slub.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. #include "internal.h"
  35. /*
  36. * Lock order:
  37. * 1. slab_mutex (Global Mutex)
  38. * 2. node->list_lock
  39. * 3. slab_lock(page) (Only on some arches and for debugging)
  40. *
  41. * slab_mutex
  42. *
  43. * The role of the slab_mutex is to protect the list of all the slabs
  44. * and to synchronize major metadata changes to slab cache structures.
  45. *
  46. * The slab_lock is only used for debugging and on arches that do not
  47. * have the ability to do a cmpxchg_double. It only protects the second
  48. * double word in the page struct. Meaning
  49. * A. page->freelist -> List of object free in a page
  50. * B. page->counters -> Counters of objects
  51. * C. page->frozen -> frozen state
  52. *
  53. * If a slab is frozen then it is exempt from list management. It is not
  54. * on any list. The processor that froze the slab is the one who can
  55. * perform list operations on the page. Other processors may put objects
  56. * onto the freelist but the processor that froze the slab is the only
  57. * one that can retrieve the objects from the page's freelist.
  58. *
  59. * The list_lock protects the partial and full list on each node and
  60. * the partial slab counter. If taken then no new slabs may be added or
  61. * removed from the lists nor make the number of partial slabs be modified.
  62. * (Note that the total number of slabs is an atomic value that may be
  63. * modified without taking the list lock).
  64. *
  65. * The list_lock is a centralized lock and thus we avoid taking it as
  66. * much as possible. As long as SLUB does not have to handle partial
  67. * slabs, operations can continue without any centralized lock. F.e.
  68. * allocating a long series of objects that fill up slabs does not require
  69. * the list lock.
  70. * Interrupts are disabled during allocation and deallocation in order to
  71. * make the slab allocator safe to use in the context of an irq. In addition
  72. * interrupts are disabled to ensure that the processor does not change
  73. * while handling per_cpu slabs, due to kernel preemption.
  74. *
  75. * SLUB assigns one slab for allocation to each processor.
  76. * Allocations only occur from these slabs called cpu slabs.
  77. *
  78. * Slabs with free elements are kept on a partial list and during regular
  79. * operations no list for full slabs is used. If an object in a full slab is
  80. * freed then the slab will show up again on the partial lists.
  81. * We track full slabs for debugging purposes though because otherwise we
  82. * cannot scan all objects.
  83. *
  84. * Slabs are freed when they become empty. Teardown and setup is
  85. * minimal so we rely on the page allocators per cpu caches for
  86. * fast frees and allocs.
  87. *
  88. * Overloading of page flags that are otherwise used for LRU management.
  89. *
  90. * PageActive The slab is frozen and exempt from list processing.
  91. * This means that the slab is dedicated to a purpose
  92. * such as satisfying allocations for a specific
  93. * processor. Objects may be freed in the slab while
  94. * it is frozen but slab_free will then skip the usual
  95. * list operations. It is up to the processor holding
  96. * the slab to integrate the slab into the slab lists
  97. * when the slab is no longer needed.
  98. *
  99. * One use of this flag is to mark slabs that are
  100. * used for allocations. Then such a slab becomes a cpu
  101. * slab. The cpu slab may be equipped with an additional
  102. * freelist that allows lockless access to
  103. * free objects in addition to the regular freelist
  104. * that requires the slab lock.
  105. *
  106. * PageError Slab requires special handling due to debug
  107. * options set. This moves slab handling out of
  108. * the fast path and disables lockless freelists.
  109. */
  110. static inline int kmem_cache_debug(struct kmem_cache *s)
  111. {
  112. #ifdef CONFIG_SLUB_DEBUG
  113. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  114. #else
  115. return 0;
  116. #endif
  117. }
  118. /*
  119. * Issues still to be resolved:
  120. *
  121. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  122. *
  123. * - Variable sizing of the per node arrays
  124. */
  125. /* Enable to test recovery from slab corruption on boot */
  126. #undef SLUB_RESILIENCY_TEST
  127. /* Enable to log cmpxchg failures */
  128. #undef SLUB_DEBUG_CMPXCHG
  129. /*
  130. * Mininum number of partial slabs. These will be left on the partial
  131. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  132. */
  133. #define MIN_PARTIAL 5
  134. /*
  135. * Maximum number of desirable partial slabs.
  136. * The existence of more partial slabs makes kmem_cache_shrink
  137. * sort the partial list by the number of objects in the.
  138. */
  139. #define MAX_PARTIAL 10
  140. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  141. SLAB_POISON | SLAB_STORE_USER)
  142. /*
  143. * Debugging flags that require metadata to be stored in the slab. These get
  144. * disabled when slub_debug=O is used and a cache's min order increases with
  145. * metadata.
  146. */
  147. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  148. /*
  149. * Set of flags that will prevent slab merging
  150. */
  151. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  152. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  153. SLAB_FAILSLAB)
  154. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  155. SLAB_CACHE_DMA | SLAB_NOTRACK)
  156. #define OO_SHIFT 16
  157. #define OO_MASK ((1 << OO_SHIFT) - 1)
  158. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  159. /* Internal SLUB flags */
  160. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  161. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  162. static int kmem_size = sizeof(struct kmem_cache);
  163. #ifdef CONFIG_SMP
  164. static struct notifier_block slab_notifier;
  165. #endif
  166. /*
  167. * Tracking user of a slab.
  168. */
  169. #define TRACK_ADDRS_COUNT 16
  170. struct track {
  171. unsigned long addr; /* Called from address */
  172. #ifdef CONFIG_STACKTRACE
  173. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  174. #endif
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SYSFS
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. #else
  185. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  186. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  187. { return 0; }
  188. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  189. #endif
  190. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  191. {
  192. #ifdef CONFIG_SLUB_STATS
  193. __this_cpu_inc(s->cpu_slab->stat[si]);
  194. #endif
  195. }
  196. /********************************************************************
  197. * Core slab cache functions
  198. *******************************************************************/
  199. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  200. {
  201. return s->node[node];
  202. }
  203. /* Verify that a pointer has an address that is valid within a slab page */
  204. static inline int check_valid_pointer(struct kmem_cache *s,
  205. struct page *page, const void *object)
  206. {
  207. void *base;
  208. if (!object)
  209. return 1;
  210. base = page_address(page);
  211. if (object < base || object >= base + page->objects * s->size ||
  212. (object - base) % s->size) {
  213. return 0;
  214. }
  215. return 1;
  216. }
  217. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  218. {
  219. return *(void **)(object + s->offset);
  220. }
  221. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  222. {
  223. prefetch(object + s->offset);
  224. }
  225. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  226. {
  227. void *p;
  228. #ifdef CONFIG_DEBUG_PAGEALLOC
  229. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  230. #else
  231. p = get_freepointer(s, object);
  232. #endif
  233. return p;
  234. }
  235. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  236. {
  237. *(void **)(object + s->offset) = fp;
  238. }
  239. /* Loop over all objects in a slab */
  240. #define for_each_object(__p, __s, __addr, __objects) \
  241. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  242. __p += (__s)->size)
  243. /* Determine object index from a given position */
  244. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  245. {
  246. return (p - addr) / s->size;
  247. }
  248. static inline size_t slab_ksize(const struct kmem_cache *s)
  249. {
  250. #ifdef CONFIG_SLUB_DEBUG
  251. /*
  252. * Debugging requires use of the padding between object
  253. * and whatever may come after it.
  254. */
  255. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  256. return s->object_size;
  257. #endif
  258. /*
  259. * If we have the need to store the freelist pointer
  260. * back there or track user information then we can
  261. * only use the space before that information.
  262. */
  263. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  264. return s->inuse;
  265. /*
  266. * Else we can use all the padding etc for the allocation
  267. */
  268. return s->size;
  269. }
  270. static inline int order_objects(int order, unsigned long size, int reserved)
  271. {
  272. return ((PAGE_SIZE << order) - reserved) / size;
  273. }
  274. static inline struct kmem_cache_order_objects oo_make(int order,
  275. unsigned long size, int reserved)
  276. {
  277. struct kmem_cache_order_objects x = {
  278. (order << OO_SHIFT) + order_objects(order, size, reserved)
  279. };
  280. return x;
  281. }
  282. static inline int oo_order(struct kmem_cache_order_objects x)
  283. {
  284. return x.x >> OO_SHIFT;
  285. }
  286. static inline int oo_objects(struct kmem_cache_order_objects x)
  287. {
  288. return x.x & OO_MASK;
  289. }
  290. /*
  291. * Per slab locking using the pagelock
  292. */
  293. static __always_inline void slab_lock(struct page *page)
  294. {
  295. bit_spin_lock(PG_locked, &page->flags);
  296. }
  297. static __always_inline void slab_unlock(struct page *page)
  298. {
  299. __bit_spin_unlock(PG_locked, &page->flags);
  300. }
  301. /* Interrupts must be disabled (for the fallback code to work right) */
  302. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  303. void *freelist_old, unsigned long counters_old,
  304. void *freelist_new, unsigned long counters_new,
  305. const char *n)
  306. {
  307. VM_BUG_ON(!irqs_disabled());
  308. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  309. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  310. if (s->flags & __CMPXCHG_DOUBLE) {
  311. if (cmpxchg_double(&page->freelist, &page->counters,
  312. freelist_old, counters_old,
  313. freelist_new, counters_new))
  314. return 1;
  315. } else
  316. #endif
  317. {
  318. slab_lock(page);
  319. if (page->freelist == freelist_old && page->counters == counters_old) {
  320. page->freelist = freelist_new;
  321. page->counters = counters_new;
  322. slab_unlock(page);
  323. return 1;
  324. }
  325. slab_unlock(page);
  326. }
  327. cpu_relax();
  328. stat(s, CMPXCHG_DOUBLE_FAIL);
  329. #ifdef SLUB_DEBUG_CMPXCHG
  330. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  331. #endif
  332. return 0;
  333. }
  334. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  335. void *freelist_old, unsigned long counters_old,
  336. void *freelist_new, unsigned long counters_new,
  337. const char *n)
  338. {
  339. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  340. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  341. if (s->flags & __CMPXCHG_DOUBLE) {
  342. if (cmpxchg_double(&page->freelist, &page->counters,
  343. freelist_old, counters_old,
  344. freelist_new, counters_new))
  345. return 1;
  346. } else
  347. #endif
  348. {
  349. unsigned long flags;
  350. local_irq_save(flags);
  351. slab_lock(page);
  352. if (page->freelist == freelist_old && page->counters == counters_old) {
  353. page->freelist = freelist_new;
  354. page->counters = counters_new;
  355. slab_unlock(page);
  356. local_irq_restore(flags);
  357. return 1;
  358. }
  359. slab_unlock(page);
  360. local_irq_restore(flags);
  361. }
  362. cpu_relax();
  363. stat(s, CMPXCHG_DOUBLE_FAIL);
  364. #ifdef SLUB_DEBUG_CMPXCHG
  365. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  366. #endif
  367. return 0;
  368. }
  369. #ifdef CONFIG_SLUB_DEBUG
  370. /*
  371. * Determine a map of object in use on a page.
  372. *
  373. * Node listlock must be held to guarantee that the page does
  374. * not vanish from under us.
  375. */
  376. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  377. {
  378. void *p;
  379. void *addr = page_address(page);
  380. for (p = page->freelist; p; p = get_freepointer(s, p))
  381. set_bit(slab_index(p, s, addr), map);
  382. }
  383. /*
  384. * Debug settings:
  385. */
  386. #ifdef CONFIG_SLUB_DEBUG_ON
  387. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  388. #else
  389. static int slub_debug;
  390. #endif
  391. static char *slub_debug_slabs;
  392. static int disable_higher_order_debug;
  393. /*
  394. * Object debugging
  395. */
  396. static void print_section(char *text, u8 *addr, unsigned int length)
  397. {
  398. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  399. length, 1);
  400. }
  401. static struct track *get_track(struct kmem_cache *s, void *object,
  402. enum track_item alloc)
  403. {
  404. struct track *p;
  405. if (s->offset)
  406. p = object + s->offset + sizeof(void *);
  407. else
  408. p = object + s->inuse;
  409. return p + alloc;
  410. }
  411. static void set_track(struct kmem_cache *s, void *object,
  412. enum track_item alloc, unsigned long addr)
  413. {
  414. struct track *p = get_track(s, object, alloc);
  415. if (addr) {
  416. #ifdef CONFIG_STACKTRACE
  417. struct stack_trace trace;
  418. int i;
  419. trace.nr_entries = 0;
  420. trace.max_entries = TRACK_ADDRS_COUNT;
  421. trace.entries = p->addrs;
  422. trace.skip = 3;
  423. save_stack_trace(&trace);
  424. /* See rant in lockdep.c */
  425. if (trace.nr_entries != 0 &&
  426. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  427. trace.nr_entries--;
  428. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  429. p->addrs[i] = 0;
  430. #endif
  431. p->addr = addr;
  432. p->cpu = smp_processor_id();
  433. p->pid = current->pid;
  434. p->when = jiffies;
  435. } else
  436. memset(p, 0, sizeof(struct track));
  437. }
  438. static void init_tracking(struct kmem_cache *s, void *object)
  439. {
  440. if (!(s->flags & SLAB_STORE_USER))
  441. return;
  442. set_track(s, object, TRACK_FREE, 0UL);
  443. set_track(s, object, TRACK_ALLOC, 0UL);
  444. }
  445. static void print_track(const char *s, struct track *t)
  446. {
  447. if (!t->addr)
  448. return;
  449. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  450. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  451. #ifdef CONFIG_STACKTRACE
  452. {
  453. int i;
  454. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  455. if (t->addrs[i])
  456. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  457. else
  458. break;
  459. }
  460. #endif
  461. }
  462. static void print_tracking(struct kmem_cache *s, void *object)
  463. {
  464. if (!(s->flags & SLAB_STORE_USER))
  465. return;
  466. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  467. print_track("Freed", get_track(s, object, TRACK_FREE));
  468. }
  469. static void print_page_info(struct page *page)
  470. {
  471. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  472. page, page->objects, page->inuse, page->freelist, page->flags);
  473. }
  474. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  475. {
  476. va_list args;
  477. char buf[100];
  478. va_start(args, fmt);
  479. vsnprintf(buf, sizeof(buf), fmt, args);
  480. va_end(args);
  481. printk(KERN_ERR "========================================"
  482. "=====================================\n");
  483. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  484. printk(KERN_ERR "----------------------------------------"
  485. "-------------------------------------\n\n");
  486. add_taint(TAINT_BAD_PAGE);
  487. }
  488. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  489. {
  490. va_list args;
  491. char buf[100];
  492. va_start(args, fmt);
  493. vsnprintf(buf, sizeof(buf), fmt, args);
  494. va_end(args);
  495. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  496. }
  497. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  498. {
  499. unsigned int off; /* Offset of last byte */
  500. u8 *addr = page_address(page);
  501. print_tracking(s, p);
  502. print_page_info(page);
  503. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  504. p, p - addr, get_freepointer(s, p));
  505. if (p > addr + 16)
  506. print_section("Bytes b4 ", p - 16, 16);
  507. print_section("Object ", p, min_t(unsigned long, s->object_size,
  508. PAGE_SIZE));
  509. if (s->flags & SLAB_RED_ZONE)
  510. print_section("Redzone ", p + s->object_size,
  511. s->inuse - s->object_size);
  512. if (s->offset)
  513. off = s->offset + sizeof(void *);
  514. else
  515. off = s->inuse;
  516. if (s->flags & SLAB_STORE_USER)
  517. off += 2 * sizeof(struct track);
  518. if (off != s->size)
  519. /* Beginning of the filler is the free pointer */
  520. print_section("Padding ", p + off, s->size - off);
  521. dump_stack();
  522. }
  523. static void object_err(struct kmem_cache *s, struct page *page,
  524. u8 *object, char *reason)
  525. {
  526. slab_bug(s, "%s", reason);
  527. print_trailer(s, page, object);
  528. }
  529. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  530. {
  531. va_list args;
  532. char buf[100];
  533. va_start(args, fmt);
  534. vsnprintf(buf, sizeof(buf), fmt, args);
  535. va_end(args);
  536. slab_bug(s, "%s", buf);
  537. print_page_info(page);
  538. dump_stack();
  539. }
  540. static void init_object(struct kmem_cache *s, void *object, u8 val)
  541. {
  542. u8 *p = object;
  543. if (s->flags & __OBJECT_POISON) {
  544. memset(p, POISON_FREE, s->object_size - 1);
  545. p[s->object_size - 1] = POISON_END;
  546. }
  547. if (s->flags & SLAB_RED_ZONE)
  548. memset(p + s->object_size, val, s->inuse - s->object_size);
  549. }
  550. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  551. void *from, void *to)
  552. {
  553. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  554. memset(from, data, to - from);
  555. }
  556. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  557. u8 *object, char *what,
  558. u8 *start, unsigned int value, unsigned int bytes)
  559. {
  560. u8 *fault;
  561. u8 *end;
  562. fault = memchr_inv(start, value, bytes);
  563. if (!fault)
  564. return 1;
  565. end = start + bytes;
  566. while (end > fault && end[-1] == value)
  567. end--;
  568. slab_bug(s, "%s overwritten", what);
  569. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  570. fault, end - 1, fault[0], value);
  571. print_trailer(s, page, object);
  572. restore_bytes(s, what, value, fault, end);
  573. return 0;
  574. }
  575. /*
  576. * Object layout:
  577. *
  578. * object address
  579. * Bytes of the object to be managed.
  580. * If the freepointer may overlay the object then the free
  581. * pointer is the first word of the object.
  582. *
  583. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  584. * 0xa5 (POISON_END)
  585. *
  586. * object + s->object_size
  587. * Padding to reach word boundary. This is also used for Redzoning.
  588. * Padding is extended by another word if Redzoning is enabled and
  589. * object_size == inuse.
  590. *
  591. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  592. * 0xcc (RED_ACTIVE) for objects in use.
  593. *
  594. * object + s->inuse
  595. * Meta data starts here.
  596. *
  597. * A. Free pointer (if we cannot overwrite object on free)
  598. * B. Tracking data for SLAB_STORE_USER
  599. * C. Padding to reach required alignment boundary or at mininum
  600. * one word if debugging is on to be able to detect writes
  601. * before the word boundary.
  602. *
  603. * Padding is done using 0x5a (POISON_INUSE)
  604. *
  605. * object + s->size
  606. * Nothing is used beyond s->size.
  607. *
  608. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  609. * ignored. And therefore no slab options that rely on these boundaries
  610. * may be used with merged slabcaches.
  611. */
  612. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  613. {
  614. unsigned long off = s->inuse; /* The end of info */
  615. if (s->offset)
  616. /* Freepointer is placed after the object. */
  617. off += sizeof(void *);
  618. if (s->flags & SLAB_STORE_USER)
  619. /* We also have user information there */
  620. off += 2 * sizeof(struct track);
  621. if (s->size == off)
  622. return 1;
  623. return check_bytes_and_report(s, page, p, "Object padding",
  624. p + off, POISON_INUSE, s->size - off);
  625. }
  626. /* Check the pad bytes at the end of a slab page */
  627. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  628. {
  629. u8 *start;
  630. u8 *fault;
  631. u8 *end;
  632. int length;
  633. int remainder;
  634. if (!(s->flags & SLAB_POISON))
  635. return 1;
  636. start = page_address(page);
  637. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  638. end = start + length;
  639. remainder = length % s->size;
  640. if (!remainder)
  641. return 1;
  642. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  643. if (!fault)
  644. return 1;
  645. while (end > fault && end[-1] == POISON_INUSE)
  646. end--;
  647. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  648. print_section("Padding ", end - remainder, remainder);
  649. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  650. return 0;
  651. }
  652. static int check_object(struct kmem_cache *s, struct page *page,
  653. void *object, u8 val)
  654. {
  655. u8 *p = object;
  656. u8 *endobject = object + s->object_size;
  657. if (s->flags & SLAB_RED_ZONE) {
  658. if (!check_bytes_and_report(s, page, object, "Redzone",
  659. endobject, val, s->inuse - s->object_size))
  660. return 0;
  661. } else {
  662. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  663. check_bytes_and_report(s, page, p, "Alignment padding",
  664. endobject, POISON_INUSE, s->inuse - s->object_size);
  665. }
  666. }
  667. if (s->flags & SLAB_POISON) {
  668. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  669. (!check_bytes_and_report(s, page, p, "Poison", p,
  670. POISON_FREE, s->object_size - 1) ||
  671. !check_bytes_and_report(s, page, p, "Poison",
  672. p + s->object_size - 1, POISON_END, 1)))
  673. return 0;
  674. /*
  675. * check_pad_bytes cleans up on its own.
  676. */
  677. check_pad_bytes(s, page, p);
  678. }
  679. if (!s->offset && val == SLUB_RED_ACTIVE)
  680. /*
  681. * Object and freepointer overlap. Cannot check
  682. * freepointer while object is allocated.
  683. */
  684. return 1;
  685. /* Check free pointer validity */
  686. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  687. object_err(s, page, p, "Freepointer corrupt");
  688. /*
  689. * No choice but to zap it and thus lose the remainder
  690. * of the free objects in this slab. May cause
  691. * another error because the object count is now wrong.
  692. */
  693. set_freepointer(s, p, NULL);
  694. return 0;
  695. }
  696. return 1;
  697. }
  698. static int check_slab(struct kmem_cache *s, struct page *page)
  699. {
  700. int maxobj;
  701. VM_BUG_ON(!irqs_disabled());
  702. if (!PageSlab(page)) {
  703. slab_err(s, page, "Not a valid slab page");
  704. return 0;
  705. }
  706. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  707. if (page->objects > maxobj) {
  708. slab_err(s, page, "objects %u > max %u",
  709. s->name, page->objects, maxobj);
  710. return 0;
  711. }
  712. if (page->inuse > page->objects) {
  713. slab_err(s, page, "inuse %u > max %u",
  714. s->name, page->inuse, page->objects);
  715. return 0;
  716. }
  717. /* Slab_pad_check fixes things up after itself */
  718. slab_pad_check(s, page);
  719. return 1;
  720. }
  721. /*
  722. * Determine if a certain object on a page is on the freelist. Must hold the
  723. * slab lock to guarantee that the chains are in a consistent state.
  724. */
  725. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  726. {
  727. int nr = 0;
  728. void *fp;
  729. void *object = NULL;
  730. unsigned long max_objects;
  731. fp = page->freelist;
  732. while (fp && nr <= page->objects) {
  733. if (fp == search)
  734. return 1;
  735. if (!check_valid_pointer(s, page, fp)) {
  736. if (object) {
  737. object_err(s, page, object,
  738. "Freechain corrupt");
  739. set_freepointer(s, object, NULL);
  740. break;
  741. } else {
  742. slab_err(s, page, "Freepointer corrupt");
  743. page->freelist = NULL;
  744. page->inuse = page->objects;
  745. slab_fix(s, "Freelist cleared");
  746. return 0;
  747. }
  748. break;
  749. }
  750. object = fp;
  751. fp = get_freepointer(s, object);
  752. nr++;
  753. }
  754. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  755. if (max_objects > MAX_OBJS_PER_PAGE)
  756. max_objects = MAX_OBJS_PER_PAGE;
  757. if (page->objects != max_objects) {
  758. slab_err(s, page, "Wrong number of objects. Found %d but "
  759. "should be %d", page->objects, max_objects);
  760. page->objects = max_objects;
  761. slab_fix(s, "Number of objects adjusted.");
  762. }
  763. if (page->inuse != page->objects - nr) {
  764. slab_err(s, page, "Wrong object count. Counter is %d but "
  765. "counted were %d", page->inuse, page->objects - nr);
  766. page->inuse = page->objects - nr;
  767. slab_fix(s, "Object count adjusted.");
  768. }
  769. return search == NULL;
  770. }
  771. static void trace(struct kmem_cache *s, struct page *page, void *object,
  772. int alloc)
  773. {
  774. if (s->flags & SLAB_TRACE) {
  775. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  776. s->name,
  777. alloc ? "alloc" : "free",
  778. object, page->inuse,
  779. page->freelist);
  780. if (!alloc)
  781. print_section("Object ", (void *)object, s->object_size);
  782. dump_stack();
  783. }
  784. }
  785. /*
  786. * Hooks for other subsystems that check memory allocations. In a typical
  787. * production configuration these hooks all should produce no code at all.
  788. */
  789. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  790. {
  791. flags &= gfp_allowed_mask;
  792. lockdep_trace_alloc(flags);
  793. might_sleep_if(flags & __GFP_WAIT);
  794. return should_failslab(s->object_size, flags, s->flags);
  795. }
  796. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  797. {
  798. flags &= gfp_allowed_mask;
  799. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  800. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  801. }
  802. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  803. {
  804. kmemleak_free_recursive(x, s->flags);
  805. /*
  806. * Trouble is that we may no longer disable interupts in the fast path
  807. * So in order to make the debug calls that expect irqs to be
  808. * disabled we need to disable interrupts temporarily.
  809. */
  810. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  811. {
  812. unsigned long flags;
  813. local_irq_save(flags);
  814. kmemcheck_slab_free(s, x, s->object_size);
  815. debug_check_no_locks_freed(x, s->object_size);
  816. local_irq_restore(flags);
  817. }
  818. #endif
  819. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  820. debug_check_no_obj_freed(x, s->object_size);
  821. }
  822. /*
  823. * Tracking of fully allocated slabs for debugging purposes.
  824. *
  825. * list_lock must be held.
  826. */
  827. static void add_full(struct kmem_cache *s,
  828. struct kmem_cache_node *n, struct page *page)
  829. {
  830. if (!(s->flags & SLAB_STORE_USER))
  831. return;
  832. list_add(&page->lru, &n->full);
  833. }
  834. /*
  835. * list_lock must be held.
  836. */
  837. static void remove_full(struct kmem_cache *s, struct page *page)
  838. {
  839. if (!(s->flags & SLAB_STORE_USER))
  840. return;
  841. list_del(&page->lru);
  842. }
  843. /* Tracking of the number of slabs for debugging purposes */
  844. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  845. {
  846. struct kmem_cache_node *n = get_node(s, node);
  847. return atomic_long_read(&n->nr_slabs);
  848. }
  849. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  850. {
  851. return atomic_long_read(&n->nr_slabs);
  852. }
  853. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  854. {
  855. struct kmem_cache_node *n = get_node(s, node);
  856. /*
  857. * May be called early in order to allocate a slab for the
  858. * kmem_cache_node structure. Solve the chicken-egg
  859. * dilemma by deferring the increment of the count during
  860. * bootstrap (see early_kmem_cache_node_alloc).
  861. */
  862. if (n) {
  863. atomic_long_inc(&n->nr_slabs);
  864. atomic_long_add(objects, &n->total_objects);
  865. }
  866. }
  867. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  868. {
  869. struct kmem_cache_node *n = get_node(s, node);
  870. atomic_long_dec(&n->nr_slabs);
  871. atomic_long_sub(objects, &n->total_objects);
  872. }
  873. /* Object debug checks for alloc/free paths */
  874. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  875. void *object)
  876. {
  877. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  878. return;
  879. init_object(s, object, SLUB_RED_INACTIVE);
  880. init_tracking(s, object);
  881. }
  882. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  883. void *object, unsigned long addr)
  884. {
  885. if (!check_slab(s, page))
  886. goto bad;
  887. if (!check_valid_pointer(s, page, object)) {
  888. object_err(s, page, object, "Freelist Pointer check fails");
  889. goto bad;
  890. }
  891. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  892. goto bad;
  893. /* Success perform special debug activities for allocs */
  894. if (s->flags & SLAB_STORE_USER)
  895. set_track(s, object, TRACK_ALLOC, addr);
  896. trace(s, page, object, 1);
  897. init_object(s, object, SLUB_RED_ACTIVE);
  898. return 1;
  899. bad:
  900. if (PageSlab(page)) {
  901. /*
  902. * If this is a slab page then lets do the best we can
  903. * to avoid issues in the future. Marking all objects
  904. * as used avoids touching the remaining objects.
  905. */
  906. slab_fix(s, "Marking all objects used");
  907. page->inuse = page->objects;
  908. page->freelist = NULL;
  909. }
  910. return 0;
  911. }
  912. static noinline struct kmem_cache_node *free_debug_processing(
  913. struct kmem_cache *s, struct page *page, void *object,
  914. unsigned long addr, unsigned long *flags)
  915. {
  916. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  917. spin_lock_irqsave(&n->list_lock, *flags);
  918. slab_lock(page);
  919. if (!check_slab(s, page))
  920. goto fail;
  921. if (!check_valid_pointer(s, page, object)) {
  922. slab_err(s, page, "Invalid object pointer 0x%p", object);
  923. goto fail;
  924. }
  925. if (on_freelist(s, page, object)) {
  926. object_err(s, page, object, "Object already free");
  927. goto fail;
  928. }
  929. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  930. goto out;
  931. if (unlikely(s != page->slab_cache)) {
  932. if (!PageSlab(page)) {
  933. slab_err(s, page, "Attempt to free object(0x%p) "
  934. "outside of slab", object);
  935. } else if (!page->slab_cache) {
  936. printk(KERN_ERR
  937. "SLUB <none>: no slab for object 0x%p.\n",
  938. object);
  939. dump_stack();
  940. } else
  941. object_err(s, page, object,
  942. "page slab pointer corrupt.");
  943. goto fail;
  944. }
  945. if (s->flags & SLAB_STORE_USER)
  946. set_track(s, object, TRACK_FREE, addr);
  947. trace(s, page, object, 0);
  948. init_object(s, object, SLUB_RED_INACTIVE);
  949. out:
  950. slab_unlock(page);
  951. /*
  952. * Keep node_lock to preserve integrity
  953. * until the object is actually freed
  954. */
  955. return n;
  956. fail:
  957. slab_unlock(page);
  958. spin_unlock_irqrestore(&n->list_lock, *flags);
  959. slab_fix(s, "Object at 0x%p not freed", object);
  960. return NULL;
  961. }
  962. static int __init setup_slub_debug(char *str)
  963. {
  964. slub_debug = DEBUG_DEFAULT_FLAGS;
  965. if (*str++ != '=' || !*str)
  966. /*
  967. * No options specified. Switch on full debugging.
  968. */
  969. goto out;
  970. if (*str == ',')
  971. /*
  972. * No options but restriction on slabs. This means full
  973. * debugging for slabs matching a pattern.
  974. */
  975. goto check_slabs;
  976. if (tolower(*str) == 'o') {
  977. /*
  978. * Avoid enabling debugging on caches if its minimum order
  979. * would increase as a result.
  980. */
  981. disable_higher_order_debug = 1;
  982. goto out;
  983. }
  984. slub_debug = 0;
  985. if (*str == '-')
  986. /*
  987. * Switch off all debugging measures.
  988. */
  989. goto out;
  990. /*
  991. * Determine which debug features should be switched on
  992. */
  993. for (; *str && *str != ','; str++) {
  994. switch (tolower(*str)) {
  995. case 'f':
  996. slub_debug |= SLAB_DEBUG_FREE;
  997. break;
  998. case 'z':
  999. slub_debug |= SLAB_RED_ZONE;
  1000. break;
  1001. case 'p':
  1002. slub_debug |= SLAB_POISON;
  1003. break;
  1004. case 'u':
  1005. slub_debug |= SLAB_STORE_USER;
  1006. break;
  1007. case 't':
  1008. slub_debug |= SLAB_TRACE;
  1009. break;
  1010. case 'a':
  1011. slub_debug |= SLAB_FAILSLAB;
  1012. break;
  1013. default:
  1014. printk(KERN_ERR "slub_debug option '%c' "
  1015. "unknown. skipped\n", *str);
  1016. }
  1017. }
  1018. check_slabs:
  1019. if (*str == ',')
  1020. slub_debug_slabs = str + 1;
  1021. out:
  1022. return 1;
  1023. }
  1024. __setup("slub_debug", setup_slub_debug);
  1025. static unsigned long kmem_cache_flags(unsigned long object_size,
  1026. unsigned long flags, const char *name,
  1027. void (*ctor)(void *))
  1028. {
  1029. /*
  1030. * Enable debugging if selected on the kernel commandline.
  1031. */
  1032. if (slub_debug && (!slub_debug_slabs ||
  1033. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1034. flags |= slub_debug;
  1035. return flags;
  1036. }
  1037. #else
  1038. static inline void setup_object_debug(struct kmem_cache *s,
  1039. struct page *page, void *object) {}
  1040. static inline int alloc_debug_processing(struct kmem_cache *s,
  1041. struct page *page, void *object, unsigned long addr) { return 0; }
  1042. static inline struct kmem_cache_node *free_debug_processing(
  1043. struct kmem_cache *s, struct page *page, void *object,
  1044. unsigned long addr, unsigned long *flags) { return NULL; }
  1045. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1046. { return 1; }
  1047. static inline int check_object(struct kmem_cache *s, struct page *page,
  1048. void *object, u8 val) { return 1; }
  1049. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1050. struct page *page) {}
  1051. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1052. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1053. unsigned long flags, const char *name,
  1054. void (*ctor)(void *))
  1055. {
  1056. return flags;
  1057. }
  1058. #define slub_debug 0
  1059. #define disable_higher_order_debug 0
  1060. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1061. { return 0; }
  1062. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1063. { return 0; }
  1064. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1065. int objects) {}
  1066. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1069. { return 0; }
  1070. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1071. void *object) {}
  1072. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1073. #endif /* CONFIG_SLUB_DEBUG */
  1074. /*
  1075. * Slab allocation and freeing
  1076. */
  1077. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1078. struct kmem_cache_order_objects oo)
  1079. {
  1080. int order = oo_order(oo);
  1081. flags |= __GFP_NOTRACK;
  1082. if (node == NUMA_NO_NODE)
  1083. return alloc_pages(flags, order);
  1084. else
  1085. return alloc_pages_exact_node(node, flags, order);
  1086. }
  1087. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1088. {
  1089. struct page *page;
  1090. struct kmem_cache_order_objects oo = s->oo;
  1091. gfp_t alloc_gfp;
  1092. flags &= gfp_allowed_mask;
  1093. if (flags & __GFP_WAIT)
  1094. local_irq_enable();
  1095. flags |= s->allocflags;
  1096. /*
  1097. * Let the initial higher-order allocation fail under memory pressure
  1098. * so we fall-back to the minimum order allocation.
  1099. */
  1100. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1101. page = alloc_slab_page(alloc_gfp, node, oo);
  1102. if (unlikely(!page)) {
  1103. oo = s->min;
  1104. /*
  1105. * Allocation may have failed due to fragmentation.
  1106. * Try a lower order alloc if possible
  1107. */
  1108. page = alloc_slab_page(flags, node, oo);
  1109. if (page)
  1110. stat(s, ORDER_FALLBACK);
  1111. }
  1112. if (kmemcheck_enabled && page
  1113. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1114. int pages = 1 << oo_order(oo);
  1115. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1116. /*
  1117. * Objects from caches that have a constructor don't get
  1118. * cleared when they're allocated, so we need to do it here.
  1119. */
  1120. if (s->ctor)
  1121. kmemcheck_mark_uninitialized_pages(page, pages);
  1122. else
  1123. kmemcheck_mark_unallocated_pages(page, pages);
  1124. }
  1125. if (flags & __GFP_WAIT)
  1126. local_irq_disable();
  1127. if (!page)
  1128. return NULL;
  1129. page->objects = oo_objects(oo);
  1130. mod_zone_page_state(page_zone(page),
  1131. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1132. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1133. 1 << oo_order(oo));
  1134. return page;
  1135. }
  1136. static void setup_object(struct kmem_cache *s, struct page *page,
  1137. void *object)
  1138. {
  1139. setup_object_debug(s, page, object);
  1140. if (unlikely(s->ctor))
  1141. s->ctor(object);
  1142. }
  1143. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1144. {
  1145. struct page *page;
  1146. void *start;
  1147. void *last;
  1148. void *p;
  1149. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1150. page = allocate_slab(s,
  1151. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1152. if (!page)
  1153. goto out;
  1154. inc_slabs_node(s, page_to_nid(page), page->objects);
  1155. page->slab_cache = s;
  1156. __SetPageSlab(page);
  1157. if (page->pfmemalloc)
  1158. SetPageSlabPfmemalloc(page);
  1159. start = page_address(page);
  1160. if (unlikely(s->flags & SLAB_POISON))
  1161. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1162. last = start;
  1163. for_each_object(p, s, start, page->objects) {
  1164. setup_object(s, page, last);
  1165. set_freepointer(s, last, p);
  1166. last = p;
  1167. }
  1168. setup_object(s, page, last);
  1169. set_freepointer(s, last, NULL);
  1170. page->freelist = start;
  1171. page->inuse = page->objects;
  1172. page->frozen = 1;
  1173. out:
  1174. return page;
  1175. }
  1176. static void __free_slab(struct kmem_cache *s, struct page *page)
  1177. {
  1178. int order = compound_order(page);
  1179. int pages = 1 << order;
  1180. if (kmem_cache_debug(s)) {
  1181. void *p;
  1182. slab_pad_check(s, page);
  1183. for_each_object(p, s, page_address(page),
  1184. page->objects)
  1185. check_object(s, page, p, SLUB_RED_INACTIVE);
  1186. }
  1187. kmemcheck_free_shadow(page, compound_order(page));
  1188. mod_zone_page_state(page_zone(page),
  1189. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1190. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1191. -pages);
  1192. __ClearPageSlabPfmemalloc(page);
  1193. __ClearPageSlab(page);
  1194. reset_page_mapcount(page);
  1195. if (current->reclaim_state)
  1196. current->reclaim_state->reclaimed_slab += pages;
  1197. __free_pages(page, order);
  1198. }
  1199. #define need_reserve_slab_rcu \
  1200. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1201. static void rcu_free_slab(struct rcu_head *h)
  1202. {
  1203. struct page *page;
  1204. if (need_reserve_slab_rcu)
  1205. page = virt_to_head_page(h);
  1206. else
  1207. page = container_of((struct list_head *)h, struct page, lru);
  1208. __free_slab(page->slab_cache, page);
  1209. }
  1210. static void free_slab(struct kmem_cache *s, struct page *page)
  1211. {
  1212. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1213. struct rcu_head *head;
  1214. if (need_reserve_slab_rcu) {
  1215. int order = compound_order(page);
  1216. int offset = (PAGE_SIZE << order) - s->reserved;
  1217. VM_BUG_ON(s->reserved != sizeof(*head));
  1218. head = page_address(page) + offset;
  1219. } else {
  1220. /*
  1221. * RCU free overloads the RCU head over the LRU
  1222. */
  1223. head = (void *)&page->lru;
  1224. }
  1225. call_rcu(head, rcu_free_slab);
  1226. } else
  1227. __free_slab(s, page);
  1228. }
  1229. static void discard_slab(struct kmem_cache *s, struct page *page)
  1230. {
  1231. dec_slabs_node(s, page_to_nid(page), page->objects);
  1232. free_slab(s, page);
  1233. }
  1234. /*
  1235. * Management of partially allocated slabs.
  1236. *
  1237. * list_lock must be held.
  1238. */
  1239. static inline void add_partial(struct kmem_cache_node *n,
  1240. struct page *page, int tail)
  1241. {
  1242. n->nr_partial++;
  1243. if (tail == DEACTIVATE_TO_TAIL)
  1244. list_add_tail(&page->lru, &n->partial);
  1245. else
  1246. list_add(&page->lru, &n->partial);
  1247. }
  1248. /*
  1249. * list_lock must be held.
  1250. */
  1251. static inline void remove_partial(struct kmem_cache_node *n,
  1252. struct page *page)
  1253. {
  1254. list_del(&page->lru);
  1255. n->nr_partial--;
  1256. }
  1257. /*
  1258. * Remove slab from the partial list, freeze it and
  1259. * return the pointer to the freelist.
  1260. *
  1261. * Returns a list of objects or NULL if it fails.
  1262. *
  1263. * Must hold list_lock since we modify the partial list.
  1264. */
  1265. static inline void *acquire_slab(struct kmem_cache *s,
  1266. struct kmem_cache_node *n, struct page *page,
  1267. int mode)
  1268. {
  1269. void *freelist;
  1270. unsigned long counters;
  1271. struct page new;
  1272. /*
  1273. * Zap the freelist and set the frozen bit.
  1274. * The old freelist is the list of objects for the
  1275. * per cpu allocation list.
  1276. */
  1277. freelist = page->freelist;
  1278. counters = page->counters;
  1279. new.counters = counters;
  1280. if (mode) {
  1281. new.inuse = page->objects;
  1282. new.freelist = NULL;
  1283. } else {
  1284. new.freelist = freelist;
  1285. }
  1286. VM_BUG_ON(new.frozen);
  1287. new.frozen = 1;
  1288. if (!__cmpxchg_double_slab(s, page,
  1289. freelist, counters,
  1290. new.freelist, new.counters,
  1291. "acquire_slab"))
  1292. return NULL;
  1293. remove_partial(n, page);
  1294. WARN_ON(!freelist);
  1295. return freelist;
  1296. }
  1297. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1298. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1299. /*
  1300. * Try to allocate a partial slab from a specific node.
  1301. */
  1302. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1303. struct kmem_cache_cpu *c, gfp_t flags)
  1304. {
  1305. struct page *page, *page2;
  1306. void *object = NULL;
  1307. /*
  1308. * Racy check. If we mistakenly see no partial slabs then we
  1309. * just allocate an empty slab. If we mistakenly try to get a
  1310. * partial slab and there is none available then get_partials()
  1311. * will return NULL.
  1312. */
  1313. if (!n || !n->nr_partial)
  1314. return NULL;
  1315. spin_lock(&n->list_lock);
  1316. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1317. void *t;
  1318. int available;
  1319. if (!pfmemalloc_match(page, flags))
  1320. continue;
  1321. t = acquire_slab(s, n, page, object == NULL);
  1322. if (!t)
  1323. break;
  1324. if (!object) {
  1325. c->page = page;
  1326. stat(s, ALLOC_FROM_PARTIAL);
  1327. object = t;
  1328. available = page->objects - page->inuse;
  1329. } else {
  1330. available = put_cpu_partial(s, page, 0);
  1331. stat(s, CPU_PARTIAL_NODE);
  1332. }
  1333. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1334. break;
  1335. }
  1336. spin_unlock(&n->list_lock);
  1337. return object;
  1338. }
  1339. /*
  1340. * Get a page from somewhere. Search in increasing NUMA distances.
  1341. */
  1342. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1343. struct kmem_cache_cpu *c)
  1344. {
  1345. #ifdef CONFIG_NUMA
  1346. struct zonelist *zonelist;
  1347. struct zoneref *z;
  1348. struct zone *zone;
  1349. enum zone_type high_zoneidx = gfp_zone(flags);
  1350. void *object;
  1351. unsigned int cpuset_mems_cookie;
  1352. /*
  1353. * The defrag ratio allows a configuration of the tradeoffs between
  1354. * inter node defragmentation and node local allocations. A lower
  1355. * defrag_ratio increases the tendency to do local allocations
  1356. * instead of attempting to obtain partial slabs from other nodes.
  1357. *
  1358. * If the defrag_ratio is set to 0 then kmalloc() always
  1359. * returns node local objects. If the ratio is higher then kmalloc()
  1360. * may return off node objects because partial slabs are obtained
  1361. * from other nodes and filled up.
  1362. *
  1363. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1364. * defrag_ratio = 1000) then every (well almost) allocation will
  1365. * first attempt to defrag slab caches on other nodes. This means
  1366. * scanning over all nodes to look for partial slabs which may be
  1367. * expensive if we do it every time we are trying to find a slab
  1368. * with available objects.
  1369. */
  1370. if (!s->remote_node_defrag_ratio ||
  1371. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1372. return NULL;
  1373. do {
  1374. cpuset_mems_cookie = get_mems_allowed();
  1375. zonelist = node_zonelist(slab_node(), flags);
  1376. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1377. struct kmem_cache_node *n;
  1378. n = get_node(s, zone_to_nid(zone));
  1379. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1380. n->nr_partial > s->min_partial) {
  1381. object = get_partial_node(s, n, c, flags);
  1382. if (object) {
  1383. /*
  1384. * Return the object even if
  1385. * put_mems_allowed indicated that
  1386. * the cpuset mems_allowed was
  1387. * updated in parallel. It's a
  1388. * harmless race between the alloc
  1389. * and the cpuset update.
  1390. */
  1391. put_mems_allowed(cpuset_mems_cookie);
  1392. return object;
  1393. }
  1394. }
  1395. }
  1396. } while (!put_mems_allowed(cpuset_mems_cookie));
  1397. #endif
  1398. return NULL;
  1399. }
  1400. /*
  1401. * Get a partial page, lock it and return it.
  1402. */
  1403. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1404. struct kmem_cache_cpu *c)
  1405. {
  1406. void *object;
  1407. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1408. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1409. if (object || node != NUMA_NO_NODE)
  1410. return object;
  1411. return get_any_partial(s, flags, c);
  1412. }
  1413. #ifdef CONFIG_PREEMPT
  1414. /*
  1415. * Calculate the next globally unique transaction for disambiguiation
  1416. * during cmpxchg. The transactions start with the cpu number and are then
  1417. * incremented by CONFIG_NR_CPUS.
  1418. */
  1419. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1420. #else
  1421. /*
  1422. * No preemption supported therefore also no need to check for
  1423. * different cpus.
  1424. */
  1425. #define TID_STEP 1
  1426. #endif
  1427. static inline unsigned long next_tid(unsigned long tid)
  1428. {
  1429. return tid + TID_STEP;
  1430. }
  1431. static inline unsigned int tid_to_cpu(unsigned long tid)
  1432. {
  1433. return tid % TID_STEP;
  1434. }
  1435. static inline unsigned long tid_to_event(unsigned long tid)
  1436. {
  1437. return tid / TID_STEP;
  1438. }
  1439. static inline unsigned int init_tid(int cpu)
  1440. {
  1441. return cpu;
  1442. }
  1443. static inline void note_cmpxchg_failure(const char *n,
  1444. const struct kmem_cache *s, unsigned long tid)
  1445. {
  1446. #ifdef SLUB_DEBUG_CMPXCHG
  1447. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1448. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1449. #ifdef CONFIG_PREEMPT
  1450. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1451. printk("due to cpu change %d -> %d\n",
  1452. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1453. else
  1454. #endif
  1455. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1456. printk("due to cpu running other code. Event %ld->%ld\n",
  1457. tid_to_event(tid), tid_to_event(actual_tid));
  1458. else
  1459. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1460. actual_tid, tid, next_tid(tid));
  1461. #endif
  1462. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1463. }
  1464. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1465. {
  1466. int cpu;
  1467. for_each_possible_cpu(cpu)
  1468. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1469. }
  1470. /*
  1471. * Remove the cpu slab
  1472. */
  1473. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1474. {
  1475. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1476. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1477. int lock = 0;
  1478. enum slab_modes l = M_NONE, m = M_NONE;
  1479. void *nextfree;
  1480. int tail = DEACTIVATE_TO_HEAD;
  1481. struct page new;
  1482. struct page old;
  1483. if (page->freelist) {
  1484. stat(s, DEACTIVATE_REMOTE_FREES);
  1485. tail = DEACTIVATE_TO_TAIL;
  1486. }
  1487. /*
  1488. * Stage one: Free all available per cpu objects back
  1489. * to the page freelist while it is still frozen. Leave the
  1490. * last one.
  1491. *
  1492. * There is no need to take the list->lock because the page
  1493. * is still frozen.
  1494. */
  1495. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1496. void *prior;
  1497. unsigned long counters;
  1498. do {
  1499. prior = page->freelist;
  1500. counters = page->counters;
  1501. set_freepointer(s, freelist, prior);
  1502. new.counters = counters;
  1503. new.inuse--;
  1504. VM_BUG_ON(!new.frozen);
  1505. } while (!__cmpxchg_double_slab(s, page,
  1506. prior, counters,
  1507. freelist, new.counters,
  1508. "drain percpu freelist"));
  1509. freelist = nextfree;
  1510. }
  1511. /*
  1512. * Stage two: Ensure that the page is unfrozen while the
  1513. * list presence reflects the actual number of objects
  1514. * during unfreeze.
  1515. *
  1516. * We setup the list membership and then perform a cmpxchg
  1517. * with the count. If there is a mismatch then the page
  1518. * is not unfrozen but the page is on the wrong list.
  1519. *
  1520. * Then we restart the process which may have to remove
  1521. * the page from the list that we just put it on again
  1522. * because the number of objects in the slab may have
  1523. * changed.
  1524. */
  1525. redo:
  1526. old.freelist = page->freelist;
  1527. old.counters = page->counters;
  1528. VM_BUG_ON(!old.frozen);
  1529. /* Determine target state of the slab */
  1530. new.counters = old.counters;
  1531. if (freelist) {
  1532. new.inuse--;
  1533. set_freepointer(s, freelist, old.freelist);
  1534. new.freelist = freelist;
  1535. } else
  1536. new.freelist = old.freelist;
  1537. new.frozen = 0;
  1538. if (!new.inuse && n->nr_partial > s->min_partial)
  1539. m = M_FREE;
  1540. else if (new.freelist) {
  1541. m = M_PARTIAL;
  1542. if (!lock) {
  1543. lock = 1;
  1544. /*
  1545. * Taking the spinlock removes the possiblity
  1546. * that acquire_slab() will see a slab page that
  1547. * is frozen
  1548. */
  1549. spin_lock(&n->list_lock);
  1550. }
  1551. } else {
  1552. m = M_FULL;
  1553. if (kmem_cache_debug(s) && !lock) {
  1554. lock = 1;
  1555. /*
  1556. * This also ensures that the scanning of full
  1557. * slabs from diagnostic functions will not see
  1558. * any frozen slabs.
  1559. */
  1560. spin_lock(&n->list_lock);
  1561. }
  1562. }
  1563. if (l != m) {
  1564. if (l == M_PARTIAL)
  1565. remove_partial(n, page);
  1566. else if (l == M_FULL)
  1567. remove_full(s, page);
  1568. if (m == M_PARTIAL) {
  1569. add_partial(n, page, tail);
  1570. stat(s, tail);
  1571. } else if (m == M_FULL) {
  1572. stat(s, DEACTIVATE_FULL);
  1573. add_full(s, n, page);
  1574. }
  1575. }
  1576. l = m;
  1577. if (!__cmpxchg_double_slab(s, page,
  1578. old.freelist, old.counters,
  1579. new.freelist, new.counters,
  1580. "unfreezing slab"))
  1581. goto redo;
  1582. if (lock)
  1583. spin_unlock(&n->list_lock);
  1584. if (m == M_FREE) {
  1585. stat(s, DEACTIVATE_EMPTY);
  1586. discard_slab(s, page);
  1587. stat(s, FREE_SLAB);
  1588. }
  1589. }
  1590. /*
  1591. * Unfreeze all the cpu partial slabs.
  1592. *
  1593. * This function must be called with interrupt disabled.
  1594. */
  1595. static void unfreeze_partials(struct kmem_cache *s)
  1596. {
  1597. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1598. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1599. struct page *page, *discard_page = NULL;
  1600. while ((page = c->partial)) {
  1601. struct page new;
  1602. struct page old;
  1603. c->partial = page->next;
  1604. n2 = get_node(s, page_to_nid(page));
  1605. if (n != n2) {
  1606. if (n)
  1607. spin_unlock(&n->list_lock);
  1608. n = n2;
  1609. spin_lock(&n->list_lock);
  1610. }
  1611. do {
  1612. old.freelist = page->freelist;
  1613. old.counters = page->counters;
  1614. VM_BUG_ON(!old.frozen);
  1615. new.counters = old.counters;
  1616. new.freelist = old.freelist;
  1617. new.frozen = 0;
  1618. } while (!__cmpxchg_double_slab(s, page,
  1619. old.freelist, old.counters,
  1620. new.freelist, new.counters,
  1621. "unfreezing slab"));
  1622. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1623. page->next = discard_page;
  1624. discard_page = page;
  1625. } else {
  1626. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1627. stat(s, FREE_ADD_PARTIAL);
  1628. }
  1629. }
  1630. if (n)
  1631. spin_unlock(&n->list_lock);
  1632. while (discard_page) {
  1633. page = discard_page;
  1634. discard_page = discard_page->next;
  1635. stat(s, DEACTIVATE_EMPTY);
  1636. discard_slab(s, page);
  1637. stat(s, FREE_SLAB);
  1638. }
  1639. }
  1640. /*
  1641. * Put a page that was just frozen (in __slab_free) into a partial page
  1642. * slot if available. This is done without interrupts disabled and without
  1643. * preemption disabled. The cmpxchg is racy and may put the partial page
  1644. * onto a random cpus partial slot.
  1645. *
  1646. * If we did not find a slot then simply move all the partials to the
  1647. * per node partial list.
  1648. */
  1649. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1650. {
  1651. struct page *oldpage;
  1652. int pages;
  1653. int pobjects;
  1654. do {
  1655. pages = 0;
  1656. pobjects = 0;
  1657. oldpage = this_cpu_read(s->cpu_slab->partial);
  1658. if (oldpage) {
  1659. pobjects = oldpage->pobjects;
  1660. pages = oldpage->pages;
  1661. if (drain && pobjects > s->cpu_partial) {
  1662. unsigned long flags;
  1663. /*
  1664. * partial array is full. Move the existing
  1665. * set to the per node partial list.
  1666. */
  1667. local_irq_save(flags);
  1668. unfreeze_partials(s);
  1669. local_irq_restore(flags);
  1670. oldpage = NULL;
  1671. pobjects = 0;
  1672. pages = 0;
  1673. stat(s, CPU_PARTIAL_DRAIN);
  1674. }
  1675. }
  1676. pages++;
  1677. pobjects += page->objects - page->inuse;
  1678. page->pages = pages;
  1679. page->pobjects = pobjects;
  1680. page->next = oldpage;
  1681. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1682. return pobjects;
  1683. }
  1684. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1685. {
  1686. stat(s, CPUSLAB_FLUSH);
  1687. deactivate_slab(s, c->page, c->freelist);
  1688. c->tid = next_tid(c->tid);
  1689. c->page = NULL;
  1690. c->freelist = NULL;
  1691. }
  1692. /*
  1693. * Flush cpu slab.
  1694. *
  1695. * Called from IPI handler with interrupts disabled.
  1696. */
  1697. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1698. {
  1699. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1700. if (likely(c)) {
  1701. if (c->page)
  1702. flush_slab(s, c);
  1703. unfreeze_partials(s);
  1704. }
  1705. }
  1706. static void flush_cpu_slab(void *d)
  1707. {
  1708. struct kmem_cache *s = d;
  1709. __flush_cpu_slab(s, smp_processor_id());
  1710. }
  1711. static bool has_cpu_slab(int cpu, void *info)
  1712. {
  1713. struct kmem_cache *s = info;
  1714. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1715. return c->page || c->partial;
  1716. }
  1717. static void flush_all(struct kmem_cache *s)
  1718. {
  1719. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1720. }
  1721. /*
  1722. * Check if the objects in a per cpu structure fit numa
  1723. * locality expectations.
  1724. */
  1725. static inline int node_match(struct page *page, int node)
  1726. {
  1727. #ifdef CONFIG_NUMA
  1728. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1729. return 0;
  1730. #endif
  1731. return 1;
  1732. }
  1733. static int count_free(struct page *page)
  1734. {
  1735. return page->objects - page->inuse;
  1736. }
  1737. static unsigned long count_partial(struct kmem_cache_node *n,
  1738. int (*get_count)(struct page *))
  1739. {
  1740. unsigned long flags;
  1741. unsigned long x = 0;
  1742. struct page *page;
  1743. spin_lock_irqsave(&n->list_lock, flags);
  1744. list_for_each_entry(page, &n->partial, lru)
  1745. x += get_count(page);
  1746. spin_unlock_irqrestore(&n->list_lock, flags);
  1747. return x;
  1748. }
  1749. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1750. {
  1751. #ifdef CONFIG_SLUB_DEBUG
  1752. return atomic_long_read(&n->total_objects);
  1753. #else
  1754. return 0;
  1755. #endif
  1756. }
  1757. static noinline void
  1758. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1759. {
  1760. int node;
  1761. printk(KERN_WARNING
  1762. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1763. nid, gfpflags);
  1764. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1765. "default order: %d, min order: %d\n", s->name, s->object_size,
  1766. s->size, oo_order(s->oo), oo_order(s->min));
  1767. if (oo_order(s->min) > get_order(s->object_size))
  1768. printk(KERN_WARNING " %s debugging increased min order, use "
  1769. "slub_debug=O to disable.\n", s->name);
  1770. for_each_online_node(node) {
  1771. struct kmem_cache_node *n = get_node(s, node);
  1772. unsigned long nr_slabs;
  1773. unsigned long nr_objs;
  1774. unsigned long nr_free;
  1775. if (!n)
  1776. continue;
  1777. nr_free = count_partial(n, count_free);
  1778. nr_slabs = node_nr_slabs(n);
  1779. nr_objs = node_nr_objs(n);
  1780. printk(KERN_WARNING
  1781. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1782. node, nr_slabs, nr_objs, nr_free);
  1783. }
  1784. }
  1785. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1786. int node, struct kmem_cache_cpu **pc)
  1787. {
  1788. void *freelist;
  1789. struct kmem_cache_cpu *c = *pc;
  1790. struct page *page;
  1791. freelist = get_partial(s, flags, node, c);
  1792. if (freelist)
  1793. return freelist;
  1794. page = new_slab(s, flags, node);
  1795. if (page) {
  1796. c = __this_cpu_ptr(s->cpu_slab);
  1797. if (c->page)
  1798. flush_slab(s, c);
  1799. /*
  1800. * No other reference to the page yet so we can
  1801. * muck around with it freely without cmpxchg
  1802. */
  1803. freelist = page->freelist;
  1804. page->freelist = NULL;
  1805. stat(s, ALLOC_SLAB);
  1806. c->page = page;
  1807. *pc = c;
  1808. } else
  1809. freelist = NULL;
  1810. return freelist;
  1811. }
  1812. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1813. {
  1814. if (unlikely(PageSlabPfmemalloc(page)))
  1815. return gfp_pfmemalloc_allowed(gfpflags);
  1816. return true;
  1817. }
  1818. /*
  1819. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1820. * or deactivate the page.
  1821. *
  1822. * The page is still frozen if the return value is not NULL.
  1823. *
  1824. * If this function returns NULL then the page has been unfrozen.
  1825. *
  1826. * This function must be called with interrupt disabled.
  1827. */
  1828. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1829. {
  1830. struct page new;
  1831. unsigned long counters;
  1832. void *freelist;
  1833. do {
  1834. freelist = page->freelist;
  1835. counters = page->counters;
  1836. new.counters = counters;
  1837. VM_BUG_ON(!new.frozen);
  1838. new.inuse = page->objects;
  1839. new.frozen = freelist != NULL;
  1840. } while (!__cmpxchg_double_slab(s, page,
  1841. freelist, counters,
  1842. NULL, new.counters,
  1843. "get_freelist"));
  1844. return freelist;
  1845. }
  1846. /*
  1847. * Slow path. The lockless freelist is empty or we need to perform
  1848. * debugging duties.
  1849. *
  1850. * Processing is still very fast if new objects have been freed to the
  1851. * regular freelist. In that case we simply take over the regular freelist
  1852. * as the lockless freelist and zap the regular freelist.
  1853. *
  1854. * If that is not working then we fall back to the partial lists. We take the
  1855. * first element of the freelist as the object to allocate now and move the
  1856. * rest of the freelist to the lockless freelist.
  1857. *
  1858. * And if we were unable to get a new slab from the partial slab lists then
  1859. * we need to allocate a new slab. This is the slowest path since it involves
  1860. * a call to the page allocator and the setup of a new slab.
  1861. */
  1862. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1863. unsigned long addr, struct kmem_cache_cpu *c)
  1864. {
  1865. void *freelist;
  1866. struct page *page;
  1867. unsigned long flags;
  1868. local_irq_save(flags);
  1869. #ifdef CONFIG_PREEMPT
  1870. /*
  1871. * We may have been preempted and rescheduled on a different
  1872. * cpu before disabling interrupts. Need to reload cpu area
  1873. * pointer.
  1874. */
  1875. c = this_cpu_ptr(s->cpu_slab);
  1876. #endif
  1877. page = c->page;
  1878. if (!page)
  1879. goto new_slab;
  1880. redo:
  1881. if (unlikely(!node_match(page, node))) {
  1882. stat(s, ALLOC_NODE_MISMATCH);
  1883. deactivate_slab(s, page, c->freelist);
  1884. c->page = NULL;
  1885. c->freelist = NULL;
  1886. goto new_slab;
  1887. }
  1888. /*
  1889. * By rights, we should be searching for a slab page that was
  1890. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1891. * information when the page leaves the per-cpu allocator
  1892. */
  1893. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1894. deactivate_slab(s, page, c->freelist);
  1895. c->page = NULL;
  1896. c->freelist = NULL;
  1897. goto new_slab;
  1898. }
  1899. /* must check again c->freelist in case of cpu migration or IRQ */
  1900. freelist = c->freelist;
  1901. if (freelist)
  1902. goto load_freelist;
  1903. stat(s, ALLOC_SLOWPATH);
  1904. freelist = get_freelist(s, page);
  1905. if (!freelist) {
  1906. c->page = NULL;
  1907. stat(s, DEACTIVATE_BYPASS);
  1908. goto new_slab;
  1909. }
  1910. stat(s, ALLOC_REFILL);
  1911. load_freelist:
  1912. /*
  1913. * freelist is pointing to the list of objects to be used.
  1914. * page is pointing to the page from which the objects are obtained.
  1915. * That page must be frozen for per cpu allocations to work.
  1916. */
  1917. VM_BUG_ON(!c->page->frozen);
  1918. c->freelist = get_freepointer(s, freelist);
  1919. c->tid = next_tid(c->tid);
  1920. local_irq_restore(flags);
  1921. return freelist;
  1922. new_slab:
  1923. if (c->partial) {
  1924. page = c->page = c->partial;
  1925. c->partial = page->next;
  1926. stat(s, CPU_PARTIAL_ALLOC);
  1927. c->freelist = NULL;
  1928. goto redo;
  1929. }
  1930. freelist = new_slab_objects(s, gfpflags, node, &c);
  1931. if (unlikely(!freelist)) {
  1932. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1933. slab_out_of_memory(s, gfpflags, node);
  1934. local_irq_restore(flags);
  1935. return NULL;
  1936. }
  1937. page = c->page;
  1938. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1939. goto load_freelist;
  1940. /* Only entered in the debug case */
  1941. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1942. goto new_slab; /* Slab failed checks. Next slab needed */
  1943. deactivate_slab(s, page, get_freepointer(s, freelist));
  1944. c->page = NULL;
  1945. c->freelist = NULL;
  1946. local_irq_restore(flags);
  1947. return freelist;
  1948. }
  1949. /*
  1950. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1951. * have the fastpath folded into their functions. So no function call
  1952. * overhead for requests that can be satisfied on the fastpath.
  1953. *
  1954. * The fastpath works by first checking if the lockless freelist can be used.
  1955. * If not then __slab_alloc is called for slow processing.
  1956. *
  1957. * Otherwise we can simply pick the next object from the lockless free list.
  1958. */
  1959. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1960. gfp_t gfpflags, int node, unsigned long addr)
  1961. {
  1962. void **object;
  1963. struct kmem_cache_cpu *c;
  1964. struct page *page;
  1965. unsigned long tid;
  1966. if (slab_pre_alloc_hook(s, gfpflags))
  1967. return NULL;
  1968. redo:
  1969. /*
  1970. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1971. * enabled. We may switch back and forth between cpus while
  1972. * reading from one cpu area. That does not matter as long
  1973. * as we end up on the original cpu again when doing the cmpxchg.
  1974. */
  1975. c = __this_cpu_ptr(s->cpu_slab);
  1976. /*
  1977. * The transaction ids are globally unique per cpu and per operation on
  1978. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1979. * occurs on the right processor and that there was no operation on the
  1980. * linked list in between.
  1981. */
  1982. tid = c->tid;
  1983. barrier();
  1984. object = c->freelist;
  1985. page = c->page;
  1986. if (unlikely(!object || !node_match(page, node)))
  1987. object = __slab_alloc(s, gfpflags, node, addr, c);
  1988. else {
  1989. void *next_object = get_freepointer_safe(s, object);
  1990. /*
  1991. * The cmpxchg will only match if there was no additional
  1992. * operation and if we are on the right processor.
  1993. *
  1994. * The cmpxchg does the following atomically (without lock semantics!)
  1995. * 1. Relocate first pointer to the current per cpu area.
  1996. * 2. Verify that tid and freelist have not been changed
  1997. * 3. If they were not changed replace tid and freelist
  1998. *
  1999. * Since this is without lock semantics the protection is only against
  2000. * code executing on this cpu *not* from access by other cpus.
  2001. */
  2002. if (unlikely(!this_cpu_cmpxchg_double(
  2003. s->cpu_slab->freelist, s->cpu_slab->tid,
  2004. object, tid,
  2005. next_object, next_tid(tid)))) {
  2006. note_cmpxchg_failure("slab_alloc", s, tid);
  2007. goto redo;
  2008. }
  2009. prefetch_freepointer(s, next_object);
  2010. stat(s, ALLOC_FASTPATH);
  2011. }
  2012. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2013. memset(object, 0, s->object_size);
  2014. slab_post_alloc_hook(s, gfpflags, object);
  2015. return object;
  2016. }
  2017. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2018. gfp_t gfpflags, unsigned long addr)
  2019. {
  2020. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2021. }
  2022. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2023. {
  2024. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2025. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2026. return ret;
  2027. }
  2028. EXPORT_SYMBOL(kmem_cache_alloc);
  2029. #ifdef CONFIG_TRACING
  2030. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2031. {
  2032. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2033. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2034. return ret;
  2035. }
  2036. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2037. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2038. {
  2039. void *ret = kmalloc_order(size, flags, order);
  2040. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2041. return ret;
  2042. }
  2043. EXPORT_SYMBOL(kmalloc_order_trace);
  2044. #endif
  2045. #ifdef CONFIG_NUMA
  2046. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2047. {
  2048. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2049. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2050. s->object_size, s->size, gfpflags, node);
  2051. return ret;
  2052. }
  2053. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2054. #ifdef CONFIG_TRACING
  2055. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2056. gfp_t gfpflags,
  2057. int node, size_t size)
  2058. {
  2059. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2060. trace_kmalloc_node(_RET_IP_, ret,
  2061. size, s->size, gfpflags, node);
  2062. return ret;
  2063. }
  2064. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2065. #endif
  2066. #endif
  2067. /*
  2068. * Slow patch handling. This may still be called frequently since objects
  2069. * have a longer lifetime than the cpu slabs in most processing loads.
  2070. *
  2071. * So we still attempt to reduce cache line usage. Just take the slab
  2072. * lock and free the item. If there is no additional partial page
  2073. * handling required then we can return immediately.
  2074. */
  2075. static void __slab_free(struct kmem_cache *s, struct page *page,
  2076. void *x, unsigned long addr)
  2077. {
  2078. void *prior;
  2079. void **object = (void *)x;
  2080. int was_frozen;
  2081. struct page new;
  2082. unsigned long counters;
  2083. struct kmem_cache_node *n = NULL;
  2084. unsigned long uninitialized_var(flags);
  2085. stat(s, FREE_SLOWPATH);
  2086. if (kmem_cache_debug(s) &&
  2087. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2088. return;
  2089. do {
  2090. if (unlikely(n)) {
  2091. spin_unlock_irqrestore(&n->list_lock, flags);
  2092. n = NULL;
  2093. }
  2094. prior = page->freelist;
  2095. counters = page->counters;
  2096. set_freepointer(s, object, prior);
  2097. new.counters = counters;
  2098. was_frozen = new.frozen;
  2099. new.inuse--;
  2100. if ((!new.inuse || !prior) && !was_frozen) {
  2101. if (!kmem_cache_debug(s) && !prior)
  2102. /*
  2103. * Slab was on no list before and will be partially empty
  2104. * We can defer the list move and instead freeze it.
  2105. */
  2106. new.frozen = 1;
  2107. else { /* Needs to be taken off a list */
  2108. n = get_node(s, page_to_nid(page));
  2109. /*
  2110. * Speculatively acquire the list_lock.
  2111. * If the cmpxchg does not succeed then we may
  2112. * drop the list_lock without any processing.
  2113. *
  2114. * Otherwise the list_lock will synchronize with
  2115. * other processors updating the list of slabs.
  2116. */
  2117. spin_lock_irqsave(&n->list_lock, flags);
  2118. }
  2119. }
  2120. } while (!cmpxchg_double_slab(s, page,
  2121. prior, counters,
  2122. object, new.counters,
  2123. "__slab_free"));
  2124. if (likely(!n)) {
  2125. /*
  2126. * If we just froze the page then put it onto the
  2127. * per cpu partial list.
  2128. */
  2129. if (new.frozen && !was_frozen) {
  2130. put_cpu_partial(s, page, 1);
  2131. stat(s, CPU_PARTIAL_FREE);
  2132. }
  2133. /*
  2134. * The list lock was not taken therefore no list
  2135. * activity can be necessary.
  2136. */
  2137. if (was_frozen)
  2138. stat(s, FREE_FROZEN);
  2139. return;
  2140. }
  2141. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2142. goto slab_empty;
  2143. /*
  2144. * Objects left in the slab. If it was not on the partial list before
  2145. * then add it.
  2146. */
  2147. if (kmem_cache_debug(s) && unlikely(!prior)) {
  2148. remove_full(s, page);
  2149. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2150. stat(s, FREE_ADD_PARTIAL);
  2151. }
  2152. spin_unlock_irqrestore(&n->list_lock, flags);
  2153. return;
  2154. slab_empty:
  2155. if (prior) {
  2156. /*
  2157. * Slab on the partial list.
  2158. */
  2159. remove_partial(n, page);
  2160. stat(s, FREE_REMOVE_PARTIAL);
  2161. } else
  2162. /* Slab must be on the full list */
  2163. remove_full(s, page);
  2164. spin_unlock_irqrestore(&n->list_lock, flags);
  2165. stat(s, FREE_SLAB);
  2166. discard_slab(s, page);
  2167. }
  2168. /*
  2169. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2170. * can perform fastpath freeing without additional function calls.
  2171. *
  2172. * The fastpath is only possible if we are freeing to the current cpu slab
  2173. * of this processor. This typically the case if we have just allocated
  2174. * the item before.
  2175. *
  2176. * If fastpath is not possible then fall back to __slab_free where we deal
  2177. * with all sorts of special processing.
  2178. */
  2179. static __always_inline void slab_free(struct kmem_cache *s,
  2180. struct page *page, void *x, unsigned long addr)
  2181. {
  2182. void **object = (void *)x;
  2183. struct kmem_cache_cpu *c;
  2184. unsigned long tid;
  2185. slab_free_hook(s, x);
  2186. redo:
  2187. /*
  2188. * Determine the currently cpus per cpu slab.
  2189. * The cpu may change afterward. However that does not matter since
  2190. * data is retrieved via this pointer. If we are on the same cpu
  2191. * during the cmpxchg then the free will succedd.
  2192. */
  2193. c = __this_cpu_ptr(s->cpu_slab);
  2194. tid = c->tid;
  2195. barrier();
  2196. if (likely(page == c->page)) {
  2197. set_freepointer(s, object, c->freelist);
  2198. if (unlikely(!this_cpu_cmpxchg_double(
  2199. s->cpu_slab->freelist, s->cpu_slab->tid,
  2200. c->freelist, tid,
  2201. object, next_tid(tid)))) {
  2202. note_cmpxchg_failure("slab_free", s, tid);
  2203. goto redo;
  2204. }
  2205. stat(s, FREE_FASTPATH);
  2206. } else
  2207. __slab_free(s, page, x, addr);
  2208. }
  2209. void kmem_cache_free(struct kmem_cache *s, void *x)
  2210. {
  2211. struct page *page;
  2212. page = virt_to_head_page(x);
  2213. if (kmem_cache_debug(s) && page->slab_cache != s) {
  2214. pr_err("kmem_cache_free: Wrong slab cache. %s but object"
  2215. " is from %s\n", page->slab_cache->name, s->name);
  2216. WARN_ON_ONCE(1);
  2217. return;
  2218. }
  2219. slab_free(s, page, x, _RET_IP_);
  2220. trace_kmem_cache_free(_RET_IP_, x);
  2221. }
  2222. EXPORT_SYMBOL(kmem_cache_free);
  2223. /*
  2224. * Object placement in a slab is made very easy because we always start at
  2225. * offset 0. If we tune the size of the object to the alignment then we can
  2226. * get the required alignment by putting one properly sized object after
  2227. * another.
  2228. *
  2229. * Notice that the allocation order determines the sizes of the per cpu
  2230. * caches. Each processor has always one slab available for allocations.
  2231. * Increasing the allocation order reduces the number of times that slabs
  2232. * must be moved on and off the partial lists and is therefore a factor in
  2233. * locking overhead.
  2234. */
  2235. /*
  2236. * Mininum / Maximum order of slab pages. This influences locking overhead
  2237. * and slab fragmentation. A higher order reduces the number of partial slabs
  2238. * and increases the number of allocations possible without having to
  2239. * take the list_lock.
  2240. */
  2241. static int slub_min_order;
  2242. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2243. static int slub_min_objects;
  2244. /*
  2245. * Merge control. If this is set then no merging of slab caches will occur.
  2246. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2247. */
  2248. static int slub_nomerge;
  2249. /*
  2250. * Calculate the order of allocation given an slab object size.
  2251. *
  2252. * The order of allocation has significant impact on performance and other
  2253. * system components. Generally order 0 allocations should be preferred since
  2254. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2255. * be problematic to put into order 0 slabs because there may be too much
  2256. * unused space left. We go to a higher order if more than 1/16th of the slab
  2257. * would be wasted.
  2258. *
  2259. * In order to reach satisfactory performance we must ensure that a minimum
  2260. * number of objects is in one slab. Otherwise we may generate too much
  2261. * activity on the partial lists which requires taking the list_lock. This is
  2262. * less a concern for large slabs though which are rarely used.
  2263. *
  2264. * slub_max_order specifies the order where we begin to stop considering the
  2265. * number of objects in a slab as critical. If we reach slub_max_order then
  2266. * we try to keep the page order as low as possible. So we accept more waste
  2267. * of space in favor of a small page order.
  2268. *
  2269. * Higher order allocations also allow the placement of more objects in a
  2270. * slab and thereby reduce object handling overhead. If the user has
  2271. * requested a higher mininum order then we start with that one instead of
  2272. * the smallest order which will fit the object.
  2273. */
  2274. static inline int slab_order(int size, int min_objects,
  2275. int max_order, int fract_leftover, int reserved)
  2276. {
  2277. int order;
  2278. int rem;
  2279. int min_order = slub_min_order;
  2280. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2281. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2282. for (order = max(min_order,
  2283. fls(min_objects * size - 1) - PAGE_SHIFT);
  2284. order <= max_order; order++) {
  2285. unsigned long slab_size = PAGE_SIZE << order;
  2286. if (slab_size < min_objects * size + reserved)
  2287. continue;
  2288. rem = (slab_size - reserved) % size;
  2289. if (rem <= slab_size / fract_leftover)
  2290. break;
  2291. }
  2292. return order;
  2293. }
  2294. static inline int calculate_order(int size, int reserved)
  2295. {
  2296. int order;
  2297. int min_objects;
  2298. int fraction;
  2299. int max_objects;
  2300. /*
  2301. * Attempt to find best configuration for a slab. This
  2302. * works by first attempting to generate a layout with
  2303. * the best configuration and backing off gradually.
  2304. *
  2305. * First we reduce the acceptable waste in a slab. Then
  2306. * we reduce the minimum objects required in a slab.
  2307. */
  2308. min_objects = slub_min_objects;
  2309. if (!min_objects)
  2310. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2311. max_objects = order_objects(slub_max_order, size, reserved);
  2312. min_objects = min(min_objects, max_objects);
  2313. while (min_objects > 1) {
  2314. fraction = 16;
  2315. while (fraction >= 4) {
  2316. order = slab_order(size, min_objects,
  2317. slub_max_order, fraction, reserved);
  2318. if (order <= slub_max_order)
  2319. return order;
  2320. fraction /= 2;
  2321. }
  2322. min_objects--;
  2323. }
  2324. /*
  2325. * We were unable to place multiple objects in a slab. Now
  2326. * lets see if we can place a single object there.
  2327. */
  2328. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2329. if (order <= slub_max_order)
  2330. return order;
  2331. /*
  2332. * Doh this slab cannot be placed using slub_max_order.
  2333. */
  2334. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2335. if (order < MAX_ORDER)
  2336. return order;
  2337. return -ENOSYS;
  2338. }
  2339. /*
  2340. * Figure out what the alignment of the objects will be.
  2341. */
  2342. static unsigned long calculate_alignment(unsigned long flags,
  2343. unsigned long align, unsigned long size)
  2344. {
  2345. /*
  2346. * If the user wants hardware cache aligned objects then follow that
  2347. * suggestion if the object is sufficiently large.
  2348. *
  2349. * The hardware cache alignment cannot override the specified
  2350. * alignment though. If that is greater then use it.
  2351. */
  2352. if (flags & SLAB_HWCACHE_ALIGN) {
  2353. unsigned long ralign = cache_line_size();
  2354. while (size <= ralign / 2)
  2355. ralign /= 2;
  2356. align = max(align, ralign);
  2357. }
  2358. if (align < ARCH_SLAB_MINALIGN)
  2359. align = ARCH_SLAB_MINALIGN;
  2360. return ALIGN(align, sizeof(void *));
  2361. }
  2362. static void
  2363. init_kmem_cache_node(struct kmem_cache_node *n)
  2364. {
  2365. n->nr_partial = 0;
  2366. spin_lock_init(&n->list_lock);
  2367. INIT_LIST_HEAD(&n->partial);
  2368. #ifdef CONFIG_SLUB_DEBUG
  2369. atomic_long_set(&n->nr_slabs, 0);
  2370. atomic_long_set(&n->total_objects, 0);
  2371. INIT_LIST_HEAD(&n->full);
  2372. #endif
  2373. }
  2374. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2375. {
  2376. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2377. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2378. /*
  2379. * Must align to double word boundary for the double cmpxchg
  2380. * instructions to work; see __pcpu_double_call_return_bool().
  2381. */
  2382. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2383. 2 * sizeof(void *));
  2384. if (!s->cpu_slab)
  2385. return 0;
  2386. init_kmem_cache_cpus(s);
  2387. return 1;
  2388. }
  2389. static struct kmem_cache *kmem_cache_node;
  2390. /*
  2391. * No kmalloc_node yet so do it by hand. We know that this is the first
  2392. * slab on the node for this slabcache. There are no concurrent accesses
  2393. * possible.
  2394. *
  2395. * Note that this function only works on the kmalloc_node_cache
  2396. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2397. * memory on a fresh node that has no slab structures yet.
  2398. */
  2399. static void early_kmem_cache_node_alloc(int node)
  2400. {
  2401. struct page *page;
  2402. struct kmem_cache_node *n;
  2403. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2404. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2405. BUG_ON(!page);
  2406. if (page_to_nid(page) != node) {
  2407. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2408. "node %d\n", node);
  2409. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2410. "in order to be able to continue\n");
  2411. }
  2412. n = page->freelist;
  2413. BUG_ON(!n);
  2414. page->freelist = get_freepointer(kmem_cache_node, n);
  2415. page->inuse = 1;
  2416. page->frozen = 0;
  2417. kmem_cache_node->node[node] = n;
  2418. #ifdef CONFIG_SLUB_DEBUG
  2419. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2420. init_tracking(kmem_cache_node, n);
  2421. #endif
  2422. init_kmem_cache_node(n);
  2423. inc_slabs_node(kmem_cache_node, node, page->objects);
  2424. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2425. }
  2426. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2427. {
  2428. int node;
  2429. for_each_node_state(node, N_NORMAL_MEMORY) {
  2430. struct kmem_cache_node *n = s->node[node];
  2431. if (n)
  2432. kmem_cache_free(kmem_cache_node, n);
  2433. s->node[node] = NULL;
  2434. }
  2435. }
  2436. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2437. {
  2438. int node;
  2439. for_each_node_state(node, N_NORMAL_MEMORY) {
  2440. struct kmem_cache_node *n;
  2441. if (slab_state == DOWN) {
  2442. early_kmem_cache_node_alloc(node);
  2443. continue;
  2444. }
  2445. n = kmem_cache_alloc_node(kmem_cache_node,
  2446. GFP_KERNEL, node);
  2447. if (!n) {
  2448. free_kmem_cache_nodes(s);
  2449. return 0;
  2450. }
  2451. s->node[node] = n;
  2452. init_kmem_cache_node(n);
  2453. }
  2454. return 1;
  2455. }
  2456. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2457. {
  2458. if (min < MIN_PARTIAL)
  2459. min = MIN_PARTIAL;
  2460. else if (min > MAX_PARTIAL)
  2461. min = MAX_PARTIAL;
  2462. s->min_partial = min;
  2463. }
  2464. /*
  2465. * calculate_sizes() determines the order and the distribution of data within
  2466. * a slab object.
  2467. */
  2468. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2469. {
  2470. unsigned long flags = s->flags;
  2471. unsigned long size = s->object_size;
  2472. unsigned long align = s->align;
  2473. int order;
  2474. /*
  2475. * Round up object size to the next word boundary. We can only
  2476. * place the free pointer at word boundaries and this determines
  2477. * the possible location of the free pointer.
  2478. */
  2479. size = ALIGN(size, sizeof(void *));
  2480. #ifdef CONFIG_SLUB_DEBUG
  2481. /*
  2482. * Determine if we can poison the object itself. If the user of
  2483. * the slab may touch the object after free or before allocation
  2484. * then we should never poison the object itself.
  2485. */
  2486. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2487. !s->ctor)
  2488. s->flags |= __OBJECT_POISON;
  2489. else
  2490. s->flags &= ~__OBJECT_POISON;
  2491. /*
  2492. * If we are Redzoning then check if there is some space between the
  2493. * end of the object and the free pointer. If not then add an
  2494. * additional word to have some bytes to store Redzone information.
  2495. */
  2496. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2497. size += sizeof(void *);
  2498. #endif
  2499. /*
  2500. * With that we have determined the number of bytes in actual use
  2501. * by the object. This is the potential offset to the free pointer.
  2502. */
  2503. s->inuse = size;
  2504. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2505. s->ctor)) {
  2506. /*
  2507. * Relocate free pointer after the object if it is not
  2508. * permitted to overwrite the first word of the object on
  2509. * kmem_cache_free.
  2510. *
  2511. * This is the case if we do RCU, have a constructor or
  2512. * destructor or are poisoning the objects.
  2513. */
  2514. s->offset = size;
  2515. size += sizeof(void *);
  2516. }
  2517. #ifdef CONFIG_SLUB_DEBUG
  2518. if (flags & SLAB_STORE_USER)
  2519. /*
  2520. * Need to store information about allocs and frees after
  2521. * the object.
  2522. */
  2523. size += 2 * sizeof(struct track);
  2524. if (flags & SLAB_RED_ZONE)
  2525. /*
  2526. * Add some empty padding so that we can catch
  2527. * overwrites from earlier objects rather than let
  2528. * tracking information or the free pointer be
  2529. * corrupted if a user writes before the start
  2530. * of the object.
  2531. */
  2532. size += sizeof(void *);
  2533. #endif
  2534. /*
  2535. * Determine the alignment based on various parameters that the
  2536. * user specified and the dynamic determination of cache line size
  2537. * on bootup.
  2538. */
  2539. align = calculate_alignment(flags, align, s->object_size);
  2540. s->align = align;
  2541. /*
  2542. * SLUB stores one object immediately after another beginning from
  2543. * offset 0. In order to align the objects we have to simply size
  2544. * each object to conform to the alignment.
  2545. */
  2546. size = ALIGN(size, align);
  2547. s->size = size;
  2548. if (forced_order >= 0)
  2549. order = forced_order;
  2550. else
  2551. order = calculate_order(size, s->reserved);
  2552. if (order < 0)
  2553. return 0;
  2554. s->allocflags = 0;
  2555. if (order)
  2556. s->allocflags |= __GFP_COMP;
  2557. if (s->flags & SLAB_CACHE_DMA)
  2558. s->allocflags |= SLUB_DMA;
  2559. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2560. s->allocflags |= __GFP_RECLAIMABLE;
  2561. /*
  2562. * Determine the number of objects per slab
  2563. */
  2564. s->oo = oo_make(order, size, s->reserved);
  2565. s->min = oo_make(get_order(size), size, s->reserved);
  2566. if (oo_objects(s->oo) > oo_objects(s->max))
  2567. s->max = s->oo;
  2568. return !!oo_objects(s->oo);
  2569. }
  2570. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2571. {
  2572. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2573. s->reserved = 0;
  2574. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2575. s->reserved = sizeof(struct rcu_head);
  2576. if (!calculate_sizes(s, -1))
  2577. goto error;
  2578. if (disable_higher_order_debug) {
  2579. /*
  2580. * Disable debugging flags that store metadata if the min slab
  2581. * order increased.
  2582. */
  2583. if (get_order(s->size) > get_order(s->object_size)) {
  2584. s->flags &= ~DEBUG_METADATA_FLAGS;
  2585. s->offset = 0;
  2586. if (!calculate_sizes(s, -1))
  2587. goto error;
  2588. }
  2589. }
  2590. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2591. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2592. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2593. /* Enable fast mode */
  2594. s->flags |= __CMPXCHG_DOUBLE;
  2595. #endif
  2596. /*
  2597. * The larger the object size is, the more pages we want on the partial
  2598. * list to avoid pounding the page allocator excessively.
  2599. */
  2600. set_min_partial(s, ilog2(s->size) / 2);
  2601. /*
  2602. * cpu_partial determined the maximum number of objects kept in the
  2603. * per cpu partial lists of a processor.
  2604. *
  2605. * Per cpu partial lists mainly contain slabs that just have one
  2606. * object freed. If they are used for allocation then they can be
  2607. * filled up again with minimal effort. The slab will never hit the
  2608. * per node partial lists and therefore no locking will be required.
  2609. *
  2610. * This setting also determines
  2611. *
  2612. * A) The number of objects from per cpu partial slabs dumped to the
  2613. * per node list when we reach the limit.
  2614. * B) The number of objects in cpu partial slabs to extract from the
  2615. * per node list when we run out of per cpu objects. We only fetch 50%
  2616. * to keep some capacity around for frees.
  2617. */
  2618. if (kmem_cache_debug(s))
  2619. s->cpu_partial = 0;
  2620. else if (s->size >= PAGE_SIZE)
  2621. s->cpu_partial = 2;
  2622. else if (s->size >= 1024)
  2623. s->cpu_partial = 6;
  2624. else if (s->size >= 256)
  2625. s->cpu_partial = 13;
  2626. else
  2627. s->cpu_partial = 30;
  2628. #ifdef CONFIG_NUMA
  2629. s->remote_node_defrag_ratio = 1000;
  2630. #endif
  2631. if (!init_kmem_cache_nodes(s))
  2632. goto error;
  2633. if (alloc_kmem_cache_cpus(s))
  2634. return 0;
  2635. free_kmem_cache_nodes(s);
  2636. error:
  2637. if (flags & SLAB_PANIC)
  2638. panic("Cannot create slab %s size=%lu realsize=%u "
  2639. "order=%u offset=%u flags=%lx\n",
  2640. s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
  2641. s->offset, flags);
  2642. return -EINVAL;
  2643. }
  2644. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2645. const char *text)
  2646. {
  2647. #ifdef CONFIG_SLUB_DEBUG
  2648. void *addr = page_address(page);
  2649. void *p;
  2650. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2651. sizeof(long), GFP_ATOMIC);
  2652. if (!map)
  2653. return;
  2654. slab_err(s, page, text, s->name);
  2655. slab_lock(page);
  2656. get_map(s, page, map);
  2657. for_each_object(p, s, addr, page->objects) {
  2658. if (!test_bit(slab_index(p, s, addr), map)) {
  2659. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2660. p, p - addr);
  2661. print_tracking(s, p);
  2662. }
  2663. }
  2664. slab_unlock(page);
  2665. kfree(map);
  2666. #endif
  2667. }
  2668. /*
  2669. * Attempt to free all partial slabs on a node.
  2670. * This is called from kmem_cache_close(). We must be the last thread
  2671. * using the cache and therefore we do not need to lock anymore.
  2672. */
  2673. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2674. {
  2675. struct page *page, *h;
  2676. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2677. if (!page->inuse) {
  2678. remove_partial(n, page);
  2679. discard_slab(s, page);
  2680. } else {
  2681. list_slab_objects(s, page,
  2682. "Objects remaining in %s on kmem_cache_close()");
  2683. }
  2684. }
  2685. }
  2686. /*
  2687. * Release all resources used by a slab cache.
  2688. */
  2689. static inline int kmem_cache_close(struct kmem_cache *s)
  2690. {
  2691. int node;
  2692. flush_all(s);
  2693. /* Attempt to free all objects */
  2694. for_each_node_state(node, N_NORMAL_MEMORY) {
  2695. struct kmem_cache_node *n = get_node(s, node);
  2696. free_partial(s, n);
  2697. if (n->nr_partial || slabs_node(s, node))
  2698. return 1;
  2699. }
  2700. free_percpu(s->cpu_slab);
  2701. free_kmem_cache_nodes(s);
  2702. return 0;
  2703. }
  2704. int __kmem_cache_shutdown(struct kmem_cache *s)
  2705. {
  2706. int rc = kmem_cache_close(s);
  2707. if (!rc)
  2708. sysfs_slab_remove(s);
  2709. return rc;
  2710. }
  2711. /********************************************************************
  2712. * Kmalloc subsystem
  2713. *******************************************************************/
  2714. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2715. EXPORT_SYMBOL(kmalloc_caches);
  2716. #ifdef CONFIG_ZONE_DMA
  2717. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2718. #endif
  2719. static int __init setup_slub_min_order(char *str)
  2720. {
  2721. get_option(&str, &slub_min_order);
  2722. return 1;
  2723. }
  2724. __setup("slub_min_order=", setup_slub_min_order);
  2725. static int __init setup_slub_max_order(char *str)
  2726. {
  2727. get_option(&str, &slub_max_order);
  2728. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2729. return 1;
  2730. }
  2731. __setup("slub_max_order=", setup_slub_max_order);
  2732. static int __init setup_slub_min_objects(char *str)
  2733. {
  2734. get_option(&str, &slub_min_objects);
  2735. return 1;
  2736. }
  2737. __setup("slub_min_objects=", setup_slub_min_objects);
  2738. static int __init setup_slub_nomerge(char *str)
  2739. {
  2740. slub_nomerge = 1;
  2741. return 1;
  2742. }
  2743. __setup("slub_nomerge", setup_slub_nomerge);
  2744. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2745. int size, unsigned int flags)
  2746. {
  2747. struct kmem_cache *s;
  2748. s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  2749. s->name = name;
  2750. s->size = s->object_size = size;
  2751. s->align = ARCH_KMALLOC_MINALIGN;
  2752. /*
  2753. * This function is called with IRQs disabled during early-boot on
  2754. * single CPU so there's no need to take slab_mutex here.
  2755. */
  2756. if (kmem_cache_open(s, flags))
  2757. goto panic;
  2758. list_add(&s->list, &slab_caches);
  2759. return s;
  2760. panic:
  2761. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2762. return NULL;
  2763. }
  2764. /*
  2765. * Conversion table for small slabs sizes / 8 to the index in the
  2766. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2767. * of two cache sizes there. The size of larger slabs can be determined using
  2768. * fls.
  2769. */
  2770. static s8 size_index[24] = {
  2771. 3, /* 8 */
  2772. 4, /* 16 */
  2773. 5, /* 24 */
  2774. 5, /* 32 */
  2775. 6, /* 40 */
  2776. 6, /* 48 */
  2777. 6, /* 56 */
  2778. 6, /* 64 */
  2779. 1, /* 72 */
  2780. 1, /* 80 */
  2781. 1, /* 88 */
  2782. 1, /* 96 */
  2783. 7, /* 104 */
  2784. 7, /* 112 */
  2785. 7, /* 120 */
  2786. 7, /* 128 */
  2787. 2, /* 136 */
  2788. 2, /* 144 */
  2789. 2, /* 152 */
  2790. 2, /* 160 */
  2791. 2, /* 168 */
  2792. 2, /* 176 */
  2793. 2, /* 184 */
  2794. 2 /* 192 */
  2795. };
  2796. static inline int size_index_elem(size_t bytes)
  2797. {
  2798. return (bytes - 1) / 8;
  2799. }
  2800. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2801. {
  2802. int index;
  2803. if (size <= 192) {
  2804. if (!size)
  2805. return ZERO_SIZE_PTR;
  2806. index = size_index[size_index_elem(size)];
  2807. } else
  2808. index = fls(size - 1);
  2809. #ifdef CONFIG_ZONE_DMA
  2810. if (unlikely((flags & SLUB_DMA)))
  2811. return kmalloc_dma_caches[index];
  2812. #endif
  2813. return kmalloc_caches[index];
  2814. }
  2815. void *__kmalloc(size_t size, gfp_t flags)
  2816. {
  2817. struct kmem_cache *s;
  2818. void *ret;
  2819. if (unlikely(size > SLUB_MAX_SIZE))
  2820. return kmalloc_large(size, flags);
  2821. s = get_slab(size, flags);
  2822. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2823. return s;
  2824. ret = slab_alloc(s, flags, _RET_IP_);
  2825. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2826. return ret;
  2827. }
  2828. EXPORT_SYMBOL(__kmalloc);
  2829. #ifdef CONFIG_NUMA
  2830. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2831. {
  2832. struct page *page;
  2833. void *ptr = NULL;
  2834. flags |= __GFP_COMP | __GFP_NOTRACK;
  2835. page = alloc_pages_node(node, flags, get_order(size));
  2836. if (page)
  2837. ptr = page_address(page);
  2838. kmemleak_alloc(ptr, size, 1, flags);
  2839. return ptr;
  2840. }
  2841. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2842. {
  2843. struct kmem_cache *s;
  2844. void *ret;
  2845. if (unlikely(size > SLUB_MAX_SIZE)) {
  2846. ret = kmalloc_large_node(size, flags, node);
  2847. trace_kmalloc_node(_RET_IP_, ret,
  2848. size, PAGE_SIZE << get_order(size),
  2849. flags, node);
  2850. return ret;
  2851. }
  2852. s = get_slab(size, flags);
  2853. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2854. return s;
  2855. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2856. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2857. return ret;
  2858. }
  2859. EXPORT_SYMBOL(__kmalloc_node);
  2860. #endif
  2861. size_t ksize(const void *object)
  2862. {
  2863. struct page *page;
  2864. if (unlikely(object == ZERO_SIZE_PTR))
  2865. return 0;
  2866. page = virt_to_head_page(object);
  2867. if (unlikely(!PageSlab(page))) {
  2868. WARN_ON(!PageCompound(page));
  2869. return PAGE_SIZE << compound_order(page);
  2870. }
  2871. return slab_ksize(page->slab_cache);
  2872. }
  2873. EXPORT_SYMBOL(ksize);
  2874. #ifdef CONFIG_SLUB_DEBUG
  2875. bool verify_mem_not_deleted(const void *x)
  2876. {
  2877. struct page *page;
  2878. void *object = (void *)x;
  2879. unsigned long flags;
  2880. bool rv;
  2881. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2882. return false;
  2883. local_irq_save(flags);
  2884. page = virt_to_head_page(x);
  2885. if (unlikely(!PageSlab(page))) {
  2886. /* maybe it was from stack? */
  2887. rv = true;
  2888. goto out_unlock;
  2889. }
  2890. slab_lock(page);
  2891. if (on_freelist(page->slab_cache, page, object)) {
  2892. object_err(page->slab_cache, page, object, "Object is on free-list");
  2893. rv = false;
  2894. } else {
  2895. rv = true;
  2896. }
  2897. slab_unlock(page);
  2898. out_unlock:
  2899. local_irq_restore(flags);
  2900. return rv;
  2901. }
  2902. EXPORT_SYMBOL(verify_mem_not_deleted);
  2903. #endif
  2904. void kfree(const void *x)
  2905. {
  2906. struct page *page;
  2907. void *object = (void *)x;
  2908. trace_kfree(_RET_IP_, x);
  2909. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2910. return;
  2911. page = virt_to_head_page(x);
  2912. if (unlikely(!PageSlab(page))) {
  2913. BUG_ON(!PageCompound(page));
  2914. kmemleak_free(x);
  2915. __free_pages(page, compound_order(page));
  2916. return;
  2917. }
  2918. slab_free(page->slab_cache, page, object, _RET_IP_);
  2919. }
  2920. EXPORT_SYMBOL(kfree);
  2921. /*
  2922. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2923. * the remaining slabs by the number of items in use. The slabs with the
  2924. * most items in use come first. New allocations will then fill those up
  2925. * and thus they can be removed from the partial lists.
  2926. *
  2927. * The slabs with the least items are placed last. This results in them
  2928. * being allocated from last increasing the chance that the last objects
  2929. * are freed in them.
  2930. */
  2931. int kmem_cache_shrink(struct kmem_cache *s)
  2932. {
  2933. int node;
  2934. int i;
  2935. struct kmem_cache_node *n;
  2936. struct page *page;
  2937. struct page *t;
  2938. int objects = oo_objects(s->max);
  2939. struct list_head *slabs_by_inuse =
  2940. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2941. unsigned long flags;
  2942. if (!slabs_by_inuse)
  2943. return -ENOMEM;
  2944. flush_all(s);
  2945. for_each_node_state(node, N_NORMAL_MEMORY) {
  2946. n = get_node(s, node);
  2947. if (!n->nr_partial)
  2948. continue;
  2949. for (i = 0; i < objects; i++)
  2950. INIT_LIST_HEAD(slabs_by_inuse + i);
  2951. spin_lock_irqsave(&n->list_lock, flags);
  2952. /*
  2953. * Build lists indexed by the items in use in each slab.
  2954. *
  2955. * Note that concurrent frees may occur while we hold the
  2956. * list_lock. page->inuse here is the upper limit.
  2957. */
  2958. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2959. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2960. if (!page->inuse)
  2961. n->nr_partial--;
  2962. }
  2963. /*
  2964. * Rebuild the partial list with the slabs filled up most
  2965. * first and the least used slabs at the end.
  2966. */
  2967. for (i = objects - 1; i > 0; i--)
  2968. list_splice(slabs_by_inuse + i, n->partial.prev);
  2969. spin_unlock_irqrestore(&n->list_lock, flags);
  2970. /* Release empty slabs */
  2971. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2972. discard_slab(s, page);
  2973. }
  2974. kfree(slabs_by_inuse);
  2975. return 0;
  2976. }
  2977. EXPORT_SYMBOL(kmem_cache_shrink);
  2978. #if defined(CONFIG_MEMORY_HOTPLUG)
  2979. static int slab_mem_going_offline_callback(void *arg)
  2980. {
  2981. struct kmem_cache *s;
  2982. mutex_lock(&slab_mutex);
  2983. list_for_each_entry(s, &slab_caches, list)
  2984. kmem_cache_shrink(s);
  2985. mutex_unlock(&slab_mutex);
  2986. return 0;
  2987. }
  2988. static void slab_mem_offline_callback(void *arg)
  2989. {
  2990. struct kmem_cache_node *n;
  2991. struct kmem_cache *s;
  2992. struct memory_notify *marg = arg;
  2993. int offline_node;
  2994. offline_node = marg->status_change_nid;
  2995. /*
  2996. * If the node still has available memory. we need kmem_cache_node
  2997. * for it yet.
  2998. */
  2999. if (offline_node < 0)
  3000. return;
  3001. mutex_lock(&slab_mutex);
  3002. list_for_each_entry(s, &slab_caches, list) {
  3003. n = get_node(s, offline_node);
  3004. if (n) {
  3005. /*
  3006. * if n->nr_slabs > 0, slabs still exist on the node
  3007. * that is going down. We were unable to free them,
  3008. * and offline_pages() function shouldn't call this
  3009. * callback. So, we must fail.
  3010. */
  3011. BUG_ON(slabs_node(s, offline_node));
  3012. s->node[offline_node] = NULL;
  3013. kmem_cache_free(kmem_cache_node, n);
  3014. }
  3015. }
  3016. mutex_unlock(&slab_mutex);
  3017. }
  3018. static int slab_mem_going_online_callback(void *arg)
  3019. {
  3020. struct kmem_cache_node *n;
  3021. struct kmem_cache *s;
  3022. struct memory_notify *marg = arg;
  3023. int nid = marg->status_change_nid;
  3024. int ret = 0;
  3025. /*
  3026. * If the node's memory is already available, then kmem_cache_node is
  3027. * already created. Nothing to do.
  3028. */
  3029. if (nid < 0)
  3030. return 0;
  3031. /*
  3032. * We are bringing a node online. No memory is available yet. We must
  3033. * allocate a kmem_cache_node structure in order to bring the node
  3034. * online.
  3035. */
  3036. mutex_lock(&slab_mutex);
  3037. list_for_each_entry(s, &slab_caches, list) {
  3038. /*
  3039. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3040. * since memory is not yet available from the node that
  3041. * is brought up.
  3042. */
  3043. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3044. if (!n) {
  3045. ret = -ENOMEM;
  3046. goto out;
  3047. }
  3048. init_kmem_cache_node(n);
  3049. s->node[nid] = n;
  3050. }
  3051. out:
  3052. mutex_unlock(&slab_mutex);
  3053. return ret;
  3054. }
  3055. static int slab_memory_callback(struct notifier_block *self,
  3056. unsigned long action, void *arg)
  3057. {
  3058. int ret = 0;
  3059. switch (action) {
  3060. case MEM_GOING_ONLINE:
  3061. ret = slab_mem_going_online_callback(arg);
  3062. break;
  3063. case MEM_GOING_OFFLINE:
  3064. ret = slab_mem_going_offline_callback(arg);
  3065. break;
  3066. case MEM_OFFLINE:
  3067. case MEM_CANCEL_ONLINE:
  3068. slab_mem_offline_callback(arg);
  3069. break;
  3070. case MEM_ONLINE:
  3071. case MEM_CANCEL_OFFLINE:
  3072. break;
  3073. }
  3074. if (ret)
  3075. ret = notifier_from_errno(ret);
  3076. else
  3077. ret = NOTIFY_OK;
  3078. return ret;
  3079. }
  3080. #endif /* CONFIG_MEMORY_HOTPLUG */
  3081. /********************************************************************
  3082. * Basic setup of slabs
  3083. *******************************************************************/
  3084. /*
  3085. * Used for early kmem_cache structures that were allocated using
  3086. * the page allocator
  3087. */
  3088. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3089. {
  3090. int node;
  3091. list_add(&s->list, &slab_caches);
  3092. s->refcount = -1;
  3093. for_each_node_state(node, N_NORMAL_MEMORY) {
  3094. struct kmem_cache_node *n = get_node(s, node);
  3095. struct page *p;
  3096. if (n) {
  3097. list_for_each_entry(p, &n->partial, lru)
  3098. p->slab_cache = s;
  3099. #ifdef CONFIG_SLUB_DEBUG
  3100. list_for_each_entry(p, &n->full, lru)
  3101. p->slab_cache = s;
  3102. #endif
  3103. }
  3104. }
  3105. }
  3106. void __init kmem_cache_init(void)
  3107. {
  3108. int i;
  3109. int caches = 0;
  3110. struct kmem_cache *temp_kmem_cache;
  3111. int order;
  3112. struct kmem_cache *temp_kmem_cache_node;
  3113. unsigned long kmalloc_size;
  3114. if (debug_guardpage_minorder())
  3115. slub_max_order = 0;
  3116. kmem_size = offsetof(struct kmem_cache, node) +
  3117. nr_node_ids * sizeof(struct kmem_cache_node *);
  3118. /* Allocate two kmem_caches from the page allocator */
  3119. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3120. order = get_order(2 * kmalloc_size);
  3121. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT | __GFP_ZERO, order);
  3122. /*
  3123. * Must first have the slab cache available for the allocations of the
  3124. * struct kmem_cache_node's. There is special bootstrap code in
  3125. * kmem_cache_open for slab_state == DOWN.
  3126. */
  3127. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3128. kmem_cache_node->name = "kmem_cache_node";
  3129. kmem_cache_node->size = kmem_cache_node->object_size =
  3130. sizeof(struct kmem_cache_node);
  3131. kmem_cache_open(kmem_cache_node, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  3132. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3133. /* Able to allocate the per node structures */
  3134. slab_state = PARTIAL;
  3135. temp_kmem_cache = kmem_cache;
  3136. kmem_cache->name = "kmem_cache";
  3137. kmem_cache->size = kmem_cache->object_size = kmem_size;
  3138. kmem_cache_open(kmem_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  3139. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3140. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3141. /*
  3142. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3143. * kmem_cache_node is separately allocated so no need to
  3144. * update any list pointers.
  3145. */
  3146. temp_kmem_cache_node = kmem_cache_node;
  3147. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3148. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3149. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3150. caches++;
  3151. kmem_cache_bootstrap_fixup(kmem_cache);
  3152. caches++;
  3153. /* Free temporary boot structure */
  3154. free_pages((unsigned long)temp_kmem_cache, order);
  3155. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3156. /*
  3157. * Patch up the size_index table if we have strange large alignment
  3158. * requirements for the kmalloc array. This is only the case for
  3159. * MIPS it seems. The standard arches will not generate any code here.
  3160. *
  3161. * Largest permitted alignment is 256 bytes due to the way we
  3162. * handle the index determination for the smaller caches.
  3163. *
  3164. * Make sure that nothing crazy happens if someone starts tinkering
  3165. * around with ARCH_KMALLOC_MINALIGN
  3166. */
  3167. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3168. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3169. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3170. int elem = size_index_elem(i);
  3171. if (elem >= ARRAY_SIZE(size_index))
  3172. break;
  3173. size_index[elem] = KMALLOC_SHIFT_LOW;
  3174. }
  3175. if (KMALLOC_MIN_SIZE == 64) {
  3176. /*
  3177. * The 96 byte size cache is not used if the alignment
  3178. * is 64 byte.
  3179. */
  3180. for (i = 64 + 8; i <= 96; i += 8)
  3181. size_index[size_index_elem(i)] = 7;
  3182. } else if (KMALLOC_MIN_SIZE == 128) {
  3183. /*
  3184. * The 192 byte sized cache is not used if the alignment
  3185. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3186. * instead.
  3187. */
  3188. for (i = 128 + 8; i <= 192; i += 8)
  3189. size_index[size_index_elem(i)] = 8;
  3190. }
  3191. /* Caches that are not of the two-to-the-power-of size */
  3192. if (KMALLOC_MIN_SIZE <= 32) {
  3193. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3194. caches++;
  3195. }
  3196. if (KMALLOC_MIN_SIZE <= 64) {
  3197. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3198. caches++;
  3199. }
  3200. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3201. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3202. caches++;
  3203. }
  3204. slab_state = UP;
  3205. /* Provide the correct kmalloc names now that the caches are up */
  3206. if (KMALLOC_MIN_SIZE <= 32) {
  3207. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3208. BUG_ON(!kmalloc_caches[1]->name);
  3209. }
  3210. if (KMALLOC_MIN_SIZE <= 64) {
  3211. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3212. BUG_ON(!kmalloc_caches[2]->name);
  3213. }
  3214. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3215. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3216. BUG_ON(!s);
  3217. kmalloc_caches[i]->name = s;
  3218. }
  3219. #ifdef CONFIG_SMP
  3220. register_cpu_notifier(&slab_notifier);
  3221. #endif
  3222. #ifdef CONFIG_ZONE_DMA
  3223. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3224. struct kmem_cache *s = kmalloc_caches[i];
  3225. if (s && s->size) {
  3226. char *name = kasprintf(GFP_NOWAIT,
  3227. "dma-kmalloc-%d", s->object_size);
  3228. BUG_ON(!name);
  3229. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3230. s->object_size, SLAB_CACHE_DMA);
  3231. }
  3232. }
  3233. #endif
  3234. printk(KERN_INFO
  3235. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3236. " CPUs=%d, Nodes=%d\n",
  3237. caches, cache_line_size(),
  3238. slub_min_order, slub_max_order, slub_min_objects,
  3239. nr_cpu_ids, nr_node_ids);
  3240. }
  3241. void __init kmem_cache_init_late(void)
  3242. {
  3243. }
  3244. /*
  3245. * Find a mergeable slab cache
  3246. */
  3247. static int slab_unmergeable(struct kmem_cache *s)
  3248. {
  3249. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3250. return 1;
  3251. if (s->ctor)
  3252. return 1;
  3253. /*
  3254. * We may have set a slab to be unmergeable during bootstrap.
  3255. */
  3256. if (s->refcount < 0)
  3257. return 1;
  3258. return 0;
  3259. }
  3260. static struct kmem_cache *find_mergeable(size_t size,
  3261. size_t align, unsigned long flags, const char *name,
  3262. void (*ctor)(void *))
  3263. {
  3264. struct kmem_cache *s;
  3265. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3266. return NULL;
  3267. if (ctor)
  3268. return NULL;
  3269. size = ALIGN(size, sizeof(void *));
  3270. align = calculate_alignment(flags, align, size);
  3271. size = ALIGN(size, align);
  3272. flags = kmem_cache_flags(size, flags, name, NULL);
  3273. list_for_each_entry(s, &slab_caches, list) {
  3274. if (slab_unmergeable(s))
  3275. continue;
  3276. if (size > s->size)
  3277. continue;
  3278. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3279. continue;
  3280. /*
  3281. * Check if alignment is compatible.
  3282. * Courtesy of Adrian Drzewiecki
  3283. */
  3284. if ((s->size & ~(align - 1)) != s->size)
  3285. continue;
  3286. if (s->size - size >= sizeof(void *))
  3287. continue;
  3288. return s;
  3289. }
  3290. return NULL;
  3291. }
  3292. struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
  3293. size_t align, unsigned long flags, void (*ctor)(void *))
  3294. {
  3295. struct kmem_cache *s;
  3296. s = find_mergeable(size, align, flags, name, ctor);
  3297. if (s) {
  3298. s->refcount++;
  3299. /*
  3300. * Adjust the object sizes so that we clear
  3301. * the complete object on kzalloc.
  3302. */
  3303. s->object_size = max(s->object_size, (int)size);
  3304. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3305. if (sysfs_slab_alias(s, name)) {
  3306. s->refcount--;
  3307. s = NULL;
  3308. }
  3309. }
  3310. return s;
  3311. }
  3312. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3313. {
  3314. int err;
  3315. err = kmem_cache_open(s, flags);
  3316. if (err)
  3317. return err;
  3318. mutex_unlock(&slab_mutex);
  3319. err = sysfs_slab_add(s);
  3320. mutex_lock(&slab_mutex);
  3321. if (err)
  3322. kmem_cache_close(s);
  3323. return err;
  3324. }
  3325. #ifdef CONFIG_SMP
  3326. /*
  3327. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3328. * necessary.
  3329. */
  3330. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3331. unsigned long action, void *hcpu)
  3332. {
  3333. long cpu = (long)hcpu;
  3334. struct kmem_cache *s;
  3335. unsigned long flags;
  3336. switch (action) {
  3337. case CPU_UP_CANCELED:
  3338. case CPU_UP_CANCELED_FROZEN:
  3339. case CPU_DEAD:
  3340. case CPU_DEAD_FROZEN:
  3341. mutex_lock(&slab_mutex);
  3342. list_for_each_entry(s, &slab_caches, list) {
  3343. local_irq_save(flags);
  3344. __flush_cpu_slab(s, cpu);
  3345. local_irq_restore(flags);
  3346. }
  3347. mutex_unlock(&slab_mutex);
  3348. break;
  3349. default:
  3350. break;
  3351. }
  3352. return NOTIFY_OK;
  3353. }
  3354. static struct notifier_block __cpuinitdata slab_notifier = {
  3355. .notifier_call = slab_cpuup_callback
  3356. };
  3357. #endif
  3358. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3359. {
  3360. struct kmem_cache *s;
  3361. void *ret;
  3362. if (unlikely(size > SLUB_MAX_SIZE))
  3363. return kmalloc_large(size, gfpflags);
  3364. s = get_slab(size, gfpflags);
  3365. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3366. return s;
  3367. ret = slab_alloc(s, gfpflags, caller);
  3368. /* Honor the call site pointer we received. */
  3369. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3370. return ret;
  3371. }
  3372. #ifdef CONFIG_NUMA
  3373. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3374. int node, unsigned long caller)
  3375. {
  3376. struct kmem_cache *s;
  3377. void *ret;
  3378. if (unlikely(size > SLUB_MAX_SIZE)) {
  3379. ret = kmalloc_large_node(size, gfpflags, node);
  3380. trace_kmalloc_node(caller, ret,
  3381. size, PAGE_SIZE << get_order(size),
  3382. gfpflags, node);
  3383. return ret;
  3384. }
  3385. s = get_slab(size, gfpflags);
  3386. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3387. return s;
  3388. ret = slab_alloc_node(s, gfpflags, node, caller);
  3389. /* Honor the call site pointer we received. */
  3390. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3391. return ret;
  3392. }
  3393. #endif
  3394. #ifdef CONFIG_SYSFS
  3395. static int count_inuse(struct page *page)
  3396. {
  3397. return page->inuse;
  3398. }
  3399. static int count_total(struct page *page)
  3400. {
  3401. return page->objects;
  3402. }
  3403. #endif
  3404. #ifdef CONFIG_SLUB_DEBUG
  3405. static int validate_slab(struct kmem_cache *s, struct page *page,
  3406. unsigned long *map)
  3407. {
  3408. void *p;
  3409. void *addr = page_address(page);
  3410. if (!check_slab(s, page) ||
  3411. !on_freelist(s, page, NULL))
  3412. return 0;
  3413. /* Now we know that a valid freelist exists */
  3414. bitmap_zero(map, page->objects);
  3415. get_map(s, page, map);
  3416. for_each_object(p, s, addr, page->objects) {
  3417. if (test_bit(slab_index(p, s, addr), map))
  3418. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3419. return 0;
  3420. }
  3421. for_each_object(p, s, addr, page->objects)
  3422. if (!test_bit(slab_index(p, s, addr), map))
  3423. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3424. return 0;
  3425. return 1;
  3426. }
  3427. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3428. unsigned long *map)
  3429. {
  3430. slab_lock(page);
  3431. validate_slab(s, page, map);
  3432. slab_unlock(page);
  3433. }
  3434. static int validate_slab_node(struct kmem_cache *s,
  3435. struct kmem_cache_node *n, unsigned long *map)
  3436. {
  3437. unsigned long count = 0;
  3438. struct page *page;
  3439. unsigned long flags;
  3440. spin_lock_irqsave(&n->list_lock, flags);
  3441. list_for_each_entry(page, &n->partial, lru) {
  3442. validate_slab_slab(s, page, map);
  3443. count++;
  3444. }
  3445. if (count != n->nr_partial)
  3446. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3447. "counter=%ld\n", s->name, count, n->nr_partial);
  3448. if (!(s->flags & SLAB_STORE_USER))
  3449. goto out;
  3450. list_for_each_entry(page, &n->full, lru) {
  3451. validate_slab_slab(s, page, map);
  3452. count++;
  3453. }
  3454. if (count != atomic_long_read(&n->nr_slabs))
  3455. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3456. "counter=%ld\n", s->name, count,
  3457. atomic_long_read(&n->nr_slabs));
  3458. out:
  3459. spin_unlock_irqrestore(&n->list_lock, flags);
  3460. return count;
  3461. }
  3462. static long validate_slab_cache(struct kmem_cache *s)
  3463. {
  3464. int node;
  3465. unsigned long count = 0;
  3466. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3467. sizeof(unsigned long), GFP_KERNEL);
  3468. if (!map)
  3469. return -ENOMEM;
  3470. flush_all(s);
  3471. for_each_node_state(node, N_NORMAL_MEMORY) {
  3472. struct kmem_cache_node *n = get_node(s, node);
  3473. count += validate_slab_node(s, n, map);
  3474. }
  3475. kfree(map);
  3476. return count;
  3477. }
  3478. /*
  3479. * Generate lists of code addresses where slabcache objects are allocated
  3480. * and freed.
  3481. */
  3482. struct location {
  3483. unsigned long count;
  3484. unsigned long addr;
  3485. long long sum_time;
  3486. long min_time;
  3487. long max_time;
  3488. long min_pid;
  3489. long max_pid;
  3490. DECLARE_BITMAP(cpus, NR_CPUS);
  3491. nodemask_t nodes;
  3492. };
  3493. struct loc_track {
  3494. unsigned long max;
  3495. unsigned long count;
  3496. struct location *loc;
  3497. };
  3498. static void free_loc_track(struct loc_track *t)
  3499. {
  3500. if (t->max)
  3501. free_pages((unsigned long)t->loc,
  3502. get_order(sizeof(struct location) * t->max));
  3503. }
  3504. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3505. {
  3506. struct location *l;
  3507. int order;
  3508. order = get_order(sizeof(struct location) * max);
  3509. l = (void *)__get_free_pages(flags, order);
  3510. if (!l)
  3511. return 0;
  3512. if (t->count) {
  3513. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3514. free_loc_track(t);
  3515. }
  3516. t->max = max;
  3517. t->loc = l;
  3518. return 1;
  3519. }
  3520. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3521. const struct track *track)
  3522. {
  3523. long start, end, pos;
  3524. struct location *l;
  3525. unsigned long caddr;
  3526. unsigned long age = jiffies - track->when;
  3527. start = -1;
  3528. end = t->count;
  3529. for ( ; ; ) {
  3530. pos = start + (end - start + 1) / 2;
  3531. /*
  3532. * There is nothing at "end". If we end up there
  3533. * we need to add something to before end.
  3534. */
  3535. if (pos == end)
  3536. break;
  3537. caddr = t->loc[pos].addr;
  3538. if (track->addr == caddr) {
  3539. l = &t->loc[pos];
  3540. l->count++;
  3541. if (track->when) {
  3542. l->sum_time += age;
  3543. if (age < l->min_time)
  3544. l->min_time = age;
  3545. if (age > l->max_time)
  3546. l->max_time = age;
  3547. if (track->pid < l->min_pid)
  3548. l->min_pid = track->pid;
  3549. if (track->pid > l->max_pid)
  3550. l->max_pid = track->pid;
  3551. cpumask_set_cpu(track->cpu,
  3552. to_cpumask(l->cpus));
  3553. }
  3554. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3555. return 1;
  3556. }
  3557. if (track->addr < caddr)
  3558. end = pos;
  3559. else
  3560. start = pos;
  3561. }
  3562. /*
  3563. * Not found. Insert new tracking element.
  3564. */
  3565. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3566. return 0;
  3567. l = t->loc + pos;
  3568. if (pos < t->count)
  3569. memmove(l + 1, l,
  3570. (t->count - pos) * sizeof(struct location));
  3571. t->count++;
  3572. l->count = 1;
  3573. l->addr = track->addr;
  3574. l->sum_time = age;
  3575. l->min_time = age;
  3576. l->max_time = age;
  3577. l->min_pid = track->pid;
  3578. l->max_pid = track->pid;
  3579. cpumask_clear(to_cpumask(l->cpus));
  3580. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3581. nodes_clear(l->nodes);
  3582. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3583. return 1;
  3584. }
  3585. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3586. struct page *page, enum track_item alloc,
  3587. unsigned long *map)
  3588. {
  3589. void *addr = page_address(page);
  3590. void *p;
  3591. bitmap_zero(map, page->objects);
  3592. get_map(s, page, map);
  3593. for_each_object(p, s, addr, page->objects)
  3594. if (!test_bit(slab_index(p, s, addr), map))
  3595. add_location(t, s, get_track(s, p, alloc));
  3596. }
  3597. static int list_locations(struct kmem_cache *s, char *buf,
  3598. enum track_item alloc)
  3599. {
  3600. int len = 0;
  3601. unsigned long i;
  3602. struct loc_track t = { 0, 0, NULL };
  3603. int node;
  3604. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3605. sizeof(unsigned long), GFP_KERNEL);
  3606. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3607. GFP_TEMPORARY)) {
  3608. kfree(map);
  3609. return sprintf(buf, "Out of memory\n");
  3610. }
  3611. /* Push back cpu slabs */
  3612. flush_all(s);
  3613. for_each_node_state(node, N_NORMAL_MEMORY) {
  3614. struct kmem_cache_node *n = get_node(s, node);
  3615. unsigned long flags;
  3616. struct page *page;
  3617. if (!atomic_long_read(&n->nr_slabs))
  3618. continue;
  3619. spin_lock_irqsave(&n->list_lock, flags);
  3620. list_for_each_entry(page, &n->partial, lru)
  3621. process_slab(&t, s, page, alloc, map);
  3622. list_for_each_entry(page, &n->full, lru)
  3623. process_slab(&t, s, page, alloc, map);
  3624. spin_unlock_irqrestore(&n->list_lock, flags);
  3625. }
  3626. for (i = 0; i < t.count; i++) {
  3627. struct location *l = &t.loc[i];
  3628. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3629. break;
  3630. len += sprintf(buf + len, "%7ld ", l->count);
  3631. if (l->addr)
  3632. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3633. else
  3634. len += sprintf(buf + len, "<not-available>");
  3635. if (l->sum_time != l->min_time) {
  3636. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3637. l->min_time,
  3638. (long)div_u64(l->sum_time, l->count),
  3639. l->max_time);
  3640. } else
  3641. len += sprintf(buf + len, " age=%ld",
  3642. l->min_time);
  3643. if (l->min_pid != l->max_pid)
  3644. len += sprintf(buf + len, " pid=%ld-%ld",
  3645. l->min_pid, l->max_pid);
  3646. else
  3647. len += sprintf(buf + len, " pid=%ld",
  3648. l->min_pid);
  3649. if (num_online_cpus() > 1 &&
  3650. !cpumask_empty(to_cpumask(l->cpus)) &&
  3651. len < PAGE_SIZE - 60) {
  3652. len += sprintf(buf + len, " cpus=");
  3653. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3654. to_cpumask(l->cpus));
  3655. }
  3656. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3657. len < PAGE_SIZE - 60) {
  3658. len += sprintf(buf + len, " nodes=");
  3659. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3660. l->nodes);
  3661. }
  3662. len += sprintf(buf + len, "\n");
  3663. }
  3664. free_loc_track(&t);
  3665. kfree(map);
  3666. if (!t.count)
  3667. len += sprintf(buf, "No data\n");
  3668. return len;
  3669. }
  3670. #endif
  3671. #ifdef SLUB_RESILIENCY_TEST
  3672. static void resiliency_test(void)
  3673. {
  3674. u8 *p;
  3675. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3676. printk(KERN_ERR "SLUB resiliency testing\n");
  3677. printk(KERN_ERR "-----------------------\n");
  3678. printk(KERN_ERR "A. Corruption after allocation\n");
  3679. p = kzalloc(16, GFP_KERNEL);
  3680. p[16] = 0x12;
  3681. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3682. " 0x12->0x%p\n\n", p + 16);
  3683. validate_slab_cache(kmalloc_caches[4]);
  3684. /* Hmmm... The next two are dangerous */
  3685. p = kzalloc(32, GFP_KERNEL);
  3686. p[32 + sizeof(void *)] = 0x34;
  3687. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3688. " 0x34 -> -0x%p\n", p);
  3689. printk(KERN_ERR
  3690. "If allocated object is overwritten then not detectable\n\n");
  3691. validate_slab_cache(kmalloc_caches[5]);
  3692. p = kzalloc(64, GFP_KERNEL);
  3693. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3694. *p = 0x56;
  3695. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3696. p);
  3697. printk(KERN_ERR
  3698. "If allocated object is overwritten then not detectable\n\n");
  3699. validate_slab_cache(kmalloc_caches[6]);
  3700. printk(KERN_ERR "\nB. Corruption after free\n");
  3701. p = kzalloc(128, GFP_KERNEL);
  3702. kfree(p);
  3703. *p = 0x78;
  3704. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3705. validate_slab_cache(kmalloc_caches[7]);
  3706. p = kzalloc(256, GFP_KERNEL);
  3707. kfree(p);
  3708. p[50] = 0x9a;
  3709. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3710. p);
  3711. validate_slab_cache(kmalloc_caches[8]);
  3712. p = kzalloc(512, GFP_KERNEL);
  3713. kfree(p);
  3714. p[512] = 0xab;
  3715. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3716. validate_slab_cache(kmalloc_caches[9]);
  3717. }
  3718. #else
  3719. #ifdef CONFIG_SYSFS
  3720. static void resiliency_test(void) {};
  3721. #endif
  3722. #endif
  3723. #ifdef CONFIG_SYSFS
  3724. enum slab_stat_type {
  3725. SL_ALL, /* All slabs */
  3726. SL_PARTIAL, /* Only partially allocated slabs */
  3727. SL_CPU, /* Only slabs used for cpu caches */
  3728. SL_OBJECTS, /* Determine allocated objects not slabs */
  3729. SL_TOTAL /* Determine object capacity not slabs */
  3730. };
  3731. #define SO_ALL (1 << SL_ALL)
  3732. #define SO_PARTIAL (1 << SL_PARTIAL)
  3733. #define SO_CPU (1 << SL_CPU)
  3734. #define SO_OBJECTS (1 << SL_OBJECTS)
  3735. #define SO_TOTAL (1 << SL_TOTAL)
  3736. static ssize_t show_slab_objects(struct kmem_cache *s,
  3737. char *buf, unsigned long flags)
  3738. {
  3739. unsigned long total = 0;
  3740. int node;
  3741. int x;
  3742. unsigned long *nodes;
  3743. unsigned long *per_cpu;
  3744. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3745. if (!nodes)
  3746. return -ENOMEM;
  3747. per_cpu = nodes + nr_node_ids;
  3748. if (flags & SO_CPU) {
  3749. int cpu;
  3750. for_each_possible_cpu(cpu) {
  3751. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3752. int node;
  3753. struct page *page;
  3754. page = ACCESS_ONCE(c->page);
  3755. if (!page)
  3756. continue;
  3757. node = page_to_nid(page);
  3758. if (flags & SO_TOTAL)
  3759. x = page->objects;
  3760. else if (flags & SO_OBJECTS)
  3761. x = page->inuse;
  3762. else
  3763. x = 1;
  3764. total += x;
  3765. nodes[node] += x;
  3766. page = ACCESS_ONCE(c->partial);
  3767. if (page) {
  3768. x = page->pobjects;
  3769. total += x;
  3770. nodes[node] += x;
  3771. }
  3772. per_cpu[node]++;
  3773. }
  3774. }
  3775. lock_memory_hotplug();
  3776. #ifdef CONFIG_SLUB_DEBUG
  3777. if (flags & SO_ALL) {
  3778. for_each_node_state(node, N_NORMAL_MEMORY) {
  3779. struct kmem_cache_node *n = get_node(s, node);
  3780. if (flags & SO_TOTAL)
  3781. x = atomic_long_read(&n->total_objects);
  3782. else if (flags & SO_OBJECTS)
  3783. x = atomic_long_read(&n->total_objects) -
  3784. count_partial(n, count_free);
  3785. else
  3786. x = atomic_long_read(&n->nr_slabs);
  3787. total += x;
  3788. nodes[node] += x;
  3789. }
  3790. } else
  3791. #endif
  3792. if (flags & SO_PARTIAL) {
  3793. for_each_node_state(node, N_NORMAL_MEMORY) {
  3794. struct kmem_cache_node *n = get_node(s, node);
  3795. if (flags & SO_TOTAL)
  3796. x = count_partial(n, count_total);
  3797. else if (flags & SO_OBJECTS)
  3798. x = count_partial(n, count_inuse);
  3799. else
  3800. x = n->nr_partial;
  3801. total += x;
  3802. nodes[node] += x;
  3803. }
  3804. }
  3805. x = sprintf(buf, "%lu", total);
  3806. #ifdef CONFIG_NUMA
  3807. for_each_node_state(node, N_NORMAL_MEMORY)
  3808. if (nodes[node])
  3809. x += sprintf(buf + x, " N%d=%lu",
  3810. node, nodes[node]);
  3811. #endif
  3812. unlock_memory_hotplug();
  3813. kfree(nodes);
  3814. return x + sprintf(buf + x, "\n");
  3815. }
  3816. #ifdef CONFIG_SLUB_DEBUG
  3817. static int any_slab_objects(struct kmem_cache *s)
  3818. {
  3819. int node;
  3820. for_each_online_node(node) {
  3821. struct kmem_cache_node *n = get_node(s, node);
  3822. if (!n)
  3823. continue;
  3824. if (atomic_long_read(&n->total_objects))
  3825. return 1;
  3826. }
  3827. return 0;
  3828. }
  3829. #endif
  3830. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3831. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3832. struct slab_attribute {
  3833. struct attribute attr;
  3834. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3835. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3836. };
  3837. #define SLAB_ATTR_RO(_name) \
  3838. static struct slab_attribute _name##_attr = \
  3839. __ATTR(_name, 0400, _name##_show, NULL)
  3840. #define SLAB_ATTR(_name) \
  3841. static struct slab_attribute _name##_attr = \
  3842. __ATTR(_name, 0600, _name##_show, _name##_store)
  3843. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3844. {
  3845. return sprintf(buf, "%d\n", s->size);
  3846. }
  3847. SLAB_ATTR_RO(slab_size);
  3848. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3849. {
  3850. return sprintf(buf, "%d\n", s->align);
  3851. }
  3852. SLAB_ATTR_RO(align);
  3853. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. return sprintf(buf, "%d\n", s->object_size);
  3856. }
  3857. SLAB_ATTR_RO(object_size);
  3858. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3859. {
  3860. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3861. }
  3862. SLAB_ATTR_RO(objs_per_slab);
  3863. static ssize_t order_store(struct kmem_cache *s,
  3864. const char *buf, size_t length)
  3865. {
  3866. unsigned long order;
  3867. int err;
  3868. err = strict_strtoul(buf, 10, &order);
  3869. if (err)
  3870. return err;
  3871. if (order > slub_max_order || order < slub_min_order)
  3872. return -EINVAL;
  3873. calculate_sizes(s, order);
  3874. return length;
  3875. }
  3876. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3877. {
  3878. return sprintf(buf, "%d\n", oo_order(s->oo));
  3879. }
  3880. SLAB_ATTR(order);
  3881. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3882. {
  3883. return sprintf(buf, "%lu\n", s->min_partial);
  3884. }
  3885. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3886. size_t length)
  3887. {
  3888. unsigned long min;
  3889. int err;
  3890. err = strict_strtoul(buf, 10, &min);
  3891. if (err)
  3892. return err;
  3893. set_min_partial(s, min);
  3894. return length;
  3895. }
  3896. SLAB_ATTR(min_partial);
  3897. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3898. {
  3899. return sprintf(buf, "%u\n", s->cpu_partial);
  3900. }
  3901. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3902. size_t length)
  3903. {
  3904. unsigned long objects;
  3905. int err;
  3906. err = strict_strtoul(buf, 10, &objects);
  3907. if (err)
  3908. return err;
  3909. if (objects && kmem_cache_debug(s))
  3910. return -EINVAL;
  3911. s->cpu_partial = objects;
  3912. flush_all(s);
  3913. return length;
  3914. }
  3915. SLAB_ATTR(cpu_partial);
  3916. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3917. {
  3918. if (!s->ctor)
  3919. return 0;
  3920. return sprintf(buf, "%pS\n", s->ctor);
  3921. }
  3922. SLAB_ATTR_RO(ctor);
  3923. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3924. {
  3925. return sprintf(buf, "%d\n", s->refcount - 1);
  3926. }
  3927. SLAB_ATTR_RO(aliases);
  3928. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3929. {
  3930. return show_slab_objects(s, buf, SO_PARTIAL);
  3931. }
  3932. SLAB_ATTR_RO(partial);
  3933. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3934. {
  3935. return show_slab_objects(s, buf, SO_CPU);
  3936. }
  3937. SLAB_ATTR_RO(cpu_slabs);
  3938. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3939. {
  3940. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3941. }
  3942. SLAB_ATTR_RO(objects);
  3943. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3944. {
  3945. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3946. }
  3947. SLAB_ATTR_RO(objects_partial);
  3948. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3949. {
  3950. int objects = 0;
  3951. int pages = 0;
  3952. int cpu;
  3953. int len;
  3954. for_each_online_cpu(cpu) {
  3955. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3956. if (page) {
  3957. pages += page->pages;
  3958. objects += page->pobjects;
  3959. }
  3960. }
  3961. len = sprintf(buf, "%d(%d)", objects, pages);
  3962. #ifdef CONFIG_SMP
  3963. for_each_online_cpu(cpu) {
  3964. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3965. if (page && len < PAGE_SIZE - 20)
  3966. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3967. page->pobjects, page->pages);
  3968. }
  3969. #endif
  3970. return len + sprintf(buf + len, "\n");
  3971. }
  3972. SLAB_ATTR_RO(slabs_cpu_partial);
  3973. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3974. {
  3975. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3976. }
  3977. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3978. const char *buf, size_t length)
  3979. {
  3980. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3981. if (buf[0] == '1')
  3982. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3983. return length;
  3984. }
  3985. SLAB_ATTR(reclaim_account);
  3986. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3987. {
  3988. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3989. }
  3990. SLAB_ATTR_RO(hwcache_align);
  3991. #ifdef CONFIG_ZONE_DMA
  3992. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3993. {
  3994. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3995. }
  3996. SLAB_ATTR_RO(cache_dma);
  3997. #endif
  3998. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3999. {
  4000. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4001. }
  4002. SLAB_ATTR_RO(destroy_by_rcu);
  4003. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4004. {
  4005. return sprintf(buf, "%d\n", s->reserved);
  4006. }
  4007. SLAB_ATTR_RO(reserved);
  4008. #ifdef CONFIG_SLUB_DEBUG
  4009. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4010. {
  4011. return show_slab_objects(s, buf, SO_ALL);
  4012. }
  4013. SLAB_ATTR_RO(slabs);
  4014. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4015. {
  4016. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4017. }
  4018. SLAB_ATTR_RO(total_objects);
  4019. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4020. {
  4021. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4022. }
  4023. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4024. const char *buf, size_t length)
  4025. {
  4026. s->flags &= ~SLAB_DEBUG_FREE;
  4027. if (buf[0] == '1') {
  4028. s->flags &= ~__CMPXCHG_DOUBLE;
  4029. s->flags |= SLAB_DEBUG_FREE;
  4030. }
  4031. return length;
  4032. }
  4033. SLAB_ATTR(sanity_checks);
  4034. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4035. {
  4036. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4037. }
  4038. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4039. size_t length)
  4040. {
  4041. s->flags &= ~SLAB_TRACE;
  4042. if (buf[0] == '1') {
  4043. s->flags &= ~__CMPXCHG_DOUBLE;
  4044. s->flags |= SLAB_TRACE;
  4045. }
  4046. return length;
  4047. }
  4048. SLAB_ATTR(trace);
  4049. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4050. {
  4051. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4052. }
  4053. static ssize_t red_zone_store(struct kmem_cache *s,
  4054. const char *buf, size_t length)
  4055. {
  4056. if (any_slab_objects(s))
  4057. return -EBUSY;
  4058. s->flags &= ~SLAB_RED_ZONE;
  4059. if (buf[0] == '1') {
  4060. s->flags &= ~__CMPXCHG_DOUBLE;
  4061. s->flags |= SLAB_RED_ZONE;
  4062. }
  4063. calculate_sizes(s, -1);
  4064. return length;
  4065. }
  4066. SLAB_ATTR(red_zone);
  4067. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4068. {
  4069. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4070. }
  4071. static ssize_t poison_store(struct kmem_cache *s,
  4072. const char *buf, size_t length)
  4073. {
  4074. if (any_slab_objects(s))
  4075. return -EBUSY;
  4076. s->flags &= ~SLAB_POISON;
  4077. if (buf[0] == '1') {
  4078. s->flags &= ~__CMPXCHG_DOUBLE;
  4079. s->flags |= SLAB_POISON;
  4080. }
  4081. calculate_sizes(s, -1);
  4082. return length;
  4083. }
  4084. SLAB_ATTR(poison);
  4085. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4086. {
  4087. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4088. }
  4089. static ssize_t store_user_store(struct kmem_cache *s,
  4090. const char *buf, size_t length)
  4091. {
  4092. if (any_slab_objects(s))
  4093. return -EBUSY;
  4094. s->flags &= ~SLAB_STORE_USER;
  4095. if (buf[0] == '1') {
  4096. s->flags &= ~__CMPXCHG_DOUBLE;
  4097. s->flags |= SLAB_STORE_USER;
  4098. }
  4099. calculate_sizes(s, -1);
  4100. return length;
  4101. }
  4102. SLAB_ATTR(store_user);
  4103. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4104. {
  4105. return 0;
  4106. }
  4107. static ssize_t validate_store(struct kmem_cache *s,
  4108. const char *buf, size_t length)
  4109. {
  4110. int ret = -EINVAL;
  4111. if (buf[0] == '1') {
  4112. ret = validate_slab_cache(s);
  4113. if (ret >= 0)
  4114. ret = length;
  4115. }
  4116. return ret;
  4117. }
  4118. SLAB_ATTR(validate);
  4119. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4120. {
  4121. if (!(s->flags & SLAB_STORE_USER))
  4122. return -ENOSYS;
  4123. return list_locations(s, buf, TRACK_ALLOC);
  4124. }
  4125. SLAB_ATTR_RO(alloc_calls);
  4126. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4127. {
  4128. if (!(s->flags & SLAB_STORE_USER))
  4129. return -ENOSYS;
  4130. return list_locations(s, buf, TRACK_FREE);
  4131. }
  4132. SLAB_ATTR_RO(free_calls);
  4133. #endif /* CONFIG_SLUB_DEBUG */
  4134. #ifdef CONFIG_FAILSLAB
  4135. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4136. {
  4137. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4138. }
  4139. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4140. size_t length)
  4141. {
  4142. s->flags &= ~SLAB_FAILSLAB;
  4143. if (buf[0] == '1')
  4144. s->flags |= SLAB_FAILSLAB;
  4145. return length;
  4146. }
  4147. SLAB_ATTR(failslab);
  4148. #endif
  4149. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4150. {
  4151. return 0;
  4152. }
  4153. static ssize_t shrink_store(struct kmem_cache *s,
  4154. const char *buf, size_t length)
  4155. {
  4156. if (buf[0] == '1') {
  4157. int rc = kmem_cache_shrink(s);
  4158. if (rc)
  4159. return rc;
  4160. } else
  4161. return -EINVAL;
  4162. return length;
  4163. }
  4164. SLAB_ATTR(shrink);
  4165. #ifdef CONFIG_NUMA
  4166. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4167. {
  4168. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4169. }
  4170. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4171. const char *buf, size_t length)
  4172. {
  4173. unsigned long ratio;
  4174. int err;
  4175. err = strict_strtoul(buf, 10, &ratio);
  4176. if (err)
  4177. return err;
  4178. if (ratio <= 100)
  4179. s->remote_node_defrag_ratio = ratio * 10;
  4180. return length;
  4181. }
  4182. SLAB_ATTR(remote_node_defrag_ratio);
  4183. #endif
  4184. #ifdef CONFIG_SLUB_STATS
  4185. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4186. {
  4187. unsigned long sum = 0;
  4188. int cpu;
  4189. int len;
  4190. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4191. if (!data)
  4192. return -ENOMEM;
  4193. for_each_online_cpu(cpu) {
  4194. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4195. data[cpu] = x;
  4196. sum += x;
  4197. }
  4198. len = sprintf(buf, "%lu", sum);
  4199. #ifdef CONFIG_SMP
  4200. for_each_online_cpu(cpu) {
  4201. if (data[cpu] && len < PAGE_SIZE - 20)
  4202. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4203. }
  4204. #endif
  4205. kfree(data);
  4206. return len + sprintf(buf + len, "\n");
  4207. }
  4208. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4209. {
  4210. int cpu;
  4211. for_each_online_cpu(cpu)
  4212. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4213. }
  4214. #define STAT_ATTR(si, text) \
  4215. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4216. { \
  4217. return show_stat(s, buf, si); \
  4218. } \
  4219. static ssize_t text##_store(struct kmem_cache *s, \
  4220. const char *buf, size_t length) \
  4221. { \
  4222. if (buf[0] != '0') \
  4223. return -EINVAL; \
  4224. clear_stat(s, si); \
  4225. return length; \
  4226. } \
  4227. SLAB_ATTR(text); \
  4228. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4229. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4230. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4231. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4232. STAT_ATTR(FREE_FROZEN, free_frozen);
  4233. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4234. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4235. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4236. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4237. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4238. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4239. STAT_ATTR(FREE_SLAB, free_slab);
  4240. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4241. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4242. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4243. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4244. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4245. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4246. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4247. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4248. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4249. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4250. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4251. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4252. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4253. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4254. #endif
  4255. static struct attribute *slab_attrs[] = {
  4256. &slab_size_attr.attr,
  4257. &object_size_attr.attr,
  4258. &objs_per_slab_attr.attr,
  4259. &order_attr.attr,
  4260. &min_partial_attr.attr,
  4261. &cpu_partial_attr.attr,
  4262. &objects_attr.attr,
  4263. &objects_partial_attr.attr,
  4264. &partial_attr.attr,
  4265. &cpu_slabs_attr.attr,
  4266. &ctor_attr.attr,
  4267. &aliases_attr.attr,
  4268. &align_attr.attr,
  4269. &hwcache_align_attr.attr,
  4270. &reclaim_account_attr.attr,
  4271. &destroy_by_rcu_attr.attr,
  4272. &shrink_attr.attr,
  4273. &reserved_attr.attr,
  4274. &slabs_cpu_partial_attr.attr,
  4275. #ifdef CONFIG_SLUB_DEBUG
  4276. &total_objects_attr.attr,
  4277. &slabs_attr.attr,
  4278. &sanity_checks_attr.attr,
  4279. &trace_attr.attr,
  4280. &red_zone_attr.attr,
  4281. &poison_attr.attr,
  4282. &store_user_attr.attr,
  4283. &validate_attr.attr,
  4284. &alloc_calls_attr.attr,
  4285. &free_calls_attr.attr,
  4286. #endif
  4287. #ifdef CONFIG_ZONE_DMA
  4288. &cache_dma_attr.attr,
  4289. #endif
  4290. #ifdef CONFIG_NUMA
  4291. &remote_node_defrag_ratio_attr.attr,
  4292. #endif
  4293. #ifdef CONFIG_SLUB_STATS
  4294. &alloc_fastpath_attr.attr,
  4295. &alloc_slowpath_attr.attr,
  4296. &free_fastpath_attr.attr,
  4297. &free_slowpath_attr.attr,
  4298. &free_frozen_attr.attr,
  4299. &free_add_partial_attr.attr,
  4300. &free_remove_partial_attr.attr,
  4301. &alloc_from_partial_attr.attr,
  4302. &alloc_slab_attr.attr,
  4303. &alloc_refill_attr.attr,
  4304. &alloc_node_mismatch_attr.attr,
  4305. &free_slab_attr.attr,
  4306. &cpuslab_flush_attr.attr,
  4307. &deactivate_full_attr.attr,
  4308. &deactivate_empty_attr.attr,
  4309. &deactivate_to_head_attr.attr,
  4310. &deactivate_to_tail_attr.attr,
  4311. &deactivate_remote_frees_attr.attr,
  4312. &deactivate_bypass_attr.attr,
  4313. &order_fallback_attr.attr,
  4314. &cmpxchg_double_fail_attr.attr,
  4315. &cmpxchg_double_cpu_fail_attr.attr,
  4316. &cpu_partial_alloc_attr.attr,
  4317. &cpu_partial_free_attr.attr,
  4318. &cpu_partial_node_attr.attr,
  4319. &cpu_partial_drain_attr.attr,
  4320. #endif
  4321. #ifdef CONFIG_FAILSLAB
  4322. &failslab_attr.attr,
  4323. #endif
  4324. NULL
  4325. };
  4326. static struct attribute_group slab_attr_group = {
  4327. .attrs = slab_attrs,
  4328. };
  4329. static ssize_t slab_attr_show(struct kobject *kobj,
  4330. struct attribute *attr,
  4331. char *buf)
  4332. {
  4333. struct slab_attribute *attribute;
  4334. struct kmem_cache *s;
  4335. int err;
  4336. attribute = to_slab_attr(attr);
  4337. s = to_slab(kobj);
  4338. if (!attribute->show)
  4339. return -EIO;
  4340. err = attribute->show(s, buf);
  4341. return err;
  4342. }
  4343. static ssize_t slab_attr_store(struct kobject *kobj,
  4344. struct attribute *attr,
  4345. const char *buf, size_t len)
  4346. {
  4347. struct slab_attribute *attribute;
  4348. struct kmem_cache *s;
  4349. int err;
  4350. attribute = to_slab_attr(attr);
  4351. s = to_slab(kobj);
  4352. if (!attribute->store)
  4353. return -EIO;
  4354. err = attribute->store(s, buf, len);
  4355. return err;
  4356. }
  4357. static const struct sysfs_ops slab_sysfs_ops = {
  4358. .show = slab_attr_show,
  4359. .store = slab_attr_store,
  4360. };
  4361. static struct kobj_type slab_ktype = {
  4362. .sysfs_ops = &slab_sysfs_ops,
  4363. };
  4364. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4365. {
  4366. struct kobj_type *ktype = get_ktype(kobj);
  4367. if (ktype == &slab_ktype)
  4368. return 1;
  4369. return 0;
  4370. }
  4371. static const struct kset_uevent_ops slab_uevent_ops = {
  4372. .filter = uevent_filter,
  4373. };
  4374. static struct kset *slab_kset;
  4375. #define ID_STR_LENGTH 64
  4376. /* Create a unique string id for a slab cache:
  4377. *
  4378. * Format :[flags-]size
  4379. */
  4380. static char *create_unique_id(struct kmem_cache *s)
  4381. {
  4382. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4383. char *p = name;
  4384. BUG_ON(!name);
  4385. *p++ = ':';
  4386. /*
  4387. * First flags affecting slabcache operations. We will only
  4388. * get here for aliasable slabs so we do not need to support
  4389. * too many flags. The flags here must cover all flags that
  4390. * are matched during merging to guarantee that the id is
  4391. * unique.
  4392. */
  4393. if (s->flags & SLAB_CACHE_DMA)
  4394. *p++ = 'd';
  4395. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4396. *p++ = 'a';
  4397. if (s->flags & SLAB_DEBUG_FREE)
  4398. *p++ = 'F';
  4399. if (!(s->flags & SLAB_NOTRACK))
  4400. *p++ = 't';
  4401. if (p != name + 1)
  4402. *p++ = '-';
  4403. p += sprintf(p, "%07d", s->size);
  4404. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4405. return name;
  4406. }
  4407. static int sysfs_slab_add(struct kmem_cache *s)
  4408. {
  4409. int err;
  4410. const char *name;
  4411. int unmergeable;
  4412. if (slab_state < FULL)
  4413. /* Defer until later */
  4414. return 0;
  4415. unmergeable = slab_unmergeable(s);
  4416. if (unmergeable) {
  4417. /*
  4418. * Slabcache can never be merged so we can use the name proper.
  4419. * This is typically the case for debug situations. In that
  4420. * case we can catch duplicate names easily.
  4421. */
  4422. sysfs_remove_link(&slab_kset->kobj, s->name);
  4423. name = s->name;
  4424. } else {
  4425. /*
  4426. * Create a unique name for the slab as a target
  4427. * for the symlinks.
  4428. */
  4429. name = create_unique_id(s);
  4430. }
  4431. s->kobj.kset = slab_kset;
  4432. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4433. if (err) {
  4434. kobject_put(&s->kobj);
  4435. return err;
  4436. }
  4437. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4438. if (err) {
  4439. kobject_del(&s->kobj);
  4440. kobject_put(&s->kobj);
  4441. return err;
  4442. }
  4443. kobject_uevent(&s->kobj, KOBJ_ADD);
  4444. if (!unmergeable) {
  4445. /* Setup first alias */
  4446. sysfs_slab_alias(s, s->name);
  4447. kfree(name);
  4448. }
  4449. return 0;
  4450. }
  4451. static void sysfs_slab_remove(struct kmem_cache *s)
  4452. {
  4453. if (slab_state < FULL)
  4454. /*
  4455. * Sysfs has not been setup yet so no need to remove the
  4456. * cache from sysfs.
  4457. */
  4458. return;
  4459. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4460. kobject_del(&s->kobj);
  4461. kobject_put(&s->kobj);
  4462. }
  4463. /*
  4464. * Need to buffer aliases during bootup until sysfs becomes
  4465. * available lest we lose that information.
  4466. */
  4467. struct saved_alias {
  4468. struct kmem_cache *s;
  4469. const char *name;
  4470. struct saved_alias *next;
  4471. };
  4472. static struct saved_alias *alias_list;
  4473. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4474. {
  4475. struct saved_alias *al;
  4476. if (slab_state == FULL) {
  4477. /*
  4478. * If we have a leftover link then remove it.
  4479. */
  4480. sysfs_remove_link(&slab_kset->kobj, name);
  4481. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4482. }
  4483. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4484. if (!al)
  4485. return -ENOMEM;
  4486. al->s = s;
  4487. al->name = name;
  4488. al->next = alias_list;
  4489. alias_list = al;
  4490. return 0;
  4491. }
  4492. static int __init slab_sysfs_init(void)
  4493. {
  4494. struct kmem_cache *s;
  4495. int err;
  4496. mutex_lock(&slab_mutex);
  4497. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4498. if (!slab_kset) {
  4499. mutex_unlock(&slab_mutex);
  4500. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4501. return -ENOSYS;
  4502. }
  4503. slab_state = FULL;
  4504. list_for_each_entry(s, &slab_caches, list) {
  4505. err = sysfs_slab_add(s);
  4506. if (err)
  4507. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4508. " to sysfs\n", s->name);
  4509. }
  4510. while (alias_list) {
  4511. struct saved_alias *al = alias_list;
  4512. alias_list = alias_list->next;
  4513. err = sysfs_slab_alias(al->s, al->name);
  4514. if (err)
  4515. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4516. " %s to sysfs\n", al->name);
  4517. kfree(al);
  4518. }
  4519. mutex_unlock(&slab_mutex);
  4520. resiliency_test();
  4521. return 0;
  4522. }
  4523. __initcall(slab_sysfs_init);
  4524. #endif /* CONFIG_SYSFS */
  4525. /*
  4526. * The /proc/slabinfo ABI
  4527. */
  4528. #ifdef CONFIG_SLABINFO
  4529. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4530. {
  4531. unsigned long nr_partials = 0;
  4532. unsigned long nr_slabs = 0;
  4533. unsigned long nr_objs = 0;
  4534. unsigned long nr_free = 0;
  4535. int node;
  4536. for_each_online_node(node) {
  4537. struct kmem_cache_node *n = get_node(s, node);
  4538. if (!n)
  4539. continue;
  4540. nr_partials += n->nr_partial;
  4541. nr_slabs += atomic_long_read(&n->nr_slabs);
  4542. nr_objs += atomic_long_read(&n->total_objects);
  4543. nr_free += count_partial(n, count_free);
  4544. }
  4545. sinfo->active_objs = nr_objs - nr_free;
  4546. sinfo->num_objs = nr_objs;
  4547. sinfo->active_slabs = nr_slabs;
  4548. sinfo->num_slabs = nr_slabs;
  4549. sinfo->objects_per_slab = oo_objects(s->oo);
  4550. sinfo->cache_order = oo_order(s->oo);
  4551. }
  4552. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4553. {
  4554. }
  4555. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4556. size_t count, loff_t *ppos)
  4557. {
  4558. return -EIO;
  4559. }
  4560. #endif /* CONFIG_SLABINFO */