kvm_main.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. static bool kvm_rebooting;
  79. static bool largepages_enabled = true;
  80. static struct page *hwpoison_page;
  81. static pfn_t hwpoison_pfn;
  82. static struct page *fault_page;
  83. static pfn_t fault_pfn;
  84. inline int kvm_is_mmio_pfn(pfn_t pfn)
  85. {
  86. if (pfn_valid(pfn)) {
  87. struct page *page = compound_head(pfn_to_page(pfn));
  88. return PageReserved(page);
  89. }
  90. return true;
  91. }
  92. /*
  93. * Switches to specified vcpu, until a matching vcpu_put()
  94. */
  95. void vcpu_load(struct kvm_vcpu *vcpu)
  96. {
  97. int cpu;
  98. mutex_lock(&vcpu->mutex);
  99. cpu = get_cpu();
  100. preempt_notifier_register(&vcpu->preempt_notifier);
  101. kvm_arch_vcpu_load(vcpu, cpu);
  102. put_cpu();
  103. }
  104. void vcpu_put(struct kvm_vcpu *vcpu)
  105. {
  106. preempt_disable();
  107. kvm_arch_vcpu_put(vcpu);
  108. preempt_notifier_unregister(&vcpu->preempt_notifier);
  109. preempt_enable();
  110. mutex_unlock(&vcpu->mutex);
  111. }
  112. static void ack_flush(void *_completed)
  113. {
  114. }
  115. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  116. {
  117. int i, cpu, me;
  118. cpumask_var_t cpus;
  119. bool called = true;
  120. struct kvm_vcpu *vcpu;
  121. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  122. raw_spin_lock(&kvm->requests_lock);
  123. me = smp_processor_id();
  124. kvm_for_each_vcpu(i, vcpu, kvm) {
  125. if (kvm_make_check_request(req, vcpu))
  126. continue;
  127. cpu = vcpu->cpu;
  128. if (cpus != NULL && cpu != -1 && cpu != me)
  129. cpumask_set_cpu(cpu, cpus);
  130. }
  131. if (unlikely(cpus == NULL))
  132. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  133. else if (!cpumask_empty(cpus))
  134. smp_call_function_many(cpus, ack_flush, NULL, 1);
  135. else
  136. called = false;
  137. raw_spin_unlock(&kvm->requests_lock);
  138. free_cpumask_var(cpus);
  139. return called;
  140. }
  141. void kvm_flush_remote_tlbs(struct kvm *kvm)
  142. {
  143. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  144. ++kvm->stat.remote_tlb_flush;
  145. }
  146. void kvm_reload_remote_mmus(struct kvm *kvm)
  147. {
  148. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  149. }
  150. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  151. {
  152. struct page *page;
  153. int r;
  154. mutex_init(&vcpu->mutex);
  155. vcpu->cpu = -1;
  156. vcpu->kvm = kvm;
  157. vcpu->vcpu_id = id;
  158. init_waitqueue_head(&vcpu->wq);
  159. kvm_async_pf_vcpu_init(vcpu);
  160. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  161. if (!page) {
  162. r = -ENOMEM;
  163. goto fail;
  164. }
  165. vcpu->run = page_address(page);
  166. r = kvm_arch_vcpu_init(vcpu);
  167. if (r < 0)
  168. goto fail_free_run;
  169. return 0;
  170. fail_free_run:
  171. free_page((unsigned long)vcpu->run);
  172. fail:
  173. return r;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  176. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  177. {
  178. kvm_arch_vcpu_uninit(vcpu);
  179. free_page((unsigned long)vcpu->run);
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  182. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  183. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  184. {
  185. return container_of(mn, struct kvm, mmu_notifier);
  186. }
  187. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  188. struct mm_struct *mm,
  189. unsigned long address)
  190. {
  191. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  192. int need_tlb_flush, idx;
  193. /*
  194. * When ->invalidate_page runs, the linux pte has been zapped
  195. * already but the page is still allocated until
  196. * ->invalidate_page returns. So if we increase the sequence
  197. * here the kvm page fault will notice if the spte can't be
  198. * established because the page is going to be freed. If
  199. * instead the kvm page fault establishes the spte before
  200. * ->invalidate_page runs, kvm_unmap_hva will release it
  201. * before returning.
  202. *
  203. * The sequence increase only need to be seen at spin_unlock
  204. * time, and not at spin_lock time.
  205. *
  206. * Increasing the sequence after the spin_unlock would be
  207. * unsafe because the kvm page fault could then establish the
  208. * pte after kvm_unmap_hva returned, without noticing the page
  209. * is going to be freed.
  210. */
  211. idx = srcu_read_lock(&kvm->srcu);
  212. spin_lock(&kvm->mmu_lock);
  213. kvm->mmu_notifier_seq++;
  214. need_tlb_flush = kvm_unmap_hva(kvm, address);
  215. spin_unlock(&kvm->mmu_lock);
  216. srcu_read_unlock(&kvm->srcu, idx);
  217. /* we've to flush the tlb before the pages can be freed */
  218. if (need_tlb_flush)
  219. kvm_flush_remote_tlbs(kvm);
  220. }
  221. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  222. struct mm_struct *mm,
  223. unsigned long address,
  224. pte_t pte)
  225. {
  226. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  227. int idx;
  228. idx = srcu_read_lock(&kvm->srcu);
  229. spin_lock(&kvm->mmu_lock);
  230. kvm->mmu_notifier_seq++;
  231. kvm_set_spte_hva(kvm, address, pte);
  232. spin_unlock(&kvm->mmu_lock);
  233. srcu_read_unlock(&kvm->srcu, idx);
  234. }
  235. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  236. struct mm_struct *mm,
  237. unsigned long start,
  238. unsigned long end)
  239. {
  240. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  241. int need_tlb_flush = 0, idx;
  242. idx = srcu_read_lock(&kvm->srcu);
  243. spin_lock(&kvm->mmu_lock);
  244. /*
  245. * The count increase must become visible at unlock time as no
  246. * spte can be established without taking the mmu_lock and
  247. * count is also read inside the mmu_lock critical section.
  248. */
  249. kvm->mmu_notifier_count++;
  250. for (; start < end; start += PAGE_SIZE)
  251. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  252. spin_unlock(&kvm->mmu_lock);
  253. srcu_read_unlock(&kvm->srcu, idx);
  254. /* we've to flush the tlb before the pages can be freed */
  255. if (need_tlb_flush)
  256. kvm_flush_remote_tlbs(kvm);
  257. }
  258. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  259. struct mm_struct *mm,
  260. unsigned long start,
  261. unsigned long end)
  262. {
  263. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  264. spin_lock(&kvm->mmu_lock);
  265. /*
  266. * This sequence increase will notify the kvm page fault that
  267. * the page that is going to be mapped in the spte could have
  268. * been freed.
  269. */
  270. kvm->mmu_notifier_seq++;
  271. /*
  272. * The above sequence increase must be visible before the
  273. * below count decrease but both values are read by the kvm
  274. * page fault under mmu_lock spinlock so we don't need to add
  275. * a smb_wmb() here in between the two.
  276. */
  277. kvm->mmu_notifier_count--;
  278. spin_unlock(&kvm->mmu_lock);
  279. BUG_ON(kvm->mmu_notifier_count < 0);
  280. }
  281. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  282. struct mm_struct *mm,
  283. unsigned long address)
  284. {
  285. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  286. int young, idx;
  287. idx = srcu_read_lock(&kvm->srcu);
  288. spin_lock(&kvm->mmu_lock);
  289. young = kvm_age_hva(kvm, address);
  290. spin_unlock(&kvm->mmu_lock);
  291. srcu_read_unlock(&kvm->srcu, idx);
  292. if (young)
  293. kvm_flush_remote_tlbs(kvm);
  294. return young;
  295. }
  296. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  297. struct mm_struct *mm)
  298. {
  299. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  300. int idx;
  301. idx = srcu_read_lock(&kvm->srcu);
  302. kvm_arch_flush_shadow(kvm);
  303. srcu_read_unlock(&kvm->srcu, idx);
  304. }
  305. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  306. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  307. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  308. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  309. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  310. .change_pte = kvm_mmu_notifier_change_pte,
  311. .release = kvm_mmu_notifier_release,
  312. };
  313. static int kvm_init_mmu_notifier(struct kvm *kvm)
  314. {
  315. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  316. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  317. }
  318. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  319. static int kvm_init_mmu_notifier(struct kvm *kvm)
  320. {
  321. return 0;
  322. }
  323. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  324. static struct kvm *kvm_create_vm(void)
  325. {
  326. int r, i;
  327. struct kvm *kvm = kvm_arch_alloc_vm();
  328. if (!kvm)
  329. return ERR_PTR(-ENOMEM);
  330. r = kvm_arch_init_vm(kvm);
  331. if (r)
  332. goto out_err_nodisable;
  333. r = hardware_enable_all();
  334. if (r)
  335. goto out_err_nodisable;
  336. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  337. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  338. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  339. #endif
  340. r = -ENOMEM;
  341. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  342. if (!kvm->memslots)
  343. goto out_err_nosrcu;
  344. if (init_srcu_struct(&kvm->srcu))
  345. goto out_err_nosrcu;
  346. for (i = 0; i < KVM_NR_BUSES; i++) {
  347. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  348. GFP_KERNEL);
  349. if (!kvm->buses[i])
  350. goto out_err;
  351. }
  352. r = kvm_init_mmu_notifier(kvm);
  353. if (r)
  354. goto out_err;
  355. kvm->mm = current->mm;
  356. atomic_inc(&kvm->mm->mm_count);
  357. spin_lock_init(&kvm->mmu_lock);
  358. raw_spin_lock_init(&kvm->requests_lock);
  359. kvm_eventfd_init(kvm);
  360. mutex_init(&kvm->lock);
  361. mutex_init(&kvm->irq_lock);
  362. mutex_init(&kvm->slots_lock);
  363. atomic_set(&kvm->users_count, 1);
  364. spin_lock(&kvm_lock);
  365. list_add(&kvm->vm_list, &vm_list);
  366. spin_unlock(&kvm_lock);
  367. return kvm;
  368. out_err:
  369. cleanup_srcu_struct(&kvm->srcu);
  370. out_err_nosrcu:
  371. hardware_disable_all();
  372. out_err_nodisable:
  373. for (i = 0; i < KVM_NR_BUSES; i++)
  374. kfree(kvm->buses[i]);
  375. kfree(kvm->memslots);
  376. kvm_arch_free_vm(kvm);
  377. return ERR_PTR(r);
  378. }
  379. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  380. {
  381. if (!memslot->dirty_bitmap)
  382. return;
  383. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  384. vfree(memslot->dirty_bitmap_head);
  385. else
  386. kfree(memslot->dirty_bitmap_head);
  387. memslot->dirty_bitmap = NULL;
  388. memslot->dirty_bitmap_head = NULL;
  389. }
  390. /*
  391. * Free any memory in @free but not in @dont.
  392. */
  393. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  394. struct kvm_memory_slot *dont)
  395. {
  396. int i;
  397. if (!dont || free->rmap != dont->rmap)
  398. vfree(free->rmap);
  399. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  400. kvm_destroy_dirty_bitmap(free);
  401. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  402. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  403. vfree(free->lpage_info[i]);
  404. free->lpage_info[i] = NULL;
  405. }
  406. }
  407. free->npages = 0;
  408. free->rmap = NULL;
  409. }
  410. void kvm_free_physmem(struct kvm *kvm)
  411. {
  412. int i;
  413. struct kvm_memslots *slots = kvm->memslots;
  414. for (i = 0; i < slots->nmemslots; ++i)
  415. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  416. kfree(kvm->memslots);
  417. }
  418. static void kvm_destroy_vm(struct kvm *kvm)
  419. {
  420. int i;
  421. struct mm_struct *mm = kvm->mm;
  422. kvm_arch_sync_events(kvm);
  423. spin_lock(&kvm_lock);
  424. list_del(&kvm->vm_list);
  425. spin_unlock(&kvm_lock);
  426. kvm_free_irq_routing(kvm);
  427. for (i = 0; i < KVM_NR_BUSES; i++)
  428. kvm_io_bus_destroy(kvm->buses[i]);
  429. kvm_coalesced_mmio_free(kvm);
  430. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  431. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  432. #else
  433. kvm_arch_flush_shadow(kvm);
  434. #endif
  435. kvm_arch_destroy_vm(kvm);
  436. kvm_free_physmem(kvm);
  437. cleanup_srcu_struct(&kvm->srcu);
  438. kvm_arch_free_vm(kvm);
  439. hardware_disable_all();
  440. mmdrop(mm);
  441. }
  442. void kvm_get_kvm(struct kvm *kvm)
  443. {
  444. atomic_inc(&kvm->users_count);
  445. }
  446. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  447. void kvm_put_kvm(struct kvm *kvm)
  448. {
  449. if (atomic_dec_and_test(&kvm->users_count))
  450. kvm_destroy_vm(kvm);
  451. }
  452. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  453. static int kvm_vm_release(struct inode *inode, struct file *filp)
  454. {
  455. struct kvm *kvm = filp->private_data;
  456. kvm_irqfd_release(kvm);
  457. kvm_put_kvm(kvm);
  458. return 0;
  459. }
  460. /*
  461. * Allocation size is twice as large as the actual dirty bitmap size.
  462. * This makes it possible to do double buffering: see x86's
  463. * kvm_vm_ioctl_get_dirty_log().
  464. */
  465. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  466. {
  467. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  468. if (dirty_bytes > PAGE_SIZE)
  469. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  470. else
  471. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  472. if (!memslot->dirty_bitmap)
  473. return -ENOMEM;
  474. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  475. return 0;
  476. }
  477. /*
  478. * Allocate some memory and give it an address in the guest physical address
  479. * space.
  480. *
  481. * Discontiguous memory is allowed, mostly for framebuffers.
  482. *
  483. * Must be called holding mmap_sem for write.
  484. */
  485. int __kvm_set_memory_region(struct kvm *kvm,
  486. struct kvm_userspace_memory_region *mem,
  487. int user_alloc)
  488. {
  489. int r, flush_shadow = 0;
  490. gfn_t base_gfn;
  491. unsigned long npages;
  492. unsigned long i;
  493. struct kvm_memory_slot *memslot;
  494. struct kvm_memory_slot old, new;
  495. struct kvm_memslots *slots, *old_memslots;
  496. r = -EINVAL;
  497. /* General sanity checks */
  498. if (mem->memory_size & (PAGE_SIZE - 1))
  499. goto out;
  500. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  501. goto out;
  502. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  503. goto out;
  504. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  505. goto out;
  506. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  507. goto out;
  508. memslot = &kvm->memslots->memslots[mem->slot];
  509. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  510. npages = mem->memory_size >> PAGE_SHIFT;
  511. r = -EINVAL;
  512. if (npages > KVM_MEM_MAX_NR_PAGES)
  513. goto out;
  514. if (!npages)
  515. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  516. new = old = *memslot;
  517. new.id = mem->slot;
  518. new.base_gfn = base_gfn;
  519. new.npages = npages;
  520. new.flags = mem->flags;
  521. /* Disallow changing a memory slot's size. */
  522. r = -EINVAL;
  523. if (npages && old.npages && npages != old.npages)
  524. goto out_free;
  525. /* Check for overlaps */
  526. r = -EEXIST;
  527. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  528. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  529. if (s == memslot || !s->npages)
  530. continue;
  531. if (!((base_gfn + npages <= s->base_gfn) ||
  532. (base_gfn >= s->base_gfn + s->npages)))
  533. goto out_free;
  534. }
  535. /* Free page dirty bitmap if unneeded */
  536. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  537. new.dirty_bitmap = NULL;
  538. r = -ENOMEM;
  539. /* Allocate if a slot is being created */
  540. #ifndef CONFIG_S390
  541. if (npages && !new.rmap) {
  542. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  543. if (!new.rmap)
  544. goto out_free;
  545. new.user_alloc = user_alloc;
  546. new.userspace_addr = mem->userspace_addr;
  547. }
  548. if (!npages)
  549. goto skip_lpage;
  550. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  551. unsigned long ugfn;
  552. unsigned long j;
  553. int lpages;
  554. int level = i + 2;
  555. /* Avoid unused variable warning if no large pages */
  556. (void)level;
  557. if (new.lpage_info[i])
  558. continue;
  559. lpages = 1 + ((base_gfn + npages - 1)
  560. >> KVM_HPAGE_GFN_SHIFT(level));
  561. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  562. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  563. if (!new.lpage_info[i])
  564. goto out_free;
  565. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  566. new.lpage_info[i][0].write_count = 1;
  567. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  568. new.lpage_info[i][lpages - 1].write_count = 1;
  569. ugfn = new.userspace_addr >> PAGE_SHIFT;
  570. /*
  571. * If the gfn and userspace address are not aligned wrt each
  572. * other, or if explicitly asked to, disable large page
  573. * support for this slot
  574. */
  575. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  576. !largepages_enabled)
  577. for (j = 0; j < lpages; ++j)
  578. new.lpage_info[i][j].write_count = 1;
  579. }
  580. skip_lpage:
  581. /* Allocate page dirty bitmap if needed */
  582. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  583. if (kvm_create_dirty_bitmap(&new) < 0)
  584. goto out_free;
  585. /* destroy any largepage mappings for dirty tracking */
  586. if (old.npages)
  587. flush_shadow = 1;
  588. }
  589. #else /* not defined CONFIG_S390 */
  590. new.user_alloc = user_alloc;
  591. if (user_alloc)
  592. new.userspace_addr = mem->userspace_addr;
  593. #endif /* not defined CONFIG_S390 */
  594. if (!npages) {
  595. r = -ENOMEM;
  596. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  597. if (!slots)
  598. goto out_free;
  599. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  600. if (mem->slot >= slots->nmemslots)
  601. slots->nmemslots = mem->slot + 1;
  602. slots->generation++;
  603. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  604. old_memslots = kvm->memslots;
  605. rcu_assign_pointer(kvm->memslots, slots);
  606. synchronize_srcu_expedited(&kvm->srcu);
  607. /* From this point no new shadow pages pointing to a deleted
  608. * memslot will be created.
  609. *
  610. * validation of sp->gfn happens in:
  611. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  612. * - kvm_is_visible_gfn (mmu_check_roots)
  613. */
  614. kvm_arch_flush_shadow(kvm);
  615. kfree(old_memslots);
  616. }
  617. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  618. if (r)
  619. goto out_free;
  620. /* map the pages in iommu page table */
  621. if (npages) {
  622. r = kvm_iommu_map_pages(kvm, &new);
  623. if (r)
  624. goto out_free;
  625. }
  626. r = -ENOMEM;
  627. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  628. if (!slots)
  629. goto out_free;
  630. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  631. if (mem->slot >= slots->nmemslots)
  632. slots->nmemslots = mem->slot + 1;
  633. slots->generation++;
  634. /* actual memory is freed via old in kvm_free_physmem_slot below */
  635. if (!npages) {
  636. new.rmap = NULL;
  637. new.dirty_bitmap = NULL;
  638. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  639. new.lpage_info[i] = NULL;
  640. }
  641. slots->memslots[mem->slot] = new;
  642. old_memslots = kvm->memslots;
  643. rcu_assign_pointer(kvm->memslots, slots);
  644. synchronize_srcu_expedited(&kvm->srcu);
  645. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  646. kvm_free_physmem_slot(&old, &new);
  647. kfree(old_memslots);
  648. if (flush_shadow)
  649. kvm_arch_flush_shadow(kvm);
  650. return 0;
  651. out_free:
  652. kvm_free_physmem_slot(&new, &old);
  653. out:
  654. return r;
  655. }
  656. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  657. int kvm_set_memory_region(struct kvm *kvm,
  658. struct kvm_userspace_memory_region *mem,
  659. int user_alloc)
  660. {
  661. int r;
  662. mutex_lock(&kvm->slots_lock);
  663. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  664. mutex_unlock(&kvm->slots_lock);
  665. return r;
  666. }
  667. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  668. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  669. struct
  670. kvm_userspace_memory_region *mem,
  671. int user_alloc)
  672. {
  673. if (mem->slot >= KVM_MEMORY_SLOTS)
  674. return -EINVAL;
  675. return kvm_set_memory_region(kvm, mem, user_alloc);
  676. }
  677. int kvm_get_dirty_log(struct kvm *kvm,
  678. struct kvm_dirty_log *log, int *is_dirty)
  679. {
  680. struct kvm_memory_slot *memslot;
  681. int r, i;
  682. unsigned long n;
  683. unsigned long any = 0;
  684. r = -EINVAL;
  685. if (log->slot >= KVM_MEMORY_SLOTS)
  686. goto out;
  687. memslot = &kvm->memslots->memslots[log->slot];
  688. r = -ENOENT;
  689. if (!memslot->dirty_bitmap)
  690. goto out;
  691. n = kvm_dirty_bitmap_bytes(memslot);
  692. for (i = 0; !any && i < n/sizeof(long); ++i)
  693. any = memslot->dirty_bitmap[i];
  694. r = -EFAULT;
  695. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  696. goto out;
  697. if (any)
  698. *is_dirty = 1;
  699. r = 0;
  700. out:
  701. return r;
  702. }
  703. void kvm_disable_largepages(void)
  704. {
  705. largepages_enabled = false;
  706. }
  707. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  708. int is_error_page(struct page *page)
  709. {
  710. return page == bad_page || page == hwpoison_page || page == fault_page;
  711. }
  712. EXPORT_SYMBOL_GPL(is_error_page);
  713. int is_error_pfn(pfn_t pfn)
  714. {
  715. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  716. }
  717. EXPORT_SYMBOL_GPL(is_error_pfn);
  718. int is_hwpoison_pfn(pfn_t pfn)
  719. {
  720. return pfn == hwpoison_pfn;
  721. }
  722. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  723. int is_fault_pfn(pfn_t pfn)
  724. {
  725. return pfn == fault_pfn;
  726. }
  727. EXPORT_SYMBOL_GPL(is_fault_pfn);
  728. static inline unsigned long bad_hva(void)
  729. {
  730. return PAGE_OFFSET;
  731. }
  732. int kvm_is_error_hva(unsigned long addr)
  733. {
  734. return addr == bad_hva();
  735. }
  736. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  737. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  738. gfn_t gfn)
  739. {
  740. int i;
  741. for (i = 0; i < slots->nmemslots; ++i) {
  742. struct kvm_memory_slot *memslot = &slots->memslots[i];
  743. if (gfn >= memslot->base_gfn
  744. && gfn < memslot->base_gfn + memslot->npages)
  745. return memslot;
  746. }
  747. return NULL;
  748. }
  749. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  750. {
  751. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  752. }
  753. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  754. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  755. {
  756. int i;
  757. struct kvm_memslots *slots = kvm_memslots(kvm);
  758. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  759. struct kvm_memory_slot *memslot = &slots->memslots[i];
  760. if (memslot->flags & KVM_MEMSLOT_INVALID)
  761. continue;
  762. if (gfn >= memslot->base_gfn
  763. && gfn < memslot->base_gfn + memslot->npages)
  764. return 1;
  765. }
  766. return 0;
  767. }
  768. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  769. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  770. {
  771. struct vm_area_struct *vma;
  772. unsigned long addr, size;
  773. size = PAGE_SIZE;
  774. addr = gfn_to_hva(kvm, gfn);
  775. if (kvm_is_error_hva(addr))
  776. return PAGE_SIZE;
  777. down_read(&current->mm->mmap_sem);
  778. vma = find_vma(current->mm, addr);
  779. if (!vma)
  780. goto out;
  781. size = vma_kernel_pagesize(vma);
  782. out:
  783. up_read(&current->mm->mmap_sem);
  784. return size;
  785. }
  786. int memslot_id(struct kvm *kvm, gfn_t gfn)
  787. {
  788. int i;
  789. struct kvm_memslots *slots = kvm_memslots(kvm);
  790. struct kvm_memory_slot *memslot = NULL;
  791. for (i = 0; i < slots->nmemslots; ++i) {
  792. memslot = &slots->memslots[i];
  793. if (gfn >= memslot->base_gfn
  794. && gfn < memslot->base_gfn + memslot->npages)
  795. break;
  796. }
  797. return memslot - slots->memslots;
  798. }
  799. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  800. gfn_t *nr_pages)
  801. {
  802. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  803. return bad_hva();
  804. if (nr_pages)
  805. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  806. return gfn_to_hva_memslot(slot, gfn);
  807. }
  808. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  809. {
  810. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  811. }
  812. EXPORT_SYMBOL_GPL(gfn_to_hva);
  813. static pfn_t get_fault_pfn(void)
  814. {
  815. get_page(fault_page);
  816. return fault_pfn;
  817. }
  818. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  819. bool *async, bool write_fault, bool *writable)
  820. {
  821. struct page *page[1];
  822. int npages = 0;
  823. pfn_t pfn;
  824. /* we can do it either atomically or asynchronously, not both */
  825. BUG_ON(atomic && async);
  826. BUG_ON(!write_fault && !writable);
  827. if (writable)
  828. *writable = true;
  829. if (atomic || async)
  830. npages = __get_user_pages_fast(addr, 1, 1, page);
  831. if (unlikely(npages != 1) && !atomic) {
  832. might_sleep();
  833. if (writable)
  834. *writable = write_fault;
  835. npages = get_user_pages_fast(addr, 1, write_fault, page);
  836. /* map read fault as writable if possible */
  837. if (unlikely(!write_fault) && npages == 1) {
  838. struct page *wpage[1];
  839. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  840. if (npages == 1) {
  841. *writable = true;
  842. put_page(page[0]);
  843. page[0] = wpage[0];
  844. }
  845. npages = 1;
  846. }
  847. }
  848. if (unlikely(npages != 1)) {
  849. struct vm_area_struct *vma;
  850. if (atomic)
  851. return get_fault_pfn();
  852. down_read(&current->mm->mmap_sem);
  853. if (is_hwpoison_address(addr)) {
  854. up_read(&current->mm->mmap_sem);
  855. get_page(hwpoison_page);
  856. return page_to_pfn(hwpoison_page);
  857. }
  858. vma = find_vma_intersection(current->mm, addr, addr+1);
  859. if (vma == NULL)
  860. pfn = get_fault_pfn();
  861. else if ((vma->vm_flags & VM_PFNMAP)) {
  862. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  863. vma->vm_pgoff;
  864. BUG_ON(!kvm_is_mmio_pfn(pfn));
  865. } else {
  866. if (async && (vma->vm_flags & VM_WRITE))
  867. *async = true;
  868. pfn = get_fault_pfn();
  869. }
  870. up_read(&current->mm->mmap_sem);
  871. } else
  872. pfn = page_to_pfn(page[0]);
  873. return pfn;
  874. }
  875. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  876. {
  877. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  878. }
  879. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  880. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  881. bool write_fault, bool *writable)
  882. {
  883. unsigned long addr;
  884. if (async)
  885. *async = false;
  886. addr = gfn_to_hva(kvm, gfn);
  887. if (kvm_is_error_hva(addr)) {
  888. get_page(bad_page);
  889. return page_to_pfn(bad_page);
  890. }
  891. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  892. }
  893. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  894. {
  895. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  896. }
  897. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  898. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  899. bool write_fault, bool *writable)
  900. {
  901. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  902. }
  903. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  904. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  905. {
  906. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  907. }
  908. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  909. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  910. bool *writable)
  911. {
  912. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  913. }
  914. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  915. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  916. struct kvm_memory_slot *slot, gfn_t gfn)
  917. {
  918. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  919. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  920. }
  921. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  922. int nr_pages)
  923. {
  924. unsigned long addr;
  925. gfn_t entry;
  926. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  927. if (kvm_is_error_hva(addr))
  928. return -1;
  929. if (entry < nr_pages)
  930. return 0;
  931. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  932. }
  933. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  934. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  935. {
  936. pfn_t pfn;
  937. pfn = gfn_to_pfn(kvm, gfn);
  938. if (!kvm_is_mmio_pfn(pfn))
  939. return pfn_to_page(pfn);
  940. WARN_ON(kvm_is_mmio_pfn(pfn));
  941. get_page(bad_page);
  942. return bad_page;
  943. }
  944. EXPORT_SYMBOL_GPL(gfn_to_page);
  945. void kvm_release_page_clean(struct page *page)
  946. {
  947. kvm_release_pfn_clean(page_to_pfn(page));
  948. }
  949. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  950. void kvm_release_pfn_clean(pfn_t pfn)
  951. {
  952. if (!kvm_is_mmio_pfn(pfn))
  953. put_page(pfn_to_page(pfn));
  954. }
  955. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  956. void kvm_release_page_dirty(struct page *page)
  957. {
  958. kvm_release_pfn_dirty(page_to_pfn(page));
  959. }
  960. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  961. void kvm_release_pfn_dirty(pfn_t pfn)
  962. {
  963. kvm_set_pfn_dirty(pfn);
  964. kvm_release_pfn_clean(pfn);
  965. }
  966. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  967. void kvm_set_page_dirty(struct page *page)
  968. {
  969. kvm_set_pfn_dirty(page_to_pfn(page));
  970. }
  971. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  972. void kvm_set_pfn_dirty(pfn_t pfn)
  973. {
  974. if (!kvm_is_mmio_pfn(pfn)) {
  975. struct page *page = pfn_to_page(pfn);
  976. if (!PageReserved(page))
  977. SetPageDirty(page);
  978. }
  979. }
  980. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  981. void kvm_set_pfn_accessed(pfn_t pfn)
  982. {
  983. if (!kvm_is_mmio_pfn(pfn))
  984. mark_page_accessed(pfn_to_page(pfn));
  985. }
  986. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  987. void kvm_get_pfn(pfn_t pfn)
  988. {
  989. if (!kvm_is_mmio_pfn(pfn))
  990. get_page(pfn_to_page(pfn));
  991. }
  992. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  993. static int next_segment(unsigned long len, int offset)
  994. {
  995. if (len > PAGE_SIZE - offset)
  996. return PAGE_SIZE - offset;
  997. else
  998. return len;
  999. }
  1000. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1001. int len)
  1002. {
  1003. int r;
  1004. unsigned long addr;
  1005. addr = gfn_to_hva(kvm, gfn);
  1006. if (kvm_is_error_hva(addr))
  1007. return -EFAULT;
  1008. r = copy_from_user(data, (void __user *)addr + offset, len);
  1009. if (r)
  1010. return -EFAULT;
  1011. return 0;
  1012. }
  1013. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1014. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1015. {
  1016. gfn_t gfn = gpa >> PAGE_SHIFT;
  1017. int seg;
  1018. int offset = offset_in_page(gpa);
  1019. int ret;
  1020. while ((seg = next_segment(len, offset)) != 0) {
  1021. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1022. if (ret < 0)
  1023. return ret;
  1024. offset = 0;
  1025. len -= seg;
  1026. data += seg;
  1027. ++gfn;
  1028. }
  1029. return 0;
  1030. }
  1031. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1032. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1033. unsigned long len)
  1034. {
  1035. int r;
  1036. unsigned long addr;
  1037. gfn_t gfn = gpa >> PAGE_SHIFT;
  1038. int offset = offset_in_page(gpa);
  1039. addr = gfn_to_hva(kvm, gfn);
  1040. if (kvm_is_error_hva(addr))
  1041. return -EFAULT;
  1042. pagefault_disable();
  1043. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1044. pagefault_enable();
  1045. if (r)
  1046. return -EFAULT;
  1047. return 0;
  1048. }
  1049. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1050. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1051. int offset, int len)
  1052. {
  1053. int r;
  1054. unsigned long addr;
  1055. addr = gfn_to_hva(kvm, gfn);
  1056. if (kvm_is_error_hva(addr))
  1057. return -EFAULT;
  1058. r = copy_to_user((void __user *)addr + offset, data, len);
  1059. if (r)
  1060. return -EFAULT;
  1061. mark_page_dirty(kvm, gfn);
  1062. return 0;
  1063. }
  1064. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1065. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1066. unsigned long len)
  1067. {
  1068. gfn_t gfn = gpa >> PAGE_SHIFT;
  1069. int seg;
  1070. int offset = offset_in_page(gpa);
  1071. int ret;
  1072. while ((seg = next_segment(len, offset)) != 0) {
  1073. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1074. if (ret < 0)
  1075. return ret;
  1076. offset = 0;
  1077. len -= seg;
  1078. data += seg;
  1079. ++gfn;
  1080. }
  1081. return 0;
  1082. }
  1083. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1084. gpa_t gpa)
  1085. {
  1086. struct kvm_memslots *slots = kvm_memslots(kvm);
  1087. int offset = offset_in_page(gpa);
  1088. gfn_t gfn = gpa >> PAGE_SHIFT;
  1089. ghc->gpa = gpa;
  1090. ghc->generation = slots->generation;
  1091. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1092. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1093. if (!kvm_is_error_hva(ghc->hva))
  1094. ghc->hva += offset;
  1095. else
  1096. return -EFAULT;
  1097. return 0;
  1098. }
  1099. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1100. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1101. void *data, unsigned long len)
  1102. {
  1103. struct kvm_memslots *slots = kvm_memslots(kvm);
  1104. int r;
  1105. if (slots->generation != ghc->generation)
  1106. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1107. if (kvm_is_error_hva(ghc->hva))
  1108. return -EFAULT;
  1109. r = copy_to_user((void __user *)ghc->hva, data, len);
  1110. if (r)
  1111. return -EFAULT;
  1112. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1113. return 0;
  1114. }
  1115. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1116. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1117. {
  1118. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1119. offset, len);
  1120. }
  1121. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1122. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1123. {
  1124. gfn_t gfn = gpa >> PAGE_SHIFT;
  1125. int seg;
  1126. int offset = offset_in_page(gpa);
  1127. int ret;
  1128. while ((seg = next_segment(len, offset)) != 0) {
  1129. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1130. if (ret < 0)
  1131. return ret;
  1132. offset = 0;
  1133. len -= seg;
  1134. ++gfn;
  1135. }
  1136. return 0;
  1137. }
  1138. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1139. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1140. gfn_t gfn)
  1141. {
  1142. if (memslot && memslot->dirty_bitmap) {
  1143. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1144. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1145. }
  1146. }
  1147. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1148. {
  1149. struct kvm_memory_slot *memslot;
  1150. memslot = gfn_to_memslot(kvm, gfn);
  1151. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1152. }
  1153. /*
  1154. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1155. */
  1156. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1157. {
  1158. DEFINE_WAIT(wait);
  1159. for (;;) {
  1160. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1161. if (kvm_arch_vcpu_runnable(vcpu)) {
  1162. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1163. break;
  1164. }
  1165. if (kvm_cpu_has_pending_timer(vcpu))
  1166. break;
  1167. if (signal_pending(current))
  1168. break;
  1169. schedule();
  1170. }
  1171. finish_wait(&vcpu->wq, &wait);
  1172. }
  1173. void kvm_resched(struct kvm_vcpu *vcpu)
  1174. {
  1175. if (!need_resched())
  1176. return;
  1177. cond_resched();
  1178. }
  1179. EXPORT_SYMBOL_GPL(kvm_resched);
  1180. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1181. {
  1182. ktime_t expires;
  1183. DEFINE_WAIT(wait);
  1184. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1185. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1186. expires = ktime_add_ns(ktime_get(), 100000UL);
  1187. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1188. finish_wait(&vcpu->wq, &wait);
  1189. }
  1190. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1191. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1192. {
  1193. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1194. struct page *page;
  1195. if (vmf->pgoff == 0)
  1196. page = virt_to_page(vcpu->run);
  1197. #ifdef CONFIG_X86
  1198. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1199. page = virt_to_page(vcpu->arch.pio_data);
  1200. #endif
  1201. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1202. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1203. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1204. #endif
  1205. else
  1206. return VM_FAULT_SIGBUS;
  1207. get_page(page);
  1208. vmf->page = page;
  1209. return 0;
  1210. }
  1211. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1212. .fault = kvm_vcpu_fault,
  1213. };
  1214. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1215. {
  1216. vma->vm_ops = &kvm_vcpu_vm_ops;
  1217. return 0;
  1218. }
  1219. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1220. {
  1221. struct kvm_vcpu *vcpu = filp->private_data;
  1222. kvm_put_kvm(vcpu->kvm);
  1223. return 0;
  1224. }
  1225. static struct file_operations kvm_vcpu_fops = {
  1226. .release = kvm_vcpu_release,
  1227. .unlocked_ioctl = kvm_vcpu_ioctl,
  1228. .compat_ioctl = kvm_vcpu_ioctl,
  1229. .mmap = kvm_vcpu_mmap,
  1230. .llseek = noop_llseek,
  1231. };
  1232. /*
  1233. * Allocates an inode for the vcpu.
  1234. */
  1235. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1236. {
  1237. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1238. }
  1239. /*
  1240. * Creates some virtual cpus. Good luck creating more than one.
  1241. */
  1242. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1243. {
  1244. int r;
  1245. struct kvm_vcpu *vcpu, *v;
  1246. vcpu = kvm_arch_vcpu_create(kvm, id);
  1247. if (IS_ERR(vcpu))
  1248. return PTR_ERR(vcpu);
  1249. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1250. r = kvm_arch_vcpu_setup(vcpu);
  1251. if (r)
  1252. return r;
  1253. mutex_lock(&kvm->lock);
  1254. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1255. r = -EINVAL;
  1256. goto vcpu_destroy;
  1257. }
  1258. kvm_for_each_vcpu(r, v, kvm)
  1259. if (v->vcpu_id == id) {
  1260. r = -EEXIST;
  1261. goto vcpu_destroy;
  1262. }
  1263. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1264. /* Now it's all set up, let userspace reach it */
  1265. kvm_get_kvm(kvm);
  1266. r = create_vcpu_fd(vcpu);
  1267. if (r < 0) {
  1268. kvm_put_kvm(kvm);
  1269. goto vcpu_destroy;
  1270. }
  1271. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1272. smp_wmb();
  1273. atomic_inc(&kvm->online_vcpus);
  1274. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1275. if (kvm->bsp_vcpu_id == id)
  1276. kvm->bsp_vcpu = vcpu;
  1277. #endif
  1278. mutex_unlock(&kvm->lock);
  1279. return r;
  1280. vcpu_destroy:
  1281. mutex_unlock(&kvm->lock);
  1282. kvm_arch_vcpu_destroy(vcpu);
  1283. return r;
  1284. }
  1285. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1286. {
  1287. if (sigset) {
  1288. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1289. vcpu->sigset_active = 1;
  1290. vcpu->sigset = *sigset;
  1291. } else
  1292. vcpu->sigset_active = 0;
  1293. return 0;
  1294. }
  1295. static long kvm_vcpu_ioctl(struct file *filp,
  1296. unsigned int ioctl, unsigned long arg)
  1297. {
  1298. struct kvm_vcpu *vcpu = filp->private_data;
  1299. void __user *argp = (void __user *)arg;
  1300. int r;
  1301. struct kvm_fpu *fpu = NULL;
  1302. struct kvm_sregs *kvm_sregs = NULL;
  1303. if (vcpu->kvm->mm != current->mm)
  1304. return -EIO;
  1305. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1306. /*
  1307. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1308. * so vcpu_load() would break it.
  1309. */
  1310. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1311. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1312. #endif
  1313. vcpu_load(vcpu);
  1314. switch (ioctl) {
  1315. case KVM_RUN:
  1316. r = -EINVAL;
  1317. if (arg)
  1318. goto out;
  1319. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1320. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1321. break;
  1322. case KVM_GET_REGS: {
  1323. struct kvm_regs *kvm_regs;
  1324. r = -ENOMEM;
  1325. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1326. if (!kvm_regs)
  1327. goto out;
  1328. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1329. if (r)
  1330. goto out_free1;
  1331. r = -EFAULT;
  1332. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1333. goto out_free1;
  1334. r = 0;
  1335. out_free1:
  1336. kfree(kvm_regs);
  1337. break;
  1338. }
  1339. case KVM_SET_REGS: {
  1340. struct kvm_regs *kvm_regs;
  1341. r = -ENOMEM;
  1342. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1343. if (!kvm_regs)
  1344. goto out;
  1345. r = -EFAULT;
  1346. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1347. goto out_free2;
  1348. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1349. if (r)
  1350. goto out_free2;
  1351. r = 0;
  1352. out_free2:
  1353. kfree(kvm_regs);
  1354. break;
  1355. }
  1356. case KVM_GET_SREGS: {
  1357. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1358. r = -ENOMEM;
  1359. if (!kvm_sregs)
  1360. goto out;
  1361. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1362. if (r)
  1363. goto out;
  1364. r = -EFAULT;
  1365. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1366. goto out;
  1367. r = 0;
  1368. break;
  1369. }
  1370. case KVM_SET_SREGS: {
  1371. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1372. r = -ENOMEM;
  1373. if (!kvm_sregs)
  1374. goto out;
  1375. r = -EFAULT;
  1376. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1377. goto out;
  1378. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1379. if (r)
  1380. goto out;
  1381. r = 0;
  1382. break;
  1383. }
  1384. case KVM_GET_MP_STATE: {
  1385. struct kvm_mp_state mp_state;
  1386. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1387. if (r)
  1388. goto out;
  1389. r = -EFAULT;
  1390. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1391. goto out;
  1392. r = 0;
  1393. break;
  1394. }
  1395. case KVM_SET_MP_STATE: {
  1396. struct kvm_mp_state mp_state;
  1397. r = -EFAULT;
  1398. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1399. goto out;
  1400. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1401. if (r)
  1402. goto out;
  1403. r = 0;
  1404. break;
  1405. }
  1406. case KVM_TRANSLATE: {
  1407. struct kvm_translation tr;
  1408. r = -EFAULT;
  1409. if (copy_from_user(&tr, argp, sizeof tr))
  1410. goto out;
  1411. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1412. if (r)
  1413. goto out;
  1414. r = -EFAULT;
  1415. if (copy_to_user(argp, &tr, sizeof tr))
  1416. goto out;
  1417. r = 0;
  1418. break;
  1419. }
  1420. case KVM_SET_GUEST_DEBUG: {
  1421. struct kvm_guest_debug dbg;
  1422. r = -EFAULT;
  1423. if (copy_from_user(&dbg, argp, sizeof dbg))
  1424. goto out;
  1425. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1426. if (r)
  1427. goto out;
  1428. r = 0;
  1429. break;
  1430. }
  1431. case KVM_SET_SIGNAL_MASK: {
  1432. struct kvm_signal_mask __user *sigmask_arg = argp;
  1433. struct kvm_signal_mask kvm_sigmask;
  1434. sigset_t sigset, *p;
  1435. p = NULL;
  1436. if (argp) {
  1437. r = -EFAULT;
  1438. if (copy_from_user(&kvm_sigmask, argp,
  1439. sizeof kvm_sigmask))
  1440. goto out;
  1441. r = -EINVAL;
  1442. if (kvm_sigmask.len != sizeof sigset)
  1443. goto out;
  1444. r = -EFAULT;
  1445. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1446. sizeof sigset))
  1447. goto out;
  1448. p = &sigset;
  1449. }
  1450. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1451. break;
  1452. }
  1453. case KVM_GET_FPU: {
  1454. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1455. r = -ENOMEM;
  1456. if (!fpu)
  1457. goto out;
  1458. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1459. if (r)
  1460. goto out;
  1461. r = -EFAULT;
  1462. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1463. goto out;
  1464. r = 0;
  1465. break;
  1466. }
  1467. case KVM_SET_FPU: {
  1468. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1469. r = -ENOMEM;
  1470. if (!fpu)
  1471. goto out;
  1472. r = -EFAULT;
  1473. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1474. goto out;
  1475. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1476. if (r)
  1477. goto out;
  1478. r = 0;
  1479. break;
  1480. }
  1481. default:
  1482. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1483. }
  1484. out:
  1485. vcpu_put(vcpu);
  1486. kfree(fpu);
  1487. kfree(kvm_sregs);
  1488. return r;
  1489. }
  1490. static long kvm_vm_ioctl(struct file *filp,
  1491. unsigned int ioctl, unsigned long arg)
  1492. {
  1493. struct kvm *kvm = filp->private_data;
  1494. void __user *argp = (void __user *)arg;
  1495. int r;
  1496. if (kvm->mm != current->mm)
  1497. return -EIO;
  1498. switch (ioctl) {
  1499. case KVM_CREATE_VCPU:
  1500. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1501. if (r < 0)
  1502. goto out;
  1503. break;
  1504. case KVM_SET_USER_MEMORY_REGION: {
  1505. struct kvm_userspace_memory_region kvm_userspace_mem;
  1506. r = -EFAULT;
  1507. if (copy_from_user(&kvm_userspace_mem, argp,
  1508. sizeof kvm_userspace_mem))
  1509. goto out;
  1510. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1511. if (r)
  1512. goto out;
  1513. break;
  1514. }
  1515. case KVM_GET_DIRTY_LOG: {
  1516. struct kvm_dirty_log log;
  1517. r = -EFAULT;
  1518. if (copy_from_user(&log, argp, sizeof log))
  1519. goto out;
  1520. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1521. if (r)
  1522. goto out;
  1523. break;
  1524. }
  1525. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1526. case KVM_REGISTER_COALESCED_MMIO: {
  1527. struct kvm_coalesced_mmio_zone zone;
  1528. r = -EFAULT;
  1529. if (copy_from_user(&zone, argp, sizeof zone))
  1530. goto out;
  1531. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1532. if (r)
  1533. goto out;
  1534. r = 0;
  1535. break;
  1536. }
  1537. case KVM_UNREGISTER_COALESCED_MMIO: {
  1538. struct kvm_coalesced_mmio_zone zone;
  1539. r = -EFAULT;
  1540. if (copy_from_user(&zone, argp, sizeof zone))
  1541. goto out;
  1542. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1543. if (r)
  1544. goto out;
  1545. r = 0;
  1546. break;
  1547. }
  1548. #endif
  1549. case KVM_IRQFD: {
  1550. struct kvm_irqfd data;
  1551. r = -EFAULT;
  1552. if (copy_from_user(&data, argp, sizeof data))
  1553. goto out;
  1554. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1555. break;
  1556. }
  1557. case KVM_IOEVENTFD: {
  1558. struct kvm_ioeventfd data;
  1559. r = -EFAULT;
  1560. if (copy_from_user(&data, argp, sizeof data))
  1561. goto out;
  1562. r = kvm_ioeventfd(kvm, &data);
  1563. break;
  1564. }
  1565. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1566. case KVM_SET_BOOT_CPU_ID:
  1567. r = 0;
  1568. mutex_lock(&kvm->lock);
  1569. if (atomic_read(&kvm->online_vcpus) != 0)
  1570. r = -EBUSY;
  1571. else
  1572. kvm->bsp_vcpu_id = arg;
  1573. mutex_unlock(&kvm->lock);
  1574. break;
  1575. #endif
  1576. default:
  1577. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1578. if (r == -ENOTTY)
  1579. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1580. }
  1581. out:
  1582. return r;
  1583. }
  1584. #ifdef CONFIG_COMPAT
  1585. struct compat_kvm_dirty_log {
  1586. __u32 slot;
  1587. __u32 padding1;
  1588. union {
  1589. compat_uptr_t dirty_bitmap; /* one bit per page */
  1590. __u64 padding2;
  1591. };
  1592. };
  1593. static long kvm_vm_compat_ioctl(struct file *filp,
  1594. unsigned int ioctl, unsigned long arg)
  1595. {
  1596. struct kvm *kvm = filp->private_data;
  1597. int r;
  1598. if (kvm->mm != current->mm)
  1599. return -EIO;
  1600. switch (ioctl) {
  1601. case KVM_GET_DIRTY_LOG: {
  1602. struct compat_kvm_dirty_log compat_log;
  1603. struct kvm_dirty_log log;
  1604. r = -EFAULT;
  1605. if (copy_from_user(&compat_log, (void __user *)arg,
  1606. sizeof(compat_log)))
  1607. goto out;
  1608. log.slot = compat_log.slot;
  1609. log.padding1 = compat_log.padding1;
  1610. log.padding2 = compat_log.padding2;
  1611. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1612. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1613. if (r)
  1614. goto out;
  1615. break;
  1616. }
  1617. default:
  1618. r = kvm_vm_ioctl(filp, ioctl, arg);
  1619. }
  1620. out:
  1621. return r;
  1622. }
  1623. #endif
  1624. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1625. {
  1626. struct page *page[1];
  1627. unsigned long addr;
  1628. int npages;
  1629. gfn_t gfn = vmf->pgoff;
  1630. struct kvm *kvm = vma->vm_file->private_data;
  1631. addr = gfn_to_hva(kvm, gfn);
  1632. if (kvm_is_error_hva(addr))
  1633. return VM_FAULT_SIGBUS;
  1634. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1635. NULL);
  1636. if (unlikely(npages != 1))
  1637. return VM_FAULT_SIGBUS;
  1638. vmf->page = page[0];
  1639. return 0;
  1640. }
  1641. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1642. .fault = kvm_vm_fault,
  1643. };
  1644. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1645. {
  1646. vma->vm_ops = &kvm_vm_vm_ops;
  1647. return 0;
  1648. }
  1649. static struct file_operations kvm_vm_fops = {
  1650. .release = kvm_vm_release,
  1651. .unlocked_ioctl = kvm_vm_ioctl,
  1652. #ifdef CONFIG_COMPAT
  1653. .compat_ioctl = kvm_vm_compat_ioctl,
  1654. #endif
  1655. .mmap = kvm_vm_mmap,
  1656. .llseek = noop_llseek,
  1657. };
  1658. static int kvm_dev_ioctl_create_vm(void)
  1659. {
  1660. int r;
  1661. struct kvm *kvm;
  1662. kvm = kvm_create_vm();
  1663. if (IS_ERR(kvm))
  1664. return PTR_ERR(kvm);
  1665. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1666. r = kvm_coalesced_mmio_init(kvm);
  1667. if (r < 0) {
  1668. kvm_put_kvm(kvm);
  1669. return r;
  1670. }
  1671. #endif
  1672. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1673. if (r < 0)
  1674. kvm_put_kvm(kvm);
  1675. return r;
  1676. }
  1677. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1678. {
  1679. switch (arg) {
  1680. case KVM_CAP_USER_MEMORY:
  1681. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1682. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1683. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1684. case KVM_CAP_SET_BOOT_CPU_ID:
  1685. #endif
  1686. case KVM_CAP_INTERNAL_ERROR_DATA:
  1687. return 1;
  1688. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1689. case KVM_CAP_IRQ_ROUTING:
  1690. return KVM_MAX_IRQ_ROUTES;
  1691. #endif
  1692. default:
  1693. break;
  1694. }
  1695. return kvm_dev_ioctl_check_extension(arg);
  1696. }
  1697. static long kvm_dev_ioctl(struct file *filp,
  1698. unsigned int ioctl, unsigned long arg)
  1699. {
  1700. long r = -EINVAL;
  1701. switch (ioctl) {
  1702. case KVM_GET_API_VERSION:
  1703. r = -EINVAL;
  1704. if (arg)
  1705. goto out;
  1706. r = KVM_API_VERSION;
  1707. break;
  1708. case KVM_CREATE_VM:
  1709. r = -EINVAL;
  1710. if (arg)
  1711. goto out;
  1712. r = kvm_dev_ioctl_create_vm();
  1713. break;
  1714. case KVM_CHECK_EXTENSION:
  1715. r = kvm_dev_ioctl_check_extension_generic(arg);
  1716. break;
  1717. case KVM_GET_VCPU_MMAP_SIZE:
  1718. r = -EINVAL;
  1719. if (arg)
  1720. goto out;
  1721. r = PAGE_SIZE; /* struct kvm_run */
  1722. #ifdef CONFIG_X86
  1723. r += PAGE_SIZE; /* pio data page */
  1724. #endif
  1725. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1726. r += PAGE_SIZE; /* coalesced mmio ring page */
  1727. #endif
  1728. break;
  1729. case KVM_TRACE_ENABLE:
  1730. case KVM_TRACE_PAUSE:
  1731. case KVM_TRACE_DISABLE:
  1732. r = -EOPNOTSUPP;
  1733. break;
  1734. default:
  1735. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1736. }
  1737. out:
  1738. return r;
  1739. }
  1740. static struct file_operations kvm_chardev_ops = {
  1741. .unlocked_ioctl = kvm_dev_ioctl,
  1742. .compat_ioctl = kvm_dev_ioctl,
  1743. .llseek = noop_llseek,
  1744. };
  1745. static struct miscdevice kvm_dev = {
  1746. KVM_MINOR,
  1747. "kvm",
  1748. &kvm_chardev_ops,
  1749. };
  1750. static void hardware_enable(void *junk)
  1751. {
  1752. int cpu = raw_smp_processor_id();
  1753. int r;
  1754. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1755. return;
  1756. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1757. r = kvm_arch_hardware_enable(NULL);
  1758. if (r) {
  1759. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1760. atomic_inc(&hardware_enable_failed);
  1761. printk(KERN_INFO "kvm: enabling virtualization on "
  1762. "CPU%d failed\n", cpu);
  1763. }
  1764. }
  1765. static void hardware_disable(void *junk)
  1766. {
  1767. int cpu = raw_smp_processor_id();
  1768. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1769. return;
  1770. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1771. kvm_arch_hardware_disable(NULL);
  1772. }
  1773. static void hardware_disable_all_nolock(void)
  1774. {
  1775. BUG_ON(!kvm_usage_count);
  1776. kvm_usage_count--;
  1777. if (!kvm_usage_count)
  1778. on_each_cpu(hardware_disable, NULL, 1);
  1779. }
  1780. static void hardware_disable_all(void)
  1781. {
  1782. spin_lock(&kvm_lock);
  1783. hardware_disable_all_nolock();
  1784. spin_unlock(&kvm_lock);
  1785. }
  1786. static int hardware_enable_all(void)
  1787. {
  1788. int r = 0;
  1789. spin_lock(&kvm_lock);
  1790. kvm_usage_count++;
  1791. if (kvm_usage_count == 1) {
  1792. atomic_set(&hardware_enable_failed, 0);
  1793. on_each_cpu(hardware_enable, NULL, 1);
  1794. if (atomic_read(&hardware_enable_failed)) {
  1795. hardware_disable_all_nolock();
  1796. r = -EBUSY;
  1797. }
  1798. }
  1799. spin_unlock(&kvm_lock);
  1800. return r;
  1801. }
  1802. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1803. void *v)
  1804. {
  1805. int cpu = (long)v;
  1806. if (!kvm_usage_count)
  1807. return NOTIFY_OK;
  1808. val &= ~CPU_TASKS_FROZEN;
  1809. switch (val) {
  1810. case CPU_DYING:
  1811. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1812. cpu);
  1813. hardware_disable(NULL);
  1814. break;
  1815. case CPU_STARTING:
  1816. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1817. cpu);
  1818. spin_lock(&kvm_lock);
  1819. hardware_enable(NULL);
  1820. spin_unlock(&kvm_lock);
  1821. break;
  1822. }
  1823. return NOTIFY_OK;
  1824. }
  1825. asmlinkage void kvm_handle_fault_on_reboot(void)
  1826. {
  1827. if (kvm_rebooting) {
  1828. /* spin while reset goes on */
  1829. local_irq_enable();
  1830. while (true)
  1831. cpu_relax();
  1832. }
  1833. /* Fault while not rebooting. We want the trace. */
  1834. BUG();
  1835. }
  1836. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1837. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1838. void *v)
  1839. {
  1840. /*
  1841. * Some (well, at least mine) BIOSes hang on reboot if
  1842. * in vmx root mode.
  1843. *
  1844. * And Intel TXT required VMX off for all cpu when system shutdown.
  1845. */
  1846. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1847. kvm_rebooting = true;
  1848. on_each_cpu(hardware_disable, NULL, 1);
  1849. return NOTIFY_OK;
  1850. }
  1851. static struct notifier_block kvm_reboot_notifier = {
  1852. .notifier_call = kvm_reboot,
  1853. .priority = 0,
  1854. };
  1855. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1856. {
  1857. int i;
  1858. for (i = 0; i < bus->dev_count; i++) {
  1859. struct kvm_io_device *pos = bus->devs[i];
  1860. kvm_iodevice_destructor(pos);
  1861. }
  1862. kfree(bus);
  1863. }
  1864. /* kvm_io_bus_write - called under kvm->slots_lock */
  1865. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1866. int len, const void *val)
  1867. {
  1868. int i;
  1869. struct kvm_io_bus *bus;
  1870. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1871. for (i = 0; i < bus->dev_count; i++)
  1872. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1873. return 0;
  1874. return -EOPNOTSUPP;
  1875. }
  1876. /* kvm_io_bus_read - called under kvm->slots_lock */
  1877. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1878. int len, void *val)
  1879. {
  1880. int i;
  1881. struct kvm_io_bus *bus;
  1882. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1883. for (i = 0; i < bus->dev_count; i++)
  1884. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1885. return 0;
  1886. return -EOPNOTSUPP;
  1887. }
  1888. /* Caller must hold slots_lock. */
  1889. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1890. struct kvm_io_device *dev)
  1891. {
  1892. struct kvm_io_bus *new_bus, *bus;
  1893. bus = kvm->buses[bus_idx];
  1894. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1895. return -ENOSPC;
  1896. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1897. if (!new_bus)
  1898. return -ENOMEM;
  1899. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1900. new_bus->devs[new_bus->dev_count++] = dev;
  1901. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1902. synchronize_srcu_expedited(&kvm->srcu);
  1903. kfree(bus);
  1904. return 0;
  1905. }
  1906. /* Caller must hold slots_lock. */
  1907. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1908. struct kvm_io_device *dev)
  1909. {
  1910. int i, r;
  1911. struct kvm_io_bus *new_bus, *bus;
  1912. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1913. if (!new_bus)
  1914. return -ENOMEM;
  1915. bus = kvm->buses[bus_idx];
  1916. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1917. r = -ENOENT;
  1918. for (i = 0; i < new_bus->dev_count; i++)
  1919. if (new_bus->devs[i] == dev) {
  1920. r = 0;
  1921. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1922. break;
  1923. }
  1924. if (r) {
  1925. kfree(new_bus);
  1926. return r;
  1927. }
  1928. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1929. synchronize_srcu_expedited(&kvm->srcu);
  1930. kfree(bus);
  1931. return r;
  1932. }
  1933. static struct notifier_block kvm_cpu_notifier = {
  1934. .notifier_call = kvm_cpu_hotplug,
  1935. };
  1936. static int vm_stat_get(void *_offset, u64 *val)
  1937. {
  1938. unsigned offset = (long)_offset;
  1939. struct kvm *kvm;
  1940. *val = 0;
  1941. spin_lock(&kvm_lock);
  1942. list_for_each_entry(kvm, &vm_list, vm_list)
  1943. *val += *(u32 *)((void *)kvm + offset);
  1944. spin_unlock(&kvm_lock);
  1945. return 0;
  1946. }
  1947. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1948. static int vcpu_stat_get(void *_offset, u64 *val)
  1949. {
  1950. unsigned offset = (long)_offset;
  1951. struct kvm *kvm;
  1952. struct kvm_vcpu *vcpu;
  1953. int i;
  1954. *val = 0;
  1955. spin_lock(&kvm_lock);
  1956. list_for_each_entry(kvm, &vm_list, vm_list)
  1957. kvm_for_each_vcpu(i, vcpu, kvm)
  1958. *val += *(u32 *)((void *)vcpu + offset);
  1959. spin_unlock(&kvm_lock);
  1960. return 0;
  1961. }
  1962. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1963. static const struct file_operations *stat_fops[] = {
  1964. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1965. [KVM_STAT_VM] = &vm_stat_fops,
  1966. };
  1967. static void kvm_init_debug(void)
  1968. {
  1969. struct kvm_stats_debugfs_item *p;
  1970. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1971. for (p = debugfs_entries; p->name; ++p)
  1972. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1973. (void *)(long)p->offset,
  1974. stat_fops[p->kind]);
  1975. }
  1976. static void kvm_exit_debug(void)
  1977. {
  1978. struct kvm_stats_debugfs_item *p;
  1979. for (p = debugfs_entries; p->name; ++p)
  1980. debugfs_remove(p->dentry);
  1981. debugfs_remove(kvm_debugfs_dir);
  1982. }
  1983. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1984. {
  1985. if (kvm_usage_count)
  1986. hardware_disable(NULL);
  1987. return 0;
  1988. }
  1989. static int kvm_resume(struct sys_device *dev)
  1990. {
  1991. if (kvm_usage_count) {
  1992. WARN_ON(spin_is_locked(&kvm_lock));
  1993. hardware_enable(NULL);
  1994. }
  1995. return 0;
  1996. }
  1997. static struct sysdev_class kvm_sysdev_class = {
  1998. .name = "kvm",
  1999. .suspend = kvm_suspend,
  2000. .resume = kvm_resume,
  2001. };
  2002. static struct sys_device kvm_sysdev = {
  2003. .id = 0,
  2004. .cls = &kvm_sysdev_class,
  2005. };
  2006. struct page *bad_page;
  2007. pfn_t bad_pfn;
  2008. static inline
  2009. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2010. {
  2011. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2012. }
  2013. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2014. {
  2015. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2016. kvm_arch_vcpu_load(vcpu, cpu);
  2017. }
  2018. static void kvm_sched_out(struct preempt_notifier *pn,
  2019. struct task_struct *next)
  2020. {
  2021. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2022. kvm_arch_vcpu_put(vcpu);
  2023. }
  2024. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2025. struct module *module)
  2026. {
  2027. int r;
  2028. int cpu;
  2029. r = kvm_arch_init(opaque);
  2030. if (r)
  2031. goto out_fail;
  2032. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2033. if (bad_page == NULL) {
  2034. r = -ENOMEM;
  2035. goto out;
  2036. }
  2037. bad_pfn = page_to_pfn(bad_page);
  2038. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2039. if (hwpoison_page == NULL) {
  2040. r = -ENOMEM;
  2041. goto out_free_0;
  2042. }
  2043. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2044. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2045. if (fault_page == NULL) {
  2046. r = -ENOMEM;
  2047. goto out_free_0;
  2048. }
  2049. fault_pfn = page_to_pfn(fault_page);
  2050. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2051. r = -ENOMEM;
  2052. goto out_free_0;
  2053. }
  2054. r = kvm_arch_hardware_setup();
  2055. if (r < 0)
  2056. goto out_free_0a;
  2057. for_each_online_cpu(cpu) {
  2058. smp_call_function_single(cpu,
  2059. kvm_arch_check_processor_compat,
  2060. &r, 1);
  2061. if (r < 0)
  2062. goto out_free_1;
  2063. }
  2064. r = register_cpu_notifier(&kvm_cpu_notifier);
  2065. if (r)
  2066. goto out_free_2;
  2067. register_reboot_notifier(&kvm_reboot_notifier);
  2068. r = sysdev_class_register(&kvm_sysdev_class);
  2069. if (r)
  2070. goto out_free_3;
  2071. r = sysdev_register(&kvm_sysdev);
  2072. if (r)
  2073. goto out_free_4;
  2074. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2075. if (!vcpu_align)
  2076. vcpu_align = __alignof__(struct kvm_vcpu);
  2077. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2078. 0, NULL);
  2079. if (!kvm_vcpu_cache) {
  2080. r = -ENOMEM;
  2081. goto out_free_5;
  2082. }
  2083. r = kvm_async_pf_init();
  2084. if (r)
  2085. goto out_free;
  2086. kvm_chardev_ops.owner = module;
  2087. kvm_vm_fops.owner = module;
  2088. kvm_vcpu_fops.owner = module;
  2089. r = misc_register(&kvm_dev);
  2090. if (r) {
  2091. printk(KERN_ERR "kvm: misc device register failed\n");
  2092. goto out_unreg;
  2093. }
  2094. kvm_preempt_ops.sched_in = kvm_sched_in;
  2095. kvm_preempt_ops.sched_out = kvm_sched_out;
  2096. kvm_init_debug();
  2097. return 0;
  2098. out_unreg:
  2099. kvm_async_pf_deinit();
  2100. out_free:
  2101. kmem_cache_destroy(kvm_vcpu_cache);
  2102. out_free_5:
  2103. sysdev_unregister(&kvm_sysdev);
  2104. out_free_4:
  2105. sysdev_class_unregister(&kvm_sysdev_class);
  2106. out_free_3:
  2107. unregister_reboot_notifier(&kvm_reboot_notifier);
  2108. unregister_cpu_notifier(&kvm_cpu_notifier);
  2109. out_free_2:
  2110. out_free_1:
  2111. kvm_arch_hardware_unsetup();
  2112. out_free_0a:
  2113. free_cpumask_var(cpus_hardware_enabled);
  2114. out_free_0:
  2115. if (fault_page)
  2116. __free_page(fault_page);
  2117. if (hwpoison_page)
  2118. __free_page(hwpoison_page);
  2119. __free_page(bad_page);
  2120. out:
  2121. kvm_arch_exit();
  2122. out_fail:
  2123. return r;
  2124. }
  2125. EXPORT_SYMBOL_GPL(kvm_init);
  2126. void kvm_exit(void)
  2127. {
  2128. kvm_exit_debug();
  2129. misc_deregister(&kvm_dev);
  2130. kmem_cache_destroy(kvm_vcpu_cache);
  2131. kvm_async_pf_deinit();
  2132. sysdev_unregister(&kvm_sysdev);
  2133. sysdev_class_unregister(&kvm_sysdev_class);
  2134. unregister_reboot_notifier(&kvm_reboot_notifier);
  2135. unregister_cpu_notifier(&kvm_cpu_notifier);
  2136. on_each_cpu(hardware_disable, NULL, 1);
  2137. kvm_arch_hardware_unsetup();
  2138. kvm_arch_exit();
  2139. free_cpumask_var(cpus_hardware_enabled);
  2140. __free_page(hwpoison_page);
  2141. __free_page(bad_page);
  2142. }
  2143. EXPORT_SYMBOL_GPL(kvm_exit);