hw.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../cam.h"
  33. #include "../ps.h"
  34. #include "../usb.h"
  35. #include "reg.h"
  36. #include "def.h"
  37. #include "phy.h"
  38. #include "mac.h"
  39. #include "dm.h"
  40. #include "hw.h"
  41. #include "trx.h"
  42. #include "led.h"
  43. #include "table.h"
  44. static void _rtl92cu_phy_param_tab_init(struct ieee80211_hw *hw)
  45. {
  46. struct rtl_priv *rtlpriv = rtl_priv(hw);
  47. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  48. struct rtl_efuse *rtlefuse = rtl_efuse(rtlpriv);
  49. rtlphy->hwparam_tables[MAC_REG].length = RTL8192CUMAC_2T_ARRAYLENGTH;
  50. rtlphy->hwparam_tables[MAC_REG].pdata = RTL8192CUMAC_2T_ARRAY;
  51. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  52. rtlphy->hwparam_tables[PHY_REG_PG].length =
  53. RTL8192CUPHY_REG_Array_PG_HPLength;
  54. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  55. RTL8192CUPHY_REG_Array_PG_HP;
  56. } else {
  57. rtlphy->hwparam_tables[PHY_REG_PG].length =
  58. RTL8192CUPHY_REG_ARRAY_PGLENGTH;
  59. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  60. RTL8192CUPHY_REG_ARRAY_PG;
  61. }
  62. /* 2T */
  63. rtlphy->hwparam_tables[PHY_REG_2T].length =
  64. RTL8192CUPHY_REG_2TARRAY_LENGTH;
  65. rtlphy->hwparam_tables[PHY_REG_2T].pdata =
  66. RTL8192CUPHY_REG_2TARRAY;
  67. rtlphy->hwparam_tables[RADIOA_2T].length =
  68. RTL8192CURADIOA_2TARRAYLENGTH;
  69. rtlphy->hwparam_tables[RADIOA_2T].pdata =
  70. RTL8192CURADIOA_2TARRAY;
  71. rtlphy->hwparam_tables[RADIOB_2T].length =
  72. RTL8192CURADIOB_2TARRAYLENGTH;
  73. rtlphy->hwparam_tables[RADIOB_2T].pdata =
  74. RTL8192CU_RADIOB_2TARRAY;
  75. rtlphy->hwparam_tables[AGCTAB_2T].length =
  76. RTL8192CUAGCTAB_2TARRAYLENGTH;
  77. rtlphy->hwparam_tables[AGCTAB_2T].pdata =
  78. RTL8192CUAGCTAB_2TARRAY;
  79. /* 1T */
  80. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  81. rtlphy->hwparam_tables[PHY_REG_1T].length =
  82. RTL8192CUPHY_REG_1T_HPArrayLength;
  83. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  84. RTL8192CUPHY_REG_1T_HPArray;
  85. rtlphy->hwparam_tables[RADIOA_1T].length =
  86. RTL8192CURadioA_1T_HPArrayLength;
  87. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  88. RTL8192CURadioA_1T_HPArray;
  89. rtlphy->hwparam_tables[RADIOB_1T].length =
  90. RTL8192CURADIOB_1TARRAYLENGTH;
  91. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  92. RTL8192CU_RADIOB_1TARRAY;
  93. rtlphy->hwparam_tables[AGCTAB_1T].length =
  94. RTL8192CUAGCTAB_1T_HPArrayLength;
  95. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  96. Rtl8192CUAGCTAB_1T_HPArray;
  97. } else {
  98. rtlphy->hwparam_tables[PHY_REG_1T].length =
  99. RTL8192CUPHY_REG_1TARRAY_LENGTH;
  100. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  101. RTL8192CUPHY_REG_1TARRAY;
  102. rtlphy->hwparam_tables[RADIOA_1T].length =
  103. RTL8192CURADIOA_1TARRAYLENGTH;
  104. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  105. RTL8192CU_RADIOA_1TARRAY;
  106. rtlphy->hwparam_tables[RADIOB_1T].length =
  107. RTL8192CURADIOB_1TARRAYLENGTH;
  108. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  109. RTL8192CU_RADIOB_1TARRAY;
  110. rtlphy->hwparam_tables[AGCTAB_1T].length =
  111. RTL8192CUAGCTAB_1TARRAYLENGTH;
  112. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  113. RTL8192CUAGCTAB_1TARRAY;
  114. }
  115. }
  116. static void _rtl92cu_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  117. bool autoload_fail,
  118. u8 *hwinfo)
  119. {
  120. struct rtl_priv *rtlpriv = rtl_priv(hw);
  121. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  122. u8 rf_path, index, tempval;
  123. u16 i;
  124. for (rf_path = 0; rf_path < 2; rf_path++) {
  125. for (i = 0; i < 3; i++) {
  126. if (!autoload_fail) {
  127. rtlefuse->
  128. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  129. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  130. rtlefuse->
  131. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  132. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  133. i];
  134. } else {
  135. rtlefuse->
  136. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  137. EEPROM_DEFAULT_TXPOWERLEVEL;
  138. rtlefuse->
  139. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  140. EEPROM_DEFAULT_TXPOWERLEVEL;
  141. }
  142. }
  143. }
  144. for (i = 0; i < 3; i++) {
  145. if (!autoload_fail)
  146. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  147. else
  148. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  149. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_A][i] =
  150. (tempval & 0xf);
  151. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_B][i] =
  152. ((tempval & 0xf0) >> 4);
  153. }
  154. for (rf_path = 0; rf_path < 2; rf_path++)
  155. for (i = 0; i < 3; i++)
  156. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  157. ("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path,
  158. i, rtlefuse->
  159. eeprom_chnlarea_txpwr_cck[rf_path][i]));
  160. for (rf_path = 0; rf_path < 2; rf_path++)
  161. for (i = 0; i < 3; i++)
  162. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  163. ("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  164. rf_path, i,
  165. rtlefuse->
  166. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]));
  167. for (rf_path = 0; rf_path < 2; rf_path++)
  168. for (i = 0; i < 3; i++)
  169. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  170. ("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  171. rf_path, i,
  172. rtlefuse->
  173. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
  174. [i]));
  175. for (rf_path = 0; rf_path < 2; rf_path++) {
  176. for (i = 0; i < 14; i++) {
  177. index = _rtl92c_get_chnl_group((u8) i);
  178. rtlefuse->txpwrlevel_cck[rf_path][i] =
  179. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  180. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  181. rtlefuse->
  182. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  183. if ((rtlefuse->
  184. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  185. rtlefuse->
  186. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][index])
  187. > 0) {
  188. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  189. rtlefuse->
  190. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  191. [index] - rtlefuse->
  192. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
  193. [index];
  194. } else {
  195. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  196. }
  197. }
  198. for (i = 0; i < 14; i++) {
  199. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  200. ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
  201. "[0x%x / 0x%x / 0x%x]\n", rf_path, i,
  202. rtlefuse->txpwrlevel_cck[rf_path][i],
  203. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  204. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]));
  205. }
  206. }
  207. for (i = 0; i < 3; i++) {
  208. if (!autoload_fail) {
  209. rtlefuse->eeprom_pwrlimit_ht40[i] =
  210. hwinfo[EEPROM_TXPWR_GROUP + i];
  211. rtlefuse->eeprom_pwrlimit_ht20[i] =
  212. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  213. } else {
  214. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  215. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  216. }
  217. }
  218. for (rf_path = 0; rf_path < 2; rf_path++) {
  219. for (i = 0; i < 14; i++) {
  220. index = _rtl92c_get_chnl_group((u8) i);
  221. if (rf_path == RF90_PATH_A) {
  222. rtlefuse->pwrgroup_ht20[rf_path][i] =
  223. (rtlefuse->eeprom_pwrlimit_ht20[index]
  224. & 0xf);
  225. rtlefuse->pwrgroup_ht40[rf_path][i] =
  226. (rtlefuse->eeprom_pwrlimit_ht40[index]
  227. & 0xf);
  228. } else if (rf_path == RF90_PATH_B) {
  229. rtlefuse->pwrgroup_ht20[rf_path][i] =
  230. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  231. & 0xf0) >> 4);
  232. rtlefuse->pwrgroup_ht40[rf_path][i] =
  233. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  234. & 0xf0) >> 4);
  235. }
  236. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  237. ("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  238. rf_path, i,
  239. rtlefuse->pwrgroup_ht20[rf_path][i]));
  240. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  241. ("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  242. rf_path, i,
  243. rtlefuse->pwrgroup_ht40[rf_path][i]));
  244. }
  245. }
  246. for (i = 0; i < 14; i++) {
  247. index = _rtl92c_get_chnl_group((u8) i);
  248. if (!autoload_fail)
  249. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  250. else
  251. tempval = EEPROM_DEFAULT_HT20_DIFF;
  252. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  253. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  254. ((tempval >> 4) & 0xF);
  255. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  256. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  257. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  258. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  259. index = _rtl92c_get_chnl_group((u8) i);
  260. if (!autoload_fail)
  261. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  262. else
  263. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  264. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  265. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  266. ((tempval >> 4) & 0xF);
  267. }
  268. rtlefuse->legacy_ht_txpowerdiff =
  269. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  270. for (i = 0; i < 14; i++)
  271. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  272. ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i,
  273. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]));
  274. for (i = 0; i < 14; i++)
  275. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  276. ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i,
  277. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]));
  278. for (i = 0; i < 14; i++)
  279. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  280. ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i,
  281. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]));
  282. for (i = 0; i < 14; i++)
  283. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  284. ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i,
  285. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]));
  286. if (!autoload_fail)
  287. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  288. else
  289. rtlefuse->eeprom_regulatory = 0;
  290. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  291. ("eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory));
  292. if (!autoload_fail) {
  293. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  294. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  295. } else {
  296. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  297. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  298. }
  299. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  300. ("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  301. rtlefuse->eeprom_tssi[RF90_PATH_A],
  302. rtlefuse->eeprom_tssi[RF90_PATH_B]));
  303. if (!autoload_fail)
  304. tempval = hwinfo[EEPROM_THERMAL_METER];
  305. else
  306. tempval = EEPROM_DEFAULT_THERMALMETER;
  307. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  308. if (rtlefuse->eeprom_thermalmeter < 0x06 ||
  309. rtlefuse->eeprom_thermalmeter > 0x1c)
  310. rtlefuse->eeprom_thermalmeter = 0x12;
  311. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  312. rtlefuse->apk_thermalmeterignore = true;
  313. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  314. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  315. ("thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter));
  316. }
  317. static void _rtl92cu_read_board_type(struct ieee80211_hw *hw, u8 *contents)
  318. {
  319. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  320. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  321. u8 boardType;
  322. if (IS_NORMAL_CHIP(rtlhal->version)) {
  323. boardType = ((contents[EEPROM_RF_OPT1]) &
  324. BOARD_TYPE_NORMAL_MASK) >> 5; /*bit[7:5]*/
  325. } else {
  326. boardType = contents[EEPROM_RF_OPT4];
  327. boardType &= BOARD_TYPE_TEST_MASK;
  328. }
  329. rtlefuse->board_type = boardType;
  330. if (IS_HIGHT_PA(rtlefuse->board_type))
  331. rtlefuse->external_pa = 1;
  332. printk(KERN_INFO "rtl8192cu: Board Type %x\n", rtlefuse->board_type);
  333. #ifdef CONFIG_ANTENNA_DIVERSITY
  334. /* Antenna Diversity setting. */
  335. if (registry_par->antdiv_cfg == 2) /* 2: From Efuse */
  336. rtl_efuse->antenna_cfg = (contents[EEPROM_RF_OPT1]&0x18)>>3;
  337. else
  338. rtl_efuse->antenna_cfg = registry_par->antdiv_cfg; /* 0:OFF, */
  339. printk(KERN_INFO "rtl8192cu: Antenna Config %x\n",
  340. rtl_efuse->antenna_cfg);
  341. #endif
  342. }
  343. #ifdef CONFIG_BT_COEXIST
  344. static void _update_bt_param(_adapter *padapter)
  345. {
  346. struct btcoexist_priv *pbtpriv = &(padapter->halpriv.bt_coexist);
  347. struct registry_priv *registry_par = &padapter->registrypriv;
  348. if (2 != registry_par->bt_iso) {
  349. /* 0:Low, 1:High, 2:From Efuse */
  350. pbtpriv->BT_Ant_isolation = registry_par->bt_iso;
  351. }
  352. if (registry_par->bt_sco == 1) {
  353. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter, 4.Busy,
  354. * 5.OtherBusy */
  355. pbtpriv->BT_Service = BT_OtherAction;
  356. } else if (registry_par->bt_sco == 2) {
  357. pbtpriv->BT_Service = BT_SCO;
  358. } else if (registry_par->bt_sco == 4) {
  359. pbtpriv->BT_Service = BT_Busy;
  360. } else if (registry_par->bt_sco == 5) {
  361. pbtpriv->BT_Service = BT_OtherBusy;
  362. } else {
  363. pbtpriv->BT_Service = BT_Idle;
  364. }
  365. pbtpriv->BT_Ampdu = registry_par->bt_ampdu;
  366. pbtpriv->bCOBT = _TRUE;
  367. pbtpriv->BtEdcaUL = 0;
  368. pbtpriv->BtEdcaDL = 0;
  369. pbtpriv->BtRssiState = 0xff;
  370. pbtpriv->bInitSet = _FALSE;
  371. pbtpriv->bBTBusyTraffic = _FALSE;
  372. pbtpriv->bBTTrafficModeSet = _FALSE;
  373. pbtpriv->bBTNonTrafficModeSet = _FALSE;
  374. pbtpriv->CurrentState = 0;
  375. pbtpriv->PreviousState = 0;
  376. printk(KERN_INFO "rtl8192cu: BT Coexistance = %s\n",
  377. (pbtpriv->BT_Coexist == _TRUE) ? "enable" : "disable");
  378. if (pbtpriv->BT_Coexist) {
  379. if (pbtpriv->BT_Ant_Num == Ant_x2)
  380. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  381. "Ant_Num = Antx2\n");
  382. else if (pbtpriv->BT_Ant_Num == Ant_x1)
  383. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  384. "Ant_Num = Antx1\n");
  385. switch (pbtpriv->BT_CoexistType) {
  386. case BT_2Wire:
  387. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  388. "CoexistType = BT_2Wire\n");
  389. break;
  390. case BT_ISSC_3Wire:
  391. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  392. "CoexistType = BT_ISSC_3Wire\n");
  393. break;
  394. case BT_Accel:
  395. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  396. "CoexistType = BT_Accel\n");
  397. break;
  398. case BT_CSR_BC4:
  399. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  400. "CoexistType = BT_CSR_BC4\n");
  401. break;
  402. case BT_CSR_BC8:
  403. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  404. "CoexistType = BT_CSR_BC8\n");
  405. break;
  406. case BT_RTL8756:
  407. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  408. "CoexistType = BT_RTL8756\n");
  409. break;
  410. default:
  411. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  412. "CoexistType = Unknown\n");
  413. break;
  414. }
  415. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Ant_isolation = %d\n",
  416. pbtpriv->BT_Ant_isolation);
  417. switch (pbtpriv->BT_Service) {
  418. case BT_OtherAction:
  419. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  420. "BT_OtherAction\n");
  421. break;
  422. case BT_SCO:
  423. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  424. "BT_SCO\n");
  425. break;
  426. case BT_Busy:
  427. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  428. "BT_Busy\n");
  429. break;
  430. case BT_OtherBusy:
  431. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  432. "BT_OtherBusy\n");
  433. break;
  434. default:
  435. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  436. "BT_Idle\n");
  437. break;
  438. }
  439. printk(KERN_INFO "rtl8192cu: BT_RadioSharedType = 0x%x\n",
  440. pbtpriv->BT_RadioSharedType);
  441. }
  442. }
  443. #define GET_BT_COEXIST(priv) (&priv->bt_coexist)
  444. static void _rtl92cu_read_bluetooth_coexistInfo(struct ieee80211_hw *hw,
  445. u8 *contents,
  446. bool bautoloadfailed);
  447. {
  448. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
  449. bool isNormal = IS_NORMAL_CHIP(pHalData->VersionID);
  450. struct btcoexist_priv *pbtpriv = &pHalData->bt_coexist;
  451. u8 rf_opt4;
  452. _rtw_memset(pbtpriv, 0, sizeof(struct btcoexist_priv));
  453. if (AutoloadFail) {
  454. pbtpriv->BT_Coexist = _FALSE;
  455. pbtpriv->BT_CoexistType = BT_2Wire;
  456. pbtpriv->BT_Ant_Num = Ant_x2;
  457. pbtpriv->BT_Ant_isolation = 0;
  458. pbtpriv->BT_RadioSharedType = BT_Radio_Shared;
  459. return;
  460. }
  461. if (isNormal) {
  462. if (pHalData->BoardType == BOARD_USB_COMBO)
  463. pbtpriv->BT_Coexist = _TRUE;
  464. else
  465. pbtpriv->BT_Coexist = ((PROMContent[EEPROM_RF_OPT3] &
  466. 0x20) >> 5); /* bit[5] */
  467. rf_opt4 = PROMContent[EEPROM_RF_OPT4];
  468. pbtpriv->BT_CoexistType = ((rf_opt4&0xe)>>1); /* bit [3:1] */
  469. pbtpriv->BT_Ant_Num = (rf_opt4&0x1); /* bit [0] */
  470. pbtpriv->BT_Ant_isolation = ((rf_opt4&0x10)>>4); /* bit [4] */
  471. pbtpriv->BT_RadioSharedType = ((rf_opt4&0x20)>>5); /* bit [5] */
  472. } else {
  473. pbtpriv->BT_Coexist = (PROMContent[EEPROM_RF_OPT4] >> 4) ?
  474. _TRUE : _FALSE;
  475. }
  476. _update_bt_param(Adapter);
  477. }
  478. #endif
  479. static void _rtl92cu_read_adapter_info(struct ieee80211_hw *hw)
  480. {
  481. struct rtl_priv *rtlpriv = rtl_priv(hw);
  482. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  483. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  484. u16 i, usvalue;
  485. u8 hwinfo[HWSET_MAX_SIZE] = {0};
  486. u16 eeprom_id;
  487. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  488. rtl_efuse_shadow_map_update(hw);
  489. memcpy((void *)hwinfo,
  490. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  491. HWSET_MAX_SIZE);
  492. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  493. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  494. ("RTL819X Not boot from eeprom, check it !!"));
  495. }
  496. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, ("MAP\n"),
  497. hwinfo, HWSET_MAX_SIZE);
  498. eeprom_id = *((u16 *)&hwinfo[0]);
  499. if (eeprom_id != RTL8190_EEPROM_ID) {
  500. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  501. ("EEPROM ID(%#x) is invalid!!\n", eeprom_id));
  502. rtlefuse->autoload_failflag = true;
  503. } else {
  504. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
  505. rtlefuse->autoload_failflag = false;
  506. }
  507. if (rtlefuse->autoload_failflag == true)
  508. return;
  509. for (i = 0; i < 6; i += 2) {
  510. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  511. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  512. }
  513. printk(KERN_INFO "rtl8192cu: MAC address: %pM\n", rtlefuse->dev_addr);
  514. _rtl92cu_read_txpower_info_from_hwpg(hw,
  515. rtlefuse->autoload_failflag, hwinfo);
  516. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  517. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  518. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  519. (" VID = 0x%02x PID = 0x%02x\n",
  520. rtlefuse->eeprom_vid, rtlefuse->eeprom_did));
  521. rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
  522. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  523. rtlefuse->txpwr_fromeprom = true;
  524. rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
  525. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  526. ("EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid));
  527. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  528. switch (rtlefuse->eeprom_oemid) {
  529. case EEPROM_CID_DEFAULT:
  530. if (rtlefuse->eeprom_did == 0x8176) {
  531. if ((rtlefuse->eeprom_svid == 0x103C &&
  532. rtlefuse->eeprom_smid == 0x1629))
  533. rtlhal->oem_id = RT_CID_819x_HP;
  534. else
  535. rtlhal->oem_id = RT_CID_DEFAULT;
  536. } else {
  537. rtlhal->oem_id = RT_CID_DEFAULT;
  538. }
  539. break;
  540. case EEPROM_CID_TOSHIBA:
  541. rtlhal->oem_id = RT_CID_TOSHIBA;
  542. break;
  543. case EEPROM_CID_QMI:
  544. rtlhal->oem_id = RT_CID_819x_QMI;
  545. break;
  546. case EEPROM_CID_WHQL:
  547. default:
  548. rtlhal->oem_id = RT_CID_DEFAULT;
  549. break;
  550. }
  551. }
  552. _rtl92cu_read_board_type(hw, hwinfo);
  553. #ifdef CONFIG_BT_COEXIST
  554. _rtl92cu_read_bluetooth_coexistInfo(hw, hwinfo,
  555. rtlefuse->autoload_failflag);
  556. #endif
  557. }
  558. static void _rtl92cu_hal_customized_behavior(struct ieee80211_hw *hw)
  559. {
  560. struct rtl_priv *rtlpriv = rtl_priv(hw);
  561. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  562. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  563. switch (rtlhal->oem_id) {
  564. case RT_CID_819x_HP:
  565. usb_priv->ledctl.led_opendrain = true;
  566. break;
  567. case RT_CID_819x_Lenovo:
  568. case RT_CID_DEFAULT:
  569. case RT_CID_TOSHIBA:
  570. case RT_CID_CCX:
  571. case RT_CID_819x_Acer:
  572. case RT_CID_WHQL:
  573. default:
  574. break;
  575. }
  576. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  577. ("RT Customized ID: 0x%02X\n", rtlhal->oem_id));
  578. }
  579. void rtl92cu_read_eeprom_info(struct ieee80211_hw *hw)
  580. {
  581. struct rtl_priv *rtlpriv = rtl_priv(hw);
  582. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  583. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  584. u8 tmp_u1b;
  585. if (!IS_NORMAL_CHIP(rtlhal->version))
  586. return;
  587. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  588. rtlefuse->epromtype = (tmp_u1b & EEPROMSEL) ?
  589. EEPROM_93C46 : EEPROM_BOOT_EFUSE;
  590. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from %s\n",
  591. (tmp_u1b & EEPROMSEL) ? "EERROM" : "EFUSE"));
  592. rtlefuse->autoload_failflag = (tmp_u1b & EEPROM_EN) ? false : true;
  593. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload %s\n",
  594. (tmp_u1b & EEPROM_EN) ? "OK!!" : "ERR!!"));
  595. _rtl92cu_read_adapter_info(hw);
  596. _rtl92cu_hal_customized_behavior(hw);
  597. return;
  598. }
  599. static int _rtl92cu_init_power_on(struct ieee80211_hw *hw)
  600. {
  601. struct rtl_priv *rtlpriv = rtl_priv(hw);
  602. int status = 0;
  603. u16 value16;
  604. u8 value8;
  605. /* polling autoload done. */
  606. u32 pollingCount = 0;
  607. do {
  608. if (rtl_read_byte(rtlpriv, REG_APS_FSMCO) & PFM_ALDN) {
  609. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  610. ("Autoload Done!\n"));
  611. break;
  612. }
  613. if (pollingCount++ > 100) {
  614. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  615. ("Failed to polling REG_APS_FSMCO[PFM_ALDN]"
  616. " done!\n"));
  617. return -ENODEV;
  618. }
  619. } while (true);
  620. /* 0. RSV_CTRL 0x1C[7:0] = 0 unlock ISO/CLK/Power control register */
  621. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  622. /* Power on when re-enter from IPS/Radio off/card disable */
  623. /* enable SPS into PWM mode */
  624. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  625. udelay(100);
  626. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  627. if (0 == (value8 & LDV12_EN)) {
  628. value8 |= LDV12_EN;
  629. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  630. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  631. (" power-on :REG_LDOV12D_CTRL Reg0x21:0x%02x.\n",
  632. value8));
  633. udelay(100);
  634. value8 = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  635. value8 &= ~ISO_MD2PP;
  636. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, value8);
  637. }
  638. /* auto enable WLAN */
  639. pollingCount = 0;
  640. value16 = rtl_read_word(rtlpriv, REG_APS_FSMCO);
  641. value16 |= APFM_ONMAC;
  642. rtl_write_word(rtlpriv, REG_APS_FSMCO, value16);
  643. do {
  644. if (!(rtl_read_word(rtlpriv, REG_APS_FSMCO) & APFM_ONMAC)) {
  645. printk(KERN_INFO "rtl8192cu: MAC auto ON okay!\n");
  646. break;
  647. }
  648. if (pollingCount++ > 100) {
  649. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  650. ("Failed to polling REG_APS_FSMCO[APFM_ONMAC]"
  651. " done!\n"));
  652. return -ENODEV;
  653. }
  654. } while (true);
  655. /* Enable Radio ,GPIO ,and LED function */
  656. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x0812);
  657. /* release RF digital isolation */
  658. value16 = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  659. value16 &= ~ISO_DIOR;
  660. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, value16);
  661. /* Reconsider when to do this operation after asking HWSD. */
  662. pollingCount = 0;
  663. rtl_write_byte(rtlpriv, REG_APSD_CTRL, (rtl_read_byte(rtlpriv,
  664. REG_APSD_CTRL) & ~BIT(6)));
  665. do {
  666. pollingCount++;
  667. } while ((pollingCount < 200) &&
  668. (rtl_read_byte(rtlpriv, REG_APSD_CTRL) & BIT(7)));
  669. /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
  670. value16 = rtl_read_word(rtlpriv, REG_CR);
  671. value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN |
  672. PROTOCOL_EN | SCHEDULE_EN | MACTXEN | MACRXEN | ENSEC);
  673. rtl_write_word(rtlpriv, REG_CR, value16);
  674. return status;
  675. }
  676. static void _rtl92cu_init_queue_reserved_page(struct ieee80211_hw *hw,
  677. bool wmm_enable,
  678. u8 out_ep_num,
  679. u8 queue_sel)
  680. {
  681. struct rtl_priv *rtlpriv = rtl_priv(hw);
  682. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  683. bool isChipN = IS_NORMAL_CHIP(rtlhal->version);
  684. u32 outEPNum = (u32)out_ep_num;
  685. u32 numHQ = 0;
  686. u32 numLQ = 0;
  687. u32 numNQ = 0;
  688. u32 numPubQ;
  689. u32 value32;
  690. u8 value8;
  691. u32 txQPageNum, txQPageUnit, txQRemainPage;
  692. if (!wmm_enable) {
  693. numPubQ = (isChipN) ? CHIP_B_PAGE_NUM_PUBQ :
  694. CHIP_A_PAGE_NUM_PUBQ;
  695. txQPageNum = TX_TOTAL_PAGE_NUMBER - numPubQ;
  696. txQPageUnit = txQPageNum/outEPNum;
  697. txQRemainPage = txQPageNum % outEPNum;
  698. if (queue_sel & TX_SELE_HQ)
  699. numHQ = txQPageUnit;
  700. if (queue_sel & TX_SELE_LQ)
  701. numLQ = txQPageUnit;
  702. /* HIGH priority queue always present in the configuration of
  703. * 2 out-ep. Remainder pages have assigned to High queue */
  704. if ((outEPNum > 1) && (txQRemainPage))
  705. numHQ += txQRemainPage;
  706. /* NOTE: This step done before writting REG_RQPN. */
  707. if (isChipN) {
  708. if (queue_sel & TX_SELE_NQ)
  709. numNQ = txQPageUnit;
  710. value8 = (u8)_NPQ(numNQ);
  711. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  712. }
  713. } else {
  714. /* for WMM ,number of out-ep must more than or equal to 2! */
  715. numPubQ = isChipN ? WMM_CHIP_B_PAGE_NUM_PUBQ :
  716. WMM_CHIP_A_PAGE_NUM_PUBQ;
  717. if (queue_sel & TX_SELE_HQ) {
  718. numHQ = isChipN ? WMM_CHIP_B_PAGE_NUM_HPQ :
  719. WMM_CHIP_A_PAGE_NUM_HPQ;
  720. }
  721. if (queue_sel & TX_SELE_LQ) {
  722. numLQ = isChipN ? WMM_CHIP_B_PAGE_NUM_LPQ :
  723. WMM_CHIP_A_PAGE_NUM_LPQ;
  724. }
  725. /* NOTE: This step done before writting REG_RQPN. */
  726. if (isChipN) {
  727. if (queue_sel & TX_SELE_NQ)
  728. numNQ = WMM_CHIP_B_PAGE_NUM_NPQ;
  729. value8 = (u8)_NPQ(numNQ);
  730. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  731. }
  732. }
  733. /* TX DMA */
  734. value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
  735. rtl_write_dword(rtlpriv, REG_RQPN, value32);
  736. }
  737. static void _rtl92c_init_trx_buffer(struct ieee80211_hw *hw, bool wmm_enable)
  738. {
  739. struct rtl_priv *rtlpriv = rtl_priv(hw);
  740. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  741. u8 txpktbuf_bndy;
  742. u8 value8;
  743. if (!wmm_enable)
  744. txpktbuf_bndy = TX_PAGE_BOUNDARY;
  745. else /* for WMM */
  746. txpktbuf_bndy = (IS_NORMAL_CHIP(rtlhal->version))
  747. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  748. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  749. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  750. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  751. rtl_write_byte(rtlpriv, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
  752. rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy);
  753. rtl_write_byte(rtlpriv, REG_TDECTRL+1, txpktbuf_bndy);
  754. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  755. value8 = _PSRX(RX_PAGE_SIZE_REG_VALUE) | _PSTX(PBP_128);
  756. rtl_write_byte(rtlpriv, REG_PBP, value8);
  757. }
  758. static void _rtl92c_init_chipN_reg_priority(struct ieee80211_hw *hw, u16 beQ,
  759. u16 bkQ, u16 viQ, u16 voQ,
  760. u16 mgtQ, u16 hiQ)
  761. {
  762. struct rtl_priv *rtlpriv = rtl_priv(hw);
  763. u16 value16 = (rtl_read_word(rtlpriv, REG_TRXDMA_CTRL) & 0x7);
  764. value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
  765. _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
  766. _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
  767. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, value16);
  768. }
  769. static void _rtl92cu_init_chipN_one_out_ep_priority(struct ieee80211_hw *hw,
  770. bool wmm_enable,
  771. u8 queue_sel)
  772. {
  773. u16 uninitialized_var(value);
  774. switch (queue_sel) {
  775. case TX_SELE_HQ:
  776. value = QUEUE_HIGH;
  777. break;
  778. case TX_SELE_LQ:
  779. value = QUEUE_LOW;
  780. break;
  781. case TX_SELE_NQ:
  782. value = QUEUE_NORMAL;
  783. break;
  784. default:
  785. WARN_ON(1); /* Shall not reach here! */
  786. break;
  787. }
  788. _rtl92c_init_chipN_reg_priority(hw, value, value, value, value,
  789. value, value);
  790. printk(KERN_INFO "rtl8192cu: Tx queue select: 0x%02x\n", queue_sel);
  791. }
  792. static void _rtl92cu_init_chipN_two_out_ep_priority(struct ieee80211_hw *hw,
  793. bool wmm_enable,
  794. u8 queue_sel)
  795. {
  796. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  797. u16 uninitialized_var(valueHi);
  798. u16 uninitialized_var(valueLow);
  799. switch (queue_sel) {
  800. case (TX_SELE_HQ | TX_SELE_LQ):
  801. valueHi = QUEUE_HIGH;
  802. valueLow = QUEUE_LOW;
  803. break;
  804. case (TX_SELE_NQ | TX_SELE_LQ):
  805. valueHi = QUEUE_NORMAL;
  806. valueLow = QUEUE_LOW;
  807. break;
  808. case (TX_SELE_HQ | TX_SELE_NQ):
  809. valueHi = QUEUE_HIGH;
  810. valueLow = QUEUE_NORMAL;
  811. break;
  812. default:
  813. WARN_ON(1);
  814. break;
  815. }
  816. if (!wmm_enable) {
  817. beQ = valueLow;
  818. bkQ = valueLow;
  819. viQ = valueHi;
  820. voQ = valueHi;
  821. mgtQ = valueHi;
  822. hiQ = valueHi;
  823. } else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
  824. beQ = valueHi;
  825. bkQ = valueLow;
  826. viQ = valueLow;
  827. voQ = valueHi;
  828. mgtQ = valueHi;
  829. hiQ = valueHi;
  830. }
  831. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  832. printk(KERN_INFO "rtl8192cu: Tx queue select: 0x%02x\n", queue_sel);
  833. }
  834. static void _rtl92cu_init_chipN_three_out_ep_priority(struct ieee80211_hw *hw,
  835. bool wmm_enable,
  836. u8 queue_sel)
  837. {
  838. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  839. struct rtl_priv *rtlpriv = rtl_priv(hw);
  840. if (!wmm_enable) { /* typical setting */
  841. beQ = QUEUE_LOW;
  842. bkQ = QUEUE_LOW;
  843. viQ = QUEUE_NORMAL;
  844. voQ = QUEUE_HIGH;
  845. mgtQ = QUEUE_HIGH;
  846. hiQ = QUEUE_HIGH;
  847. } else { /* for WMM */
  848. beQ = QUEUE_LOW;
  849. bkQ = QUEUE_NORMAL;
  850. viQ = QUEUE_NORMAL;
  851. voQ = QUEUE_HIGH;
  852. mgtQ = QUEUE_HIGH;
  853. hiQ = QUEUE_HIGH;
  854. }
  855. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  856. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  857. ("Tx queue select :0x%02x..\n", queue_sel));
  858. }
  859. static void _rtl92cu_init_chipN_queue_priority(struct ieee80211_hw *hw,
  860. bool wmm_enable,
  861. u8 out_ep_num,
  862. u8 queue_sel)
  863. {
  864. switch (out_ep_num) {
  865. case 1:
  866. _rtl92cu_init_chipN_one_out_ep_priority(hw, wmm_enable,
  867. queue_sel);
  868. break;
  869. case 2:
  870. _rtl92cu_init_chipN_two_out_ep_priority(hw, wmm_enable,
  871. queue_sel);
  872. break;
  873. case 3:
  874. _rtl92cu_init_chipN_three_out_ep_priority(hw, wmm_enable,
  875. queue_sel);
  876. break;
  877. default:
  878. WARN_ON(1); /* Shall not reach here! */
  879. break;
  880. }
  881. }
  882. static void _rtl92cu_init_chipT_queue_priority(struct ieee80211_hw *hw,
  883. bool wmm_enable,
  884. u8 out_ep_num,
  885. u8 queue_sel)
  886. {
  887. u8 hq_sele;
  888. struct rtl_priv *rtlpriv = rtl_priv(hw);
  889. switch (out_ep_num) {
  890. case 2: /* (TX_SELE_HQ|TX_SELE_LQ) */
  891. if (!wmm_enable) /* typical setting */
  892. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_MGTQ |
  893. HQSEL_HIQ;
  894. else /* for WMM */
  895. hq_sele = HQSEL_VOQ | HQSEL_BEQ | HQSEL_MGTQ |
  896. HQSEL_HIQ;
  897. break;
  898. case 1:
  899. if (TX_SELE_LQ == queue_sel) {
  900. /* map all endpoint to Low queue */
  901. hq_sele = 0;
  902. } else if (TX_SELE_HQ == queue_sel) {
  903. /* map all endpoint to High queue */
  904. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_BEQ |
  905. HQSEL_BKQ | HQSEL_MGTQ | HQSEL_HIQ;
  906. }
  907. break;
  908. default:
  909. WARN_ON(1); /* Shall not reach here! */
  910. break;
  911. }
  912. rtl_write_byte(rtlpriv, (REG_TRXDMA_CTRL+1), hq_sele);
  913. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  914. ("Tx queue select :0x%02x..\n", hq_sele));
  915. }
  916. static void _rtl92cu_init_queue_priority(struct ieee80211_hw *hw,
  917. bool wmm_enable,
  918. u8 out_ep_num,
  919. u8 queue_sel)
  920. {
  921. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  922. if (IS_NORMAL_CHIP(rtlhal->version))
  923. _rtl92cu_init_chipN_queue_priority(hw, wmm_enable, out_ep_num,
  924. queue_sel);
  925. else
  926. _rtl92cu_init_chipT_queue_priority(hw, wmm_enable, out_ep_num,
  927. queue_sel);
  928. }
  929. static void _rtl92cu_init_usb_aggregation(struct ieee80211_hw *hw)
  930. {
  931. }
  932. static void _rtl92cu_init_wmac_setting(struct ieee80211_hw *hw)
  933. {
  934. u16 value16;
  935. struct rtl_priv *rtlpriv = rtl_priv(hw);
  936. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  937. mac->rx_conf = (RCR_APM | RCR_AM | RCR_ADF | RCR_AB | RCR_APP_FCS |
  938. RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
  939. RCR_APP_MIC | RCR_APP_PHYSTS | RCR_ACRC32);
  940. rtl_write_dword(rtlpriv, REG_RCR, mac->rx_conf);
  941. /* Accept all multicast address */
  942. rtl_write_dword(rtlpriv, REG_MAR, 0xFFFFFFFF);
  943. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xFFFFFFFF);
  944. /* Accept all management frames */
  945. value16 = 0xFFFF;
  946. rtl92c_set_mgt_filter(hw, value16);
  947. /* Reject all control frame - default value is 0 */
  948. rtl92c_set_ctrl_filter(hw, 0x0);
  949. /* Accept all data frames */
  950. value16 = 0xFFFF;
  951. rtl92c_set_data_filter(hw, value16);
  952. }
  953. static int _rtl92cu_init_mac(struct ieee80211_hw *hw)
  954. {
  955. struct rtl_priv *rtlpriv = rtl_priv(hw);
  956. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  957. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  958. struct rtl_usb *rtlusb = rtl_usbdev(usb_priv);
  959. int err = 0;
  960. u32 boundary = 0;
  961. u8 wmm_enable = false; /* TODO */
  962. u8 out_ep_nums = rtlusb->out_ep_nums;
  963. u8 queue_sel = rtlusb->out_queue_sel;
  964. err = _rtl92cu_init_power_on(hw);
  965. if (err) {
  966. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  967. ("Failed to init power on!\n"));
  968. return err;
  969. }
  970. if (!wmm_enable) {
  971. boundary = TX_PAGE_BOUNDARY;
  972. } else { /* for WMM */
  973. boundary = (IS_NORMAL_CHIP(rtlhal->version))
  974. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  975. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  976. }
  977. if (false == rtl92c_init_llt_table(hw, boundary)) {
  978. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  979. ("Failed to init LLT Table!\n"));
  980. return -EINVAL;
  981. }
  982. _rtl92cu_init_queue_reserved_page(hw, wmm_enable, out_ep_nums,
  983. queue_sel);
  984. _rtl92c_init_trx_buffer(hw, wmm_enable);
  985. _rtl92cu_init_queue_priority(hw, wmm_enable, out_ep_nums,
  986. queue_sel);
  987. /* Get Rx PHY status in order to report RSSI and others. */
  988. rtl92c_init_driver_info_size(hw, RTL92C_DRIVER_INFO_SIZE);
  989. rtl92c_init_interrupt(hw);
  990. rtl92c_init_network_type(hw);
  991. _rtl92cu_init_wmac_setting(hw);
  992. rtl92c_init_adaptive_ctrl(hw);
  993. rtl92c_init_edca(hw);
  994. rtl92c_init_rate_fallback(hw);
  995. rtl92c_init_retry_function(hw);
  996. _rtl92cu_init_usb_aggregation(hw);
  997. rtlpriv->cfg->ops->set_bw_mode(hw, NL80211_CHAN_HT20);
  998. rtl92c_set_min_space(hw, IS_92C_SERIAL(rtlhal->version));
  999. rtl92c_init_beacon_parameters(hw, rtlhal->version);
  1000. rtl92c_init_ampdu_aggregation(hw);
  1001. rtl92c_init_beacon_max_error(hw, true);
  1002. return err;
  1003. }
  1004. void rtl92cu_enable_hw_security_config(struct ieee80211_hw *hw)
  1005. {
  1006. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1007. u8 sec_reg_value = 0x0;
  1008. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1009. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1010. ("PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  1011. rtlpriv->sec.pairwise_enc_algorithm,
  1012. rtlpriv->sec.group_enc_algorithm));
  1013. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  1014. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1015. ("not open sw encryption\n"));
  1016. return;
  1017. }
  1018. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  1019. if (rtlpriv->sec.use_defaultkey) {
  1020. sec_reg_value |= SCR_TxUseDK;
  1021. sec_reg_value |= SCR_RxUseDK;
  1022. }
  1023. if (IS_NORMAL_CHIP(rtlhal->version))
  1024. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  1025. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  1026. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1027. ("The SECR-value %x\n", sec_reg_value));
  1028. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  1029. }
  1030. static void _rtl92cu_hw_configure(struct ieee80211_hw *hw)
  1031. {
  1032. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1033. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1034. /* To Fix MAC loopback mode fail. */
  1035. rtl_write_byte(rtlpriv, REG_LDOHCI12_CTRL, 0x0f);
  1036. rtl_write_byte(rtlpriv, 0x15, 0xe9);
  1037. /* HW SEQ CTRL */
  1038. /* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
  1039. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  1040. /* fixed USB interface interference issue */
  1041. rtl_write_byte(rtlpriv, 0xfe40, 0xe0);
  1042. rtl_write_byte(rtlpriv, 0xfe41, 0x8d);
  1043. rtl_write_byte(rtlpriv, 0xfe42, 0x80);
  1044. rtlusb->reg_bcn_ctrl_val = 0x18;
  1045. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlusb->reg_bcn_ctrl_val);
  1046. }
  1047. static void _InitPABias(struct ieee80211_hw *hw)
  1048. {
  1049. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1050. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1051. u8 pa_setting;
  1052. /* FIXED PA current issue */
  1053. pa_setting = efuse_read_1byte(hw, 0x1FA);
  1054. if (!(pa_setting & BIT(0))) {
  1055. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
  1056. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
  1057. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
  1058. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
  1059. }
  1060. if (!(pa_setting & BIT(1)) && IS_NORMAL_CHIP(rtlhal->version) &&
  1061. IS_92C_SERIAL(rtlhal->version)) {
  1062. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x0F406);
  1063. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x4F406);
  1064. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x8F406);
  1065. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0xCF406);
  1066. }
  1067. if (!(pa_setting & BIT(4))) {
  1068. pa_setting = rtl_read_byte(rtlpriv, 0x16);
  1069. pa_setting &= 0x0F;
  1070. rtl_write_byte(rtlpriv, 0x16, pa_setting | 0x90);
  1071. }
  1072. }
  1073. static void _InitAntenna_Selection(struct ieee80211_hw *hw)
  1074. {
  1075. #ifdef CONFIG_ANTENNA_DIVERSITY
  1076. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1077. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1078. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1079. if (pHalData->AntDivCfg == 0)
  1080. return;
  1081. if (rtlphy->rf_type == RF_1T1R) {
  1082. rtl_write_dword(rtlpriv, REG_LEDCFG0,
  1083. rtl_read_dword(rtlpriv,
  1084. REG_LEDCFG0)|BIT(23));
  1085. rtl_set_bbreg(hw, rFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
  1086. if (rtl_get_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, 0x300) ==
  1087. Antenna_A)
  1088. pHalData->CurAntenna = Antenna_A;
  1089. else
  1090. pHalData->CurAntenna = Antenna_B;
  1091. }
  1092. #endif
  1093. }
  1094. static void _dump_registers(struct ieee80211_hw *hw)
  1095. {
  1096. }
  1097. static void _update_mac_setting(struct ieee80211_hw *hw)
  1098. {
  1099. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1100. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1101. mac->rx_conf = rtl_read_dword(rtlpriv, REG_RCR);
  1102. mac->rx_mgt_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1103. mac->rx_ctrl_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1104. mac->rx_data_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1105. }
  1106. int rtl92cu_hw_init(struct ieee80211_hw *hw)
  1107. {
  1108. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1109. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1110. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1111. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1112. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1113. int err = 0;
  1114. static bool iqk_initialized;
  1115. rtlhal->hw_type = HARDWARE_TYPE_RTL8192CU;
  1116. err = _rtl92cu_init_mac(hw);
  1117. if (err) {
  1118. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("init mac failed!\n"));
  1119. return err;
  1120. }
  1121. err = rtl92c_download_fw(hw);
  1122. if (err) {
  1123. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1124. ("Failed to download FW. Init HW without FW now..\n"));
  1125. err = 1;
  1126. rtlhal->fw_ready = false;
  1127. return err;
  1128. } else {
  1129. rtlhal->fw_ready = true;
  1130. }
  1131. rtlhal->last_hmeboxnum = 0; /* h2c */
  1132. _rtl92cu_phy_param_tab_init(hw);
  1133. rtl92cu_phy_mac_config(hw);
  1134. rtl92cu_phy_bb_config(hw);
  1135. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  1136. rtl92c_phy_rf_config(hw);
  1137. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  1138. !IS_92C_SERIAL(rtlhal->version)) {
  1139. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  1140. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  1141. }
  1142. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  1143. RF_CHNLBW, RFREG_OFFSET_MASK);
  1144. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  1145. RF_CHNLBW, RFREG_OFFSET_MASK);
  1146. rtl92cu_bb_block_on(hw);
  1147. rtl_cam_reset_all_entry(hw);
  1148. rtl92cu_enable_hw_security_config(hw);
  1149. ppsc->rfpwr_state = ERFON;
  1150. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  1151. if (ppsc->rfpwr_state == ERFON) {
  1152. rtl92c_phy_set_rfpath_switch(hw, 1);
  1153. if (iqk_initialized) {
  1154. rtl92c_phy_iq_calibrate(hw, false);
  1155. } else {
  1156. rtl92c_phy_iq_calibrate(hw, false);
  1157. iqk_initialized = true;
  1158. }
  1159. rtl92c_dm_check_txpower_tracking(hw);
  1160. rtl92c_phy_lc_calibrate(hw);
  1161. }
  1162. _rtl92cu_hw_configure(hw);
  1163. _InitPABias(hw);
  1164. _InitAntenna_Selection(hw);
  1165. _update_mac_setting(hw);
  1166. rtl92c_dm_init(hw);
  1167. _dump_registers(hw);
  1168. return err;
  1169. }
  1170. static void _DisableRFAFEAndResetBB(struct ieee80211_hw *hw)
  1171. {
  1172. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1173. /**************************************
  1174. a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue
  1175. b. RF path 0 offset 0x00 = 0x00 disable RF
  1176. c. APSD_CTRL 0x600[7:0] = 0x40
  1177. d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine
  1178. e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine
  1179. ***************************************/
  1180. u8 eRFPath = 0, value8 = 0;
  1181. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1182. rtl_set_rfreg(hw, (enum radio_path)eRFPath, 0x0, MASKBYTE0, 0x0);
  1183. value8 |= APSDOFF;
  1184. rtl_write_byte(rtlpriv, REG_APSD_CTRL, value8); /*0x40*/
  1185. value8 = 0;
  1186. value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
  1187. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8);/*0x16*/
  1188. value8 &= (~FEN_BB_GLB_RSTn);
  1189. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8); /*0x14*/
  1190. }
  1191. static void _ResetDigitalProcedure1(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1192. {
  1193. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1194. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1195. if (rtlhal->fw_version <= 0x20) {
  1196. /*****************************
  1197. f. MCUFWDL 0x80[7:0]=0 reset MCU ready status
  1198. g. SYS_FUNC_EN 0x02[10]= 0 reset MCU reg, (8051 reset)
  1199. h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC reg, DCORE
  1200. i. SYS_FUNC_EN 0x02[10]= 1 enable MCU reg, (8051 enable)
  1201. ******************************/
  1202. u16 valu16 = 0;
  1203. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1204. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1205. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 &
  1206. (~FEN_CPUEN))); /* reset MCU ,8051 */
  1207. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN)&0x0FFF;
  1208. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1209. (FEN_HWPDN|FEN_ELDR))); /* reset MAC */
  1210. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1211. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1212. FEN_CPUEN)); /* enable MCU ,8051 */
  1213. } else {
  1214. u8 retry_cnts = 0;
  1215. /* IF fw in RAM code, do reset */
  1216. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(1)) {
  1217. /* reset MCU ready status */
  1218. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1219. if (rtlhal->fw_ready) {
  1220. /* 8051 reset by self */
  1221. rtl_write_byte(rtlpriv, REG_HMETFR+3, 0x20);
  1222. while ((retry_cnts++ < 100) &&
  1223. (FEN_CPUEN & rtl_read_word(rtlpriv,
  1224. REG_SYS_FUNC_EN))) {
  1225. udelay(50);
  1226. }
  1227. if (retry_cnts >= 100) {
  1228. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1229. ("#####=> 8051 reset failed!.."
  1230. ".......................\n"););
  1231. /* if 8051 reset fail, reset MAC. */
  1232. rtl_write_byte(rtlpriv,
  1233. REG_SYS_FUNC_EN + 1,
  1234. 0x50);
  1235. udelay(100);
  1236. }
  1237. }
  1238. }
  1239. /* Reset MAC and Enable 8051 */
  1240. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x54);
  1241. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1242. }
  1243. if (bWithoutHWSM) {
  1244. /*****************************
  1245. Without HW auto state machine
  1246. g.SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock
  1247. h.AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL
  1248. i.AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK
  1249. j.SYS_ISu_CTRL 0x00[7:0] = 0xF9 isolated digital to PON
  1250. ******************************/
  1251. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1252. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1253. rtl_write_word(rtlpriv, REG_AFE_XTAL_CTRL, 0x880F);
  1254. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xF9);
  1255. }
  1256. }
  1257. static void _ResetDigitalProcedure2(struct ieee80211_hw *hw)
  1258. {
  1259. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1260. /*****************************
  1261. k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction
  1262. l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock
  1263. m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON
  1264. ******************************/
  1265. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1266. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL+1, 0x82);
  1267. }
  1268. static void _DisableGPIO(struct ieee80211_hw *hw)
  1269. {
  1270. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1271. /***************************************
  1272. j. GPIO_PIN_CTRL 0x44[31:0]=0x000
  1273. k. Value = GPIO_PIN_CTRL[7:0]
  1274. l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write ext PIN level
  1275. m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
  1276. n. LEDCFG 0x4C[15:0] = 0x8080
  1277. ***************************************/
  1278. u8 value8;
  1279. u16 value16;
  1280. u32 value32;
  1281. /* 1. Disable GPIO[7:0] */
  1282. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, 0x0000);
  1283. value32 = rtl_read_dword(rtlpriv, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
  1284. value8 = (u8) (value32&0x000000FF);
  1285. value32 |= ((value8<<8) | 0x00FF0000);
  1286. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, value32);
  1287. /* 2. Disable GPIO[10:8] */
  1288. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+3, 0x00);
  1289. value16 = rtl_read_word(rtlpriv, REG_GPIO_MUXCFG+2) & 0xFF0F;
  1290. value8 = (u8) (value16&0x000F);
  1291. value16 |= ((value8<<4) | 0x0780);
  1292. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, value16);
  1293. /* 3. Disable LED0 & 1 */
  1294. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1295. }
  1296. static void _DisableAnalog(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1297. {
  1298. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1299. u16 value16 = 0;
  1300. u8 value8 = 0;
  1301. if (bWithoutHWSM) {
  1302. /*****************************
  1303. n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power
  1304. o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power
  1305. r. When driver call disable, the ASIC will turn off remaining
  1306. clock automatically
  1307. ******************************/
  1308. rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
  1309. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  1310. value8 &= (~LDV12_EN);
  1311. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  1312. }
  1313. /*****************************
  1314. h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode
  1315. i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend
  1316. ******************************/
  1317. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1318. value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
  1319. rtl_write_word(rtlpriv, REG_APS_FSMCO, (u16)value16);
  1320. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
  1321. }
  1322. static void _CardDisableHWSM(struct ieee80211_hw *hw)
  1323. {
  1324. /* ==== RF Off Sequence ==== */
  1325. _DisableRFAFEAndResetBB(hw);
  1326. /* ==== Reset digital sequence ====== */
  1327. _ResetDigitalProcedure1(hw, false);
  1328. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1329. _DisableGPIO(hw);
  1330. /* ==== Disable analog sequence === */
  1331. _DisableAnalog(hw, false);
  1332. }
  1333. static void _CardDisableWithoutHWSM(struct ieee80211_hw *hw)
  1334. {
  1335. /*==== RF Off Sequence ==== */
  1336. _DisableRFAFEAndResetBB(hw);
  1337. /* ==== Reset digital sequence ====== */
  1338. _ResetDigitalProcedure1(hw, true);
  1339. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1340. _DisableGPIO(hw);
  1341. /* ==== Reset digital sequence ====== */
  1342. _ResetDigitalProcedure2(hw);
  1343. /* ==== Disable analog sequence === */
  1344. _DisableAnalog(hw, true);
  1345. }
  1346. static void _rtl92cu_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  1347. u8 set_bits, u8 clear_bits)
  1348. {
  1349. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1350. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1351. rtlusb->reg_bcn_ctrl_val |= set_bits;
  1352. rtlusb->reg_bcn_ctrl_val &= ~clear_bits;
  1353. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlusb->reg_bcn_ctrl_val);
  1354. }
  1355. static void _rtl92cu_stop_tx_beacon(struct ieee80211_hw *hw)
  1356. {
  1357. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1358. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1359. u8 tmp1byte = 0;
  1360. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1361. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1362. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1363. tmp1byte & (~BIT(6)));
  1364. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  1365. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1366. tmp1byte &= ~(BIT(0));
  1367. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1368. } else {
  1369. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1370. rtl_read_byte(rtlpriv, REG_TXPAUSE) | BIT(6));
  1371. }
  1372. }
  1373. static void _rtl92cu_resume_tx_beacon(struct ieee80211_hw *hw)
  1374. {
  1375. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1376. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1377. u8 tmp1byte = 0;
  1378. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1379. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1380. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1381. tmp1byte | BIT(6));
  1382. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  1383. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1384. tmp1byte |= BIT(0);
  1385. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1386. } else {
  1387. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1388. rtl_read_byte(rtlpriv, REG_TXPAUSE) & (~BIT(6)));
  1389. }
  1390. }
  1391. static void _rtl92cu_enable_bcn_sub_func(struct ieee80211_hw *hw)
  1392. {
  1393. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1394. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1395. if (IS_NORMAL_CHIP(rtlhal->version))
  1396. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(1));
  1397. else
  1398. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1399. }
  1400. static void _rtl92cu_disable_bcn_sub_func(struct ieee80211_hw *hw)
  1401. {
  1402. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1403. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1404. if (IS_NORMAL_CHIP(rtlhal->version))
  1405. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(1), 0);
  1406. else
  1407. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1408. }
  1409. static int _rtl92cu_set_media_status(struct ieee80211_hw *hw,
  1410. enum nl80211_iftype type)
  1411. {
  1412. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1413. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  1414. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  1415. bt_msr &= 0xfc;
  1416. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF);
  1417. if (type == NL80211_IFTYPE_UNSPECIFIED || type ==
  1418. NL80211_IFTYPE_STATION) {
  1419. _rtl92cu_stop_tx_beacon(hw);
  1420. _rtl92cu_enable_bcn_sub_func(hw);
  1421. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) {
  1422. _rtl92cu_resume_tx_beacon(hw);
  1423. _rtl92cu_disable_bcn_sub_func(hw);
  1424. } else {
  1425. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("Set HW_VAR_MEDIA_"
  1426. "STATUS:No such media status(%x).\n", type));
  1427. }
  1428. switch (type) {
  1429. case NL80211_IFTYPE_UNSPECIFIED:
  1430. bt_msr |= MSR_NOLINK;
  1431. ledaction = LED_CTL_LINK;
  1432. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1433. ("Set Network type to NO LINK!\n"));
  1434. break;
  1435. case NL80211_IFTYPE_ADHOC:
  1436. bt_msr |= MSR_ADHOC;
  1437. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1438. ("Set Network type to Ad Hoc!\n"));
  1439. break;
  1440. case NL80211_IFTYPE_STATION:
  1441. bt_msr |= MSR_INFRA;
  1442. ledaction = LED_CTL_LINK;
  1443. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1444. ("Set Network type to STA!\n"));
  1445. break;
  1446. case NL80211_IFTYPE_AP:
  1447. bt_msr |= MSR_AP;
  1448. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1449. ("Set Network type to AP!\n"));
  1450. break;
  1451. default:
  1452. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1453. ("Network type %d not support!\n", type));
  1454. goto error_out;
  1455. }
  1456. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1457. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1458. if ((bt_msr & 0xfc) == MSR_AP)
  1459. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1460. else
  1461. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1462. return 0;
  1463. error_out:
  1464. return 1;
  1465. }
  1466. void rtl92cu_card_disable(struct ieee80211_hw *hw)
  1467. {
  1468. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1469. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1470. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1471. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1472. enum nl80211_iftype opmode;
  1473. mac->link_state = MAC80211_NOLINK;
  1474. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1475. _rtl92cu_set_media_status(hw, opmode);
  1476. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1477. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1478. if (rtlusb->disableHWSM)
  1479. _CardDisableHWSM(hw);
  1480. else
  1481. _CardDisableWithoutHWSM(hw);
  1482. }
  1483. void rtl92cu_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1484. {
  1485. /* dummy routine needed for callback from rtl_op_configure_filter() */
  1486. }
  1487. /*========================================================================== */
  1488. static void _rtl92cu_set_check_bssid(struct ieee80211_hw *hw,
  1489. enum nl80211_iftype type)
  1490. {
  1491. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1492. u32 reg_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1493. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1494. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1495. u8 filterout_non_associated_bssid = false;
  1496. switch (type) {
  1497. case NL80211_IFTYPE_ADHOC:
  1498. case NL80211_IFTYPE_STATION:
  1499. filterout_non_associated_bssid = true;
  1500. break;
  1501. case NL80211_IFTYPE_UNSPECIFIED:
  1502. case NL80211_IFTYPE_AP:
  1503. default:
  1504. break;
  1505. }
  1506. if (filterout_non_associated_bssid == true) {
  1507. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1508. switch (rtlphy->current_io_type) {
  1509. case IO_CMD_RESUME_DM_BY_SCAN:
  1510. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1511. rtlpriv->cfg->ops->set_hw_reg(hw,
  1512. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1513. /* enable update TSF */
  1514. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1515. break;
  1516. case IO_CMD_PAUSE_DM_BY_SCAN:
  1517. reg_rcr &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1518. rtlpriv->cfg->ops->set_hw_reg(hw,
  1519. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1520. /* disable update TSF */
  1521. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1522. break;
  1523. }
  1524. } else {
  1525. reg_rcr |= (RCR_CBSSID);
  1526. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1527. (u8 *)(&reg_rcr));
  1528. _rtl92cu_set_bcn_ctrl_reg(hw, 0, (BIT(4)|BIT(5)));
  1529. }
  1530. } else if (filterout_non_associated_bssid == false) {
  1531. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1532. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1533. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1534. (u8 *)(&reg_rcr));
  1535. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1536. } else {
  1537. reg_rcr &= (~RCR_CBSSID);
  1538. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1539. (u8 *)(&reg_rcr));
  1540. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4)|BIT(5)), 0);
  1541. }
  1542. }
  1543. }
  1544. int rtl92cu_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1545. {
  1546. if (_rtl92cu_set_media_status(hw, type))
  1547. return -EOPNOTSUPP;
  1548. _rtl92cu_set_check_bssid(hw, type);
  1549. return 0;
  1550. }
  1551. static void _InitBeaconParameters(struct ieee80211_hw *hw)
  1552. {
  1553. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1554. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1555. rtl_write_word(rtlpriv, REG_BCN_CTRL, 0x1010);
  1556. /* TODO: Remove these magic number */
  1557. rtl_write_word(rtlpriv, REG_TBTT_PROHIBIT, 0x6404);
  1558. rtl_write_byte(rtlpriv, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);
  1559. rtl_write_byte(rtlpriv, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
  1560. /* Change beacon AIFS to the largest number
  1561. * beacause test chip does not contension before sending beacon. */
  1562. if (IS_NORMAL_CHIP(rtlhal->version))
  1563. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660F);
  1564. else
  1565. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x66FF);
  1566. }
  1567. static void _beacon_function_enable(struct ieee80211_hw *hw, bool Enable,
  1568. bool Linked)
  1569. {
  1570. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1571. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4) | BIT(3) | BIT(1)), 0x00);
  1572. rtl_write_byte(rtlpriv, REG_RD_CTRL+1, 0x6F);
  1573. }
  1574. void rtl92cu_set_beacon_related_registers(struct ieee80211_hw *hw)
  1575. {
  1576. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1577. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1578. u16 bcn_interval, atim_window;
  1579. u32 value32;
  1580. bcn_interval = mac->beacon_interval;
  1581. atim_window = 2; /*FIX MERGE */
  1582. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1583. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1584. _InitBeaconParameters(hw);
  1585. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  1586. /*
  1587. * Force beacon frame transmission even after receiving beacon frame
  1588. * from other ad hoc STA
  1589. *
  1590. *
  1591. * Reset TSF Timer to zero, added by Roger. 2008.06.24
  1592. */
  1593. value32 = rtl_read_dword(rtlpriv, REG_TCR);
  1594. value32 &= ~TSFRST;
  1595. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1596. value32 |= TSFRST;
  1597. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1598. RT_TRACE(rtlpriv, COMP_INIT|COMP_BEACON, DBG_LOUD,
  1599. ("SetBeaconRelatedRegisters8192CUsb(): Set TCR(%x)\n",
  1600. value32));
  1601. /* TODO: Modify later (Find the right parameters)
  1602. * NOTE: Fix test chip's bug (about contention windows's randomness) */
  1603. if ((mac->opmode == NL80211_IFTYPE_ADHOC) ||
  1604. (mac->opmode == NL80211_IFTYPE_AP)) {
  1605. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x50);
  1606. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x50);
  1607. }
  1608. _beacon_function_enable(hw, true, true);
  1609. }
  1610. void rtl92cu_set_beacon_interval(struct ieee80211_hw *hw)
  1611. {
  1612. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1613. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1614. u16 bcn_interval = mac->beacon_interval;
  1615. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1616. ("beacon_interval:%d\n", bcn_interval));
  1617. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1618. }
  1619. void rtl92cu_update_interrupt_mask(struct ieee80211_hw *hw,
  1620. u32 add_msr, u32 rm_msr)
  1621. {
  1622. }
  1623. void rtl92cu_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1624. {
  1625. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1626. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1627. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1628. switch (variable) {
  1629. case HW_VAR_RCR:
  1630. *((u32 *)(val)) = mac->rx_conf;
  1631. break;
  1632. case HW_VAR_RF_STATE:
  1633. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  1634. break;
  1635. case HW_VAR_FWLPS_RF_ON:{
  1636. enum rf_pwrstate rfState;
  1637. u32 val_rcr;
  1638. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  1639. (u8 *)(&rfState));
  1640. if (rfState == ERFOFF) {
  1641. *((bool *) (val)) = true;
  1642. } else {
  1643. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1644. val_rcr &= 0x00070000;
  1645. if (val_rcr)
  1646. *((bool *) (val)) = false;
  1647. else
  1648. *((bool *) (val)) = true;
  1649. }
  1650. break;
  1651. }
  1652. case HW_VAR_FW_PSMODE_STATUS:
  1653. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  1654. break;
  1655. case HW_VAR_CORRECT_TSF:{
  1656. u64 tsf;
  1657. u32 *ptsf_low = (u32 *)&tsf;
  1658. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  1659. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  1660. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  1661. *((u64 *)(val)) = tsf;
  1662. break;
  1663. }
  1664. case HW_VAR_MGT_FILTER:
  1665. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1666. break;
  1667. case HW_VAR_CTRL_FILTER:
  1668. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1669. break;
  1670. case HW_VAR_DATA_FILTER:
  1671. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1672. break;
  1673. default:
  1674. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1675. ("switch case not process\n"));
  1676. break;
  1677. }
  1678. }
  1679. void rtl92cu_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1680. {
  1681. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1682. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1683. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1684. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1685. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1686. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1687. enum wireless_mode wirelessmode = mac->mode;
  1688. u8 idx = 0;
  1689. switch (variable) {
  1690. case HW_VAR_ETHER_ADDR:{
  1691. for (idx = 0; idx < ETH_ALEN; idx++) {
  1692. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  1693. val[idx]);
  1694. }
  1695. break;
  1696. }
  1697. case HW_VAR_BASIC_RATE:{
  1698. u16 rate_cfg = ((u16 *) val)[0];
  1699. u8 rate_index = 0;
  1700. rate_cfg &= 0x15f;
  1701. /* TODO */
  1702. /* if (mac->current_network.vender == HT_IOT_PEER_CISCO
  1703. * && ((rate_cfg & 0x150) == 0)) {
  1704. * rate_cfg |= 0x010;
  1705. * } */
  1706. rate_cfg |= 0x01;
  1707. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  1708. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  1709. (rate_cfg >> 8) & 0xff);
  1710. while (rate_cfg > 0x1) {
  1711. rate_cfg >>= 1;
  1712. rate_index++;
  1713. }
  1714. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  1715. rate_index);
  1716. break;
  1717. }
  1718. case HW_VAR_BSSID:{
  1719. for (idx = 0; idx < ETH_ALEN; idx++) {
  1720. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  1721. val[idx]);
  1722. }
  1723. break;
  1724. }
  1725. case HW_VAR_SIFS:{
  1726. rtl_write_byte(rtlpriv, REG_SIFS_CCK + 1, val[0]);
  1727. rtl_write_byte(rtlpriv, REG_SIFS_OFDM + 1, val[1]);
  1728. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  1729. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  1730. rtl_write_byte(rtlpriv, REG_R2T_SIFS+1, val[0]);
  1731. rtl_write_byte(rtlpriv, REG_T2T_SIFS+1, val[0]);
  1732. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1733. ("HW_VAR_SIFS\n"));
  1734. break;
  1735. }
  1736. case HW_VAR_SLOT_TIME:{
  1737. u8 e_aci;
  1738. u8 QOS_MODE = 1;
  1739. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  1740. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1741. ("HW_VAR_SLOT_TIME %x\n", val[0]));
  1742. if (QOS_MODE) {
  1743. for (e_aci = 0; e_aci < AC_MAX; e_aci++)
  1744. rtlpriv->cfg->ops->set_hw_reg(hw,
  1745. HW_VAR_AC_PARAM,
  1746. (u8 *)(&e_aci));
  1747. } else {
  1748. u8 sifstime = 0;
  1749. u8 u1bAIFS;
  1750. if (IS_WIRELESS_MODE_A(wirelessmode) ||
  1751. IS_WIRELESS_MODE_N_24G(wirelessmode) ||
  1752. IS_WIRELESS_MODE_N_5G(wirelessmode))
  1753. sifstime = 16;
  1754. else
  1755. sifstime = 10;
  1756. u1bAIFS = sifstime + (2 * val[0]);
  1757. rtl_write_byte(rtlpriv, REG_EDCA_VO_PARAM,
  1758. u1bAIFS);
  1759. rtl_write_byte(rtlpriv, REG_EDCA_VI_PARAM,
  1760. u1bAIFS);
  1761. rtl_write_byte(rtlpriv, REG_EDCA_BE_PARAM,
  1762. u1bAIFS);
  1763. rtl_write_byte(rtlpriv, REG_EDCA_BK_PARAM,
  1764. u1bAIFS);
  1765. }
  1766. break;
  1767. }
  1768. case HW_VAR_ACK_PREAMBLE:{
  1769. u8 reg_tmp;
  1770. u8 short_preamble = (bool) (*(u8 *) val);
  1771. reg_tmp = 0;
  1772. if (short_preamble)
  1773. reg_tmp |= 0x80;
  1774. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  1775. break;
  1776. }
  1777. case HW_VAR_AMPDU_MIN_SPACE:{
  1778. u8 min_spacing_to_set;
  1779. u8 sec_min_space;
  1780. min_spacing_to_set = *((u8 *) val);
  1781. if (min_spacing_to_set <= 7) {
  1782. switch (rtlpriv->sec.pairwise_enc_algorithm) {
  1783. case NO_ENCRYPTION:
  1784. case AESCCMP_ENCRYPTION:
  1785. sec_min_space = 0;
  1786. break;
  1787. case WEP40_ENCRYPTION:
  1788. case WEP104_ENCRYPTION:
  1789. case TKIP_ENCRYPTION:
  1790. sec_min_space = 6;
  1791. break;
  1792. default:
  1793. sec_min_space = 7;
  1794. break;
  1795. }
  1796. if (min_spacing_to_set < sec_min_space)
  1797. min_spacing_to_set = sec_min_space;
  1798. mac->min_space_cfg = ((mac->min_space_cfg &
  1799. 0xf8) |
  1800. min_spacing_to_set);
  1801. *val = min_spacing_to_set;
  1802. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1803. ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  1804. mac->min_space_cfg));
  1805. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1806. mac->min_space_cfg);
  1807. }
  1808. break;
  1809. }
  1810. case HW_VAR_SHORTGI_DENSITY:{
  1811. u8 density_to_set;
  1812. density_to_set = *((u8 *) val);
  1813. density_to_set &= 0x1f;
  1814. mac->min_space_cfg &= 0x07;
  1815. mac->min_space_cfg |= (density_to_set << 3);
  1816. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1817. ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  1818. mac->min_space_cfg));
  1819. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1820. mac->min_space_cfg);
  1821. break;
  1822. }
  1823. case HW_VAR_AMPDU_FACTOR:{
  1824. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  1825. u8 factor_toset;
  1826. u8 *p_regtoset = NULL;
  1827. u8 index = 0;
  1828. p_regtoset = regtoset_normal;
  1829. factor_toset = *((u8 *) val);
  1830. if (factor_toset <= 3) {
  1831. factor_toset = (1 << (factor_toset + 2));
  1832. if (factor_toset > 0xf)
  1833. factor_toset = 0xf;
  1834. for (index = 0; index < 4; index++) {
  1835. if ((p_regtoset[index] & 0xf0) >
  1836. (factor_toset << 4))
  1837. p_regtoset[index] =
  1838. (p_regtoset[index] & 0x0f)
  1839. | (factor_toset << 4);
  1840. if ((p_regtoset[index] & 0x0f) >
  1841. factor_toset)
  1842. p_regtoset[index] =
  1843. (p_regtoset[index] & 0xf0)
  1844. | (factor_toset);
  1845. rtl_write_byte(rtlpriv,
  1846. (REG_AGGLEN_LMT + index),
  1847. p_regtoset[index]);
  1848. }
  1849. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1850. ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
  1851. factor_toset));
  1852. }
  1853. break;
  1854. }
  1855. case HW_VAR_AC_PARAM:{
  1856. u8 e_aci = *((u8 *) val);
  1857. u32 u4b_ac_param;
  1858. u16 cw_min = le16_to_cpu(mac->ac[e_aci].cw_min);
  1859. u16 cw_max = le16_to_cpu(mac->ac[e_aci].cw_max);
  1860. u16 tx_op = le16_to_cpu(mac->ac[e_aci].tx_op);
  1861. u4b_ac_param = (u32) mac->ac[e_aci].aifs;
  1862. u4b_ac_param |= (u32) ((cw_min & 0xF) <<
  1863. AC_PARAM_ECW_MIN_OFFSET);
  1864. u4b_ac_param |= (u32) ((cw_max & 0xF) <<
  1865. AC_PARAM_ECW_MAX_OFFSET);
  1866. u4b_ac_param |= (u32) tx_op << AC_PARAM_TXOP_OFFSET;
  1867. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1868. ("queue:%x, ac_param:%x\n", e_aci,
  1869. u4b_ac_param));
  1870. switch (e_aci) {
  1871. case AC1_BK:
  1872. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM,
  1873. u4b_ac_param);
  1874. break;
  1875. case AC0_BE:
  1876. rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM,
  1877. u4b_ac_param);
  1878. break;
  1879. case AC2_VI:
  1880. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM,
  1881. u4b_ac_param);
  1882. break;
  1883. case AC3_VO:
  1884. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM,
  1885. u4b_ac_param);
  1886. break;
  1887. default:
  1888. RT_ASSERT(false, ("SetHwReg8185(): invalid"
  1889. " aci: %d !\n", e_aci));
  1890. break;
  1891. }
  1892. if (rtlusb->acm_method != eAcmWay2_SW)
  1893. rtlpriv->cfg->ops->set_hw_reg(hw,
  1894. HW_VAR_ACM_CTRL, (u8 *)(&e_aci));
  1895. break;
  1896. }
  1897. case HW_VAR_ACM_CTRL:{
  1898. u8 e_aci = *((u8 *) val);
  1899. union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)
  1900. (&(mac->ac[0].aifs));
  1901. u8 acm = p_aci_aifsn->f.acm;
  1902. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  1903. acm_ctrl =
  1904. acm_ctrl | ((rtlusb->acm_method == 2) ? 0x0 : 0x1);
  1905. if (acm) {
  1906. switch (e_aci) {
  1907. case AC0_BE:
  1908. acm_ctrl |= AcmHw_BeqEn;
  1909. break;
  1910. case AC2_VI:
  1911. acm_ctrl |= AcmHw_ViqEn;
  1912. break;
  1913. case AC3_VO:
  1914. acm_ctrl |= AcmHw_VoqEn;
  1915. break;
  1916. default:
  1917. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1918. ("HW_VAR_ACM_CTRL acm set "
  1919. "failed: eACI is %d\n", acm));
  1920. break;
  1921. }
  1922. } else {
  1923. switch (e_aci) {
  1924. case AC0_BE:
  1925. acm_ctrl &= (~AcmHw_BeqEn);
  1926. break;
  1927. case AC2_VI:
  1928. acm_ctrl &= (~AcmHw_ViqEn);
  1929. break;
  1930. case AC3_VO:
  1931. acm_ctrl &= (~AcmHw_BeqEn);
  1932. break;
  1933. default:
  1934. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1935. ("switch case not process\n"));
  1936. break;
  1937. }
  1938. }
  1939. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  1940. ("SetHwReg8190pci(): [HW_VAR_ACM_CTRL] "
  1941. "Write 0x%X\n", acm_ctrl));
  1942. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  1943. break;
  1944. }
  1945. case HW_VAR_RCR:{
  1946. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  1947. mac->rx_conf = ((u32 *) (val))[0];
  1948. RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG,
  1949. ("### Set RCR(0x%08x) ###\n", mac->rx_conf));
  1950. break;
  1951. }
  1952. case HW_VAR_RETRY_LIMIT:{
  1953. u8 retry_limit = ((u8 *) (val))[0];
  1954. rtl_write_word(rtlpriv, REG_RL,
  1955. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  1956. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  1957. RT_TRACE(rtlpriv, COMP_MLME, DBG_DMESG, ("Set HW_VAR_R"
  1958. "ETRY_LIMIT(0x%08x)\n", retry_limit));
  1959. break;
  1960. }
  1961. case HW_VAR_DUAL_TSF_RST:
  1962. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  1963. break;
  1964. case HW_VAR_EFUSE_BYTES:
  1965. rtlefuse->efuse_usedbytes = *((u16 *) val);
  1966. break;
  1967. case HW_VAR_EFUSE_USAGE:
  1968. rtlefuse->efuse_usedpercentage = *((u8 *) val);
  1969. break;
  1970. case HW_VAR_IO_CMD:
  1971. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  1972. break;
  1973. case HW_VAR_WPA_CONFIG:
  1974. rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val));
  1975. break;
  1976. case HW_VAR_SET_RPWM:{
  1977. u8 rpwm_val = rtl_read_byte(rtlpriv, REG_USB_HRPWM);
  1978. if (rpwm_val & BIT(7))
  1979. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1980. (*(u8 *)val));
  1981. else
  1982. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1983. ((*(u8 *)val) | BIT(7)));
  1984. break;
  1985. }
  1986. case HW_VAR_H2C_FW_PWRMODE:{
  1987. u8 psmode = (*(u8 *) val);
  1988. if ((psmode != FW_PS_ACTIVE_MODE) &&
  1989. (!IS_92C_SERIAL(rtlhal->version)))
  1990. rtl92c_dm_rf_saving(hw, true);
  1991. rtl92c_set_fw_pwrmode_cmd(hw, (*(u8 *) val));
  1992. break;
  1993. }
  1994. case HW_VAR_FW_PSMODE_STATUS:
  1995. ppsc->fw_current_inpsmode = *((bool *) val);
  1996. break;
  1997. case HW_VAR_H2C_FW_JOINBSSRPT:{
  1998. u8 mstatus = (*(u8 *) val);
  1999. u8 tmp_reg422;
  2000. bool recover = false;
  2001. if (mstatus == RT_MEDIA_CONNECT) {
  2002. rtlpriv->cfg->ops->set_hw_reg(hw,
  2003. HW_VAR_AID, NULL);
  2004. rtl_write_byte(rtlpriv, REG_CR + 1, 0x03);
  2005. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  2006. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  2007. tmp_reg422 = rtl_read_byte(rtlpriv,
  2008. REG_FWHW_TXQ_CTRL + 2);
  2009. if (tmp_reg422 & BIT(6))
  2010. recover = true;
  2011. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  2012. tmp_reg422 & (~BIT(6)));
  2013. rtl92c_set_fw_rsvdpagepkt(hw, 0);
  2014. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  2015. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  2016. if (recover)
  2017. rtl_write_byte(rtlpriv,
  2018. REG_FWHW_TXQ_CTRL + 2,
  2019. tmp_reg422 | BIT(6));
  2020. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  2021. }
  2022. rtl92c_set_fw_joinbss_report_cmd(hw, (*(u8 *) val));
  2023. break;
  2024. }
  2025. case HW_VAR_AID:{
  2026. u16 u2btmp;
  2027. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  2028. u2btmp &= 0xC000;
  2029. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
  2030. (u2btmp | mac->assoc_id));
  2031. break;
  2032. }
  2033. case HW_VAR_CORRECT_TSF:{
  2034. u8 btype_ibss = ((u8 *) (val))[0];
  2035. if (btype_ibss == true)
  2036. _rtl92cu_stop_tx_beacon(hw);
  2037. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  2038. rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf &
  2039. 0xffffffff));
  2040. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  2041. (u32)((mac->tsf >> 32) & 0xffffffff));
  2042. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  2043. if (btype_ibss == true)
  2044. _rtl92cu_resume_tx_beacon(hw);
  2045. break;
  2046. }
  2047. case HW_VAR_MGT_FILTER:
  2048. rtl_write_word(rtlpriv, REG_RXFLTMAP0, *(u16 *)val);
  2049. break;
  2050. case HW_VAR_CTRL_FILTER:
  2051. rtl_write_word(rtlpriv, REG_RXFLTMAP1, *(u16 *)val);
  2052. break;
  2053. case HW_VAR_DATA_FILTER:
  2054. rtl_write_word(rtlpriv, REG_RXFLTMAP2, *(u16 *)val);
  2055. break;
  2056. default:
  2057. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("switch case "
  2058. "not process\n"));
  2059. break;
  2060. }
  2061. }
  2062. void rtl92cu_update_hal_rate_table(struct ieee80211_hw *hw)
  2063. {
  2064. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2065. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2066. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2067. u32 ratr_value = (u32) mac->basic_rates;
  2068. u8 *mcsrate = mac->mcs;
  2069. u8 ratr_index = 0;
  2070. u8 nmode = mac->ht_enable;
  2071. u8 mimo_ps = 1;
  2072. u16 shortgi_rate = 0;
  2073. u32 tmp_ratr_value = 0;
  2074. u8 curtxbw_40mhz = mac->bw_40;
  2075. u8 curshortgi_40mhz = mac->sgi_40;
  2076. u8 curshortgi_20mhz = mac->sgi_20;
  2077. enum wireless_mode wirelessmode = mac->mode;
  2078. ratr_value |= ((*(u16 *) (mcsrate))) << 12;
  2079. switch (wirelessmode) {
  2080. case WIRELESS_MODE_B:
  2081. if (ratr_value & 0x0000000c)
  2082. ratr_value &= 0x0000000d;
  2083. else
  2084. ratr_value &= 0x0000000f;
  2085. break;
  2086. case WIRELESS_MODE_G:
  2087. ratr_value &= 0x00000FF5;
  2088. break;
  2089. case WIRELESS_MODE_N_24G:
  2090. case WIRELESS_MODE_N_5G:
  2091. nmode = 1;
  2092. if (mimo_ps == 0) {
  2093. ratr_value &= 0x0007F005;
  2094. } else {
  2095. u32 ratr_mask;
  2096. if (get_rf_type(rtlphy) == RF_1T2R ||
  2097. get_rf_type(rtlphy) == RF_1T1R)
  2098. ratr_mask = 0x000ff005;
  2099. else
  2100. ratr_mask = 0x0f0ff005;
  2101. if (curtxbw_40mhz)
  2102. ratr_mask |= 0x00000010;
  2103. ratr_value &= ratr_mask;
  2104. }
  2105. break;
  2106. default:
  2107. if (rtlphy->rf_type == RF_1T2R)
  2108. ratr_value &= 0x000ff0ff;
  2109. else
  2110. ratr_value &= 0x0f0ff0ff;
  2111. break;
  2112. }
  2113. ratr_value &= 0x0FFFFFFF;
  2114. if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
  2115. (!curtxbw_40mhz && curshortgi_20mhz))) {
  2116. ratr_value |= 0x10000000;
  2117. tmp_ratr_value = (ratr_value >> 12);
  2118. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  2119. if ((1 << shortgi_rate) & tmp_ratr_value)
  2120. break;
  2121. }
  2122. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  2123. (shortgi_rate << 4) | (shortgi_rate);
  2124. }
  2125. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  2126. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("%x\n", rtl_read_dword(rtlpriv,
  2127. REG_ARFR0)));
  2128. }
  2129. void rtl92cu_update_hal_rate_mask(struct ieee80211_hw *hw, u8 rssi_level)
  2130. {
  2131. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2132. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2133. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2134. u32 ratr_bitmap = (u32) mac->basic_rates;
  2135. u8 *p_mcsrate = mac->mcs;
  2136. u8 ratr_index = 0;
  2137. u8 curtxbw_40mhz = mac->bw_40;
  2138. u8 curshortgi_40mhz = mac->sgi_40;
  2139. u8 curshortgi_20mhz = mac->sgi_20;
  2140. enum wireless_mode wirelessmode = mac->mode;
  2141. bool shortgi = false;
  2142. u8 rate_mask[5];
  2143. u8 macid = 0;
  2144. u8 mimops = 1;
  2145. ratr_bitmap |= (p_mcsrate[1] << 20) | (p_mcsrate[0] << 12);
  2146. switch (wirelessmode) {
  2147. case WIRELESS_MODE_B:
  2148. ratr_index = RATR_INX_WIRELESS_B;
  2149. if (ratr_bitmap & 0x0000000c)
  2150. ratr_bitmap &= 0x0000000d;
  2151. else
  2152. ratr_bitmap &= 0x0000000f;
  2153. break;
  2154. case WIRELESS_MODE_G:
  2155. ratr_index = RATR_INX_WIRELESS_GB;
  2156. if (rssi_level == 1)
  2157. ratr_bitmap &= 0x00000f00;
  2158. else if (rssi_level == 2)
  2159. ratr_bitmap &= 0x00000ff0;
  2160. else
  2161. ratr_bitmap &= 0x00000ff5;
  2162. break;
  2163. case WIRELESS_MODE_A:
  2164. ratr_index = RATR_INX_WIRELESS_A;
  2165. ratr_bitmap &= 0x00000ff0;
  2166. break;
  2167. case WIRELESS_MODE_N_24G:
  2168. case WIRELESS_MODE_N_5G:
  2169. ratr_index = RATR_INX_WIRELESS_NGB;
  2170. if (mimops == 0) {
  2171. if (rssi_level == 1)
  2172. ratr_bitmap &= 0x00070000;
  2173. else if (rssi_level == 2)
  2174. ratr_bitmap &= 0x0007f000;
  2175. else
  2176. ratr_bitmap &= 0x0007f005;
  2177. } else {
  2178. if (rtlphy->rf_type == RF_1T2R ||
  2179. rtlphy->rf_type == RF_1T1R) {
  2180. if (curtxbw_40mhz) {
  2181. if (rssi_level == 1)
  2182. ratr_bitmap &= 0x000f0000;
  2183. else if (rssi_level == 2)
  2184. ratr_bitmap &= 0x000ff000;
  2185. else
  2186. ratr_bitmap &= 0x000ff015;
  2187. } else {
  2188. if (rssi_level == 1)
  2189. ratr_bitmap &= 0x000f0000;
  2190. else if (rssi_level == 2)
  2191. ratr_bitmap &= 0x000ff000;
  2192. else
  2193. ratr_bitmap &= 0x000ff005;
  2194. }
  2195. } else {
  2196. if (curtxbw_40mhz) {
  2197. if (rssi_level == 1)
  2198. ratr_bitmap &= 0x0f0f0000;
  2199. else if (rssi_level == 2)
  2200. ratr_bitmap &= 0x0f0ff000;
  2201. else
  2202. ratr_bitmap &= 0x0f0ff015;
  2203. } else {
  2204. if (rssi_level == 1)
  2205. ratr_bitmap &= 0x0f0f0000;
  2206. else if (rssi_level == 2)
  2207. ratr_bitmap &= 0x0f0ff000;
  2208. else
  2209. ratr_bitmap &= 0x0f0ff005;
  2210. }
  2211. }
  2212. }
  2213. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  2214. (!curtxbw_40mhz && curshortgi_20mhz)) {
  2215. if (macid == 0)
  2216. shortgi = true;
  2217. else if (macid == 1)
  2218. shortgi = false;
  2219. }
  2220. break;
  2221. default:
  2222. ratr_index = RATR_INX_WIRELESS_NGB;
  2223. if (rtlphy->rf_type == RF_1T2R)
  2224. ratr_bitmap &= 0x000ff0ff;
  2225. else
  2226. ratr_bitmap &= 0x0f0ff0ff;
  2227. break;
  2228. }
  2229. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("ratr_bitmap :%x\n",
  2230. ratr_bitmap));
  2231. *(u32 *)&rate_mask = ((ratr_bitmap & 0x0fffffff) |
  2232. ratr_index << 28);
  2233. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  2234. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("Rate_index:%x, "
  2235. "ratr_val:%x, %x:%x:%x:%x:%x\n",
  2236. ratr_index, ratr_bitmap,
  2237. rate_mask[0], rate_mask[1],
  2238. rate_mask[2], rate_mask[3],
  2239. rate_mask[4]));
  2240. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  2241. }
  2242. void rtl92cu_update_channel_access_setting(struct ieee80211_hw *hw)
  2243. {
  2244. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2245. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2246. u16 sifs_timer;
  2247. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  2248. (u8 *)&mac->slot_time);
  2249. if (!mac->ht_enable)
  2250. sifs_timer = 0x0a0a;
  2251. else
  2252. sifs_timer = 0x0e0e;
  2253. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  2254. }
  2255. bool rtl92cu_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 * valid)
  2256. {
  2257. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2258. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2259. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2260. enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
  2261. u8 u1tmp = 0;
  2262. bool actuallyset = false;
  2263. unsigned long flag = 0;
  2264. /* to do - usb autosuspend */
  2265. u8 usb_autosuspend = 0;
  2266. if (ppsc->swrf_processing)
  2267. return false;
  2268. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2269. if (ppsc->rfchange_inprogress) {
  2270. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2271. return false;
  2272. } else {
  2273. ppsc->rfchange_inprogress = true;
  2274. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2275. }
  2276. cur_rfstate = ppsc->rfpwr_state;
  2277. if (usb_autosuspend) {
  2278. /* to do................... */
  2279. } else {
  2280. if (ppsc->pwrdown_mode) {
  2281. u1tmp = rtl_read_byte(rtlpriv, REG_HSISR);
  2282. e_rfpowerstate_toset = (u1tmp & BIT(7)) ?
  2283. ERFOFF : ERFON;
  2284. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2285. ("pwrdown, 0x5c(BIT7)=%02x\n", u1tmp));
  2286. } else {
  2287. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG,
  2288. rtl_read_byte(rtlpriv,
  2289. REG_MAC_PINMUX_CFG) & ~(BIT(3)));
  2290. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  2291. e_rfpowerstate_toset = (u1tmp & BIT(3)) ?
  2292. ERFON : ERFOFF;
  2293. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2294. ("GPIO_IN=%02x\n", u1tmp));
  2295. }
  2296. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("N-SS RF =%x\n",
  2297. e_rfpowerstate_toset));
  2298. }
  2299. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  2300. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("GPIOChangeRF - HW "
  2301. "Radio ON, RF ON\n"));
  2302. ppsc->hwradiooff = false;
  2303. actuallyset = true;
  2304. } else if ((!ppsc->hwradiooff) && (e_rfpowerstate_toset ==
  2305. ERFOFF)) {
  2306. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("GPIOChangeRF - HW"
  2307. " Radio OFF\n"));
  2308. ppsc->hwradiooff = true;
  2309. actuallyset = true;
  2310. } else {
  2311. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD ,
  2312. ("pHalData->bHwRadioOff and eRfPowerStateToSet do not"
  2313. " match: pHalData->bHwRadioOff %x, eRfPowerStateToSet "
  2314. "%x\n", ppsc->hwradiooff, e_rfpowerstate_toset));
  2315. }
  2316. if (actuallyset) {
  2317. ppsc->hwradiooff = 1;
  2318. if (e_rfpowerstate_toset == ERFON) {
  2319. if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) &&
  2320. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM))
  2321. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2322. else if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2323. && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3))
  2324. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2325. }
  2326. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2327. ppsc->rfchange_inprogress = false;
  2328. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2329. /* For power down module, we need to enable register block
  2330. * contrl reg at 0x1c. Then enable power down control bit
  2331. * of register 0x04 BIT4 and BIT15 as 1.
  2332. */
  2333. if (ppsc->pwrdown_mode && e_rfpowerstate_toset == ERFOFF) {
  2334. /* Enable register area 0x0-0xc. */
  2335. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  2336. if (IS_HARDWARE_TYPE_8723U(rtlhal)) {
  2337. /*
  2338. * We should configure HW PDn source for WiFi
  2339. * ONLY, and then our HW will be set in
  2340. * power-down mode if PDn source from all
  2341. * functions are configured.
  2342. */
  2343. u1tmp = rtl_read_byte(rtlpriv,
  2344. REG_MULTI_FUNC_CTRL);
  2345. rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL,
  2346. (u1tmp|WL_HWPDN_EN));
  2347. } else {
  2348. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x8812);
  2349. }
  2350. }
  2351. if (e_rfpowerstate_toset == ERFOFF) {
  2352. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2353. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2354. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2355. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2356. }
  2357. } else if (e_rfpowerstate_toset == ERFOFF || cur_rfstate == ERFOFF) {
  2358. /* Enter D3 or ASPM after GPIO had been done. */
  2359. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2360. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2361. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2362. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2363. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2364. ppsc->rfchange_inprogress = false;
  2365. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2366. } else {
  2367. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2368. ppsc->rfchange_inprogress = false;
  2369. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2370. }
  2371. *valid = 1;
  2372. return !ppsc->hwradiooff;
  2373. }