cpufreq.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /* linux/arch/arm/mach-s5pv210/cpufreq.c
  2. *
  3. * Copyright (c) 2010 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * CPU frequency scaling for S5PC110/S5PV210
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/io.h>
  18. #include <linux/cpufreq.h>
  19. #include <mach/map.h>
  20. #include <mach/regs-clock.h>
  21. static struct clk *cpu_clk;
  22. static struct clk *dmc0_clk;
  23. static struct clk *dmc1_clk;
  24. static struct cpufreq_freqs freqs;
  25. /* APLL M,P,S values for 1G/800Mhz */
  26. #define APLL_VAL_1000 ((1 << 31) | (125 << 16) | (3 << 8) | 1)
  27. #define APLL_VAL_800 ((1 << 31) | (100 << 16) | (3 << 8) | 1)
  28. /*
  29. * DRAM configurations to calculate refresh counter for changing
  30. * frequency of memory.
  31. */
  32. struct dram_conf {
  33. unsigned long freq; /* HZ */
  34. unsigned long refresh; /* DRAM refresh counter * 1000 */
  35. };
  36. /* DRAM configuration (DMC0 and DMC1) */
  37. static struct dram_conf s5pv210_dram_conf[2];
  38. enum perf_level {
  39. L0, L1, L2, L3, L4,
  40. };
  41. enum s5pv210_mem_type {
  42. LPDDR = 0x1,
  43. LPDDR2 = 0x2,
  44. DDR2 = 0x4,
  45. };
  46. enum s5pv210_dmc_port {
  47. DMC0 = 0,
  48. DMC1,
  49. };
  50. static struct cpufreq_frequency_table s5pv210_freq_table[] = {
  51. {L0, 1000*1000},
  52. {L1, 800*1000},
  53. {L2, 400*1000},
  54. {L3, 200*1000},
  55. {L4, 100*1000},
  56. {0, CPUFREQ_TABLE_END},
  57. };
  58. static u32 clkdiv_val[5][11] = {
  59. /*
  60. * Clock divider value for following
  61. * { APLL, A2M, HCLK_MSYS, PCLK_MSYS,
  62. * HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS,
  63. * ONEDRAM, MFC, G3D }
  64. */
  65. /* L0 : [1000/200/100][166/83][133/66][200/200] */
  66. {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0},
  67. /* L1 : [800/200/100][166/83][133/66][200/200] */
  68. {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0},
  69. /* L2 : [400/200/100][166/83][133/66][200/200] */
  70. {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  71. /* L3 : [200/200/100][166/83][133/66][200/200] */
  72. {3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0},
  73. /* L4 : [100/100/100][83/83][66/66][100/100] */
  74. {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0},
  75. };
  76. /*
  77. * This function set DRAM refresh counter
  78. * accoriding to operating frequency of DRAM
  79. * ch: DMC port number 0 or 1
  80. * freq: Operating frequency of DRAM(KHz)
  81. */
  82. static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq)
  83. {
  84. unsigned long tmp, tmp1;
  85. void __iomem *reg = NULL;
  86. if (ch == DMC0)
  87. reg = (S5P_VA_DMC0 + 0x30);
  88. else if (ch == DMC1)
  89. reg = (S5P_VA_DMC1 + 0x30);
  90. else
  91. printk(KERN_ERR "Cannot find DMC port\n");
  92. /* Find current DRAM frequency */
  93. tmp = s5pv210_dram_conf[ch].freq;
  94. do_div(tmp, freq);
  95. tmp1 = s5pv210_dram_conf[ch].refresh;
  96. do_div(tmp1, tmp);
  97. __raw_writel(tmp1, reg);
  98. }
  99. int s5pv210_verify_speed(struct cpufreq_policy *policy)
  100. {
  101. if (policy->cpu)
  102. return -EINVAL;
  103. return cpufreq_frequency_table_verify(policy, s5pv210_freq_table);
  104. }
  105. unsigned int s5pv210_getspeed(unsigned int cpu)
  106. {
  107. if (cpu)
  108. return 0;
  109. return clk_get_rate(cpu_clk) / 1000;
  110. }
  111. static int s5pv210_target(struct cpufreq_policy *policy,
  112. unsigned int target_freq,
  113. unsigned int relation)
  114. {
  115. unsigned long reg;
  116. unsigned int index, priv_index;
  117. unsigned int pll_changing = 0;
  118. unsigned int bus_speed_changing = 0;
  119. freqs.old = s5pv210_getspeed(0);
  120. if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
  121. target_freq, relation, &index))
  122. return -EINVAL;
  123. freqs.new = s5pv210_freq_table[index].frequency;
  124. freqs.cpu = 0;
  125. if (freqs.new == freqs.old)
  126. return 0;
  127. /* Finding current running level index */
  128. if (cpufreq_frequency_table_target(policy, s5pv210_freq_table,
  129. freqs.old, relation, &priv_index))
  130. return -EINVAL;
  131. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  132. if (freqs.new > freqs.old) {
  133. /* Voltage up: will be implemented */
  134. }
  135. /* Check if there need to change PLL */
  136. if ((index == L0) || (priv_index == L0))
  137. pll_changing = 1;
  138. /* Check if there need to change System bus clock */
  139. if ((index == L4) || (priv_index == L4))
  140. bus_speed_changing = 1;
  141. if (bus_speed_changing) {
  142. /*
  143. * Reconfigure DRAM refresh counter value for minimum
  144. * temporary clock while changing divider.
  145. * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287
  146. */
  147. if (pll_changing)
  148. s5pv210_set_refresh(DMC1, 83000);
  149. else
  150. s5pv210_set_refresh(DMC1, 100000);
  151. s5pv210_set_refresh(DMC0, 83000);
  152. }
  153. /*
  154. * APLL should be changed in this level
  155. * APLL -> MPLL(for stable transition) -> APLL
  156. * Some clock source's clock API are not prepared.
  157. * Do not use clock API in below code.
  158. */
  159. if (pll_changing) {
  160. /*
  161. * 1. Temporary Change divider for MFC and G3D
  162. * SCLKA2M(200/1=200)->(200/4=50)Mhz
  163. */
  164. reg = __raw_readl(S5P_CLK_DIV2);
  165. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  166. reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) |
  167. (3 << S5P_CLKDIV2_MFC_SHIFT);
  168. __raw_writel(reg, S5P_CLK_DIV2);
  169. /* For MFC, G3D dividing */
  170. do {
  171. reg = __raw_readl(S5P_CLKDIV_STAT0);
  172. } while (reg & ((1 << 16) | (1 << 17)));
  173. /*
  174. * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX
  175. * (200/4=50)->(667/4=166)Mhz
  176. */
  177. reg = __raw_readl(S5P_CLK_SRC2);
  178. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  179. reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) |
  180. (1 << S5P_CLKSRC2_MFC_SHIFT);
  181. __raw_writel(reg, S5P_CLK_SRC2);
  182. do {
  183. reg = __raw_readl(S5P_CLKMUX_STAT1);
  184. } while (reg & ((1 << 7) | (1 << 3)));
  185. /*
  186. * 3. DMC1 refresh count for 133Mhz if (index == L4) is
  187. * true refresh counter is already programed in upper
  188. * code. 0x287@83Mhz
  189. */
  190. if (!bus_speed_changing)
  191. s5pv210_set_refresh(DMC1, 133000);
  192. /* 4. SCLKAPLL -> SCLKMPLL */
  193. reg = __raw_readl(S5P_CLK_SRC0);
  194. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  195. reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT);
  196. __raw_writel(reg, S5P_CLK_SRC0);
  197. do {
  198. reg = __raw_readl(S5P_CLKMUX_STAT0);
  199. } while (reg & (0x1 << 18));
  200. }
  201. /* Change divider */
  202. reg = __raw_readl(S5P_CLK_DIV0);
  203. reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK |
  204. S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK |
  205. S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK |
  206. S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK);
  207. reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) |
  208. (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) |
  209. (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) |
  210. (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) |
  211. (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) |
  212. (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) |
  213. (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) |
  214. (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT));
  215. __raw_writel(reg, S5P_CLK_DIV0);
  216. do {
  217. reg = __raw_readl(S5P_CLKDIV_STAT0);
  218. } while (reg & 0xff);
  219. /* ARM MCS value changed */
  220. reg = __raw_readl(S5P_ARM_MCS_CON);
  221. reg &= ~0x3;
  222. if (index >= L3)
  223. reg |= 0x3;
  224. else
  225. reg |= 0x1;
  226. __raw_writel(reg, S5P_ARM_MCS_CON);
  227. if (pll_changing) {
  228. /* 5. Set Lock time = 30us*24Mhz = 0x2cf */
  229. __raw_writel(0x2cf, S5P_APLL_LOCK);
  230. /*
  231. * 6. Turn on APLL
  232. * 6-1. Set PMS values
  233. * 6-2. Wait untile the PLL is locked
  234. */
  235. if (index == L0)
  236. __raw_writel(APLL_VAL_1000, S5P_APLL_CON);
  237. else
  238. __raw_writel(APLL_VAL_800, S5P_APLL_CON);
  239. do {
  240. reg = __raw_readl(S5P_APLL_CON);
  241. } while (!(reg & (0x1 << 29)));
  242. /*
  243. * 7. Change souce clock from SCLKMPLL(667Mhz)
  244. * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX
  245. * (667/4=166)->(200/4=50)Mhz
  246. */
  247. reg = __raw_readl(S5P_CLK_SRC2);
  248. reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK);
  249. reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) |
  250. (0 << S5P_CLKSRC2_MFC_SHIFT);
  251. __raw_writel(reg, S5P_CLK_SRC2);
  252. do {
  253. reg = __raw_readl(S5P_CLKMUX_STAT1);
  254. } while (reg & ((1 << 7) | (1 << 3)));
  255. /*
  256. * 8. Change divider for MFC and G3D
  257. * (200/4=50)->(200/1=200)Mhz
  258. */
  259. reg = __raw_readl(S5P_CLK_DIV2);
  260. reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK);
  261. reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) |
  262. (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT);
  263. __raw_writel(reg, S5P_CLK_DIV2);
  264. /* For MFC, G3D dividing */
  265. do {
  266. reg = __raw_readl(S5P_CLKDIV_STAT0);
  267. } while (reg & ((1 << 16) | (1 << 17)));
  268. /* 9. Change MPLL to APLL in MSYS_MUX */
  269. reg = __raw_readl(S5P_CLK_SRC0);
  270. reg &= ~(S5P_CLKSRC0_MUX200_MASK);
  271. reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT);
  272. __raw_writel(reg, S5P_CLK_SRC0);
  273. do {
  274. reg = __raw_readl(S5P_CLKMUX_STAT0);
  275. } while (reg & (0x1 << 18));
  276. /*
  277. * 10. DMC1 refresh counter
  278. * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c
  279. * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618
  280. */
  281. if (!bus_speed_changing)
  282. s5pv210_set_refresh(DMC1, 200000);
  283. }
  284. /*
  285. * L4 level need to change memory bus speed, hence onedram clock divier
  286. * and memory refresh parameter should be changed
  287. */
  288. if (bus_speed_changing) {
  289. reg = __raw_readl(S5P_CLK_DIV6);
  290. reg &= ~S5P_CLKDIV6_ONEDRAM_MASK;
  291. reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT);
  292. __raw_writel(reg, S5P_CLK_DIV6);
  293. do {
  294. reg = __raw_readl(S5P_CLKDIV_STAT1);
  295. } while (reg & (1 << 15));
  296. /* Reconfigure DRAM refresh counter value */
  297. if (index != L4) {
  298. /*
  299. * DMC0 : 166Mhz
  300. * DMC1 : 200Mhz
  301. */
  302. s5pv210_set_refresh(DMC0, 166000);
  303. s5pv210_set_refresh(DMC1, 200000);
  304. } else {
  305. /*
  306. * DMC0 : 83Mhz
  307. * DMC1 : 100Mhz
  308. */
  309. s5pv210_set_refresh(DMC0, 83000);
  310. s5pv210_set_refresh(DMC1, 100000);
  311. }
  312. }
  313. if (freqs.new < freqs.old) {
  314. /* Voltage down: will be implemented */
  315. }
  316. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  317. printk(KERN_DEBUG "Perf changed[L%d]\n", index);
  318. return 0;
  319. }
  320. #ifdef CONFIG_PM
  321. static int s5pv210_cpufreq_suspend(struct cpufreq_policy *policy)
  322. {
  323. return 0;
  324. }
  325. static int s5pv210_cpufreq_resume(struct cpufreq_policy *policy)
  326. {
  327. return 0;
  328. }
  329. #endif
  330. static int check_mem_type(void __iomem *dmc_reg)
  331. {
  332. unsigned long val;
  333. val = __raw_readl(dmc_reg + 0x4);
  334. val = (val & (0xf << 8));
  335. return val >> 8;
  336. }
  337. static int __init s5pv210_cpu_init(struct cpufreq_policy *policy)
  338. {
  339. unsigned long mem_type;
  340. cpu_clk = clk_get(NULL, "armclk");
  341. if (IS_ERR(cpu_clk))
  342. return PTR_ERR(cpu_clk);
  343. dmc0_clk = clk_get(NULL, "sclk_dmc0");
  344. if (IS_ERR(dmc0_clk)) {
  345. clk_put(cpu_clk);
  346. return PTR_ERR(dmc0_clk);
  347. }
  348. dmc1_clk = clk_get(NULL, "hclk_msys");
  349. if (IS_ERR(dmc1_clk)) {
  350. clk_put(dmc0_clk);
  351. clk_put(cpu_clk);
  352. return PTR_ERR(dmc1_clk);
  353. }
  354. if (policy->cpu != 0)
  355. return -EINVAL;
  356. /*
  357. * check_mem_type : This driver only support LPDDR & LPDDR2.
  358. * other memory type is not supported.
  359. */
  360. mem_type = check_mem_type(S5P_VA_DMC0);
  361. if ((mem_type != LPDDR) && (mem_type != LPDDR2)) {
  362. printk(KERN_ERR "CPUFreq doesn't support this memory type\n");
  363. return -EINVAL;
  364. }
  365. /* Find current refresh counter and frequency each DMC */
  366. s5pv210_dram_conf[0].refresh = (__raw_readl(S5P_VA_DMC0 + 0x30) * 1000);
  367. s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk);
  368. s5pv210_dram_conf[1].refresh = (__raw_readl(S5P_VA_DMC1 + 0x30) * 1000);
  369. s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk);
  370. policy->cur = policy->min = policy->max = s5pv210_getspeed(0);
  371. cpufreq_frequency_table_get_attr(s5pv210_freq_table, policy->cpu);
  372. policy->cpuinfo.transition_latency = 40000;
  373. return cpufreq_frequency_table_cpuinfo(policy, s5pv210_freq_table);
  374. }
  375. static struct cpufreq_driver s5pv210_driver = {
  376. .flags = CPUFREQ_STICKY,
  377. .verify = s5pv210_verify_speed,
  378. .target = s5pv210_target,
  379. .get = s5pv210_getspeed,
  380. .init = s5pv210_cpu_init,
  381. .name = "s5pv210",
  382. #ifdef CONFIG_PM
  383. .suspend = s5pv210_cpufreq_suspend,
  384. .resume = s5pv210_cpufreq_resume,
  385. #endif
  386. };
  387. static int __init s5pv210_cpufreq_init(void)
  388. {
  389. return cpufreq_register_driver(&s5pv210_driver);
  390. }
  391. late_initcall(s5pv210_cpufreq_init);