dma-mapping.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/highmem.h>
  21. #include <asm/memory.h>
  22. #include <asm/highmem.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/tlbflush.h>
  25. #include <asm/sizes.h>
  26. static u64 get_coherent_dma_mask(struct device *dev)
  27. {
  28. u64 mask = ISA_DMA_THRESHOLD;
  29. if (dev) {
  30. mask = dev->coherent_dma_mask;
  31. /*
  32. * Sanity check the DMA mask - it must be non-zero, and
  33. * must be able to be satisfied by a DMA allocation.
  34. */
  35. if (mask == 0) {
  36. dev_warn(dev, "coherent DMA mask is unset\n");
  37. return 0;
  38. }
  39. if ((~mask) & ISA_DMA_THRESHOLD) {
  40. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  41. "than system GFP_DMA mask %#llx\n",
  42. mask, (unsigned long long)ISA_DMA_THRESHOLD);
  43. return 0;
  44. }
  45. }
  46. return mask;
  47. }
  48. /*
  49. * Allocate a DMA buffer for 'dev' of size 'size' using the
  50. * specified gfp mask. Note that 'size' must be page aligned.
  51. */
  52. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  53. {
  54. unsigned long order = get_order(size);
  55. struct page *page, *p, *e;
  56. void *ptr;
  57. u64 mask = get_coherent_dma_mask(dev);
  58. #ifdef CONFIG_DMA_API_DEBUG
  59. u64 limit = (mask + 1) & ~mask;
  60. if (limit && size >= limit) {
  61. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  62. size, mask);
  63. return NULL;
  64. }
  65. #endif
  66. if (!mask)
  67. return NULL;
  68. if (mask < 0xffffffffULL)
  69. gfp |= GFP_DMA;
  70. page = alloc_pages(gfp, order);
  71. if (!page)
  72. return NULL;
  73. /*
  74. * Now split the huge page and free the excess pages
  75. */
  76. split_page(page, order);
  77. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  78. __free_page(p);
  79. /*
  80. * Ensure that the allocated pages are zeroed, and that any data
  81. * lurking in the kernel direct-mapped region is invalidated.
  82. */
  83. ptr = page_address(page);
  84. memset(ptr, 0, size);
  85. dmac_flush_range(ptr, ptr + size);
  86. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  87. return page;
  88. }
  89. /*
  90. * Free a DMA buffer. 'size' must be page aligned.
  91. */
  92. static void __dma_free_buffer(struct page *page, size_t size)
  93. {
  94. struct page *e = page + (size >> PAGE_SHIFT);
  95. while (page < e) {
  96. __free_page(page);
  97. page++;
  98. }
  99. }
  100. #ifdef CONFIG_MMU
  101. /* Sanity check size */
  102. #if (CONSISTENT_DMA_SIZE % SZ_2M)
  103. #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
  104. #endif
  105. #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
  106. #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
  107. #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
  108. /*
  109. * These are the page tables (2MB each) covering uncached, DMA consistent allocations
  110. */
  111. static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
  112. #include "vmregion.h"
  113. static struct arm_vmregion_head consistent_head = {
  114. .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
  115. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  116. .vm_start = CONSISTENT_BASE,
  117. .vm_end = CONSISTENT_END,
  118. };
  119. #ifdef CONFIG_HUGETLB_PAGE
  120. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  121. #endif
  122. /*
  123. * Initialise the consistent memory allocation.
  124. */
  125. static int __init consistent_init(void)
  126. {
  127. int ret = 0;
  128. pgd_t *pgd;
  129. pud_t *pud;
  130. pmd_t *pmd;
  131. pte_t *pte;
  132. int i = 0;
  133. u32 base = CONSISTENT_BASE;
  134. do {
  135. pgd = pgd_offset(&init_mm, base);
  136. pud = pud_alloc(&init_mm, pgd, base);
  137. if (!pud) {
  138. printk(KERN_ERR "%s: no pud tables\n", __func__);
  139. ret = -ENOMEM;
  140. break;
  141. }
  142. pmd = pmd_alloc(&init_mm, pud, base);
  143. if (!pmd) {
  144. printk(KERN_ERR "%s: no pmd tables\n", __func__);
  145. ret = -ENOMEM;
  146. break;
  147. }
  148. WARN_ON(!pmd_none(*pmd));
  149. pte = pte_alloc_kernel(pmd, base);
  150. if (!pte) {
  151. printk(KERN_ERR "%s: no pte tables\n", __func__);
  152. ret = -ENOMEM;
  153. break;
  154. }
  155. consistent_pte[i++] = pte;
  156. base += (1 << PGDIR_SHIFT);
  157. } while (base < CONSISTENT_END);
  158. return ret;
  159. }
  160. core_initcall(consistent_init);
  161. static void *
  162. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
  163. {
  164. struct arm_vmregion *c;
  165. size_t align;
  166. int bit;
  167. if (!consistent_pte[0]) {
  168. printk(KERN_ERR "%s: not initialised\n", __func__);
  169. dump_stack();
  170. return NULL;
  171. }
  172. /*
  173. * Align the virtual region allocation - maximum alignment is
  174. * a section size, minimum is a page size. This helps reduce
  175. * fragmentation of the DMA space, and also prevents allocations
  176. * smaller than a section from crossing a section boundary.
  177. */
  178. bit = fls(size - 1);
  179. if (bit > SECTION_SHIFT)
  180. bit = SECTION_SHIFT;
  181. align = 1 << bit;
  182. /*
  183. * Allocate a virtual address in the consistent mapping region.
  184. */
  185. c = arm_vmregion_alloc(&consistent_head, align, size,
  186. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  187. if (c) {
  188. pte_t *pte;
  189. int idx = CONSISTENT_PTE_INDEX(c->vm_start);
  190. u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  191. pte = consistent_pte[idx] + off;
  192. c->vm_pages = page;
  193. do {
  194. BUG_ON(!pte_none(*pte));
  195. set_pte_ext(pte, mk_pte(page, prot), 0);
  196. page++;
  197. pte++;
  198. off++;
  199. if (off >= PTRS_PER_PTE) {
  200. off = 0;
  201. pte = consistent_pte[++idx];
  202. }
  203. } while (size -= PAGE_SIZE);
  204. dsb();
  205. return (void *)c->vm_start;
  206. }
  207. return NULL;
  208. }
  209. static void __dma_free_remap(void *cpu_addr, size_t size)
  210. {
  211. struct arm_vmregion *c;
  212. unsigned long addr;
  213. pte_t *ptep;
  214. int idx;
  215. u32 off;
  216. c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
  217. if (!c) {
  218. printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
  219. __func__, cpu_addr);
  220. dump_stack();
  221. return;
  222. }
  223. if ((c->vm_end - c->vm_start) != size) {
  224. printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
  225. __func__, c->vm_end - c->vm_start, size);
  226. dump_stack();
  227. size = c->vm_end - c->vm_start;
  228. }
  229. idx = CONSISTENT_PTE_INDEX(c->vm_start);
  230. off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
  231. ptep = consistent_pte[idx] + off;
  232. addr = c->vm_start;
  233. do {
  234. pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
  235. ptep++;
  236. addr += PAGE_SIZE;
  237. off++;
  238. if (off >= PTRS_PER_PTE) {
  239. off = 0;
  240. ptep = consistent_pte[++idx];
  241. }
  242. if (pte_none(pte) || !pte_present(pte))
  243. printk(KERN_CRIT "%s: bad page in kernel page table\n",
  244. __func__);
  245. } while (size -= PAGE_SIZE);
  246. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  247. arm_vmregion_free(&consistent_head, c);
  248. }
  249. #else /* !CONFIG_MMU */
  250. #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
  251. #define __dma_free_remap(addr, size) do { } while (0)
  252. #endif /* CONFIG_MMU */
  253. static void *
  254. __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
  255. pgprot_t prot)
  256. {
  257. struct page *page;
  258. void *addr;
  259. *handle = ~0;
  260. size = PAGE_ALIGN(size);
  261. page = __dma_alloc_buffer(dev, size, gfp);
  262. if (!page)
  263. return NULL;
  264. if (!arch_is_coherent())
  265. addr = __dma_alloc_remap(page, size, gfp, prot);
  266. else
  267. addr = page_address(page);
  268. if (addr)
  269. *handle = pfn_to_dma(dev, page_to_pfn(page));
  270. return addr;
  271. }
  272. /*
  273. * Allocate DMA-coherent memory space and return both the kernel remapped
  274. * virtual and bus address for that space.
  275. */
  276. void *
  277. dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  278. {
  279. void *memory;
  280. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  281. return memory;
  282. return __dma_alloc(dev, size, handle, gfp,
  283. pgprot_dmacoherent(pgprot_kernel));
  284. }
  285. EXPORT_SYMBOL(dma_alloc_coherent);
  286. /*
  287. * Allocate a writecombining region, in much the same way as
  288. * dma_alloc_coherent above.
  289. */
  290. void *
  291. dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
  292. {
  293. return __dma_alloc(dev, size, handle, gfp,
  294. pgprot_writecombine(pgprot_kernel));
  295. }
  296. EXPORT_SYMBOL(dma_alloc_writecombine);
  297. static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
  298. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  299. {
  300. int ret = -ENXIO;
  301. #ifdef CONFIG_MMU
  302. unsigned long user_size, kern_size;
  303. struct arm_vmregion *c;
  304. user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  305. c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
  306. if (c) {
  307. unsigned long off = vma->vm_pgoff;
  308. kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
  309. if (off < kern_size &&
  310. user_size <= (kern_size - off)) {
  311. ret = remap_pfn_range(vma, vma->vm_start,
  312. page_to_pfn(c->vm_pages) + off,
  313. user_size << PAGE_SHIFT,
  314. vma->vm_page_prot);
  315. }
  316. }
  317. #endif /* CONFIG_MMU */
  318. return ret;
  319. }
  320. int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  321. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  322. {
  323. vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
  324. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  325. }
  326. EXPORT_SYMBOL(dma_mmap_coherent);
  327. int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
  328. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  329. {
  330. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  331. return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
  332. }
  333. EXPORT_SYMBOL(dma_mmap_writecombine);
  334. /*
  335. * free a page as defined by the above mapping.
  336. * Must not be called with IRQs disabled.
  337. */
  338. void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
  339. {
  340. WARN_ON(irqs_disabled());
  341. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  342. return;
  343. size = PAGE_ALIGN(size);
  344. if (!arch_is_coherent())
  345. __dma_free_remap(cpu_addr, size);
  346. __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
  347. }
  348. EXPORT_SYMBOL(dma_free_coherent);
  349. /*
  350. * Make an area consistent for devices.
  351. * Note: Drivers should NOT use this function directly, as it will break
  352. * platforms with CONFIG_DMABOUNCE.
  353. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  354. */
  355. void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
  356. enum dma_data_direction dir)
  357. {
  358. unsigned long paddr;
  359. BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
  360. dmac_map_area(kaddr, size, dir);
  361. paddr = __pa(kaddr);
  362. if (dir == DMA_FROM_DEVICE) {
  363. outer_inv_range(paddr, paddr + size);
  364. } else {
  365. outer_clean_range(paddr, paddr + size);
  366. }
  367. /* FIXME: non-speculating: flush on bidirectional mappings? */
  368. }
  369. EXPORT_SYMBOL(___dma_single_cpu_to_dev);
  370. void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
  371. enum dma_data_direction dir)
  372. {
  373. BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
  374. /* FIXME: non-speculating: not required */
  375. /* don't bother invalidating if DMA to device */
  376. if (dir != DMA_TO_DEVICE) {
  377. unsigned long paddr = __pa(kaddr);
  378. outer_inv_range(paddr, paddr + size);
  379. }
  380. dmac_unmap_area(kaddr, size, dir);
  381. }
  382. EXPORT_SYMBOL(___dma_single_dev_to_cpu);
  383. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  384. size_t size, enum dma_data_direction dir,
  385. void (*op)(const void *, size_t, int))
  386. {
  387. /*
  388. * A single sg entry may refer to multiple physically contiguous
  389. * pages. But we still need to process highmem pages individually.
  390. * If highmem is not configured then the bulk of this loop gets
  391. * optimized out.
  392. */
  393. size_t left = size;
  394. do {
  395. size_t len = left;
  396. void *vaddr;
  397. if (PageHighMem(page)) {
  398. if (len + offset > PAGE_SIZE) {
  399. if (offset >= PAGE_SIZE) {
  400. page += offset / PAGE_SIZE;
  401. offset %= PAGE_SIZE;
  402. }
  403. len = PAGE_SIZE - offset;
  404. }
  405. vaddr = kmap_high_get(page);
  406. if (vaddr) {
  407. vaddr += offset;
  408. op(vaddr, len, dir);
  409. kunmap_high(page);
  410. } else if (cache_is_vipt()) {
  411. /* unmapped pages might still be cached */
  412. vaddr = kmap_atomic(page);
  413. op(vaddr + offset, len, dir);
  414. kunmap_atomic(vaddr);
  415. }
  416. } else {
  417. vaddr = page_address(page) + offset;
  418. op(vaddr, len, dir);
  419. }
  420. offset = 0;
  421. page++;
  422. left -= len;
  423. } while (left);
  424. }
  425. void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
  426. size_t size, enum dma_data_direction dir)
  427. {
  428. unsigned long paddr;
  429. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  430. paddr = page_to_phys(page) + off;
  431. if (dir == DMA_FROM_DEVICE) {
  432. outer_inv_range(paddr, paddr + size);
  433. } else {
  434. outer_clean_range(paddr, paddr + size);
  435. }
  436. /* FIXME: non-speculating: flush on bidirectional mappings? */
  437. }
  438. EXPORT_SYMBOL(___dma_page_cpu_to_dev);
  439. void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
  440. size_t size, enum dma_data_direction dir)
  441. {
  442. unsigned long paddr = page_to_phys(page) + off;
  443. /* FIXME: non-speculating: not required */
  444. /* don't bother invalidating if DMA to device */
  445. if (dir != DMA_TO_DEVICE)
  446. outer_inv_range(paddr, paddr + size);
  447. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  448. /*
  449. * Mark the D-cache clean for this page to avoid extra flushing.
  450. */
  451. if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
  452. set_bit(PG_dcache_clean, &page->flags);
  453. }
  454. EXPORT_SYMBOL(___dma_page_dev_to_cpu);
  455. /**
  456. * dma_map_sg - map a set of SG buffers for streaming mode DMA
  457. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  458. * @sg: list of buffers
  459. * @nents: number of buffers to map
  460. * @dir: DMA transfer direction
  461. *
  462. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  463. * This is the scatter-gather version of the dma_map_single interface.
  464. * Here the scatter gather list elements are each tagged with the
  465. * appropriate dma address and length. They are obtained via
  466. * sg_dma_{address,length}.
  467. *
  468. * Device ownership issues as mentioned for dma_map_single are the same
  469. * here.
  470. */
  471. int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  472. enum dma_data_direction dir)
  473. {
  474. struct scatterlist *s;
  475. int i, j;
  476. BUG_ON(!valid_dma_direction(dir));
  477. for_each_sg(sg, s, nents, i) {
  478. s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
  479. s->length, dir);
  480. if (dma_mapping_error(dev, s->dma_address))
  481. goto bad_mapping;
  482. }
  483. debug_dma_map_sg(dev, sg, nents, nents, dir);
  484. return nents;
  485. bad_mapping:
  486. for_each_sg(sg, s, i, j)
  487. __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  488. return 0;
  489. }
  490. EXPORT_SYMBOL(dma_map_sg);
  491. /**
  492. * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  493. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  494. * @sg: list of buffers
  495. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  496. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  497. *
  498. * Unmap a set of streaming mode DMA translations. Again, CPU access
  499. * rules concerning calls here are the same as for dma_unmap_single().
  500. */
  501. void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  502. enum dma_data_direction dir)
  503. {
  504. struct scatterlist *s;
  505. int i;
  506. debug_dma_unmap_sg(dev, sg, nents, dir);
  507. for_each_sg(sg, s, nents, i)
  508. __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
  509. }
  510. EXPORT_SYMBOL(dma_unmap_sg);
  511. /**
  512. * dma_sync_sg_for_cpu
  513. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  514. * @sg: list of buffers
  515. * @nents: number of buffers to map (returned from dma_map_sg)
  516. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  517. */
  518. void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  519. int nents, enum dma_data_direction dir)
  520. {
  521. struct scatterlist *s;
  522. int i;
  523. for_each_sg(sg, s, nents, i) {
  524. if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
  525. sg_dma_len(s), dir))
  526. continue;
  527. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  528. s->length, dir);
  529. }
  530. debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
  531. }
  532. EXPORT_SYMBOL(dma_sync_sg_for_cpu);
  533. /**
  534. * dma_sync_sg_for_device
  535. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  536. * @sg: list of buffers
  537. * @nents: number of buffers to map (returned from dma_map_sg)
  538. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  539. */
  540. void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  541. int nents, enum dma_data_direction dir)
  542. {
  543. struct scatterlist *s;
  544. int i;
  545. for_each_sg(sg, s, nents, i) {
  546. if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
  547. sg_dma_len(s), dir))
  548. continue;
  549. __dma_page_cpu_to_dev(sg_page(s), s->offset,
  550. s->length, dir);
  551. }
  552. debug_dma_sync_sg_for_device(dev, sg, nents, dir);
  553. }
  554. EXPORT_SYMBOL(dma_sync_sg_for_device);
  555. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  556. static int __init dma_debug_do_init(void)
  557. {
  558. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  559. return 0;
  560. }
  561. fs_initcall(dma_debug_do_init);