slab.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/uaccess.h>
  106. #include <linux/nodemask.h>
  107. #include <linux/mempolicy.h>
  108. #include <linux/mutex.h>
  109. #include <linux/fault-inject.h>
  110. #include <linux/rtmutex.h>
  111. #include <linux/reciprocal_div.h>
  112. #include <asm/cacheflush.h>
  113. #include <asm/tlbflush.h>
  114. #include <asm/page.h>
  115. /*
  116. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  117. * SLAB_RED_ZONE & SLAB_POISON.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * STATS - 1 to collect stats for /proc/slabinfo.
  121. * 0 for faster, smaller code (especially in the critical paths).
  122. *
  123. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  124. */
  125. #ifdef CONFIG_DEBUG_SLAB
  126. #define DEBUG 1
  127. #define STATS 1
  128. #define FORCED_DEBUG 1
  129. #else
  130. #define DEBUG 0
  131. #define STATS 0
  132. #define FORCED_DEBUG 0
  133. #endif
  134. /* Shouldn't this be in a header file somewhere? */
  135. #define BYTES_PER_WORD sizeof(void *)
  136. #ifndef cache_line_size
  137. #define cache_line_size() L1_CACHE_BYTES
  138. #endif
  139. #ifndef ARCH_KMALLOC_MINALIGN
  140. /*
  141. * Enforce a minimum alignment for the kmalloc caches.
  142. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  143. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  144. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  145. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  146. * Note that this flag disables some debug features.
  147. */
  148. #define ARCH_KMALLOC_MINALIGN 0
  149. #endif
  150. #ifndef ARCH_SLAB_MINALIGN
  151. /*
  152. * Enforce a minimum alignment for all caches.
  153. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  154. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  155. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  156. * some debug features.
  157. */
  158. #define ARCH_SLAB_MINALIGN 0
  159. #endif
  160. #ifndef ARCH_KMALLOC_FLAGS
  161. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  162. #endif
  163. /* Legal flag mask for kmem_cache_create(). */
  164. #if DEBUG
  165. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  166. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  167. SLAB_CACHE_DMA | \
  168. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  169. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  170. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  171. #else
  172. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  173. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  174. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  175. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  176. #endif
  177. /*
  178. * kmem_bufctl_t:
  179. *
  180. * Bufctl's are used for linking objs within a slab
  181. * linked offsets.
  182. *
  183. * This implementation relies on "struct page" for locating the cache &
  184. * slab an object belongs to.
  185. * This allows the bufctl structure to be small (one int), but limits
  186. * the number of objects a slab (not a cache) can contain when off-slab
  187. * bufctls are used. The limit is the size of the largest general cache
  188. * that does not use off-slab slabs.
  189. * For 32bit archs with 4 kB pages, is this 56.
  190. * This is not serious, as it is only for large objects, when it is unwise
  191. * to have too many per slab.
  192. * Note: This limit can be raised by introducing a general cache whose size
  193. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  194. */
  195. typedef unsigned int kmem_bufctl_t;
  196. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  197. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  198. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  199. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  200. /*
  201. * struct slab
  202. *
  203. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  204. * for a slab, or allocated from an general cache.
  205. * Slabs are chained into three list: fully used, partial, fully free slabs.
  206. */
  207. struct slab {
  208. struct list_head list;
  209. unsigned long colouroff;
  210. void *s_mem; /* including colour offset */
  211. unsigned int inuse; /* num of objs active in slab */
  212. kmem_bufctl_t free;
  213. unsigned short nodeid;
  214. };
  215. /*
  216. * struct slab_rcu
  217. *
  218. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  219. * arrange for kmem_freepages to be called via RCU. This is useful if
  220. * we need to approach a kernel structure obliquely, from its address
  221. * obtained without the usual locking. We can lock the structure to
  222. * stabilize it and check it's still at the given address, only if we
  223. * can be sure that the memory has not been meanwhile reused for some
  224. * other kind of object (which our subsystem's lock might corrupt).
  225. *
  226. * rcu_read_lock before reading the address, then rcu_read_unlock after
  227. * taking the spinlock within the structure expected at that address.
  228. *
  229. * We assume struct slab_rcu can overlay struct slab when destroying.
  230. */
  231. struct slab_rcu {
  232. struct rcu_head head;
  233. struct kmem_cache *cachep;
  234. void *addr;
  235. };
  236. /*
  237. * struct array_cache
  238. *
  239. * Purpose:
  240. * - LIFO ordering, to hand out cache-warm objects from _alloc
  241. * - reduce the number of linked list operations
  242. * - reduce spinlock operations
  243. *
  244. * The limit is stored in the per-cpu structure to reduce the data cache
  245. * footprint.
  246. *
  247. */
  248. struct array_cache {
  249. unsigned int avail;
  250. unsigned int limit;
  251. unsigned int batchcount;
  252. unsigned int touched;
  253. spinlock_t lock;
  254. void *entry[0]; /*
  255. * Must have this definition in here for the proper
  256. * alignment of array_cache. Also simplifies accessing
  257. * the entries.
  258. * [0] is for gcc 2.95. It should really be [].
  259. */
  260. };
  261. /*
  262. * bootstrap: The caches do not work without cpuarrays anymore, but the
  263. * cpuarrays are allocated from the generic caches...
  264. */
  265. #define BOOT_CPUCACHE_ENTRIES 1
  266. struct arraycache_init {
  267. struct array_cache cache;
  268. void *entries[BOOT_CPUCACHE_ENTRIES];
  269. };
  270. /*
  271. * The slab lists for all objects.
  272. */
  273. struct kmem_list3 {
  274. struct list_head slabs_partial; /* partial list first, better asm code */
  275. struct list_head slabs_full;
  276. struct list_head slabs_free;
  277. unsigned long free_objects;
  278. unsigned int free_limit;
  279. unsigned int colour_next; /* Per-node cache coloring */
  280. spinlock_t list_lock;
  281. struct array_cache *shared; /* shared per node */
  282. struct array_cache **alien; /* on other nodes */
  283. unsigned long next_reap; /* updated without locking */
  284. int free_touched; /* updated without locking */
  285. };
  286. /*
  287. * Need this for bootstrapping a per node allocator.
  288. */
  289. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  290. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  291. #define CACHE_CACHE 0
  292. #define SIZE_AC 1
  293. #define SIZE_L3 (1 + MAX_NUMNODES)
  294. static int drain_freelist(struct kmem_cache *cache,
  295. struct kmem_list3 *l3, int tofree);
  296. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  297. int node);
  298. static int enable_cpucache(struct kmem_cache *cachep);
  299. static void cache_reap(struct work_struct *unused);
  300. /*
  301. * This function must be completely optimized away if a constant is passed to
  302. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  303. */
  304. static __always_inline int index_of(const size_t size)
  305. {
  306. extern void __bad_size(void);
  307. if (__builtin_constant_p(size)) {
  308. int i = 0;
  309. #define CACHE(x) \
  310. if (size <=x) \
  311. return i; \
  312. else \
  313. i++;
  314. #include "linux/kmalloc_sizes.h"
  315. #undef CACHE
  316. __bad_size();
  317. } else
  318. __bad_size();
  319. return 0;
  320. }
  321. static int slab_early_init = 1;
  322. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  323. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  324. static void kmem_list3_init(struct kmem_list3 *parent)
  325. {
  326. INIT_LIST_HEAD(&parent->slabs_full);
  327. INIT_LIST_HEAD(&parent->slabs_partial);
  328. INIT_LIST_HEAD(&parent->slabs_free);
  329. parent->shared = NULL;
  330. parent->alien = NULL;
  331. parent->colour_next = 0;
  332. spin_lock_init(&parent->list_lock);
  333. parent->free_objects = 0;
  334. parent->free_touched = 0;
  335. }
  336. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  337. do { \
  338. INIT_LIST_HEAD(listp); \
  339. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  340. } while (0)
  341. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  342. do { \
  343. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  344. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  345. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  346. } while (0)
  347. /*
  348. * struct kmem_cache
  349. *
  350. * manages a cache.
  351. */
  352. struct kmem_cache {
  353. /* 1) per-cpu data, touched during every alloc/free */
  354. struct array_cache *array[NR_CPUS];
  355. /* 2) Cache tunables. Protected by cache_chain_mutex */
  356. unsigned int batchcount;
  357. unsigned int limit;
  358. unsigned int shared;
  359. unsigned int buffer_size;
  360. u32 reciprocal_buffer_size;
  361. /* 3) touched by every alloc & free from the backend */
  362. unsigned int flags; /* constant flags */
  363. unsigned int num; /* # of objs per slab */
  364. /* 4) cache_grow/shrink */
  365. /* order of pgs per slab (2^n) */
  366. unsigned int gfporder;
  367. /* force GFP flags, e.g. GFP_DMA */
  368. gfp_t gfpflags;
  369. size_t colour; /* cache colouring range */
  370. unsigned int colour_off; /* colour offset */
  371. struct kmem_cache *slabp_cache;
  372. unsigned int slab_size;
  373. unsigned int dflags; /* dynamic flags */
  374. /* constructor func */
  375. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  376. /* de-constructor func */
  377. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  378. /* 5) cache creation/removal */
  379. const char *name;
  380. struct list_head next;
  381. /* 6) statistics */
  382. #if STATS
  383. unsigned long num_active;
  384. unsigned long num_allocations;
  385. unsigned long high_mark;
  386. unsigned long grown;
  387. unsigned long reaped;
  388. unsigned long errors;
  389. unsigned long max_freeable;
  390. unsigned long node_allocs;
  391. unsigned long node_frees;
  392. unsigned long node_overflow;
  393. atomic_t allochit;
  394. atomic_t allocmiss;
  395. atomic_t freehit;
  396. atomic_t freemiss;
  397. #endif
  398. #if DEBUG
  399. /*
  400. * If debugging is enabled, then the allocator can add additional
  401. * fields and/or padding to every object. buffer_size contains the total
  402. * object size including these internal fields, the following two
  403. * variables contain the offset to the user object and its size.
  404. */
  405. int obj_offset;
  406. int obj_size;
  407. #endif
  408. /*
  409. * We put nodelists[] at the end of kmem_cache, because we want to size
  410. * this array to nr_node_ids slots instead of MAX_NUMNODES
  411. * (see kmem_cache_init())
  412. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  413. * is statically defined, so we reserve the max number of nodes.
  414. */
  415. struct kmem_list3 *nodelists[MAX_NUMNODES];
  416. /*
  417. * Do not add fields after nodelists[]
  418. */
  419. };
  420. #define CFLGS_OFF_SLAB (0x80000000UL)
  421. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  422. #define BATCHREFILL_LIMIT 16
  423. /*
  424. * Optimization question: fewer reaps means less probability for unnessary
  425. * cpucache drain/refill cycles.
  426. *
  427. * OTOH the cpuarrays can contain lots of objects,
  428. * which could lock up otherwise freeable slabs.
  429. */
  430. #define REAPTIMEOUT_CPUC (2*HZ)
  431. #define REAPTIMEOUT_LIST3 (4*HZ)
  432. #if STATS
  433. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  434. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  435. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  436. #define STATS_INC_GROWN(x) ((x)->grown++)
  437. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  438. #define STATS_SET_HIGH(x) \
  439. do { \
  440. if ((x)->num_active > (x)->high_mark) \
  441. (x)->high_mark = (x)->num_active; \
  442. } while (0)
  443. #define STATS_INC_ERR(x) ((x)->errors++)
  444. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  445. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  446. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  447. #define STATS_SET_FREEABLE(x, i) \
  448. do { \
  449. if ((x)->max_freeable < i) \
  450. (x)->max_freeable = i; \
  451. } while (0)
  452. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  453. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  454. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  455. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  456. #else
  457. #define STATS_INC_ACTIVE(x) do { } while (0)
  458. #define STATS_DEC_ACTIVE(x) do { } while (0)
  459. #define STATS_INC_ALLOCED(x) do { } while (0)
  460. #define STATS_INC_GROWN(x) do { } while (0)
  461. #define STATS_ADD_REAPED(x,y) do { } while (0)
  462. #define STATS_SET_HIGH(x) do { } while (0)
  463. #define STATS_INC_ERR(x) do { } while (0)
  464. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  465. #define STATS_INC_NODEFREES(x) do { } while (0)
  466. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  467. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  468. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  469. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  470. #define STATS_INC_FREEHIT(x) do { } while (0)
  471. #define STATS_INC_FREEMISS(x) do { } while (0)
  472. #endif
  473. #if DEBUG
  474. /*
  475. * memory layout of objects:
  476. * 0 : objp
  477. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  478. * the end of an object is aligned with the end of the real
  479. * allocation. Catches writes behind the end of the allocation.
  480. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  481. * redzone word.
  482. * cachep->obj_offset: The real object.
  483. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  484. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  485. * [BYTES_PER_WORD long]
  486. */
  487. static int obj_offset(struct kmem_cache *cachep)
  488. {
  489. return cachep->obj_offset;
  490. }
  491. static int obj_size(struct kmem_cache *cachep)
  492. {
  493. return cachep->obj_size;
  494. }
  495. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  496. {
  497. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  498. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  499. }
  500. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  501. {
  502. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  503. if (cachep->flags & SLAB_STORE_USER)
  504. return (unsigned long *)(objp + cachep->buffer_size -
  505. 2 * BYTES_PER_WORD);
  506. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  507. }
  508. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  509. {
  510. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  511. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  512. }
  513. #else
  514. #define obj_offset(x) 0
  515. #define obj_size(cachep) (cachep->buffer_size)
  516. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  517. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  518. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  519. #endif
  520. /*
  521. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  522. * order.
  523. */
  524. #if defined(CONFIG_LARGE_ALLOCS)
  525. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  526. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  527. #elif defined(CONFIG_MMU)
  528. #define MAX_OBJ_ORDER 5 /* 32 pages */
  529. #define MAX_GFP_ORDER 5 /* 32 pages */
  530. #else
  531. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  532. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  533. #endif
  534. /*
  535. * Do not go above this order unless 0 objects fit into the slab.
  536. */
  537. #define BREAK_GFP_ORDER_HI 1
  538. #define BREAK_GFP_ORDER_LO 0
  539. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  540. /*
  541. * Functions for storing/retrieving the cachep and or slab from the page
  542. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  543. * these are used to find the cache which an obj belongs to.
  544. */
  545. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  546. {
  547. page->lru.next = (struct list_head *)cache;
  548. }
  549. static inline struct kmem_cache *page_get_cache(struct page *page)
  550. {
  551. page = compound_head(page);
  552. BUG_ON(!PageSlab(page));
  553. return (struct kmem_cache *)page->lru.next;
  554. }
  555. static inline void page_set_slab(struct page *page, struct slab *slab)
  556. {
  557. page->lru.prev = (struct list_head *)slab;
  558. }
  559. static inline struct slab *page_get_slab(struct page *page)
  560. {
  561. page = compound_head(page);
  562. BUG_ON(!PageSlab(page));
  563. return (struct slab *)page->lru.prev;
  564. }
  565. static inline struct kmem_cache *virt_to_cache(const void *obj)
  566. {
  567. struct page *page = virt_to_page(obj);
  568. return page_get_cache(page);
  569. }
  570. static inline struct slab *virt_to_slab(const void *obj)
  571. {
  572. struct page *page = virt_to_page(obj);
  573. return page_get_slab(page);
  574. }
  575. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  576. unsigned int idx)
  577. {
  578. return slab->s_mem + cache->buffer_size * idx;
  579. }
  580. /*
  581. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  582. * Using the fact that buffer_size is a constant for a particular cache,
  583. * we can replace (offset / cache->buffer_size) by
  584. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  585. */
  586. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  587. const struct slab *slab, void *obj)
  588. {
  589. u32 offset = (obj - slab->s_mem);
  590. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  591. }
  592. /*
  593. * These are the default caches for kmalloc. Custom caches can have other sizes.
  594. */
  595. struct cache_sizes malloc_sizes[] = {
  596. #define CACHE(x) { .cs_size = (x) },
  597. #include <linux/kmalloc_sizes.h>
  598. CACHE(ULONG_MAX)
  599. #undef CACHE
  600. };
  601. EXPORT_SYMBOL(malloc_sizes);
  602. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  603. struct cache_names {
  604. char *name;
  605. char *name_dma;
  606. };
  607. static struct cache_names __initdata cache_names[] = {
  608. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  609. #include <linux/kmalloc_sizes.h>
  610. {NULL,}
  611. #undef CACHE
  612. };
  613. static struct arraycache_init initarray_cache __initdata =
  614. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  615. static struct arraycache_init initarray_generic =
  616. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  617. /* internal cache of cache description objs */
  618. static struct kmem_cache cache_cache = {
  619. .batchcount = 1,
  620. .limit = BOOT_CPUCACHE_ENTRIES,
  621. .shared = 1,
  622. .buffer_size = sizeof(struct kmem_cache),
  623. .name = "kmem_cache",
  624. };
  625. #define BAD_ALIEN_MAGIC 0x01020304ul
  626. #ifdef CONFIG_LOCKDEP
  627. /*
  628. * Slab sometimes uses the kmalloc slabs to store the slab headers
  629. * for other slabs "off slab".
  630. * The locking for this is tricky in that it nests within the locks
  631. * of all other slabs in a few places; to deal with this special
  632. * locking we put on-slab caches into a separate lock-class.
  633. *
  634. * We set lock class for alien array caches which are up during init.
  635. * The lock annotation will be lost if all cpus of a node goes down and
  636. * then comes back up during hotplug
  637. */
  638. static struct lock_class_key on_slab_l3_key;
  639. static struct lock_class_key on_slab_alc_key;
  640. static inline void init_lock_keys(void)
  641. {
  642. int q;
  643. struct cache_sizes *s = malloc_sizes;
  644. while (s->cs_size != ULONG_MAX) {
  645. for_each_node(q) {
  646. struct array_cache **alc;
  647. int r;
  648. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  649. if (!l3 || OFF_SLAB(s->cs_cachep))
  650. continue;
  651. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  652. alc = l3->alien;
  653. /*
  654. * FIXME: This check for BAD_ALIEN_MAGIC
  655. * should go away when common slab code is taught to
  656. * work even without alien caches.
  657. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  658. * for alloc_alien_cache,
  659. */
  660. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  661. continue;
  662. for_each_node(r) {
  663. if (alc[r])
  664. lockdep_set_class(&alc[r]->lock,
  665. &on_slab_alc_key);
  666. }
  667. }
  668. s++;
  669. }
  670. }
  671. #else
  672. static inline void init_lock_keys(void)
  673. {
  674. }
  675. #endif
  676. /*
  677. * 1. Guard access to the cache-chain.
  678. * 2. Protect sanity of cpu_online_map against cpu hotplug events
  679. */
  680. static DEFINE_MUTEX(cache_chain_mutex);
  681. static struct list_head cache_chain;
  682. /*
  683. * chicken and egg problem: delay the per-cpu array allocation
  684. * until the general caches are up.
  685. */
  686. static enum {
  687. NONE,
  688. PARTIAL_AC,
  689. PARTIAL_L3,
  690. FULL
  691. } g_cpucache_up;
  692. /*
  693. * used by boot code to determine if it can use slab based allocator
  694. */
  695. int slab_is_available(void)
  696. {
  697. return g_cpucache_up == FULL;
  698. }
  699. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  700. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  701. {
  702. return cachep->array[smp_processor_id()];
  703. }
  704. static inline struct kmem_cache *__find_general_cachep(size_t size,
  705. gfp_t gfpflags)
  706. {
  707. struct cache_sizes *csizep = malloc_sizes;
  708. #if DEBUG
  709. /* This happens if someone tries to call
  710. * kmem_cache_create(), or __kmalloc(), before
  711. * the generic caches are initialized.
  712. */
  713. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  714. #endif
  715. while (size > csizep->cs_size)
  716. csizep++;
  717. /*
  718. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  719. * has cs_{dma,}cachep==NULL. Thus no special case
  720. * for large kmalloc calls required.
  721. */
  722. #ifdef CONFIG_ZONE_DMA
  723. if (unlikely(gfpflags & GFP_DMA))
  724. return csizep->cs_dmacachep;
  725. #endif
  726. return csizep->cs_cachep;
  727. }
  728. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  729. {
  730. return __find_general_cachep(size, gfpflags);
  731. }
  732. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  733. {
  734. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  735. }
  736. /*
  737. * Calculate the number of objects and left-over bytes for a given buffer size.
  738. */
  739. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  740. size_t align, int flags, size_t *left_over,
  741. unsigned int *num)
  742. {
  743. int nr_objs;
  744. size_t mgmt_size;
  745. size_t slab_size = PAGE_SIZE << gfporder;
  746. /*
  747. * The slab management structure can be either off the slab or
  748. * on it. For the latter case, the memory allocated for a
  749. * slab is used for:
  750. *
  751. * - The struct slab
  752. * - One kmem_bufctl_t for each object
  753. * - Padding to respect alignment of @align
  754. * - @buffer_size bytes for each object
  755. *
  756. * If the slab management structure is off the slab, then the
  757. * alignment will already be calculated into the size. Because
  758. * the slabs are all pages aligned, the objects will be at the
  759. * correct alignment when allocated.
  760. */
  761. if (flags & CFLGS_OFF_SLAB) {
  762. mgmt_size = 0;
  763. nr_objs = slab_size / buffer_size;
  764. if (nr_objs > SLAB_LIMIT)
  765. nr_objs = SLAB_LIMIT;
  766. } else {
  767. /*
  768. * Ignore padding for the initial guess. The padding
  769. * is at most @align-1 bytes, and @buffer_size is at
  770. * least @align. In the worst case, this result will
  771. * be one greater than the number of objects that fit
  772. * into the memory allocation when taking the padding
  773. * into account.
  774. */
  775. nr_objs = (slab_size - sizeof(struct slab)) /
  776. (buffer_size + sizeof(kmem_bufctl_t));
  777. /*
  778. * This calculated number will be either the right
  779. * amount, or one greater than what we want.
  780. */
  781. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  782. > slab_size)
  783. nr_objs--;
  784. if (nr_objs > SLAB_LIMIT)
  785. nr_objs = SLAB_LIMIT;
  786. mgmt_size = slab_mgmt_size(nr_objs, align);
  787. }
  788. *num = nr_objs;
  789. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  790. }
  791. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  792. static void __slab_error(const char *function, struct kmem_cache *cachep,
  793. char *msg)
  794. {
  795. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  796. function, cachep->name, msg);
  797. dump_stack();
  798. }
  799. /*
  800. * By default on NUMA we use alien caches to stage the freeing of
  801. * objects allocated from other nodes. This causes massive memory
  802. * inefficiencies when using fake NUMA setup to split memory into a
  803. * large number of small nodes, so it can be disabled on the command
  804. * line
  805. */
  806. static int use_alien_caches __read_mostly = 1;
  807. static int __init noaliencache_setup(char *s)
  808. {
  809. use_alien_caches = 0;
  810. return 1;
  811. }
  812. __setup("noaliencache", noaliencache_setup);
  813. #ifdef CONFIG_NUMA
  814. /*
  815. * Special reaping functions for NUMA systems called from cache_reap().
  816. * These take care of doing round robin flushing of alien caches (containing
  817. * objects freed on different nodes from which they were allocated) and the
  818. * flushing of remote pcps by calling drain_node_pages.
  819. */
  820. static DEFINE_PER_CPU(unsigned long, reap_node);
  821. static void init_reap_node(int cpu)
  822. {
  823. int node;
  824. node = next_node(cpu_to_node(cpu), node_online_map);
  825. if (node == MAX_NUMNODES)
  826. node = first_node(node_online_map);
  827. per_cpu(reap_node, cpu) = node;
  828. }
  829. static void next_reap_node(void)
  830. {
  831. int node = __get_cpu_var(reap_node);
  832. /*
  833. * Also drain per cpu pages on remote zones
  834. */
  835. if (node != numa_node_id())
  836. drain_node_pages(node);
  837. node = next_node(node, node_online_map);
  838. if (unlikely(node >= MAX_NUMNODES))
  839. node = first_node(node_online_map);
  840. __get_cpu_var(reap_node) = node;
  841. }
  842. #else
  843. #define init_reap_node(cpu) do { } while (0)
  844. #define next_reap_node(void) do { } while (0)
  845. #endif
  846. /*
  847. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  848. * via the workqueue/eventd.
  849. * Add the CPU number into the expiration time to minimize the possibility of
  850. * the CPUs getting into lockstep and contending for the global cache chain
  851. * lock.
  852. */
  853. static void __devinit start_cpu_timer(int cpu)
  854. {
  855. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  856. /*
  857. * When this gets called from do_initcalls via cpucache_init(),
  858. * init_workqueues() has already run, so keventd will be setup
  859. * at that time.
  860. */
  861. if (keventd_up() && reap_work->work.func == NULL) {
  862. init_reap_node(cpu);
  863. INIT_DELAYED_WORK(reap_work, cache_reap);
  864. schedule_delayed_work_on(cpu, reap_work,
  865. __round_jiffies_relative(HZ, cpu));
  866. }
  867. }
  868. static struct array_cache *alloc_arraycache(int node, int entries,
  869. int batchcount)
  870. {
  871. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  872. struct array_cache *nc = NULL;
  873. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  874. if (nc) {
  875. nc->avail = 0;
  876. nc->limit = entries;
  877. nc->batchcount = batchcount;
  878. nc->touched = 0;
  879. spin_lock_init(&nc->lock);
  880. }
  881. return nc;
  882. }
  883. /*
  884. * Transfer objects in one arraycache to another.
  885. * Locking must be handled by the caller.
  886. *
  887. * Return the number of entries transferred.
  888. */
  889. static int transfer_objects(struct array_cache *to,
  890. struct array_cache *from, unsigned int max)
  891. {
  892. /* Figure out how many entries to transfer */
  893. int nr = min(min(from->avail, max), to->limit - to->avail);
  894. if (!nr)
  895. return 0;
  896. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  897. sizeof(void *) *nr);
  898. from->avail -= nr;
  899. to->avail += nr;
  900. to->touched = 1;
  901. return nr;
  902. }
  903. #ifndef CONFIG_NUMA
  904. #define drain_alien_cache(cachep, alien) do { } while (0)
  905. #define reap_alien(cachep, l3) do { } while (0)
  906. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  907. {
  908. return (struct array_cache **)BAD_ALIEN_MAGIC;
  909. }
  910. static inline void free_alien_cache(struct array_cache **ac_ptr)
  911. {
  912. }
  913. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  914. {
  915. return 0;
  916. }
  917. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  918. gfp_t flags)
  919. {
  920. return NULL;
  921. }
  922. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  923. gfp_t flags, int nodeid)
  924. {
  925. return NULL;
  926. }
  927. #else /* CONFIG_NUMA */
  928. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  929. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  930. static struct array_cache **alloc_alien_cache(int node, int limit)
  931. {
  932. struct array_cache **ac_ptr;
  933. int memsize = sizeof(void *) * nr_node_ids;
  934. int i;
  935. if (limit > 1)
  936. limit = 12;
  937. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  938. if (ac_ptr) {
  939. for_each_node(i) {
  940. if (i == node || !node_online(i)) {
  941. ac_ptr[i] = NULL;
  942. continue;
  943. }
  944. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  945. if (!ac_ptr[i]) {
  946. for (i--; i <= 0; i--)
  947. kfree(ac_ptr[i]);
  948. kfree(ac_ptr);
  949. return NULL;
  950. }
  951. }
  952. }
  953. return ac_ptr;
  954. }
  955. static void free_alien_cache(struct array_cache **ac_ptr)
  956. {
  957. int i;
  958. if (!ac_ptr)
  959. return;
  960. for_each_node(i)
  961. kfree(ac_ptr[i]);
  962. kfree(ac_ptr);
  963. }
  964. static void __drain_alien_cache(struct kmem_cache *cachep,
  965. struct array_cache *ac, int node)
  966. {
  967. struct kmem_list3 *rl3 = cachep->nodelists[node];
  968. if (ac->avail) {
  969. spin_lock(&rl3->list_lock);
  970. /*
  971. * Stuff objects into the remote nodes shared array first.
  972. * That way we could avoid the overhead of putting the objects
  973. * into the free lists and getting them back later.
  974. */
  975. if (rl3->shared)
  976. transfer_objects(rl3->shared, ac, ac->limit);
  977. free_block(cachep, ac->entry, ac->avail, node);
  978. ac->avail = 0;
  979. spin_unlock(&rl3->list_lock);
  980. }
  981. }
  982. /*
  983. * Called from cache_reap() to regularly drain alien caches round robin.
  984. */
  985. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  986. {
  987. int node = __get_cpu_var(reap_node);
  988. if (l3->alien) {
  989. struct array_cache *ac = l3->alien[node];
  990. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  991. __drain_alien_cache(cachep, ac, node);
  992. spin_unlock_irq(&ac->lock);
  993. }
  994. }
  995. }
  996. static void drain_alien_cache(struct kmem_cache *cachep,
  997. struct array_cache **alien)
  998. {
  999. int i = 0;
  1000. struct array_cache *ac;
  1001. unsigned long flags;
  1002. for_each_online_node(i) {
  1003. ac = alien[i];
  1004. if (ac) {
  1005. spin_lock_irqsave(&ac->lock, flags);
  1006. __drain_alien_cache(cachep, ac, i);
  1007. spin_unlock_irqrestore(&ac->lock, flags);
  1008. }
  1009. }
  1010. }
  1011. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  1012. {
  1013. struct slab *slabp = virt_to_slab(objp);
  1014. int nodeid = slabp->nodeid;
  1015. struct kmem_list3 *l3;
  1016. struct array_cache *alien = NULL;
  1017. int node;
  1018. node = numa_node_id();
  1019. /*
  1020. * Make sure we are not freeing a object from another node to the array
  1021. * cache on this cpu.
  1022. */
  1023. if (likely(slabp->nodeid == node))
  1024. return 0;
  1025. l3 = cachep->nodelists[node];
  1026. STATS_INC_NODEFREES(cachep);
  1027. if (l3->alien && l3->alien[nodeid]) {
  1028. alien = l3->alien[nodeid];
  1029. spin_lock(&alien->lock);
  1030. if (unlikely(alien->avail == alien->limit)) {
  1031. STATS_INC_ACOVERFLOW(cachep);
  1032. __drain_alien_cache(cachep, alien, nodeid);
  1033. }
  1034. alien->entry[alien->avail++] = objp;
  1035. spin_unlock(&alien->lock);
  1036. } else {
  1037. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1038. free_block(cachep, &objp, 1, nodeid);
  1039. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1040. }
  1041. return 1;
  1042. }
  1043. #endif
  1044. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1045. unsigned long action, void *hcpu)
  1046. {
  1047. long cpu = (long)hcpu;
  1048. struct kmem_cache *cachep;
  1049. struct kmem_list3 *l3 = NULL;
  1050. int node = cpu_to_node(cpu);
  1051. int memsize = sizeof(struct kmem_list3);
  1052. switch (action) {
  1053. case CPU_UP_PREPARE:
  1054. mutex_lock(&cache_chain_mutex);
  1055. /*
  1056. * We need to do this right in the beginning since
  1057. * alloc_arraycache's are going to use this list.
  1058. * kmalloc_node allows us to add the slab to the right
  1059. * kmem_list3 and not this cpu's kmem_list3
  1060. */
  1061. list_for_each_entry(cachep, &cache_chain, next) {
  1062. /*
  1063. * Set up the size64 kmemlist for cpu before we can
  1064. * begin anything. Make sure some other cpu on this
  1065. * node has not already allocated this
  1066. */
  1067. if (!cachep->nodelists[node]) {
  1068. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1069. if (!l3)
  1070. goto bad;
  1071. kmem_list3_init(l3);
  1072. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1073. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1074. /*
  1075. * The l3s don't come and go as CPUs come and
  1076. * go. cache_chain_mutex is sufficient
  1077. * protection here.
  1078. */
  1079. cachep->nodelists[node] = l3;
  1080. }
  1081. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1082. cachep->nodelists[node]->free_limit =
  1083. (1 + nr_cpus_node(node)) *
  1084. cachep->batchcount + cachep->num;
  1085. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1086. }
  1087. /*
  1088. * Now we can go ahead with allocating the shared arrays and
  1089. * array caches
  1090. */
  1091. list_for_each_entry(cachep, &cache_chain, next) {
  1092. struct array_cache *nc;
  1093. struct array_cache *shared = NULL;
  1094. struct array_cache **alien = NULL;
  1095. nc = alloc_arraycache(node, cachep->limit,
  1096. cachep->batchcount);
  1097. if (!nc)
  1098. goto bad;
  1099. if (cachep->shared) {
  1100. shared = alloc_arraycache(node,
  1101. cachep->shared * cachep->batchcount,
  1102. 0xbaadf00d);
  1103. if (!shared)
  1104. goto bad;
  1105. }
  1106. if (use_alien_caches) {
  1107. alien = alloc_alien_cache(node, cachep->limit);
  1108. if (!alien)
  1109. goto bad;
  1110. }
  1111. cachep->array[cpu] = nc;
  1112. l3 = cachep->nodelists[node];
  1113. BUG_ON(!l3);
  1114. spin_lock_irq(&l3->list_lock);
  1115. if (!l3->shared) {
  1116. /*
  1117. * We are serialised from CPU_DEAD or
  1118. * CPU_UP_CANCELLED by the cpucontrol lock
  1119. */
  1120. l3->shared = shared;
  1121. shared = NULL;
  1122. }
  1123. #ifdef CONFIG_NUMA
  1124. if (!l3->alien) {
  1125. l3->alien = alien;
  1126. alien = NULL;
  1127. }
  1128. #endif
  1129. spin_unlock_irq(&l3->list_lock);
  1130. kfree(shared);
  1131. free_alien_cache(alien);
  1132. }
  1133. break;
  1134. case CPU_ONLINE:
  1135. mutex_unlock(&cache_chain_mutex);
  1136. start_cpu_timer(cpu);
  1137. break;
  1138. #ifdef CONFIG_HOTPLUG_CPU
  1139. case CPU_DOWN_PREPARE:
  1140. mutex_lock(&cache_chain_mutex);
  1141. break;
  1142. case CPU_DOWN_FAILED:
  1143. mutex_unlock(&cache_chain_mutex);
  1144. break;
  1145. case CPU_DEAD:
  1146. /*
  1147. * Even if all the cpus of a node are down, we don't free the
  1148. * kmem_list3 of any cache. This to avoid a race between
  1149. * cpu_down, and a kmalloc allocation from another cpu for
  1150. * memory from the node of the cpu going down. The list3
  1151. * structure is usually allocated from kmem_cache_create() and
  1152. * gets destroyed at kmem_cache_destroy().
  1153. */
  1154. /* fall thru */
  1155. #endif
  1156. case CPU_UP_CANCELED:
  1157. list_for_each_entry(cachep, &cache_chain, next) {
  1158. struct array_cache *nc;
  1159. struct array_cache *shared;
  1160. struct array_cache **alien;
  1161. cpumask_t mask;
  1162. mask = node_to_cpumask(node);
  1163. /* cpu is dead; no one can alloc from it. */
  1164. nc = cachep->array[cpu];
  1165. cachep->array[cpu] = NULL;
  1166. l3 = cachep->nodelists[node];
  1167. if (!l3)
  1168. goto free_array_cache;
  1169. spin_lock_irq(&l3->list_lock);
  1170. /* Free limit for this kmem_list3 */
  1171. l3->free_limit -= cachep->batchcount;
  1172. if (nc)
  1173. free_block(cachep, nc->entry, nc->avail, node);
  1174. if (!cpus_empty(mask)) {
  1175. spin_unlock_irq(&l3->list_lock);
  1176. goto free_array_cache;
  1177. }
  1178. shared = l3->shared;
  1179. if (shared) {
  1180. free_block(cachep, shared->entry,
  1181. shared->avail, node);
  1182. l3->shared = NULL;
  1183. }
  1184. alien = l3->alien;
  1185. l3->alien = NULL;
  1186. spin_unlock_irq(&l3->list_lock);
  1187. kfree(shared);
  1188. if (alien) {
  1189. drain_alien_cache(cachep, alien);
  1190. free_alien_cache(alien);
  1191. }
  1192. free_array_cache:
  1193. kfree(nc);
  1194. }
  1195. /*
  1196. * In the previous loop, all the objects were freed to
  1197. * the respective cache's slabs, now we can go ahead and
  1198. * shrink each nodelist to its limit.
  1199. */
  1200. list_for_each_entry(cachep, &cache_chain, next) {
  1201. l3 = cachep->nodelists[node];
  1202. if (!l3)
  1203. continue;
  1204. drain_freelist(cachep, l3, l3->free_objects);
  1205. }
  1206. mutex_unlock(&cache_chain_mutex);
  1207. break;
  1208. }
  1209. return NOTIFY_OK;
  1210. bad:
  1211. return NOTIFY_BAD;
  1212. }
  1213. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1214. &cpuup_callback, NULL, 0
  1215. };
  1216. /*
  1217. * swap the static kmem_list3 with kmalloced memory
  1218. */
  1219. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1220. int nodeid)
  1221. {
  1222. struct kmem_list3 *ptr;
  1223. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1224. BUG_ON(!ptr);
  1225. local_irq_disable();
  1226. memcpy(ptr, list, sizeof(struct kmem_list3));
  1227. /*
  1228. * Do not assume that spinlocks can be initialized via memcpy:
  1229. */
  1230. spin_lock_init(&ptr->list_lock);
  1231. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1232. cachep->nodelists[nodeid] = ptr;
  1233. local_irq_enable();
  1234. }
  1235. /*
  1236. * Initialisation. Called after the page allocator have been initialised and
  1237. * before smp_init().
  1238. */
  1239. void __init kmem_cache_init(void)
  1240. {
  1241. size_t left_over;
  1242. struct cache_sizes *sizes;
  1243. struct cache_names *names;
  1244. int i;
  1245. int order;
  1246. int node;
  1247. if (num_possible_nodes() == 1)
  1248. use_alien_caches = 0;
  1249. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1250. kmem_list3_init(&initkmem_list3[i]);
  1251. if (i < MAX_NUMNODES)
  1252. cache_cache.nodelists[i] = NULL;
  1253. }
  1254. /*
  1255. * Fragmentation resistance on low memory - only use bigger
  1256. * page orders on machines with more than 32MB of memory.
  1257. */
  1258. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1259. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1260. /* Bootstrap is tricky, because several objects are allocated
  1261. * from caches that do not exist yet:
  1262. * 1) initialize the cache_cache cache: it contains the struct
  1263. * kmem_cache structures of all caches, except cache_cache itself:
  1264. * cache_cache is statically allocated.
  1265. * Initially an __init data area is used for the head array and the
  1266. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1267. * array at the end of the bootstrap.
  1268. * 2) Create the first kmalloc cache.
  1269. * The struct kmem_cache for the new cache is allocated normally.
  1270. * An __init data area is used for the head array.
  1271. * 3) Create the remaining kmalloc caches, with minimally sized
  1272. * head arrays.
  1273. * 4) Replace the __init data head arrays for cache_cache and the first
  1274. * kmalloc cache with kmalloc allocated arrays.
  1275. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1276. * the other cache's with kmalloc allocated memory.
  1277. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1278. */
  1279. node = numa_node_id();
  1280. /* 1) create the cache_cache */
  1281. INIT_LIST_HEAD(&cache_chain);
  1282. list_add(&cache_cache.next, &cache_chain);
  1283. cache_cache.colour_off = cache_line_size();
  1284. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1285. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
  1286. /*
  1287. * struct kmem_cache size depends on nr_node_ids, which
  1288. * can be less than MAX_NUMNODES.
  1289. */
  1290. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1291. nr_node_ids * sizeof(struct kmem_list3 *);
  1292. #if DEBUG
  1293. cache_cache.obj_size = cache_cache.buffer_size;
  1294. #endif
  1295. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1296. cache_line_size());
  1297. cache_cache.reciprocal_buffer_size =
  1298. reciprocal_value(cache_cache.buffer_size);
  1299. for (order = 0; order < MAX_ORDER; order++) {
  1300. cache_estimate(order, cache_cache.buffer_size,
  1301. cache_line_size(), 0, &left_over, &cache_cache.num);
  1302. if (cache_cache.num)
  1303. break;
  1304. }
  1305. BUG_ON(!cache_cache.num);
  1306. cache_cache.gfporder = order;
  1307. cache_cache.colour = left_over / cache_cache.colour_off;
  1308. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1309. sizeof(struct slab), cache_line_size());
  1310. /* 2+3) create the kmalloc caches */
  1311. sizes = malloc_sizes;
  1312. names = cache_names;
  1313. /*
  1314. * Initialize the caches that provide memory for the array cache and the
  1315. * kmem_list3 structures first. Without this, further allocations will
  1316. * bug.
  1317. */
  1318. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1319. sizes[INDEX_AC].cs_size,
  1320. ARCH_KMALLOC_MINALIGN,
  1321. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1322. NULL, NULL);
  1323. if (INDEX_AC != INDEX_L3) {
  1324. sizes[INDEX_L3].cs_cachep =
  1325. kmem_cache_create(names[INDEX_L3].name,
  1326. sizes[INDEX_L3].cs_size,
  1327. ARCH_KMALLOC_MINALIGN,
  1328. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1329. NULL, NULL);
  1330. }
  1331. slab_early_init = 0;
  1332. while (sizes->cs_size != ULONG_MAX) {
  1333. /*
  1334. * For performance, all the general caches are L1 aligned.
  1335. * This should be particularly beneficial on SMP boxes, as it
  1336. * eliminates "false sharing".
  1337. * Note for systems short on memory removing the alignment will
  1338. * allow tighter packing of the smaller caches.
  1339. */
  1340. if (!sizes->cs_cachep) {
  1341. sizes->cs_cachep = kmem_cache_create(names->name,
  1342. sizes->cs_size,
  1343. ARCH_KMALLOC_MINALIGN,
  1344. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1345. NULL, NULL);
  1346. }
  1347. #ifdef CONFIG_ZONE_DMA
  1348. sizes->cs_dmacachep = kmem_cache_create(
  1349. names->name_dma,
  1350. sizes->cs_size,
  1351. ARCH_KMALLOC_MINALIGN,
  1352. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1353. SLAB_PANIC,
  1354. NULL, NULL);
  1355. #endif
  1356. sizes++;
  1357. names++;
  1358. }
  1359. /* 4) Replace the bootstrap head arrays */
  1360. {
  1361. struct array_cache *ptr;
  1362. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1363. local_irq_disable();
  1364. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1365. memcpy(ptr, cpu_cache_get(&cache_cache),
  1366. sizeof(struct arraycache_init));
  1367. /*
  1368. * Do not assume that spinlocks can be initialized via memcpy:
  1369. */
  1370. spin_lock_init(&ptr->lock);
  1371. cache_cache.array[smp_processor_id()] = ptr;
  1372. local_irq_enable();
  1373. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1374. local_irq_disable();
  1375. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1376. != &initarray_generic.cache);
  1377. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1378. sizeof(struct arraycache_init));
  1379. /*
  1380. * Do not assume that spinlocks can be initialized via memcpy:
  1381. */
  1382. spin_lock_init(&ptr->lock);
  1383. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1384. ptr;
  1385. local_irq_enable();
  1386. }
  1387. /* 5) Replace the bootstrap kmem_list3's */
  1388. {
  1389. int nid;
  1390. /* Replace the static kmem_list3 structures for the boot cpu */
  1391. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
  1392. for_each_online_node(nid) {
  1393. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1394. &initkmem_list3[SIZE_AC + nid], nid);
  1395. if (INDEX_AC != INDEX_L3) {
  1396. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1397. &initkmem_list3[SIZE_L3 + nid], nid);
  1398. }
  1399. }
  1400. }
  1401. /* 6) resize the head arrays to their final sizes */
  1402. {
  1403. struct kmem_cache *cachep;
  1404. mutex_lock(&cache_chain_mutex);
  1405. list_for_each_entry(cachep, &cache_chain, next)
  1406. if (enable_cpucache(cachep))
  1407. BUG();
  1408. mutex_unlock(&cache_chain_mutex);
  1409. }
  1410. /* Annotate slab for lockdep -- annotate the malloc caches */
  1411. init_lock_keys();
  1412. /* Done! */
  1413. g_cpucache_up = FULL;
  1414. /*
  1415. * Register a cpu startup notifier callback that initializes
  1416. * cpu_cache_get for all new cpus
  1417. */
  1418. register_cpu_notifier(&cpucache_notifier);
  1419. /*
  1420. * The reap timers are started later, with a module init call: That part
  1421. * of the kernel is not yet operational.
  1422. */
  1423. }
  1424. static int __init cpucache_init(void)
  1425. {
  1426. int cpu;
  1427. /*
  1428. * Register the timers that return unneeded pages to the page allocator
  1429. */
  1430. for_each_online_cpu(cpu)
  1431. start_cpu_timer(cpu);
  1432. return 0;
  1433. }
  1434. __initcall(cpucache_init);
  1435. /*
  1436. * Interface to system's page allocator. No need to hold the cache-lock.
  1437. *
  1438. * If we requested dmaable memory, we will get it. Even if we
  1439. * did not request dmaable memory, we might get it, but that
  1440. * would be relatively rare and ignorable.
  1441. */
  1442. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1443. {
  1444. struct page *page;
  1445. int nr_pages;
  1446. int i;
  1447. #ifndef CONFIG_MMU
  1448. /*
  1449. * Nommu uses slab's for process anonymous memory allocations, and thus
  1450. * requires __GFP_COMP to properly refcount higher order allocations
  1451. */
  1452. flags |= __GFP_COMP;
  1453. #endif
  1454. flags |= cachep->gfpflags;
  1455. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1456. if (!page)
  1457. return NULL;
  1458. nr_pages = (1 << cachep->gfporder);
  1459. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1460. add_zone_page_state(page_zone(page),
  1461. NR_SLAB_RECLAIMABLE, nr_pages);
  1462. else
  1463. add_zone_page_state(page_zone(page),
  1464. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1465. for (i = 0; i < nr_pages; i++)
  1466. __SetPageSlab(page + i);
  1467. return page_address(page);
  1468. }
  1469. /*
  1470. * Interface to system's page release.
  1471. */
  1472. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1473. {
  1474. unsigned long i = (1 << cachep->gfporder);
  1475. struct page *page = virt_to_page(addr);
  1476. const unsigned long nr_freed = i;
  1477. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1478. sub_zone_page_state(page_zone(page),
  1479. NR_SLAB_RECLAIMABLE, nr_freed);
  1480. else
  1481. sub_zone_page_state(page_zone(page),
  1482. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1483. while (i--) {
  1484. BUG_ON(!PageSlab(page));
  1485. __ClearPageSlab(page);
  1486. page++;
  1487. }
  1488. if (current->reclaim_state)
  1489. current->reclaim_state->reclaimed_slab += nr_freed;
  1490. free_pages((unsigned long)addr, cachep->gfporder);
  1491. }
  1492. static void kmem_rcu_free(struct rcu_head *head)
  1493. {
  1494. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1495. struct kmem_cache *cachep = slab_rcu->cachep;
  1496. kmem_freepages(cachep, slab_rcu->addr);
  1497. if (OFF_SLAB(cachep))
  1498. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1499. }
  1500. #if DEBUG
  1501. #ifdef CONFIG_DEBUG_PAGEALLOC
  1502. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1503. unsigned long caller)
  1504. {
  1505. int size = obj_size(cachep);
  1506. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1507. if (size < 5 * sizeof(unsigned long))
  1508. return;
  1509. *addr++ = 0x12345678;
  1510. *addr++ = caller;
  1511. *addr++ = smp_processor_id();
  1512. size -= 3 * sizeof(unsigned long);
  1513. {
  1514. unsigned long *sptr = &caller;
  1515. unsigned long svalue;
  1516. while (!kstack_end(sptr)) {
  1517. svalue = *sptr++;
  1518. if (kernel_text_address(svalue)) {
  1519. *addr++ = svalue;
  1520. size -= sizeof(unsigned long);
  1521. if (size <= sizeof(unsigned long))
  1522. break;
  1523. }
  1524. }
  1525. }
  1526. *addr++ = 0x87654321;
  1527. }
  1528. #endif
  1529. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1530. {
  1531. int size = obj_size(cachep);
  1532. addr = &((char *)addr)[obj_offset(cachep)];
  1533. memset(addr, val, size);
  1534. *(unsigned char *)(addr + size - 1) = POISON_END;
  1535. }
  1536. static void dump_line(char *data, int offset, int limit)
  1537. {
  1538. int i;
  1539. unsigned char error = 0;
  1540. int bad_count = 0;
  1541. printk(KERN_ERR "%03x:", offset);
  1542. for (i = 0; i < limit; i++) {
  1543. if (data[offset + i] != POISON_FREE) {
  1544. error = data[offset + i];
  1545. bad_count++;
  1546. }
  1547. printk(" %02x", (unsigned char)data[offset + i]);
  1548. }
  1549. printk("\n");
  1550. if (bad_count == 1) {
  1551. error ^= POISON_FREE;
  1552. if (!(error & (error - 1))) {
  1553. printk(KERN_ERR "Single bit error detected. Probably "
  1554. "bad RAM.\n");
  1555. #ifdef CONFIG_X86
  1556. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1557. "test tool.\n");
  1558. #else
  1559. printk(KERN_ERR "Run a memory test tool.\n");
  1560. #endif
  1561. }
  1562. }
  1563. }
  1564. #endif
  1565. #if DEBUG
  1566. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1567. {
  1568. int i, size;
  1569. char *realobj;
  1570. if (cachep->flags & SLAB_RED_ZONE) {
  1571. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1572. *dbg_redzone1(cachep, objp),
  1573. *dbg_redzone2(cachep, objp));
  1574. }
  1575. if (cachep->flags & SLAB_STORE_USER) {
  1576. printk(KERN_ERR "Last user: [<%p>]",
  1577. *dbg_userword(cachep, objp));
  1578. print_symbol("(%s)",
  1579. (unsigned long)*dbg_userword(cachep, objp));
  1580. printk("\n");
  1581. }
  1582. realobj = (char *)objp + obj_offset(cachep);
  1583. size = obj_size(cachep);
  1584. for (i = 0; i < size && lines; i += 16, lines--) {
  1585. int limit;
  1586. limit = 16;
  1587. if (i + limit > size)
  1588. limit = size - i;
  1589. dump_line(realobj, i, limit);
  1590. }
  1591. }
  1592. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1593. {
  1594. char *realobj;
  1595. int size, i;
  1596. int lines = 0;
  1597. realobj = (char *)objp + obj_offset(cachep);
  1598. size = obj_size(cachep);
  1599. for (i = 0; i < size; i++) {
  1600. char exp = POISON_FREE;
  1601. if (i == size - 1)
  1602. exp = POISON_END;
  1603. if (realobj[i] != exp) {
  1604. int limit;
  1605. /* Mismatch ! */
  1606. /* Print header */
  1607. if (lines == 0) {
  1608. printk(KERN_ERR
  1609. "Slab corruption: %s start=%p, len=%d\n",
  1610. cachep->name, realobj, size);
  1611. print_objinfo(cachep, objp, 0);
  1612. }
  1613. /* Hexdump the affected line */
  1614. i = (i / 16) * 16;
  1615. limit = 16;
  1616. if (i + limit > size)
  1617. limit = size - i;
  1618. dump_line(realobj, i, limit);
  1619. i += 16;
  1620. lines++;
  1621. /* Limit to 5 lines */
  1622. if (lines > 5)
  1623. break;
  1624. }
  1625. }
  1626. if (lines != 0) {
  1627. /* Print some data about the neighboring objects, if they
  1628. * exist:
  1629. */
  1630. struct slab *slabp = virt_to_slab(objp);
  1631. unsigned int objnr;
  1632. objnr = obj_to_index(cachep, slabp, objp);
  1633. if (objnr) {
  1634. objp = index_to_obj(cachep, slabp, objnr - 1);
  1635. realobj = (char *)objp + obj_offset(cachep);
  1636. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1637. realobj, size);
  1638. print_objinfo(cachep, objp, 2);
  1639. }
  1640. if (objnr + 1 < cachep->num) {
  1641. objp = index_to_obj(cachep, slabp, objnr + 1);
  1642. realobj = (char *)objp + obj_offset(cachep);
  1643. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1644. realobj, size);
  1645. print_objinfo(cachep, objp, 2);
  1646. }
  1647. }
  1648. }
  1649. #endif
  1650. #if DEBUG
  1651. /**
  1652. * slab_destroy_objs - destroy a slab and its objects
  1653. * @cachep: cache pointer being destroyed
  1654. * @slabp: slab pointer being destroyed
  1655. *
  1656. * Call the registered destructor for each object in a slab that is being
  1657. * destroyed.
  1658. */
  1659. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1660. {
  1661. int i;
  1662. for (i = 0; i < cachep->num; i++) {
  1663. void *objp = index_to_obj(cachep, slabp, i);
  1664. if (cachep->flags & SLAB_POISON) {
  1665. #ifdef CONFIG_DEBUG_PAGEALLOC
  1666. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1667. OFF_SLAB(cachep))
  1668. kernel_map_pages(virt_to_page(objp),
  1669. cachep->buffer_size / PAGE_SIZE, 1);
  1670. else
  1671. check_poison_obj(cachep, objp);
  1672. #else
  1673. check_poison_obj(cachep, objp);
  1674. #endif
  1675. }
  1676. if (cachep->flags & SLAB_RED_ZONE) {
  1677. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1678. slab_error(cachep, "start of a freed object "
  1679. "was overwritten");
  1680. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1681. slab_error(cachep, "end of a freed object "
  1682. "was overwritten");
  1683. }
  1684. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1685. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1686. }
  1687. }
  1688. #else
  1689. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1690. {
  1691. if (cachep->dtor) {
  1692. int i;
  1693. for (i = 0; i < cachep->num; i++) {
  1694. void *objp = index_to_obj(cachep, slabp, i);
  1695. (cachep->dtor) (objp, cachep, 0);
  1696. }
  1697. }
  1698. }
  1699. #endif
  1700. /**
  1701. * slab_destroy - destroy and release all objects in a slab
  1702. * @cachep: cache pointer being destroyed
  1703. * @slabp: slab pointer being destroyed
  1704. *
  1705. * Destroy all the objs in a slab, and release the mem back to the system.
  1706. * Before calling the slab must have been unlinked from the cache. The
  1707. * cache-lock is not held/needed.
  1708. */
  1709. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1710. {
  1711. void *addr = slabp->s_mem - slabp->colouroff;
  1712. slab_destroy_objs(cachep, slabp);
  1713. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1714. struct slab_rcu *slab_rcu;
  1715. slab_rcu = (struct slab_rcu *)slabp;
  1716. slab_rcu->cachep = cachep;
  1717. slab_rcu->addr = addr;
  1718. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1719. } else {
  1720. kmem_freepages(cachep, addr);
  1721. if (OFF_SLAB(cachep))
  1722. kmem_cache_free(cachep->slabp_cache, slabp);
  1723. }
  1724. }
  1725. /*
  1726. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1727. * size of kmem_list3.
  1728. */
  1729. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1730. {
  1731. int node;
  1732. for_each_online_node(node) {
  1733. cachep->nodelists[node] = &initkmem_list3[index + node];
  1734. cachep->nodelists[node]->next_reap = jiffies +
  1735. REAPTIMEOUT_LIST3 +
  1736. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1737. }
  1738. }
  1739. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1740. {
  1741. int i;
  1742. struct kmem_list3 *l3;
  1743. for_each_online_cpu(i)
  1744. kfree(cachep->array[i]);
  1745. /* NUMA: free the list3 structures */
  1746. for_each_online_node(i) {
  1747. l3 = cachep->nodelists[i];
  1748. if (l3) {
  1749. kfree(l3->shared);
  1750. free_alien_cache(l3->alien);
  1751. kfree(l3);
  1752. }
  1753. }
  1754. kmem_cache_free(&cache_cache, cachep);
  1755. }
  1756. /**
  1757. * calculate_slab_order - calculate size (page order) of slabs
  1758. * @cachep: pointer to the cache that is being created
  1759. * @size: size of objects to be created in this cache.
  1760. * @align: required alignment for the objects.
  1761. * @flags: slab allocation flags
  1762. *
  1763. * Also calculates the number of objects per slab.
  1764. *
  1765. * This could be made much more intelligent. For now, try to avoid using
  1766. * high order pages for slabs. When the gfp() functions are more friendly
  1767. * towards high-order requests, this should be changed.
  1768. */
  1769. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1770. size_t size, size_t align, unsigned long flags)
  1771. {
  1772. unsigned long offslab_limit;
  1773. size_t left_over = 0;
  1774. int gfporder;
  1775. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1776. unsigned int num;
  1777. size_t remainder;
  1778. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1779. if (!num)
  1780. continue;
  1781. if (flags & CFLGS_OFF_SLAB) {
  1782. /*
  1783. * Max number of objs-per-slab for caches which
  1784. * use off-slab slabs. Needed to avoid a possible
  1785. * looping condition in cache_grow().
  1786. */
  1787. offslab_limit = size - sizeof(struct slab);
  1788. offslab_limit /= sizeof(kmem_bufctl_t);
  1789. if (num > offslab_limit)
  1790. break;
  1791. }
  1792. /* Found something acceptable - save it away */
  1793. cachep->num = num;
  1794. cachep->gfporder = gfporder;
  1795. left_over = remainder;
  1796. /*
  1797. * A VFS-reclaimable slab tends to have most allocations
  1798. * as GFP_NOFS and we really don't want to have to be allocating
  1799. * higher-order pages when we are unable to shrink dcache.
  1800. */
  1801. if (flags & SLAB_RECLAIM_ACCOUNT)
  1802. break;
  1803. /*
  1804. * Large number of objects is good, but very large slabs are
  1805. * currently bad for the gfp()s.
  1806. */
  1807. if (gfporder >= slab_break_gfp_order)
  1808. break;
  1809. /*
  1810. * Acceptable internal fragmentation?
  1811. */
  1812. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1813. break;
  1814. }
  1815. return left_over;
  1816. }
  1817. static int setup_cpu_cache(struct kmem_cache *cachep)
  1818. {
  1819. if (g_cpucache_up == FULL)
  1820. return enable_cpucache(cachep);
  1821. if (g_cpucache_up == NONE) {
  1822. /*
  1823. * Note: the first kmem_cache_create must create the cache
  1824. * that's used by kmalloc(24), otherwise the creation of
  1825. * further caches will BUG().
  1826. */
  1827. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1828. /*
  1829. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1830. * the first cache, then we need to set up all its list3s,
  1831. * otherwise the creation of further caches will BUG().
  1832. */
  1833. set_up_list3s(cachep, SIZE_AC);
  1834. if (INDEX_AC == INDEX_L3)
  1835. g_cpucache_up = PARTIAL_L3;
  1836. else
  1837. g_cpucache_up = PARTIAL_AC;
  1838. } else {
  1839. cachep->array[smp_processor_id()] =
  1840. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1841. if (g_cpucache_up == PARTIAL_AC) {
  1842. set_up_list3s(cachep, SIZE_L3);
  1843. g_cpucache_up = PARTIAL_L3;
  1844. } else {
  1845. int node;
  1846. for_each_online_node(node) {
  1847. cachep->nodelists[node] =
  1848. kmalloc_node(sizeof(struct kmem_list3),
  1849. GFP_KERNEL, node);
  1850. BUG_ON(!cachep->nodelists[node]);
  1851. kmem_list3_init(cachep->nodelists[node]);
  1852. }
  1853. }
  1854. }
  1855. cachep->nodelists[numa_node_id()]->next_reap =
  1856. jiffies + REAPTIMEOUT_LIST3 +
  1857. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1858. cpu_cache_get(cachep)->avail = 0;
  1859. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1860. cpu_cache_get(cachep)->batchcount = 1;
  1861. cpu_cache_get(cachep)->touched = 0;
  1862. cachep->batchcount = 1;
  1863. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1864. return 0;
  1865. }
  1866. /**
  1867. * kmem_cache_create - Create a cache.
  1868. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1869. * @size: The size of objects to be created in this cache.
  1870. * @align: The required alignment for the objects.
  1871. * @flags: SLAB flags
  1872. * @ctor: A constructor for the objects.
  1873. * @dtor: A destructor for the objects.
  1874. *
  1875. * Returns a ptr to the cache on success, NULL on failure.
  1876. * Cannot be called within a int, but can be interrupted.
  1877. * The @ctor is run when new pages are allocated by the cache
  1878. * and the @dtor is run before the pages are handed back.
  1879. *
  1880. * @name must be valid until the cache is destroyed. This implies that
  1881. * the module calling this has to destroy the cache before getting unloaded.
  1882. *
  1883. * The flags are
  1884. *
  1885. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1886. * to catch references to uninitialised memory.
  1887. *
  1888. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1889. * for buffer overruns.
  1890. *
  1891. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1892. * cacheline. This can be beneficial if you're counting cycles as closely
  1893. * as davem.
  1894. */
  1895. struct kmem_cache *
  1896. kmem_cache_create (const char *name, size_t size, size_t align,
  1897. unsigned long flags,
  1898. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1899. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1900. {
  1901. size_t left_over, slab_size, ralign;
  1902. struct kmem_cache *cachep = NULL, *pc;
  1903. /*
  1904. * Sanity checks... these are all serious usage bugs.
  1905. */
  1906. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1907. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1908. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1909. name);
  1910. BUG();
  1911. }
  1912. /*
  1913. * We use cache_chain_mutex to ensure a consistent view of
  1914. * cpu_online_map as well. Please see cpuup_callback
  1915. */
  1916. mutex_lock(&cache_chain_mutex);
  1917. list_for_each_entry(pc, &cache_chain, next) {
  1918. char tmp;
  1919. int res;
  1920. /*
  1921. * This happens when the module gets unloaded and doesn't
  1922. * destroy its slab cache and no-one else reuses the vmalloc
  1923. * area of the module. Print a warning.
  1924. */
  1925. res = probe_kernel_address(pc->name, tmp);
  1926. if (res) {
  1927. printk("SLAB: cache with size %d has lost its name\n",
  1928. pc->buffer_size);
  1929. continue;
  1930. }
  1931. if (!strcmp(pc->name, name)) {
  1932. printk("kmem_cache_create: duplicate cache %s\n", name);
  1933. dump_stack();
  1934. goto oops;
  1935. }
  1936. }
  1937. #if DEBUG
  1938. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1939. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1940. /* No constructor, but inital state check requested */
  1941. printk(KERN_ERR "%s: No con, but init state check "
  1942. "requested - %s\n", __FUNCTION__, name);
  1943. flags &= ~SLAB_DEBUG_INITIAL;
  1944. }
  1945. #if FORCED_DEBUG
  1946. /*
  1947. * Enable redzoning and last user accounting, except for caches with
  1948. * large objects, if the increased size would increase the object size
  1949. * above the next power of two: caches with object sizes just above a
  1950. * power of two have a significant amount of internal fragmentation.
  1951. */
  1952. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1953. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1954. if (!(flags & SLAB_DESTROY_BY_RCU))
  1955. flags |= SLAB_POISON;
  1956. #endif
  1957. if (flags & SLAB_DESTROY_BY_RCU)
  1958. BUG_ON(flags & SLAB_POISON);
  1959. #endif
  1960. if (flags & SLAB_DESTROY_BY_RCU)
  1961. BUG_ON(dtor);
  1962. /*
  1963. * Always checks flags, a caller might be expecting debug support which
  1964. * isn't available.
  1965. */
  1966. BUG_ON(flags & ~CREATE_MASK);
  1967. /*
  1968. * Check that size is in terms of words. This is needed to avoid
  1969. * unaligned accesses for some archs when redzoning is used, and makes
  1970. * sure any on-slab bufctl's are also correctly aligned.
  1971. */
  1972. if (size & (BYTES_PER_WORD - 1)) {
  1973. size += (BYTES_PER_WORD - 1);
  1974. size &= ~(BYTES_PER_WORD - 1);
  1975. }
  1976. /* calculate the final buffer alignment: */
  1977. /* 1) arch recommendation: can be overridden for debug */
  1978. if (flags & SLAB_HWCACHE_ALIGN) {
  1979. /*
  1980. * Default alignment: as specified by the arch code. Except if
  1981. * an object is really small, then squeeze multiple objects into
  1982. * one cacheline.
  1983. */
  1984. ralign = cache_line_size();
  1985. while (size <= ralign / 2)
  1986. ralign /= 2;
  1987. } else {
  1988. ralign = BYTES_PER_WORD;
  1989. }
  1990. /*
  1991. * Redzoning and user store require word alignment. Note this will be
  1992. * overridden by architecture or caller mandated alignment if either
  1993. * is greater than BYTES_PER_WORD.
  1994. */
  1995. if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
  1996. ralign = BYTES_PER_WORD;
  1997. /* 2) arch mandated alignment */
  1998. if (ralign < ARCH_SLAB_MINALIGN) {
  1999. ralign = ARCH_SLAB_MINALIGN;
  2000. }
  2001. /* 3) caller mandated alignment */
  2002. if (ralign < align) {
  2003. ralign = align;
  2004. }
  2005. /* disable debug if necessary */
  2006. if (ralign > BYTES_PER_WORD)
  2007. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2008. /*
  2009. * 4) Store it.
  2010. */
  2011. align = ralign;
  2012. /* Get cache's description obj. */
  2013. cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
  2014. if (!cachep)
  2015. goto oops;
  2016. #if DEBUG
  2017. cachep->obj_size = size;
  2018. /*
  2019. * Both debugging options require word-alignment which is calculated
  2020. * into align above.
  2021. */
  2022. if (flags & SLAB_RED_ZONE) {
  2023. /* add space for red zone words */
  2024. cachep->obj_offset += BYTES_PER_WORD;
  2025. size += 2 * BYTES_PER_WORD;
  2026. }
  2027. if (flags & SLAB_STORE_USER) {
  2028. /* user store requires one word storage behind the end of
  2029. * the real object.
  2030. */
  2031. size += BYTES_PER_WORD;
  2032. }
  2033. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2034. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2035. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2036. cachep->obj_offset += PAGE_SIZE - size;
  2037. size = PAGE_SIZE;
  2038. }
  2039. #endif
  2040. #endif
  2041. /*
  2042. * Determine if the slab management is 'on' or 'off' slab.
  2043. * (bootstrapping cannot cope with offslab caches so don't do
  2044. * it too early on.)
  2045. */
  2046. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2047. /*
  2048. * Size is large, assume best to place the slab management obj
  2049. * off-slab (should allow better packing of objs).
  2050. */
  2051. flags |= CFLGS_OFF_SLAB;
  2052. size = ALIGN(size, align);
  2053. left_over = calculate_slab_order(cachep, size, align, flags);
  2054. if (!cachep->num) {
  2055. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  2056. kmem_cache_free(&cache_cache, cachep);
  2057. cachep = NULL;
  2058. goto oops;
  2059. }
  2060. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2061. + sizeof(struct slab), align);
  2062. /*
  2063. * If the slab has been placed off-slab, and we have enough space then
  2064. * move it on-slab. This is at the expense of any extra colouring.
  2065. */
  2066. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2067. flags &= ~CFLGS_OFF_SLAB;
  2068. left_over -= slab_size;
  2069. }
  2070. if (flags & CFLGS_OFF_SLAB) {
  2071. /* really off slab. No need for manual alignment */
  2072. slab_size =
  2073. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2074. }
  2075. cachep->colour_off = cache_line_size();
  2076. /* Offset must be a multiple of the alignment. */
  2077. if (cachep->colour_off < align)
  2078. cachep->colour_off = align;
  2079. cachep->colour = left_over / cachep->colour_off;
  2080. cachep->slab_size = slab_size;
  2081. cachep->flags = flags;
  2082. cachep->gfpflags = 0;
  2083. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2084. cachep->gfpflags |= GFP_DMA;
  2085. cachep->buffer_size = size;
  2086. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2087. if (flags & CFLGS_OFF_SLAB) {
  2088. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2089. /*
  2090. * This is a possibility for one of the malloc_sizes caches.
  2091. * But since we go off slab only for object size greater than
  2092. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2093. * this should not happen at all.
  2094. * But leave a BUG_ON for some lucky dude.
  2095. */
  2096. BUG_ON(!cachep->slabp_cache);
  2097. }
  2098. cachep->ctor = ctor;
  2099. cachep->dtor = dtor;
  2100. cachep->name = name;
  2101. if (setup_cpu_cache(cachep)) {
  2102. __kmem_cache_destroy(cachep);
  2103. cachep = NULL;
  2104. goto oops;
  2105. }
  2106. /* cache setup completed, link it into the list */
  2107. list_add(&cachep->next, &cache_chain);
  2108. oops:
  2109. if (!cachep && (flags & SLAB_PANIC))
  2110. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2111. name);
  2112. mutex_unlock(&cache_chain_mutex);
  2113. return cachep;
  2114. }
  2115. EXPORT_SYMBOL(kmem_cache_create);
  2116. #if DEBUG
  2117. static void check_irq_off(void)
  2118. {
  2119. BUG_ON(!irqs_disabled());
  2120. }
  2121. static void check_irq_on(void)
  2122. {
  2123. BUG_ON(irqs_disabled());
  2124. }
  2125. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2126. {
  2127. #ifdef CONFIG_SMP
  2128. check_irq_off();
  2129. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2130. #endif
  2131. }
  2132. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2133. {
  2134. #ifdef CONFIG_SMP
  2135. check_irq_off();
  2136. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2137. #endif
  2138. }
  2139. #else
  2140. #define check_irq_off() do { } while(0)
  2141. #define check_irq_on() do { } while(0)
  2142. #define check_spinlock_acquired(x) do { } while(0)
  2143. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2144. #endif
  2145. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2146. struct array_cache *ac,
  2147. int force, int node);
  2148. static void do_drain(void *arg)
  2149. {
  2150. struct kmem_cache *cachep = arg;
  2151. struct array_cache *ac;
  2152. int node = numa_node_id();
  2153. check_irq_off();
  2154. ac = cpu_cache_get(cachep);
  2155. spin_lock(&cachep->nodelists[node]->list_lock);
  2156. free_block(cachep, ac->entry, ac->avail, node);
  2157. spin_unlock(&cachep->nodelists[node]->list_lock);
  2158. ac->avail = 0;
  2159. }
  2160. static void drain_cpu_caches(struct kmem_cache *cachep)
  2161. {
  2162. struct kmem_list3 *l3;
  2163. int node;
  2164. on_each_cpu(do_drain, cachep, 1, 1);
  2165. check_irq_on();
  2166. for_each_online_node(node) {
  2167. l3 = cachep->nodelists[node];
  2168. if (l3 && l3->alien)
  2169. drain_alien_cache(cachep, l3->alien);
  2170. }
  2171. for_each_online_node(node) {
  2172. l3 = cachep->nodelists[node];
  2173. if (l3)
  2174. drain_array(cachep, l3, l3->shared, 1, node);
  2175. }
  2176. }
  2177. /*
  2178. * Remove slabs from the list of free slabs.
  2179. * Specify the number of slabs to drain in tofree.
  2180. *
  2181. * Returns the actual number of slabs released.
  2182. */
  2183. static int drain_freelist(struct kmem_cache *cache,
  2184. struct kmem_list3 *l3, int tofree)
  2185. {
  2186. struct list_head *p;
  2187. int nr_freed;
  2188. struct slab *slabp;
  2189. nr_freed = 0;
  2190. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2191. spin_lock_irq(&l3->list_lock);
  2192. p = l3->slabs_free.prev;
  2193. if (p == &l3->slabs_free) {
  2194. spin_unlock_irq(&l3->list_lock);
  2195. goto out;
  2196. }
  2197. slabp = list_entry(p, struct slab, list);
  2198. #if DEBUG
  2199. BUG_ON(slabp->inuse);
  2200. #endif
  2201. list_del(&slabp->list);
  2202. /*
  2203. * Safe to drop the lock. The slab is no longer linked
  2204. * to the cache.
  2205. */
  2206. l3->free_objects -= cache->num;
  2207. spin_unlock_irq(&l3->list_lock);
  2208. slab_destroy(cache, slabp);
  2209. nr_freed++;
  2210. }
  2211. out:
  2212. return nr_freed;
  2213. }
  2214. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2215. static int __cache_shrink(struct kmem_cache *cachep)
  2216. {
  2217. int ret = 0, i = 0;
  2218. struct kmem_list3 *l3;
  2219. drain_cpu_caches(cachep);
  2220. check_irq_on();
  2221. for_each_online_node(i) {
  2222. l3 = cachep->nodelists[i];
  2223. if (!l3)
  2224. continue;
  2225. drain_freelist(cachep, l3, l3->free_objects);
  2226. ret += !list_empty(&l3->slabs_full) ||
  2227. !list_empty(&l3->slabs_partial);
  2228. }
  2229. return (ret ? 1 : 0);
  2230. }
  2231. /**
  2232. * kmem_cache_shrink - Shrink a cache.
  2233. * @cachep: The cache to shrink.
  2234. *
  2235. * Releases as many slabs as possible for a cache.
  2236. * To help debugging, a zero exit status indicates all slabs were released.
  2237. */
  2238. int kmem_cache_shrink(struct kmem_cache *cachep)
  2239. {
  2240. int ret;
  2241. BUG_ON(!cachep || in_interrupt());
  2242. mutex_lock(&cache_chain_mutex);
  2243. ret = __cache_shrink(cachep);
  2244. mutex_unlock(&cache_chain_mutex);
  2245. return ret;
  2246. }
  2247. EXPORT_SYMBOL(kmem_cache_shrink);
  2248. /**
  2249. * kmem_cache_destroy - delete a cache
  2250. * @cachep: the cache to destroy
  2251. *
  2252. * Remove a &struct kmem_cache object from the slab cache.
  2253. *
  2254. * It is expected this function will be called by a module when it is
  2255. * unloaded. This will remove the cache completely, and avoid a duplicate
  2256. * cache being allocated each time a module is loaded and unloaded, if the
  2257. * module doesn't have persistent in-kernel storage across loads and unloads.
  2258. *
  2259. * The cache must be empty before calling this function.
  2260. *
  2261. * The caller must guarantee that noone will allocate memory from the cache
  2262. * during the kmem_cache_destroy().
  2263. */
  2264. void kmem_cache_destroy(struct kmem_cache *cachep)
  2265. {
  2266. BUG_ON(!cachep || in_interrupt());
  2267. /* Find the cache in the chain of caches. */
  2268. mutex_lock(&cache_chain_mutex);
  2269. /*
  2270. * the chain is never empty, cache_cache is never destroyed
  2271. */
  2272. list_del(&cachep->next);
  2273. if (__cache_shrink(cachep)) {
  2274. slab_error(cachep, "Can't free all objects");
  2275. list_add(&cachep->next, &cache_chain);
  2276. mutex_unlock(&cache_chain_mutex);
  2277. return;
  2278. }
  2279. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2280. synchronize_rcu();
  2281. __kmem_cache_destroy(cachep);
  2282. mutex_unlock(&cache_chain_mutex);
  2283. }
  2284. EXPORT_SYMBOL(kmem_cache_destroy);
  2285. /*
  2286. * Get the memory for a slab management obj.
  2287. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2288. * always come from malloc_sizes caches. The slab descriptor cannot
  2289. * come from the same cache which is getting created because,
  2290. * when we are searching for an appropriate cache for these
  2291. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2292. * If we are creating a malloc_sizes cache here it would not be visible to
  2293. * kmem_find_general_cachep till the initialization is complete.
  2294. * Hence we cannot have slabp_cache same as the original cache.
  2295. */
  2296. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2297. int colour_off, gfp_t local_flags,
  2298. int nodeid)
  2299. {
  2300. struct slab *slabp;
  2301. if (OFF_SLAB(cachep)) {
  2302. /* Slab management obj is off-slab. */
  2303. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2304. local_flags & ~GFP_THISNODE, nodeid);
  2305. if (!slabp)
  2306. return NULL;
  2307. } else {
  2308. slabp = objp + colour_off;
  2309. colour_off += cachep->slab_size;
  2310. }
  2311. slabp->inuse = 0;
  2312. slabp->colouroff = colour_off;
  2313. slabp->s_mem = objp + colour_off;
  2314. slabp->nodeid = nodeid;
  2315. return slabp;
  2316. }
  2317. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2318. {
  2319. return (kmem_bufctl_t *) (slabp + 1);
  2320. }
  2321. static void cache_init_objs(struct kmem_cache *cachep,
  2322. struct slab *slabp, unsigned long ctor_flags)
  2323. {
  2324. int i;
  2325. for (i = 0; i < cachep->num; i++) {
  2326. void *objp = index_to_obj(cachep, slabp, i);
  2327. #if DEBUG
  2328. /* need to poison the objs? */
  2329. if (cachep->flags & SLAB_POISON)
  2330. poison_obj(cachep, objp, POISON_FREE);
  2331. if (cachep->flags & SLAB_STORE_USER)
  2332. *dbg_userword(cachep, objp) = NULL;
  2333. if (cachep->flags & SLAB_RED_ZONE) {
  2334. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2335. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2336. }
  2337. /*
  2338. * Constructors are not allowed to allocate memory from the same
  2339. * cache which they are a constructor for. Otherwise, deadlock.
  2340. * They must also be threaded.
  2341. */
  2342. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2343. cachep->ctor(objp + obj_offset(cachep), cachep,
  2344. ctor_flags);
  2345. if (cachep->flags & SLAB_RED_ZONE) {
  2346. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2347. slab_error(cachep, "constructor overwrote the"
  2348. " end of an object");
  2349. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2350. slab_error(cachep, "constructor overwrote the"
  2351. " start of an object");
  2352. }
  2353. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2354. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2355. kernel_map_pages(virt_to_page(objp),
  2356. cachep->buffer_size / PAGE_SIZE, 0);
  2357. #else
  2358. if (cachep->ctor)
  2359. cachep->ctor(objp, cachep, ctor_flags);
  2360. #endif
  2361. slab_bufctl(slabp)[i] = i + 1;
  2362. }
  2363. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2364. slabp->free = 0;
  2365. }
  2366. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2367. {
  2368. if (CONFIG_ZONE_DMA_FLAG) {
  2369. if (flags & GFP_DMA)
  2370. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2371. else
  2372. BUG_ON(cachep->gfpflags & GFP_DMA);
  2373. }
  2374. }
  2375. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2376. int nodeid)
  2377. {
  2378. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2379. kmem_bufctl_t next;
  2380. slabp->inuse++;
  2381. next = slab_bufctl(slabp)[slabp->free];
  2382. #if DEBUG
  2383. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2384. WARN_ON(slabp->nodeid != nodeid);
  2385. #endif
  2386. slabp->free = next;
  2387. return objp;
  2388. }
  2389. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2390. void *objp, int nodeid)
  2391. {
  2392. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2393. #if DEBUG
  2394. /* Verify that the slab belongs to the intended node */
  2395. WARN_ON(slabp->nodeid != nodeid);
  2396. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2397. printk(KERN_ERR "slab: double free detected in cache "
  2398. "'%s', objp %p\n", cachep->name, objp);
  2399. BUG();
  2400. }
  2401. #endif
  2402. slab_bufctl(slabp)[objnr] = slabp->free;
  2403. slabp->free = objnr;
  2404. slabp->inuse--;
  2405. }
  2406. /*
  2407. * Map pages beginning at addr to the given cache and slab. This is required
  2408. * for the slab allocator to be able to lookup the cache and slab of a
  2409. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2410. */
  2411. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2412. void *addr)
  2413. {
  2414. int nr_pages;
  2415. struct page *page;
  2416. page = virt_to_page(addr);
  2417. nr_pages = 1;
  2418. if (likely(!PageCompound(page)))
  2419. nr_pages <<= cache->gfporder;
  2420. do {
  2421. page_set_cache(page, cache);
  2422. page_set_slab(page, slab);
  2423. page++;
  2424. } while (--nr_pages);
  2425. }
  2426. /*
  2427. * Grow (by 1) the number of slabs within a cache. This is called by
  2428. * kmem_cache_alloc() when there are no active objs left in a cache.
  2429. */
  2430. static int cache_grow(struct kmem_cache *cachep,
  2431. gfp_t flags, int nodeid, void *objp)
  2432. {
  2433. struct slab *slabp;
  2434. size_t offset;
  2435. gfp_t local_flags;
  2436. unsigned long ctor_flags;
  2437. struct kmem_list3 *l3;
  2438. /*
  2439. * Be lazy and only check for valid flags here, keeping it out of the
  2440. * critical path in kmem_cache_alloc().
  2441. */
  2442. BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
  2443. if (flags & __GFP_NO_GROW)
  2444. return 0;
  2445. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2446. local_flags = (flags & GFP_LEVEL_MASK);
  2447. if (!(local_flags & __GFP_WAIT))
  2448. /*
  2449. * Not allowed to sleep. Need to tell a constructor about
  2450. * this - it might need to know...
  2451. */
  2452. ctor_flags |= SLAB_CTOR_ATOMIC;
  2453. /* Take the l3 list lock to change the colour_next on this node */
  2454. check_irq_off();
  2455. l3 = cachep->nodelists[nodeid];
  2456. spin_lock(&l3->list_lock);
  2457. /* Get colour for the slab, and cal the next value. */
  2458. offset = l3->colour_next;
  2459. l3->colour_next++;
  2460. if (l3->colour_next >= cachep->colour)
  2461. l3->colour_next = 0;
  2462. spin_unlock(&l3->list_lock);
  2463. offset *= cachep->colour_off;
  2464. if (local_flags & __GFP_WAIT)
  2465. local_irq_enable();
  2466. /*
  2467. * The test for missing atomic flag is performed here, rather than
  2468. * the more obvious place, simply to reduce the critical path length
  2469. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2470. * will eventually be caught here (where it matters).
  2471. */
  2472. kmem_flagcheck(cachep, flags);
  2473. /*
  2474. * Get mem for the objs. Attempt to allocate a physical page from
  2475. * 'nodeid'.
  2476. */
  2477. if (!objp)
  2478. objp = kmem_getpages(cachep, flags, nodeid);
  2479. if (!objp)
  2480. goto failed;
  2481. /* Get slab management. */
  2482. slabp = alloc_slabmgmt(cachep, objp, offset,
  2483. local_flags & ~GFP_THISNODE, nodeid);
  2484. if (!slabp)
  2485. goto opps1;
  2486. slabp->nodeid = nodeid;
  2487. slab_map_pages(cachep, slabp, objp);
  2488. cache_init_objs(cachep, slabp, ctor_flags);
  2489. if (local_flags & __GFP_WAIT)
  2490. local_irq_disable();
  2491. check_irq_off();
  2492. spin_lock(&l3->list_lock);
  2493. /* Make slab active. */
  2494. list_add_tail(&slabp->list, &(l3->slabs_free));
  2495. STATS_INC_GROWN(cachep);
  2496. l3->free_objects += cachep->num;
  2497. spin_unlock(&l3->list_lock);
  2498. return 1;
  2499. opps1:
  2500. kmem_freepages(cachep, objp);
  2501. failed:
  2502. if (local_flags & __GFP_WAIT)
  2503. local_irq_disable();
  2504. return 0;
  2505. }
  2506. #if DEBUG
  2507. /*
  2508. * Perform extra freeing checks:
  2509. * - detect bad pointers.
  2510. * - POISON/RED_ZONE checking
  2511. * - destructor calls, for caches with POISON+dtor
  2512. */
  2513. static void kfree_debugcheck(const void *objp)
  2514. {
  2515. if (!virt_addr_valid(objp)) {
  2516. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2517. (unsigned long)objp);
  2518. BUG();
  2519. }
  2520. }
  2521. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2522. {
  2523. unsigned long redzone1, redzone2;
  2524. redzone1 = *dbg_redzone1(cache, obj);
  2525. redzone2 = *dbg_redzone2(cache, obj);
  2526. /*
  2527. * Redzone is ok.
  2528. */
  2529. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2530. return;
  2531. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2532. slab_error(cache, "double free detected");
  2533. else
  2534. slab_error(cache, "memory outside object was overwritten");
  2535. printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
  2536. obj, redzone1, redzone2);
  2537. }
  2538. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2539. void *caller)
  2540. {
  2541. struct page *page;
  2542. unsigned int objnr;
  2543. struct slab *slabp;
  2544. objp -= obj_offset(cachep);
  2545. kfree_debugcheck(objp);
  2546. page = virt_to_page(objp);
  2547. slabp = page_get_slab(page);
  2548. if (cachep->flags & SLAB_RED_ZONE) {
  2549. verify_redzone_free(cachep, objp);
  2550. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2551. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2552. }
  2553. if (cachep->flags & SLAB_STORE_USER)
  2554. *dbg_userword(cachep, objp) = caller;
  2555. objnr = obj_to_index(cachep, slabp, objp);
  2556. BUG_ON(objnr >= cachep->num);
  2557. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2558. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2559. /*
  2560. * Need to call the slab's constructor so the caller can
  2561. * perform a verify of its state (debugging). Called without
  2562. * the cache-lock held.
  2563. */
  2564. cachep->ctor(objp + obj_offset(cachep),
  2565. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2566. }
  2567. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2568. /* we want to cache poison the object,
  2569. * call the destruction callback
  2570. */
  2571. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2572. }
  2573. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2574. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2575. #endif
  2576. if (cachep->flags & SLAB_POISON) {
  2577. #ifdef CONFIG_DEBUG_PAGEALLOC
  2578. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2579. store_stackinfo(cachep, objp, (unsigned long)caller);
  2580. kernel_map_pages(virt_to_page(objp),
  2581. cachep->buffer_size / PAGE_SIZE, 0);
  2582. } else {
  2583. poison_obj(cachep, objp, POISON_FREE);
  2584. }
  2585. #else
  2586. poison_obj(cachep, objp, POISON_FREE);
  2587. #endif
  2588. }
  2589. return objp;
  2590. }
  2591. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2592. {
  2593. kmem_bufctl_t i;
  2594. int entries = 0;
  2595. /* Check slab's freelist to see if this obj is there. */
  2596. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2597. entries++;
  2598. if (entries > cachep->num || i >= cachep->num)
  2599. goto bad;
  2600. }
  2601. if (entries != cachep->num - slabp->inuse) {
  2602. bad:
  2603. printk(KERN_ERR "slab: Internal list corruption detected in "
  2604. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2605. cachep->name, cachep->num, slabp, slabp->inuse);
  2606. for (i = 0;
  2607. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2608. i++) {
  2609. if (i % 16 == 0)
  2610. printk("\n%03x:", i);
  2611. printk(" %02x", ((unsigned char *)slabp)[i]);
  2612. }
  2613. printk("\n");
  2614. BUG();
  2615. }
  2616. }
  2617. #else
  2618. #define kfree_debugcheck(x) do { } while(0)
  2619. #define cache_free_debugcheck(x,objp,z) (objp)
  2620. #define check_slabp(x,y) do { } while(0)
  2621. #endif
  2622. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2623. {
  2624. int batchcount;
  2625. struct kmem_list3 *l3;
  2626. struct array_cache *ac;
  2627. int node;
  2628. node = numa_node_id();
  2629. check_irq_off();
  2630. ac = cpu_cache_get(cachep);
  2631. retry:
  2632. batchcount = ac->batchcount;
  2633. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2634. /*
  2635. * If there was little recent activity on this cache, then
  2636. * perform only a partial refill. Otherwise we could generate
  2637. * refill bouncing.
  2638. */
  2639. batchcount = BATCHREFILL_LIMIT;
  2640. }
  2641. l3 = cachep->nodelists[node];
  2642. BUG_ON(ac->avail > 0 || !l3);
  2643. spin_lock(&l3->list_lock);
  2644. /* See if we can refill from the shared array */
  2645. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2646. goto alloc_done;
  2647. while (batchcount > 0) {
  2648. struct list_head *entry;
  2649. struct slab *slabp;
  2650. /* Get slab alloc is to come from. */
  2651. entry = l3->slabs_partial.next;
  2652. if (entry == &l3->slabs_partial) {
  2653. l3->free_touched = 1;
  2654. entry = l3->slabs_free.next;
  2655. if (entry == &l3->slabs_free)
  2656. goto must_grow;
  2657. }
  2658. slabp = list_entry(entry, struct slab, list);
  2659. check_slabp(cachep, slabp);
  2660. check_spinlock_acquired(cachep);
  2661. /*
  2662. * The slab was either on partial or free list so
  2663. * there must be at least one object available for
  2664. * allocation.
  2665. */
  2666. BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
  2667. while (slabp->inuse < cachep->num && batchcount--) {
  2668. STATS_INC_ALLOCED(cachep);
  2669. STATS_INC_ACTIVE(cachep);
  2670. STATS_SET_HIGH(cachep);
  2671. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2672. node);
  2673. }
  2674. check_slabp(cachep, slabp);
  2675. /* move slabp to correct slabp list: */
  2676. list_del(&slabp->list);
  2677. if (slabp->free == BUFCTL_END)
  2678. list_add(&slabp->list, &l3->slabs_full);
  2679. else
  2680. list_add(&slabp->list, &l3->slabs_partial);
  2681. }
  2682. must_grow:
  2683. l3->free_objects -= ac->avail;
  2684. alloc_done:
  2685. spin_unlock(&l3->list_lock);
  2686. if (unlikely(!ac->avail)) {
  2687. int x;
  2688. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2689. /* cache_grow can reenable interrupts, then ac could change. */
  2690. ac = cpu_cache_get(cachep);
  2691. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2692. return NULL;
  2693. if (!ac->avail) /* objects refilled by interrupt? */
  2694. goto retry;
  2695. }
  2696. ac->touched = 1;
  2697. return ac->entry[--ac->avail];
  2698. }
  2699. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2700. gfp_t flags)
  2701. {
  2702. might_sleep_if(flags & __GFP_WAIT);
  2703. #if DEBUG
  2704. kmem_flagcheck(cachep, flags);
  2705. #endif
  2706. }
  2707. #if DEBUG
  2708. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2709. gfp_t flags, void *objp, void *caller)
  2710. {
  2711. if (!objp)
  2712. return objp;
  2713. if (cachep->flags & SLAB_POISON) {
  2714. #ifdef CONFIG_DEBUG_PAGEALLOC
  2715. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2716. kernel_map_pages(virt_to_page(objp),
  2717. cachep->buffer_size / PAGE_SIZE, 1);
  2718. else
  2719. check_poison_obj(cachep, objp);
  2720. #else
  2721. check_poison_obj(cachep, objp);
  2722. #endif
  2723. poison_obj(cachep, objp, POISON_INUSE);
  2724. }
  2725. if (cachep->flags & SLAB_STORE_USER)
  2726. *dbg_userword(cachep, objp) = caller;
  2727. if (cachep->flags & SLAB_RED_ZONE) {
  2728. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2729. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2730. slab_error(cachep, "double free, or memory outside"
  2731. " object was overwritten");
  2732. printk(KERN_ERR
  2733. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2734. objp, *dbg_redzone1(cachep, objp),
  2735. *dbg_redzone2(cachep, objp));
  2736. }
  2737. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2738. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2739. }
  2740. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2741. {
  2742. struct slab *slabp;
  2743. unsigned objnr;
  2744. slabp = page_get_slab(virt_to_page(objp));
  2745. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2746. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2747. }
  2748. #endif
  2749. objp += obj_offset(cachep);
  2750. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2751. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2752. if (!(flags & __GFP_WAIT))
  2753. ctor_flags |= SLAB_CTOR_ATOMIC;
  2754. cachep->ctor(objp, cachep, ctor_flags);
  2755. }
  2756. #if ARCH_SLAB_MINALIGN
  2757. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2758. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2759. objp, ARCH_SLAB_MINALIGN);
  2760. }
  2761. #endif
  2762. return objp;
  2763. }
  2764. #else
  2765. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2766. #endif
  2767. #ifdef CONFIG_FAILSLAB
  2768. static struct failslab_attr {
  2769. struct fault_attr attr;
  2770. u32 ignore_gfp_wait;
  2771. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2772. struct dentry *ignore_gfp_wait_file;
  2773. #endif
  2774. } failslab = {
  2775. .attr = FAULT_ATTR_INITIALIZER,
  2776. .ignore_gfp_wait = 1,
  2777. };
  2778. static int __init setup_failslab(char *str)
  2779. {
  2780. return setup_fault_attr(&failslab.attr, str);
  2781. }
  2782. __setup("failslab=", setup_failslab);
  2783. static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2784. {
  2785. if (cachep == &cache_cache)
  2786. return 0;
  2787. if (flags & __GFP_NOFAIL)
  2788. return 0;
  2789. if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
  2790. return 0;
  2791. return should_fail(&failslab.attr, obj_size(cachep));
  2792. }
  2793. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2794. static int __init failslab_debugfs(void)
  2795. {
  2796. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2797. struct dentry *dir;
  2798. int err;
  2799. err = init_fault_attr_dentries(&failslab.attr, "failslab");
  2800. if (err)
  2801. return err;
  2802. dir = failslab.attr.dentries.dir;
  2803. failslab.ignore_gfp_wait_file =
  2804. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2805. &failslab.ignore_gfp_wait);
  2806. if (!failslab.ignore_gfp_wait_file) {
  2807. err = -ENOMEM;
  2808. debugfs_remove(failslab.ignore_gfp_wait_file);
  2809. cleanup_fault_attr_dentries(&failslab.attr);
  2810. }
  2811. return err;
  2812. }
  2813. late_initcall(failslab_debugfs);
  2814. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2815. #else /* CONFIG_FAILSLAB */
  2816. static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2817. {
  2818. return 0;
  2819. }
  2820. #endif /* CONFIG_FAILSLAB */
  2821. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2822. {
  2823. void *objp;
  2824. struct array_cache *ac;
  2825. check_irq_off();
  2826. if (should_failslab(cachep, flags))
  2827. return NULL;
  2828. ac = cpu_cache_get(cachep);
  2829. if (likely(ac->avail)) {
  2830. STATS_INC_ALLOCHIT(cachep);
  2831. ac->touched = 1;
  2832. objp = ac->entry[--ac->avail];
  2833. } else {
  2834. STATS_INC_ALLOCMISS(cachep);
  2835. objp = cache_alloc_refill(cachep, flags);
  2836. }
  2837. return objp;
  2838. }
  2839. #ifdef CONFIG_NUMA
  2840. /*
  2841. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2842. *
  2843. * If we are in_interrupt, then process context, including cpusets and
  2844. * mempolicy, may not apply and should not be used for allocation policy.
  2845. */
  2846. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2847. {
  2848. int nid_alloc, nid_here;
  2849. if (in_interrupt() || (flags & __GFP_THISNODE))
  2850. return NULL;
  2851. nid_alloc = nid_here = numa_node_id();
  2852. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2853. nid_alloc = cpuset_mem_spread_node();
  2854. else if (current->mempolicy)
  2855. nid_alloc = slab_node(current->mempolicy);
  2856. if (nid_alloc != nid_here)
  2857. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2858. return NULL;
  2859. }
  2860. /*
  2861. * Fallback function if there was no memory available and no objects on a
  2862. * certain node and fall back is permitted. First we scan all the
  2863. * available nodelists for available objects. If that fails then we
  2864. * perform an allocation without specifying a node. This allows the page
  2865. * allocator to do its reclaim / fallback magic. We then insert the
  2866. * slab into the proper nodelist and then allocate from it.
  2867. */
  2868. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2869. {
  2870. struct zonelist *zonelist;
  2871. gfp_t local_flags;
  2872. struct zone **z;
  2873. void *obj = NULL;
  2874. int nid;
  2875. if (flags & __GFP_THISNODE)
  2876. return NULL;
  2877. zonelist = &NODE_DATA(slab_node(current->mempolicy))
  2878. ->node_zonelists[gfp_zone(flags)];
  2879. local_flags = (flags & GFP_LEVEL_MASK);
  2880. retry:
  2881. /*
  2882. * Look through allowed nodes for objects available
  2883. * from existing per node queues.
  2884. */
  2885. for (z = zonelist->zones; *z && !obj; z++) {
  2886. nid = zone_to_nid(*z);
  2887. if (cpuset_zone_allowed_hardwall(*z, flags) &&
  2888. cache->nodelists[nid] &&
  2889. cache->nodelists[nid]->free_objects)
  2890. obj = ____cache_alloc_node(cache,
  2891. flags | GFP_THISNODE, nid);
  2892. }
  2893. if (!obj && !(flags & __GFP_NO_GROW)) {
  2894. /*
  2895. * This allocation will be performed within the constraints
  2896. * of the current cpuset / memory policy requirements.
  2897. * We may trigger various forms of reclaim on the allowed
  2898. * set and go into memory reserves if necessary.
  2899. */
  2900. if (local_flags & __GFP_WAIT)
  2901. local_irq_enable();
  2902. kmem_flagcheck(cache, flags);
  2903. obj = kmem_getpages(cache, flags, -1);
  2904. if (local_flags & __GFP_WAIT)
  2905. local_irq_disable();
  2906. if (obj) {
  2907. /*
  2908. * Insert into the appropriate per node queues
  2909. */
  2910. nid = page_to_nid(virt_to_page(obj));
  2911. if (cache_grow(cache, flags, nid, obj)) {
  2912. obj = ____cache_alloc_node(cache,
  2913. flags | GFP_THISNODE, nid);
  2914. if (!obj)
  2915. /*
  2916. * Another processor may allocate the
  2917. * objects in the slab since we are
  2918. * not holding any locks.
  2919. */
  2920. goto retry;
  2921. } else {
  2922. /* cache_grow already freed obj */
  2923. obj = NULL;
  2924. }
  2925. }
  2926. }
  2927. return obj;
  2928. }
  2929. /*
  2930. * A interface to enable slab creation on nodeid
  2931. */
  2932. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2933. int nodeid)
  2934. {
  2935. struct list_head *entry;
  2936. struct slab *slabp;
  2937. struct kmem_list3 *l3;
  2938. void *obj;
  2939. int x;
  2940. l3 = cachep->nodelists[nodeid];
  2941. BUG_ON(!l3);
  2942. retry:
  2943. check_irq_off();
  2944. spin_lock(&l3->list_lock);
  2945. entry = l3->slabs_partial.next;
  2946. if (entry == &l3->slabs_partial) {
  2947. l3->free_touched = 1;
  2948. entry = l3->slabs_free.next;
  2949. if (entry == &l3->slabs_free)
  2950. goto must_grow;
  2951. }
  2952. slabp = list_entry(entry, struct slab, list);
  2953. check_spinlock_acquired_node(cachep, nodeid);
  2954. check_slabp(cachep, slabp);
  2955. STATS_INC_NODEALLOCS(cachep);
  2956. STATS_INC_ACTIVE(cachep);
  2957. STATS_SET_HIGH(cachep);
  2958. BUG_ON(slabp->inuse == cachep->num);
  2959. obj = slab_get_obj(cachep, slabp, nodeid);
  2960. check_slabp(cachep, slabp);
  2961. l3->free_objects--;
  2962. /* move slabp to correct slabp list: */
  2963. list_del(&slabp->list);
  2964. if (slabp->free == BUFCTL_END)
  2965. list_add(&slabp->list, &l3->slabs_full);
  2966. else
  2967. list_add(&slabp->list, &l3->slabs_partial);
  2968. spin_unlock(&l3->list_lock);
  2969. goto done;
  2970. must_grow:
  2971. spin_unlock(&l3->list_lock);
  2972. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2973. if (x)
  2974. goto retry;
  2975. return fallback_alloc(cachep, flags);
  2976. done:
  2977. return obj;
  2978. }
  2979. /**
  2980. * kmem_cache_alloc_node - Allocate an object on the specified node
  2981. * @cachep: The cache to allocate from.
  2982. * @flags: See kmalloc().
  2983. * @nodeid: node number of the target node.
  2984. * @caller: return address of caller, used for debug information
  2985. *
  2986. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2987. * node, which can improve the performance for cpu bound structures.
  2988. *
  2989. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2990. */
  2991. static __always_inline void *
  2992. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2993. void *caller)
  2994. {
  2995. unsigned long save_flags;
  2996. void *ptr;
  2997. cache_alloc_debugcheck_before(cachep, flags);
  2998. local_irq_save(save_flags);
  2999. if (unlikely(nodeid == -1))
  3000. nodeid = numa_node_id();
  3001. if (unlikely(!cachep->nodelists[nodeid])) {
  3002. /* Node not bootstrapped yet */
  3003. ptr = fallback_alloc(cachep, flags);
  3004. goto out;
  3005. }
  3006. if (nodeid == numa_node_id()) {
  3007. /*
  3008. * Use the locally cached objects if possible.
  3009. * However ____cache_alloc does not allow fallback
  3010. * to other nodes. It may fail while we still have
  3011. * objects on other nodes available.
  3012. */
  3013. ptr = ____cache_alloc(cachep, flags);
  3014. if (ptr)
  3015. goto out;
  3016. }
  3017. /* ___cache_alloc_node can fall back to other nodes */
  3018. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3019. out:
  3020. local_irq_restore(save_flags);
  3021. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3022. return ptr;
  3023. }
  3024. static __always_inline void *
  3025. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3026. {
  3027. void *objp;
  3028. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3029. objp = alternate_node_alloc(cache, flags);
  3030. if (objp)
  3031. goto out;
  3032. }
  3033. objp = ____cache_alloc(cache, flags);
  3034. /*
  3035. * We may just have run out of memory on the local node.
  3036. * ____cache_alloc_node() knows how to locate memory on other nodes
  3037. */
  3038. if (!objp)
  3039. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3040. out:
  3041. return objp;
  3042. }
  3043. #else
  3044. static __always_inline void *
  3045. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3046. {
  3047. return ____cache_alloc(cachep, flags);
  3048. }
  3049. #endif /* CONFIG_NUMA */
  3050. static __always_inline void *
  3051. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3052. {
  3053. unsigned long save_flags;
  3054. void *objp;
  3055. cache_alloc_debugcheck_before(cachep, flags);
  3056. local_irq_save(save_flags);
  3057. objp = __do_cache_alloc(cachep, flags);
  3058. local_irq_restore(save_flags);
  3059. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3060. prefetchw(objp);
  3061. return objp;
  3062. }
  3063. /*
  3064. * Caller needs to acquire correct kmem_list's list_lock
  3065. */
  3066. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3067. int node)
  3068. {
  3069. int i;
  3070. struct kmem_list3 *l3;
  3071. for (i = 0; i < nr_objects; i++) {
  3072. void *objp = objpp[i];
  3073. struct slab *slabp;
  3074. slabp = virt_to_slab(objp);
  3075. l3 = cachep->nodelists[node];
  3076. list_del(&slabp->list);
  3077. check_spinlock_acquired_node(cachep, node);
  3078. check_slabp(cachep, slabp);
  3079. slab_put_obj(cachep, slabp, objp, node);
  3080. STATS_DEC_ACTIVE(cachep);
  3081. l3->free_objects++;
  3082. check_slabp(cachep, slabp);
  3083. /* fixup slab chains */
  3084. if (slabp->inuse == 0) {
  3085. if (l3->free_objects > l3->free_limit) {
  3086. l3->free_objects -= cachep->num;
  3087. /* No need to drop any previously held
  3088. * lock here, even if we have a off-slab slab
  3089. * descriptor it is guaranteed to come from
  3090. * a different cache, refer to comments before
  3091. * alloc_slabmgmt.
  3092. */
  3093. slab_destroy(cachep, slabp);
  3094. } else {
  3095. list_add(&slabp->list, &l3->slabs_free);
  3096. }
  3097. } else {
  3098. /* Unconditionally move a slab to the end of the
  3099. * partial list on free - maximum time for the
  3100. * other objects to be freed, too.
  3101. */
  3102. list_add_tail(&slabp->list, &l3->slabs_partial);
  3103. }
  3104. }
  3105. }
  3106. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3107. {
  3108. int batchcount;
  3109. struct kmem_list3 *l3;
  3110. int node = numa_node_id();
  3111. batchcount = ac->batchcount;
  3112. #if DEBUG
  3113. BUG_ON(!batchcount || batchcount > ac->avail);
  3114. #endif
  3115. check_irq_off();
  3116. l3 = cachep->nodelists[node];
  3117. spin_lock(&l3->list_lock);
  3118. if (l3->shared) {
  3119. struct array_cache *shared_array = l3->shared;
  3120. int max = shared_array->limit - shared_array->avail;
  3121. if (max) {
  3122. if (batchcount > max)
  3123. batchcount = max;
  3124. memcpy(&(shared_array->entry[shared_array->avail]),
  3125. ac->entry, sizeof(void *) * batchcount);
  3126. shared_array->avail += batchcount;
  3127. goto free_done;
  3128. }
  3129. }
  3130. free_block(cachep, ac->entry, batchcount, node);
  3131. free_done:
  3132. #if STATS
  3133. {
  3134. int i = 0;
  3135. struct list_head *p;
  3136. p = l3->slabs_free.next;
  3137. while (p != &(l3->slabs_free)) {
  3138. struct slab *slabp;
  3139. slabp = list_entry(p, struct slab, list);
  3140. BUG_ON(slabp->inuse);
  3141. i++;
  3142. p = p->next;
  3143. }
  3144. STATS_SET_FREEABLE(cachep, i);
  3145. }
  3146. #endif
  3147. spin_unlock(&l3->list_lock);
  3148. ac->avail -= batchcount;
  3149. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3150. }
  3151. /*
  3152. * Release an obj back to its cache. If the obj has a constructed state, it must
  3153. * be in this state _before_ it is released. Called with disabled ints.
  3154. */
  3155. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3156. {
  3157. struct array_cache *ac = cpu_cache_get(cachep);
  3158. check_irq_off();
  3159. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3160. if (use_alien_caches && cache_free_alien(cachep, objp))
  3161. return;
  3162. if (likely(ac->avail < ac->limit)) {
  3163. STATS_INC_FREEHIT(cachep);
  3164. ac->entry[ac->avail++] = objp;
  3165. return;
  3166. } else {
  3167. STATS_INC_FREEMISS(cachep);
  3168. cache_flusharray(cachep, ac);
  3169. ac->entry[ac->avail++] = objp;
  3170. }
  3171. }
  3172. /**
  3173. * kmem_cache_alloc - Allocate an object
  3174. * @cachep: The cache to allocate from.
  3175. * @flags: See kmalloc().
  3176. *
  3177. * Allocate an object from this cache. The flags are only relevant
  3178. * if the cache has no available objects.
  3179. */
  3180. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3181. {
  3182. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3183. }
  3184. EXPORT_SYMBOL(kmem_cache_alloc);
  3185. /**
  3186. * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
  3187. * @cache: The cache to allocate from.
  3188. * @flags: See kmalloc().
  3189. *
  3190. * Allocate an object from this cache and set the allocated memory to zero.
  3191. * The flags are only relevant if the cache has no available objects.
  3192. */
  3193. void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
  3194. {
  3195. void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
  3196. if (ret)
  3197. memset(ret, 0, obj_size(cache));
  3198. return ret;
  3199. }
  3200. EXPORT_SYMBOL(kmem_cache_zalloc);
  3201. /**
  3202. * kmem_ptr_validate - check if an untrusted pointer might
  3203. * be a slab entry.
  3204. * @cachep: the cache we're checking against
  3205. * @ptr: pointer to validate
  3206. *
  3207. * This verifies that the untrusted pointer looks sane:
  3208. * it is _not_ a guarantee that the pointer is actually
  3209. * part of the slab cache in question, but it at least
  3210. * validates that the pointer can be dereferenced and
  3211. * looks half-way sane.
  3212. *
  3213. * Currently only used for dentry validation.
  3214. */
  3215. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3216. {
  3217. unsigned long addr = (unsigned long)ptr;
  3218. unsigned long min_addr = PAGE_OFFSET;
  3219. unsigned long align_mask = BYTES_PER_WORD - 1;
  3220. unsigned long size = cachep->buffer_size;
  3221. struct page *page;
  3222. if (unlikely(addr < min_addr))
  3223. goto out;
  3224. if (unlikely(addr > (unsigned long)high_memory - size))
  3225. goto out;
  3226. if (unlikely(addr & align_mask))
  3227. goto out;
  3228. if (unlikely(!kern_addr_valid(addr)))
  3229. goto out;
  3230. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3231. goto out;
  3232. page = virt_to_page(ptr);
  3233. if (unlikely(!PageSlab(page)))
  3234. goto out;
  3235. if (unlikely(page_get_cache(page) != cachep))
  3236. goto out;
  3237. return 1;
  3238. out:
  3239. return 0;
  3240. }
  3241. #ifdef CONFIG_NUMA
  3242. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3243. {
  3244. return __cache_alloc_node(cachep, flags, nodeid,
  3245. __builtin_return_address(0));
  3246. }
  3247. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3248. static __always_inline void *
  3249. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3250. {
  3251. struct kmem_cache *cachep;
  3252. cachep = kmem_find_general_cachep(size, flags);
  3253. if (unlikely(cachep == NULL))
  3254. return NULL;
  3255. return kmem_cache_alloc_node(cachep, flags, node);
  3256. }
  3257. #ifdef CONFIG_DEBUG_SLAB
  3258. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3259. {
  3260. return __do_kmalloc_node(size, flags, node,
  3261. __builtin_return_address(0));
  3262. }
  3263. EXPORT_SYMBOL(__kmalloc_node);
  3264. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3265. int node, void *caller)
  3266. {
  3267. return __do_kmalloc_node(size, flags, node, caller);
  3268. }
  3269. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3270. #else
  3271. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3272. {
  3273. return __do_kmalloc_node(size, flags, node, NULL);
  3274. }
  3275. EXPORT_SYMBOL(__kmalloc_node);
  3276. #endif /* CONFIG_DEBUG_SLAB */
  3277. #endif /* CONFIG_NUMA */
  3278. /**
  3279. * __do_kmalloc - allocate memory
  3280. * @size: how many bytes of memory are required.
  3281. * @flags: the type of memory to allocate (see kmalloc).
  3282. * @caller: function caller for debug tracking of the caller
  3283. */
  3284. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3285. void *caller)
  3286. {
  3287. struct kmem_cache *cachep;
  3288. /* If you want to save a few bytes .text space: replace
  3289. * __ with kmem_.
  3290. * Then kmalloc uses the uninlined functions instead of the inline
  3291. * functions.
  3292. */
  3293. cachep = __find_general_cachep(size, flags);
  3294. if (unlikely(cachep == NULL))
  3295. return NULL;
  3296. return __cache_alloc(cachep, flags, caller);
  3297. }
  3298. #ifdef CONFIG_DEBUG_SLAB
  3299. void *__kmalloc(size_t size, gfp_t flags)
  3300. {
  3301. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3302. }
  3303. EXPORT_SYMBOL(__kmalloc);
  3304. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  3305. {
  3306. return __do_kmalloc(size, flags, caller);
  3307. }
  3308. EXPORT_SYMBOL(__kmalloc_track_caller);
  3309. #else
  3310. void *__kmalloc(size_t size, gfp_t flags)
  3311. {
  3312. return __do_kmalloc(size, flags, NULL);
  3313. }
  3314. EXPORT_SYMBOL(__kmalloc);
  3315. #endif
  3316. /**
  3317. * krealloc - reallocate memory. The contents will remain unchanged.
  3318. *
  3319. * @p: object to reallocate memory for.
  3320. * @new_size: how many bytes of memory are required.
  3321. * @flags: the type of memory to allocate.
  3322. *
  3323. * The contents of the object pointed to are preserved up to the
  3324. * lesser of the new and old sizes. If @p is %NULL, krealloc()
  3325. * behaves exactly like kmalloc(). If @size is 0 and @p is not a
  3326. * %NULL pointer, the object pointed to is freed.
  3327. */
  3328. void *krealloc(const void *p, size_t new_size, gfp_t flags)
  3329. {
  3330. struct kmem_cache *cache, *new_cache;
  3331. void *ret;
  3332. if (unlikely(!p))
  3333. return kmalloc_track_caller(new_size, flags);
  3334. if (unlikely(!new_size)) {
  3335. kfree(p);
  3336. return NULL;
  3337. }
  3338. cache = virt_to_cache(p);
  3339. new_cache = __find_general_cachep(new_size, flags);
  3340. /*
  3341. * If new size fits in the current cache, bail out.
  3342. */
  3343. if (likely(cache == new_cache))
  3344. return (void *)p;
  3345. /*
  3346. * We are on the slow-path here so do not use __cache_alloc
  3347. * because it bloats kernel text.
  3348. */
  3349. ret = kmalloc_track_caller(new_size, flags);
  3350. if (ret) {
  3351. memcpy(ret, p, min(new_size, ksize(p)));
  3352. kfree(p);
  3353. }
  3354. return ret;
  3355. }
  3356. EXPORT_SYMBOL(krealloc);
  3357. /**
  3358. * kmem_cache_free - Deallocate an object
  3359. * @cachep: The cache the allocation was from.
  3360. * @objp: The previously allocated object.
  3361. *
  3362. * Free an object which was previously allocated from this
  3363. * cache.
  3364. */
  3365. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3366. {
  3367. unsigned long flags;
  3368. BUG_ON(virt_to_cache(objp) != cachep);
  3369. local_irq_save(flags);
  3370. debug_check_no_locks_freed(objp, obj_size(cachep));
  3371. __cache_free(cachep, objp);
  3372. local_irq_restore(flags);
  3373. }
  3374. EXPORT_SYMBOL(kmem_cache_free);
  3375. /**
  3376. * kfree - free previously allocated memory
  3377. * @objp: pointer returned by kmalloc.
  3378. *
  3379. * If @objp is NULL, no operation is performed.
  3380. *
  3381. * Don't free memory not originally allocated by kmalloc()
  3382. * or you will run into trouble.
  3383. */
  3384. void kfree(const void *objp)
  3385. {
  3386. struct kmem_cache *c;
  3387. unsigned long flags;
  3388. if (unlikely(!objp))
  3389. return;
  3390. local_irq_save(flags);
  3391. kfree_debugcheck(objp);
  3392. c = virt_to_cache(objp);
  3393. debug_check_no_locks_freed(objp, obj_size(c));
  3394. __cache_free(c, (void *)objp);
  3395. local_irq_restore(flags);
  3396. }
  3397. EXPORT_SYMBOL(kfree);
  3398. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3399. {
  3400. return obj_size(cachep);
  3401. }
  3402. EXPORT_SYMBOL(kmem_cache_size);
  3403. const char *kmem_cache_name(struct kmem_cache *cachep)
  3404. {
  3405. return cachep->name;
  3406. }
  3407. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3408. /*
  3409. * This initializes kmem_list3 or resizes varioius caches for all nodes.
  3410. */
  3411. static int alloc_kmemlist(struct kmem_cache *cachep)
  3412. {
  3413. int node;
  3414. struct kmem_list3 *l3;
  3415. struct array_cache *new_shared;
  3416. struct array_cache **new_alien = NULL;
  3417. for_each_online_node(node) {
  3418. if (use_alien_caches) {
  3419. new_alien = alloc_alien_cache(node, cachep->limit);
  3420. if (!new_alien)
  3421. goto fail;
  3422. }
  3423. new_shared = NULL;
  3424. if (cachep->shared) {
  3425. new_shared = alloc_arraycache(node,
  3426. cachep->shared*cachep->batchcount,
  3427. 0xbaadf00d);
  3428. if (!new_shared) {
  3429. free_alien_cache(new_alien);
  3430. goto fail;
  3431. }
  3432. }
  3433. l3 = cachep->nodelists[node];
  3434. if (l3) {
  3435. struct array_cache *shared = l3->shared;
  3436. spin_lock_irq(&l3->list_lock);
  3437. if (shared)
  3438. free_block(cachep, shared->entry,
  3439. shared->avail, node);
  3440. l3->shared = new_shared;
  3441. if (!l3->alien) {
  3442. l3->alien = new_alien;
  3443. new_alien = NULL;
  3444. }
  3445. l3->free_limit = (1 + nr_cpus_node(node)) *
  3446. cachep->batchcount + cachep->num;
  3447. spin_unlock_irq(&l3->list_lock);
  3448. kfree(shared);
  3449. free_alien_cache(new_alien);
  3450. continue;
  3451. }
  3452. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3453. if (!l3) {
  3454. free_alien_cache(new_alien);
  3455. kfree(new_shared);
  3456. goto fail;
  3457. }
  3458. kmem_list3_init(l3);
  3459. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3460. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3461. l3->shared = new_shared;
  3462. l3->alien = new_alien;
  3463. l3->free_limit = (1 + nr_cpus_node(node)) *
  3464. cachep->batchcount + cachep->num;
  3465. cachep->nodelists[node] = l3;
  3466. }
  3467. return 0;
  3468. fail:
  3469. if (!cachep->next.next) {
  3470. /* Cache is not active yet. Roll back what we did */
  3471. node--;
  3472. while (node >= 0) {
  3473. if (cachep->nodelists[node]) {
  3474. l3 = cachep->nodelists[node];
  3475. kfree(l3->shared);
  3476. free_alien_cache(l3->alien);
  3477. kfree(l3);
  3478. cachep->nodelists[node] = NULL;
  3479. }
  3480. node--;
  3481. }
  3482. }
  3483. return -ENOMEM;
  3484. }
  3485. struct ccupdate_struct {
  3486. struct kmem_cache *cachep;
  3487. struct array_cache *new[NR_CPUS];
  3488. };
  3489. static void do_ccupdate_local(void *info)
  3490. {
  3491. struct ccupdate_struct *new = info;
  3492. struct array_cache *old;
  3493. check_irq_off();
  3494. old = cpu_cache_get(new->cachep);
  3495. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3496. new->new[smp_processor_id()] = old;
  3497. }
  3498. /* Always called with the cache_chain_mutex held */
  3499. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3500. int batchcount, int shared)
  3501. {
  3502. struct ccupdate_struct *new;
  3503. int i;
  3504. new = kzalloc(sizeof(*new), GFP_KERNEL);
  3505. if (!new)
  3506. return -ENOMEM;
  3507. for_each_online_cpu(i) {
  3508. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3509. batchcount);
  3510. if (!new->new[i]) {
  3511. for (i--; i >= 0; i--)
  3512. kfree(new->new[i]);
  3513. kfree(new);
  3514. return -ENOMEM;
  3515. }
  3516. }
  3517. new->cachep = cachep;
  3518. on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
  3519. check_irq_on();
  3520. cachep->batchcount = batchcount;
  3521. cachep->limit = limit;
  3522. cachep->shared = shared;
  3523. for_each_online_cpu(i) {
  3524. struct array_cache *ccold = new->new[i];
  3525. if (!ccold)
  3526. continue;
  3527. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3528. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3529. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3530. kfree(ccold);
  3531. }
  3532. kfree(new);
  3533. return alloc_kmemlist(cachep);
  3534. }
  3535. /* Called with cache_chain_mutex held always */
  3536. static int enable_cpucache(struct kmem_cache *cachep)
  3537. {
  3538. int err;
  3539. int limit, shared;
  3540. /*
  3541. * The head array serves three purposes:
  3542. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3543. * - reduce the number of spinlock operations.
  3544. * - reduce the number of linked list operations on the slab and
  3545. * bufctl chains: array operations are cheaper.
  3546. * The numbers are guessed, we should auto-tune as described by
  3547. * Bonwick.
  3548. */
  3549. if (cachep->buffer_size > 131072)
  3550. limit = 1;
  3551. else if (cachep->buffer_size > PAGE_SIZE)
  3552. limit = 8;
  3553. else if (cachep->buffer_size > 1024)
  3554. limit = 24;
  3555. else if (cachep->buffer_size > 256)
  3556. limit = 54;
  3557. else
  3558. limit = 120;
  3559. /*
  3560. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3561. * allocation behaviour: Most allocs on one cpu, most free operations
  3562. * on another cpu. For these cases, an efficient object passing between
  3563. * cpus is necessary. This is provided by a shared array. The array
  3564. * replaces Bonwick's magazine layer.
  3565. * On uniprocessor, it's functionally equivalent (but less efficient)
  3566. * to a larger limit. Thus disabled by default.
  3567. */
  3568. shared = 0;
  3569. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3570. shared = 8;
  3571. #if DEBUG
  3572. /*
  3573. * With debugging enabled, large batchcount lead to excessively long
  3574. * periods with disabled local interrupts. Limit the batchcount
  3575. */
  3576. if (limit > 32)
  3577. limit = 32;
  3578. #endif
  3579. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3580. if (err)
  3581. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3582. cachep->name, -err);
  3583. return err;
  3584. }
  3585. /*
  3586. * Drain an array if it contains any elements taking the l3 lock only if
  3587. * necessary. Note that the l3 listlock also protects the array_cache
  3588. * if drain_array() is used on the shared array.
  3589. */
  3590. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3591. struct array_cache *ac, int force, int node)
  3592. {
  3593. int tofree;
  3594. if (!ac || !ac->avail)
  3595. return;
  3596. if (ac->touched && !force) {
  3597. ac->touched = 0;
  3598. } else {
  3599. spin_lock_irq(&l3->list_lock);
  3600. if (ac->avail) {
  3601. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3602. if (tofree > ac->avail)
  3603. tofree = (ac->avail + 1) / 2;
  3604. free_block(cachep, ac->entry, tofree, node);
  3605. ac->avail -= tofree;
  3606. memmove(ac->entry, &(ac->entry[tofree]),
  3607. sizeof(void *) * ac->avail);
  3608. }
  3609. spin_unlock_irq(&l3->list_lock);
  3610. }
  3611. }
  3612. /**
  3613. * cache_reap - Reclaim memory from caches.
  3614. * @w: work descriptor
  3615. *
  3616. * Called from workqueue/eventd every few seconds.
  3617. * Purpose:
  3618. * - clear the per-cpu caches for this CPU.
  3619. * - return freeable pages to the main free memory pool.
  3620. *
  3621. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3622. * again on the next iteration.
  3623. */
  3624. static void cache_reap(struct work_struct *w)
  3625. {
  3626. struct kmem_cache *searchp;
  3627. struct kmem_list3 *l3;
  3628. int node = numa_node_id();
  3629. struct delayed_work *work =
  3630. container_of(w, struct delayed_work, work);
  3631. if (!mutex_trylock(&cache_chain_mutex))
  3632. /* Give up. Setup the next iteration. */
  3633. goto out;
  3634. list_for_each_entry(searchp, &cache_chain, next) {
  3635. check_irq_on();
  3636. /*
  3637. * We only take the l3 lock if absolutely necessary and we
  3638. * have established with reasonable certainty that
  3639. * we can do some work if the lock was obtained.
  3640. */
  3641. l3 = searchp->nodelists[node];
  3642. reap_alien(searchp, l3);
  3643. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3644. /*
  3645. * These are racy checks but it does not matter
  3646. * if we skip one check or scan twice.
  3647. */
  3648. if (time_after(l3->next_reap, jiffies))
  3649. goto next;
  3650. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3651. drain_array(searchp, l3, l3->shared, 0, node);
  3652. if (l3->free_touched)
  3653. l3->free_touched = 0;
  3654. else {
  3655. int freed;
  3656. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3657. 5 * searchp->num - 1) / (5 * searchp->num));
  3658. STATS_ADD_REAPED(searchp, freed);
  3659. }
  3660. next:
  3661. cond_resched();
  3662. }
  3663. check_irq_on();
  3664. mutex_unlock(&cache_chain_mutex);
  3665. next_reap_node();
  3666. refresh_cpu_vm_stats(smp_processor_id());
  3667. out:
  3668. /* Set up the next iteration */
  3669. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3670. }
  3671. #ifdef CONFIG_PROC_FS
  3672. static void print_slabinfo_header(struct seq_file *m)
  3673. {
  3674. /*
  3675. * Output format version, so at least we can change it
  3676. * without _too_ many complaints.
  3677. */
  3678. #if STATS
  3679. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3680. #else
  3681. seq_puts(m, "slabinfo - version: 2.1\n");
  3682. #endif
  3683. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3684. "<objperslab> <pagesperslab>");
  3685. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3686. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3687. #if STATS
  3688. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3689. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3690. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3691. #endif
  3692. seq_putc(m, '\n');
  3693. }
  3694. static void *s_start(struct seq_file *m, loff_t *pos)
  3695. {
  3696. loff_t n = *pos;
  3697. struct list_head *p;
  3698. mutex_lock(&cache_chain_mutex);
  3699. if (!n)
  3700. print_slabinfo_header(m);
  3701. p = cache_chain.next;
  3702. while (n--) {
  3703. p = p->next;
  3704. if (p == &cache_chain)
  3705. return NULL;
  3706. }
  3707. return list_entry(p, struct kmem_cache, next);
  3708. }
  3709. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3710. {
  3711. struct kmem_cache *cachep = p;
  3712. ++*pos;
  3713. return cachep->next.next == &cache_chain ?
  3714. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3715. }
  3716. static void s_stop(struct seq_file *m, void *p)
  3717. {
  3718. mutex_unlock(&cache_chain_mutex);
  3719. }
  3720. static int s_show(struct seq_file *m, void *p)
  3721. {
  3722. struct kmem_cache *cachep = p;
  3723. struct slab *slabp;
  3724. unsigned long active_objs;
  3725. unsigned long num_objs;
  3726. unsigned long active_slabs = 0;
  3727. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3728. const char *name;
  3729. char *error = NULL;
  3730. int node;
  3731. struct kmem_list3 *l3;
  3732. active_objs = 0;
  3733. num_slabs = 0;
  3734. for_each_online_node(node) {
  3735. l3 = cachep->nodelists[node];
  3736. if (!l3)
  3737. continue;
  3738. check_irq_on();
  3739. spin_lock_irq(&l3->list_lock);
  3740. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3741. if (slabp->inuse != cachep->num && !error)
  3742. error = "slabs_full accounting error";
  3743. active_objs += cachep->num;
  3744. active_slabs++;
  3745. }
  3746. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3747. if (slabp->inuse == cachep->num && !error)
  3748. error = "slabs_partial inuse accounting error";
  3749. if (!slabp->inuse && !error)
  3750. error = "slabs_partial/inuse accounting error";
  3751. active_objs += slabp->inuse;
  3752. active_slabs++;
  3753. }
  3754. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3755. if (slabp->inuse && !error)
  3756. error = "slabs_free/inuse accounting error";
  3757. num_slabs++;
  3758. }
  3759. free_objects += l3->free_objects;
  3760. if (l3->shared)
  3761. shared_avail += l3->shared->avail;
  3762. spin_unlock_irq(&l3->list_lock);
  3763. }
  3764. num_slabs += active_slabs;
  3765. num_objs = num_slabs * cachep->num;
  3766. if (num_objs - active_objs != free_objects && !error)
  3767. error = "free_objects accounting error";
  3768. name = cachep->name;
  3769. if (error)
  3770. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3771. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3772. name, active_objs, num_objs, cachep->buffer_size,
  3773. cachep->num, (1 << cachep->gfporder));
  3774. seq_printf(m, " : tunables %4u %4u %4u",
  3775. cachep->limit, cachep->batchcount, cachep->shared);
  3776. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3777. active_slabs, num_slabs, shared_avail);
  3778. #if STATS
  3779. { /* list3 stats */
  3780. unsigned long high = cachep->high_mark;
  3781. unsigned long allocs = cachep->num_allocations;
  3782. unsigned long grown = cachep->grown;
  3783. unsigned long reaped = cachep->reaped;
  3784. unsigned long errors = cachep->errors;
  3785. unsigned long max_freeable = cachep->max_freeable;
  3786. unsigned long node_allocs = cachep->node_allocs;
  3787. unsigned long node_frees = cachep->node_frees;
  3788. unsigned long overflows = cachep->node_overflow;
  3789. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3790. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3791. reaped, errors, max_freeable, node_allocs,
  3792. node_frees, overflows);
  3793. }
  3794. /* cpu stats */
  3795. {
  3796. unsigned long allochit = atomic_read(&cachep->allochit);
  3797. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3798. unsigned long freehit = atomic_read(&cachep->freehit);
  3799. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3800. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3801. allochit, allocmiss, freehit, freemiss);
  3802. }
  3803. #endif
  3804. seq_putc(m, '\n');
  3805. return 0;
  3806. }
  3807. /*
  3808. * slabinfo_op - iterator that generates /proc/slabinfo
  3809. *
  3810. * Output layout:
  3811. * cache-name
  3812. * num-active-objs
  3813. * total-objs
  3814. * object size
  3815. * num-active-slabs
  3816. * total-slabs
  3817. * num-pages-per-slab
  3818. * + further values on SMP and with statistics enabled
  3819. */
  3820. const struct seq_operations slabinfo_op = {
  3821. .start = s_start,
  3822. .next = s_next,
  3823. .stop = s_stop,
  3824. .show = s_show,
  3825. };
  3826. #define MAX_SLABINFO_WRITE 128
  3827. /**
  3828. * slabinfo_write - Tuning for the slab allocator
  3829. * @file: unused
  3830. * @buffer: user buffer
  3831. * @count: data length
  3832. * @ppos: unused
  3833. */
  3834. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3835. size_t count, loff_t *ppos)
  3836. {
  3837. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3838. int limit, batchcount, shared, res;
  3839. struct kmem_cache *cachep;
  3840. if (count > MAX_SLABINFO_WRITE)
  3841. return -EINVAL;
  3842. if (copy_from_user(&kbuf, buffer, count))
  3843. return -EFAULT;
  3844. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3845. tmp = strchr(kbuf, ' ');
  3846. if (!tmp)
  3847. return -EINVAL;
  3848. *tmp = '\0';
  3849. tmp++;
  3850. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3851. return -EINVAL;
  3852. /* Find the cache in the chain of caches. */
  3853. mutex_lock(&cache_chain_mutex);
  3854. res = -EINVAL;
  3855. list_for_each_entry(cachep, &cache_chain, next) {
  3856. if (!strcmp(cachep->name, kbuf)) {
  3857. if (limit < 1 || batchcount < 1 ||
  3858. batchcount > limit || shared < 0) {
  3859. res = 0;
  3860. } else {
  3861. res = do_tune_cpucache(cachep, limit,
  3862. batchcount, shared);
  3863. }
  3864. break;
  3865. }
  3866. }
  3867. mutex_unlock(&cache_chain_mutex);
  3868. if (res >= 0)
  3869. res = count;
  3870. return res;
  3871. }
  3872. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3873. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3874. {
  3875. loff_t n = *pos;
  3876. struct list_head *p;
  3877. mutex_lock(&cache_chain_mutex);
  3878. p = cache_chain.next;
  3879. while (n--) {
  3880. p = p->next;
  3881. if (p == &cache_chain)
  3882. return NULL;
  3883. }
  3884. return list_entry(p, struct kmem_cache, next);
  3885. }
  3886. static inline int add_caller(unsigned long *n, unsigned long v)
  3887. {
  3888. unsigned long *p;
  3889. int l;
  3890. if (!v)
  3891. return 1;
  3892. l = n[1];
  3893. p = n + 2;
  3894. while (l) {
  3895. int i = l/2;
  3896. unsigned long *q = p + 2 * i;
  3897. if (*q == v) {
  3898. q[1]++;
  3899. return 1;
  3900. }
  3901. if (*q > v) {
  3902. l = i;
  3903. } else {
  3904. p = q + 2;
  3905. l -= i + 1;
  3906. }
  3907. }
  3908. if (++n[1] == n[0])
  3909. return 0;
  3910. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3911. p[0] = v;
  3912. p[1] = 1;
  3913. return 1;
  3914. }
  3915. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3916. {
  3917. void *p;
  3918. int i;
  3919. if (n[0] == n[1])
  3920. return;
  3921. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3922. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3923. continue;
  3924. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3925. return;
  3926. }
  3927. }
  3928. static void show_symbol(struct seq_file *m, unsigned long address)
  3929. {
  3930. #ifdef CONFIG_KALLSYMS
  3931. char *modname;
  3932. const char *name;
  3933. unsigned long offset, size;
  3934. char namebuf[KSYM_NAME_LEN+1];
  3935. name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
  3936. if (name) {
  3937. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3938. if (modname)
  3939. seq_printf(m, " [%s]", modname);
  3940. return;
  3941. }
  3942. #endif
  3943. seq_printf(m, "%p", (void *)address);
  3944. }
  3945. static int leaks_show(struct seq_file *m, void *p)
  3946. {
  3947. struct kmem_cache *cachep = p;
  3948. struct slab *slabp;
  3949. struct kmem_list3 *l3;
  3950. const char *name;
  3951. unsigned long *n = m->private;
  3952. int node;
  3953. int i;
  3954. if (!(cachep->flags & SLAB_STORE_USER))
  3955. return 0;
  3956. if (!(cachep->flags & SLAB_RED_ZONE))
  3957. return 0;
  3958. /* OK, we can do it */
  3959. n[1] = 0;
  3960. for_each_online_node(node) {
  3961. l3 = cachep->nodelists[node];
  3962. if (!l3)
  3963. continue;
  3964. check_irq_on();
  3965. spin_lock_irq(&l3->list_lock);
  3966. list_for_each_entry(slabp, &l3->slabs_full, list)
  3967. handle_slab(n, cachep, slabp);
  3968. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3969. handle_slab(n, cachep, slabp);
  3970. spin_unlock_irq(&l3->list_lock);
  3971. }
  3972. name = cachep->name;
  3973. if (n[0] == n[1]) {
  3974. /* Increase the buffer size */
  3975. mutex_unlock(&cache_chain_mutex);
  3976. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3977. if (!m->private) {
  3978. /* Too bad, we are really out */
  3979. m->private = n;
  3980. mutex_lock(&cache_chain_mutex);
  3981. return -ENOMEM;
  3982. }
  3983. *(unsigned long *)m->private = n[0] * 2;
  3984. kfree(n);
  3985. mutex_lock(&cache_chain_mutex);
  3986. /* Now make sure this entry will be retried */
  3987. m->count = m->size;
  3988. return 0;
  3989. }
  3990. for (i = 0; i < n[1]; i++) {
  3991. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3992. show_symbol(m, n[2*i+2]);
  3993. seq_putc(m, '\n');
  3994. }
  3995. return 0;
  3996. }
  3997. const struct seq_operations slabstats_op = {
  3998. .start = leaks_start,
  3999. .next = s_next,
  4000. .stop = s_stop,
  4001. .show = leaks_show,
  4002. };
  4003. #endif
  4004. #endif
  4005. /**
  4006. * ksize - get the actual amount of memory allocated for a given object
  4007. * @objp: Pointer to the object
  4008. *
  4009. * kmalloc may internally round up allocations and return more memory
  4010. * than requested. ksize() can be used to determine the actual amount of
  4011. * memory allocated. The caller may use this additional memory, even though
  4012. * a smaller amount of memory was initially specified with the kmalloc call.
  4013. * The caller must guarantee that objp points to a valid object previously
  4014. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4015. * must not be freed during the duration of the call.
  4016. */
  4017. size_t ksize(const void *objp)
  4018. {
  4019. if (unlikely(objp == NULL))
  4020. return 0;
  4021. return obj_size(virt_to_cache(objp));
  4022. }