if (unlikely(size > PAGE_SIZE))
  2207. return kmalloc_large(size, flags);
  2208. s = get_slab(size, flags);
  2209. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2210. return s;
  2211. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2212. }
  2213. EXPORT_SYMBOL(__kmalloc_node);
  2214. #endif
  2215. size_t ksize(const void *object)
  2216. {
  2217. struct page *page;
  2218. struct kmem_cache *s;
  2219. if (unlikely(object == ZERO_SIZE_PTR))
  2220. return 0;
  2221. page = virt_to_head_page(object);
  2222. if (unlikely(!PageSlab(page)))
  2223. return PAGE_SIZE << compound_order(page);
  2224. s = page->slab;
  2225. #ifdef CONFIG_SLUB_DEBUG
  2226. /*
  2227. * Debugging requires use of the padding between object
  2228. * and whatever may come after it.
  2229. */
  2230. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2231. return s->objsize;
  2232. #endif
  2233. /*
  2234. * If we have the need to store the freelist pointer
  2235. * back there or track user information then we can
  2236. * only use the space before that information.
  2237. */
  2238. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2239. return s->inuse;
  2240. /*
  2241. * Else we can use all the padding etc for the allocation
  2242. */
  2243. return s->size;
  2244. }
  2245. EXPORT_SYMBOL(ksize);
  2246. void kfree(const void *x)
  2247. {
  2248. struct page *page;
  2249. void *object = (void *)x;
  2250. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2251. return;
  2252. page = virt_to_head_page(x);
  2253. if (unlikely(!PageSlab(page))) {
  2254. put_page(page);
  2255. return;
  2256. }
  2257. slab_free(page->slab, page, object, __builtin_return_address(0));
  2258. }
  2259. EXPORT_SYMBOL(kfree);
  2260. static unsigned long count_partial(struct kmem_cache_node *n)
  2261. {
  2262. unsigned long flags;
  2263. unsigned long x = 0;
  2264. struct page *page;
  2265. spin_lock_irqsave(&n->list_lock, flags);
  2266. list_for_each_entry(page, &n->partial, lru)
  2267. x += page->inuse;
  2268. spin_unlock_irqrestore(&n->list_lock, flags);
  2269. return x;
  2270. }
  2271. /*
  2272. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2273. * the remaining slabs by the number of items in use. The slabs with the
  2274. * most items in use come first. New allocations will then fill those up
  2275. * and thus they can be removed from the partial lists.
  2276. *
  2277. * The slabs with the least items are placed last. This results in them
  2278. * being allocated from last increasing the chance that the last objects
  2279. * are freed in them.
  2280. */
  2281. int kmem_cache_shrink(struct kmem_cache *s)
  2282. {
  2283. int node;
  2284. int i;
  2285. struct kmem_cache_node *n;
  2286. struct page *page;
  2287. struct page *t;
  2288. struct list_head *slabs_by_inuse =
  2289. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2290. unsigned long flags;
  2291. if (!slabs_by_inuse)
  2292. return -ENOMEM;
  2293. flush_all(s);
  2294. for_each_node_state(node, N_NORMAL_MEMORY) {
  2295. n = get_node(s, node);
  2296. if (!n->nr_partial)
  2297. continue;
  2298. for (i = 0; i < s->objects; i++)
  2299. INIT_LIST_HEAD(slabs_by_inuse + i);
  2300. spin_lock_irqsave(&n->list_lock, flags);
  2301. /*
  2302. * Build lists indexed by the items in use in each slab.
  2303. *
  2304. * Note that concurrent frees may occur while we hold the
  2305. * list_lock. page->inuse here is the upper limit.
  2306. */
  2307. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2308. if (!page->inuse && slab_trylock(page)) {
  2309. /*
  2310. * Must hold slab lock here because slab_free
  2311. * may have freed the last object and be
  2312. * waiting to release the slab.
  2313. */
  2314. list_del(&page->lru);
  2315. n->nr_partial--;
  2316. slab_unlock(page);
  2317. discard_slab(s, page);
  2318. } else {
  2319. list_move(&page->lru,
  2320. slabs_by_inuse + page->inuse);
  2321. }
  2322. }
  2323. /*
  2324. * Rebuild the partial list with the slabs filled up most
  2325. * first and the least used slabs at the end.
  2326. */
  2327. for (i = s->objects - 1; i >= 0; i--)
  2328. list_splice(slabs_by_inuse + i, n->partial.prev);
  2329. spin_unlock_irqrestore(&n->list_lock, flags);
  2330. }
  2331. kfree(slabs_by_inuse);
  2332. return 0;
  2333. }
  2334. EXPORT_SYMBOL(kmem_cache_shrink);
  2335. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2336. static int slab_mem_going_offline_callback(void *arg)
  2337. {
  2338. struct kmem_cache *s;
  2339. down_read(&slub_lock);
  2340. list_for_each_entry(s, &slab_caches, list)
  2341. kmem_cache_shrink(s);
  2342. up_read(&slub_lock);
  2343. return 0;
  2344. }
  2345. static void slab_mem_offline_callback(void *arg)
  2346. {
  2347. struct kmem_cache_node *n;
  2348. struct kmem_cache *s;
  2349. struct memory_notify *marg = arg;
  2350. int offline_node;
  2351. offline_node = marg->status_change_nid;
  2352. /*
  2353. * If the node still has available memory. we need kmem_cache_node
  2354. * for it yet.
  2355. */
  2356. if (offline_node < 0)
  2357. return;
  2358. down_read(&slub_lock);
  2359. list_for_each_entry(s, &slab_caches, list) {
  2360. n = get_node(s, offline_node);
  2361. if (n) {
  2362. /*
  2363. * if n->nr_slabs > 0, slabs still exist on the node
  2364. * that is going down. We were unable to free them,
  2365. * and offline_pages() function shoudn't call this
  2366. * callback. So, we must fail.
  2367. */
  2368. BUG_ON(atomic_long_read(&n->nr_slabs));
  2369. s->node[offline_node] = NULL;
  2370. kmem_cache_free(kmalloc_caches, n);
  2371. }
  2372. }
  2373. up_read(&slub_lock);
  2374. }
  2375. static int slab_mem_going_online_callback(void *arg)
  2376. {
  2377. struct kmem_cache_node *n;
  2378. struct kmem_cache *s;
  2379. struct memory_notify *marg = arg;
  2380. int nid = marg->status_change_nid;
  2381. int ret = 0;
  2382. /*
  2383. * If the node's memory is already available, then kmem_cache_node is
  2384. * already created. Nothing to do.
  2385. */
  2386. if (nid < 0)
  2387. return 0;
  2388. /*
  2389. * We are bringing a node online. No memory is availabe yet. We must
  2390. * allocate a kmem_cache_node structure in order to bring the node
  2391. * online.
  2392. */
  2393. down_read(&slub_lock);
  2394. list_for_each_entry(s, &slab_caches, list) {
  2395. /*
  2396. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2397. * since memory is not yet available from the node that
  2398. * is brought up.
  2399. */
  2400. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2401. if (!n) {
  2402. ret = -ENOMEM;
  2403. goto out;
  2404. }
  2405. init_kmem_cache_node(n);
  2406. s->node[nid] = n;
  2407. }
  2408. out:
  2409. up_read(&slub_lock);
  2410. return ret;
  2411. }
  2412. static int slab_memory_callback(struct notifier_block *self,
  2413. unsigned long action, void *arg)
  2414. {
  2415. int ret = 0;
  2416. switch (action) {
  2417. case MEM_GOING_ONLINE:
  2418. ret = slab_mem_going_online_callback(arg);
  2419. break;
  2420. case MEM_GOING_OFFLINE:
  2421. ret = slab_mem_going_offline_callback(arg);
  2422. break;
  2423. case MEM_OFFLINE:
  2424. case MEM_CANCEL_ONLINE:
  2425. slab_mem_offline_callback(arg);
  2426. break;
  2427. case MEM_ONLINE:
  2428. case MEM_CANCEL_OFFLINE:
  2429. break;
  2430. }
  2431. ret = notifier_from_errno(ret);
  2432. return ret;
  2433. }
  2434. #endif /* CONFIG_MEMORY_HOTPLUG */
  2435. /********************************************************************
  2436. * Basic setup of slabs
  2437. *******************************************************************/
  2438. void __init kmem_cache_init(void)
  2439. {
  2440. int i;
  2441. int caches = 0;
  2442. init_alloc_cpu();
  2443. #ifdef CONFIG_NUMA
  2444. /*
  2445. * Must first have the slab cache available for the allocations of the
  2446. * struct kmem_cache_node's. There is special bootstrap code in
  2447. * kmem_cache_open for slab_state == DOWN.
  2448. */
  2449. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2450. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2451. kmalloc_caches[0].refcount = -1;
  2452. caches++;
  2453. hotplug_memory_notifier(slab_memory_callback, 1);
  2454. #endif
  2455. /* Able to allocate the per node structures */
  2456. slab_state = PARTIAL;
  2457. /* Caches that are not of the two-to-the-power-of size */
  2458. if (KMALLOC_MIN_SIZE <= 64) {
  2459. create_kmalloc_cache(&kmalloc_caches[1],
  2460. "kmalloc-96", 96, GFP_KERNEL);
  2461. caches++;
  2462. }
  2463. if (KMALLOC_MIN_SIZE <= 128) {
  2464. create_kmalloc_cache(&kmalloc_caches[2],
  2465. "kmalloc-192", 192, GFP_KERNEL);
  2466. caches++;
  2467. }
  2468. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2469. create_kmalloc_cache(&kmalloc_caches[i],
  2470. "kmalloc", 1 << i, GFP_KERNEL);
  2471. caches++;
  2472. }
  2473. /*
  2474. * Patch up the size_index table if we have strange large alignment
  2475. * requirements for the kmalloc array. This is only the case for
  2476. * mips it seems. The standard arches will not generate any code here.
  2477. *
  2478. * Largest permitted alignment is 256 bytes due to the way we
  2479. * handle the index determination for the smaller caches.
  2480. *
  2481. * Make sure that nothing crazy happens if someone starts tinkering
  2482. * around with ARCH_KMALLOC_MINALIGN
  2483. */
  2484. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2485. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2486. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2487. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2488. slab_state = UP;
  2489. /* Provide the correct kmalloc names now that the caches are up */
  2490. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2491. kmalloc_caches[i]. name =
  2492. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2493. #ifdef CONFIG_SMP
  2494. register_cpu_notifier(&slab_notifier);
  2495. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2496. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2497. #else
  2498. kmem_size = sizeof(struct kmem_cache);
  2499. #endif
  2500. printk(KERN_INFO
  2501. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2502. " CPUs=%d, Nodes=%d\n",
  2503. caches, cache_line_size(),
  2504. slub_min_order, slub_max_order, slub_min_objects,
  2505. nr_cpu_ids, nr_node_ids);
  2506. }
  2507. /*
  2508. * Find a mergeable slab cache
  2509. */
  2510. static int slab_unmergeable(struct kmem_cache *s)
  2511. {
  2512. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2513. return 1;
  2514. if ((s->flags & __PAGE_ALLOC_FALLBACK))
  2515. return 1;
  2516. if (s->ctor)
  2517. return 1;
  2518. /*
  2519. * We may have set a slab to be unmergeable during bootstrap.
  2520. */
  2521. if (s->refcount < 0)
  2522. return 1;
  2523. return 0;
  2524. }
  2525. static struct kmem_cache *find_mergeable(size_t size,
  2526. size_t align, unsigned long flags, const char *name,
  2527. void (*ctor)(struct kmem_cache *, void *))
  2528. {
  2529. struct kmem_cache *s;
  2530. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2531. return NULL;
  2532. if (ctor)
  2533. return NULL;
  2534. size = ALIGN(size, sizeof(void *));
  2535. align = calculate_alignment(flags, align, size);
  2536. size = ALIGN(size, align);
  2537. flags = kmem_cache_flags(size, flags, name, NULL);
  2538. list_for_each_entry(s, &slab_caches, list) {
  2539. if (slab_unmergeable(s))
  2540. continue;
  2541. if (size > s->size)
  2542. continue;
  2543. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2544. continue;
  2545. /*
  2546. * Check if alignment is compatible.
  2547. * Courtesy of Adrian Drzewiecki
  2548. */
  2549. if ((s->size & ~(align - 1)) != s->size)
  2550. continue;
  2551. if (s->size - size >= sizeof(void *))
  2552. continue;
  2553. return s;
  2554. }
  2555. return NULL;
  2556. }
  2557. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2558. size_t align, unsigned long flags,
  2559. void (*ctor)(struct kmem_cache *, void *))
  2560. {
  2561. struct kmem_cache *s;
  2562. down_write(&slub_lock);
  2563. s = find_mergeable(size, align, flags, name, ctor);
  2564. if (s) {
  2565. int cpu;
  2566. s->refcount++;
  2567. /*
  2568. * Adjust the object sizes so that we clear
  2569. * the complete object on kzalloc.
  2570. */
  2571. s->objsize = max(s->objsize, (int)size);
  2572. /*
  2573. * And then we need to update the object size in the
  2574. * per cpu structures
  2575. */
  2576. for_each_online_cpu(cpu)
  2577. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2578. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2579. up_write(&slub_lock);
  2580. if (sysfs_slab_alias(s, name))
  2581. goto err;
  2582. return s;
  2583. }
  2584. s = kmalloc(kmem_size, GFP_KERNEL);
  2585. if (s) {
  2586. if (kmem_cache_open(s, GFP_KERNEL, name,
  2587. size, align, flags, ctor)) {
  2588. list_add(&s->list, &slab_caches);
  2589. up_write(&slub_lock);
  2590. if (sysfs_slab_add(s))
  2591. goto err;
  2592. return s;
  2593. }
  2594. kfree(s);
  2595. }
  2596. up_write(&slub_lock);
  2597. err:
  2598. if (flags & SLAB_PANIC)
  2599. panic("Cannot create slabcache %s\n", name);
  2600. else
  2601. s = NULL;
  2602. return s;
  2603. }
  2604. EXPORT_SYMBOL(kmem_cache_create);
  2605. #ifdef CONFIG_SMP
  2606. /*
  2607. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2608. * necessary.
  2609. */
  2610. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2611. unsigned long action, void *hcpu)
  2612. {
  2613. long cpu = (long)hcpu;
  2614. struct kmem_cache *s;
  2615. unsigned long flags;
  2616. switch (action) {
  2617. case CPU_UP_PREPARE:
  2618. case CPU_UP_PREPARE_FROZEN:
  2619. init_alloc_cpu_cpu(cpu);
  2620. down_read(&slub_lock);
  2621. list_for_each_entry(s, &slab_caches, list)
  2622. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2623. GFP_KERNEL);
  2624. up_read(&slub_lock);
  2625. break;
  2626. case CPU_UP_CANCELED:
  2627. case CPU_UP_CANCELED_FROZEN:
  2628. case CPU_DEAD:
  2629. case CPU_DEAD_FROZEN:
  2630. down_read(&slub_lock);
  2631. list_for_each_entry(s, &slab_caches, list) {
  2632. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2633. local_irq_save(flags);
  2634. __flush_cpu_slab(s, cpu);
  2635. local_irq_restore(flags);
  2636. free_kmem_cache_cpu(c, cpu);
  2637. s->cpu_slab[cpu] = NULL;
  2638. }
  2639. up_read(&slub_lock);
  2640. break;
  2641. default:
  2642. break;
  2643. }
  2644. return NOTIFY_OK;
  2645. }
  2646. static struct notifier_block __cpuinitdata slab_notifier = {
  2647. .notifier_call = slab_cpuup_callback
  2648. };
  2649. #endif
  2650. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2651. {
  2652. struct kmem_cache *s;
  2653. if (unlikely(size > PAGE_SIZE))
  2654. return kmalloc_large(size, gfpflags);
  2655. s = get_slab(size, gfpflags);
  2656. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2657. return s;
  2658. return slab_alloc(s, gfpflags, -1, caller);
  2659. }
  2660. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2661. int node, void *caller)
  2662. {
  2663. struct kmem_cache *s;
  2664. if (unlikely(size > PAGE_SIZE))
  2665. return kmalloc_large(size, gfpflags);
  2666. s = get_slab(size, gfpflags);
  2667. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2668. return s;
  2669. return slab_alloc(s, gfpflags, node, caller);
  2670. }
  2671. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2672. static int validate_slab(struct kmem_cache *s, struct page *page,
  2673. unsigned long *map)
  2674. {
  2675. void *p;
  2676. void *addr = page_address(page);
  2677. if (!check_slab(s, page) ||
  2678. !on_freelist(s, page, NULL))
  2679. return 0;
  2680. /* Now we know that a valid freelist exists */
  2681. bitmap_zero(map, s->objects);
  2682. for_each_free_object(p, s, page->freelist) {
  2683. set_bit(slab_index(p, s, addr), map);
  2684. if (!check_object(s, page, p, 0))
  2685. return 0;
  2686. }
  2687. for_each_object(p, s, addr)
  2688. if (!test_bit(slab_index(p, s, addr), map))
  2689. if (!check_object(s, page, p, 1))
  2690. return 0;
  2691. return 1;
  2692. }
  2693. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2694. unsigned long *map)
  2695. {
  2696. if (slab_trylock(page)) {
  2697. validate_slab(s, page, map);
  2698. slab_unlock(page);
  2699. } else
  2700. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2701. s->name, page);
  2702. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2703. if (!SlabDebug(page))
  2704. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2705. "on slab 0x%p\n", s->name, page);
  2706. } else {
  2707. if (SlabDebug(page))
  2708. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2709. "slab 0x%p\n", s->name, page);
  2710. }
  2711. }
  2712. static int validate_slab_node(struct kmem_cache *s,
  2713. struct kmem_cache_node *n, unsigned long *map)
  2714. {
  2715. unsigned long count = 0;
  2716. struct page *page;
  2717. unsigned long flags;
  2718. spin_lock_irqsave(&n->list_lock, flags);
  2719. list_for_each_entry(page, &n->partial, lru) {
  2720. validate_slab_slab(s, page, map);
  2721. count++;
  2722. }
  2723. if (count != n->nr_partial)
  2724. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2725. "counter=%ld\n", s->name, count, n->nr_partial);
  2726. if (!(s->flags & SLAB_STORE_USER))
  2727. goto out;
  2728. list_for_each_entry(page, &n->full, lru) {
  2729. validate_slab_slab(s, page, map);
  2730. count++;
  2731. }
  2732. if (count != atomic_long_read(&n->nr_slabs))
  2733. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2734. "counter=%ld\n", s->name, count,
  2735. atomic_long_read(&n->nr_slabs));
  2736. out:
  2737. spin_unlock_irqrestore(&n->list_lock, flags);
  2738. return count;
  2739. }
  2740. static long validate_slab_cache(struct kmem_cache *s)
  2741. {
  2742. int node;
  2743. unsigned long count = 0;
  2744. unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
  2745. sizeof(unsigned long), GFP_KERNEL);
  2746. if (!map)
  2747. return -ENOMEM;
  2748. flush_all(s);
  2749. for_each_node_state(node, N_NORMAL_MEMORY) {
  2750. struct kmem_cache_node *n = get_node(s, node);
  2751. count += validate_slab_node(s, n, map);
  2752. }
  2753. kfree(map);
  2754. return count;
  2755. }
  2756. #ifdef SLUB_RESILIENCY_TEST
  2757. static void resiliency_test(void)
  2758. {
  2759. u8 *p;
  2760. printk(KERN_ERR "SLUB resiliency testing\n");
  2761. printk(KERN_ERR "-----------------------\n");
  2762. printk(KERN_ERR "A. Corruption after allocation\n");
  2763. p = kzalloc(16, GFP_KERNEL);
  2764. p[16] = 0x12;
  2765. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2766. " 0x12->0x%p\n\n", p + 16);
  2767. validate_slab_cache(kmalloc_caches + 4);
  2768. /* Hmmm... The next two are dangerous */
  2769. p = kzalloc(32, GFP_KERNEL);
  2770. p[32 + sizeof(void *)] = 0x34;
  2771. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2772. " 0x34 -> -0x%p\n", p);
  2773. printk(KERN_ERR
  2774. "If allocated object is overwritten then not detectable\n\n");
  2775. validate_slab_cache(kmalloc_caches + 5);
  2776. p = kzalloc(64, GFP_KERNEL);
  2777. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2778. *p = 0x56;
  2779. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2780. p);
  2781. printk(KERN_ERR
  2782. "If allocated object is overwritten then not detectable\n\n");
  2783. validate_slab_cache(kmalloc_caches + 6);
  2784. printk(KERN_ERR "\nB. Corruption after free\n");
  2785. p = kzalloc(128, GFP_KERNEL);
  2786. kfree(p);
  2787. *p = 0x78;
  2788. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2789. validate_slab_cache(kmalloc_caches + 7);
  2790. p = kzalloc(256, GFP_KERNEL);
  2791. kfree(p);
  2792. p[50] = 0x9a;
  2793. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2794. p);
  2795. validate_slab_cache(kmalloc_caches + 8);
  2796. p = kzalloc(512, GFP_KERNEL);
  2797. kfree(p);
  2798. p[512] = 0xab;
  2799. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2800. validate_slab_cache(kmalloc_caches + 9);
  2801. }
  2802. #else
  2803. static void resiliency_test(void) {};
  2804. #endif
  2805. /*
  2806. * Generate lists of code addresses where slabcache objects are allocated
  2807. * and freed.
  2808. */
  2809. struct location {
  2810. unsigned long count;
  2811. void *addr;
  2812. long long sum_time;
  2813. long min_time;
  2814. long max_time;
  2815. long min_pid;
  2816. long max_pid;
  2817. cpumask_t cpus;
  2818. nodemask_t nodes;
  2819. };
  2820. struct loc_track {
  2821. unsigned long max;
  2822. unsigned long count;
  2823. struct location *loc;
  2824. };
  2825. static void free_loc_track(struct loc_track *t)
  2826. {
  2827. if (t->max)
  2828. free_pages((unsigned long)t->loc,
  2829. get_order(sizeof(struct location) * t->max));
  2830. }
  2831. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2832. {
  2833. struct location *l;
  2834. int order;
  2835. order = get_order(sizeof(struct location) * max);
  2836. l = (void *)__get_free_pages(flags, order);
  2837. if (!l)
  2838. return 0;
  2839. if (t->count) {
  2840. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2841. free_loc_track(t);
  2842. }
  2843. t->max = max;
  2844. t->loc = l;
  2845. return 1;
  2846. }
  2847. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2848. const struct track *track)
  2849. {
  2850. long start, end, pos;
  2851. struct location *l;
  2852. void *caddr;
  2853. unsigned long age = jiffies - track->when;
  2854. start = -1;
  2855. end = t->count;
  2856. for ( ; ; ) {
  2857. pos = start + (end - start + 1) / 2;
  2858. /*
  2859. * There is nothing at "end". If we end up there
  2860. * we need to add something to before end.
  2861. */
  2862. if (pos == end)
  2863. break;
  2864. caddr = t->loc[pos].addr;
  2865. if (track->addr == caddr) {
  2866. l = &t->loc[pos];
  2867. l->count++;
  2868. if (track->when) {
  2869. l->sum_time += age;
  2870. if (age < l->min_time)
  2871. l->min_time = age;
  2872. if (age > l->max_time)
  2873. l->max_time = age;
  2874. if (track->pid < l->min_pid)
  2875. l->min_pid = track->pid;
  2876. if (track->pid > l->max_pid)
  2877. l->max_pid = track->pid;
  2878. cpu_set(track->cpu, l->cpus);
  2879. }
  2880. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2881. return 1;
  2882. }
  2883. if (track->addr < caddr)
  2884. end = pos;
  2885. else
  2886. start = pos;
  2887. }
  2888. /*
  2889. * Not found. Insert new tracking element.
  2890. */
  2891. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2892. return 0;
  2893. l = t->loc + pos;
  2894. if (pos < t->count)
  2895. memmove(l + 1, l,
  2896. (t->count - pos) * sizeof(struct location));
  2897. t->count++;
  2898. l->count = 1;
  2899. l->addr = track->addr;
  2900. l->sum_time = age;
  2901. l->min_time = age;
  2902. l->max_time = age;
  2903. l->min_pid = track->pid;
  2904. l->max_pid = track->pid;
  2905. cpus_clear(l->cpus);
  2906. cpu_set(track->cpu, l->cpus);
  2907. nodes_clear(l->nodes);
  2908. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2909. return 1;
  2910. }
  2911. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2912. struct page *page, enum track_item alloc)
  2913. {
  2914. void *addr = page_address(page);
  2915. DECLARE_BITMAP(map, s->objects);
  2916. void *p;
  2917. bitmap_zero(map, s->objects);
  2918. for_each_free_object(p, s, page->freelist)
  2919. set_bit(slab_index(p, s, addr), map);
  2920. for_each_object(p, s, addr)
  2921. if (!test_bit(slab_index(p, s, addr), map))
  2922. add_location(t, s, get_track(s, p, alloc));
  2923. }
  2924. static int list_locations(struct kmem_cache *s, char *buf,
  2925. enum track_item alloc)
  2926. {
  2927. int len = 0;
  2928. unsigned long i;
  2929. struct loc_track t = { 0, 0, NULL };
  2930. int node;
  2931. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2932. GFP_TEMPORARY))
  2933. return sprintf(buf, "Out of memory\n");
  2934. /* Push back cpu slabs */
  2935. flush_all(s);
  2936. for_each_node_state(node, N_NORMAL_MEMORY) {
  2937. struct kmem_cache_node *n = get_node(s, node);
  2938. unsigned long flags;
  2939. struct page *page;
  2940. if (!atomic_long_read(&n->nr_slabs))
  2941. continue;
  2942. spin_lock_irqsave(&n->list_lock, flags);
  2943. list_for_each_entry(page, &n->partial, lru)
  2944. process_slab(&t, s, page, alloc);
  2945. list_for_each_entry(page, &n->full, lru)
  2946. process_slab(&t, s, page, alloc);
  2947. spin_unlock_irqrestore(&n->list_lock, flags);
  2948. }
  2949. for (i = 0; i < t.count; i++) {
  2950. struct location *l = &t.loc[i];
  2951. if (len > PAGE_SIZE - 100)
  2952. break;
  2953. len += sprintf(buf + len, "%7ld ", l->count);
  2954. if (l->addr)
  2955. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  2956. else
  2957. len += sprintf(buf + len, "<not-available>");
  2958. if (l->sum_time != l->min_time) {
  2959. unsigned long remainder;
  2960. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  2961. l->min_time,
  2962. div_long_long_rem(l->sum_time, l->count, &remainder),
  2963. l->max_time);
  2964. } else
  2965. len += sprintf(buf + len, " age=%ld",
  2966. l->min_time);
  2967. if (l->min_pid != l->max_pid)
  2968. len += sprintf(buf + len, " pid=%ld-%ld",
  2969. l->min_pid, l->max_pid);
  2970. else
  2971. len += sprintf(buf + len, " pid=%ld",
  2972. l->min_pid);
  2973. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  2974. len < PAGE_SIZE - 60) {
  2975. len += sprintf(buf + len, " cpus=");
  2976. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  2977. l->cpus);
  2978. }
  2979. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  2980. len < PAGE_SIZE - 60) {
  2981. len += sprintf(buf + len, " nodes=");
  2982. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  2983. l->nodes);
  2984. }
  2985. len += sprintf(buf + len, "\n");
  2986. }
  2987. free_loc_track(&t);
  2988. if (!t.count)
  2989. len += sprintf(buf, "No data\n");
  2990. return len;
  2991. }
  2992. enum slab_stat_type {
  2993. SL_FULL,
  2994. SL_PARTIAL,
  2995. SL_CPU,
  2996. SL_OBJECTS
  2997. };
  2998. #define SO_FULL (1 << SL_FULL)
  2999. #define SO_PARTIAL (1 << SL_PARTIAL)
  3000. #define SO_CPU (1 << SL_CPU)
  3001. #define SO_OBJECTS (1 << SL_OBJECTS)
  3002. static unsigned long show_slab_objects(struct kmem_cache *s,
  3003. char *buf, unsigned long flags)
  3004. {
  3005. unsigned long total = 0;
  3006. int cpu;
  3007. int node;
  3008. int x;
  3009. unsigned long *nodes;
  3010. unsigned long *per_cpu;
  3011. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3012. per_cpu = nodes + nr_node_ids;
  3013. for_each_possible_cpu(cpu) {
  3014. struct page *page;
  3015. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3016. if (!c)
  3017. continue;
  3018. page = c->page;
  3019. node = c->node;
  3020. if (node < 0)
  3021. continue;
  3022. if (page) {
  3023. if (flags & SO_CPU) {
  3024. if (flags & SO_OBJECTS)
  3025. x = page->inuse;
  3026. else
  3027. x = 1;
  3028. total += x;
  3029. nodes[node] += x;
  3030. }
  3031. per_cpu[node]++;
  3032. }
  3033. }
  3034. for_each_node_state(node, N_NORMAL_MEMORY) {
  3035. struct kmem_cache_node *n = get_node(s, node);
  3036. if (flags & SO_PARTIAL) {
  3037. if (flags & SO_OBJECTS)
  3038. x = count_partial(n);
  3039. else
  3040. x = n->nr_partial;
  3041. total += x;
  3042. nodes[node] += x;
  3043. }
  3044. if (flags & SO_FULL) {
  3045. int full_slabs = atomic_long_read(&n->nr_slabs)
  3046. - per_cpu[node]
  3047. - n->nr_partial;
  3048. if (flags & SO_OBJECTS)
  3049. x = full_slabs * s->objects;
  3050. else
  3051. x = full_slabs;
  3052. total += x;
  3053. nodes[node] += x;
  3054. }
  3055. }
  3056. x = sprintf(buf, "%lu", total);
  3057. #ifdef CONFIG_NUMA
  3058. for_each_node_state(node, N_NORMAL_MEMORY)
  3059. if (nodes[node])
  3060. x += sprintf(buf + x, " N%d=%lu",
  3061. node, nodes[node]);
  3062. #endif
  3063. kfree(nodes);
  3064. return x + sprintf(buf + x, "\n");
  3065. }
  3066. static int any_slab_objects(struct kmem_cache *s)
  3067. {
  3068. int node;
  3069. int cpu;
  3070. for_each_possible_cpu(cpu) {
  3071. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3072. if (c && c->page)
  3073. return 1;
  3074. }
  3075. for_each_online_node(node) {
  3076. struct kmem_cache_node *n = get_node(s, node);
  3077. if (!n)
  3078. continue;
  3079. if (n->nr_partial || atomic_long_read(&n->nr_slabs))
  3080. return 1;
  3081. }
  3082. return 0;
  3083. }
  3084. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3085. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3086. struct slab_attribute {
  3087. struct attribute attr;
  3088. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3089. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3090. };
  3091. #define SLAB_ATTR_RO(_name) \
  3092. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3093. #define SLAB_ATTR(_name) \
  3094. static struct slab_attribute _name##_attr = \
  3095. __ATTR(_name, 0644, _name##_show, _name##_store)
  3096. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3097. {
  3098. return sprintf(buf, "%d\n", s->size);
  3099. }
  3100. SLAB_ATTR_RO(slab_size);
  3101. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3102. {
  3103. return sprintf(buf, "%d\n", s->align);
  3104. }
  3105. SLAB_ATTR_RO(align);
  3106. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3107. {
  3108. return sprintf(buf, "%d\n", s->objsize);
  3109. }
  3110. SLAB_ATTR_RO(object_size);
  3111. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3112. {
  3113. return sprintf(buf, "%d\n", s->objects);
  3114. }
  3115. SLAB_ATTR_RO(objs_per_slab);
  3116. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3117. {
  3118. return sprintf(buf, "%d\n", s->order);
  3119. }
  3120. SLAB_ATTR_RO(order);
  3121. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3122. {
  3123. if (s->ctor) {
  3124. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3125. return n + sprintf(buf + n, "\n");
  3126. }
  3127. return 0;
  3128. }
  3129. SLAB_ATTR_RO(ctor);
  3130. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3131. {
  3132. return sprintf(buf, "%d\n", s->refcount - 1);
  3133. }
  3134. SLAB_ATTR_RO(aliases);
  3135. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3136. {
  3137. return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  3138. }
  3139. SLAB_ATTR_RO(slabs);
  3140. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3141. {
  3142. return show_slab_objects(s, buf, SO_PARTIAL);
  3143. }
  3144. SLAB_ATTR_RO(partial);
  3145. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3146. {
  3147. return show_slab_objects(s, buf, SO_CPU);
  3148. }
  3149. SLAB_ATTR_RO(cpu_slabs);
  3150. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3151. {
  3152. return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  3153. }
  3154. SLAB_ATTR_RO(objects);
  3155. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3156. {
  3157. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3158. }
  3159. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3160. const char *buf, size_t length)
  3161. {
  3162. s->flags &= ~SLAB_DEBUG_FREE;
  3163. if (buf[0] == '1')
  3164. s->flags |= SLAB_DEBUG_FREE;
  3165. return length;
  3166. }
  3167. SLAB_ATTR(sanity_checks);
  3168. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3169. {
  3170. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3171. }
  3172. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3173. size_t length)
  3174. {
  3175. s->flags &= ~SLAB_TRACE;
  3176. if (buf[0] == '1')
  3177. s->flags |= SLAB_TRACE;
  3178. return length;
  3179. }
  3180. SLAB_ATTR(trace);
  3181. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3182. {
  3183. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3184. }
  3185. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3186. const char *buf, size_t length)
  3187. {
  3188. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3189. if (buf[0] == '1')
  3190. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3191. return length;
  3192. }
  3193. SLAB_ATTR(reclaim_account);
  3194. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3195. {
  3196. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3197. }
  3198. SLAB_ATTR_RO(hwcache_align);
  3199. #ifdef CONFIG_ZONE_DMA
  3200. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3201. {
  3202. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3203. }
  3204. SLAB_ATTR_RO(cache_dma);
  3205. #endif
  3206. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3207. {
  3208. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3209. }
  3210. SLAB_ATTR_RO(destroy_by_rcu);
  3211. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3212. {
  3213. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3214. }
  3215. static ssize_t red_zone_store(struct kmem_cache *s,
  3216. const char *buf, size_t length)
  3217. {
  3218. if (any_slab_objects(s))
  3219. return -EBUSY;
  3220. s->flags &= ~SLAB_RED_ZONE;
  3221. if (buf[0] == '1')
  3222. s->flags |= SLAB_RED_ZONE;
  3223. calculate_sizes(s);
  3224. return length;
  3225. }
  3226. SLAB_ATTR(red_zone);
  3227. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3228. {
  3229. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3230. }
  3231. static ssize_t poison_store(struct kmem_cache *s,
  3232. const char *buf, size_t length)
  3233. {
  3234. if (any_slab_objects(s))
  3235. return -EBUSY;
  3236. s->flags &= ~SLAB_POISON;
  3237. if (buf[0] == '1')
  3238. s->flags |= SLAB_POISON;
  3239. calculate_sizes(s);
  3240. return length;
  3241. }
  3242. SLAB_ATTR(poison);
  3243. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3244. {
  3245. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3246. }
  3247. static ssize_t store_user_store(struct kmem_cache *s,
  3248. const char *buf, size_t length)
  3249. {
  3250. if (any_slab_objects(s))
  3251. return -EBUSY;
  3252. s->flags &= ~SLAB_STORE_USER;
  3253. if (buf[0] == '1')
  3254. s->flags |= SLAB_STORE_USER;
  3255. calculate_sizes(s);
  3256. return length;
  3257. }
  3258. SLAB_ATTR(store_user);
  3259. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3260. {
  3261. return 0;
  3262. }
  3263. static ssize_t validate_store(struct kmem_cache *s,
  3264. const char *buf, size_t length)
  3265. {
  3266. int ret = -EINVAL;
  3267. if (buf[0] == '1') {
  3268. ret = validate_slab_cache(s);
  3269. if (ret >= 0)
  3270. ret = length;
  3271. }
  3272. return ret;
  3273. }
  3274. SLAB_ATTR(validate);
  3275. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3276. {
  3277. return 0;
  3278. }
  3279. static ssize_t shrink_store(struct kmem_cache *s,
  3280. const char *buf, size_t length)
  3281. {
  3282. if (buf[0] == '1') {
  3283. int rc = kmem_cache_shrink(s);
  3284. if (rc)
  3285. return rc;
  3286. } else
  3287. return -EINVAL;
  3288. return length;
  3289. }
  3290. SLAB_ATTR(shrink);
  3291. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3292. {
  3293. if (!(s->flags & SLAB_STORE_USER))
  3294. return -ENOSYS;
  3295. return list_locations(s, buf, TRACK_ALLOC);
  3296. }
  3297. SLAB_ATTR_RO(alloc_calls);
  3298. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3299. {
  3300. if (!(s->flags & SLAB_STORE_USER))
  3301. return -ENOSYS;
  3302. return list_locations(s, buf, TRACK_FREE);
  3303. }
  3304. SLAB_ATTR_RO(free_calls);
  3305. #ifdef CONFIG_NUMA
  3306. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3307. {
  3308. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3309. }
  3310. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3311. const char *buf, size_t length)
  3312. {
  3313. int n = simple_strtoul(buf, NULL, 10);
  3314. if (n < 100)
  3315. s->remote_node_defrag_ratio = n * 10;
  3316. return length;
  3317. }
  3318. SLAB_ATTR(remote_node_defrag_ratio);
  3319. #endif
  3320. #ifdef CONFIG_SLUB_STATS
  3321. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3322. {
  3323. unsigned long sum = 0;
  3324. int cpu;
  3325. int len;
  3326. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3327. if (!data)
  3328. return -ENOMEM;
  3329. for_each_online_cpu(cpu) {
  3330. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3331. data[cpu] = x;
  3332. sum += x;
  3333. }
  3334. len = sprintf(buf, "%lu", sum);
  3335. for_each_online_cpu(cpu) {
  3336. if (data[cpu] && len < PAGE_SIZE - 20)
  3337. len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
  3338. }
  3339. kfree(data);
  3340. return len + sprintf(buf + len, "\n");
  3341. }
  3342. #define STAT_ATTR(si, text) \
  3343. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3344. { \
  3345. return show_stat(s, buf, si); \
  3346. } \
  3347. SLAB_ATTR_RO(text); \
  3348. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3349. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3350. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3351. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3352. STAT_ATTR(FREE_FROZEN, free_frozen);
  3353. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3354. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3355. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3356. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3357. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3358. STAT_ATTR(FREE_SLAB, free_slab);
  3359. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3360. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3361. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3362. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3363. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3364. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3365. #endif
  3366. static struct attribute *slab_attrs[] = {
  3367. &slab_size_attr.attr,
  3368. &object_size_attr.attr,
  3369. &objs_per_slab_attr.attr,
  3370. &order_attr.attr,
  3371. &objects_attr.attr,
  3372. &slabs_attr.attr,
  3373. &partial_attr.attr,
  3374. &cpu_slabs_attr.attr,
  3375. &ctor_attr.attr,
  3376. &aliases_attr.attr,
  3377. &align_attr.attr,
  3378. &sanity_checks_attr.attr,
  3379. &trace_attr.attr,
  3380. &hwcache_align_attr.attr,
  3381. &reclaim_account_attr.attr,
  3382. &destroy_by_rcu_attr.attr,
  3383. &red_zone_attr.attr,
  3384. &poison_attr.attr,
  3385. &store_user_attr.attr,
  3386. &validate_attr.attr,
  3387. &shrink_attr.attr,
  3388. &alloc_calls_attr.attr,
  3389. &free_calls_attr.attr,
  3390. #ifdef CONFIG_ZONE_DMA
  3391. &cache_dma_attr.attr,
  3392. #endif
  3393. #ifdef CONFIG_NUMA
  3394. &remote_node_defrag_ratio_attr.attr,
  3395. #endif
  3396. #ifdef CONFIG_SLUB_STATS
  3397. &alloc_fastpath_attr.attr,
  3398. &alloc_slowpath_attr.attr,
  3399. &free_fastpath_attr.attr,
  3400. &free_slowpath_attr.attr,
  3401. &free_frozen_attr.attr,
  3402. &free_add_partial_attr.attr,
  3403. &free_remove_partial_attr.attr,
  3404. &alloc_from_partial_attr.attr,
  3405. &alloc_slab_attr.attr,
  3406. &alloc_refill_attr.attr,
  3407. &free_slab_attr.attr,
  3408. &cpuslab_flush_attr.attr,
  3409. &deactivate_full_attr.attr,
  3410. &deactivate_empty_attr.attr,
  3411. &deactivate_to_head_attr.attr,
  3412. &deactivate_to_tail_attr.attr,
  3413. &deactivate_remote_frees_attr.attr,
  3414. #endif
  3415. NULL
  3416. };
  3417. static struct attribute_group slab_attr_group = {
  3418. .attrs = slab_attrs,
  3419. };
  3420. static ssize_t slab_attr_show(struct kobject *kobj,
  3421. struct attribute *attr,
  3422. char *buf)
  3423. {
  3424. struct slab_attribute *attribute;
  3425. struct kmem_cache *s;
  3426. int err;
  3427. attribute = to_slab_attr(attr);
  3428. s = to_slab(kobj);
  3429. if (!attribute->show)
  3430. return -EIO;
  3431. err = attribute->show(s, buf);
  3432. return err;
  3433. }
  3434. static ssize_t slab_attr_store(struct kobject *kobj,
  3435. struct attribute *attr,
  3436. const char *buf, size_t len)
  3437. {
  3438. struct slab_attribute *attribute;
  3439. struct kmem_cache *s;
  3440. int err;
  3441. attribute = to_slab_attr(attr);
  3442. s = to_slab(kobj);
  3443. if (!attribute->store)
  3444. return -EIO;
  3445. err = attribute->store(s, buf, len);
  3446. return err;
  3447. }
  3448. static void kmem_cache_release(struct kobject *kobj)
  3449. {
  3450. struct kmem_cache *s = to_slab(kobj);
  3451. kfree(s);
  3452. }
  3453. static struct sysfs_ops slab_sysfs_ops = {
  3454. .show = slab_attr_show,
  3455. .store = slab_attr_store,
  3456. };
  3457. static struct kobj_type slab_ktype = {
  3458. .sysfs_ops = &slab_sysfs_ops,
  3459. .release = kmem_cache_release
  3460. };
  3461. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3462. {
  3463. struct kobj_type *ktype = get_ktype(kobj);
  3464. if (ktype == &slab_ktype)
  3465. return 1;
  3466. return 0;
  3467. }
  3468. static struct kset_uevent_ops slab_uevent_ops = {
  3469. .filter = uevent_filter,
  3470. };
  3471. static struct kset *slab_kset;
  3472. #define ID_STR_LENGTH 64
  3473. /* Create a unique string id for a slab cache:
  3474. * format
  3475. * :[flags-]size:[memory address of kmemcache]
  3476. */
  3477. static char *create_unique_id(struct kmem_cache *s)
  3478. {
  3479. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3480. char *p = name;
  3481. BUG_ON(!name);
  3482. *p++ = ':';
  3483. /*
  3484. * First flags affecting slabcache operations. We will only
  3485. * get here for aliasable slabs so we do not need to support
  3486. * too many flags. The flags here must cover all flags that
  3487. * are matched during merging to guarantee that the id is
  3488. * unique.
  3489. */
  3490. if (s->flags & SLAB_CACHE_DMA)
  3491. *p++ = 'd';
  3492. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3493. *p++ = 'a';
  3494. if (s->flags & SLAB_DEBUG_FREE)
  3495. *p++ = 'F';
  3496. if (p != name + 1)
  3497. *p++ = '-';
  3498. p += sprintf(p, "%07d", s->size);
  3499. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3500. return name;
  3501. }
  3502. static int sysfs_slab_add(struct kmem_cache *s)
  3503. {
  3504. int err;
  3505. const char *name;
  3506. int unmergeable;
  3507. if (slab_state < SYSFS)
  3508. /* Defer until later */
  3509. return 0;
  3510. unmergeable = slab_unmergeable(s);
  3511. if (unmergeable) {
  3512. /*
  3513. * Slabcache can never be merged so we can use the name proper.
  3514. * This is typically the case for debug situations. In that
  3515. * case we can catch duplicate names easily.
  3516. */
  3517. sysfs_remove_link(&slab_kset->kobj, s->name);
  3518. name = s->name;
  3519. } else {
  3520. /*
  3521. * Create a unique name for the slab as a target
  3522. * for the symlinks.
  3523. */
  3524. name = create_unique_id(s);
  3525. }
  3526. s->kobj.kset = slab_kset;
  3527. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3528. if (err) {
  3529. kobject_put(&s->kobj);
  3530. return err;
  3531. }
  3532. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3533. if (err)
  3534. return err;
  3535. kobject_uevent(&s->kobj, KOBJ_ADD);
  3536. if (!unmergeable) {
  3537. /* Setup first alias */
  3538. sysfs_slab_alias(s, s->name);
  3539. kfree(name);
  3540. }
  3541. return 0;
  3542. }
  3543. static void sysfs_slab_remove(struct kmem_cache *s)
  3544. {
  3545. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3546. kobject_del(&s->kobj);
  3547. kobject_put(&s->kobj);
  3548. }
  3549. /*
  3550. * Need to buffer aliases during bootup until sysfs becomes
  3551. * available lest we loose that information.
  3552. */
  3553. struct saved_alias {
  3554. struct kmem_cache *s;
  3555. const char *name;
  3556. struct saved_alias *next;
  3557. };
  3558. static struct saved_alias *alias_list;
  3559. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3560. {
  3561. struct saved_alias *al;
  3562. if (slab_state == SYSFS) {
  3563. /*
  3564. * If we have a leftover link then remove it.
  3565. */
  3566. sysfs_remove_link(&slab_kset->kobj, name);
  3567. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3568. }
  3569. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3570. if (!al)
  3571. return -ENOMEM;
  3572. al->s = s;
  3573. al->name = name;
  3574. al->next = alias_list;
  3575. alias_list = al;
  3576. return 0;
  3577. }
  3578. static int __init slab_sysfs_init(void)
  3579. {
  3580. struct kmem_cache *s;
  3581. int err;
  3582. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3583. if (!slab_kset) {
  3584. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3585. return -ENOSYS;
  3586. }
  3587. slab_state = SYSFS;
  3588. list_for_each_entry(s, &slab_caches, list) {
  3589. err = sysfs_slab_add(s);
  3590. if (err)
  3591. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3592. " to sysfs\n", s->name);
  3593. }
  3594. while (alias_list) {
  3595. struct saved_alias *al = alias_list;
  3596. alias_list = alias_list->next;
  3597. err = sysfs_slab_alias(al->s, al->name);
  3598. if (err)
  3599. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3600. " %s to sysfs\n", s->name);
  3601. kfree(al);
  3602. }
  3603. resiliency_test();
  3604. return 0;
  3605. }
  3606. __initcall(slab_sysfs_init);
  3607. #endif
  3608. /*
  3609. * The /proc/slabinfo ABI
  3610. */
  3611. #ifdef CONFIG_SLABINFO
  3612. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3613. size_t count, loff_t *ppos)
  3614. {
  3615. return -EINVAL;
  3616. }
  3617. static void print_slabinfo_header(struct seq_file *m)
  3618. {
  3619. seq_puts(m, "slabinfo - version: 2.1\n");
  3620. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3621. "<objperslab> <pagesperslab>");
  3622. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3623. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3624. seq_putc(m, '\n');
  3625. }
  3626. static void *s_start(struct seq_file *m, loff_t *pos)
  3627. {
  3628. loff_t n = *pos;
  3629. down_read(&slub_lock);
  3630. if (!n)
  3631. print_slabinfo_header(m);
  3632. return seq_list_start(&slab_caches, *pos);
  3633. }
  3634. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3635. {
  3636. return seq_list_next(p, &slab_caches, pos);
  3637. }
  3638. static void s_stop(struct seq_file *m, void *p)
  3639. {
  3640. up_read(&slub_lock);
  3641. }
  3642. static int s_show(struct seq_file *m, void *p)
  3643. {
  3644. unsigned long nr_partials = 0;
  3645. unsigned long nr_slabs = 0;
  3646. unsigned long nr_inuse = 0;
  3647. unsigned long nr_objs;
  3648. struct kmem_cache *s;
  3649. int node;
  3650. s = list_entry(p, struct kmem_cache, list);
  3651. for_each_online_node(node) {
  3652. struct kmem_cache_node *n = get_node(s, node);
  3653. if (!n)
  3654. continue;
  3655. nr_partials += n->nr_partial;
  3656. nr_slabs += atomic_long_read(&n->nr_slabs);
  3657. nr_inuse += count_partial(n);
  3658. }
  3659. nr_objs = nr_slabs * s->objects;
  3660. nr_inuse += (nr_slabs - nr_partials) * s->objects;
  3661. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3662. nr_objs, s->size, s->objects, (1 << s->order));
  3663. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3664. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3665. 0UL);
  3666. seq_putc(m, '\n');
  3667. return 0;
  3668. }
  3669. const struct seq_operations slabinfo_op = {
  3670. .start = s_start,
  3671. .next = s_next,
  3672. .stop = s_stop,
  3673. .show = s_show,
  3674. };
  3675. #endif /* CONFIG_SLABINFO */