ip27-timer.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. /*
  2. * Copytight (C) 1999, 2000, 05, 06 Ralf Baechle (ralf@linux-mips.org)
  3. * Copytight (C) 1999, 2000 Silicon Graphics, Inc.
  4. */
  5. #include <linux/bcd.h>
  6. #include <linux/clockchips.h>
  7. #include <linux/init.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/param.h>
  13. #include <linux/smp.h>
  14. #include <linux/time.h>
  15. #include <linux/timex.h>
  16. #include <linux/mm.h>
  17. #include <linux/platform_device.h>
  18. #include <asm/time.h>
  19. #include <asm/pgtable.h>
  20. #include <asm/sgialib.h>
  21. #include <asm/sn/ioc3.h>
  22. #include <asm/sn/klconfig.h>
  23. #include <asm/sn/arch.h>
  24. #include <asm/sn/addrs.h>
  25. #include <asm/sn/sn_private.h>
  26. #include <asm/sn/sn0/ip27.h>
  27. #include <asm/sn/sn0/hub.h>
  28. #define TICK_SIZE (tick_nsec / 1000)
  29. /* Includes for ioc3_init(). */
  30. #include <asm/sn/types.h>
  31. #include <asm/sn/sn0/addrs.h>
  32. #include <asm/sn/sn0/hubni.h>
  33. #include <asm/sn/sn0/hubio.h>
  34. #include <asm/pci/bridge.h>
  35. static void enable_rt_irq(struct irq_data *d)
  36. {
  37. }
  38. static void disable_rt_irq(struct irq_data *d)
  39. {
  40. }
  41. static struct irq_chip rt_irq_type = {
  42. .name = "SN HUB RT timer",
  43. .irq_mask = disable_rt_irq,
  44. .irq_unmask = enable_rt_irq,
  45. };
  46. static int rt_next_event(unsigned long delta, struct clock_event_device *evt)
  47. {
  48. unsigned int cpu = smp_processor_id();
  49. int slice = cputoslice(cpu);
  50. unsigned long cnt;
  51. cnt = LOCAL_HUB_L(PI_RT_COUNT);
  52. cnt += delta;
  53. LOCAL_HUB_S(PI_RT_COMPARE_A + PI_COUNT_OFFSET * slice, cnt);
  54. return LOCAL_HUB_L(PI_RT_COUNT) >= cnt ? -ETIME : 0;
  55. }
  56. static void rt_set_mode(enum clock_event_mode mode,
  57. struct clock_event_device *evt)
  58. {
  59. switch (mode) {
  60. case CLOCK_EVT_MODE_ONESHOT:
  61. /* The only mode supported */
  62. break;
  63. case CLOCK_EVT_MODE_PERIODIC:
  64. case CLOCK_EVT_MODE_UNUSED:
  65. case CLOCK_EVT_MODE_SHUTDOWN:
  66. case CLOCK_EVT_MODE_RESUME:
  67. /* Nothing to do */
  68. break;
  69. }
  70. }
  71. int rt_timer_irq;
  72. static DEFINE_PER_CPU(struct clock_event_device, hub_rt_clockevent);
  73. static DEFINE_PER_CPU(char [11], hub_rt_name);
  74. static irqreturn_t hub_rt_counter_handler(int irq, void *dev_id)
  75. {
  76. unsigned int cpu = smp_processor_id();
  77. struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu);
  78. int slice = cputoslice(cpu);
  79. /*
  80. * Ack
  81. */
  82. LOCAL_HUB_S(PI_RT_PEND_A + PI_COUNT_OFFSET * slice, 0);
  83. cd->event_handler(cd);
  84. return IRQ_HANDLED;
  85. }
  86. struct irqaction hub_rt_irqaction = {
  87. .handler = hub_rt_counter_handler,
  88. .flags = IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
  89. .name = "hub-rt",
  90. };
  91. /*
  92. * This is a hack; we really need to figure these values out dynamically
  93. *
  94. * Since 800 ns works very well with various HUB frequencies, such as
  95. * 360, 380, 390 and 400 MHZ, we use 800 ns rtc cycle time.
  96. *
  97. * Ralf: which clock rate is used to feed the counter?
  98. */
  99. #define NSEC_PER_CYCLE 800
  100. #define CYCLES_PER_SEC (NSEC_PER_SEC / NSEC_PER_CYCLE)
  101. void __cpuinit hub_rt_clock_event_init(void)
  102. {
  103. unsigned int cpu = smp_processor_id();
  104. struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu);
  105. unsigned char *name = per_cpu(hub_rt_name, cpu);
  106. int irq = rt_timer_irq;
  107. sprintf(name, "hub-rt %d", cpu);
  108. cd->name = name;
  109. cd->features = CLOCK_EVT_FEAT_ONESHOT;
  110. clockevent_set_clock(cd, CYCLES_PER_SEC);
  111. cd->max_delta_ns = clockevent_delta2ns(0xfffffffffffff, cd);
  112. cd->min_delta_ns = clockevent_delta2ns(0x300, cd);
  113. cd->rating = 200;
  114. cd->irq = irq;
  115. cd->cpumask = cpumask_of(cpu);
  116. cd->set_next_event = rt_next_event;
  117. cd->set_mode = rt_set_mode;
  118. clockevents_register_device(cd);
  119. }
  120. static void __init hub_rt_clock_event_global_init(void)
  121. {
  122. int irq;
  123. do {
  124. smp_wmb();
  125. irq = rt_timer_irq;
  126. if (irq)
  127. break;
  128. irq = allocate_irqno();
  129. if (irq < 0)
  130. panic("Allocation of irq number for timer failed");
  131. } while (xchg(&rt_timer_irq, irq));
  132. irq_set_chip_and_handler(irq, &rt_irq_type, handle_percpu_irq);
  133. setup_irq(irq, &hub_rt_irqaction);
  134. }
  135. static cycle_t hub_rt_read(struct clocksource *cs)
  136. {
  137. return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT);
  138. }
  139. struct clocksource hub_rt_clocksource = {
  140. .name = "HUB-RT",
  141. .rating = 200,
  142. .read = hub_rt_read,
  143. .mask = CLOCKSOURCE_MASK(52),
  144. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  145. };
  146. static void __init hub_rt_clocksource_init(void)
  147. {
  148. struct clocksource *cs = &hub_rt_clocksource;
  149. clocksource_set_clock(cs, CYCLES_PER_SEC);
  150. clocksource_register(cs);
  151. }
  152. void __init plat_time_init(void)
  153. {
  154. hub_rt_clocksource_init();
  155. hub_rt_clock_event_global_init();
  156. hub_rt_clock_event_init();
  157. }
  158. void __cpuinit cpu_time_init(void)
  159. {
  160. lboard_t *board;
  161. klcpu_t *cpu;
  162. int cpuid;
  163. /* Don't use ARCS. ARCS is fragile. Klconfig is simple and sane. */
  164. board = find_lboard(KL_CONFIG_INFO(get_nasid()), KLTYPE_IP27);
  165. if (!board)
  166. panic("Can't find board info for myself.");
  167. cpuid = LOCAL_HUB_L(PI_CPU_NUM) ? IP27_CPU0_INDEX : IP27_CPU1_INDEX;
  168. cpu = (klcpu_t *) KLCF_COMP(board, cpuid);
  169. if (!cpu)
  170. panic("No information about myself?");
  171. printk("CPU %d clock is %dMHz.\n", smp_processor_id(), cpu->cpu_speed);
  172. set_c0_status(SRB_TIMOCLK);
  173. }
  174. void __cpuinit hub_rtc_init(cnodeid_t cnode)
  175. {
  176. /*
  177. * We only need to initialize the current node.
  178. * If this is not the current node then it is a cpuless
  179. * node and timeouts will not happen there.
  180. */
  181. if (get_compact_nodeid() == cnode) {
  182. LOCAL_HUB_S(PI_RT_EN_A, 1);
  183. LOCAL_HUB_S(PI_RT_EN_B, 1);
  184. LOCAL_HUB_S(PI_PROF_EN_A, 0);
  185. LOCAL_HUB_S(PI_PROF_EN_B, 0);
  186. LOCAL_HUB_S(PI_RT_COUNT, 0);
  187. LOCAL_HUB_S(PI_RT_PEND_A, 0);
  188. LOCAL_HUB_S(PI_RT_PEND_B, 0);
  189. }
  190. }
  191. static int __init sgi_ip27_rtc_devinit(void)
  192. {
  193. struct resource res;
  194. memset(&res, 0, sizeof(res));
  195. res.start = XPHYSADDR(KL_CONFIG_CH_CONS_INFO(master_nasid)->memory_base +
  196. IOC3_BYTEBUS_DEV0);
  197. res.end = res.start + 32767;
  198. res.flags = IORESOURCE_MEM;
  199. return IS_ERR(platform_device_register_simple("rtc-m48t35", -1,
  200. &res, 1));
  201. }
  202. /*
  203. * kludge make this a device_initcall after ioc3 resource conflicts
  204. * are resolved
  205. */
  206. late_initcall(sgi_ip27_rtc_devinit);