slab.c 117 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <linux/kmemcheck.h>
  117. #include <asm/cacheflush.h>
  118. #include <asm/tlbflush.h>
  119. #include <asm/page.h>
  120. /*
  121. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  122. * 0 for faster, smaller code (especially in the critical paths).
  123. *
  124. * STATS - 1 to collect stats for /proc/slabinfo.
  125. * 0 for faster, smaller code (especially in the critical paths).
  126. *
  127. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  128. */
  129. #ifdef CONFIG_DEBUG_SLAB
  130. #define DEBUG 1
  131. #define STATS 1
  132. #define FORCED_DEBUG 1
  133. #else
  134. #define DEBUG 0
  135. #define STATS 0
  136. #define FORCED_DEBUG 0
  137. #endif
  138. /* Shouldn't this be in a header file somewhere? */
  139. #define BYTES_PER_WORD sizeof(void *)
  140. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  141. #ifndef ARCH_KMALLOC_MINALIGN
  142. /*
  143. * Enforce a minimum alignment for the kmalloc caches.
  144. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  145. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  146. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  147. * alignment larger than the alignment of a 64-bit integer.
  148. * ARCH_KMALLOC_MINALIGN allows that.
  149. * Note that increasing this value may disable some debug features.
  150. */
  151. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  152. #endif
  153. #ifndef ARCH_SLAB_MINALIGN
  154. /*
  155. * Enforce a minimum alignment for all caches.
  156. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  157. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  158. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  159. * some debug features.
  160. */
  161. #define ARCH_SLAB_MINALIGN 0
  162. #endif
  163. #ifndef ARCH_KMALLOC_FLAGS
  164. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  165. #endif
  166. /* Legal flag mask for kmem_cache_create(). */
  167. #if DEBUG
  168. # define CREATE_MASK (SLAB_RED_ZONE | \
  169. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | \
  171. SLAB_STORE_USER | \
  172. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  173. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  174. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  175. #else
  176. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  177. SLAB_CACHE_DMA | \
  178. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  179. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  180. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  181. #endif
  182. /*
  183. * kmem_bufctl_t:
  184. *
  185. * Bufctl's are used for linking objs within a slab
  186. * linked offsets.
  187. *
  188. * This implementation relies on "struct page" for locating the cache &
  189. * slab an object belongs to.
  190. * This allows the bufctl structure to be small (one int), but limits
  191. * the number of objects a slab (not a cache) can contain when off-slab
  192. * bufctls are used. The limit is the size of the largest general cache
  193. * that does not use off-slab slabs.
  194. * For 32bit archs with 4 kB pages, is this 56.
  195. * This is not serious, as it is only for large objects, when it is unwise
  196. * to have too many per slab.
  197. * Note: This limit can be raised by introducing a general cache whose size
  198. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  199. */
  200. typedef unsigned int kmem_bufctl_t;
  201. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  202. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  203. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  204. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  205. /*
  206. * struct slab
  207. *
  208. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  209. * for a slab, or allocated from an general cache.
  210. * Slabs are chained into three list: fully used, partial, fully free slabs.
  211. */
  212. struct slab {
  213. struct list_head list;
  214. unsigned long colouroff;
  215. void *s_mem; /* including colour offset */
  216. unsigned int inuse; /* num of objs active in slab */
  217. kmem_bufctl_t free;
  218. unsigned short nodeid;
  219. };
  220. /*
  221. * struct slab_rcu
  222. *
  223. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  224. * arrange for kmem_freepages to be called via RCU. This is useful if
  225. * we need to approach a kernel structure obliquely, from its address
  226. * obtained without the usual locking. We can lock the structure to
  227. * stabilize it and check it's still at the given address, only if we
  228. * can be sure that the memory has not been meanwhile reused for some
  229. * other kind of object (which our subsystem's lock might corrupt).
  230. *
  231. * rcu_read_lock before reading the address, then rcu_read_unlock after
  232. * taking the spinlock within the structure expected at that address.
  233. *
  234. * We assume struct slab_rcu can overlay struct slab when destroying.
  235. */
  236. struct slab_rcu {
  237. struct rcu_head head;
  238. struct kmem_cache *cachep;
  239. void *addr;
  240. };
  241. /*
  242. * struct array_cache
  243. *
  244. * Purpose:
  245. * - LIFO ordering, to hand out cache-warm objects from _alloc
  246. * - reduce the number of linked list operations
  247. * - reduce spinlock operations
  248. *
  249. * The limit is stored in the per-cpu structure to reduce the data cache
  250. * footprint.
  251. *
  252. */
  253. struct array_cache {
  254. unsigned int avail;
  255. unsigned int limit;
  256. unsigned int batchcount;
  257. unsigned int touched;
  258. spinlock_t lock;
  259. void *entry[]; /*
  260. * Must have this definition in here for the proper
  261. * alignment of array_cache. Also simplifies accessing
  262. * the entries.
  263. */
  264. };
  265. /*
  266. * bootstrap: The caches do not work without cpuarrays anymore, but the
  267. * cpuarrays are allocated from the generic caches...
  268. */
  269. #define BOOT_CPUCACHE_ENTRIES 1
  270. struct arraycache_init {
  271. struct array_cache cache;
  272. void *entries[BOOT_CPUCACHE_ENTRIES];
  273. };
  274. /*
  275. * The slab lists for all objects.
  276. */
  277. struct kmem_list3 {
  278. struct list_head slabs_partial; /* partial list first, better asm code */
  279. struct list_head slabs_full;
  280. struct list_head slabs_free;
  281. unsigned long free_objects;
  282. unsigned int free_limit;
  283. unsigned int colour_next; /* Per-node cache coloring */
  284. spinlock_t list_lock;
  285. struct array_cache *shared; /* shared per node */
  286. struct array_cache **alien; /* on other nodes */
  287. unsigned long next_reap; /* updated without locking */
  288. int free_touched; /* updated without locking */
  289. };
  290. /*
  291. * Need this for bootstrapping a per node allocator.
  292. */
  293. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  294. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  295. #define CACHE_CACHE 0
  296. #define SIZE_AC MAX_NUMNODES
  297. #define SIZE_L3 (2 * MAX_NUMNODES)
  298. static int drain_freelist(struct kmem_cache *cache,
  299. struct kmem_list3 *l3, int tofree);
  300. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  301. int node);
  302. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  303. static void cache_reap(struct work_struct *unused);
  304. /*
  305. * This function must be completely optimized away if a constant is passed to
  306. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  307. */
  308. static __always_inline int index_of(const size_t size)
  309. {
  310. extern void __bad_size(void);
  311. if (__builtin_constant_p(size)) {
  312. int i = 0;
  313. #define CACHE(x) \
  314. if (size <=x) \
  315. return i; \
  316. else \
  317. i++;
  318. #include <linux/kmalloc_sizes.h>
  319. #undef CACHE
  320. __bad_size();
  321. } else
  322. __bad_size();
  323. return 0;
  324. }
  325. static int slab_early_init = 1;
  326. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  327. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  328. static void kmem_list3_init(struct kmem_list3 *parent)
  329. {
  330. INIT_LIST_HEAD(&parent->slabs_full);
  331. INIT_LIST_HEAD(&parent->slabs_partial);
  332. INIT_LIST_HEAD(&parent->slabs_free);
  333. parent->shared = NULL;
  334. parent->alien = NULL;
  335. parent->colour_next = 0;
  336. spin_lock_init(&parent->list_lock);
  337. parent->free_objects = 0;
  338. parent->free_touched = 0;
  339. }
  340. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  341. do { \
  342. INIT_LIST_HEAD(listp); \
  343. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  344. } while (0)
  345. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  346. do { \
  347. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  348. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  349. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  350. } while (0)
  351. #define CFLGS_OFF_SLAB (0x80000000UL)
  352. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  353. #define BATCHREFILL_LIMIT 16
  354. /*
  355. * Optimization question: fewer reaps means less probability for unnessary
  356. * cpucache drain/refill cycles.
  357. *
  358. * OTOH the cpuarrays can contain lots of objects,
  359. * which could lock up otherwise freeable slabs.
  360. */
  361. #define REAPTIMEOUT_CPUC (2*HZ)
  362. #define REAPTIMEOUT_LIST3 (4*HZ)
  363. #if STATS
  364. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  365. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  366. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  367. #define STATS_INC_GROWN(x) ((x)->grown++)
  368. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  369. #define STATS_SET_HIGH(x) \
  370. do { \
  371. if ((x)->num_active > (x)->high_mark) \
  372. (x)->high_mark = (x)->num_active; \
  373. } while (0)
  374. #define STATS_INC_ERR(x) ((x)->errors++)
  375. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  376. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  377. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  378. #define STATS_SET_FREEABLE(x, i) \
  379. do { \
  380. if ((x)->max_freeable < i) \
  381. (x)->max_freeable = i; \
  382. } while (0)
  383. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  384. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  385. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  386. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  387. #else
  388. #define STATS_INC_ACTIVE(x) do { } while (0)
  389. #define STATS_DEC_ACTIVE(x) do { } while (0)
  390. #define STATS_INC_ALLOCED(x) do { } while (0)
  391. #define STATS_INC_GROWN(x) do { } while (0)
  392. #define STATS_ADD_REAPED(x,y) do { } while (0)
  393. #define STATS_SET_HIGH(x) do { } while (0)
  394. #define STATS_INC_ERR(x) do { } while (0)
  395. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  396. #define STATS_INC_NODEFREES(x) do { } while (0)
  397. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  398. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  399. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  400. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  401. #define STATS_INC_FREEHIT(x) do { } while (0)
  402. #define STATS_INC_FREEMISS(x) do { } while (0)
  403. #endif
  404. #if DEBUG
  405. /*
  406. * memory layout of objects:
  407. * 0 : objp
  408. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  409. * the end of an object is aligned with the end of the real
  410. * allocation. Catches writes behind the end of the allocation.
  411. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  412. * redzone word.
  413. * cachep->obj_offset: The real object.
  414. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  415. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  416. * [BYTES_PER_WORD long]
  417. */
  418. static int obj_offset(struct kmem_cache *cachep)
  419. {
  420. return cachep->obj_offset;
  421. }
  422. static int obj_size(struct kmem_cache *cachep)
  423. {
  424. return cachep->obj_size;
  425. }
  426. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  427. {
  428. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  429. return (unsigned long long*) (objp + obj_offset(cachep) -
  430. sizeof(unsigned long long));
  431. }
  432. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  433. {
  434. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  435. if (cachep->flags & SLAB_STORE_USER)
  436. return (unsigned long long *)(objp + cachep->buffer_size -
  437. sizeof(unsigned long long) -
  438. REDZONE_ALIGN);
  439. return (unsigned long long *) (objp + cachep->buffer_size -
  440. sizeof(unsigned long long));
  441. }
  442. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  443. {
  444. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  445. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  446. }
  447. #else
  448. #define obj_offset(x) 0
  449. #define obj_size(cachep) (cachep->buffer_size)
  450. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  451. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  452. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  453. #endif
  454. #ifdef CONFIG_TRACING
  455. size_t slab_buffer_size(struct kmem_cache *cachep)
  456. {
  457. return cachep->buffer_size;
  458. }
  459. EXPORT_SYMBOL(slab_buffer_size);
  460. #endif
  461. /*
  462. * Do not go above this order unless 0 objects fit into the slab.
  463. */
  464. #define BREAK_GFP_ORDER_HI 1
  465. #define BREAK_GFP_ORDER_LO 0
  466. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  467. /*
  468. * Functions for storing/retrieving the cachep and or slab from the page
  469. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  470. * these are used to find the cache which an obj belongs to.
  471. */
  472. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  473. {
  474. page->lru.next = (struct list_head *)cache;
  475. }
  476. static inline struct kmem_cache *page_get_cache(struct page *page)
  477. {
  478. page = compound_head(page);
  479. BUG_ON(!PageSlab(page));
  480. return (struct kmem_cache *)page->lru.next;
  481. }
  482. static inline void page_set_slab(struct page *page, struct slab *slab)
  483. {
  484. page->lru.prev = (struct list_head *)slab;
  485. }
  486. static inline struct slab *page_get_slab(struct page *page)
  487. {
  488. BUG_ON(!PageSlab(page));
  489. return (struct slab *)page->lru.prev;
  490. }
  491. static inline struct kmem_cache *virt_to_cache(const void *obj)
  492. {
  493. struct page *page = virt_to_head_page(obj);
  494. return page_get_cache(page);
  495. }
  496. static inline struct slab *virt_to_slab(const void *obj)
  497. {
  498. struct page *page = virt_to_head_page(obj);
  499. return page_get_slab(page);
  500. }
  501. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  502. unsigned int idx)
  503. {
  504. return slab->s_mem + cache->buffer_size * idx;
  505. }
  506. /*
  507. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  508. * Using the fact that buffer_size is a constant for a particular cache,
  509. * we can replace (offset / cache->buffer_size) by
  510. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  511. */
  512. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  513. const struct slab *slab, void *obj)
  514. {
  515. u32 offset = (obj - slab->s_mem);
  516. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  517. }
  518. /*
  519. * These are the default caches for kmalloc. Custom caches can have other sizes.
  520. */
  521. struct cache_sizes malloc_sizes[] = {
  522. #define CACHE(x) { .cs_size = (x) },
  523. #include <linux/kmalloc_sizes.h>
  524. CACHE(ULONG_MAX)
  525. #undef CACHE
  526. };
  527. EXPORT_SYMBOL(malloc_sizes);
  528. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  529. struct cache_names {
  530. char *name;
  531. char *name_dma;
  532. };
  533. static struct cache_names __initdata cache_names[] = {
  534. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  535. #include <linux/kmalloc_sizes.h>
  536. {NULL,}
  537. #undef CACHE
  538. };
  539. static struct arraycache_init initarray_cache __initdata =
  540. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  541. static struct arraycache_init initarray_generic =
  542. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  543. /* internal cache of cache description objs */
  544. static struct kmem_cache cache_cache = {
  545. .batchcount = 1,
  546. .limit = BOOT_CPUCACHE_ENTRIES,
  547. .shared = 1,
  548. .buffer_size = sizeof(struct kmem_cache),
  549. .name = "kmem_cache",
  550. };
  551. #define BAD_ALIEN_MAGIC 0x01020304ul
  552. /*
  553. * chicken and egg problem: delay the per-cpu array allocation
  554. * until the general caches are up.
  555. */
  556. static enum {
  557. NONE,
  558. PARTIAL_AC,
  559. PARTIAL_L3,
  560. EARLY,
  561. FULL
  562. } g_cpucache_up;
  563. /*
  564. * used by boot code to determine if it can use slab based allocator
  565. */
  566. int slab_is_available(void)
  567. {
  568. return g_cpucache_up >= EARLY;
  569. }
  570. #ifdef CONFIG_LOCKDEP
  571. /*
  572. * Slab sometimes uses the kmalloc slabs to store the slab headers
  573. * for other slabs "off slab".
  574. * The locking for this is tricky in that it nests within the locks
  575. * of all other slabs in a few places; to deal with this special
  576. * locking we put on-slab caches into a separate lock-class.
  577. *
  578. * We set lock class for alien array caches which are up during init.
  579. * The lock annotation will be lost if all cpus of a node goes down and
  580. * then comes back up during hotplug
  581. */
  582. static struct lock_class_key on_slab_l3_key;
  583. static struct lock_class_key on_slab_alc_key;
  584. static void init_node_lock_keys(int q)
  585. {
  586. struct cache_sizes *s = malloc_sizes;
  587. if (g_cpucache_up != FULL)
  588. return;
  589. for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
  590. struct array_cache **alc;
  591. struct kmem_list3 *l3;
  592. int r;
  593. l3 = s->cs_cachep->nodelists[q];
  594. if (!l3 || OFF_SLAB(s->cs_cachep))
  595. continue;
  596. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  597. alc = l3->alien;
  598. /*
  599. * FIXME: This check for BAD_ALIEN_MAGIC
  600. * should go away when common slab code is taught to
  601. * work even without alien caches.
  602. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  603. * for alloc_alien_cache,
  604. */
  605. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  606. continue;
  607. for_each_node(r) {
  608. if (alc[r])
  609. lockdep_set_class(&alc[r]->lock,
  610. &on_slab_alc_key);
  611. }
  612. }
  613. }
  614. static inline void init_lock_keys(void)
  615. {
  616. int node;
  617. for_each_node(node)
  618. init_node_lock_keys(node);
  619. }
  620. #else
  621. static void init_node_lock_keys(int q)
  622. {
  623. }
  624. static inline void init_lock_keys(void)
  625. {
  626. }
  627. #endif
  628. /*
  629. * Guard access to the cache-chain.
  630. */
  631. static DEFINE_MUTEX(cache_chain_mutex);
  632. static struct list_head cache_chain;
  633. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  634. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  635. {
  636. return cachep->array[smp_processor_id()];
  637. }
  638. static inline struct kmem_cache *__find_general_cachep(size_t size,
  639. gfp_t gfpflags)
  640. {
  641. struct cache_sizes *csizep = malloc_sizes;
  642. #if DEBUG
  643. /* This happens if someone tries to call
  644. * kmem_cache_create(), or __kmalloc(), before
  645. * the generic caches are initialized.
  646. */
  647. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  648. #endif
  649. if (!size)
  650. return ZERO_SIZE_PTR;
  651. while (size > csizep->cs_size)
  652. csizep++;
  653. /*
  654. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  655. * has cs_{dma,}cachep==NULL. Thus no special case
  656. * for large kmalloc calls required.
  657. */
  658. #ifdef CONFIG_ZONE_DMA
  659. if (unlikely(gfpflags & GFP_DMA))
  660. return csizep->cs_dmacachep;
  661. #endif
  662. return csizep->cs_cachep;
  663. }
  664. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  665. {
  666. return __find_general_cachep(size, gfpflags);
  667. }
  668. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  669. {
  670. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  671. }
  672. /*
  673. * Calculate the number of objects and left-over bytes for a given buffer size.
  674. */
  675. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  676. size_t align, int flags, size_t *left_over,
  677. unsigned int *num)
  678. {
  679. int nr_objs;
  680. size_t mgmt_size;
  681. size_t slab_size = PAGE_SIZE << gfporder;
  682. /*
  683. * The slab management structure can be either off the slab or
  684. * on it. For the latter case, the memory allocated for a
  685. * slab is used for:
  686. *
  687. * - The struct slab
  688. * - One kmem_bufctl_t for each object
  689. * - Padding to respect alignment of @align
  690. * - @buffer_size bytes for each object
  691. *
  692. * If the slab management structure is off the slab, then the
  693. * alignment will already be calculated into the size. Because
  694. * the slabs are all pages aligned, the objects will be at the
  695. * correct alignment when allocated.
  696. */
  697. if (flags & CFLGS_OFF_SLAB) {
  698. mgmt_size = 0;
  699. nr_objs = slab_size / buffer_size;
  700. if (nr_objs > SLAB_LIMIT)
  701. nr_objs = SLAB_LIMIT;
  702. } else {
  703. /*
  704. * Ignore padding for the initial guess. The padding
  705. * is at most @align-1 bytes, and @buffer_size is at
  706. * least @align. In the worst case, this result will
  707. * be one greater than the number of objects that fit
  708. * into the memory allocation when taking the padding
  709. * into account.
  710. */
  711. nr_objs = (slab_size - sizeof(struct slab)) /
  712. (buffer_size + sizeof(kmem_bufctl_t));
  713. /*
  714. * This calculated number will be either the right
  715. * amount, or one greater than what we want.
  716. */
  717. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  718. > slab_size)
  719. nr_objs--;
  720. if (nr_objs > SLAB_LIMIT)
  721. nr_objs = SLAB_LIMIT;
  722. mgmt_size = slab_mgmt_size(nr_objs, align);
  723. }
  724. *num = nr_objs;
  725. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  726. }
  727. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  728. static void __slab_error(const char *function, struct kmem_cache *cachep,
  729. char *msg)
  730. {
  731. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  732. function, cachep->name, msg);
  733. dump_stack();
  734. }
  735. /*
  736. * By default on NUMA we use alien caches to stage the freeing of
  737. * objects allocated from other nodes. This causes massive memory
  738. * inefficiencies when using fake NUMA setup to split memory into a
  739. * large number of small nodes, so it can be disabled on the command
  740. * line
  741. */
  742. static int use_alien_caches __read_mostly = 1;
  743. static int __init noaliencache_setup(char *s)
  744. {
  745. use_alien_caches = 0;
  746. return 1;
  747. }
  748. __setup("noaliencache", noaliencache_setup);
  749. #ifdef CONFIG_NUMA
  750. /*
  751. * Special reaping functions for NUMA systems called from cache_reap().
  752. * These take care of doing round robin flushing of alien caches (containing
  753. * objects freed on different nodes from which they were allocated) and the
  754. * flushing of remote pcps by calling drain_node_pages.
  755. */
  756. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  757. static void init_reap_node(int cpu)
  758. {
  759. int node;
  760. node = next_node(cpu_to_node(cpu), node_online_map);
  761. if (node == MAX_NUMNODES)
  762. node = first_node(node_online_map);
  763. per_cpu(slab_reap_node, cpu) = node;
  764. }
  765. static void next_reap_node(void)
  766. {
  767. int node = __get_cpu_var(slab_reap_node);
  768. node = next_node(node, node_online_map);
  769. if (unlikely(node >= MAX_NUMNODES))
  770. node = first_node(node_online_map);
  771. __get_cpu_var(slab_reap_node) = node;
  772. }
  773. #else
  774. #define init_reap_node(cpu) do { } while (0)
  775. #define next_reap_node(void) do { } while (0)
  776. #endif
  777. /*
  778. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  779. * via the workqueue/eventd.
  780. * Add the CPU number into the expiration time to minimize the possibility of
  781. * the CPUs getting into lockstep and contending for the global cache chain
  782. * lock.
  783. */
  784. static void __cpuinit start_cpu_timer(int cpu)
  785. {
  786. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  787. /*
  788. * When this gets called from do_initcalls via cpucache_init(),
  789. * init_workqueues() has already run, so keventd will be setup
  790. * at that time.
  791. */
  792. if (keventd_up() && reap_work->work.func == NULL) {
  793. init_reap_node(cpu);
  794. INIT_DELAYED_WORK(reap_work, cache_reap);
  795. schedule_delayed_work_on(cpu, reap_work,
  796. __round_jiffies_relative(HZ, cpu));
  797. }
  798. }
  799. static struct array_cache *alloc_arraycache(int node, int entries,
  800. int batchcount, gfp_t gfp)
  801. {
  802. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  803. struct array_cache *nc = NULL;
  804. nc = kmalloc_node(memsize, gfp, node);
  805. /*
  806. * The array_cache structures contain pointers to free object.
  807. * However, when such objects are allocated or transfered to another
  808. * cache the pointers are not cleared and they could be counted as
  809. * valid references during a kmemleak scan. Therefore, kmemleak must
  810. * not scan such objects.
  811. */
  812. kmemleak_no_scan(nc);
  813. if (nc) {
  814. nc->avail = 0;
  815. nc->limit = entries;
  816. nc->batchcount = batchcount;
  817. nc->touched = 0;
  818. spin_lock_init(&nc->lock);
  819. }
  820. return nc;
  821. }
  822. /*
  823. * Transfer objects in one arraycache to another.
  824. * Locking must be handled by the caller.
  825. *
  826. * Return the number of entries transferred.
  827. */
  828. static int transfer_objects(struct array_cache *to,
  829. struct array_cache *from, unsigned int max)
  830. {
  831. /* Figure out how many entries to transfer */
  832. int nr = min(min(from->avail, max), to->limit - to->avail);
  833. if (!nr)
  834. return 0;
  835. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  836. sizeof(void *) *nr);
  837. from->avail -= nr;
  838. to->avail += nr;
  839. return nr;
  840. }
  841. #ifndef CONFIG_NUMA
  842. #define drain_alien_cache(cachep, alien) do { } while (0)
  843. #define reap_alien(cachep, l3) do { } while (0)
  844. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  845. {
  846. return (struct array_cache **)BAD_ALIEN_MAGIC;
  847. }
  848. static inline void free_alien_cache(struct array_cache **ac_ptr)
  849. {
  850. }
  851. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  852. {
  853. return 0;
  854. }
  855. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  856. gfp_t flags)
  857. {
  858. return NULL;
  859. }
  860. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  861. gfp_t flags, int nodeid)
  862. {
  863. return NULL;
  864. }
  865. #else /* CONFIG_NUMA */
  866. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  867. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  868. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  869. {
  870. struct array_cache **ac_ptr;
  871. int memsize = sizeof(void *) * nr_node_ids;
  872. int i;
  873. if (limit > 1)
  874. limit = 12;
  875. ac_ptr = kzalloc_node(memsize, gfp, node);
  876. if (ac_ptr) {
  877. for_each_node(i) {
  878. if (i == node || !node_online(i))
  879. continue;
  880. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  881. if (!ac_ptr[i]) {
  882. for (i--; i >= 0; i--)
  883. kfree(ac_ptr[i]);
  884. kfree(ac_ptr);
  885. return NULL;
  886. }
  887. }
  888. }
  889. return ac_ptr;
  890. }
  891. static void free_alien_cache(struct array_cache **ac_ptr)
  892. {
  893. int i;
  894. if (!ac_ptr)
  895. return;
  896. for_each_node(i)
  897. kfree(ac_ptr[i]);
  898. kfree(ac_ptr);
  899. }
  900. static void __drain_alien_cache(struct kmem_cache *cachep,
  901. struct array_cache *ac, int node)
  902. {
  903. struct kmem_list3 *rl3 = cachep->nodelists[node];
  904. if (ac->avail) {
  905. spin_lock(&rl3->list_lock);
  906. /*
  907. * Stuff objects into the remote nodes shared array first.
  908. * That way we could avoid the overhead of putting the objects
  909. * into the free lists and getting them back later.
  910. */
  911. if (rl3->shared)
  912. transfer_objects(rl3->shared, ac, ac->limit);
  913. free_block(cachep, ac->entry, ac->avail, node);
  914. ac->avail = 0;
  915. spin_unlock(&rl3->list_lock);
  916. }
  917. }
  918. /*
  919. * Called from cache_reap() to regularly drain alien caches round robin.
  920. */
  921. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  922. {
  923. int node = __get_cpu_var(slab_reap_node);
  924. if (l3->alien) {
  925. struct array_cache *ac = l3->alien[node];
  926. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  927. __drain_alien_cache(cachep, ac, node);
  928. spin_unlock_irq(&ac->lock);
  929. }
  930. }
  931. }
  932. static void drain_alien_cache(struct kmem_cache *cachep,
  933. struct array_cache **alien)
  934. {
  935. int i = 0;
  936. struct array_cache *ac;
  937. unsigned long flags;
  938. for_each_online_node(i) {
  939. ac = alien[i];
  940. if (ac) {
  941. spin_lock_irqsave(&ac->lock, flags);
  942. __drain_alien_cache(cachep, ac, i);
  943. spin_unlock_irqrestore(&ac->lock, flags);
  944. }
  945. }
  946. }
  947. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  948. {
  949. struct slab *slabp = virt_to_slab(objp);
  950. int nodeid = slabp->nodeid;
  951. struct kmem_list3 *l3;
  952. struct array_cache *alien = NULL;
  953. int node;
  954. node = numa_node_id();
  955. /*
  956. * Make sure we are not freeing a object from another node to the array
  957. * cache on this cpu.
  958. */
  959. if (likely(slabp->nodeid == node))
  960. return 0;
  961. l3 = cachep->nodelists[node];
  962. STATS_INC_NODEFREES(cachep);
  963. if (l3->alien && l3->alien[nodeid]) {
  964. alien = l3->alien[nodeid];
  965. spin_lock(&alien->lock);
  966. if (unlikely(alien->avail == alien->limit)) {
  967. STATS_INC_ACOVERFLOW(cachep);
  968. __drain_alien_cache(cachep, alien, nodeid);
  969. }
  970. alien->entry[alien->avail++] = objp;
  971. spin_unlock(&alien->lock);
  972. } else {
  973. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  974. free_block(cachep, &objp, 1, nodeid);
  975. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  976. }
  977. return 1;
  978. }
  979. #endif
  980. static void __cpuinit cpuup_canceled(long cpu)
  981. {
  982. struct kmem_cache *cachep;
  983. struct kmem_list3 *l3 = NULL;
  984. int node = cpu_to_node(cpu);
  985. const struct cpumask *mask = cpumask_of_node(node);
  986. list_for_each_entry(cachep, &cache_chain, next) {
  987. struct array_cache *nc;
  988. struct array_cache *shared;
  989. struct array_cache **alien;
  990. /* cpu is dead; no one can alloc from it. */
  991. nc = cachep->array[cpu];
  992. cachep->array[cpu] = NULL;
  993. l3 = cachep->nodelists[node];
  994. if (!l3)
  995. goto free_array_cache;
  996. spin_lock_irq(&l3->list_lock);
  997. /* Free limit for this kmem_list3 */
  998. l3->free_limit -= cachep->batchcount;
  999. if (nc)
  1000. free_block(cachep, nc->entry, nc->avail, node);
  1001. if (!cpumask_empty(mask)) {
  1002. spin_unlock_irq(&l3->list_lock);
  1003. goto free_array_cache;
  1004. }
  1005. shared = l3->shared;
  1006. if (shared) {
  1007. free_block(cachep, shared->entry,
  1008. shared->avail, node);
  1009. l3->shared = NULL;
  1010. }
  1011. alien = l3->alien;
  1012. l3->alien = NULL;
  1013. spin_unlock_irq(&l3->list_lock);
  1014. kfree(shared);
  1015. if (alien) {
  1016. drain_alien_cache(cachep, alien);
  1017. free_alien_cache(alien);
  1018. }
  1019. free_array_cache:
  1020. kfree(nc);
  1021. }
  1022. /*
  1023. * In the previous loop, all the objects were freed to
  1024. * the respective cache's slabs, now we can go ahead and
  1025. * shrink each nodelist to its limit.
  1026. */
  1027. list_for_each_entry(cachep, &cache_chain, next) {
  1028. l3 = cachep->nodelists[node];
  1029. if (!l3)
  1030. continue;
  1031. drain_freelist(cachep, l3, l3->free_objects);
  1032. }
  1033. }
  1034. static int __cpuinit cpuup_prepare(long cpu)
  1035. {
  1036. struct kmem_cache *cachep;
  1037. struct kmem_list3 *l3 = NULL;
  1038. int node = cpu_to_node(cpu);
  1039. const int memsize = sizeof(struct kmem_list3);
  1040. /*
  1041. * We need to do this right in the beginning since
  1042. * alloc_arraycache's are going to use this list.
  1043. * kmalloc_node allows us to add the slab to the right
  1044. * kmem_list3 and not this cpu's kmem_list3
  1045. */
  1046. list_for_each_entry(cachep, &cache_chain, next) {
  1047. /*
  1048. * Set up the size64 kmemlist for cpu before we can
  1049. * begin anything. Make sure some other cpu on this
  1050. * node has not already allocated this
  1051. */
  1052. if (!cachep->nodelists[node]) {
  1053. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1054. if (!l3)
  1055. goto bad;
  1056. kmem_list3_init(l3);
  1057. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1058. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1059. /*
  1060. * The l3s don't come and go as CPUs come and
  1061. * go. cache_chain_mutex is sufficient
  1062. * protection here.
  1063. */
  1064. cachep->nodelists[node] = l3;
  1065. }
  1066. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1067. cachep->nodelists[node]->free_limit =
  1068. (1 + nr_cpus_node(node)) *
  1069. cachep->batchcount + cachep->num;
  1070. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1071. }
  1072. /*
  1073. * Now we can go ahead with allocating the shared arrays and
  1074. * array caches
  1075. */
  1076. list_for_each_entry(cachep, &cache_chain, next) {
  1077. struct array_cache *nc;
  1078. struct array_cache *shared = NULL;
  1079. struct array_cache **alien = NULL;
  1080. nc = alloc_arraycache(node, cachep->limit,
  1081. cachep->batchcount, GFP_KERNEL);
  1082. if (!nc)
  1083. goto bad;
  1084. if (cachep->shared) {
  1085. shared = alloc_arraycache(node,
  1086. cachep->shared * cachep->batchcount,
  1087. 0xbaadf00d, GFP_KERNEL);
  1088. if (!shared) {
  1089. kfree(nc);
  1090. goto bad;
  1091. }
  1092. }
  1093. if (use_alien_caches) {
  1094. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1095. if (!alien) {
  1096. kfree(shared);
  1097. kfree(nc);
  1098. goto bad;
  1099. }
  1100. }
  1101. cachep->array[cpu] = nc;
  1102. l3 = cachep->nodelists[node];
  1103. BUG_ON(!l3);
  1104. spin_lock_irq(&l3->list_lock);
  1105. if (!l3->shared) {
  1106. /*
  1107. * We are serialised from CPU_DEAD or
  1108. * CPU_UP_CANCELLED by the cpucontrol lock
  1109. */
  1110. l3->shared = shared;
  1111. shared = NULL;
  1112. }
  1113. #ifdef CONFIG_NUMA
  1114. if (!l3->alien) {
  1115. l3->alien = alien;
  1116. alien = NULL;
  1117. }
  1118. #endif
  1119. spin_unlock_irq(&l3->list_lock);
  1120. kfree(shared);
  1121. free_alien_cache(alien);
  1122. }
  1123. init_node_lock_keys(node);
  1124. return 0;
  1125. bad:
  1126. cpuup_canceled(cpu);
  1127. return -ENOMEM;
  1128. }
  1129. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1130. unsigned long action, void *hcpu)
  1131. {
  1132. long cpu = (long)hcpu;
  1133. int err = 0;
  1134. switch (action) {
  1135. case CPU_UP_PREPARE:
  1136. case CPU_UP_PREPARE_FROZEN:
  1137. mutex_lock(&cache_chain_mutex);
  1138. err = cpuup_prepare(cpu);
  1139. mutex_unlock(&cache_chain_mutex);
  1140. break;
  1141. case CPU_ONLINE:
  1142. case CPU_ONLINE_FROZEN:
  1143. start_cpu_timer(cpu);
  1144. break;
  1145. #ifdef CONFIG_HOTPLUG_CPU
  1146. case CPU_DOWN_PREPARE:
  1147. case CPU_DOWN_PREPARE_FROZEN:
  1148. /*
  1149. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1150. * held so that if cache_reap() is invoked it cannot do
  1151. * anything expensive but will only modify reap_work
  1152. * and reschedule the timer.
  1153. */
  1154. cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
  1155. /* Now the cache_reaper is guaranteed to be not running. */
  1156. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1157. break;
  1158. case CPU_DOWN_FAILED:
  1159. case CPU_DOWN_FAILED_FROZEN:
  1160. start_cpu_timer(cpu);
  1161. break;
  1162. case CPU_DEAD:
  1163. case CPU_DEAD_FROZEN:
  1164. /*
  1165. * Even if all the cpus of a node are down, we don't free the
  1166. * kmem_list3 of any cache. This to avoid a race between
  1167. * cpu_down, and a kmalloc allocation from another cpu for
  1168. * memory from the node of the cpu going down. The list3
  1169. * structure is usually allocated from kmem_cache_create() and
  1170. * gets destroyed at kmem_cache_destroy().
  1171. */
  1172. /* fall through */
  1173. #endif
  1174. case CPU_UP_CANCELED:
  1175. case CPU_UP_CANCELED_FROZEN:
  1176. mutex_lock(&cache_chain_mutex);
  1177. cpuup_canceled(cpu);
  1178. mutex_unlock(&cache_chain_mutex);
  1179. break;
  1180. }
  1181. return err ? NOTIFY_BAD : NOTIFY_OK;
  1182. }
  1183. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1184. &cpuup_callback, NULL, 0
  1185. };
  1186. /*
  1187. * swap the static kmem_list3 with kmalloced memory
  1188. */
  1189. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1190. int nodeid)
  1191. {
  1192. struct kmem_list3 *ptr;
  1193. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1194. BUG_ON(!ptr);
  1195. memcpy(ptr, list, sizeof(struct kmem_list3));
  1196. /*
  1197. * Do not assume that spinlocks can be initialized via memcpy:
  1198. */
  1199. spin_lock_init(&ptr->list_lock);
  1200. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1201. cachep->nodelists[nodeid] = ptr;
  1202. }
  1203. /*
  1204. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1205. * size of kmem_list3.
  1206. */
  1207. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1208. {
  1209. int node;
  1210. for_each_online_node(node) {
  1211. cachep->nodelists[node] = &initkmem_list3[index + node];
  1212. cachep->nodelists[node]->next_reap = jiffies +
  1213. REAPTIMEOUT_LIST3 +
  1214. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1215. }
  1216. }
  1217. /*
  1218. * Initialisation. Called after the page allocator have been initialised and
  1219. * before smp_init().
  1220. */
  1221. void __init kmem_cache_init(void)
  1222. {
  1223. size_t left_over;
  1224. struct cache_sizes *sizes;
  1225. struct cache_names *names;
  1226. int i;
  1227. int order;
  1228. int node;
  1229. if (num_possible_nodes() == 1)
  1230. use_alien_caches = 0;
  1231. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1232. kmem_list3_init(&initkmem_list3[i]);
  1233. if (i < MAX_NUMNODES)
  1234. cache_cache.nodelists[i] = NULL;
  1235. }
  1236. set_up_list3s(&cache_cache, CACHE_CACHE);
  1237. /*
  1238. * Fragmentation resistance on low memory - only use bigger
  1239. * page orders on machines with more than 32MB of memory.
  1240. */
  1241. if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1242. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1243. /* Bootstrap is tricky, because several objects are allocated
  1244. * from caches that do not exist yet:
  1245. * 1) initialize the cache_cache cache: it contains the struct
  1246. * kmem_cache structures of all caches, except cache_cache itself:
  1247. * cache_cache is statically allocated.
  1248. * Initially an __init data area is used for the head array and the
  1249. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1250. * array at the end of the bootstrap.
  1251. * 2) Create the first kmalloc cache.
  1252. * The struct kmem_cache for the new cache is allocated normally.
  1253. * An __init data area is used for the head array.
  1254. * 3) Create the remaining kmalloc caches, with minimally sized
  1255. * head arrays.
  1256. * 4) Replace the __init data head arrays for cache_cache and the first
  1257. * kmalloc cache with kmalloc allocated arrays.
  1258. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1259. * the other cache's with kmalloc allocated memory.
  1260. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1261. */
  1262. node = numa_node_id();
  1263. /* 1) create the cache_cache */
  1264. INIT_LIST_HEAD(&cache_chain);
  1265. list_add(&cache_cache.next, &cache_chain);
  1266. cache_cache.colour_off = cache_line_size();
  1267. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1268. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1269. /*
  1270. * struct kmem_cache size depends on nr_node_ids, which
  1271. * can be less than MAX_NUMNODES.
  1272. */
  1273. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1274. nr_node_ids * sizeof(struct kmem_list3 *);
  1275. #if DEBUG
  1276. cache_cache.obj_size = cache_cache.buffer_size;
  1277. #endif
  1278. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1279. cache_line_size());
  1280. cache_cache.reciprocal_buffer_size =
  1281. reciprocal_value(cache_cache.buffer_size);
  1282. for (order = 0; order < MAX_ORDER; order++) {
  1283. cache_estimate(order, cache_cache.buffer_size,
  1284. cache_line_size(), 0, &left_over, &cache_cache.num);
  1285. if (cache_cache.num)
  1286. break;
  1287. }
  1288. BUG_ON(!cache_cache.num);
  1289. cache_cache.gfporder = order;
  1290. cache_cache.colour = left_over / cache_cache.colour_off;
  1291. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1292. sizeof(struct slab), cache_line_size());
  1293. /* 2+3) create the kmalloc caches */
  1294. sizes = malloc_sizes;
  1295. names = cache_names;
  1296. /*
  1297. * Initialize the caches that provide memory for the array cache and the
  1298. * kmem_list3 structures first. Without this, further allocations will
  1299. * bug.
  1300. */
  1301. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1302. sizes[INDEX_AC].cs_size,
  1303. ARCH_KMALLOC_MINALIGN,
  1304. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1305. NULL);
  1306. if (INDEX_AC != INDEX_L3) {
  1307. sizes[INDEX_L3].cs_cachep =
  1308. kmem_cache_create(names[INDEX_L3].name,
  1309. sizes[INDEX_L3].cs_size,
  1310. ARCH_KMALLOC_MINALIGN,
  1311. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1312. NULL);
  1313. }
  1314. slab_early_init = 0;
  1315. while (sizes->cs_size != ULONG_MAX) {
  1316. /*
  1317. * For performance, all the general caches are L1 aligned.
  1318. * This should be particularly beneficial on SMP boxes, as it
  1319. * eliminates "false sharing".
  1320. * Note for systems short on memory removing the alignment will
  1321. * allow tighter packing of the smaller caches.
  1322. */
  1323. if (!sizes->cs_cachep) {
  1324. sizes->cs_cachep = kmem_cache_create(names->name,
  1325. sizes->cs_size,
  1326. ARCH_KMALLOC_MINALIGN,
  1327. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1328. NULL);
  1329. }
  1330. #ifdef CONFIG_ZONE_DMA
  1331. sizes->cs_dmacachep = kmem_cache_create(
  1332. names->name_dma,
  1333. sizes->cs_size,
  1334. ARCH_KMALLOC_MINALIGN,
  1335. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1336. SLAB_PANIC,
  1337. NULL);
  1338. #endif
  1339. sizes++;
  1340. names++;
  1341. }
  1342. /* 4) Replace the bootstrap head arrays */
  1343. {
  1344. struct array_cache *ptr;
  1345. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1346. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1347. memcpy(ptr, cpu_cache_get(&cache_cache),
  1348. sizeof(struct arraycache_init));
  1349. /*
  1350. * Do not assume that spinlocks can be initialized via memcpy:
  1351. */
  1352. spin_lock_init(&ptr->lock);
  1353. cache_cache.array[smp_processor_id()] = ptr;
  1354. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1355. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1356. != &initarray_generic.cache);
  1357. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1358. sizeof(struct arraycache_init));
  1359. /*
  1360. * Do not assume that spinlocks can be initialized via memcpy:
  1361. */
  1362. spin_lock_init(&ptr->lock);
  1363. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1364. ptr;
  1365. }
  1366. /* 5) Replace the bootstrap kmem_list3's */
  1367. {
  1368. int nid;
  1369. for_each_online_node(nid) {
  1370. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1371. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1372. &initkmem_list3[SIZE_AC + nid], nid);
  1373. if (INDEX_AC != INDEX_L3) {
  1374. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1375. &initkmem_list3[SIZE_L3 + nid], nid);
  1376. }
  1377. }
  1378. }
  1379. g_cpucache_up = EARLY;
  1380. }
  1381. void __init kmem_cache_init_late(void)
  1382. {
  1383. struct kmem_cache *cachep;
  1384. /* 6) resize the head arrays to their final sizes */
  1385. mutex_lock(&cache_chain_mutex);
  1386. list_for_each_entry(cachep, &cache_chain, next)
  1387. if (enable_cpucache(cachep, GFP_NOWAIT))
  1388. BUG();
  1389. mutex_unlock(&cache_chain_mutex);
  1390. /* Done! */
  1391. g_cpucache_up = FULL;
  1392. /* Annotate slab for lockdep -- annotate the malloc caches */
  1393. init_lock_keys();
  1394. /*
  1395. * Register a cpu startup notifier callback that initializes
  1396. * cpu_cache_get for all new cpus
  1397. */
  1398. register_cpu_notifier(&cpucache_notifier);
  1399. /*
  1400. * The reap timers are started later, with a module init call: That part
  1401. * of the kernel is not yet operational.
  1402. */
  1403. }
  1404. static int __init cpucache_init(void)
  1405. {
  1406. int cpu;
  1407. /*
  1408. * Register the timers that return unneeded pages to the page allocator
  1409. */
  1410. for_each_online_cpu(cpu)
  1411. start_cpu_timer(cpu);
  1412. return 0;
  1413. }
  1414. __initcall(cpucache_init);
  1415. /*
  1416. * Interface to system's page allocator. No need to hold the cache-lock.
  1417. *
  1418. * If we requested dmaable memory, we will get it. Even if we
  1419. * did not request dmaable memory, we might get it, but that
  1420. * would be relatively rare and ignorable.
  1421. */
  1422. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1423. {
  1424. struct page *page;
  1425. int nr_pages;
  1426. int i;
  1427. #ifndef CONFIG_MMU
  1428. /*
  1429. * Nommu uses slab's for process anonymous memory allocations, and thus
  1430. * requires __GFP_COMP to properly refcount higher order allocations
  1431. */
  1432. flags |= __GFP_COMP;
  1433. #endif
  1434. flags |= cachep->gfpflags;
  1435. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1436. flags |= __GFP_RECLAIMABLE;
  1437. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1438. if (!page)
  1439. return NULL;
  1440. nr_pages = (1 << cachep->gfporder);
  1441. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1442. add_zone_page_state(page_zone(page),
  1443. NR_SLAB_RECLAIMABLE, nr_pages);
  1444. else
  1445. add_zone_page_state(page_zone(page),
  1446. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1447. for (i = 0; i < nr_pages; i++)
  1448. __SetPageSlab(page + i);
  1449. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1450. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1451. if (cachep->ctor)
  1452. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1453. else
  1454. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1455. }
  1456. return page_address(page);
  1457. }
  1458. /*
  1459. * Interface to system's page release.
  1460. */
  1461. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1462. {
  1463. unsigned long i = (1 << cachep->gfporder);
  1464. struct page *page = virt_to_page(addr);
  1465. const unsigned long nr_freed = i;
  1466. kmemcheck_free_shadow(page, cachep->gfporder);
  1467. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1468. sub_zone_page_state(page_zone(page),
  1469. NR_SLAB_RECLAIMABLE, nr_freed);
  1470. else
  1471. sub_zone_page_state(page_zone(page),
  1472. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1473. while (i--) {
  1474. BUG_ON(!PageSlab(page));
  1475. __ClearPageSlab(page);
  1476. page++;
  1477. }
  1478. if (current->reclaim_state)
  1479. current->reclaim_state->reclaimed_slab += nr_freed;
  1480. free_pages((unsigned long)addr, cachep->gfporder);
  1481. }
  1482. static void kmem_rcu_free(struct rcu_head *head)
  1483. {
  1484. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1485. struct kmem_cache *cachep = slab_rcu->cachep;
  1486. kmem_freepages(cachep, slab_rcu->addr);
  1487. if (OFF_SLAB(cachep))
  1488. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1489. }
  1490. #if DEBUG
  1491. #ifdef CONFIG_DEBUG_PAGEALLOC
  1492. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1493. unsigned long caller)
  1494. {
  1495. int size = obj_size(cachep);
  1496. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1497. if (size < 5 * sizeof(unsigned long))
  1498. return;
  1499. *addr++ = 0x12345678;
  1500. *addr++ = caller;
  1501. *addr++ = smp_processor_id();
  1502. size -= 3 * sizeof(unsigned long);
  1503. {
  1504. unsigned long *sptr = &caller;
  1505. unsigned long svalue;
  1506. while (!kstack_end(sptr)) {
  1507. svalue = *sptr++;
  1508. if (kernel_text_address(svalue)) {
  1509. *addr++ = svalue;
  1510. size -= sizeof(unsigned long);
  1511. if (size <= sizeof(unsigned long))
  1512. break;
  1513. }
  1514. }
  1515. }
  1516. *addr++ = 0x87654321;
  1517. }
  1518. #endif
  1519. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1520. {
  1521. int size = obj_size(cachep);
  1522. addr = &((char *)addr)[obj_offset(cachep)];
  1523. memset(addr, val, size);
  1524. *(unsigned char *)(addr + size - 1) = POISON_END;
  1525. }
  1526. static void dump_line(char *data, int offset, int limit)
  1527. {
  1528. int i;
  1529. unsigned char error = 0;
  1530. int bad_count = 0;
  1531. printk(KERN_ERR "%03x:", offset);
  1532. for (i = 0; i < limit; i++) {
  1533. if (data[offset + i] != POISON_FREE) {
  1534. error = data[offset + i];
  1535. bad_count++;
  1536. }
  1537. printk(" %02x", (unsigned char)data[offset + i]);
  1538. }
  1539. printk("\n");
  1540. if (bad_count == 1) {
  1541. error ^= POISON_FREE;
  1542. if (!(error & (error - 1))) {
  1543. printk(KERN_ERR "Single bit error detected. Probably "
  1544. "bad RAM.\n");
  1545. #ifdef CONFIG_X86
  1546. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1547. "test tool.\n");
  1548. #else
  1549. printk(KERN_ERR "Run a memory test tool.\n");
  1550. #endif
  1551. }
  1552. }
  1553. }
  1554. #endif
  1555. #if DEBUG
  1556. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1557. {
  1558. int i, size;
  1559. char *realobj;
  1560. if (cachep->flags & SLAB_RED_ZONE) {
  1561. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1562. *dbg_redzone1(cachep, objp),
  1563. *dbg_redzone2(cachep, objp));
  1564. }
  1565. if (cachep->flags & SLAB_STORE_USER) {
  1566. printk(KERN_ERR "Last user: [<%p>]",
  1567. *dbg_userword(cachep, objp));
  1568. print_symbol("(%s)",
  1569. (unsigned long)*dbg_userword(cachep, objp));
  1570. printk("\n");
  1571. }
  1572. realobj = (char *)objp + obj_offset(cachep);
  1573. size = obj_size(cachep);
  1574. for (i = 0; i < size && lines; i += 16, lines--) {
  1575. int limit;
  1576. limit = 16;
  1577. if (i + limit > size)
  1578. limit = size - i;
  1579. dump_line(realobj, i, limit);
  1580. }
  1581. }
  1582. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1583. {
  1584. char *realobj;
  1585. int size, i;
  1586. int lines = 0;
  1587. realobj = (char *)objp + obj_offset(cachep);
  1588. size = obj_size(cachep);
  1589. for (i = 0; i < size; i++) {
  1590. char exp = POISON_FREE;
  1591. if (i == size - 1)
  1592. exp = POISON_END;
  1593. if (realobj[i] != exp) {
  1594. int limit;
  1595. /* Mismatch ! */
  1596. /* Print header */
  1597. if (lines == 0) {
  1598. printk(KERN_ERR
  1599. "Slab corruption: %s start=%p, len=%d\n",
  1600. cachep->name, realobj, size);
  1601. print_objinfo(cachep, objp, 0);
  1602. }
  1603. /* Hexdump the affected line */
  1604. i = (i / 16) * 16;
  1605. limit = 16;
  1606. if (i + limit > size)
  1607. limit = size - i;
  1608. dump_line(realobj, i, limit);
  1609. i += 16;
  1610. lines++;
  1611. /* Limit to 5 lines */
  1612. if (lines > 5)
  1613. break;
  1614. }
  1615. }
  1616. if (lines != 0) {
  1617. /* Print some data about the neighboring objects, if they
  1618. * exist:
  1619. */
  1620. struct slab *slabp = virt_to_slab(objp);
  1621. unsigned int objnr;
  1622. objnr = obj_to_index(cachep, slabp, objp);
  1623. if (objnr) {
  1624. objp = index_to_obj(cachep, slabp, objnr - 1);
  1625. realobj = (char *)objp + obj_offset(cachep);
  1626. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1627. realobj, size);
  1628. print_objinfo(cachep, objp, 2);
  1629. }
  1630. if (objnr + 1 < cachep->num) {
  1631. objp = index_to_obj(cachep, slabp, objnr + 1);
  1632. realobj = (char *)objp + obj_offset(cachep);
  1633. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1634. realobj, size);
  1635. print_objinfo(cachep, objp, 2);
  1636. }
  1637. }
  1638. }
  1639. #endif
  1640. #if DEBUG
  1641. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1642. {
  1643. int i;
  1644. for (i = 0; i < cachep->num; i++) {
  1645. void *objp = index_to_obj(cachep, slabp, i);
  1646. if (cachep->flags & SLAB_POISON) {
  1647. #ifdef CONFIG_DEBUG_PAGEALLOC
  1648. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1649. OFF_SLAB(cachep))
  1650. kernel_map_pages(virt_to_page(objp),
  1651. cachep->buffer_size / PAGE_SIZE, 1);
  1652. else
  1653. check_poison_obj(cachep, objp);
  1654. #else
  1655. check_poison_obj(cachep, objp);
  1656. #endif
  1657. }
  1658. if (cachep->flags & SLAB_RED_ZONE) {
  1659. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1660. slab_error(cachep, "start of a freed object "
  1661. "was overwritten");
  1662. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1663. slab_error(cachep, "end of a freed object "
  1664. "was overwritten");
  1665. }
  1666. }
  1667. }
  1668. #else
  1669. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1670. {
  1671. }
  1672. #endif
  1673. /**
  1674. * slab_destroy - destroy and release all objects in a slab
  1675. * @cachep: cache pointer being destroyed
  1676. * @slabp: slab pointer being destroyed
  1677. *
  1678. * Destroy all the objs in a slab, and release the mem back to the system.
  1679. * Before calling the slab must have been unlinked from the cache. The
  1680. * cache-lock is not held/needed.
  1681. */
  1682. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1683. {
  1684. void *addr = slabp->s_mem - slabp->colouroff;
  1685. slab_destroy_debugcheck(cachep, slabp);
  1686. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1687. struct slab_rcu *slab_rcu;
  1688. slab_rcu = (struct slab_rcu *)slabp;
  1689. slab_rcu->cachep = cachep;
  1690. slab_rcu->addr = addr;
  1691. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1692. } else {
  1693. kmem_freepages(cachep, addr);
  1694. if (OFF_SLAB(cachep))
  1695. kmem_cache_free(cachep->slabp_cache, slabp);
  1696. }
  1697. }
  1698. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1699. {
  1700. int i;
  1701. struct kmem_list3 *l3;
  1702. for_each_online_cpu(i)
  1703. kfree(cachep->array[i]);
  1704. /* NUMA: free the list3 structures */
  1705. for_each_online_node(i) {
  1706. l3 = cachep->nodelists[i];
  1707. if (l3) {
  1708. kfree(l3->shared);
  1709. free_alien_cache(l3->alien);
  1710. kfree(l3);
  1711. }
  1712. }
  1713. kmem_cache_free(&cache_cache, cachep);
  1714. }
  1715. /**
  1716. * calculate_slab_order - calculate size (page order) of slabs
  1717. * @cachep: pointer to the cache that is being created
  1718. * @size: size of objects to be created in this cache.
  1719. * @align: required alignment for the objects.
  1720. * @flags: slab allocation flags
  1721. *
  1722. * Also calculates the number of objects per slab.
  1723. *
  1724. * This could be made much more intelligent. For now, try to avoid using
  1725. * high order pages for slabs. When the gfp() functions are more friendly
  1726. * towards high-order requests, this should be changed.
  1727. */
  1728. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1729. size_t size, size_t align, unsigned long flags)
  1730. {
  1731. unsigned long offslab_limit;
  1732. size_t left_over = 0;
  1733. int gfporder;
  1734. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1735. unsigned int num;
  1736. size_t remainder;
  1737. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1738. if (!num)
  1739. continue;
  1740. if (flags & CFLGS_OFF_SLAB) {
  1741. /*
  1742. * Max number of objs-per-slab for caches which
  1743. * use off-slab slabs. Needed to avoid a possible
  1744. * looping condition in cache_grow().
  1745. */
  1746. offslab_limit = size - sizeof(struct slab);
  1747. offslab_limit /= sizeof(kmem_bufctl_t);
  1748. if (num > offslab_limit)
  1749. break;
  1750. }
  1751. /* Found something acceptable - save it away */
  1752. cachep->num = num;
  1753. cachep->gfporder = gfporder;
  1754. left_over = remainder;
  1755. /*
  1756. * A VFS-reclaimable slab tends to have most allocations
  1757. * as GFP_NOFS and we really don't want to have to be allocating
  1758. * higher-order pages when we are unable to shrink dcache.
  1759. */
  1760. if (flags & SLAB_RECLAIM_ACCOUNT)
  1761. break;
  1762. /*
  1763. * Large number of objects is good, but very large slabs are
  1764. * currently bad for the gfp()s.
  1765. */
  1766. if (gfporder >= slab_break_gfp_order)
  1767. break;
  1768. /*
  1769. * Acceptable internal fragmentation?
  1770. */
  1771. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1772. break;
  1773. }
  1774. return left_over;
  1775. }
  1776. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1777. {
  1778. if (g_cpucache_up == FULL)
  1779. return enable_cpucache(cachep, gfp);
  1780. if (g_cpucache_up == NONE) {
  1781. /*
  1782. * Note: the first kmem_cache_create must create the cache
  1783. * that's used by kmalloc(24), otherwise the creation of
  1784. * further caches will BUG().
  1785. */
  1786. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1787. /*
  1788. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1789. * the first cache, then we need to set up all its list3s,
  1790. * otherwise the creation of further caches will BUG().
  1791. */
  1792. set_up_list3s(cachep, SIZE_AC);
  1793. if (INDEX_AC == INDEX_L3)
  1794. g_cpucache_up = PARTIAL_L3;
  1795. else
  1796. g_cpucache_up = PARTIAL_AC;
  1797. } else {
  1798. cachep->array[smp_processor_id()] =
  1799. kmalloc(sizeof(struct arraycache_init), gfp);
  1800. if (g_cpucache_up == PARTIAL_AC) {
  1801. set_up_list3s(cachep, SIZE_L3);
  1802. g_cpucache_up = PARTIAL_L3;
  1803. } else {
  1804. int node;
  1805. for_each_online_node(node) {
  1806. cachep->nodelists[node] =
  1807. kmalloc_node(sizeof(struct kmem_list3),
  1808. gfp, node);
  1809. BUG_ON(!cachep->nodelists[node]);
  1810. kmem_list3_init(cachep->nodelists[node]);
  1811. }
  1812. }
  1813. }
  1814. cachep->nodelists[numa_node_id()]->next_reap =
  1815. jiffies + REAPTIMEOUT_LIST3 +
  1816. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1817. cpu_cache_get(cachep)->avail = 0;
  1818. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1819. cpu_cache_get(cachep)->batchcount = 1;
  1820. cpu_cache_get(cachep)->touched = 0;
  1821. cachep->batchcount = 1;
  1822. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1823. return 0;
  1824. }
  1825. /**
  1826. * kmem_cache_create - Create a cache.
  1827. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1828. * @size: The size of objects to be created in this cache.
  1829. * @align: The required alignment for the objects.
  1830. * @flags: SLAB flags
  1831. * @ctor: A constructor for the objects.
  1832. *
  1833. * Returns a ptr to the cache on success, NULL on failure.
  1834. * Cannot be called within a int, but can be interrupted.
  1835. * The @ctor is run when new pages are allocated by the cache.
  1836. *
  1837. * @name must be valid until the cache is destroyed. This implies that
  1838. * the module calling this has to destroy the cache before getting unloaded.
  1839. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1840. * therefore applications must manage it themselves.
  1841. *
  1842. * The flags are
  1843. *
  1844. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1845. * to catch references to uninitialised memory.
  1846. *
  1847. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1848. * for buffer overruns.
  1849. *
  1850. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1851. * cacheline. This can be beneficial if you're counting cycles as closely
  1852. * as davem.
  1853. */
  1854. struct kmem_cache *
  1855. kmem_cache_create (const char *name, size_t size, size_t align,
  1856. unsigned long flags, void (*ctor)(void *))
  1857. {
  1858. size_t left_over, slab_size, ralign;
  1859. struct kmem_cache *cachep = NULL, *pc;
  1860. gfp_t gfp;
  1861. /*
  1862. * Sanity checks... these are all serious usage bugs.
  1863. */
  1864. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1865. size > KMALLOC_MAX_SIZE) {
  1866. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1867. name);
  1868. BUG();
  1869. }
  1870. /*
  1871. * We use cache_chain_mutex to ensure a consistent view of
  1872. * cpu_online_mask as well. Please see cpuup_callback
  1873. */
  1874. if (slab_is_available()) {
  1875. get_online_cpus();
  1876. mutex_lock(&cache_chain_mutex);
  1877. }
  1878. list_for_each_entry(pc, &cache_chain, next) {
  1879. char tmp;
  1880. int res;
  1881. /*
  1882. * This happens when the module gets unloaded and doesn't
  1883. * destroy its slab cache and no-one else reuses the vmalloc
  1884. * area of the module. Print a warning.
  1885. */
  1886. res = probe_kernel_address(pc->name, tmp);
  1887. if (res) {
  1888. printk(KERN_ERR
  1889. "SLAB: cache with size %d has lost its name\n",
  1890. pc->buffer_size);
  1891. continue;
  1892. }
  1893. if (!strcmp(pc->name, name)) {
  1894. printk(KERN_ERR
  1895. "kmem_cache_create: duplicate cache %s\n", name);
  1896. dump_stack();
  1897. goto oops;
  1898. }
  1899. }
  1900. #if DEBUG
  1901. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1902. #if FORCED_DEBUG
  1903. /*
  1904. * Enable redzoning and last user accounting, except for caches with
  1905. * large objects, if the increased size would increase the object size
  1906. * above the next power of two: caches with object sizes just above a
  1907. * power of two have a significant amount of internal fragmentation.
  1908. */
  1909. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1910. 2 * sizeof(unsigned long long)))
  1911. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1912. if (!(flags & SLAB_DESTROY_BY_RCU))
  1913. flags |= SLAB_POISON;
  1914. #endif
  1915. if (flags & SLAB_DESTROY_BY_RCU)
  1916. BUG_ON(flags & SLAB_POISON);
  1917. #endif
  1918. /*
  1919. * Always checks flags, a caller might be expecting debug support which
  1920. * isn't available.
  1921. */
  1922. BUG_ON(flags & ~CREATE_MASK);
  1923. /*
  1924. * Check that size is in terms of words. This is needed to avoid
  1925. * unaligned accesses for some archs when redzoning is used, and makes
  1926. * sure any on-slab bufctl's are also correctly aligned.
  1927. */
  1928. if (size & (BYTES_PER_WORD - 1)) {
  1929. size += (BYTES_PER_WORD - 1);
  1930. size &= ~(BYTES_PER_WORD - 1);
  1931. }
  1932. /* calculate the final buffer alignment: */
  1933. /* 1) arch recommendation: can be overridden for debug */
  1934. if (flags & SLAB_HWCACHE_ALIGN) {
  1935. /*
  1936. * Default alignment: as specified by the arch code. Except if
  1937. * an object is really small, then squeeze multiple objects into
  1938. * one cacheline.
  1939. */
  1940. ralign = cache_line_size();
  1941. while (size <= ralign / 2)
  1942. ralign /= 2;
  1943. } else {
  1944. ralign = BYTES_PER_WORD;
  1945. }
  1946. /*
  1947. * Redzoning and user store require word alignment or possibly larger.
  1948. * Note this will be overridden by architecture or caller mandated
  1949. * alignment if either is greater than BYTES_PER_WORD.
  1950. */
  1951. if (flags & SLAB_STORE_USER)
  1952. ralign = BYTES_PER_WORD;
  1953. if (flags & SLAB_RED_ZONE) {
  1954. ralign = REDZONE_ALIGN;
  1955. /* If redzoning, ensure that the second redzone is suitably
  1956. * aligned, by adjusting the object size accordingly. */
  1957. size += REDZONE_ALIGN - 1;
  1958. size &= ~(REDZONE_ALIGN - 1);
  1959. }
  1960. /* 2) arch mandated alignment */
  1961. if (ralign < ARCH_SLAB_MINALIGN) {
  1962. ralign = ARCH_SLAB_MINALIGN;
  1963. }
  1964. /* 3) caller mandated alignment */
  1965. if (ralign < align) {
  1966. ralign = align;
  1967. }
  1968. /* disable debug if necessary */
  1969. if (ralign > __alignof__(unsigned long long))
  1970. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1971. /*
  1972. * 4) Store it.
  1973. */
  1974. align = ralign;
  1975. if (slab_is_available())
  1976. gfp = GFP_KERNEL;
  1977. else
  1978. gfp = GFP_NOWAIT;
  1979. /* Get cache's description obj. */
  1980. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  1981. if (!cachep)
  1982. goto oops;
  1983. #if DEBUG
  1984. cachep->obj_size = size;
  1985. /*
  1986. * Both debugging options require word-alignment which is calculated
  1987. * into align above.
  1988. */
  1989. if (flags & SLAB_RED_ZONE) {
  1990. /* add space for red zone words */
  1991. cachep->obj_offset += sizeof(unsigned long long);
  1992. size += 2 * sizeof(unsigned long long);
  1993. }
  1994. if (flags & SLAB_STORE_USER) {
  1995. /* user store requires one word storage behind the end of
  1996. * the real object. But if the second red zone needs to be
  1997. * aligned to 64 bits, we must allow that much space.
  1998. */
  1999. if (flags & SLAB_RED_ZONE)
  2000. size += REDZONE_ALIGN;
  2001. else
  2002. size += BYTES_PER_WORD;
  2003. }
  2004. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2005. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2006. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2007. cachep->obj_offset += PAGE_SIZE - size;
  2008. size = PAGE_SIZE;
  2009. }
  2010. #endif
  2011. #endif
  2012. /*
  2013. * Determine if the slab management is 'on' or 'off' slab.
  2014. * (bootstrapping cannot cope with offslab caches so don't do
  2015. * it too early on. Always use on-slab management when
  2016. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2017. */
  2018. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2019. !(flags & SLAB_NOLEAKTRACE))
  2020. /*
  2021. * Size is large, assume best to place the slab management obj
  2022. * off-slab (should allow better packing of objs).
  2023. */
  2024. flags |= CFLGS_OFF_SLAB;
  2025. size = ALIGN(size, align);
  2026. left_over = calculate_slab_order(cachep, size, align, flags);
  2027. if (!cachep->num) {
  2028. printk(KERN_ERR
  2029. "kmem_cache_create: couldn't create cache %s.\n", name);
  2030. kmem_cache_free(&cache_cache, cachep);
  2031. cachep = NULL;
  2032. goto oops;
  2033. }
  2034. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2035. + sizeof(struct slab), align);
  2036. /*
  2037. * If the slab has been placed off-slab, and we have enough space then
  2038. * move it on-slab. This is at the expense of any extra colouring.
  2039. */
  2040. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2041. flags &= ~CFLGS_OFF_SLAB;
  2042. left_over -= slab_size;
  2043. }
  2044. if (flags & CFLGS_OFF_SLAB) {
  2045. /* really off slab. No need for manual alignment */
  2046. slab_size =
  2047. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2048. #ifdef CONFIG_PAGE_POISONING
  2049. /* If we're going to use the generic kernel_map_pages()
  2050. * poisoning, then it's going to smash the contents of
  2051. * the redzone and userword anyhow, so switch them off.
  2052. */
  2053. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2054. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2055. #endif
  2056. }
  2057. cachep->colour_off = cache_line_size();
  2058. /* Offset must be a multiple of the alignment. */
  2059. if (cachep->colour_off < align)
  2060. cachep->colour_off = align;
  2061. cachep->colour = left_over / cachep->colour_off;
  2062. cachep->slab_size = slab_size;
  2063. cachep->flags = flags;
  2064. cachep->gfpflags = 0;
  2065. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2066. cachep->gfpflags |= GFP_DMA;
  2067. cachep->buffer_size = size;
  2068. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2069. if (flags & CFLGS_OFF_SLAB) {
  2070. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2071. /*
  2072. * This is a possibility for one of the malloc_sizes caches.
  2073. * But since we go off slab only for object size greater than
  2074. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2075. * this should not happen at all.
  2076. * But leave a BUG_ON for some lucky dude.
  2077. */
  2078. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2079. }
  2080. cachep->ctor = ctor;
  2081. cachep->name = name;
  2082. if (setup_cpu_cache(cachep, gfp)) {
  2083. __kmem_cache_destroy(cachep);
  2084. cachep = NULL;
  2085. goto oops;
  2086. }
  2087. /* cache setup completed, link it into the list */
  2088. list_add(&cachep->next, &cache_chain);
  2089. oops:
  2090. if (!cachep && (flags & SLAB_PANIC))
  2091. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2092. name);
  2093. if (slab_is_available()) {
  2094. mutex_unlock(&cache_chain_mutex);
  2095. put_online_cpus();
  2096. }
  2097. return cachep;
  2098. }
  2099. EXPORT_SYMBOL(kmem_cache_create);
  2100. #if DEBUG
  2101. static void check_irq_off(void)
  2102. {
  2103. BUG_ON(!irqs_disabled());
  2104. }
  2105. static void check_irq_on(void)
  2106. {
  2107. BUG_ON(irqs_disabled());
  2108. }
  2109. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2110. {
  2111. #ifdef CONFIG_SMP
  2112. check_irq_off();
  2113. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2114. #endif
  2115. }
  2116. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2117. {
  2118. #ifdef CONFIG_SMP
  2119. check_irq_off();
  2120. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2121. #endif
  2122. }
  2123. #else
  2124. #define check_irq_off() do { } while(0)
  2125. #define check_irq_on() do { } while(0)
  2126. #define check_spinlock_acquired(x) do { } while(0)
  2127. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2128. #endif
  2129. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2130. struct array_cache *ac,
  2131. int force, int node);
  2132. static void do_drain(void *arg)
  2133. {
  2134. struct kmem_cache *cachep = arg;
  2135. struct array_cache *ac;
  2136. int node = numa_node_id();
  2137. check_irq_off();
  2138. ac = cpu_cache_get(cachep);
  2139. spin_lock(&cachep->nodelists[node]->list_lock);
  2140. free_block(cachep, ac->entry, ac->avail, node);
  2141. spin_unlock(&cachep->nodelists[node]->list_lock);
  2142. ac->avail = 0;
  2143. }
  2144. static void drain_cpu_caches(struct kmem_cache *cachep)
  2145. {
  2146. struct kmem_list3 *l3;
  2147. int node;
  2148. on_each_cpu(do_drain, cachep, 1);
  2149. check_irq_on();
  2150. for_each_online_node(node) {
  2151. l3 = cachep->nodelists[node];
  2152. if (l3 && l3->alien)
  2153. drain_alien_cache(cachep, l3->alien);
  2154. }
  2155. for_each_online_node(node) {
  2156. l3 = cachep->nodelists[node];
  2157. if (l3)
  2158. drain_array(cachep, l3, l3->shared, 1, node);
  2159. }
  2160. }
  2161. /*
  2162. * Remove slabs from the list of free slabs.
  2163. * Specify the number of slabs to drain in tofree.
  2164. *
  2165. * Returns the actual number of slabs released.
  2166. */
  2167. static int drain_freelist(struct kmem_cache *cache,
  2168. struct kmem_list3 *l3, int tofree)
  2169. {
  2170. struct list_head *p;
  2171. int nr_freed;
  2172. struct slab *slabp;
  2173. nr_freed = 0;
  2174. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2175. spin_lock_irq(&l3->list_lock);
  2176. p = l3->slabs_free.prev;
  2177. if (p == &l3->slabs_free) {
  2178. spin_unlock_irq(&l3->list_lock);
  2179. goto out;
  2180. }
  2181. slabp = list_entry(p, struct slab, list);
  2182. #if DEBUG
  2183. BUG_ON(slabp->inuse);
  2184. #endif
  2185. list_del(&slabp->list);
  2186. /*
  2187. * Safe to drop the lock. The slab is no longer linked
  2188. * to the cache.
  2189. */
  2190. l3->free_objects -= cache->num;
  2191. spin_unlock_irq(&l3->list_lock);
  2192. slab_destroy(cache, slabp);
  2193. nr_freed++;
  2194. }
  2195. out:
  2196. return nr_freed;
  2197. }
  2198. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2199. static int __cache_shrink(struct kmem_cache *cachep)
  2200. {
  2201. int ret = 0, i = 0;
  2202. struct kmem_list3 *l3;
  2203. drain_cpu_caches(cachep);
  2204. check_irq_on();
  2205. for_each_online_node(i) {
  2206. l3 = cachep->nodelists[i];
  2207. if (!l3)
  2208. continue;
  2209. drain_freelist(cachep, l3, l3->free_objects);
  2210. ret += !list_empty(&l3->slabs_full) ||
  2211. !list_empty(&l3->slabs_partial);
  2212. }
  2213. return (ret ? 1 : 0);
  2214. }
  2215. /**
  2216. * kmem_cache_shrink - Shrink a cache.
  2217. * @cachep: The cache to shrink.
  2218. *
  2219. * Releases as many slabs as possible for a cache.
  2220. * To help debugging, a zero exit status indicates all slabs were released.
  2221. */
  2222. int kmem_cache_shrink(struct kmem_cache *cachep)
  2223. {
  2224. int ret;
  2225. BUG_ON(!cachep || in_interrupt());
  2226. get_online_cpus();
  2227. mutex_lock(&cache_chain_mutex);
  2228. ret = __cache_shrink(cachep);
  2229. mutex_unlock(&cache_chain_mutex);
  2230. put_online_cpus();
  2231. return ret;
  2232. }
  2233. EXPORT_SYMBOL(kmem_cache_shrink);
  2234. /**
  2235. * kmem_cache_destroy - delete a cache
  2236. * @cachep: the cache to destroy
  2237. *
  2238. * Remove a &struct kmem_cache object from the slab cache.
  2239. *
  2240. * It is expected this function will be called by a module when it is
  2241. * unloaded. This will remove the cache completely, and avoid a duplicate
  2242. * cache being allocated each time a module is loaded and unloaded, if the
  2243. * module doesn't have persistent in-kernel storage across loads and unloads.
  2244. *
  2245. * The cache must be empty before calling this function.
  2246. *
  2247. * The caller must guarantee that noone will allocate memory from the cache
  2248. * during the kmem_cache_destroy().
  2249. */
  2250. void kmem_cache_destroy(struct kmem_cache *cachep)
  2251. {
  2252. BUG_ON(!cachep || in_interrupt());
  2253. /* Find the cache in the chain of caches. */
  2254. get_online_cpus();
  2255. mutex_lock(&cache_chain_mutex);
  2256. /*
  2257. * the chain is never empty, cache_cache is never destroyed
  2258. */
  2259. list_del(&cachep->next);
  2260. if (__cache_shrink(cachep)) {
  2261. slab_error(cachep, "Can't free all objects");
  2262. list_add(&cachep->next, &cache_chain);
  2263. mutex_unlock(&cache_chain_mutex);
  2264. put_online_cpus();
  2265. return;
  2266. }
  2267. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2268. rcu_barrier();
  2269. __kmem_cache_destroy(cachep);
  2270. mutex_unlock(&cache_chain_mutex);
  2271. put_online_cpus();
  2272. }
  2273. EXPORT_SYMBOL(kmem_cache_destroy);
  2274. /*
  2275. * Get the memory for a slab management obj.
  2276. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2277. * always come from malloc_sizes caches. The slab descriptor cannot
  2278. * come from the same cache which is getting created because,
  2279. * when we are searching for an appropriate cache for these
  2280. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2281. * If we are creating a malloc_sizes cache here it would not be visible to
  2282. * kmem_find_general_cachep till the initialization is complete.
  2283. * Hence we cannot have slabp_cache same as the original cache.
  2284. */
  2285. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2286. int colour_off, gfp_t local_flags,
  2287. int nodeid)
  2288. {
  2289. struct slab *slabp;
  2290. if (OFF_SLAB(cachep)) {
  2291. /* Slab management obj is off-slab. */
  2292. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2293. local_flags, nodeid);
  2294. /*
  2295. * If the first object in the slab is leaked (it's allocated
  2296. * but no one has a reference to it), we want to make sure
  2297. * kmemleak does not treat the ->s_mem pointer as a reference
  2298. * to the object. Otherwise we will not report the leak.
  2299. */
  2300. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2301. local_flags);
  2302. if (!slabp)
  2303. return NULL;
  2304. } else {
  2305. slabp = objp + colour_off;
  2306. colour_off += cachep->slab_size;
  2307. }
  2308. slabp->inuse = 0;
  2309. slabp->colouroff = colour_off;
  2310. slabp->s_mem = objp + colour_off;
  2311. slabp->nodeid = nodeid;
  2312. slabp->free = 0;
  2313. return slabp;
  2314. }
  2315. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2316. {
  2317. return (kmem_bufctl_t *) (slabp + 1);
  2318. }
  2319. static void cache_init_objs(struct kmem_cache *cachep,
  2320. struct slab *slabp)
  2321. {
  2322. int i;
  2323. for (i = 0; i < cachep->num; i++) {
  2324. void *objp = index_to_obj(cachep, slabp, i);
  2325. #if DEBUG
  2326. /* need to poison the objs? */
  2327. if (cachep->flags & SLAB_POISON)
  2328. poison_obj(cachep, objp, POISON_FREE);
  2329. if (cachep->flags & SLAB_STORE_USER)
  2330. *dbg_userword(cachep, objp) = NULL;
  2331. if (cachep->flags & SLAB_RED_ZONE) {
  2332. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2333. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2334. }
  2335. /*
  2336. * Constructors are not allowed to allocate memory from the same
  2337. * cache which they are a constructor for. Otherwise, deadlock.
  2338. * They must also be threaded.
  2339. */
  2340. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2341. cachep->ctor(objp + obj_offset(cachep));
  2342. if (cachep->flags & SLAB_RED_ZONE) {
  2343. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2344. slab_error(cachep, "constructor overwrote the"
  2345. " end of an object");
  2346. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2347. slab_error(cachep, "constructor overwrote the"
  2348. " start of an object");
  2349. }
  2350. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2351. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2352. kernel_map_pages(virt_to_page(objp),
  2353. cachep->buffer_size / PAGE_SIZE, 0);
  2354. #else
  2355. if (cachep->ctor)
  2356. cachep->ctor(objp);
  2357. #endif
  2358. slab_bufctl(slabp)[i] = i + 1;
  2359. }
  2360. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2361. }
  2362. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2363. {
  2364. if (CONFIG_ZONE_DMA_FLAG) {
  2365. if (flags & GFP_DMA)
  2366. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2367. else
  2368. BUG_ON(cachep->gfpflags & GFP_DMA);
  2369. }
  2370. }
  2371. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2372. int nodeid)
  2373. {
  2374. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2375. kmem_bufctl_t next;
  2376. slabp->inuse++;
  2377. next = slab_bufctl(slabp)[slabp->free];
  2378. #if DEBUG
  2379. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2380. WARN_ON(slabp->nodeid != nodeid);
  2381. #endif
  2382. slabp->free = next;
  2383. return objp;
  2384. }
  2385. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2386. void *objp, int nodeid)
  2387. {
  2388. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2389. #if DEBUG
  2390. /* Verify that the slab belongs to the intended node */
  2391. WARN_ON(slabp->nodeid != nodeid);
  2392. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2393. printk(KERN_ERR "slab: double free detected in cache "
  2394. "'%s', objp %p\n", cachep->name, objp);
  2395. BUG();
  2396. }
  2397. #endif
  2398. slab_bufctl(slabp)[objnr] = slabp->free;
  2399. slabp->free = objnr;
  2400. slabp->inuse--;
  2401. }
  2402. /*
  2403. * Map pages beginning at addr to the given cache and slab. This is required
  2404. * for the slab allocator to be able to lookup the cache and slab of a
  2405. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2406. */
  2407. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2408. void *addr)
  2409. {
  2410. int nr_pages;
  2411. struct page *page;
  2412. page = virt_to_page(addr);
  2413. nr_pages = 1;
  2414. if (likely(!PageCompound(page)))
  2415. nr_pages <<= cache->gfporder;
  2416. do {
  2417. page_set_cache(page, cache);
  2418. page_set_slab(page, slab);
  2419. page++;
  2420. } while (--nr_pages);
  2421. }
  2422. /*
  2423. * Grow (by 1) the number of slabs within a cache. This is called by
  2424. * kmem_cache_alloc() when there are no active objs left in a cache.
  2425. */
  2426. static int cache_grow(struct kmem_cache *cachep,
  2427. gfp_t flags, int nodeid, void *objp)
  2428. {
  2429. struct slab *slabp;
  2430. size_t offset;
  2431. gfp_t local_flags;
  2432. struct kmem_list3 *l3;
  2433. /*
  2434. * Be lazy and only check for valid flags here, keeping it out of the
  2435. * critical path in kmem_cache_alloc().
  2436. */
  2437. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2438. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2439. /* Take the l3 list lock to change the colour_next on this node */
  2440. check_irq_off();
  2441. l3 = cachep->nodelists[nodeid];
  2442. spin_lock(&l3->list_lock);
  2443. /* Get colour for the slab, and cal the next value. */
  2444. offset = l3->colour_next;
  2445. l3->colour_next++;
  2446. if (l3->colour_next >= cachep->colour)
  2447. l3->colour_next = 0;
  2448. spin_unlock(&l3->list_lock);
  2449. offset *= cachep->colour_off;
  2450. if (local_flags & __GFP_WAIT)
  2451. local_irq_enable();
  2452. /*
  2453. * The test for missing atomic flag is performed here, rather than
  2454. * the more obvious place, simply to reduce the critical path length
  2455. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2456. * will eventually be caught here (where it matters).
  2457. */
  2458. kmem_flagcheck(cachep, flags);
  2459. /*
  2460. * Get mem for the objs. Attempt to allocate a physical page from
  2461. * 'nodeid'.
  2462. */
  2463. if (!objp)
  2464. objp = kmem_getpages(cachep, local_flags, nodeid);
  2465. if (!objp)
  2466. goto failed;
  2467. /* Get slab management. */
  2468. slabp = alloc_slabmgmt(cachep, objp, offset,
  2469. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2470. if (!slabp)
  2471. goto opps1;
  2472. slab_map_pages(cachep, slabp, objp);
  2473. cache_init_objs(cachep, slabp);
  2474. if (local_flags & __GFP_WAIT)
  2475. local_irq_disable();
  2476. check_irq_off();
  2477. spin_lock(&l3->list_lock);
  2478. /* Make slab active. */
  2479. list_add_tail(&slabp->list, &(l3->slabs_free));
  2480. STATS_INC_GROWN(cachep);
  2481. l3->free_objects += cachep->num;
  2482. spin_unlock(&l3->list_lock);
  2483. return 1;
  2484. opps1:
  2485. kmem_freepages(cachep, objp);
  2486. failed:
  2487. if (local_flags & __GFP_WAIT)
  2488. local_irq_disable();
  2489. return 0;
  2490. }
  2491. #if DEBUG
  2492. /*
  2493. * Perform extra freeing checks:
  2494. * - detect bad pointers.
  2495. * - POISON/RED_ZONE checking
  2496. */
  2497. static void kfree_debugcheck(const void *objp)
  2498. {
  2499. if (!virt_addr_valid(objp)) {
  2500. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2501. (unsigned long)objp);
  2502. BUG();
  2503. }
  2504. }
  2505. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2506. {
  2507. unsigned long long redzone1, redzone2;
  2508. redzone1 = *dbg_redzone1(cache, obj);
  2509. redzone2 = *dbg_redzone2(cache, obj);
  2510. /*
  2511. * Redzone is ok.
  2512. */
  2513. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2514. return;
  2515. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2516. slab_error(cache, "double free detected");
  2517. else
  2518. slab_error(cache, "memory outside object was overwritten");
  2519. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2520. obj, redzone1, redzone2);
  2521. }
  2522. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2523. void *caller)
  2524. {
  2525. struct page *page;
  2526. unsigned int objnr;
  2527. struct slab *slabp;
  2528. BUG_ON(virt_to_cache(objp) != cachep);
  2529. objp -= obj_offset(cachep);
  2530. kfree_debugcheck(objp);
  2531. page = virt_to_head_page(objp);
  2532. slabp = page_get_slab(page);
  2533. if (cachep->flags & SLAB_RED_ZONE) {
  2534. verify_redzone_free(cachep, objp);
  2535. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2536. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2537. }
  2538. if (cachep->flags & SLAB_STORE_USER)
  2539. *dbg_userword(cachep, objp) = caller;
  2540. objnr = obj_to_index(cachep, slabp, objp);
  2541. BUG_ON(objnr >= cachep->num);
  2542. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2543. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2544. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2545. #endif
  2546. if (cachep->flags & SLAB_POISON) {
  2547. #ifdef CONFIG_DEBUG_PAGEALLOC
  2548. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2549. store_stackinfo(cachep, objp, (unsigned long)caller);
  2550. kernel_map_pages(virt_to_page(objp),
  2551. cachep->buffer_size / PAGE_SIZE, 0);
  2552. } else {
  2553. poison_obj(cachep, objp, POISON_FREE);
  2554. }
  2555. #else
  2556. poison_obj(cachep, objp, POISON_FREE);
  2557. #endif
  2558. }
  2559. return objp;
  2560. }
  2561. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2562. {
  2563. kmem_bufctl_t i;
  2564. int entries = 0;
  2565. /* Check slab's freelist to see if this obj is there. */
  2566. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2567. entries++;
  2568. if (entries > cachep->num || i >= cachep->num)
  2569. goto bad;
  2570. }
  2571. if (entries != cachep->num - slabp->inuse) {
  2572. bad:
  2573. printk(KERN_ERR "slab: Internal list corruption detected in "
  2574. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2575. cachep->name, cachep->num, slabp, slabp->inuse);
  2576. for (i = 0;
  2577. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2578. i++) {
  2579. if (i % 16 == 0)
  2580. printk("\n%03x:", i);
  2581. printk(" %02x", ((unsigned char *)slabp)[i]);
  2582. }
  2583. printk("\n");
  2584. BUG();
  2585. }
  2586. }
  2587. #else
  2588. #define kfree_debugcheck(x) do { } while(0)
  2589. #define cache_free_debugcheck(x,objp,z) (objp)
  2590. #define check_slabp(x,y) do { } while(0)
  2591. #endif
  2592. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2593. {
  2594. int batchcount;
  2595. struct kmem_list3 *l3;
  2596. struct array_cache *ac;
  2597. int node;
  2598. retry:
  2599. check_irq_off();
  2600. node = numa_node_id();
  2601. ac = cpu_cache_get(cachep);
  2602. batchcount = ac->batchcount;
  2603. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2604. /*
  2605. * If there was little recent activity on this cache, then
  2606. * perform only a partial refill. Otherwise we could generate
  2607. * refill bouncing.
  2608. */
  2609. batchcount = BATCHREFILL_LIMIT;
  2610. }
  2611. l3 = cachep->nodelists[node];
  2612. BUG_ON(ac->avail > 0 || !l3);
  2613. spin_lock(&l3->list_lock);
  2614. /* See if we can refill from the shared array */
  2615. if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
  2616. l3->shared->touched = 1;
  2617. goto alloc_done;
  2618. }
  2619. while (batchcount > 0) {
  2620. struct list_head *entry;
  2621. struct slab *slabp;
  2622. /* Get slab alloc is to come from. */
  2623. entry = l3->slabs_partial.next;
  2624. if (entry == &l3->slabs_partial) {
  2625. l3->free_touched = 1;
  2626. entry = l3->slabs_free.next;
  2627. if (entry == &l3->slabs_free)
  2628. goto must_grow;
  2629. }
  2630. slabp = list_entry(entry, struct slab, list);
  2631. check_slabp(cachep, slabp);
  2632. check_spinlock_acquired(cachep);
  2633. /*
  2634. * The slab was either on partial or free list so
  2635. * there must be at least one object available for
  2636. * allocation.
  2637. */
  2638. BUG_ON(slabp->inuse >= cachep->num);
  2639. while (slabp->inuse < cachep->num && batchcount--) {
  2640. STATS_INC_ALLOCED(cachep);
  2641. STATS_INC_ACTIVE(cachep);
  2642. STATS_SET_HIGH(cachep);
  2643. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2644. node);
  2645. }
  2646. check_slabp(cachep, slabp);
  2647. /* move slabp to correct slabp list: */
  2648. list_del(&slabp->list);
  2649. if (slabp->free == BUFCTL_END)
  2650. list_add(&slabp->list, &l3->slabs_full);
  2651. else
  2652. list_add(&slabp->list, &l3->slabs_partial);
  2653. }
  2654. must_grow:
  2655. l3->free_objects -= ac->avail;
  2656. alloc_done:
  2657. spin_unlock(&l3->list_lock);
  2658. if (unlikely(!ac->avail)) {
  2659. int x;
  2660. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2661. /* cache_grow can reenable interrupts, then ac could change. */
  2662. ac = cpu_cache_get(cachep);
  2663. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2664. return NULL;
  2665. if (!ac->avail) /* objects refilled by interrupt? */
  2666. goto retry;
  2667. }
  2668. ac->touched = 1;
  2669. return ac->entry[--ac->avail];
  2670. }
  2671. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2672. gfp_t flags)
  2673. {
  2674. might_sleep_if(flags & __GFP_WAIT);
  2675. #if DEBUG
  2676. kmem_flagcheck(cachep, flags);
  2677. #endif
  2678. }
  2679. #if DEBUG
  2680. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2681. gfp_t flags, void *objp, void *caller)
  2682. {
  2683. if (!objp)
  2684. return objp;
  2685. if (cachep->flags & SLAB_POISON) {
  2686. #ifdef CONFIG_DEBUG_PAGEALLOC
  2687. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2688. kernel_map_pages(virt_to_page(objp),
  2689. cachep->buffer_size / PAGE_SIZE, 1);
  2690. else
  2691. check_poison_obj(cachep, objp);
  2692. #else
  2693. check_poison_obj(cachep, objp);
  2694. #endif
  2695. poison_obj(cachep, objp, POISON_INUSE);
  2696. }
  2697. if (cachep->flags & SLAB_STORE_USER)
  2698. *dbg_userword(cachep, objp) = caller;
  2699. if (cachep->flags & SLAB_RED_ZONE) {
  2700. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2701. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2702. slab_error(cachep, "double free, or memory outside"
  2703. " object was overwritten");
  2704. printk(KERN_ERR
  2705. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2706. objp, *dbg_redzone1(cachep, objp),
  2707. *dbg_redzone2(cachep, objp));
  2708. }
  2709. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2710. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2711. }
  2712. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2713. {
  2714. struct slab *slabp;
  2715. unsigned objnr;
  2716. slabp = page_get_slab(virt_to_head_page(objp));
  2717. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2718. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2719. }
  2720. #endif
  2721. objp += obj_offset(cachep);
  2722. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2723. cachep->ctor(objp);
  2724. #if ARCH_SLAB_MINALIGN
  2725. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2726. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2727. objp, ARCH_SLAB_MINALIGN);
  2728. }
  2729. #endif
  2730. return objp;
  2731. }
  2732. #else
  2733. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2734. #endif
  2735. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2736. {
  2737. if (cachep == &cache_cache)
  2738. return false;
  2739. return should_failslab(obj_size(cachep), flags, cachep->flags);
  2740. }
  2741. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2742. {
  2743. void *objp;
  2744. struct array_cache *ac;
  2745. check_irq_off();
  2746. ac = cpu_cache_get(cachep);
  2747. if (likely(ac->avail)) {
  2748. STATS_INC_ALLOCHIT(cachep);
  2749. ac->touched = 1;
  2750. objp = ac->entry[--ac->avail];
  2751. } else {
  2752. STATS_INC_ALLOCMISS(cachep);
  2753. objp = cache_alloc_refill(cachep, flags);
  2754. /*
  2755. * the 'ac' may be updated by cache_alloc_refill(),
  2756. * and kmemleak_erase() requires its correct value.
  2757. */
  2758. ac = cpu_cache_get(cachep);
  2759. }
  2760. /*
  2761. * To avoid a false negative, if an object that is in one of the
  2762. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2763. * treat the array pointers as a reference to the object.
  2764. */
  2765. if (objp)
  2766. kmemleak_erase(&ac->entry[ac->avail]);
  2767. return objp;
  2768. }
  2769. #ifdef CONFIG_NUMA
  2770. /*
  2771. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2772. *
  2773. * If we are in_interrupt, then process context, including cpusets and
  2774. * mempolicy, may not apply and should not be used for allocation policy.
  2775. */
  2776. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2777. {
  2778. int nid_alloc, nid_here;
  2779. if (in_interrupt() || (flags & __GFP_THISNODE))
  2780. return NULL;
  2781. nid_alloc = nid_here = numa_node_id();
  2782. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2783. nid_alloc = cpuset_mem_spread_node();
  2784. else if (current->mempolicy)
  2785. nid_alloc = slab_node(current->mempolicy);
  2786. if (nid_alloc != nid_here)
  2787. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2788. return NULL;
  2789. }
  2790. /*
  2791. * Fallback function if there was no memory available and no objects on a
  2792. * certain node and fall back is permitted. First we scan all the
  2793. * available nodelists for available objects. If that fails then we
  2794. * perform an allocation without specifying a node. This allows the page
  2795. * allocator to do its reclaim / fallback magic. We then insert the
  2796. * slab into the proper nodelist and then allocate from it.
  2797. */
  2798. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2799. {
  2800. struct zonelist *zonelist;
  2801. gfp_t local_flags;
  2802. struct zoneref *z;
  2803. struct zone *zone;
  2804. enum zone_type high_zoneidx = gfp_zone(flags);
  2805. void *obj = NULL;
  2806. int nid;
  2807. if (flags & __GFP_THISNODE)
  2808. return NULL;
  2809. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2810. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2811. retry:
  2812. /*
  2813. * Look through allowed nodes for objects available
  2814. * from existing per node queues.
  2815. */
  2816. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2817. nid = zone_to_nid(zone);
  2818. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2819. cache->nodelists[nid] &&
  2820. cache->nodelists[nid]->free_objects) {
  2821. obj = ____cache_alloc_node(cache,
  2822. flags | GFP_THISNODE, nid);
  2823. if (obj)
  2824. break;
  2825. }
  2826. }
  2827. if (!obj) {
  2828. /*
  2829. * This allocation will be performed within the constraints
  2830. * of the current cpuset / memory policy requirements.
  2831. * We may trigger various forms of reclaim on the allowed
  2832. * set and go into memory reserves if necessary.
  2833. */
  2834. if (local_flags & __GFP_WAIT)
  2835. local_irq_enable();
  2836. kmem_flagcheck(cache, flags);
  2837. obj = kmem_getpages(cache, local_flags, numa_node_id());
  2838. if (local_flags & __GFP_WAIT)
  2839. local_irq_disable();
  2840. if (obj) {
  2841. /*
  2842. * Insert into the appropriate per node queues
  2843. */
  2844. nid = page_to_nid(virt_to_page(obj));
  2845. if (cache_grow(cache, flags, nid, obj)) {
  2846. obj = ____cache_alloc_node(cache,
  2847. flags | GFP_THISNODE, nid);
  2848. if (!obj)
  2849. /*
  2850. * Another processor may allocate the
  2851. * objects in the slab since we are
  2852. * not holding any locks.
  2853. */
  2854. goto retry;
  2855. } else {
  2856. /* cache_grow already freed obj */
  2857. obj = NULL;
  2858. }
  2859. }
  2860. }
  2861. return obj;
  2862. }
  2863. /*
  2864. * A interface to enable slab creation on nodeid
  2865. */
  2866. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2867. int nodeid)
  2868. {
  2869. struct list_head *entry;
  2870. struct slab *slabp;
  2871. struct kmem_list3 *l3;
  2872. void *obj;
  2873. int x;
  2874. l3 = cachep->nodelists[nodeid];
  2875. BUG_ON(!l3);
  2876. retry:
  2877. check_irq_off();
  2878. spin_lock(&l3->list_lock);
  2879. entry = l3->slabs_partial.next;
  2880. if (entry == &l3->slabs_partial) {
  2881. l3->free_touched = 1;
  2882. entry = l3->slabs_free.next;
  2883. if (entry == &l3->slabs_free)
  2884. goto must_grow;
  2885. }
  2886. slabp = list_entry(entry, struct slab, list);
  2887. check_spinlock_acquired_node(cachep, nodeid);
  2888. check_slabp(cachep, slabp);
  2889. STATS_INC_NODEALLOCS(cachep);
  2890. STATS_INC_ACTIVE(cachep);
  2891. STATS_SET_HIGH(cachep);
  2892. BUG_ON(slabp->inuse == cachep->num);
  2893. obj = slab_get_obj(cachep, slabp, nodeid);
  2894. check_slabp(cachep, slabp);
  2895. l3->free_objects--;
  2896. /* move slabp to correct slabp list: */
  2897. list_del(&slabp->list);
  2898. if (slabp->free == BUFCTL_END)
  2899. list_add(&slabp->list, &l3->slabs_full);
  2900. else
  2901. list_add(&slabp->list, &l3->slabs_partial);
  2902. spin_unlock(&l3->list_lock);
  2903. goto done;
  2904. must_grow:
  2905. spin_unlock(&l3->list_lock);
  2906. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2907. if (x)
  2908. goto retry;
  2909. return fallback_alloc(cachep, flags);
  2910. done:
  2911. return obj;
  2912. }
  2913. /**
  2914. * kmem_cache_alloc_node - Allocate an object on the specified node
  2915. * @cachep: The cache to allocate from.
  2916. * @flags: See kmalloc().
  2917. * @nodeid: node number of the target node.
  2918. * @caller: return address of caller, used for debug information
  2919. *
  2920. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2921. * node, which can improve the performance for cpu bound structures.
  2922. *
  2923. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2924. */
  2925. static __always_inline void *
  2926. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2927. void *caller)
  2928. {
  2929. unsigned long save_flags;
  2930. void *ptr;
  2931. flags &= gfp_allowed_mask;
  2932. lockdep_trace_alloc(flags);
  2933. if (slab_should_failslab(cachep, flags))
  2934. return NULL;
  2935. cache_alloc_debugcheck_before(cachep, flags);
  2936. local_irq_save(save_flags);
  2937. if (nodeid == -1)
  2938. nodeid = numa_node_id();
  2939. if (unlikely(!cachep->nodelists[nodeid])) {
  2940. /* Node not bootstrapped yet */
  2941. ptr = fallback_alloc(cachep, flags);
  2942. goto out;
  2943. }
  2944. if (nodeid == numa_node_id()) {
  2945. /*
  2946. * Use the locally cached objects if possible.
  2947. * However ____cache_alloc does not allow fallback
  2948. * to other nodes. It may fail while we still have
  2949. * objects on other nodes available.
  2950. */
  2951. ptr = ____cache_alloc(cachep, flags);
  2952. if (ptr)
  2953. goto out;
  2954. }
  2955. /* ___cache_alloc_node can fall back to other nodes */
  2956. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  2957. out:
  2958. local_irq_restore(save_flags);
  2959. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  2960. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  2961. flags);
  2962. if (likely(ptr))
  2963. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  2964. if (unlikely((flags & __GFP_ZERO) && ptr))
  2965. memset(ptr, 0, obj_size(cachep));
  2966. return ptr;
  2967. }
  2968. static __always_inline void *
  2969. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  2970. {
  2971. void *objp;
  2972. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  2973. objp = alternate_node_alloc(cache, flags);
  2974. if (objp)
  2975. goto out;
  2976. }
  2977. objp = ____cache_alloc(cache, flags);
  2978. /*
  2979. * We may just have run out of memory on the local node.
  2980. * ____cache_alloc_node() knows how to locate memory on other nodes
  2981. */
  2982. if (!objp)
  2983. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  2984. out:
  2985. return objp;
  2986. }
  2987. #else
  2988. static __always_inline void *
  2989. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2990. {
  2991. return ____cache_alloc(cachep, flags);
  2992. }
  2993. #endif /* CONFIG_NUMA */
  2994. static __always_inline void *
  2995. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  2996. {
  2997. unsigned long save_flags;
  2998. void *objp;
  2999. flags &= gfp_allowed_mask;
  3000. lockdep_trace_alloc(flags);
  3001. if (slab_should_failslab(cachep, flags))
  3002. return NULL;
  3003. cache_alloc_debugcheck_before(cachep, flags);
  3004. local_irq_save(save_flags);
  3005. objp = __do_cache_alloc(cachep, flags);
  3006. local_irq_restore(save_flags);
  3007. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3008. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3009. flags);
  3010. prefetchw(objp);
  3011. if (likely(objp))
  3012. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3013. if (unlikely((flags & __GFP_ZERO) && objp))
  3014. memset(objp, 0, obj_size(cachep));
  3015. return objp;
  3016. }
  3017. /*
  3018. * Caller needs to acquire correct kmem_list's list_lock
  3019. */
  3020. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3021. int node)
  3022. {
  3023. int i;
  3024. struct kmem_list3 *l3;
  3025. for (i = 0; i < nr_objects; i++) {
  3026. void *objp = objpp[i];
  3027. struct slab *slabp;
  3028. slabp = virt_to_slab(objp);
  3029. l3 = cachep->nodelists[node];
  3030. list_del(&slabp->list);
  3031. check_spinlock_acquired_node(cachep, node);
  3032. check_slabp(cachep, slabp);
  3033. slab_put_obj(cachep, slabp, objp, node);
  3034. STATS_DEC_ACTIVE(cachep);
  3035. l3->free_objects++;
  3036. check_slabp(cachep, slabp);
  3037. /* fixup slab chains */
  3038. if (slabp->inuse == 0) {
  3039. if (l3->free_objects > l3->free_limit) {
  3040. l3->free_objects -= cachep->num;
  3041. /* No need to drop any previously held
  3042. * lock here, even if we have a off-slab slab
  3043. * descriptor it is guaranteed to come from
  3044. * a different cache, refer to comments before
  3045. * alloc_slabmgmt.
  3046. */
  3047. slab_destroy(cachep, slabp);
  3048. } else {
  3049. list_add(&slabp->list, &l3->slabs_free);
  3050. }
  3051. } else {
  3052. /* Unconditionally move a slab to the end of the
  3053. * partial list on free - maximum time for the
  3054. * other objects to be freed, too.
  3055. */
  3056. list_add_tail(&slabp->list, &l3->slabs_partial);
  3057. }
  3058. }
  3059. }
  3060. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3061. {
  3062. int batchcount;
  3063. struct kmem_list3 *l3;
  3064. int node = numa_node_id();
  3065. batchcount = ac->batchcount;
  3066. #if DEBUG
  3067. BUG_ON(!batchcount || batchcount > ac->avail);
  3068. #endif
  3069. check_irq_off();
  3070. l3 = cachep->nodelists[node];
  3071. spin_lock(&l3->list_lock);
  3072. if (l3->shared) {
  3073. struct array_cache *shared_array = l3->shared;
  3074. int max = shared_array->limit - shared_array->avail;
  3075. if (max) {
  3076. if (batchcount > max)
  3077. batchcount = max;
  3078. memcpy(&(shared_array->entry[shared_array->avail]),
  3079. ac->entry, sizeof(void *) * batchcount);
  3080. shared_array->avail += batchcount;
  3081. goto free_done;
  3082. }
  3083. }
  3084. free_block(cachep, ac->entry, batchcount, node);
  3085. free_done:
  3086. #if STATS
  3087. {
  3088. int i = 0;
  3089. struct list_head *p;
  3090. p = l3->slabs_free.next;
  3091. while (p != &(l3->slabs_free)) {
  3092. struct slab *slabp;
  3093. slabp = list_entry(p, struct slab, list);
  3094. BUG_ON(slabp->inuse);
  3095. i++;
  3096. p = p->next;
  3097. }
  3098. STATS_SET_FREEABLE(cachep, i);
  3099. }
  3100. #endif
  3101. spin_unlock(&l3->list_lock);
  3102. ac->avail -= batchcount;
  3103. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3104. }
  3105. /*
  3106. * Release an obj back to its cache. If the obj has a constructed state, it must
  3107. * be in this state _before_ it is released. Called with disabled ints.
  3108. */
  3109. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3110. {
  3111. struct array_cache *ac = cpu_cache_get(cachep);
  3112. check_irq_off();
  3113. kmemleak_free_recursive(objp, cachep->flags);
  3114. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3115. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3116. /*
  3117. * Skip calling cache_free_alien() when the platform is not numa.
  3118. * This will avoid cache misses that happen while accessing slabp (which
  3119. * is per page memory reference) to get nodeid. Instead use a global
  3120. * variable to skip the call, which is mostly likely to be present in
  3121. * the cache.
  3122. */
  3123. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3124. return;
  3125. if (likely(ac->avail < ac->limit)) {
  3126. STATS_INC_FREEHIT(cachep);
  3127. ac->entry[ac->avail++] = objp;
  3128. return;
  3129. } else {
  3130. STATS_INC_FREEMISS(cachep);
  3131. cache_flusharray(cachep, ac);
  3132. ac->entry[ac->avail++] = objp;
  3133. }
  3134. }
  3135. /**
  3136. * kmem_cache_alloc - Allocate an object
  3137. * @cachep: The cache to allocate from.
  3138. * @flags: See kmalloc().
  3139. *
  3140. * Allocate an object from this cache. The flags are only relevant
  3141. * if the cache has no available objects.
  3142. */
  3143. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3144. {
  3145. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3146. trace_kmem_cache_alloc(_RET_IP_, ret,
  3147. obj_size(cachep), cachep->buffer_size, flags);
  3148. return ret;
  3149. }
  3150. EXPORT_SYMBOL(kmem_cache_alloc);
  3151. #ifdef CONFIG_TRACING
  3152. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3153. {
  3154. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3155. }
  3156. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3157. #endif
  3158. /**
  3159. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3160. * @cachep: the cache we're checking against
  3161. * @ptr: pointer to validate
  3162. *
  3163. * This verifies that the untrusted pointer looks sane;
  3164. * it is _not_ a guarantee that the pointer is actually
  3165. * part of the slab cache in question, but it at least
  3166. * validates that the pointer can be dereferenced and
  3167. * looks half-way sane.
  3168. *
  3169. * Currently only used for dentry validation.
  3170. */
  3171. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3172. {
  3173. unsigned long addr = (unsigned long)ptr;
  3174. unsigned long min_addr = PAGE_OFFSET;
  3175. unsigned long align_mask = BYTES_PER_WORD - 1;
  3176. unsigned long size = cachep->buffer_size;
  3177. struct page *page;
  3178. if (unlikely(addr < min_addr))
  3179. goto out;
  3180. if (unlikely(addr > (unsigned long)high_memory - size))
  3181. goto out;
  3182. if (unlikely(addr & align_mask))
  3183. goto out;
  3184. if (unlikely(!kern_addr_valid(addr)))
  3185. goto out;
  3186. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3187. goto out;
  3188. page = virt_to_page(ptr);
  3189. if (unlikely(!PageSlab(page)))
  3190. goto out;
  3191. if (unlikely(page_get_cache(page) != cachep))
  3192. goto out;
  3193. return 1;
  3194. out:
  3195. return 0;
  3196. }
  3197. #ifdef CONFIG_NUMA
  3198. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3199. {
  3200. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3201. __builtin_return_address(0));
  3202. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3203. obj_size(cachep), cachep->buffer_size,
  3204. flags, nodeid);
  3205. return ret;
  3206. }
  3207. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3208. #ifdef CONFIG_TRACING
  3209. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3210. gfp_t flags,
  3211. int nodeid)
  3212. {
  3213. return __cache_alloc_node(cachep, flags, nodeid,
  3214. __builtin_return_address(0));
  3215. }
  3216. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3217. #endif
  3218. static __always_inline void *
  3219. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3220. {
  3221. struct kmem_cache *cachep;
  3222. void *ret;
  3223. cachep = kmem_find_general_cachep(size, flags);
  3224. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3225. return cachep;
  3226. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3227. trace_kmalloc_node((unsigned long) caller, ret,
  3228. size, cachep->buffer_size, flags, node);
  3229. return ret;
  3230. }
  3231. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3232. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3233. {
  3234. return __do_kmalloc_node(size, flags, node,
  3235. __builtin_return_address(0));
  3236. }
  3237. EXPORT_SYMBOL(__kmalloc_node);
  3238. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3239. int node, unsigned long caller)
  3240. {
  3241. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3242. }
  3243. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3244. #else
  3245. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3246. {
  3247. return __do_kmalloc_node(size, flags, node, NULL);
  3248. }
  3249. EXPORT_SYMBOL(__kmalloc_node);
  3250. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3251. #endif /* CONFIG_NUMA */
  3252. /**
  3253. * __do_kmalloc - allocate memory
  3254. * @size: how many bytes of memory are required.
  3255. * @flags: the type of memory to allocate (see kmalloc).
  3256. * @caller: function caller for debug tracking of the caller
  3257. */
  3258. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3259. void *caller)
  3260. {
  3261. struct kmem_cache *cachep;
  3262. void *ret;
  3263. /* If you want to save a few bytes .text space: replace
  3264. * __ with kmem_.
  3265. * Then kmalloc uses the uninlined functions instead of the inline
  3266. * functions.
  3267. */
  3268. cachep = __find_general_cachep(size, flags);
  3269. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3270. return cachep;
  3271. ret = __cache_alloc(cachep, flags, caller);
  3272. trace_kmalloc((unsigned long) caller, ret,
  3273. size, cachep->buffer_size, flags);
  3274. return ret;
  3275. }
  3276. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3277. void *__kmalloc(size_t size, gfp_t flags)
  3278. {
  3279. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3280. }
  3281. EXPORT_SYMBOL(__kmalloc);
  3282. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3283. {
  3284. return __do_kmalloc(size, flags, (void *)caller);
  3285. }
  3286. EXPORT_SYMBOL(__kmalloc_track_caller);
  3287. #else
  3288. void *__kmalloc(size_t size, gfp_t flags)
  3289. {
  3290. return __do_kmalloc(size, flags, NULL);
  3291. }
  3292. EXPORT_SYMBOL(__kmalloc);
  3293. #endif
  3294. /**
  3295. * kmem_cache_free - Deallocate an object
  3296. * @cachep: The cache the allocation was from.
  3297. * @objp: The previously allocated object.
  3298. *
  3299. * Free an object which was previously allocated from this
  3300. * cache.
  3301. */
  3302. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3303. {
  3304. unsigned long flags;
  3305. local_irq_save(flags);
  3306. debug_check_no_locks_freed(objp, obj_size(cachep));
  3307. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3308. debug_check_no_obj_freed(objp, obj_size(cachep));
  3309. __cache_free(cachep, objp);
  3310. local_irq_restore(flags);
  3311. trace_kmem_cache_free(_RET_IP_, objp);
  3312. }
  3313. EXPORT_SYMBOL(kmem_cache_free);
  3314. /**
  3315. * kfree - free previously allocated memory
  3316. * @objp: pointer returned by kmalloc.
  3317. *
  3318. * If @objp is NULL, no operation is performed.
  3319. *
  3320. * Don't free memory not originally allocated by kmalloc()
  3321. * or you will run into trouble.
  3322. */
  3323. void kfree(const void *objp)
  3324. {
  3325. struct kmem_cache *c;
  3326. unsigned long flags;
  3327. trace_kfree(_RET_IP_, objp);
  3328. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3329. return;
  3330. local_irq_save(flags);
  3331. kfree_debugcheck(objp);
  3332. c = virt_to_cache(objp);
  3333. debug_check_no_locks_freed(objp, obj_size(c));
  3334. debug_check_no_obj_freed(objp, obj_size(c));
  3335. __cache_free(c, (void *)objp);
  3336. local_irq_restore(flags);
  3337. }
  3338. EXPORT_SYMBOL(kfree);
  3339. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3340. {
  3341. return obj_size(cachep);
  3342. }
  3343. EXPORT_SYMBOL(kmem_cache_size);
  3344. const char *kmem_cache_name(struct kmem_cache *cachep)
  3345. {
  3346. return cachep->name;
  3347. }
  3348. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3349. /*
  3350. * This initializes kmem_list3 or resizes various caches for all nodes.
  3351. */
  3352. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3353. {
  3354. int node;
  3355. struct kmem_list3 *l3;
  3356. struct array_cache *new_shared;
  3357. struct array_cache **new_alien = NULL;
  3358. for_each_online_node(node) {
  3359. if (use_alien_caches) {
  3360. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3361. if (!new_alien)
  3362. goto fail;
  3363. }
  3364. new_shared = NULL;
  3365. if (cachep->shared) {
  3366. new_shared = alloc_arraycache(node,
  3367. cachep->shared*cachep->batchcount,
  3368. 0xbaadf00d, gfp);
  3369. if (!new_shared) {
  3370. free_alien_cache(new_alien);
  3371. goto fail;
  3372. }
  3373. }
  3374. l3 = cachep->nodelists[node];
  3375. if (l3) {
  3376. struct array_cache *shared = l3->shared;
  3377. spin_lock_irq(&l3->list_lock);
  3378. if (shared)
  3379. free_block(cachep, shared->entry,
  3380. shared->avail, node);
  3381. l3->shared = new_shared;
  3382. if (!l3->alien) {
  3383. l3->alien = new_alien;
  3384. new_alien = NULL;
  3385. }
  3386. l3->free_limit = (1 + nr_cpus_node(node)) *
  3387. cachep->batchcount + cachep->num;
  3388. spin_unlock_irq(&l3->list_lock);
  3389. kfree(shared);
  3390. free_alien_cache(new_alien);
  3391. continue;
  3392. }
  3393. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3394. if (!l3) {
  3395. free_alien_cache(new_alien);
  3396. kfree(new_shared);
  3397. goto fail;
  3398. }
  3399. kmem_list3_init(l3);
  3400. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3401. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3402. l3->shared = new_shared;
  3403. l3->alien = new_alien;
  3404. l3->free_limit = (1 + nr_cpus_node(node)) *
  3405. cachep->batchcount + cachep->num;
  3406. cachep->nodelists[node] = l3;
  3407. }
  3408. return 0;
  3409. fail:
  3410. if (!cachep->next.next) {
  3411. /* Cache is not active yet. Roll back what we did */
  3412. node--;
  3413. while (node >= 0) {
  3414. if (cachep->nodelists[node]) {
  3415. l3 = cachep->nodelists[node];
  3416. kfree(l3->shared);
  3417. free_alien_cache(l3->alien);
  3418. kfree(l3);
  3419. cachep->nodelists[node] = NULL;
  3420. }
  3421. node--;
  3422. }
  3423. }
  3424. return -ENOMEM;
  3425. }
  3426. struct ccupdate_struct {
  3427. struct kmem_cache *cachep;
  3428. struct array_cache *new[NR_CPUS];
  3429. };
  3430. static void do_ccupdate_local(void *info)
  3431. {
  3432. struct ccupdate_struct *new = info;
  3433. struct array_cache *old;
  3434. check_irq_off();
  3435. old = cpu_cache_get(new->cachep);
  3436. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3437. new->new[smp_processor_id()] = old;
  3438. }
  3439. /* Always called with the cache_chain_mutex held */
  3440. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3441. int batchcount, int shared, gfp_t gfp)
  3442. {
  3443. struct ccupdate_struct *new;
  3444. int i;
  3445. new = kzalloc(sizeof(*new), gfp);
  3446. if (!new)
  3447. return -ENOMEM;
  3448. for_each_online_cpu(i) {
  3449. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3450. batchcount, gfp);
  3451. if (!new->new[i]) {
  3452. for (i--; i >= 0; i--)
  3453. kfree(new->new[i]);
  3454. kfree(new);
  3455. return -ENOMEM;
  3456. }
  3457. }
  3458. new->cachep = cachep;
  3459. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3460. check_irq_on();
  3461. cachep->batchcount = batchcount;
  3462. cachep->limit = limit;
  3463. cachep->shared = shared;
  3464. for_each_online_cpu(i) {
  3465. struct array_cache *ccold = new->new[i];
  3466. if (!ccold)
  3467. continue;
  3468. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3469. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3470. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3471. kfree(ccold);
  3472. }
  3473. kfree(new);
  3474. return alloc_kmemlist(cachep, gfp);
  3475. }
  3476. /* Called with cache_chain_mutex held always */
  3477. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3478. {
  3479. int err;
  3480. int limit, shared;
  3481. /*
  3482. * The head array serves three purposes:
  3483. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3484. * - reduce the number of spinlock operations.
  3485. * - reduce the number of linked list operations on the slab and
  3486. * bufctl chains: array operations are cheaper.
  3487. * The numbers are guessed, we should auto-tune as described by
  3488. * Bonwick.
  3489. */
  3490. if (cachep->buffer_size > 131072)
  3491. limit = 1;
  3492. else if (cachep->buffer_size > PAGE_SIZE)
  3493. limit = 8;
  3494. else if (cachep->buffer_size > 1024)
  3495. limit = 24;
  3496. else if (cachep->buffer_size > 256)
  3497. limit = 54;
  3498. else
  3499. limit = 120;
  3500. /*
  3501. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3502. * allocation behaviour: Most allocs on one cpu, most free operations
  3503. * on another cpu. For these cases, an efficient object passing between
  3504. * cpus is necessary. This is provided by a shared array. The array
  3505. * replaces Bonwick's magazine layer.
  3506. * On uniprocessor, it's functionally equivalent (but less efficient)
  3507. * to a larger limit. Thus disabled by default.
  3508. */
  3509. shared = 0;
  3510. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3511. shared = 8;
  3512. #if DEBUG
  3513. /*
  3514. * With debugging enabled, large batchcount lead to excessively long
  3515. * periods with disabled local interrupts. Limit the batchcount
  3516. */
  3517. if (limit > 32)
  3518. limit = 32;
  3519. #endif
  3520. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3521. if (err)
  3522. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3523. cachep->name, -err);
  3524. return err;
  3525. }
  3526. /*
  3527. * Drain an array if it contains any elements taking the l3 lock only if
  3528. * necessary. Note that the l3 listlock also protects the array_cache
  3529. * if drain_array() is used on the shared array.
  3530. */
  3531. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3532. struct array_cache *ac, int force, int node)
  3533. {
  3534. int tofree;
  3535. if (!ac || !ac->avail)
  3536. return;
  3537. if (ac->touched && !force) {
  3538. ac->touched = 0;
  3539. } else {
  3540. spin_lock_irq(&l3->list_lock);
  3541. if (ac->avail) {
  3542. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3543. if (tofree > ac->avail)
  3544. tofree = (ac->avail + 1) / 2;
  3545. free_block(cachep, ac->entry, tofree, node);
  3546. ac->avail -= tofree;
  3547. memmove(ac->entry, &(ac->entry[tofree]),
  3548. sizeof(void *) * ac->avail);
  3549. }
  3550. spin_unlock_irq(&l3->list_lock);
  3551. }
  3552. }
  3553. /**
  3554. * cache_reap - Reclaim memory from caches.
  3555. * @w: work descriptor
  3556. *
  3557. * Called from workqueue/eventd every few seconds.
  3558. * Purpose:
  3559. * - clear the per-cpu caches for this CPU.
  3560. * - return freeable pages to the main free memory pool.
  3561. *
  3562. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3563. * again on the next iteration.
  3564. */
  3565. static void cache_reap(struct work_struct *w)
  3566. {
  3567. struct kmem_cache *searchp;
  3568. struct kmem_list3 *l3;
  3569. int node = numa_node_id();
  3570. struct delayed_work *work = to_delayed_work(w);
  3571. if (!mutex_trylock(&cache_chain_mutex))
  3572. /* Give up. Setup the next iteration. */
  3573. goto out;
  3574. list_for_each_entry(searchp, &cache_chain, next) {
  3575. check_irq_on();
  3576. /*
  3577. * We only take the l3 lock if absolutely necessary and we
  3578. * have established with reasonable certainty that
  3579. * we can do some work if the lock was obtained.
  3580. */
  3581. l3 = searchp->nodelists[node];
  3582. reap_alien(searchp, l3);
  3583. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3584. /*
  3585. * These are racy checks but it does not matter
  3586. * if we skip one check or scan twice.
  3587. */
  3588. if (time_after(l3->next_reap, jiffies))
  3589. goto next;
  3590. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3591. drain_array(searchp, l3, l3->shared, 0, node);
  3592. if (l3->free_touched)
  3593. l3->free_touched = 0;
  3594. else {
  3595. int freed;
  3596. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3597. 5 * searchp->num - 1) / (5 * searchp->num));
  3598. STATS_ADD_REAPED(searchp, freed);
  3599. }
  3600. next:
  3601. cond_resched();
  3602. }
  3603. check_irq_on();
  3604. mutex_unlock(&cache_chain_mutex);
  3605. next_reap_node();
  3606. out:
  3607. /* Set up the next iteration */
  3608. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3609. }
  3610. #ifdef CONFIG_SLABINFO
  3611. static void print_slabinfo_header(struct seq_file *m)
  3612. {
  3613. /*
  3614. * Output format version, so at least we can change it
  3615. * without _too_ many complaints.
  3616. */
  3617. #if STATS
  3618. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3619. #else
  3620. seq_puts(m, "slabinfo - version: 2.1\n");
  3621. #endif
  3622. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3623. "<objperslab> <pagesperslab>");
  3624. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3625. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3626. #if STATS
  3627. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3628. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3629. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3630. #endif
  3631. seq_putc(m, '\n');
  3632. }
  3633. static void *s_start(struct seq_file *m, loff_t *pos)
  3634. {
  3635. loff_t n = *pos;
  3636. mutex_lock(&cache_chain_mutex);
  3637. if (!n)
  3638. print_slabinfo_header(m);
  3639. return seq_list_start(&cache_chain, *pos);
  3640. }
  3641. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3642. {
  3643. return seq_list_next(p, &cache_chain, pos);
  3644. }
  3645. static void s_stop(struct seq_file *m, void *p)
  3646. {
  3647. mutex_unlock(&cache_chain_mutex);
  3648. }
  3649. static int s_show(struct seq_file *m, void *p)
  3650. {
  3651. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3652. struct slab *slabp;
  3653. unsigned long active_objs;
  3654. unsigned long num_objs;
  3655. unsigned long active_slabs = 0;
  3656. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3657. const char *name;
  3658. char *error = NULL;
  3659. int node;
  3660. struct kmem_list3 *l3;
  3661. active_objs = 0;
  3662. num_slabs = 0;
  3663. for_each_online_node(node) {
  3664. l3 = cachep->nodelists[node];
  3665. if (!l3)
  3666. continue;
  3667. check_irq_on();
  3668. spin_lock_irq(&l3->list_lock);
  3669. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3670. if (slabp->inuse != cachep->num && !error)
  3671. error = "slabs_full accounting error";
  3672. active_objs += cachep->num;
  3673. active_slabs++;
  3674. }
  3675. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3676. if (slabp->inuse == cachep->num && !error)
  3677. error = "slabs_partial inuse accounting error";
  3678. if (!slabp->inuse && !error)
  3679. error = "slabs_partial/inuse accounting error";
  3680. active_objs += slabp->inuse;
  3681. active_slabs++;
  3682. }
  3683. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3684. if (slabp->inuse && !error)
  3685. error = "slabs_free/inuse accounting error";
  3686. num_slabs++;
  3687. }
  3688. free_objects += l3->free_objects;
  3689. if (l3->shared)
  3690. shared_avail += l3->shared->avail;
  3691. spin_unlock_irq(&l3->list_lock);
  3692. }
  3693. num_slabs += active_slabs;
  3694. num_objs = num_slabs * cachep->num;
  3695. if (num_objs - active_objs != free_objects && !error)
  3696. error = "free_objects accounting error";
  3697. name = cachep->name;
  3698. if (error)
  3699. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3700. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3701. name, active_objs, num_objs, cachep->buffer_size,
  3702. cachep->num, (1 << cachep->gfporder));
  3703. seq_printf(m, " : tunables %4u %4u %4u",
  3704. cachep->limit, cachep->batchcount, cachep->shared);
  3705. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3706. active_slabs, num_slabs, shared_avail);
  3707. #if STATS
  3708. { /* list3 stats */
  3709. unsigned long high = cachep->high_mark;
  3710. unsigned long allocs = cachep->num_allocations;
  3711. unsigned long grown = cachep->grown;
  3712. unsigned long reaped = cachep->reaped;
  3713. unsigned long errors = cachep->errors;
  3714. unsigned long max_freeable = cachep->max_freeable;
  3715. unsigned long node_allocs = cachep->node_allocs;
  3716. unsigned long node_frees = cachep->node_frees;
  3717. unsigned long overflows = cachep->node_overflow;
  3718. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3719. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3720. reaped, errors, max_freeable, node_allocs,
  3721. node_frees, overflows);
  3722. }
  3723. /* cpu stats */
  3724. {
  3725. unsigned long allochit = atomic_read(&cachep->allochit);
  3726. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3727. unsigned long freehit = atomic_read(&cachep->freehit);
  3728. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3729. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3730. allochit, allocmiss, freehit, freemiss);
  3731. }
  3732. #endif
  3733. seq_putc(m, '\n');
  3734. return 0;
  3735. }
  3736. /*
  3737. * slabinfo_op - iterator that generates /proc/slabinfo
  3738. *
  3739. * Output layout:
  3740. * cache-name
  3741. * num-active-objs
  3742. * total-objs
  3743. * object size
  3744. * num-active-slabs
  3745. * total-slabs
  3746. * num-pages-per-slab
  3747. * + further values on SMP and with statistics enabled
  3748. */
  3749. static const struct seq_operations slabinfo_op = {
  3750. .start = s_start,
  3751. .next = s_next,
  3752. .stop = s_stop,
  3753. .show = s_show,
  3754. };
  3755. #define MAX_SLABINFO_WRITE 128
  3756. /**
  3757. * slabinfo_write - Tuning for the slab allocator
  3758. * @file: unused
  3759. * @buffer: user buffer
  3760. * @count: data length
  3761. * @ppos: unused
  3762. */
  3763. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3764. size_t count, loff_t *ppos)
  3765. {
  3766. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3767. int limit, batchcount, shared, res;
  3768. struct kmem_cache *cachep;
  3769. if (count > MAX_SLABINFO_WRITE)
  3770. return -EINVAL;
  3771. if (copy_from_user(&kbuf, buffer, count))
  3772. return -EFAULT;
  3773. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3774. tmp = strchr(kbuf, ' ');
  3775. if (!tmp)
  3776. return -EINVAL;
  3777. *tmp = '\0';
  3778. tmp++;
  3779. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3780. return -EINVAL;
  3781. /* Find the cache in the chain of caches. */
  3782. mutex_lock(&cache_chain_mutex);
  3783. res = -EINVAL;
  3784. list_for_each_entry(cachep, &cache_chain, next) {
  3785. if (!strcmp(cachep->name, kbuf)) {
  3786. if (limit < 1 || batchcount < 1 ||
  3787. batchcount > limit || shared < 0) {
  3788. res = 0;
  3789. } else {
  3790. res = do_tune_cpucache(cachep, limit,
  3791. batchcount, shared,
  3792. GFP_KERNEL);
  3793. }
  3794. break;
  3795. }
  3796. }
  3797. mutex_unlock(&cache_chain_mutex);
  3798. if (res >= 0)
  3799. res = count;
  3800. return res;
  3801. }
  3802. static int slabinfo_open(struct inode *inode, struct file *file)
  3803. {
  3804. return seq_open(file, &slabinfo_op);
  3805. }
  3806. static const struct file_operations proc_slabinfo_operations = {
  3807. .open = slabinfo_open,
  3808. .read = seq_read,
  3809. .write = slabinfo_write,
  3810. .llseek = seq_lseek,
  3811. .release = seq_release,
  3812. };
  3813. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3814. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3815. {
  3816. mutex_lock(&cache_chain_mutex);
  3817. return seq_list_start(&cache_chain, *pos);
  3818. }
  3819. static inline int add_caller(unsigned long *n, unsigned long v)
  3820. {
  3821. unsigned long *p;
  3822. int l;
  3823. if (!v)
  3824. return 1;
  3825. l = n[1];
  3826. p = n + 2;
  3827. while (l) {
  3828. int i = l/2;
  3829. unsigned long *q = p + 2 * i;
  3830. if (*q == v) {
  3831. q[1]++;
  3832. return 1;
  3833. }
  3834. if (*q > v) {
  3835. l = i;
  3836. } else {
  3837. p = q + 2;
  3838. l -= i + 1;
  3839. }
  3840. }
  3841. if (++n[1] == n[0])
  3842. return 0;
  3843. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3844. p[0] = v;
  3845. p[1] = 1;
  3846. return 1;
  3847. }
  3848. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3849. {
  3850. void *p;
  3851. int i;
  3852. if (n[0] == n[1])
  3853. return;
  3854. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3855. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3856. continue;
  3857. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3858. return;
  3859. }
  3860. }
  3861. static void show_symbol(struct seq_file *m, unsigned long address)
  3862. {
  3863. #ifdef CONFIG_KALLSYMS
  3864. unsigned long offset, size;
  3865. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3866. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3867. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3868. if (modname[0])
  3869. seq_printf(m, " [%s]", modname);
  3870. return;
  3871. }
  3872. #endif
  3873. seq_printf(m, "%p", (void *)address);
  3874. }
  3875. static int leaks_show(struct seq_file *m, void *p)
  3876. {
  3877. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3878. struct slab *slabp;
  3879. struct kmem_list3 *l3;
  3880. const char *name;
  3881. unsigned long *n = m->private;
  3882. int node;
  3883. int i;
  3884. if (!(cachep->flags & SLAB_STORE_USER))
  3885. return 0;
  3886. if (!(cachep->flags & SLAB_RED_ZONE))
  3887. return 0;
  3888. /* OK, we can do it */
  3889. n[1] = 0;
  3890. for_each_online_node(node) {
  3891. l3 = cachep->nodelists[node];
  3892. if (!l3)
  3893. continue;
  3894. check_irq_on();
  3895. spin_lock_irq(&l3->list_lock);
  3896. list_for_each_entry(slabp, &l3->slabs_full, list)
  3897. handle_slab(n, cachep, slabp);
  3898. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3899. handle_slab(n, cachep, slabp);
  3900. spin_unlock_irq(&l3->list_lock);
  3901. }
  3902. name = cachep->name;
  3903. if (n[0] == n[1]) {
  3904. /* Increase the buffer size */
  3905. mutex_unlock(&cache_chain_mutex);
  3906. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3907. if (!m->private) {
  3908. /* Too bad, we are really out */
  3909. m->private = n;
  3910. mutex_lock(&cache_chain_mutex);
  3911. return -ENOMEM;
  3912. }
  3913. *(unsigned long *)m->private = n[0] * 2;
  3914. kfree(n);
  3915. mutex_lock(&cache_chain_mutex);
  3916. /* Now make sure this entry will be retried */
  3917. m->count = m->size;
  3918. return 0;
  3919. }
  3920. for (i = 0; i < n[1]; i++) {
  3921. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3922. show_symbol(m, n[2*i+2]);
  3923. seq_putc(m, '\n');
  3924. }
  3925. return 0;
  3926. }
  3927. static const struct seq_operations slabstats_op = {
  3928. .start = leaks_start,
  3929. .next = s_next,
  3930. .stop = s_stop,
  3931. .show = leaks_show,
  3932. };
  3933. static int slabstats_open(struct inode *inode, struct file *file)
  3934. {
  3935. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3936. int ret = -ENOMEM;
  3937. if (n) {
  3938. ret = seq_open(file, &slabstats_op);
  3939. if (!ret) {
  3940. struct seq_file *m = file->private_data;
  3941. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3942. m->private = n;
  3943. n = NULL;
  3944. }
  3945. kfree(n);
  3946. }
  3947. return ret;
  3948. }
  3949. static const struct file_operations proc_slabstats_operations = {
  3950. .open = slabstats_open,
  3951. .read = seq_read,
  3952. .llseek = seq_lseek,
  3953. .release = seq_release_private,
  3954. };
  3955. #endif
  3956. static int __init slab_proc_init(void)
  3957. {
  3958. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3959. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3960. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  3961. #endif
  3962. return 0;
  3963. }
  3964. module_init(slab_proc_init);
  3965. #endif
  3966. /**
  3967. * ksize - get the actual amount of memory allocated for a given object
  3968. * @objp: Pointer to the object
  3969. *
  3970. * kmalloc may internally round up allocations and return more memory
  3971. * than requested. ksize() can be used to determine the actual amount of
  3972. * memory allocated. The caller may use this additional memory, even though
  3973. * a smaller amount of memory was initially specified with the kmalloc call.
  3974. * The caller must guarantee that objp points to a valid object previously
  3975. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3976. * must not be freed during the duration of the call.
  3977. */
  3978. size_t ksize(const void *objp)
  3979. {
  3980. BUG_ON(!objp);
  3981. if (unlikely(objp == ZERO_SIZE_PTR))
  3982. return 0;
  3983. return obj_size(virt_to_cache(objp));
  3984. }
  3985. EXPORT_SYMBOL(ksize);