rc80211_pid_algo.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005, Devicescape Software, Inc.
  4. * Copyright 2007, Mattias Nissler <mattias.nissler@gmx.de>
  5. * Copyright 2007-2008, Stefano Brivio <stefano.brivio@polimi.it>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/netdevice.h>
  12. #include <linux/types.h>
  13. #include <linux/skbuff.h>
  14. #include <linux/debugfs.h>
  15. #include <net/mac80211.h>
  16. #include "rate.h"
  17. #include "mesh.h"
  18. #include "rc80211_pid.h"
  19. /* This is an implementation of a TX rate control algorithm that uses a PID
  20. * controller. Given a target failed frames rate, the controller decides about
  21. * TX rate changes to meet the target failed frames rate.
  22. *
  23. * The controller basically computes the following:
  24. *
  25. * adj = CP * err + CI * err_avg + CD * (err - last_err) * (1 + sharpening)
  26. *
  27. * where
  28. * adj adjustment value that is used to switch TX rate (see below)
  29. * err current error: target vs. current failed frames percentage
  30. * last_err last error
  31. * err_avg average (i.e. poor man's integral) of recent errors
  32. * sharpening non-zero when fast response is needed (i.e. right after
  33. * association or no frames sent for a long time), heading
  34. * to zero over time
  35. * CP Proportional coefficient
  36. * CI Integral coefficient
  37. * CD Derivative coefficient
  38. *
  39. * CP, CI, CD are subject to careful tuning.
  40. *
  41. * The integral component uses a exponential moving average approach instead of
  42. * an actual sliding window. The advantage is that we don't need to keep an
  43. * array of the last N error values and computation is easier.
  44. *
  45. * Once we have the adj value, we map it to a rate by means of a learning
  46. * algorithm. This algorithm keeps the state of the percentual failed frames
  47. * difference between rates. The behaviour of the lowest available rate is kept
  48. * as a reference value, and every time we switch between two rates, we compute
  49. * the difference between the failed frames each rate exhibited. By doing so,
  50. * we compare behaviours which different rates exhibited in adjacent timeslices,
  51. * thus the comparison is minimally affected by external conditions. This
  52. * difference gets propagated to the whole set of measurements, so that the
  53. * reference is always the same. Periodically, we normalize this set so that
  54. * recent events weigh the most. By comparing the adj value with this set, we
  55. * avoid pejorative switches to lower rates and allow for switches to higher
  56. * rates if they behaved well.
  57. *
  58. * Note that for the computations we use a fixed-point representation to avoid
  59. * floating point arithmetic. Hence, all values are shifted left by
  60. * RC_PID_ARITH_SHIFT.
  61. */
  62. /* Adjust the rate while ensuring that we won't switch to a lower rate if it
  63. * exhibited a worse failed frames behaviour and we'll choose the highest rate
  64. * whose failed frames behaviour is not worse than the one of the original rate
  65. * target. While at it, check that the new rate is valid. */
  66. static void rate_control_pid_adjust_rate(struct ieee80211_supported_band *sband,
  67. struct ieee80211_sta *sta,
  68. struct rc_pid_sta_info *spinfo, int adj,
  69. struct rc_pid_rateinfo *rinfo)
  70. {
  71. int cur_sorted, new_sorted, probe, tmp, n_bitrates, band;
  72. int cur = spinfo->txrate_idx;
  73. band = sband->band;
  74. n_bitrates = sband->n_bitrates;
  75. /* Map passed arguments to sorted values. */
  76. cur_sorted = rinfo[cur].rev_index;
  77. new_sorted = cur_sorted + adj;
  78. /* Check limits. */
  79. if (new_sorted < 0)
  80. new_sorted = rinfo[0].rev_index;
  81. else if (new_sorted >= n_bitrates)
  82. new_sorted = rinfo[n_bitrates - 1].rev_index;
  83. tmp = new_sorted;
  84. if (adj < 0) {
  85. /* Ensure that the rate decrease isn't disadvantageous. */
  86. for (probe = cur_sorted; probe >= new_sorted; probe--)
  87. if (rinfo[probe].diff <= rinfo[cur_sorted].diff &&
  88. rate_supported(sta, band, rinfo[probe].index))
  89. tmp = probe;
  90. } else {
  91. /* Look for rate increase with zero (or below) cost. */
  92. for (probe = new_sorted + 1; probe < n_bitrates; probe++)
  93. if (rinfo[probe].diff <= rinfo[new_sorted].diff &&
  94. rate_supported(sta, band, rinfo[probe].index))
  95. tmp = probe;
  96. }
  97. /* Fit the rate found to the nearest supported rate. */
  98. do {
  99. if (rate_supported(sta, band, rinfo[tmp].index)) {
  100. spinfo->txrate_idx = rinfo[tmp].index;
  101. break;
  102. }
  103. if (adj < 0)
  104. tmp--;
  105. else
  106. tmp++;
  107. } while (tmp < n_bitrates && tmp >= 0);
  108. #ifdef CONFIG_MAC80211_DEBUGFS
  109. rate_control_pid_event_rate_change(&spinfo->events,
  110. spinfo->txrate_idx,
  111. sband->bitrates[spinfo->txrate_idx].bitrate);
  112. #endif
  113. }
  114. /* Normalize the failed frames per-rate differences. */
  115. static void rate_control_pid_normalize(struct rc_pid_info *pinfo, int l)
  116. {
  117. int i, norm_offset = pinfo->norm_offset;
  118. struct rc_pid_rateinfo *r = pinfo->rinfo;
  119. if (r[0].diff > norm_offset)
  120. r[0].diff -= norm_offset;
  121. else if (r[0].diff < -norm_offset)
  122. r[0].diff += norm_offset;
  123. for (i = 0; i < l - 1; i++)
  124. if (r[i + 1].diff > r[i].diff + norm_offset)
  125. r[i + 1].diff -= norm_offset;
  126. else if (r[i + 1].diff <= r[i].diff)
  127. r[i + 1].diff += norm_offset;
  128. }
  129. static void rate_control_pid_sample(struct rc_pid_info *pinfo,
  130. struct ieee80211_supported_band *sband,
  131. struct ieee80211_sta *sta,
  132. struct rc_pid_sta_info *spinfo)
  133. {
  134. struct rc_pid_rateinfo *rinfo = pinfo->rinfo;
  135. u32 pf;
  136. s32 err_avg;
  137. u32 err_prop;
  138. u32 err_int;
  139. u32 err_der;
  140. int adj, i, j, tmp;
  141. unsigned long period;
  142. /* In case nothing happened during the previous control interval, turn
  143. * the sharpening factor on. */
  144. period = msecs_to_jiffies(pinfo->sampling_period);
  145. if (jiffies - spinfo->last_sample > 2 * period)
  146. spinfo->sharp_cnt = pinfo->sharpen_duration;
  147. spinfo->last_sample = jiffies;
  148. /* This should never happen, but in case, we assume the old sample is
  149. * still a good measurement and copy it. */
  150. if (unlikely(spinfo->tx_num_xmit == 0))
  151. pf = spinfo->last_pf;
  152. else
  153. pf = spinfo->tx_num_failed * 100 / spinfo->tx_num_xmit;
  154. spinfo->tx_num_xmit = 0;
  155. spinfo->tx_num_failed = 0;
  156. /* If we just switched rate, update the rate behaviour info. */
  157. if (pinfo->oldrate != spinfo->txrate_idx) {
  158. i = rinfo[pinfo->oldrate].rev_index;
  159. j = rinfo[spinfo->txrate_idx].rev_index;
  160. tmp = (pf - spinfo->last_pf);
  161. tmp = RC_PID_DO_ARITH_RIGHT_SHIFT(tmp, RC_PID_ARITH_SHIFT);
  162. rinfo[j].diff = rinfo[i].diff + tmp;
  163. pinfo->oldrate = spinfo->txrate_idx;
  164. }
  165. rate_control_pid_normalize(pinfo, sband->n_bitrates);
  166. /* Compute the proportional, integral and derivative errors. */
  167. err_prop = (pinfo->target - pf) << RC_PID_ARITH_SHIFT;
  168. err_avg = spinfo->err_avg_sc >> pinfo->smoothing_shift;
  169. spinfo->err_avg_sc = spinfo->err_avg_sc - err_avg + err_prop;
  170. err_int = spinfo->err_avg_sc >> pinfo->smoothing_shift;
  171. err_der = (pf - spinfo->last_pf) *
  172. (1 + pinfo->sharpen_factor * spinfo->sharp_cnt);
  173. spinfo->last_pf = pf;
  174. if (spinfo->sharp_cnt)
  175. spinfo->sharp_cnt--;
  176. #ifdef CONFIG_MAC80211_DEBUGFS
  177. rate_control_pid_event_pf_sample(&spinfo->events, pf, err_prop, err_int,
  178. err_der);
  179. #endif
  180. /* Compute the controller output. */
  181. adj = (err_prop * pinfo->coeff_p + err_int * pinfo->coeff_i
  182. + err_der * pinfo->coeff_d);
  183. adj = RC_PID_DO_ARITH_RIGHT_SHIFT(adj, 2 * RC_PID_ARITH_SHIFT);
  184. /* Change rate. */
  185. if (adj)
  186. rate_control_pid_adjust_rate(sband, sta, spinfo, adj, rinfo);
  187. }
  188. static void rate_control_pid_tx_status(void *priv, struct ieee80211_supported_band *sband,
  189. struct ieee80211_sta *sta, void *priv_sta,
  190. struct sk_buff *skb)
  191. {
  192. struct rc_pid_info *pinfo = priv;
  193. struct rc_pid_sta_info *spinfo = priv_sta;
  194. unsigned long period;
  195. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  196. if (!spinfo)
  197. return;
  198. /* Ignore all frames that were sent with a different rate than the rate
  199. * we currently advise mac80211 to use. */
  200. if (info->status.rates[0].idx != spinfo->txrate_idx)
  201. return;
  202. spinfo->tx_num_xmit++;
  203. #ifdef CONFIG_MAC80211_DEBUGFS
  204. rate_control_pid_event_tx_status(&spinfo->events, info);
  205. #endif
  206. /* We count frames that totally failed to be transmitted as two bad
  207. * frames, those that made it out but had some retries as one good and
  208. * one bad frame. */
  209. if (!(info->flags & IEEE80211_TX_STAT_ACK)) {
  210. spinfo->tx_num_failed += 2;
  211. spinfo->tx_num_xmit++;
  212. } else if (info->status.rates[0].count > 1) {
  213. spinfo->tx_num_failed++;
  214. spinfo->tx_num_xmit++;
  215. }
  216. /* Update PID controller state. */
  217. period = msecs_to_jiffies(pinfo->sampling_period);
  218. if (time_after(jiffies, spinfo->last_sample + period))
  219. rate_control_pid_sample(pinfo, sband, sta, spinfo);
  220. }
  221. static void
  222. rate_control_pid_get_rate(void *priv, struct ieee80211_sta *sta,
  223. void *priv_sta,
  224. struct ieee80211_tx_rate_control *txrc)
  225. {
  226. struct sk_buff *skb = txrc->skb;
  227. struct ieee80211_supported_band *sband = txrc->sband;
  228. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  229. struct rc_pid_sta_info *spinfo = priv_sta;
  230. int rateidx;
  231. if (txrc->rts)
  232. info->control.rates[0].count =
  233. txrc->hw->conf.long_frame_max_tx_count;
  234. else
  235. info->control.rates[0].count =
  236. txrc->hw->conf.short_frame_max_tx_count;
  237. /* Send management frames and NO_ACK data using lowest rate. */
  238. if (rate_control_send_low(sta, priv_sta, txrc))
  239. return;
  240. rateidx = spinfo->txrate_idx;
  241. if (rateidx >= sband->n_bitrates)
  242. rateidx = sband->n_bitrates - 1;
  243. info->control.rates[0].idx = rateidx;
  244. #ifdef CONFIG_MAC80211_DEBUGFS
  245. rate_control_pid_event_tx_rate(&spinfo->events,
  246. rateidx, sband->bitrates[rateidx].bitrate);
  247. #endif
  248. }
  249. static void
  250. rate_control_pid_rate_init(void *priv, struct ieee80211_supported_band *sband,
  251. struct ieee80211_sta *sta, void *priv_sta)
  252. {
  253. struct rc_pid_sta_info *spinfo = priv_sta;
  254. struct rc_pid_info *pinfo = priv;
  255. struct rc_pid_rateinfo *rinfo = pinfo->rinfo;
  256. int i, j, tmp;
  257. bool s;
  258. /* TODO: This routine should consider using RSSI from previous packets
  259. * as we need to have IEEE 802.1X auth succeed immediately after assoc..
  260. * Until that method is implemented, we will use the lowest supported
  261. * rate as a workaround. */
  262. /* Sort the rates. This is optimized for the most common case (i.e.
  263. * almost-sorted CCK+OFDM rates). Kind of bubble-sort with reversed
  264. * mapping too. */
  265. for (i = 0; i < sband->n_bitrates; i++) {
  266. rinfo[i].index = i;
  267. rinfo[i].rev_index = i;
  268. if (RC_PID_FAST_START)
  269. rinfo[i].diff = 0;
  270. else
  271. rinfo[i].diff = i * pinfo->norm_offset;
  272. }
  273. for (i = 1; i < sband->n_bitrates; i++) {
  274. s = 0;
  275. for (j = 0; j < sband->n_bitrates - i; j++)
  276. if (unlikely(sband->bitrates[rinfo[j].index].bitrate >
  277. sband->bitrates[rinfo[j + 1].index].bitrate)) {
  278. tmp = rinfo[j].index;
  279. rinfo[j].index = rinfo[j + 1].index;
  280. rinfo[j + 1].index = tmp;
  281. rinfo[rinfo[j].index].rev_index = j;
  282. rinfo[rinfo[j + 1].index].rev_index = j + 1;
  283. s = 1;
  284. }
  285. if (!s)
  286. break;
  287. }
  288. spinfo->txrate_idx = rate_lowest_index(sband, sta);
  289. }
  290. static void *rate_control_pid_alloc(struct ieee80211_hw *hw,
  291. struct dentry *debugfsdir)
  292. {
  293. struct rc_pid_info *pinfo;
  294. struct rc_pid_rateinfo *rinfo;
  295. struct ieee80211_supported_band *sband;
  296. int i, max_rates = 0;
  297. #ifdef CONFIG_MAC80211_DEBUGFS
  298. struct rc_pid_debugfs_entries *de;
  299. #endif
  300. pinfo = kmalloc(sizeof(*pinfo), GFP_ATOMIC);
  301. if (!pinfo)
  302. return NULL;
  303. for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
  304. sband = hw->wiphy->bands[i];
  305. if (sband && sband->n_bitrates > max_rates)
  306. max_rates = sband->n_bitrates;
  307. }
  308. rinfo = kmalloc(sizeof(*rinfo) * max_rates, GFP_ATOMIC);
  309. if (!rinfo) {
  310. kfree(pinfo);
  311. return NULL;
  312. }
  313. pinfo->target = RC_PID_TARGET_PF;
  314. pinfo->sampling_period = RC_PID_INTERVAL;
  315. pinfo->coeff_p = RC_PID_COEFF_P;
  316. pinfo->coeff_i = RC_PID_COEFF_I;
  317. pinfo->coeff_d = RC_PID_COEFF_D;
  318. pinfo->smoothing_shift = RC_PID_SMOOTHING_SHIFT;
  319. pinfo->sharpen_factor = RC_PID_SHARPENING_FACTOR;
  320. pinfo->sharpen_duration = RC_PID_SHARPENING_DURATION;
  321. pinfo->norm_offset = RC_PID_NORM_OFFSET;
  322. pinfo->rinfo = rinfo;
  323. pinfo->oldrate = 0;
  324. #ifdef CONFIG_MAC80211_DEBUGFS
  325. de = &pinfo->dentries;
  326. de->target = debugfs_create_u32("target_pf", S_IRUSR | S_IWUSR,
  327. debugfsdir, &pinfo->target);
  328. de->sampling_period = debugfs_create_u32("sampling_period",
  329. S_IRUSR | S_IWUSR, debugfsdir,
  330. &pinfo->sampling_period);
  331. de->coeff_p = debugfs_create_u32("coeff_p", S_IRUSR | S_IWUSR,
  332. debugfsdir, (u32 *)&pinfo->coeff_p);
  333. de->coeff_i = debugfs_create_u32("coeff_i", S_IRUSR | S_IWUSR,
  334. debugfsdir, (u32 *)&pinfo->coeff_i);
  335. de->coeff_d = debugfs_create_u32("coeff_d", S_IRUSR | S_IWUSR,
  336. debugfsdir, (u32 *)&pinfo->coeff_d);
  337. de->smoothing_shift = debugfs_create_u32("smoothing_shift",
  338. S_IRUSR | S_IWUSR, debugfsdir,
  339. &pinfo->smoothing_shift);
  340. de->sharpen_factor = debugfs_create_u32("sharpen_factor",
  341. S_IRUSR | S_IWUSR, debugfsdir,
  342. &pinfo->sharpen_factor);
  343. de->sharpen_duration = debugfs_create_u32("sharpen_duration",
  344. S_IRUSR | S_IWUSR, debugfsdir,
  345. &pinfo->sharpen_duration);
  346. de->norm_offset = debugfs_create_u32("norm_offset",
  347. S_IRUSR | S_IWUSR, debugfsdir,
  348. &pinfo->norm_offset);
  349. #endif
  350. return pinfo;
  351. }
  352. static void rate_control_pid_free(void *priv)
  353. {
  354. struct rc_pid_info *pinfo = priv;
  355. #ifdef CONFIG_MAC80211_DEBUGFS
  356. struct rc_pid_debugfs_entries *de = &pinfo->dentries;
  357. debugfs_remove(de->norm_offset);
  358. debugfs_remove(de->sharpen_duration);
  359. debugfs_remove(de->sharpen_factor);
  360. debugfs_remove(de->smoothing_shift);
  361. debugfs_remove(de->coeff_d);
  362. debugfs_remove(de->coeff_i);
  363. debugfs_remove(de->coeff_p);
  364. debugfs_remove(de->sampling_period);
  365. debugfs_remove(de->target);
  366. #endif
  367. kfree(pinfo->rinfo);
  368. kfree(pinfo);
  369. }
  370. static void *rate_control_pid_alloc_sta(void *priv, struct ieee80211_sta *sta,
  371. gfp_t gfp)
  372. {
  373. struct rc_pid_sta_info *spinfo;
  374. spinfo = kzalloc(sizeof(*spinfo), gfp);
  375. if (spinfo == NULL)
  376. return NULL;
  377. spinfo->last_sample = jiffies;
  378. #ifdef CONFIG_MAC80211_DEBUGFS
  379. spin_lock_init(&spinfo->events.lock);
  380. init_waitqueue_head(&spinfo->events.waitqueue);
  381. #endif
  382. return spinfo;
  383. }
  384. static void rate_control_pid_free_sta(void *priv, struct ieee80211_sta *sta,
  385. void *priv_sta)
  386. {
  387. kfree(priv_sta);
  388. }
  389. static struct rate_control_ops mac80211_rcpid = {
  390. .name = "pid",
  391. .tx_status = rate_control_pid_tx_status,
  392. .get_rate = rate_control_pid_get_rate,
  393. .rate_init = rate_control_pid_rate_init,
  394. .alloc = rate_control_pid_alloc,
  395. .free = rate_control_pid_free,
  396. .alloc_sta = rate_control_pid_alloc_sta,
  397. .free_sta = rate_control_pid_free_sta,
  398. #ifdef CONFIG_MAC80211_DEBUGFS
  399. .add_sta_debugfs = rate_control_pid_add_sta_debugfs,
  400. .remove_sta_debugfs = rate_control_pid_remove_sta_debugfs,
  401. #endif
  402. };
  403. int __init rc80211_pid_init(void)
  404. {
  405. return ieee80211_rate_control_register(&mac80211_rcpid);
  406. }
  407. void rc80211_pid_exit(void)
  408. {
  409. ieee80211_rate_control_unregister(&mac80211_rcpid);
  410. }