fsi.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. #define DO_FMT 0x0000
  21. #define DOFF_CTL 0x0004
  22. #define DOFF_ST 0x0008
  23. #define DI_FMT 0x000C
  24. #define DIFF_CTL 0x0010
  25. #define DIFF_ST 0x0014
  26. #define CKG1 0x0018
  27. #define CKG2 0x001C
  28. #define DIDT 0x0020
  29. #define DODT 0x0024
  30. #define MUTE_ST 0x0028
  31. #define OUT_SEL 0x0030
  32. #define REG_END OUT_SEL
  33. #define A_MST_CTLR 0x0180
  34. #define B_MST_CTLR 0x01A0
  35. #define CPU_INT_ST 0x01F4
  36. #define CPU_IEMSK 0x01F8
  37. #define CPU_IMSK 0x01FC
  38. #define INT_ST 0x0200
  39. #define IEMSK 0x0204
  40. #define IMSK 0x0208
  41. #define MUTE 0x020C
  42. #define CLK_RST 0x0210
  43. #define SOFT_RST 0x0214
  44. #define FIFO_SZ 0x0218
  45. #define MREG_START A_MST_CTLR
  46. #define MREG_END FIFO_SZ
  47. /* DO_FMT */
  48. /* DI_FMT */
  49. #define CR_MONO (0x0 << 4)
  50. #define CR_MONO_D (0x1 << 4)
  51. #define CR_PCM (0x2 << 4)
  52. #define CR_I2S (0x3 << 4)
  53. #define CR_TDM (0x4 << 4)
  54. #define CR_TDM_D (0x5 << 4)
  55. #define CR_SPDIF 0x00100120
  56. /* DOFF_CTL */
  57. /* DIFF_CTL */
  58. #define IRQ_HALF 0x00100000
  59. #define FIFO_CLR 0x00000001
  60. /* DOFF_ST */
  61. #define ERR_OVER 0x00000010
  62. #define ERR_UNDER 0x00000001
  63. #define ST_ERR (ERR_OVER | ERR_UNDER)
  64. /* CKG1 */
  65. #define ACKMD_MASK 0x00007000
  66. #define BPFMD_MASK 0x00000700
  67. /* A/B MST_CTLR */
  68. #define BP (1 << 4) /* Fix the signal of Biphase output */
  69. #define SE (1 << 0) /* Fix the master clock */
  70. /* CLK_RST */
  71. #define B_CLK 0x00000010
  72. #define A_CLK 0x00000001
  73. /* INT_ST */
  74. #define INT_B_IN (1 << 12)
  75. #define INT_B_OUT (1 << 8)
  76. #define INT_A_IN (1 << 4)
  77. #define INT_A_OUT (1 << 0)
  78. /* SOFT_RST */
  79. #define PBSR (1 << 12) /* Port B Software Reset */
  80. #define PASR (1 << 8) /* Port A Software Reset */
  81. #define IR (1 << 4) /* Interrupt Reset */
  82. #define FSISR (1 << 0) /* Software Reset */
  83. /* FIFO_SZ */
  84. #define OUT_SZ_MASK 0x7
  85. #define BO_SZ_SHIFT 8
  86. #define AO_SZ_SHIFT 0
  87. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  88. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  89. /************************************************************************
  90. struct
  91. ************************************************************************/
  92. struct fsi_priv {
  93. void __iomem *base;
  94. struct snd_pcm_substream *substream;
  95. struct fsi_master *master;
  96. int fifo_max;
  97. int chan;
  98. int byte_offset;
  99. int period_len;
  100. int buffer_len;
  101. int periods;
  102. u32 mst_ctrl;
  103. };
  104. struct fsi_core {
  105. int ver;
  106. u32 int_st;
  107. u32 iemsk;
  108. u32 imsk;
  109. };
  110. struct fsi_master {
  111. void __iomem *base;
  112. int irq;
  113. struct fsi_priv fsia;
  114. struct fsi_priv fsib;
  115. struct fsi_core *core;
  116. struct sh_fsi_platform_info *info;
  117. spinlock_t lock;
  118. };
  119. /************************************************************************
  120. basic read write function
  121. ************************************************************************/
  122. static void __fsi_reg_write(u32 reg, u32 data)
  123. {
  124. /* valid data area is 24bit */
  125. data &= 0x00ffffff;
  126. __raw_writel(data, reg);
  127. }
  128. static u32 __fsi_reg_read(u32 reg)
  129. {
  130. return __raw_readl(reg);
  131. }
  132. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  133. {
  134. u32 val = __fsi_reg_read(reg);
  135. val &= ~mask;
  136. val |= data & mask;
  137. __fsi_reg_write(reg, val);
  138. }
  139. static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
  140. {
  141. if (reg > REG_END) {
  142. pr_err("fsi: register access err (%s)\n", __func__);
  143. return;
  144. }
  145. __fsi_reg_write((u32)(fsi->base + reg), data);
  146. }
  147. static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
  148. {
  149. if (reg > REG_END) {
  150. pr_err("fsi: register access err (%s)\n", __func__);
  151. return 0;
  152. }
  153. return __fsi_reg_read((u32)(fsi->base + reg));
  154. }
  155. static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
  156. {
  157. if (reg > REG_END) {
  158. pr_err("fsi: register access err (%s)\n", __func__);
  159. return;
  160. }
  161. __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
  162. }
  163. static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
  164. {
  165. unsigned long flags;
  166. if ((reg < MREG_START) ||
  167. (reg > MREG_END)) {
  168. pr_err("fsi: register access err (%s)\n", __func__);
  169. return;
  170. }
  171. spin_lock_irqsave(&master->lock, flags);
  172. __fsi_reg_write((u32)(master->base + reg), data);
  173. spin_unlock_irqrestore(&master->lock, flags);
  174. }
  175. static u32 fsi_master_read(struct fsi_master *master, u32 reg)
  176. {
  177. u32 ret;
  178. unsigned long flags;
  179. if ((reg < MREG_START) ||
  180. (reg > MREG_END)) {
  181. pr_err("fsi: register access err (%s)\n", __func__);
  182. return 0;
  183. }
  184. spin_lock_irqsave(&master->lock, flags);
  185. ret = __fsi_reg_read((u32)(master->base + reg));
  186. spin_unlock_irqrestore(&master->lock, flags);
  187. return ret;
  188. }
  189. static void fsi_master_mask_set(struct fsi_master *master,
  190. u32 reg, u32 mask, u32 data)
  191. {
  192. unsigned long flags;
  193. if ((reg < MREG_START) ||
  194. (reg > MREG_END)) {
  195. pr_err("fsi: register access err (%s)\n", __func__);
  196. return;
  197. }
  198. spin_lock_irqsave(&master->lock, flags);
  199. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  200. spin_unlock_irqrestore(&master->lock, flags);
  201. }
  202. /************************************************************************
  203. basic function
  204. ************************************************************************/
  205. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  206. {
  207. return fsi->master;
  208. }
  209. static int fsi_is_port_a(struct fsi_priv *fsi)
  210. {
  211. return fsi->master->base == fsi->base;
  212. }
  213. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  214. {
  215. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  216. return rtd->cpu_dai;
  217. }
  218. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  219. {
  220. struct snd_soc_dai *dai = fsi_get_dai(substream);
  221. struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
  222. if (dai->id == 0)
  223. return &master->fsia;
  224. else
  225. return &master->fsib;
  226. }
  227. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  228. {
  229. int is_porta = fsi_is_port_a(fsi);
  230. struct fsi_master *master = fsi_get_master(fsi);
  231. return is_porta ? master->info->porta_flags :
  232. master->info->portb_flags;
  233. }
  234. static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
  235. {
  236. u32 mode;
  237. u32 flags = fsi_get_info_flags(fsi);
  238. mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;
  239. /* return
  240. * 1 : master mode
  241. * 0 : slave mode
  242. */
  243. return (mode & flags) != mode;
  244. }
  245. static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
  246. {
  247. int is_porta = fsi_is_port_a(fsi);
  248. u32 data;
  249. if (is_porta)
  250. data = is_play ? (1 << 0) : (1 << 4);
  251. else
  252. data = is_play ? (1 << 8) : (1 << 12);
  253. return data;
  254. }
  255. static void fsi_stream_push(struct fsi_priv *fsi,
  256. struct snd_pcm_substream *substream,
  257. u32 buffer_len,
  258. u32 period_len)
  259. {
  260. fsi->substream = substream;
  261. fsi->buffer_len = buffer_len;
  262. fsi->period_len = period_len;
  263. fsi->byte_offset = 0;
  264. fsi->periods = 0;
  265. }
  266. static void fsi_stream_pop(struct fsi_priv *fsi)
  267. {
  268. fsi->substream = NULL;
  269. fsi->buffer_len = 0;
  270. fsi->period_len = 0;
  271. fsi->byte_offset = 0;
  272. fsi->periods = 0;
  273. }
  274. static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
  275. {
  276. u32 status;
  277. u32 reg = is_play ? DOFF_ST : DIFF_ST;
  278. int residue;
  279. status = fsi_reg_read(fsi, reg);
  280. residue = 0x1ff & (status >> 8);
  281. residue *= fsi->chan;
  282. return residue;
  283. }
  284. /************************************************************************
  285. irq function
  286. ************************************************************************/
  287. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  288. {
  289. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  290. struct fsi_master *master = fsi_get_master(fsi);
  291. fsi_master_mask_set(master, master->core->imsk, data, data);
  292. fsi_master_mask_set(master, master->core->iemsk, data, data);
  293. }
  294. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  295. {
  296. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  297. struct fsi_master *master = fsi_get_master(fsi);
  298. fsi_master_mask_set(master, master->core->imsk, data, 0);
  299. fsi_master_mask_set(master, master->core->iemsk, data, 0);
  300. }
  301. static u32 fsi_irq_get_status(struct fsi_master *master)
  302. {
  303. return fsi_master_read(master, master->core->int_st);
  304. }
  305. static void fsi_irq_clear_all_status(struct fsi_master *master)
  306. {
  307. fsi_master_write(master, master->core->int_st, 0);
  308. }
  309. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  310. {
  311. u32 data = 0;
  312. struct fsi_master *master = fsi_get_master(fsi);
  313. data |= fsi_port_ab_io_bit(fsi, 0);
  314. data |= fsi_port_ab_io_bit(fsi, 1);
  315. /* clear interrupt factor */
  316. fsi_master_mask_set(master, master->core->int_st, data, 0);
  317. }
  318. /************************************************************************
  319. SPDIF master clock function
  320. These functions are used later FSI2
  321. ************************************************************************/
  322. static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
  323. {
  324. struct fsi_master *master = fsi_get_master(fsi);
  325. u32 val = BP | SE;
  326. if (master->core->ver < 2) {
  327. pr_err("fsi: register access err (%s)\n", __func__);
  328. return;
  329. }
  330. if (enable)
  331. fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
  332. else
  333. fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
  334. }
  335. /************************************************************************
  336. ctrl function
  337. ************************************************************************/
  338. static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
  339. {
  340. u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
  341. struct fsi_master *master = fsi_get_master(fsi);
  342. if (enable)
  343. fsi_master_mask_set(master, CLK_RST, val, val);
  344. else
  345. fsi_master_mask_set(master, CLK_RST, val, 0);
  346. }
  347. static void fsi_fifo_init(struct fsi_priv *fsi,
  348. int is_play,
  349. struct snd_soc_dai *dai)
  350. {
  351. struct fsi_master *master = fsi_get_master(fsi);
  352. u32 ctrl, shift, i;
  353. /* get on-chip RAM capacity */
  354. shift = fsi_master_read(master, FIFO_SZ);
  355. shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
  356. shift &= OUT_SZ_MASK;
  357. fsi->fifo_max = 256 << shift;
  358. dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
  359. /*
  360. * The maximum number of sample data varies depending
  361. * on the number of channels selected for the format.
  362. *
  363. * FIFOs are used in 4-channel units in 3-channel mode
  364. * and in 8-channel units in 5- to 7-channel mode
  365. * meaning that more FIFOs than the required size of DPRAM
  366. * are used.
  367. *
  368. * ex) if 256 words of DP-RAM is connected
  369. * 1 channel: 256 (256 x 1 = 256)
  370. * 2 channels: 128 (128 x 2 = 256)
  371. * 3 channels: 64 ( 64 x 3 = 192)
  372. * 4 channels: 64 ( 64 x 4 = 256)
  373. * 5 channels: 32 ( 32 x 5 = 160)
  374. * 6 channels: 32 ( 32 x 6 = 192)
  375. * 7 channels: 32 ( 32 x 7 = 224)
  376. * 8 channels: 32 ( 32 x 8 = 256)
  377. */
  378. for (i = 1; i < fsi->chan; i <<= 1)
  379. fsi->fifo_max >>= 1;
  380. dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
  381. ctrl = is_play ? DOFF_CTL : DIFF_CTL;
  382. /* set interrupt generation factor */
  383. fsi_reg_write(fsi, ctrl, IRQ_HALF);
  384. /* clear FIFO */
  385. fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
  386. }
  387. static void fsi_soft_all_reset(struct fsi_master *master)
  388. {
  389. /* port AB reset */
  390. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  391. mdelay(10);
  392. /* soft reset */
  393. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  394. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  395. mdelay(10);
  396. }
  397. /* playback interrupt */
  398. static int fsi_data_push(struct fsi_priv *fsi, int startup)
  399. {
  400. struct snd_pcm_runtime *runtime;
  401. struct snd_pcm_substream *substream = NULL;
  402. u32 status;
  403. int send;
  404. int fifo_free;
  405. int width;
  406. u8 *start;
  407. int i, over_period;
  408. if (!fsi ||
  409. !fsi->substream ||
  410. !fsi->substream->runtime)
  411. return -EINVAL;
  412. over_period = 0;
  413. substream = fsi->substream;
  414. runtime = substream->runtime;
  415. /* FSI FIFO has limit.
  416. * So, this driver can not send periods data at a time
  417. */
  418. if (fsi->byte_offset >=
  419. fsi->period_len * (fsi->periods + 1)) {
  420. over_period = 1;
  421. fsi->periods = (fsi->periods + 1) % runtime->periods;
  422. if (0 == fsi->periods)
  423. fsi->byte_offset = 0;
  424. }
  425. /* get 1 channel data width */
  426. width = frames_to_bytes(runtime, 1) / fsi->chan;
  427. /* get send size for alsa */
  428. send = (fsi->buffer_len - fsi->byte_offset) / width;
  429. /* get FIFO free size */
  430. fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);
  431. /* size check */
  432. if (fifo_free < send)
  433. send = fifo_free;
  434. start = runtime->dma_area;
  435. start += fsi->byte_offset;
  436. switch (width) {
  437. case 2:
  438. for (i = 0; i < send; i++)
  439. fsi_reg_write(fsi, DODT,
  440. ((u32)*((u16 *)start + i) << 8));
  441. break;
  442. case 4:
  443. for (i = 0; i < send; i++)
  444. fsi_reg_write(fsi, DODT, *((u32 *)start + i));
  445. break;
  446. default:
  447. return -EINVAL;
  448. }
  449. fsi->byte_offset += send * width;
  450. status = fsi_reg_read(fsi, DOFF_ST);
  451. if (!startup) {
  452. struct snd_soc_dai *dai = fsi_get_dai(substream);
  453. if (status & ERR_OVER)
  454. dev_err(dai->dev, "over run\n");
  455. if (status & ERR_UNDER)
  456. dev_err(dai->dev, "under run\n");
  457. }
  458. fsi_reg_write(fsi, DOFF_ST, 0);
  459. fsi_irq_enable(fsi, 1);
  460. if (over_period)
  461. snd_pcm_period_elapsed(substream);
  462. return 0;
  463. }
  464. static int fsi_data_pop(struct fsi_priv *fsi, int startup)
  465. {
  466. struct snd_pcm_runtime *runtime;
  467. struct snd_pcm_substream *substream = NULL;
  468. u32 status;
  469. int free;
  470. int fifo_fill;
  471. int width;
  472. u8 *start;
  473. int i, over_period;
  474. if (!fsi ||
  475. !fsi->substream ||
  476. !fsi->substream->runtime)
  477. return -EINVAL;
  478. over_period = 0;
  479. substream = fsi->substream;
  480. runtime = substream->runtime;
  481. /* FSI FIFO has limit.
  482. * So, this driver can not send periods data at a time
  483. */
  484. if (fsi->byte_offset >=
  485. fsi->period_len * (fsi->periods + 1)) {
  486. over_period = 1;
  487. fsi->periods = (fsi->periods + 1) % runtime->periods;
  488. if (0 == fsi->periods)
  489. fsi->byte_offset = 0;
  490. }
  491. /* get 1 channel data width */
  492. width = frames_to_bytes(runtime, 1) / fsi->chan;
  493. /* get free space for alsa */
  494. free = (fsi->buffer_len - fsi->byte_offset) / width;
  495. /* get recv size */
  496. fifo_fill = fsi_get_fifo_residue(fsi, 0);
  497. if (free < fifo_fill)
  498. fifo_fill = free;
  499. start = runtime->dma_area;
  500. start += fsi->byte_offset;
  501. switch (width) {
  502. case 2:
  503. for (i = 0; i < fifo_fill; i++)
  504. *((u16 *)start + i) =
  505. (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  506. break;
  507. case 4:
  508. for (i = 0; i < fifo_fill; i++)
  509. *((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
  510. break;
  511. default:
  512. return -EINVAL;
  513. }
  514. fsi->byte_offset += fifo_fill * width;
  515. status = fsi_reg_read(fsi, DIFF_ST);
  516. if (!startup) {
  517. struct snd_soc_dai *dai = fsi_get_dai(substream);
  518. if (status & ERR_OVER)
  519. dev_err(dai->dev, "over run\n");
  520. if (status & ERR_UNDER)
  521. dev_err(dai->dev, "under run\n");
  522. }
  523. fsi_reg_write(fsi, DIFF_ST, 0);
  524. fsi_irq_enable(fsi, 0);
  525. if (over_period)
  526. snd_pcm_period_elapsed(substream);
  527. return 0;
  528. }
  529. static irqreturn_t fsi_interrupt(int irq, void *data)
  530. {
  531. struct fsi_master *master = data;
  532. u32 int_st = fsi_irq_get_status(master);
  533. /* clear irq status */
  534. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  535. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  536. if (int_st & INT_A_OUT)
  537. fsi_data_push(&master->fsia, 0);
  538. if (int_st & INT_B_OUT)
  539. fsi_data_push(&master->fsib, 0);
  540. if (int_st & INT_A_IN)
  541. fsi_data_pop(&master->fsia, 0);
  542. if (int_st & INT_B_IN)
  543. fsi_data_pop(&master->fsib, 0);
  544. fsi_irq_clear_all_status(master);
  545. return IRQ_HANDLED;
  546. }
  547. /************************************************************************
  548. dai ops
  549. ************************************************************************/
  550. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  551. struct snd_soc_dai *dai)
  552. {
  553. struct fsi_priv *fsi = fsi_get_priv(substream);
  554. u32 flags = fsi_get_info_flags(fsi);
  555. struct fsi_master *master = fsi_get_master(fsi);
  556. u32 fmt;
  557. u32 reg;
  558. u32 data;
  559. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  560. int is_master;
  561. int ret = 0;
  562. pm_runtime_get_sync(dai->dev);
  563. /* CKG1 */
  564. data = is_play ? (1 << 0) : (1 << 4);
  565. is_master = fsi_is_master_mode(fsi, is_play);
  566. if (is_master)
  567. fsi_reg_mask_set(fsi, CKG1, data, data);
  568. else
  569. fsi_reg_mask_set(fsi, CKG1, data, 0);
  570. /* clock inversion (CKG2) */
  571. data = 0;
  572. if (SH_FSI_LRM_INV & flags)
  573. data |= 1 << 12;
  574. if (SH_FSI_BRM_INV & flags)
  575. data |= 1 << 8;
  576. if (SH_FSI_LRS_INV & flags)
  577. data |= 1 << 4;
  578. if (SH_FSI_BRS_INV & flags)
  579. data |= 1 << 0;
  580. fsi_reg_write(fsi, CKG2, data);
  581. /* do fmt, di fmt */
  582. data = 0;
  583. reg = is_play ? DO_FMT : DI_FMT;
  584. fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
  585. switch (fmt) {
  586. case SH_FSI_FMT_MONO:
  587. data = CR_MONO;
  588. fsi->chan = 1;
  589. break;
  590. case SH_FSI_FMT_MONO_DELAY:
  591. data = CR_MONO_D;
  592. fsi->chan = 1;
  593. break;
  594. case SH_FSI_FMT_PCM:
  595. data = CR_PCM;
  596. fsi->chan = 2;
  597. break;
  598. case SH_FSI_FMT_I2S:
  599. data = CR_I2S;
  600. fsi->chan = 2;
  601. break;
  602. case SH_FSI_FMT_TDM:
  603. fsi->chan = is_play ?
  604. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  605. data = CR_TDM | (fsi->chan - 1);
  606. break;
  607. case SH_FSI_FMT_TDM_DELAY:
  608. fsi->chan = is_play ?
  609. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  610. data = CR_TDM_D | (fsi->chan - 1);
  611. break;
  612. case SH_FSI_FMT_SPDIF:
  613. if (master->core->ver < 2) {
  614. dev_err(dai->dev, "This FSI can not use SPDIF\n");
  615. return -EINVAL;
  616. }
  617. data = CR_SPDIF;
  618. fsi->chan = 2;
  619. fsi_spdif_clk_ctrl(fsi, 1);
  620. fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
  621. break;
  622. default:
  623. dev_err(dai->dev, "unknown format.\n");
  624. return -EINVAL;
  625. }
  626. fsi_reg_write(fsi, reg, data);
  627. /* irq clear */
  628. fsi_irq_disable(fsi, is_play);
  629. fsi_irq_clear_status(fsi);
  630. /* fifo init */
  631. fsi_fifo_init(fsi, is_play, dai);
  632. return ret;
  633. }
  634. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  635. struct snd_soc_dai *dai)
  636. {
  637. struct fsi_priv *fsi = fsi_get_priv(substream);
  638. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  639. fsi_irq_disable(fsi, is_play);
  640. fsi_clk_ctrl(fsi, 0);
  641. pm_runtime_put_sync(dai->dev);
  642. }
  643. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  644. struct snd_soc_dai *dai)
  645. {
  646. struct fsi_priv *fsi = fsi_get_priv(substream);
  647. struct snd_pcm_runtime *runtime = substream->runtime;
  648. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  649. int ret = 0;
  650. switch (cmd) {
  651. case SNDRV_PCM_TRIGGER_START:
  652. fsi_stream_push(fsi, substream,
  653. frames_to_bytes(runtime, runtime->buffer_size),
  654. frames_to_bytes(runtime, runtime->period_size));
  655. ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
  656. break;
  657. case SNDRV_PCM_TRIGGER_STOP:
  658. fsi_irq_disable(fsi, is_play);
  659. fsi_stream_pop(fsi);
  660. break;
  661. }
  662. return ret;
  663. }
  664. static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
  665. struct snd_pcm_hw_params *params,
  666. struct snd_soc_dai *dai)
  667. {
  668. struct fsi_priv *fsi = fsi_get_priv(substream);
  669. struct fsi_master *master = fsi_get_master(fsi);
  670. int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
  671. int fsi_ver = master->core->ver;
  672. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  673. int ret;
  674. /* if slave mode, set_rate is not needed */
  675. if (!fsi_is_master_mode(fsi, is_play))
  676. return 0;
  677. /* it is error if no set_rate */
  678. if (!set_rate)
  679. return -EIO;
  680. ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
  681. if (ret > 0) {
  682. u32 data = 0;
  683. switch (ret & SH_FSI_ACKMD_MASK) {
  684. default:
  685. /* FALL THROUGH */
  686. case SH_FSI_ACKMD_512:
  687. data |= (0x0 << 12);
  688. break;
  689. case SH_FSI_ACKMD_256:
  690. data |= (0x1 << 12);
  691. break;
  692. case SH_FSI_ACKMD_128:
  693. data |= (0x2 << 12);
  694. break;
  695. case SH_FSI_ACKMD_64:
  696. data |= (0x3 << 12);
  697. break;
  698. case SH_FSI_ACKMD_32:
  699. if (fsi_ver < 2)
  700. dev_err(dai->dev, "unsupported ACKMD\n");
  701. else
  702. data |= (0x4 << 12);
  703. break;
  704. }
  705. switch (ret & SH_FSI_BPFMD_MASK) {
  706. default:
  707. /* FALL THROUGH */
  708. case SH_FSI_BPFMD_32:
  709. data |= (0x0 << 8);
  710. break;
  711. case SH_FSI_BPFMD_64:
  712. data |= (0x1 << 8);
  713. break;
  714. case SH_FSI_BPFMD_128:
  715. data |= (0x2 << 8);
  716. break;
  717. case SH_FSI_BPFMD_256:
  718. data |= (0x3 << 8);
  719. break;
  720. case SH_FSI_BPFMD_512:
  721. data |= (0x4 << 8);
  722. break;
  723. case SH_FSI_BPFMD_16:
  724. if (fsi_ver < 2)
  725. dev_err(dai->dev, "unsupported ACKMD\n");
  726. else
  727. data |= (0x7 << 8);
  728. break;
  729. }
  730. fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
  731. udelay(10);
  732. fsi_clk_ctrl(fsi, 1);
  733. ret = 0;
  734. }
  735. return ret;
  736. }
  737. static struct snd_soc_dai_ops fsi_dai_ops = {
  738. .startup = fsi_dai_startup,
  739. .shutdown = fsi_dai_shutdown,
  740. .trigger = fsi_dai_trigger,
  741. .hw_params = fsi_dai_hw_params,
  742. };
  743. /************************************************************************
  744. pcm ops
  745. ************************************************************************/
  746. static struct snd_pcm_hardware fsi_pcm_hardware = {
  747. .info = SNDRV_PCM_INFO_INTERLEAVED |
  748. SNDRV_PCM_INFO_MMAP |
  749. SNDRV_PCM_INFO_MMAP_VALID |
  750. SNDRV_PCM_INFO_PAUSE,
  751. .formats = FSI_FMTS,
  752. .rates = FSI_RATES,
  753. .rate_min = 8000,
  754. .rate_max = 192000,
  755. .channels_min = 1,
  756. .channels_max = 2,
  757. .buffer_bytes_max = 64 * 1024,
  758. .period_bytes_min = 32,
  759. .period_bytes_max = 8192,
  760. .periods_min = 1,
  761. .periods_max = 32,
  762. .fifo_size = 256,
  763. };
  764. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  765. {
  766. struct snd_pcm_runtime *runtime = substream->runtime;
  767. int ret = 0;
  768. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  769. ret = snd_pcm_hw_constraint_integer(runtime,
  770. SNDRV_PCM_HW_PARAM_PERIODS);
  771. return ret;
  772. }
  773. static int fsi_hw_params(struct snd_pcm_substream *substream,
  774. struct snd_pcm_hw_params *hw_params)
  775. {
  776. return snd_pcm_lib_malloc_pages(substream,
  777. params_buffer_bytes(hw_params));
  778. }
  779. static int fsi_hw_free(struct snd_pcm_substream *substream)
  780. {
  781. return snd_pcm_lib_free_pages(substream);
  782. }
  783. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  784. {
  785. struct snd_pcm_runtime *runtime = substream->runtime;
  786. struct fsi_priv *fsi = fsi_get_priv(substream);
  787. long location;
  788. location = (fsi->byte_offset - 1);
  789. if (location < 0)
  790. location = 0;
  791. return bytes_to_frames(runtime, location);
  792. }
  793. static struct snd_pcm_ops fsi_pcm_ops = {
  794. .open = fsi_pcm_open,
  795. .ioctl = snd_pcm_lib_ioctl,
  796. .hw_params = fsi_hw_params,
  797. .hw_free = fsi_hw_free,
  798. .pointer = fsi_pointer,
  799. };
  800. /************************************************************************
  801. snd_soc_platform
  802. ************************************************************************/
  803. #define PREALLOC_BUFFER (32 * 1024)
  804. #define PREALLOC_BUFFER_MAX (32 * 1024)
  805. static void fsi_pcm_free(struct snd_pcm *pcm)
  806. {
  807. snd_pcm_lib_preallocate_free_for_all(pcm);
  808. }
  809. static int fsi_pcm_new(struct snd_card *card,
  810. struct snd_soc_dai *dai,
  811. struct snd_pcm *pcm)
  812. {
  813. /*
  814. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  815. * in MMAP mode (i.e. aplay -M)
  816. */
  817. return snd_pcm_lib_preallocate_pages_for_all(
  818. pcm,
  819. SNDRV_DMA_TYPE_CONTINUOUS,
  820. snd_dma_continuous_data(GFP_KERNEL),
  821. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  822. }
  823. /************************************************************************
  824. alsa struct
  825. ************************************************************************/
  826. static struct snd_soc_dai_driver fsi_soc_dai[] = {
  827. {
  828. .name = "fsia-dai",
  829. .playback = {
  830. .rates = FSI_RATES,
  831. .formats = FSI_FMTS,
  832. .channels_min = 1,
  833. .channels_max = 8,
  834. },
  835. .capture = {
  836. .rates = FSI_RATES,
  837. .formats = FSI_FMTS,
  838. .channels_min = 1,
  839. .channels_max = 8,
  840. },
  841. .ops = &fsi_dai_ops,
  842. },
  843. {
  844. .name = "fsib-dai",
  845. .playback = {
  846. .rates = FSI_RATES,
  847. .formats = FSI_FMTS,
  848. .channels_min = 1,
  849. .channels_max = 8,
  850. },
  851. .capture = {
  852. .rates = FSI_RATES,
  853. .formats = FSI_FMTS,
  854. .channels_min = 1,
  855. .channels_max = 8,
  856. },
  857. .ops = &fsi_dai_ops,
  858. },
  859. };
  860. static struct snd_soc_platform_driver fsi_soc_platform = {
  861. .ops = &fsi_pcm_ops,
  862. .pcm_new = fsi_pcm_new,
  863. .pcm_free = fsi_pcm_free,
  864. };
  865. /************************************************************************
  866. platform function
  867. ************************************************************************/
  868. static int fsi_probe(struct platform_device *pdev)
  869. {
  870. struct fsi_master *master;
  871. const struct platform_device_id *id_entry;
  872. struct resource *res;
  873. unsigned int irq;
  874. int ret;
  875. id_entry = pdev->id_entry;
  876. if (!id_entry) {
  877. dev_err(&pdev->dev, "unknown fsi device\n");
  878. return -ENODEV;
  879. }
  880. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  881. irq = platform_get_irq(pdev, 0);
  882. if (!res || (int)irq <= 0) {
  883. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  884. ret = -ENODEV;
  885. goto exit;
  886. }
  887. master = kzalloc(sizeof(*master), GFP_KERNEL);
  888. if (!master) {
  889. dev_err(&pdev->dev, "Could not allocate master\n");
  890. ret = -ENOMEM;
  891. goto exit;
  892. }
  893. master->base = ioremap_nocache(res->start, resource_size(res));
  894. if (!master->base) {
  895. ret = -ENXIO;
  896. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  897. goto exit_kfree;
  898. }
  899. /* master setting */
  900. master->irq = irq;
  901. master->info = pdev->dev.platform_data;
  902. master->core = (struct fsi_core *)id_entry->driver_data;
  903. spin_lock_init(&master->lock);
  904. /* FSI A setting */
  905. master->fsia.base = master->base;
  906. master->fsia.master = master;
  907. master->fsia.mst_ctrl = A_MST_CTLR;
  908. /* FSI B setting */
  909. master->fsib.base = master->base + 0x40;
  910. master->fsib.master = master;
  911. master->fsib.mst_ctrl = B_MST_CTLR;
  912. pm_runtime_enable(&pdev->dev);
  913. pm_runtime_resume(&pdev->dev);
  914. dev_set_drvdata(&pdev->dev, master);
  915. fsi_soft_all_reset(master);
  916. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  917. id_entry->name, master);
  918. if (ret) {
  919. dev_err(&pdev->dev, "irq request err\n");
  920. goto exit_iounmap;
  921. }
  922. ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
  923. if (ret < 0) {
  924. dev_err(&pdev->dev, "cannot snd soc register\n");
  925. goto exit_free_irq;
  926. }
  927. return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  928. exit_free_irq:
  929. free_irq(irq, master);
  930. exit_iounmap:
  931. iounmap(master->base);
  932. pm_runtime_disable(&pdev->dev);
  933. exit_kfree:
  934. kfree(master);
  935. master = NULL;
  936. exit:
  937. return ret;
  938. }
  939. static int fsi_remove(struct platform_device *pdev)
  940. {
  941. struct fsi_master *master;
  942. master = dev_get_drvdata(&pdev->dev);
  943. snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
  944. snd_soc_unregister_platform(&pdev->dev);
  945. pm_runtime_disable(&pdev->dev);
  946. free_irq(master->irq, master);
  947. iounmap(master->base);
  948. kfree(master);
  949. return 0;
  950. }
  951. static int fsi_runtime_nop(struct device *dev)
  952. {
  953. /* Runtime PM callback shared between ->runtime_suspend()
  954. * and ->runtime_resume(). Simply returns success.
  955. *
  956. * This driver re-initializes all registers after
  957. * pm_runtime_get_sync() anyway so there is no need
  958. * to save and restore registers here.
  959. */
  960. return 0;
  961. }
  962. static struct dev_pm_ops fsi_pm_ops = {
  963. .runtime_suspend = fsi_runtime_nop,
  964. .runtime_resume = fsi_runtime_nop,
  965. };
  966. static struct fsi_core fsi1_core = {
  967. .ver = 1,
  968. /* Interrupt */
  969. .int_st = INT_ST,
  970. .iemsk = IEMSK,
  971. .imsk = IMSK,
  972. };
  973. static struct fsi_core fsi2_core = {
  974. .ver = 2,
  975. /* Interrupt */
  976. .int_st = CPU_INT_ST,
  977. .iemsk = CPU_IEMSK,
  978. .imsk = CPU_IMSK,
  979. };
  980. static struct platform_device_id fsi_id_table[] = {
  981. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  982. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  983. };
  984. MODULE_DEVICE_TABLE(platform, fsi_id_table);
  985. static struct platform_driver fsi_driver = {
  986. .driver = {
  987. .name = "fsi-pcm-audio",
  988. .pm = &fsi_pm_ops,
  989. },
  990. .probe = fsi_probe,
  991. .remove = fsi_remove,
  992. .id_table = fsi_id_table,
  993. };
  994. static int __init fsi_mobile_init(void)
  995. {
  996. return platform_driver_register(&fsi_driver);
  997. }
  998. static void __exit fsi_mobile_exit(void)
  999. {
  1000. platform_driver_unregister(&fsi_driver);
  1001. }
  1002. module_init(fsi_mobile_init);
  1003. module_exit(fsi_mobile_exit);
  1004. MODULE_LICENSE("GPL");
  1005. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  1006. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");