amba-pl08x.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107
  1. /*
  2. * Copyright (c) 2006 ARM Ltd.
  3. * Copyright (c) 2010 ST-Ericsson SA
  4. *
  5. * Author: Peter Pearse <peter.pearse@arm.com>
  6. * Author: Linus Walleij <linus.walleij@stericsson.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. *
  22. * The full GNU General Public License is in this distribution in the file
  23. * called COPYING.
  24. *
  25. * Documentation: ARM DDI 0196G == PL080
  26. * Documentation: ARM DDI 0218E == PL081
  27. *
  28. * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  29. * channel.
  30. *
  31. * The PL080 has 8 channels available for simultaneous use, and the PL081
  32. * has only two channels. So on these DMA controllers the number of channels
  33. * and the number of incoming DMA signals are two totally different things.
  34. * It is usually not possible to theoretically handle all physical signals,
  35. * so a multiplexing scheme with possible denial of use is necessary.
  36. *
  37. * The PL080 has a dual bus master, PL081 has a single master.
  38. *
  39. * Memory to peripheral transfer may be visualized as
  40. * Get data from memory to DMAC
  41. * Until no data left
  42. * On burst request from peripheral
  43. * Destination burst from DMAC to peripheral
  44. * Clear burst request
  45. * Raise terminal count interrupt
  46. *
  47. * For peripherals with a FIFO:
  48. * Source burst size == half the depth of the peripheral FIFO
  49. * Destination burst size == the depth of the peripheral FIFO
  50. *
  51. * (Bursts are irrelevant for mem to mem transfers - there are no burst
  52. * signals, the DMA controller will simply facilitate its AHB master.)
  53. *
  54. * ASSUMES default (little) endianness for DMA transfers
  55. *
  56. * The PL08x has two flow control settings:
  57. * - DMAC flow control: the transfer size defines the number of transfers
  58. * which occur for the current LLI entry, and the DMAC raises TC at the
  59. * end of every LLI entry. Observed behaviour shows the DMAC listening
  60. * to both the BREQ and SREQ signals (contrary to documented),
  61. * transferring data if either is active. The LBREQ and LSREQ signals
  62. * are ignored.
  63. *
  64. * - Peripheral flow control: the transfer size is ignored (and should be
  65. * zero). The data is transferred from the current LLI entry, until
  66. * after the final transfer signalled by LBREQ or LSREQ. The DMAC
  67. * will then move to the next LLI entry.
  68. *
  69. * Global TODO:
  70. * - Break out common code from arch/arm/mach-s3c64xx and share
  71. */
  72. #include <linux/amba/bus.h>
  73. #include <linux/amba/pl08x.h>
  74. #include <linux/debugfs.h>
  75. #include <linux/delay.h>
  76. #include <linux/device.h>
  77. #include <linux/dmaengine.h>
  78. #include <linux/dmapool.h>
  79. #include <linux/dma-mapping.h>
  80. #include <linux/init.h>
  81. #include <linux/interrupt.h>
  82. #include <linux/module.h>
  83. #include <linux/pm_runtime.h>
  84. #include <linux/seq_file.h>
  85. #include <linux/slab.h>
  86. #include <linux/amba/pl080.h>
  87. #include "dmaengine.h"
  88. #include "virt-dma.h"
  89. #define DRIVER_NAME "pl08xdmac"
  90. static struct amba_driver pl08x_amba_driver;
  91. struct pl08x_driver_data;
  92. /**
  93. * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  94. * @channels: the number of channels available in this variant
  95. * @dualmaster: whether this version supports dual AHB masters or not.
  96. * @nomadik: whether the channels have Nomadik security extension bits
  97. * that need to be checked for permission before use and some registers are
  98. * missing
  99. */
  100. struct vendor_data {
  101. u8 config_offset;
  102. u8 channels;
  103. bool dualmaster;
  104. bool nomadik;
  105. };
  106. /*
  107. * PL08X private data structures
  108. * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
  109. * start & end do not - their bus bit info is in cctl. Also note that these
  110. * are fixed 32-bit quantities.
  111. */
  112. struct pl08x_lli {
  113. u32 src;
  114. u32 dst;
  115. u32 lli;
  116. u32 cctl;
  117. };
  118. /**
  119. * struct pl08x_bus_data - information of source or destination
  120. * busses for a transfer
  121. * @addr: current address
  122. * @maxwidth: the maximum width of a transfer on this bus
  123. * @buswidth: the width of this bus in bytes: 1, 2 or 4
  124. */
  125. struct pl08x_bus_data {
  126. dma_addr_t addr;
  127. u8 maxwidth;
  128. u8 buswidth;
  129. };
  130. /**
  131. * struct pl08x_phy_chan - holder for the physical channels
  132. * @id: physical index to this channel
  133. * @lock: a lock to use when altering an instance of this struct
  134. * @serving: the virtual channel currently being served by this physical
  135. * channel
  136. * @locked: channel unavailable for the system, e.g. dedicated to secure
  137. * world
  138. */
  139. struct pl08x_phy_chan {
  140. unsigned int id;
  141. void __iomem *base;
  142. void __iomem *reg_config;
  143. spinlock_t lock;
  144. struct pl08x_dma_chan *serving;
  145. bool locked;
  146. };
  147. /**
  148. * struct pl08x_sg - structure containing data per sg
  149. * @src_addr: src address of sg
  150. * @dst_addr: dst address of sg
  151. * @len: transfer len in bytes
  152. * @node: node for txd's dsg_list
  153. */
  154. struct pl08x_sg {
  155. dma_addr_t src_addr;
  156. dma_addr_t dst_addr;
  157. size_t len;
  158. struct list_head node;
  159. };
  160. /**
  161. * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
  162. * @vd: virtual DMA descriptor
  163. * @dsg_list: list of children sg's
  164. * @llis_bus: DMA memory address (physical) start for the LLIs
  165. * @llis_va: virtual memory address start for the LLIs
  166. * @cctl: control reg values for current txd
  167. * @ccfg: config reg values for current txd
  168. * @done: this marks completed descriptors, which should not have their
  169. * mux released.
  170. */
  171. struct pl08x_txd {
  172. struct virt_dma_desc vd;
  173. struct list_head dsg_list;
  174. dma_addr_t llis_bus;
  175. struct pl08x_lli *llis_va;
  176. /* Default cctl value for LLIs */
  177. u32 cctl;
  178. /*
  179. * Settings to be put into the physical channel when we
  180. * trigger this txd. Other registers are in llis_va[0].
  181. */
  182. u32 ccfg;
  183. bool done;
  184. };
  185. /**
  186. * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
  187. * states
  188. * @PL08X_CHAN_IDLE: the channel is idle
  189. * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
  190. * channel and is running a transfer on it
  191. * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
  192. * channel, but the transfer is currently paused
  193. * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
  194. * channel to become available (only pertains to memcpy channels)
  195. */
  196. enum pl08x_dma_chan_state {
  197. PL08X_CHAN_IDLE,
  198. PL08X_CHAN_RUNNING,
  199. PL08X_CHAN_PAUSED,
  200. PL08X_CHAN_WAITING,
  201. };
  202. /**
  203. * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
  204. * @vc: wrappped virtual channel
  205. * @phychan: the physical channel utilized by this channel, if there is one
  206. * @name: name of channel
  207. * @cd: channel platform data
  208. * @runtime_addr: address for RX/TX according to the runtime config
  209. * @at: active transaction on this channel
  210. * @lock: a lock for this channel data
  211. * @host: a pointer to the host (internal use)
  212. * @state: whether the channel is idle, paused, running etc
  213. * @slave: whether this channel is a device (slave) or for memcpy
  214. * @signal: the physical DMA request signal which this channel is using
  215. * @mux_use: count of descriptors using this DMA request signal setting
  216. */
  217. struct pl08x_dma_chan {
  218. struct virt_dma_chan vc;
  219. struct pl08x_phy_chan *phychan;
  220. const char *name;
  221. const struct pl08x_channel_data *cd;
  222. struct dma_slave_config cfg;
  223. struct pl08x_txd *at;
  224. struct pl08x_driver_data *host;
  225. enum pl08x_dma_chan_state state;
  226. bool slave;
  227. int signal;
  228. unsigned mux_use;
  229. };
  230. /**
  231. * struct pl08x_driver_data - the local state holder for the PL08x
  232. * @slave: slave engine for this instance
  233. * @memcpy: memcpy engine for this instance
  234. * @base: virtual memory base (remapped) for the PL08x
  235. * @adev: the corresponding AMBA (PrimeCell) bus entry
  236. * @vd: vendor data for this PL08x variant
  237. * @pd: platform data passed in from the platform/machine
  238. * @phy_chans: array of data for the physical channels
  239. * @pool: a pool for the LLI descriptors
  240. * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
  241. * fetches
  242. * @mem_buses: set to indicate memory transfers on AHB2.
  243. * @lock: a spinlock for this struct
  244. */
  245. struct pl08x_driver_data {
  246. struct dma_device slave;
  247. struct dma_device memcpy;
  248. void __iomem *base;
  249. struct amba_device *adev;
  250. const struct vendor_data *vd;
  251. struct pl08x_platform_data *pd;
  252. struct pl08x_phy_chan *phy_chans;
  253. struct dma_pool *pool;
  254. u8 lli_buses;
  255. u8 mem_buses;
  256. };
  257. /*
  258. * PL08X specific defines
  259. */
  260. /* Size (bytes) of each LLI buffer allocated for one transfer */
  261. # define PL08X_LLI_TSFR_SIZE 0x2000
  262. /* Maximum times we call dma_pool_alloc on this pool without freeing */
  263. #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
  264. #define PL08X_ALIGN 8
  265. static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
  266. {
  267. return container_of(chan, struct pl08x_dma_chan, vc.chan);
  268. }
  269. static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
  270. {
  271. return container_of(tx, struct pl08x_txd, vd.tx);
  272. }
  273. /*
  274. * Mux handling.
  275. *
  276. * This gives us the DMA request input to the PL08x primecell which the
  277. * peripheral described by the channel data will be routed to, possibly
  278. * via a board/SoC specific external MUX. One important point to note
  279. * here is that this does not depend on the physical channel.
  280. */
  281. static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
  282. {
  283. const struct pl08x_platform_data *pd = plchan->host->pd;
  284. int ret;
  285. if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
  286. ret = pd->get_xfer_signal(plchan->cd);
  287. if (ret < 0) {
  288. plchan->mux_use = 0;
  289. return ret;
  290. }
  291. plchan->signal = ret;
  292. }
  293. return 0;
  294. }
  295. static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
  296. {
  297. const struct pl08x_platform_data *pd = plchan->host->pd;
  298. if (plchan->signal >= 0) {
  299. WARN_ON(plchan->mux_use == 0);
  300. if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
  301. pd->put_xfer_signal(plchan->cd, plchan->signal);
  302. plchan->signal = -1;
  303. }
  304. }
  305. }
  306. /*
  307. * Physical channel handling
  308. */
  309. /* Whether a certain channel is busy or not */
  310. static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
  311. {
  312. unsigned int val;
  313. val = readl(ch->reg_config);
  314. return val & PL080_CONFIG_ACTIVE;
  315. }
  316. /*
  317. * Set the initial DMA register values i.e. those for the first LLI
  318. * The next LLI pointer and the configuration interrupt bit have
  319. * been set when the LLIs were constructed. Poke them into the hardware
  320. * and start the transfer.
  321. */
  322. static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
  323. {
  324. struct pl08x_driver_data *pl08x = plchan->host;
  325. struct pl08x_phy_chan *phychan = plchan->phychan;
  326. struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
  327. struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
  328. struct pl08x_lli *lli;
  329. u32 val;
  330. list_del(&txd->vd.node);
  331. plchan->at = txd;
  332. /* Wait for channel inactive */
  333. while (pl08x_phy_channel_busy(phychan))
  334. cpu_relax();
  335. lli = &txd->llis_va[0];
  336. dev_vdbg(&pl08x->adev->dev,
  337. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  338. "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
  339. phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
  340. txd->ccfg);
  341. writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
  342. writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
  343. writel(lli->lli, phychan->base + PL080_CH_LLI);
  344. writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
  345. writel(txd->ccfg, phychan->reg_config);
  346. /* Enable the DMA channel */
  347. /* Do not access config register until channel shows as disabled */
  348. while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
  349. cpu_relax();
  350. /* Do not access config register until channel shows as inactive */
  351. val = readl(phychan->reg_config);
  352. while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
  353. val = readl(phychan->reg_config);
  354. writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
  355. }
  356. /*
  357. * Pause the channel by setting the HALT bit.
  358. *
  359. * For M->P transfers, pause the DMAC first and then stop the peripheral -
  360. * the FIFO can only drain if the peripheral is still requesting data.
  361. * (note: this can still timeout if the DMAC FIFO never drains of data.)
  362. *
  363. * For P->M transfers, disable the peripheral first to stop it filling
  364. * the DMAC FIFO, and then pause the DMAC.
  365. */
  366. static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
  367. {
  368. u32 val;
  369. int timeout;
  370. /* Set the HALT bit and wait for the FIFO to drain */
  371. val = readl(ch->reg_config);
  372. val |= PL080_CONFIG_HALT;
  373. writel(val, ch->reg_config);
  374. /* Wait for channel inactive */
  375. for (timeout = 1000; timeout; timeout--) {
  376. if (!pl08x_phy_channel_busy(ch))
  377. break;
  378. udelay(1);
  379. }
  380. if (pl08x_phy_channel_busy(ch))
  381. pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
  382. }
  383. static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
  384. {
  385. u32 val;
  386. /* Clear the HALT bit */
  387. val = readl(ch->reg_config);
  388. val &= ~PL080_CONFIG_HALT;
  389. writel(val, ch->reg_config);
  390. }
  391. /*
  392. * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
  393. * clears any pending interrupt status. This should not be used for
  394. * an on-going transfer, but as a method of shutting down a channel
  395. * (eg, when it's no longer used) or terminating a transfer.
  396. */
  397. static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
  398. struct pl08x_phy_chan *ch)
  399. {
  400. u32 val = readl(ch->reg_config);
  401. val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
  402. PL080_CONFIG_TC_IRQ_MASK);
  403. writel(val, ch->reg_config);
  404. writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
  405. writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
  406. }
  407. static inline u32 get_bytes_in_cctl(u32 cctl)
  408. {
  409. /* The source width defines the number of bytes */
  410. u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
  411. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  412. case PL080_WIDTH_8BIT:
  413. break;
  414. case PL080_WIDTH_16BIT:
  415. bytes *= 2;
  416. break;
  417. case PL080_WIDTH_32BIT:
  418. bytes *= 4;
  419. break;
  420. }
  421. return bytes;
  422. }
  423. /* The channel should be paused when calling this */
  424. static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
  425. {
  426. struct pl08x_lli *llis_va;
  427. struct pl08x_phy_chan *ch;
  428. dma_addr_t llis_bus;
  429. struct pl08x_txd *txd;
  430. size_t bytes;
  431. int index;
  432. u32 clli;
  433. ch = plchan->phychan;
  434. txd = plchan->at;
  435. if (!ch || !txd)
  436. return 0;
  437. /*
  438. * Follow the LLIs to get the number of remaining
  439. * bytes in the currently active transaction.
  440. */
  441. clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
  442. /* First get the remaining bytes in the active transfer */
  443. bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
  444. if (!clli)
  445. return bytes;
  446. llis_va = txd->llis_va;
  447. llis_bus = txd->llis_bus;
  448. BUG_ON(clli < llis_bus || clli >= llis_bus +
  449. sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
  450. /*
  451. * Locate the next LLI - as this is an array,
  452. * it's simple maths to find.
  453. */
  454. index = (clli - llis_bus) / sizeof(struct pl08x_lli);
  455. for (; index < MAX_NUM_TSFR_LLIS; index++) {
  456. bytes += get_bytes_in_cctl(llis_va[index].cctl);
  457. /*
  458. * A LLI pointer of 0 terminates the LLI list
  459. */
  460. if (!llis_va[index].lli)
  461. break;
  462. }
  463. return bytes;
  464. }
  465. /*
  466. * Allocate a physical channel for a virtual channel
  467. *
  468. * Try to locate a physical channel to be used for this transfer. If all
  469. * are taken return NULL and the requester will have to cope by using
  470. * some fallback PIO mode or retrying later.
  471. */
  472. static struct pl08x_phy_chan *
  473. pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
  474. struct pl08x_dma_chan *virt_chan)
  475. {
  476. struct pl08x_phy_chan *ch = NULL;
  477. unsigned long flags;
  478. int i;
  479. for (i = 0; i < pl08x->vd->channels; i++) {
  480. ch = &pl08x->phy_chans[i];
  481. spin_lock_irqsave(&ch->lock, flags);
  482. if (!ch->locked && !ch->serving) {
  483. ch->serving = virt_chan;
  484. spin_unlock_irqrestore(&ch->lock, flags);
  485. break;
  486. }
  487. spin_unlock_irqrestore(&ch->lock, flags);
  488. }
  489. if (i == pl08x->vd->channels) {
  490. /* No physical channel available, cope with it */
  491. return NULL;
  492. }
  493. return ch;
  494. }
  495. /* Mark the physical channel as free. Note, this write is atomic. */
  496. static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
  497. struct pl08x_phy_chan *ch)
  498. {
  499. ch->serving = NULL;
  500. }
  501. /*
  502. * Try to allocate a physical channel. When successful, assign it to
  503. * this virtual channel, and initiate the next descriptor. The
  504. * virtual channel lock must be held at this point.
  505. */
  506. static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
  507. {
  508. struct pl08x_driver_data *pl08x = plchan->host;
  509. struct pl08x_phy_chan *ch;
  510. ch = pl08x_get_phy_channel(pl08x, plchan);
  511. if (!ch) {
  512. dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
  513. plchan->state = PL08X_CHAN_WAITING;
  514. return;
  515. }
  516. dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
  517. ch->id, plchan->name);
  518. plchan->phychan = ch;
  519. plchan->state = PL08X_CHAN_RUNNING;
  520. pl08x_start_next_txd(plchan);
  521. }
  522. static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
  523. struct pl08x_dma_chan *plchan)
  524. {
  525. struct pl08x_driver_data *pl08x = plchan->host;
  526. dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
  527. ch->id, plchan->name);
  528. /*
  529. * We do this without taking the lock; we're really only concerned
  530. * about whether this pointer is NULL or not, and we're guaranteed
  531. * that this will only be called when it _already_ is non-NULL.
  532. */
  533. ch->serving = plchan;
  534. plchan->phychan = ch;
  535. plchan->state = PL08X_CHAN_RUNNING;
  536. pl08x_start_next_txd(plchan);
  537. }
  538. /*
  539. * Free a physical DMA channel, potentially reallocating it to another
  540. * virtual channel if we have any pending.
  541. */
  542. static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
  543. {
  544. struct pl08x_driver_data *pl08x = plchan->host;
  545. struct pl08x_dma_chan *p, *next;
  546. retry:
  547. next = NULL;
  548. /* Find a waiting virtual channel for the next transfer. */
  549. list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
  550. if (p->state == PL08X_CHAN_WAITING) {
  551. next = p;
  552. break;
  553. }
  554. if (!next) {
  555. list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
  556. if (p->state == PL08X_CHAN_WAITING) {
  557. next = p;
  558. break;
  559. }
  560. }
  561. /* Ensure that the physical channel is stopped */
  562. pl08x_terminate_phy_chan(pl08x, plchan->phychan);
  563. if (next) {
  564. bool success;
  565. /*
  566. * Eww. We know this isn't going to deadlock
  567. * but lockdep probably doesn't.
  568. */
  569. spin_lock(&next->vc.lock);
  570. /* Re-check the state now that we have the lock */
  571. success = next->state == PL08X_CHAN_WAITING;
  572. if (success)
  573. pl08x_phy_reassign_start(plchan->phychan, next);
  574. spin_unlock(&next->vc.lock);
  575. /* If the state changed, try to find another channel */
  576. if (!success)
  577. goto retry;
  578. } else {
  579. /* No more jobs, so free up the physical channel */
  580. pl08x_put_phy_channel(pl08x, plchan->phychan);
  581. }
  582. plchan->phychan = NULL;
  583. plchan->state = PL08X_CHAN_IDLE;
  584. }
  585. /*
  586. * LLI handling
  587. */
  588. static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
  589. {
  590. switch (coded) {
  591. case PL080_WIDTH_8BIT:
  592. return 1;
  593. case PL080_WIDTH_16BIT:
  594. return 2;
  595. case PL080_WIDTH_32BIT:
  596. return 4;
  597. default:
  598. break;
  599. }
  600. BUG();
  601. return 0;
  602. }
  603. static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
  604. size_t tsize)
  605. {
  606. u32 retbits = cctl;
  607. /* Remove all src, dst and transfer size bits */
  608. retbits &= ~PL080_CONTROL_DWIDTH_MASK;
  609. retbits &= ~PL080_CONTROL_SWIDTH_MASK;
  610. retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
  611. /* Then set the bits according to the parameters */
  612. switch (srcwidth) {
  613. case 1:
  614. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
  615. break;
  616. case 2:
  617. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
  618. break;
  619. case 4:
  620. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
  621. break;
  622. default:
  623. BUG();
  624. break;
  625. }
  626. switch (dstwidth) {
  627. case 1:
  628. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
  629. break;
  630. case 2:
  631. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
  632. break;
  633. case 4:
  634. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
  635. break;
  636. default:
  637. BUG();
  638. break;
  639. }
  640. retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
  641. return retbits;
  642. }
  643. struct pl08x_lli_build_data {
  644. struct pl08x_txd *txd;
  645. struct pl08x_bus_data srcbus;
  646. struct pl08x_bus_data dstbus;
  647. size_t remainder;
  648. u32 lli_bus;
  649. };
  650. /*
  651. * Autoselect a master bus to use for the transfer. Slave will be the chosen as
  652. * victim in case src & dest are not similarly aligned. i.e. If after aligning
  653. * masters address with width requirements of transfer (by sending few byte by
  654. * byte data), slave is still not aligned, then its width will be reduced to
  655. * BYTE.
  656. * - prefers the destination bus if both available
  657. * - prefers bus with fixed address (i.e. peripheral)
  658. */
  659. static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
  660. struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
  661. {
  662. if (!(cctl & PL080_CONTROL_DST_INCR)) {
  663. *mbus = &bd->dstbus;
  664. *sbus = &bd->srcbus;
  665. } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
  666. *mbus = &bd->srcbus;
  667. *sbus = &bd->dstbus;
  668. } else {
  669. if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
  670. *mbus = &bd->dstbus;
  671. *sbus = &bd->srcbus;
  672. } else {
  673. *mbus = &bd->srcbus;
  674. *sbus = &bd->dstbus;
  675. }
  676. }
  677. }
  678. /*
  679. * Fills in one LLI for a certain transfer descriptor and advance the counter
  680. */
  681. static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
  682. int num_llis, int len, u32 cctl)
  683. {
  684. struct pl08x_lli *llis_va = bd->txd->llis_va;
  685. dma_addr_t llis_bus = bd->txd->llis_bus;
  686. BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
  687. llis_va[num_llis].cctl = cctl;
  688. llis_va[num_llis].src = bd->srcbus.addr;
  689. llis_va[num_llis].dst = bd->dstbus.addr;
  690. llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
  691. sizeof(struct pl08x_lli);
  692. llis_va[num_llis].lli |= bd->lli_bus;
  693. if (cctl & PL080_CONTROL_SRC_INCR)
  694. bd->srcbus.addr += len;
  695. if (cctl & PL080_CONTROL_DST_INCR)
  696. bd->dstbus.addr += len;
  697. BUG_ON(bd->remainder < len);
  698. bd->remainder -= len;
  699. }
  700. static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
  701. u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
  702. {
  703. *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
  704. pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
  705. (*total_bytes) += len;
  706. }
  707. /*
  708. * This fills in the table of LLIs for the transfer descriptor
  709. * Note that we assume we never have to change the burst sizes
  710. * Return 0 for error
  711. */
  712. static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
  713. struct pl08x_txd *txd)
  714. {
  715. struct pl08x_bus_data *mbus, *sbus;
  716. struct pl08x_lli_build_data bd;
  717. int num_llis = 0;
  718. u32 cctl, early_bytes = 0;
  719. size_t max_bytes_per_lli, total_bytes;
  720. struct pl08x_lli *llis_va;
  721. struct pl08x_sg *dsg;
  722. txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
  723. if (!txd->llis_va) {
  724. dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
  725. return 0;
  726. }
  727. bd.txd = txd;
  728. bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
  729. cctl = txd->cctl;
  730. /* Find maximum width of the source bus */
  731. bd.srcbus.maxwidth =
  732. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
  733. PL080_CONTROL_SWIDTH_SHIFT);
  734. /* Find maximum width of the destination bus */
  735. bd.dstbus.maxwidth =
  736. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
  737. PL080_CONTROL_DWIDTH_SHIFT);
  738. list_for_each_entry(dsg, &txd->dsg_list, node) {
  739. total_bytes = 0;
  740. cctl = txd->cctl;
  741. bd.srcbus.addr = dsg->src_addr;
  742. bd.dstbus.addr = dsg->dst_addr;
  743. bd.remainder = dsg->len;
  744. bd.srcbus.buswidth = bd.srcbus.maxwidth;
  745. bd.dstbus.buswidth = bd.dstbus.maxwidth;
  746. pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
  747. dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
  748. bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
  749. bd.srcbus.buswidth,
  750. bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
  751. bd.dstbus.buswidth,
  752. bd.remainder);
  753. dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
  754. mbus == &bd.srcbus ? "src" : "dst",
  755. sbus == &bd.srcbus ? "src" : "dst");
  756. /*
  757. * Zero length is only allowed if all these requirements are
  758. * met:
  759. * - flow controller is peripheral.
  760. * - src.addr is aligned to src.width
  761. * - dst.addr is aligned to dst.width
  762. *
  763. * sg_len == 1 should be true, as there can be two cases here:
  764. *
  765. * - Memory addresses are contiguous and are not scattered.
  766. * Here, Only one sg will be passed by user driver, with
  767. * memory address and zero length. We pass this to controller
  768. * and after the transfer it will receive the last burst
  769. * request from peripheral and so transfer finishes.
  770. *
  771. * - Memory addresses are scattered and are not contiguous.
  772. * Here, Obviously as DMA controller doesn't know when a lli's
  773. * transfer gets over, it can't load next lli. So in this
  774. * case, there has to be an assumption that only one lli is
  775. * supported. Thus, we can't have scattered addresses.
  776. */
  777. if (!bd.remainder) {
  778. u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
  779. PL080_CONFIG_FLOW_CONTROL_SHIFT;
  780. if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
  781. (fc <= PL080_FLOW_SRC2DST_SRC))) {
  782. dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
  783. __func__);
  784. return 0;
  785. }
  786. if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
  787. (bd.dstbus.addr % bd.dstbus.buswidth)) {
  788. dev_err(&pl08x->adev->dev,
  789. "%s src & dst address must be aligned to src"
  790. " & dst width if peripheral is flow controller",
  791. __func__);
  792. return 0;
  793. }
  794. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  795. bd.dstbus.buswidth, 0);
  796. pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
  797. break;
  798. }
  799. /*
  800. * Send byte by byte for following cases
  801. * - Less than a bus width available
  802. * - until master bus is aligned
  803. */
  804. if (bd.remainder < mbus->buswidth)
  805. early_bytes = bd.remainder;
  806. else if ((mbus->addr) % (mbus->buswidth)) {
  807. early_bytes = mbus->buswidth - (mbus->addr) %
  808. (mbus->buswidth);
  809. if ((bd.remainder - early_bytes) < mbus->buswidth)
  810. early_bytes = bd.remainder;
  811. }
  812. if (early_bytes) {
  813. dev_vdbg(&pl08x->adev->dev,
  814. "%s byte width LLIs (remain 0x%08x)\n",
  815. __func__, bd.remainder);
  816. prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
  817. &total_bytes);
  818. }
  819. if (bd.remainder) {
  820. /*
  821. * Master now aligned
  822. * - if slave is not then we must set its width down
  823. */
  824. if (sbus->addr % sbus->buswidth) {
  825. dev_dbg(&pl08x->adev->dev,
  826. "%s set down bus width to one byte\n",
  827. __func__);
  828. sbus->buswidth = 1;
  829. }
  830. /*
  831. * Bytes transferred = tsize * src width, not
  832. * MIN(buswidths)
  833. */
  834. max_bytes_per_lli = bd.srcbus.buswidth *
  835. PL080_CONTROL_TRANSFER_SIZE_MASK;
  836. dev_vdbg(&pl08x->adev->dev,
  837. "%s max bytes per lli = %zu\n",
  838. __func__, max_bytes_per_lli);
  839. /*
  840. * Make largest possible LLIs until less than one bus
  841. * width left
  842. */
  843. while (bd.remainder > (mbus->buswidth - 1)) {
  844. size_t lli_len, tsize, width;
  845. /*
  846. * If enough left try to send max possible,
  847. * otherwise try to send the remainder
  848. */
  849. lli_len = min(bd.remainder, max_bytes_per_lli);
  850. /*
  851. * Check against maximum bus alignment:
  852. * Calculate actual transfer size in relation to
  853. * bus width an get a maximum remainder of the
  854. * highest bus width - 1
  855. */
  856. width = max(mbus->buswidth, sbus->buswidth);
  857. lli_len = (lli_len / width) * width;
  858. tsize = lli_len / bd.srcbus.buswidth;
  859. dev_vdbg(&pl08x->adev->dev,
  860. "%s fill lli with single lli chunk of "
  861. "size 0x%08zx (remainder 0x%08zx)\n",
  862. __func__, lli_len, bd.remainder);
  863. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  864. bd.dstbus.buswidth, tsize);
  865. pl08x_fill_lli_for_desc(&bd, num_llis++,
  866. lli_len, cctl);
  867. total_bytes += lli_len;
  868. }
  869. /*
  870. * Send any odd bytes
  871. */
  872. if (bd.remainder) {
  873. dev_vdbg(&pl08x->adev->dev,
  874. "%s align with boundary, send odd bytes (remain %zu)\n",
  875. __func__, bd.remainder);
  876. prep_byte_width_lli(&bd, &cctl, bd.remainder,
  877. num_llis++, &total_bytes);
  878. }
  879. }
  880. if (total_bytes != dsg->len) {
  881. dev_err(&pl08x->adev->dev,
  882. "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
  883. __func__, total_bytes, dsg->len);
  884. return 0;
  885. }
  886. if (num_llis >= MAX_NUM_TSFR_LLIS) {
  887. dev_err(&pl08x->adev->dev,
  888. "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
  889. __func__, (u32) MAX_NUM_TSFR_LLIS);
  890. return 0;
  891. }
  892. }
  893. llis_va = txd->llis_va;
  894. /* The final LLI terminates the LLI. */
  895. llis_va[num_llis - 1].lli = 0;
  896. /* The final LLI element shall also fire an interrupt. */
  897. llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
  898. #ifdef VERBOSE_DEBUG
  899. {
  900. int i;
  901. dev_vdbg(&pl08x->adev->dev,
  902. "%-3s %-9s %-10s %-10s %-10s %s\n",
  903. "lli", "", "csrc", "cdst", "clli", "cctl");
  904. for (i = 0; i < num_llis; i++) {
  905. dev_vdbg(&pl08x->adev->dev,
  906. "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  907. i, &llis_va[i], llis_va[i].src,
  908. llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
  909. );
  910. }
  911. }
  912. #endif
  913. return num_llis;
  914. }
  915. static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
  916. struct pl08x_txd *txd)
  917. {
  918. struct pl08x_sg *dsg, *_dsg;
  919. if (txd->llis_va)
  920. dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
  921. list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
  922. list_del(&dsg->node);
  923. kfree(dsg);
  924. }
  925. kfree(txd);
  926. }
  927. static void pl08x_unmap_buffers(struct pl08x_txd *txd)
  928. {
  929. struct device *dev = txd->vd.tx.chan->device->dev;
  930. struct pl08x_sg *dsg;
  931. if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  932. if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  933. list_for_each_entry(dsg, &txd->dsg_list, node)
  934. dma_unmap_single(dev, dsg->src_addr, dsg->len,
  935. DMA_TO_DEVICE);
  936. else {
  937. list_for_each_entry(dsg, &txd->dsg_list, node)
  938. dma_unmap_page(dev, dsg->src_addr, dsg->len,
  939. DMA_TO_DEVICE);
  940. }
  941. }
  942. if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  943. if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  944. list_for_each_entry(dsg, &txd->dsg_list, node)
  945. dma_unmap_single(dev, dsg->dst_addr, dsg->len,
  946. DMA_FROM_DEVICE);
  947. else
  948. list_for_each_entry(dsg, &txd->dsg_list, node)
  949. dma_unmap_page(dev, dsg->dst_addr, dsg->len,
  950. DMA_FROM_DEVICE);
  951. }
  952. }
  953. static void pl08x_desc_free(struct virt_dma_desc *vd)
  954. {
  955. struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
  956. struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
  957. if (!plchan->slave)
  958. pl08x_unmap_buffers(txd);
  959. if (!txd->done)
  960. pl08x_release_mux(plchan);
  961. pl08x_free_txd(plchan->host, txd);
  962. }
  963. static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
  964. struct pl08x_dma_chan *plchan)
  965. {
  966. LIST_HEAD(head);
  967. vchan_get_all_descriptors(&plchan->vc, &head);
  968. vchan_dma_desc_free_list(&plchan->vc, &head);
  969. }
  970. /*
  971. * The DMA ENGINE API
  972. */
  973. static int pl08x_alloc_chan_resources(struct dma_chan *chan)
  974. {
  975. return 0;
  976. }
  977. static void pl08x_free_chan_resources(struct dma_chan *chan)
  978. {
  979. /* Ensure all queued descriptors are freed */
  980. vchan_free_chan_resources(to_virt_chan(chan));
  981. }
  982. static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
  983. struct dma_chan *chan, unsigned long flags)
  984. {
  985. struct dma_async_tx_descriptor *retval = NULL;
  986. return retval;
  987. }
  988. /*
  989. * Code accessing dma_async_is_complete() in a tight loop may give problems.
  990. * If slaves are relying on interrupts to signal completion this function
  991. * must not be called with interrupts disabled.
  992. */
  993. static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
  994. dma_cookie_t cookie, struct dma_tx_state *txstate)
  995. {
  996. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  997. struct virt_dma_desc *vd;
  998. unsigned long flags;
  999. enum dma_status ret;
  1000. size_t bytes = 0;
  1001. ret = dma_cookie_status(chan, cookie, txstate);
  1002. if (ret == DMA_SUCCESS)
  1003. return ret;
  1004. /*
  1005. * There's no point calculating the residue if there's
  1006. * no txstate to store the value.
  1007. */
  1008. if (!txstate) {
  1009. if (plchan->state == PL08X_CHAN_PAUSED)
  1010. ret = DMA_PAUSED;
  1011. return ret;
  1012. }
  1013. spin_lock_irqsave(&plchan->vc.lock, flags);
  1014. ret = dma_cookie_status(chan, cookie, txstate);
  1015. if (ret != DMA_SUCCESS) {
  1016. vd = vchan_find_desc(&plchan->vc, cookie);
  1017. if (vd) {
  1018. /* On the issued list, so hasn't been processed yet */
  1019. struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
  1020. struct pl08x_sg *dsg;
  1021. list_for_each_entry(dsg, &txd->dsg_list, node)
  1022. bytes += dsg->len;
  1023. } else {
  1024. bytes = pl08x_getbytes_chan(plchan);
  1025. }
  1026. }
  1027. spin_unlock_irqrestore(&plchan->vc.lock, flags);
  1028. /*
  1029. * This cookie not complete yet
  1030. * Get number of bytes left in the active transactions and queue
  1031. */
  1032. dma_set_residue(txstate, bytes);
  1033. if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
  1034. ret = DMA_PAUSED;
  1035. /* Whether waiting or running, we're in progress */
  1036. return ret;
  1037. }
  1038. /* PrimeCell DMA extension */
  1039. struct burst_table {
  1040. u32 burstwords;
  1041. u32 reg;
  1042. };
  1043. static const struct burst_table burst_sizes[] = {
  1044. {
  1045. .burstwords = 256,
  1046. .reg = PL080_BSIZE_256,
  1047. },
  1048. {
  1049. .burstwords = 128,
  1050. .reg = PL080_BSIZE_128,
  1051. },
  1052. {
  1053. .burstwords = 64,
  1054. .reg = PL080_BSIZE_64,
  1055. },
  1056. {
  1057. .burstwords = 32,
  1058. .reg = PL080_BSIZE_32,
  1059. },
  1060. {
  1061. .burstwords = 16,
  1062. .reg = PL080_BSIZE_16,
  1063. },
  1064. {
  1065. .burstwords = 8,
  1066. .reg = PL080_BSIZE_8,
  1067. },
  1068. {
  1069. .burstwords = 4,
  1070. .reg = PL080_BSIZE_4,
  1071. },
  1072. {
  1073. .burstwords = 0,
  1074. .reg = PL080_BSIZE_1,
  1075. },
  1076. };
  1077. /*
  1078. * Given the source and destination available bus masks, select which
  1079. * will be routed to each port. We try to have source and destination
  1080. * on separate ports, but always respect the allowable settings.
  1081. */
  1082. static u32 pl08x_select_bus(u8 src, u8 dst)
  1083. {
  1084. u32 cctl = 0;
  1085. if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
  1086. cctl |= PL080_CONTROL_DST_AHB2;
  1087. if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
  1088. cctl |= PL080_CONTROL_SRC_AHB2;
  1089. return cctl;
  1090. }
  1091. static u32 pl08x_cctl(u32 cctl)
  1092. {
  1093. cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
  1094. PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
  1095. PL080_CONTROL_PROT_MASK);
  1096. /* Access the cell in privileged mode, non-bufferable, non-cacheable */
  1097. return cctl | PL080_CONTROL_PROT_SYS;
  1098. }
  1099. static u32 pl08x_width(enum dma_slave_buswidth width)
  1100. {
  1101. switch (width) {
  1102. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1103. return PL080_WIDTH_8BIT;
  1104. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1105. return PL080_WIDTH_16BIT;
  1106. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1107. return PL080_WIDTH_32BIT;
  1108. default:
  1109. return ~0;
  1110. }
  1111. }
  1112. static u32 pl08x_burst(u32 maxburst)
  1113. {
  1114. int i;
  1115. for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
  1116. if (burst_sizes[i].burstwords <= maxburst)
  1117. break;
  1118. return burst_sizes[i].reg;
  1119. }
  1120. static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
  1121. enum dma_slave_buswidth addr_width, u32 maxburst)
  1122. {
  1123. u32 width, burst, cctl = 0;
  1124. width = pl08x_width(addr_width);
  1125. if (width == ~0)
  1126. return ~0;
  1127. cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
  1128. cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
  1129. /*
  1130. * If this channel will only request single transfers, set this
  1131. * down to ONE element. Also select one element if no maxburst
  1132. * is specified.
  1133. */
  1134. if (plchan->cd->single)
  1135. maxburst = 1;
  1136. burst = pl08x_burst(maxburst);
  1137. cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
  1138. cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
  1139. return pl08x_cctl(cctl);
  1140. }
  1141. static int dma_set_runtime_config(struct dma_chan *chan,
  1142. struct dma_slave_config *config)
  1143. {
  1144. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1145. if (!plchan->slave)
  1146. return -EINVAL;
  1147. /* Reject definitely invalid configurations */
  1148. if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  1149. config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  1150. return -EINVAL;
  1151. plchan->cfg = *config;
  1152. return 0;
  1153. }
  1154. /*
  1155. * Slave transactions callback to the slave device to allow
  1156. * synchronization of slave DMA signals with the DMAC enable
  1157. */
  1158. static void pl08x_issue_pending(struct dma_chan *chan)
  1159. {
  1160. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1161. unsigned long flags;
  1162. spin_lock_irqsave(&plchan->vc.lock, flags);
  1163. if (vchan_issue_pending(&plchan->vc)) {
  1164. if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
  1165. pl08x_phy_alloc_and_start(plchan);
  1166. }
  1167. spin_unlock_irqrestore(&plchan->vc.lock, flags);
  1168. }
  1169. static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
  1170. {
  1171. struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
  1172. if (txd) {
  1173. INIT_LIST_HEAD(&txd->dsg_list);
  1174. /* Always enable error and terminal interrupts */
  1175. txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
  1176. PL080_CONFIG_TC_IRQ_MASK;
  1177. }
  1178. return txd;
  1179. }
  1180. /*
  1181. * Initialize a descriptor to be used by memcpy submit
  1182. */
  1183. static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
  1184. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1185. size_t len, unsigned long flags)
  1186. {
  1187. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1188. struct pl08x_driver_data *pl08x = plchan->host;
  1189. struct pl08x_txd *txd;
  1190. struct pl08x_sg *dsg;
  1191. int ret;
  1192. txd = pl08x_get_txd(plchan);
  1193. if (!txd) {
  1194. dev_err(&pl08x->adev->dev,
  1195. "%s no memory for descriptor\n", __func__);
  1196. return NULL;
  1197. }
  1198. dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
  1199. if (!dsg) {
  1200. pl08x_free_txd(pl08x, txd);
  1201. dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
  1202. __func__);
  1203. return NULL;
  1204. }
  1205. list_add_tail(&dsg->node, &txd->dsg_list);
  1206. dsg->src_addr = src;
  1207. dsg->dst_addr = dest;
  1208. dsg->len = len;
  1209. /* Set platform data for m2m */
  1210. txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1211. txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
  1212. ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
  1213. /* Both to be incremented or the code will break */
  1214. txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
  1215. if (pl08x->vd->dualmaster)
  1216. txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
  1217. pl08x->mem_buses);
  1218. ret = pl08x_fill_llis_for_desc(plchan->host, txd);
  1219. if (!ret) {
  1220. pl08x_free_txd(pl08x, txd);
  1221. return NULL;
  1222. }
  1223. return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
  1224. }
  1225. static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
  1226. struct dma_chan *chan, struct scatterlist *sgl,
  1227. unsigned int sg_len, enum dma_transfer_direction direction,
  1228. unsigned long flags, void *context)
  1229. {
  1230. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1231. struct pl08x_driver_data *pl08x = plchan->host;
  1232. struct pl08x_txd *txd;
  1233. struct pl08x_sg *dsg;
  1234. struct scatterlist *sg;
  1235. enum dma_slave_buswidth addr_width;
  1236. dma_addr_t slave_addr;
  1237. int ret, tmp;
  1238. u8 src_buses, dst_buses;
  1239. u32 maxburst, cctl;
  1240. dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
  1241. __func__, sg_dma_len(sgl), plchan->name);
  1242. txd = pl08x_get_txd(plchan);
  1243. if (!txd) {
  1244. dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
  1245. return NULL;
  1246. }
  1247. /*
  1248. * Set up addresses, the PrimeCell configured address
  1249. * will take precedence since this may configure the
  1250. * channel target address dynamically at runtime.
  1251. */
  1252. if (direction == DMA_MEM_TO_DEV) {
  1253. cctl = PL080_CONTROL_SRC_INCR;
  1254. slave_addr = plchan->cfg.dst_addr;
  1255. addr_width = plchan->cfg.dst_addr_width;
  1256. maxburst = plchan->cfg.dst_maxburst;
  1257. src_buses = pl08x->mem_buses;
  1258. dst_buses = plchan->cd->periph_buses;
  1259. } else if (direction == DMA_DEV_TO_MEM) {
  1260. cctl = PL080_CONTROL_DST_INCR;
  1261. slave_addr = plchan->cfg.src_addr;
  1262. addr_width = plchan->cfg.src_addr_width;
  1263. maxburst = plchan->cfg.src_maxburst;
  1264. src_buses = plchan->cd->periph_buses;
  1265. dst_buses = pl08x->mem_buses;
  1266. } else {
  1267. pl08x_free_txd(pl08x, txd);
  1268. dev_err(&pl08x->adev->dev,
  1269. "%s direction unsupported\n", __func__);
  1270. return NULL;
  1271. }
  1272. cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
  1273. if (cctl == ~0) {
  1274. pl08x_free_txd(pl08x, txd);
  1275. dev_err(&pl08x->adev->dev,
  1276. "DMA slave configuration botched?\n");
  1277. return NULL;
  1278. }
  1279. txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
  1280. if (plchan->cfg.device_fc)
  1281. tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
  1282. PL080_FLOW_PER2MEM_PER;
  1283. else
  1284. tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
  1285. PL080_FLOW_PER2MEM;
  1286. txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1287. ret = pl08x_request_mux(plchan);
  1288. if (ret < 0) {
  1289. pl08x_free_txd(pl08x, txd);
  1290. dev_dbg(&pl08x->adev->dev,
  1291. "unable to mux for transfer on %s due to platform restrictions\n",
  1292. plchan->name);
  1293. return NULL;
  1294. }
  1295. dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
  1296. plchan->signal, plchan->name);
  1297. /* Assign the flow control signal to this channel */
  1298. if (direction == DMA_MEM_TO_DEV)
  1299. txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
  1300. else
  1301. txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
  1302. for_each_sg(sgl, sg, sg_len, tmp) {
  1303. dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
  1304. if (!dsg) {
  1305. pl08x_release_mux(plchan);
  1306. pl08x_free_txd(pl08x, txd);
  1307. dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
  1308. __func__);
  1309. return NULL;
  1310. }
  1311. list_add_tail(&dsg->node, &txd->dsg_list);
  1312. dsg->len = sg_dma_len(sg);
  1313. if (direction == DMA_MEM_TO_DEV) {
  1314. dsg->src_addr = sg_dma_address(sg);
  1315. dsg->dst_addr = slave_addr;
  1316. } else {
  1317. dsg->src_addr = slave_addr;
  1318. dsg->dst_addr = sg_dma_address(sg);
  1319. }
  1320. }
  1321. ret = pl08x_fill_llis_for_desc(plchan->host, txd);
  1322. if (!ret) {
  1323. pl08x_release_mux(plchan);
  1324. pl08x_free_txd(pl08x, txd);
  1325. return NULL;
  1326. }
  1327. return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
  1328. }
  1329. static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1330. unsigned long arg)
  1331. {
  1332. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1333. struct pl08x_driver_data *pl08x = plchan->host;
  1334. unsigned long flags;
  1335. int ret = 0;
  1336. /* Controls applicable to inactive channels */
  1337. if (cmd == DMA_SLAVE_CONFIG) {
  1338. return dma_set_runtime_config(chan,
  1339. (struct dma_slave_config *)arg);
  1340. }
  1341. /*
  1342. * Anything succeeds on channels with no physical allocation and
  1343. * no queued transfers.
  1344. */
  1345. spin_lock_irqsave(&plchan->vc.lock, flags);
  1346. if (!plchan->phychan && !plchan->at) {
  1347. spin_unlock_irqrestore(&plchan->vc.lock, flags);
  1348. return 0;
  1349. }
  1350. switch (cmd) {
  1351. case DMA_TERMINATE_ALL:
  1352. plchan->state = PL08X_CHAN_IDLE;
  1353. if (plchan->phychan) {
  1354. /*
  1355. * Mark physical channel as free and free any slave
  1356. * signal
  1357. */
  1358. pl08x_phy_free(plchan);
  1359. }
  1360. /* Dequeue jobs and free LLIs */
  1361. if (plchan->at) {
  1362. pl08x_desc_free(&plchan->at->vd);
  1363. plchan->at = NULL;
  1364. }
  1365. /* Dequeue jobs not yet fired as well */
  1366. pl08x_free_txd_list(pl08x, plchan);
  1367. break;
  1368. case DMA_PAUSE:
  1369. pl08x_pause_phy_chan(plchan->phychan);
  1370. plchan->state = PL08X_CHAN_PAUSED;
  1371. break;
  1372. case DMA_RESUME:
  1373. pl08x_resume_phy_chan(plchan->phychan);
  1374. plchan->state = PL08X_CHAN_RUNNING;
  1375. break;
  1376. default:
  1377. /* Unknown command */
  1378. ret = -ENXIO;
  1379. break;
  1380. }
  1381. spin_unlock_irqrestore(&plchan->vc.lock, flags);
  1382. return ret;
  1383. }
  1384. bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
  1385. {
  1386. struct pl08x_dma_chan *plchan;
  1387. char *name = chan_id;
  1388. /* Reject channels for devices not bound to this driver */
  1389. if (chan->device->dev->driver != &pl08x_amba_driver.drv)
  1390. return false;
  1391. plchan = to_pl08x_chan(chan);
  1392. /* Check that the channel is not taken! */
  1393. if (!strcmp(plchan->name, name))
  1394. return true;
  1395. return false;
  1396. }
  1397. /*
  1398. * Just check that the device is there and active
  1399. * TODO: turn this bit on/off depending on the number of physical channels
  1400. * actually used, if it is zero... well shut it off. That will save some
  1401. * power. Cut the clock at the same time.
  1402. */
  1403. static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
  1404. {
  1405. /* The Nomadik variant does not have the config register */
  1406. if (pl08x->vd->nomadik)
  1407. return;
  1408. writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
  1409. }
  1410. static irqreturn_t pl08x_irq(int irq, void *dev)
  1411. {
  1412. struct pl08x_driver_data *pl08x = dev;
  1413. u32 mask = 0, err, tc, i;
  1414. /* check & clear - ERR & TC interrupts */
  1415. err = readl(pl08x->base + PL080_ERR_STATUS);
  1416. if (err) {
  1417. dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
  1418. __func__, err);
  1419. writel(err, pl08x->base + PL080_ERR_CLEAR);
  1420. }
  1421. tc = readl(pl08x->base + PL080_TC_STATUS);
  1422. if (tc)
  1423. writel(tc, pl08x->base + PL080_TC_CLEAR);
  1424. if (!err && !tc)
  1425. return IRQ_NONE;
  1426. for (i = 0; i < pl08x->vd->channels; i++) {
  1427. if (((1 << i) & err) || ((1 << i) & tc)) {
  1428. /* Locate physical channel */
  1429. struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
  1430. struct pl08x_dma_chan *plchan = phychan->serving;
  1431. struct pl08x_txd *tx;
  1432. if (!plchan) {
  1433. dev_err(&pl08x->adev->dev,
  1434. "%s Error TC interrupt on unused channel: 0x%08x\n",
  1435. __func__, i);
  1436. continue;
  1437. }
  1438. spin_lock(&plchan->vc.lock);
  1439. tx = plchan->at;
  1440. if (tx) {
  1441. plchan->at = NULL;
  1442. /*
  1443. * This descriptor is done, release its mux
  1444. * reservation.
  1445. */
  1446. pl08x_release_mux(plchan);
  1447. tx->done = true;
  1448. vchan_cookie_complete(&tx->vd);
  1449. /*
  1450. * And start the next descriptor (if any),
  1451. * otherwise free this channel.
  1452. */
  1453. if (vchan_next_desc(&plchan->vc))
  1454. pl08x_start_next_txd(plchan);
  1455. else
  1456. pl08x_phy_free(plchan);
  1457. }
  1458. spin_unlock(&plchan->vc.lock);
  1459. mask |= (1 << i);
  1460. }
  1461. }
  1462. return mask ? IRQ_HANDLED : IRQ_NONE;
  1463. }
  1464. static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
  1465. {
  1466. chan->slave = true;
  1467. chan->name = chan->cd->bus_id;
  1468. chan->cfg.src_addr = chan->cd->addr;
  1469. chan->cfg.dst_addr = chan->cd->addr;
  1470. }
  1471. /*
  1472. * Initialise the DMAC memcpy/slave channels.
  1473. * Make a local wrapper to hold required data
  1474. */
  1475. static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
  1476. struct dma_device *dmadev, unsigned int channels, bool slave)
  1477. {
  1478. struct pl08x_dma_chan *chan;
  1479. int i;
  1480. INIT_LIST_HEAD(&dmadev->channels);
  1481. /*
  1482. * Register as many many memcpy as we have physical channels,
  1483. * we won't always be able to use all but the code will have
  1484. * to cope with that situation.
  1485. */
  1486. for (i = 0; i < channels; i++) {
  1487. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  1488. if (!chan) {
  1489. dev_err(&pl08x->adev->dev,
  1490. "%s no memory for channel\n", __func__);
  1491. return -ENOMEM;
  1492. }
  1493. chan->host = pl08x;
  1494. chan->state = PL08X_CHAN_IDLE;
  1495. chan->signal = -1;
  1496. if (slave) {
  1497. chan->cd = &pl08x->pd->slave_channels[i];
  1498. pl08x_dma_slave_init(chan);
  1499. } else {
  1500. chan->cd = &pl08x->pd->memcpy_channel;
  1501. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  1502. if (!chan->name) {
  1503. kfree(chan);
  1504. return -ENOMEM;
  1505. }
  1506. }
  1507. dev_dbg(&pl08x->adev->dev,
  1508. "initialize virtual channel \"%s\"\n",
  1509. chan->name);
  1510. chan->vc.desc_free = pl08x_desc_free;
  1511. vchan_init(&chan->vc, dmadev);
  1512. }
  1513. dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
  1514. i, slave ? "slave" : "memcpy");
  1515. return i;
  1516. }
  1517. static void pl08x_free_virtual_channels(struct dma_device *dmadev)
  1518. {
  1519. struct pl08x_dma_chan *chan = NULL;
  1520. struct pl08x_dma_chan *next;
  1521. list_for_each_entry_safe(chan,
  1522. next, &dmadev->channels, vc.chan.device_node) {
  1523. list_del(&chan->vc.chan.device_node);
  1524. kfree(chan);
  1525. }
  1526. }
  1527. #ifdef CONFIG_DEBUG_FS
  1528. static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
  1529. {
  1530. switch (state) {
  1531. case PL08X_CHAN_IDLE:
  1532. return "idle";
  1533. case PL08X_CHAN_RUNNING:
  1534. return "running";
  1535. case PL08X_CHAN_PAUSED:
  1536. return "paused";
  1537. case PL08X_CHAN_WAITING:
  1538. return "waiting";
  1539. default:
  1540. break;
  1541. }
  1542. return "UNKNOWN STATE";
  1543. }
  1544. static int pl08x_debugfs_show(struct seq_file *s, void *data)
  1545. {
  1546. struct pl08x_driver_data *pl08x = s->private;
  1547. struct pl08x_dma_chan *chan;
  1548. struct pl08x_phy_chan *ch;
  1549. unsigned long flags;
  1550. int i;
  1551. seq_printf(s, "PL08x physical channels:\n");
  1552. seq_printf(s, "CHANNEL:\tUSER:\n");
  1553. seq_printf(s, "--------\t-----\n");
  1554. for (i = 0; i < pl08x->vd->channels; i++) {
  1555. struct pl08x_dma_chan *virt_chan;
  1556. ch = &pl08x->phy_chans[i];
  1557. spin_lock_irqsave(&ch->lock, flags);
  1558. virt_chan = ch->serving;
  1559. seq_printf(s, "%d\t\t%s%s\n",
  1560. ch->id,
  1561. virt_chan ? virt_chan->name : "(none)",
  1562. ch->locked ? " LOCKED" : "");
  1563. spin_unlock_irqrestore(&ch->lock, flags);
  1564. }
  1565. seq_printf(s, "\nPL08x virtual memcpy channels:\n");
  1566. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1567. seq_printf(s, "--------\t------\n");
  1568. list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
  1569. seq_printf(s, "%s\t\t%s\n", chan->name,
  1570. pl08x_state_str(chan->state));
  1571. }
  1572. seq_printf(s, "\nPL08x virtual slave channels:\n");
  1573. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1574. seq_printf(s, "--------\t------\n");
  1575. list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
  1576. seq_printf(s, "%s\t\t%s\n", chan->name,
  1577. pl08x_state_str(chan->state));
  1578. }
  1579. return 0;
  1580. }
  1581. static int pl08x_debugfs_open(struct inode *inode, struct file *file)
  1582. {
  1583. return single_open(file, pl08x_debugfs_show, inode->i_private);
  1584. }
  1585. static const struct file_operations pl08x_debugfs_operations = {
  1586. .open = pl08x_debugfs_open,
  1587. .read = seq_read,
  1588. .llseek = seq_lseek,
  1589. .release = single_release,
  1590. };
  1591. static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1592. {
  1593. /* Expose a simple debugfs interface to view all clocks */
  1594. (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
  1595. S_IFREG | S_IRUGO, NULL, pl08x,
  1596. &pl08x_debugfs_operations);
  1597. }
  1598. #else
  1599. static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1600. {
  1601. }
  1602. #endif
  1603. static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
  1604. {
  1605. struct pl08x_driver_data *pl08x;
  1606. const struct vendor_data *vd = id->data;
  1607. int ret = 0;
  1608. int i;
  1609. ret = amba_request_regions(adev, NULL);
  1610. if (ret)
  1611. return ret;
  1612. /* Create the driver state holder */
  1613. pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
  1614. if (!pl08x) {
  1615. ret = -ENOMEM;
  1616. goto out_no_pl08x;
  1617. }
  1618. /* Initialize memcpy engine */
  1619. dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
  1620. pl08x->memcpy.dev = &adev->dev;
  1621. pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1622. pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
  1623. pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
  1624. pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1625. pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
  1626. pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
  1627. pl08x->memcpy.device_control = pl08x_control;
  1628. /* Initialize slave engine */
  1629. dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
  1630. pl08x->slave.dev = &adev->dev;
  1631. pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1632. pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
  1633. pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1634. pl08x->slave.device_tx_status = pl08x_dma_tx_status;
  1635. pl08x->slave.device_issue_pending = pl08x_issue_pending;
  1636. pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
  1637. pl08x->slave.device_control = pl08x_control;
  1638. /* Get the platform data */
  1639. pl08x->pd = dev_get_platdata(&adev->dev);
  1640. if (!pl08x->pd) {
  1641. dev_err(&adev->dev, "no platform data supplied\n");
  1642. ret = -EINVAL;
  1643. goto out_no_platdata;
  1644. }
  1645. /* Assign useful pointers to the driver state */
  1646. pl08x->adev = adev;
  1647. pl08x->vd = vd;
  1648. /* By default, AHB1 only. If dualmaster, from platform */
  1649. pl08x->lli_buses = PL08X_AHB1;
  1650. pl08x->mem_buses = PL08X_AHB1;
  1651. if (pl08x->vd->dualmaster) {
  1652. pl08x->lli_buses = pl08x->pd->lli_buses;
  1653. pl08x->mem_buses = pl08x->pd->mem_buses;
  1654. }
  1655. /* A DMA memory pool for LLIs, align on 1-byte boundary */
  1656. pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
  1657. PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
  1658. if (!pl08x->pool) {
  1659. ret = -ENOMEM;
  1660. goto out_no_lli_pool;
  1661. }
  1662. pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
  1663. if (!pl08x->base) {
  1664. ret = -ENOMEM;
  1665. goto out_no_ioremap;
  1666. }
  1667. /* Turn on the PL08x */
  1668. pl08x_ensure_on(pl08x);
  1669. /* Attach the interrupt handler */
  1670. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1671. writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
  1672. ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
  1673. DRIVER_NAME, pl08x);
  1674. if (ret) {
  1675. dev_err(&adev->dev, "%s failed to request interrupt %d\n",
  1676. __func__, adev->irq[0]);
  1677. goto out_no_irq;
  1678. }
  1679. /* Initialize physical channels */
  1680. pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
  1681. GFP_KERNEL);
  1682. if (!pl08x->phy_chans) {
  1683. dev_err(&adev->dev, "%s failed to allocate "
  1684. "physical channel holders\n",
  1685. __func__);
  1686. ret = -ENOMEM;
  1687. goto out_no_phychans;
  1688. }
  1689. for (i = 0; i < vd->channels; i++) {
  1690. struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
  1691. ch->id = i;
  1692. ch->base = pl08x->base + PL080_Cx_BASE(i);
  1693. ch->reg_config = ch->base + vd->config_offset;
  1694. spin_lock_init(&ch->lock);
  1695. /*
  1696. * Nomadik variants can have channels that are locked
  1697. * down for the secure world only. Lock up these channels
  1698. * by perpetually serving a dummy virtual channel.
  1699. */
  1700. if (vd->nomadik) {
  1701. u32 val;
  1702. val = readl(ch->reg_config);
  1703. if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
  1704. dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
  1705. ch->locked = true;
  1706. }
  1707. }
  1708. dev_dbg(&adev->dev, "physical channel %d is %s\n",
  1709. i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
  1710. }
  1711. /* Register as many memcpy channels as there are physical channels */
  1712. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
  1713. pl08x->vd->channels, false);
  1714. if (ret <= 0) {
  1715. dev_warn(&pl08x->adev->dev,
  1716. "%s failed to enumerate memcpy channels - %d\n",
  1717. __func__, ret);
  1718. goto out_no_memcpy;
  1719. }
  1720. pl08x->memcpy.chancnt = ret;
  1721. /* Register slave channels */
  1722. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
  1723. pl08x->pd->num_slave_channels, true);
  1724. if (ret <= 0) {
  1725. dev_warn(&pl08x->adev->dev,
  1726. "%s failed to enumerate slave channels - %d\n",
  1727. __func__, ret);
  1728. goto out_no_slave;
  1729. }
  1730. pl08x->slave.chancnt = ret;
  1731. ret = dma_async_device_register(&pl08x->memcpy);
  1732. if (ret) {
  1733. dev_warn(&pl08x->adev->dev,
  1734. "%s failed to register memcpy as an async device - %d\n",
  1735. __func__, ret);
  1736. goto out_no_memcpy_reg;
  1737. }
  1738. ret = dma_async_device_register(&pl08x->slave);
  1739. if (ret) {
  1740. dev_warn(&pl08x->adev->dev,
  1741. "%s failed to register slave as an async device - %d\n",
  1742. __func__, ret);
  1743. goto out_no_slave_reg;
  1744. }
  1745. amba_set_drvdata(adev, pl08x);
  1746. init_pl08x_debugfs(pl08x);
  1747. dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
  1748. amba_part(adev), amba_rev(adev),
  1749. (unsigned long long)adev->res.start, adev->irq[0]);
  1750. return 0;
  1751. out_no_slave_reg:
  1752. dma_async_device_unregister(&pl08x->memcpy);
  1753. out_no_memcpy_reg:
  1754. pl08x_free_virtual_channels(&pl08x->slave);
  1755. out_no_slave:
  1756. pl08x_free_virtual_channels(&pl08x->memcpy);
  1757. out_no_memcpy:
  1758. kfree(pl08x->phy_chans);
  1759. out_no_phychans:
  1760. free_irq(adev->irq[0], pl08x);
  1761. out_no_irq:
  1762. iounmap(pl08x->base);
  1763. out_no_ioremap:
  1764. dma_pool_destroy(pl08x->pool);
  1765. out_no_lli_pool:
  1766. out_no_platdata:
  1767. kfree(pl08x);
  1768. out_no_pl08x:
  1769. amba_release_regions(adev);
  1770. return ret;
  1771. }
  1772. /* PL080 has 8 channels and the PL080 have just 2 */
  1773. static struct vendor_data vendor_pl080 = {
  1774. .config_offset = PL080_CH_CONFIG,
  1775. .channels = 8,
  1776. .dualmaster = true,
  1777. };
  1778. static struct vendor_data vendor_nomadik = {
  1779. .config_offset = PL080_CH_CONFIG,
  1780. .channels = 8,
  1781. .dualmaster = true,
  1782. .nomadik = true,
  1783. };
  1784. static struct vendor_data vendor_pl081 = {
  1785. .config_offset = PL080_CH_CONFIG,
  1786. .channels = 2,
  1787. .dualmaster = false,
  1788. };
  1789. static struct amba_id pl08x_ids[] = {
  1790. /* PL080 */
  1791. {
  1792. .id = 0x00041080,
  1793. .mask = 0x000fffff,
  1794. .data = &vendor_pl080,
  1795. },
  1796. /* PL081 */
  1797. {
  1798. .id = 0x00041081,
  1799. .mask = 0x000fffff,
  1800. .data = &vendor_pl081,
  1801. },
  1802. /* Nomadik 8815 PL080 variant */
  1803. {
  1804. .id = 0x00280080,
  1805. .mask = 0x00ffffff,
  1806. .data = &vendor_nomadik,
  1807. },
  1808. { 0, 0 },
  1809. };
  1810. MODULE_DEVICE_TABLE(amba, pl08x_ids);
  1811. static struct amba_driver pl08x_amba_driver = {
  1812. .drv.name = DRIVER_NAME,
  1813. .id_table = pl08x_ids,
  1814. .probe = pl08x_probe,
  1815. };
  1816. static int __init pl08x_init(void)
  1817. {
  1818. int retval;
  1819. retval = amba_driver_register(&pl08x_amba_driver);
  1820. if (retval)
  1821. printk(KERN_WARNING DRIVER_NAME
  1822. "failed to register as an AMBA device (%d)\n",
  1823. retval);
  1824. return retval;
  1825. }
  1826. subsys_initcall(pl08x_init);