rt2x00dev.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516
  1. /*
  2. Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
  3. Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  4. <http://rt2x00.serialmonkey.com>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the
  15. Free Software Foundation, Inc.,
  16. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. */
  18. /*
  19. Module: rt2x00lib
  20. Abstract: rt2x00 generic device routines.
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/slab.h>
  25. #include <linux/log2.h>
  26. #include "rt2x00.h"
  27. #include "rt2x00lib.h"
  28. /*
  29. * Utility functions.
  30. */
  31. u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
  32. struct ieee80211_vif *vif)
  33. {
  34. /*
  35. * When in STA mode, bssidx is always 0 otherwise local_address[5]
  36. * contains the bss number, see BSS_ID_MASK comments for details.
  37. */
  38. if (rt2x00dev->intf_sta_count)
  39. return 0;
  40. return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
  41. }
  42. EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
  43. /*
  44. * Radio control handlers.
  45. */
  46. int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  47. {
  48. int status;
  49. /*
  50. * Don't enable the radio twice.
  51. * And check if the hardware button has been disabled.
  52. */
  53. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  54. return 0;
  55. /*
  56. * Initialize all data queues.
  57. */
  58. rt2x00queue_init_queues(rt2x00dev);
  59. /*
  60. * Enable radio.
  61. */
  62. status =
  63. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  64. if (status)
  65. return status;
  66. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  67. rt2x00leds_led_radio(rt2x00dev, true);
  68. rt2x00led_led_activity(rt2x00dev, true);
  69. set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  70. /*
  71. * Enable queues.
  72. */
  73. rt2x00queue_start_queues(rt2x00dev);
  74. rt2x00link_start_tuner(rt2x00dev);
  75. rt2x00link_start_agc(rt2x00dev);
  76. if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
  77. rt2x00link_start_vcocal(rt2x00dev);
  78. /*
  79. * Start watchdog monitoring.
  80. */
  81. rt2x00link_start_watchdog(rt2x00dev);
  82. return 0;
  83. }
  84. void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
  85. {
  86. if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  87. return;
  88. /*
  89. * Stop watchdog monitoring.
  90. */
  91. rt2x00link_stop_watchdog(rt2x00dev);
  92. /*
  93. * Stop all queues
  94. */
  95. rt2x00link_stop_agc(rt2x00dev);
  96. if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
  97. rt2x00link_stop_vcocal(rt2x00dev);
  98. rt2x00link_stop_tuner(rt2x00dev);
  99. rt2x00queue_stop_queues(rt2x00dev);
  100. rt2x00queue_flush_queues(rt2x00dev, true);
  101. /*
  102. * Disable radio.
  103. */
  104. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
  105. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  106. rt2x00led_led_activity(rt2x00dev, false);
  107. rt2x00leds_led_radio(rt2x00dev, false);
  108. }
  109. static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
  110. struct ieee80211_vif *vif)
  111. {
  112. struct rt2x00_dev *rt2x00dev = data;
  113. struct rt2x00_intf *intf = vif_to_intf(vif);
  114. /*
  115. * It is possible the radio was disabled while the work had been
  116. * scheduled. If that happens we should return here immediately,
  117. * note that in the spinlock protected area above the delayed_flags
  118. * have been cleared correctly.
  119. */
  120. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  121. return;
  122. if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
  123. rt2x00queue_update_beacon(rt2x00dev, vif);
  124. }
  125. static void rt2x00lib_intf_scheduled(struct work_struct *work)
  126. {
  127. struct rt2x00_dev *rt2x00dev =
  128. container_of(work, struct rt2x00_dev, intf_work);
  129. /*
  130. * Iterate over each interface and perform the
  131. * requested configurations.
  132. */
  133. ieee80211_iterate_active_interfaces(rt2x00dev->hw,
  134. IEEE80211_IFACE_ITER_RESUME_ALL,
  135. rt2x00lib_intf_scheduled_iter,
  136. rt2x00dev);
  137. }
  138. static void rt2x00lib_autowakeup(struct work_struct *work)
  139. {
  140. struct rt2x00_dev *rt2x00dev =
  141. container_of(work, struct rt2x00_dev, autowakeup_work.work);
  142. if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
  143. return;
  144. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  145. rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
  146. clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
  147. }
  148. /*
  149. * Interrupt context handlers.
  150. */
  151. static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
  152. struct ieee80211_vif *vif)
  153. {
  154. struct rt2x00_dev *rt2x00dev = data;
  155. struct sk_buff *skb;
  156. /*
  157. * Only AP mode interfaces do broad- and multicast buffering
  158. */
  159. if (vif->type != NL80211_IFTYPE_AP)
  160. return;
  161. /*
  162. * Send out buffered broad- and multicast frames
  163. */
  164. skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
  165. while (skb) {
  166. rt2x00mac_tx(rt2x00dev->hw, NULL, skb);
  167. skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
  168. }
  169. }
  170. static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
  171. struct ieee80211_vif *vif)
  172. {
  173. struct rt2x00_dev *rt2x00dev = data;
  174. if (vif->type != NL80211_IFTYPE_AP &&
  175. vif->type != NL80211_IFTYPE_ADHOC &&
  176. vif->type != NL80211_IFTYPE_MESH_POINT &&
  177. vif->type != NL80211_IFTYPE_WDS)
  178. return;
  179. /*
  180. * Update the beacon without locking. This is safe on PCI devices
  181. * as they only update the beacon periodically here. This should
  182. * never be called for USB devices.
  183. */
  184. WARN_ON(rt2x00_is_usb(rt2x00dev));
  185. rt2x00queue_update_beacon_locked(rt2x00dev, vif);
  186. }
  187. void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
  188. {
  189. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  190. return;
  191. /* send buffered bc/mc frames out for every bssid */
  192. ieee80211_iterate_active_interfaces_atomic(
  193. rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
  194. rt2x00lib_bc_buffer_iter, rt2x00dev);
  195. /*
  196. * Devices with pre tbtt interrupt don't need to update the beacon
  197. * here as they will fetch the next beacon directly prior to
  198. * transmission.
  199. */
  200. if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
  201. return;
  202. /* fetch next beacon */
  203. ieee80211_iterate_active_interfaces_atomic(
  204. rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
  205. rt2x00lib_beaconupdate_iter, rt2x00dev);
  206. }
  207. EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
  208. void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
  209. {
  210. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  211. return;
  212. /* fetch next beacon */
  213. ieee80211_iterate_active_interfaces_atomic(
  214. rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
  215. rt2x00lib_beaconupdate_iter, rt2x00dev);
  216. }
  217. EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
  218. void rt2x00lib_dmastart(struct queue_entry *entry)
  219. {
  220. set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  221. rt2x00queue_index_inc(entry, Q_INDEX);
  222. }
  223. EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
  224. void rt2x00lib_dmadone(struct queue_entry *entry)
  225. {
  226. set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
  227. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  228. rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
  229. }
  230. EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
  231. static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
  232. {
  233. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  234. struct ieee80211_bar *bar = (void *) entry->skb->data;
  235. struct rt2x00_bar_list_entry *bar_entry;
  236. int ret;
  237. if (likely(!ieee80211_is_back_req(bar->frame_control)))
  238. return 0;
  239. /*
  240. * Unlike all other frames, the status report for BARs does
  241. * not directly come from the hardware as it is incapable of
  242. * matching a BA to a previously send BAR. The hardware will
  243. * report all BARs as if they weren't acked at all.
  244. *
  245. * Instead the RX-path will scan for incoming BAs and set the
  246. * block_acked flag if it sees one that was likely caused by
  247. * a BAR from us.
  248. *
  249. * Remove remaining BARs here and return their status for
  250. * TX done processing.
  251. */
  252. ret = 0;
  253. rcu_read_lock();
  254. list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
  255. if (bar_entry->entry != entry)
  256. continue;
  257. spin_lock_bh(&rt2x00dev->bar_list_lock);
  258. /* Return whether this BAR was blockacked or not */
  259. ret = bar_entry->block_acked;
  260. /* Remove the BAR from our checklist */
  261. list_del_rcu(&bar_entry->list);
  262. spin_unlock_bh(&rt2x00dev->bar_list_lock);
  263. kfree_rcu(bar_entry, head);
  264. break;
  265. }
  266. rcu_read_unlock();
  267. return ret;
  268. }
  269. void rt2x00lib_txdone(struct queue_entry *entry,
  270. struct txdone_entry_desc *txdesc)
  271. {
  272. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  273. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  274. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  275. unsigned int header_length, i;
  276. u8 rate_idx, rate_flags, retry_rates;
  277. u8 skbdesc_flags = skbdesc->flags;
  278. bool success;
  279. /*
  280. * Unmap the skb.
  281. */
  282. rt2x00queue_unmap_skb(entry);
  283. /*
  284. * Remove the extra tx headroom from the skb.
  285. */
  286. skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
  287. /*
  288. * Signal that the TX descriptor is no longer in the skb.
  289. */
  290. skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
  291. /*
  292. * Determine the length of 802.11 header.
  293. */
  294. header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  295. /*
  296. * Remove L2 padding which was added during
  297. */
  298. if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
  299. rt2x00queue_remove_l2pad(entry->skb, header_length);
  300. /*
  301. * If the IV/EIV data was stripped from the frame before it was
  302. * passed to the hardware, we should now reinsert it again because
  303. * mac80211 will expect the same data to be present it the
  304. * frame as it was passed to us.
  305. */
  306. if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
  307. rt2x00crypto_tx_insert_iv(entry->skb, header_length);
  308. /*
  309. * Send frame to debugfs immediately, after this call is completed
  310. * we are going to overwrite the skb->cb array.
  311. */
  312. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
  313. /*
  314. * Determine if the frame has been successfully transmitted and
  315. * remove BARs from our check list while checking for their
  316. * TX status.
  317. */
  318. success =
  319. rt2x00lib_txdone_bar_status(entry) ||
  320. test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
  321. test_bit(TXDONE_UNKNOWN, &txdesc->flags);
  322. /*
  323. * Update TX statistics.
  324. */
  325. rt2x00dev->link.qual.tx_success += success;
  326. rt2x00dev->link.qual.tx_failed += !success;
  327. rate_idx = skbdesc->tx_rate_idx;
  328. rate_flags = skbdesc->tx_rate_flags;
  329. retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
  330. (txdesc->retry + 1) : 1;
  331. /*
  332. * Initialize TX status
  333. */
  334. memset(&tx_info->status, 0, sizeof(tx_info->status));
  335. tx_info->status.ack_signal = 0;
  336. /*
  337. * Frame was send with retries, hardware tried
  338. * different rates to send out the frame, at each
  339. * retry it lowered the rate 1 step except when the
  340. * lowest rate was used.
  341. */
  342. for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
  343. tx_info->status.rates[i].idx = rate_idx - i;
  344. tx_info->status.rates[i].flags = rate_flags;
  345. if (rate_idx - i == 0) {
  346. /*
  347. * The lowest rate (index 0) was used until the
  348. * number of max retries was reached.
  349. */
  350. tx_info->status.rates[i].count = retry_rates - i;
  351. i++;
  352. break;
  353. }
  354. tx_info->status.rates[i].count = 1;
  355. }
  356. if (i < (IEEE80211_TX_MAX_RATES - 1))
  357. tx_info->status.rates[i].idx = -1; /* terminate */
  358. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
  359. if (success)
  360. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  361. else
  362. rt2x00dev->low_level_stats.dot11ACKFailureCount++;
  363. }
  364. /*
  365. * Every single frame has it's own tx status, hence report
  366. * every frame as ampdu of size 1.
  367. *
  368. * TODO: if we can find out how many frames were aggregated
  369. * by the hw we could provide the real ampdu_len to mac80211
  370. * which would allow the rc algorithm to better decide on
  371. * which rates are suitable.
  372. */
  373. if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
  374. tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  375. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  376. tx_info->status.ampdu_len = 1;
  377. tx_info->status.ampdu_ack_len = success ? 1 : 0;
  378. if (!success)
  379. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  380. }
  381. if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  382. if (success)
  383. rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
  384. else
  385. rt2x00dev->low_level_stats.dot11RTSFailureCount++;
  386. }
  387. /*
  388. * Only send the status report to mac80211 when it's a frame
  389. * that originated in mac80211. If this was a extra frame coming
  390. * through a mac80211 library call (RTS/CTS) then we should not
  391. * send the status report back.
  392. */
  393. if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
  394. if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
  395. ieee80211_tx_status(rt2x00dev->hw, entry->skb);
  396. else
  397. ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
  398. } else
  399. dev_kfree_skb_any(entry->skb);
  400. /*
  401. * Make this entry available for reuse.
  402. */
  403. entry->skb = NULL;
  404. entry->flags = 0;
  405. rt2x00dev->ops->lib->clear_entry(entry);
  406. rt2x00queue_index_inc(entry, Q_INDEX_DONE);
  407. /*
  408. * If the data queue was below the threshold before the txdone
  409. * handler we must make sure the packet queue in the mac80211 stack
  410. * is reenabled when the txdone handler has finished. This has to be
  411. * serialized with rt2x00mac_tx(), otherwise we can wake up queue
  412. * before it was stopped.
  413. */
  414. spin_lock_bh(&entry->queue->tx_lock);
  415. if (!rt2x00queue_threshold(entry->queue))
  416. rt2x00queue_unpause_queue(entry->queue);
  417. spin_unlock_bh(&entry->queue->tx_lock);
  418. }
  419. EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
  420. void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
  421. {
  422. struct txdone_entry_desc txdesc;
  423. txdesc.flags = 0;
  424. __set_bit(status, &txdesc.flags);
  425. txdesc.retry = 0;
  426. rt2x00lib_txdone(entry, &txdesc);
  427. }
  428. EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
  429. static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
  430. {
  431. struct ieee80211_mgmt *mgmt = (void *)data;
  432. u8 *pos, *end;
  433. pos = (u8 *)mgmt->u.beacon.variable;
  434. end = data + len;
  435. while (pos < end) {
  436. if (pos + 2 + pos[1] > end)
  437. return NULL;
  438. if (pos[0] == ie)
  439. return pos;
  440. pos += 2 + pos[1];
  441. }
  442. return NULL;
  443. }
  444. static void rt2x00lib_sleep(struct work_struct *work)
  445. {
  446. struct rt2x00_dev *rt2x00dev =
  447. container_of(work, struct rt2x00_dev, sleep_work);
  448. if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
  449. return;
  450. /*
  451. * Check again is powersaving is enabled, to prevent races from delayed
  452. * work execution.
  453. */
  454. if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
  455. rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
  456. IEEE80211_CONF_CHANGE_PS);
  457. }
  458. static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
  459. struct sk_buff *skb,
  460. struct rxdone_entry_desc *rxdesc)
  461. {
  462. struct rt2x00_bar_list_entry *entry;
  463. struct ieee80211_bar *ba = (void *)skb->data;
  464. if (likely(!ieee80211_is_back(ba->frame_control)))
  465. return;
  466. if (rxdesc->size < sizeof(*ba) + FCS_LEN)
  467. return;
  468. rcu_read_lock();
  469. list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
  470. if (ba->start_seq_num != entry->start_seq_num)
  471. continue;
  472. #define TID_CHECK(a, b) ( \
  473. ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
  474. ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
  475. if (!TID_CHECK(ba->control, entry->control))
  476. continue;
  477. #undef TID_CHECK
  478. if (compare_ether_addr(ba->ra, entry->ta))
  479. continue;
  480. if (compare_ether_addr(ba->ta, entry->ra))
  481. continue;
  482. /* Mark BAR since we received the according BA */
  483. spin_lock_bh(&rt2x00dev->bar_list_lock);
  484. entry->block_acked = 1;
  485. spin_unlock_bh(&rt2x00dev->bar_list_lock);
  486. break;
  487. }
  488. rcu_read_unlock();
  489. }
  490. static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
  491. struct sk_buff *skb,
  492. struct rxdone_entry_desc *rxdesc)
  493. {
  494. struct ieee80211_hdr *hdr = (void *) skb->data;
  495. struct ieee80211_tim_ie *tim_ie;
  496. u8 *tim;
  497. u8 tim_len;
  498. bool cam;
  499. /* If this is not a beacon, or if mac80211 has no powersaving
  500. * configured, or if the device is already in powersaving mode
  501. * we can exit now. */
  502. if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
  503. !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
  504. return;
  505. /* min. beacon length + FCS_LEN */
  506. if (skb->len <= 40 + FCS_LEN)
  507. return;
  508. /* and only beacons from the associated BSSID, please */
  509. if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
  510. !rt2x00dev->aid)
  511. return;
  512. rt2x00dev->last_beacon = jiffies;
  513. tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
  514. if (!tim)
  515. return;
  516. if (tim[1] < sizeof(*tim_ie))
  517. return;
  518. tim_len = tim[1];
  519. tim_ie = (struct ieee80211_tim_ie *) &tim[2];
  520. /* Check whenever the PHY can be turned off again. */
  521. /* 1. What about buffered unicast traffic for our AID? */
  522. cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
  523. /* 2. Maybe the AP wants to send multicast/broadcast data? */
  524. cam |= (tim_ie->bitmap_ctrl & 0x01);
  525. if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
  526. queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
  527. }
  528. static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
  529. struct rxdone_entry_desc *rxdesc)
  530. {
  531. struct ieee80211_supported_band *sband;
  532. const struct rt2x00_rate *rate;
  533. unsigned int i;
  534. int signal = rxdesc->signal;
  535. int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
  536. switch (rxdesc->rate_mode) {
  537. case RATE_MODE_CCK:
  538. case RATE_MODE_OFDM:
  539. /*
  540. * For non-HT rates the MCS value needs to contain the
  541. * actually used rate modulation (CCK or OFDM).
  542. */
  543. if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
  544. signal = RATE_MCS(rxdesc->rate_mode, signal);
  545. sband = &rt2x00dev->bands[rt2x00dev->curr_band];
  546. for (i = 0; i < sband->n_bitrates; i++) {
  547. rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
  548. if (((type == RXDONE_SIGNAL_PLCP) &&
  549. (rate->plcp == signal)) ||
  550. ((type == RXDONE_SIGNAL_BITRATE) &&
  551. (rate->bitrate == signal)) ||
  552. ((type == RXDONE_SIGNAL_MCS) &&
  553. (rate->mcs == signal))) {
  554. return i;
  555. }
  556. }
  557. break;
  558. case RATE_MODE_HT_MIX:
  559. case RATE_MODE_HT_GREENFIELD:
  560. if (signal >= 0 && signal <= 76)
  561. return signal;
  562. break;
  563. default:
  564. break;
  565. }
  566. rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
  567. rxdesc->rate_mode, signal, type);
  568. return 0;
  569. }
  570. void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
  571. {
  572. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  573. struct rxdone_entry_desc rxdesc;
  574. struct sk_buff *skb;
  575. struct ieee80211_rx_status *rx_status;
  576. unsigned int header_length;
  577. int rate_idx;
  578. if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
  579. !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  580. goto submit_entry;
  581. if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
  582. goto submit_entry;
  583. /*
  584. * Allocate a new sk_buffer. If no new buffer available, drop the
  585. * received frame and reuse the existing buffer.
  586. */
  587. skb = rt2x00queue_alloc_rxskb(entry, gfp);
  588. if (!skb)
  589. goto submit_entry;
  590. /*
  591. * Unmap the skb.
  592. */
  593. rt2x00queue_unmap_skb(entry);
  594. /*
  595. * Extract the RXD details.
  596. */
  597. memset(&rxdesc, 0, sizeof(rxdesc));
  598. rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
  599. /*
  600. * Check for valid size in case we get corrupted descriptor from
  601. * hardware.
  602. */
  603. if (unlikely(rxdesc.size == 0 ||
  604. rxdesc.size > entry->queue->data_size)) {
  605. rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
  606. rxdesc.size, entry->queue->data_size);
  607. dev_kfree_skb(entry->skb);
  608. goto renew_skb;
  609. }
  610. /*
  611. * The data behind the ieee80211 header must be
  612. * aligned on a 4 byte boundary.
  613. */
  614. header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
  615. /*
  616. * Hardware might have stripped the IV/EIV/ICV data,
  617. * in that case it is possible that the data was
  618. * provided separately (through hardware descriptor)
  619. * in which case we should reinsert the data into the frame.
  620. */
  621. if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
  622. (rxdesc.flags & RX_FLAG_IV_STRIPPED))
  623. rt2x00crypto_rx_insert_iv(entry->skb, header_length,
  624. &rxdesc);
  625. else if (header_length &&
  626. (rxdesc.size > header_length) &&
  627. (rxdesc.dev_flags & RXDONE_L2PAD))
  628. rt2x00queue_remove_l2pad(entry->skb, header_length);
  629. /* Trim buffer to correct size */
  630. skb_trim(entry->skb, rxdesc.size);
  631. /*
  632. * Translate the signal to the correct bitrate index.
  633. */
  634. rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
  635. if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
  636. rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
  637. rxdesc.flags |= RX_FLAG_HT;
  638. /*
  639. * Check if this is a beacon, and more frames have been
  640. * buffered while we were in powersaving mode.
  641. */
  642. rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
  643. /*
  644. * Check for incoming BlockAcks to match to the BlockAckReqs
  645. * we've send out.
  646. */
  647. rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
  648. /*
  649. * Update extra components
  650. */
  651. rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
  652. rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
  653. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
  654. /*
  655. * Initialize RX status information, and send frame
  656. * to mac80211.
  657. */
  658. rx_status = IEEE80211_SKB_RXCB(entry->skb);
  659. /* Ensure that all fields of rx_status are initialized
  660. * properly. The skb->cb array was used for driver
  661. * specific informations, so rx_status might contain
  662. * garbage.
  663. */
  664. memset(rx_status, 0, sizeof(*rx_status));
  665. rx_status->mactime = rxdesc.timestamp;
  666. rx_status->band = rt2x00dev->curr_band;
  667. rx_status->freq = rt2x00dev->curr_freq;
  668. rx_status->rate_idx = rate_idx;
  669. rx_status->signal = rxdesc.rssi;
  670. rx_status->flag = rxdesc.flags;
  671. rx_status->antenna = rt2x00dev->link.ant.active.rx;
  672. ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
  673. renew_skb:
  674. /*
  675. * Replace the skb with the freshly allocated one.
  676. */
  677. entry->skb = skb;
  678. submit_entry:
  679. entry->flags = 0;
  680. rt2x00queue_index_inc(entry, Q_INDEX_DONE);
  681. if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
  682. test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  683. rt2x00dev->ops->lib->clear_entry(entry);
  684. }
  685. EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
  686. /*
  687. * Driver initialization handlers.
  688. */
  689. const struct rt2x00_rate rt2x00_supported_rates[12] = {
  690. {
  691. .flags = DEV_RATE_CCK,
  692. .bitrate = 10,
  693. .ratemask = BIT(0),
  694. .plcp = 0x00,
  695. .mcs = RATE_MCS(RATE_MODE_CCK, 0),
  696. },
  697. {
  698. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  699. .bitrate = 20,
  700. .ratemask = BIT(1),
  701. .plcp = 0x01,
  702. .mcs = RATE_MCS(RATE_MODE_CCK, 1),
  703. },
  704. {
  705. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  706. .bitrate = 55,
  707. .ratemask = BIT(2),
  708. .plcp = 0x02,
  709. .mcs = RATE_MCS(RATE_MODE_CCK, 2),
  710. },
  711. {
  712. .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
  713. .bitrate = 110,
  714. .ratemask = BIT(3),
  715. .plcp = 0x03,
  716. .mcs = RATE_MCS(RATE_MODE_CCK, 3),
  717. },
  718. {
  719. .flags = DEV_RATE_OFDM,
  720. .bitrate = 60,
  721. .ratemask = BIT(4),
  722. .plcp = 0x0b,
  723. .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
  724. },
  725. {
  726. .flags = DEV_RATE_OFDM,
  727. .bitrate = 90,
  728. .ratemask = BIT(5),
  729. .plcp = 0x0f,
  730. .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
  731. },
  732. {
  733. .flags = DEV_RATE_OFDM,
  734. .bitrate = 120,
  735. .ratemask = BIT(6),
  736. .plcp = 0x0a,
  737. .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
  738. },
  739. {
  740. .flags = DEV_RATE_OFDM,
  741. .bitrate = 180,
  742. .ratemask = BIT(7),
  743. .plcp = 0x0e,
  744. .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
  745. },
  746. {
  747. .flags = DEV_RATE_OFDM,
  748. .bitrate = 240,
  749. .ratemask = BIT(8),
  750. .plcp = 0x09,
  751. .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
  752. },
  753. {
  754. .flags = DEV_RATE_OFDM,
  755. .bitrate = 360,
  756. .ratemask = BIT(9),
  757. .plcp = 0x0d,
  758. .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
  759. },
  760. {
  761. .flags = DEV_RATE_OFDM,
  762. .bitrate = 480,
  763. .ratemask = BIT(10),
  764. .plcp = 0x08,
  765. .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
  766. },
  767. {
  768. .flags = DEV_RATE_OFDM,
  769. .bitrate = 540,
  770. .ratemask = BIT(11),
  771. .plcp = 0x0c,
  772. .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
  773. },
  774. };
  775. static void rt2x00lib_channel(struct ieee80211_channel *entry,
  776. const int channel, const int tx_power,
  777. const int value)
  778. {
  779. /* XXX: this assumption about the band is wrong for 802.11j */
  780. entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
  781. entry->center_freq = ieee80211_channel_to_frequency(channel,
  782. entry->band);
  783. entry->hw_value = value;
  784. entry->max_power = tx_power;
  785. entry->max_antenna_gain = 0xff;
  786. }
  787. static void rt2x00lib_rate(struct ieee80211_rate *entry,
  788. const u16 index, const struct rt2x00_rate *rate)
  789. {
  790. entry->flags = 0;
  791. entry->bitrate = rate->bitrate;
  792. entry->hw_value = index;
  793. entry->hw_value_short = index;
  794. if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
  795. entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
  796. }
  797. static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
  798. struct hw_mode_spec *spec)
  799. {
  800. struct ieee80211_hw *hw = rt2x00dev->hw;
  801. struct ieee80211_channel *channels;
  802. struct ieee80211_rate *rates;
  803. unsigned int num_rates;
  804. unsigned int i;
  805. num_rates = 0;
  806. if (spec->supported_rates & SUPPORT_RATE_CCK)
  807. num_rates += 4;
  808. if (spec->supported_rates & SUPPORT_RATE_OFDM)
  809. num_rates += 8;
  810. channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
  811. if (!channels)
  812. return -ENOMEM;
  813. rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
  814. if (!rates)
  815. goto exit_free_channels;
  816. /*
  817. * Initialize Rate list.
  818. */
  819. for (i = 0; i < num_rates; i++)
  820. rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
  821. /*
  822. * Initialize Channel list.
  823. */
  824. for (i = 0; i < spec->num_channels; i++) {
  825. rt2x00lib_channel(&channels[i],
  826. spec->channels[i].channel,
  827. spec->channels_info[i].max_power, i);
  828. }
  829. /*
  830. * Intitialize 802.11b, 802.11g
  831. * Rates: CCK, OFDM.
  832. * Channels: 2.4 GHz
  833. */
  834. if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
  835. rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
  836. rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
  837. rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
  838. rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
  839. hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
  840. &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
  841. memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
  842. &spec->ht, sizeof(spec->ht));
  843. }
  844. /*
  845. * Intitialize 802.11a
  846. * Rates: OFDM.
  847. * Channels: OFDM, UNII, HiperLAN2.
  848. */
  849. if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
  850. rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
  851. spec->num_channels - 14;
  852. rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
  853. num_rates - 4;
  854. rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
  855. rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
  856. hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
  857. &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
  858. memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
  859. &spec->ht, sizeof(spec->ht));
  860. }
  861. return 0;
  862. exit_free_channels:
  863. kfree(channels);
  864. rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
  865. return -ENOMEM;
  866. }
  867. static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
  868. {
  869. if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
  870. ieee80211_unregister_hw(rt2x00dev->hw);
  871. if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
  872. kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
  873. kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
  874. rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
  875. rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
  876. }
  877. kfree(rt2x00dev->spec.channels_info);
  878. }
  879. static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
  880. {
  881. struct hw_mode_spec *spec = &rt2x00dev->spec;
  882. int status;
  883. if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
  884. return 0;
  885. /*
  886. * Initialize HW modes.
  887. */
  888. status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
  889. if (status)
  890. return status;
  891. /*
  892. * Initialize HW fields.
  893. */
  894. rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
  895. /*
  896. * Initialize extra TX headroom required.
  897. */
  898. rt2x00dev->hw->extra_tx_headroom =
  899. max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
  900. rt2x00dev->ops->extra_tx_headroom);
  901. /*
  902. * Take TX headroom required for alignment into account.
  903. */
  904. if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
  905. rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
  906. else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
  907. rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
  908. /*
  909. * Tell mac80211 about the size of our private STA structure.
  910. */
  911. rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
  912. /*
  913. * Allocate tx status FIFO for driver use.
  914. */
  915. if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
  916. /*
  917. * Allocate the txstatus fifo. In the worst case the tx
  918. * status fifo has to hold the tx status of all entries
  919. * in all tx queues. Hence, calculate the kfifo size as
  920. * tx_queues * entry_num and round up to the nearest
  921. * power of 2.
  922. */
  923. int kfifo_size =
  924. roundup_pow_of_two(rt2x00dev->ops->tx_queues *
  925. rt2x00dev->ops->tx->entry_num *
  926. sizeof(u32));
  927. status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
  928. GFP_KERNEL);
  929. if (status)
  930. return status;
  931. }
  932. /*
  933. * Initialize tasklets if used by the driver. Tasklets are
  934. * disabled until the interrupts are turned on. The driver
  935. * has to handle that.
  936. */
  937. #define RT2X00_TASKLET_INIT(taskletname) \
  938. if (rt2x00dev->ops->lib->taskletname) { \
  939. tasklet_init(&rt2x00dev->taskletname, \
  940. rt2x00dev->ops->lib->taskletname, \
  941. (unsigned long)rt2x00dev); \
  942. }
  943. RT2X00_TASKLET_INIT(txstatus_tasklet);
  944. RT2X00_TASKLET_INIT(pretbtt_tasklet);
  945. RT2X00_TASKLET_INIT(tbtt_tasklet);
  946. RT2X00_TASKLET_INIT(rxdone_tasklet);
  947. RT2X00_TASKLET_INIT(autowake_tasklet);
  948. #undef RT2X00_TASKLET_INIT
  949. /*
  950. * Register HW.
  951. */
  952. status = ieee80211_register_hw(rt2x00dev->hw);
  953. if (status)
  954. return status;
  955. set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
  956. return 0;
  957. }
  958. /*
  959. * Initialization/uninitialization handlers.
  960. */
  961. static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
  962. {
  963. if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
  964. return;
  965. /*
  966. * Unregister extra components.
  967. */
  968. rt2x00rfkill_unregister(rt2x00dev);
  969. /*
  970. * Allow the HW to uninitialize.
  971. */
  972. rt2x00dev->ops->lib->uninitialize(rt2x00dev);
  973. /*
  974. * Free allocated queue entries.
  975. */
  976. rt2x00queue_uninitialize(rt2x00dev);
  977. }
  978. static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
  979. {
  980. int status;
  981. if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
  982. return 0;
  983. /*
  984. * Allocate all queue entries.
  985. */
  986. status = rt2x00queue_initialize(rt2x00dev);
  987. if (status)
  988. return status;
  989. /*
  990. * Initialize the device.
  991. */
  992. status = rt2x00dev->ops->lib->initialize(rt2x00dev);
  993. if (status) {
  994. rt2x00queue_uninitialize(rt2x00dev);
  995. return status;
  996. }
  997. set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
  998. return 0;
  999. }
  1000. int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
  1001. {
  1002. int retval;
  1003. if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
  1004. return 0;
  1005. /*
  1006. * If this is the first interface which is added,
  1007. * we should load the firmware now.
  1008. */
  1009. retval = rt2x00lib_load_firmware(rt2x00dev);
  1010. if (retval)
  1011. return retval;
  1012. /*
  1013. * Initialize the device.
  1014. */
  1015. retval = rt2x00lib_initialize(rt2x00dev);
  1016. if (retval)
  1017. return retval;
  1018. rt2x00dev->intf_ap_count = 0;
  1019. rt2x00dev->intf_sta_count = 0;
  1020. rt2x00dev->intf_associated = 0;
  1021. /* Enable the radio */
  1022. retval = rt2x00lib_enable_radio(rt2x00dev);
  1023. if (retval)
  1024. return retval;
  1025. set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
  1026. return 0;
  1027. }
  1028. void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
  1029. {
  1030. if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
  1031. return;
  1032. /*
  1033. * Perhaps we can add something smarter here,
  1034. * but for now just disabling the radio should do.
  1035. */
  1036. rt2x00lib_disable_radio(rt2x00dev);
  1037. rt2x00dev->intf_ap_count = 0;
  1038. rt2x00dev->intf_sta_count = 0;
  1039. rt2x00dev->intf_associated = 0;
  1040. }
  1041. static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
  1042. {
  1043. struct ieee80211_iface_limit *if_limit;
  1044. struct ieee80211_iface_combination *if_combination;
  1045. if (rt2x00dev->ops->max_ap_intf < 2)
  1046. return;
  1047. /*
  1048. * Build up AP interface limits structure.
  1049. */
  1050. if_limit = &rt2x00dev->if_limits_ap;
  1051. if_limit->max = rt2x00dev->ops->max_ap_intf;
  1052. if_limit->types = BIT(NL80211_IFTYPE_AP);
  1053. #ifdef CONFIG_MAC80211_MESH
  1054. if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
  1055. #endif
  1056. /*
  1057. * Build up AP interface combinations structure.
  1058. */
  1059. if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
  1060. if_combination->limits = if_limit;
  1061. if_combination->n_limits = 1;
  1062. if_combination->max_interfaces = if_limit->max;
  1063. if_combination->num_different_channels = 1;
  1064. /*
  1065. * Finally, specify the possible combinations to mac80211.
  1066. */
  1067. rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
  1068. rt2x00dev->hw->wiphy->n_iface_combinations = 1;
  1069. }
  1070. /*
  1071. * driver allocation handlers.
  1072. */
  1073. int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
  1074. {
  1075. int retval = -ENOMEM;
  1076. /*
  1077. * Set possible interface combinations.
  1078. */
  1079. rt2x00lib_set_if_combinations(rt2x00dev);
  1080. /*
  1081. * Allocate the driver data memory, if necessary.
  1082. */
  1083. if (rt2x00dev->ops->drv_data_size > 0) {
  1084. rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
  1085. GFP_KERNEL);
  1086. if (!rt2x00dev->drv_data) {
  1087. retval = -ENOMEM;
  1088. goto exit;
  1089. }
  1090. }
  1091. spin_lock_init(&rt2x00dev->irqmask_lock);
  1092. mutex_init(&rt2x00dev->csr_mutex);
  1093. INIT_LIST_HEAD(&rt2x00dev->bar_list);
  1094. spin_lock_init(&rt2x00dev->bar_list_lock);
  1095. set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  1096. /*
  1097. * Make room for rt2x00_intf inside the per-interface
  1098. * structure ieee80211_vif.
  1099. */
  1100. rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
  1101. /*
  1102. * rt2x00 devices can only use the last n bits of the MAC address
  1103. * for virtual interfaces.
  1104. */
  1105. rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
  1106. (rt2x00dev->ops->max_ap_intf - 1);
  1107. /*
  1108. * Determine which operating modes are supported, all modes
  1109. * which require beaconing, depend on the availability of
  1110. * beacon entries.
  1111. */
  1112. rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
  1113. if (rt2x00dev->ops->bcn->entry_num > 0)
  1114. rt2x00dev->hw->wiphy->interface_modes |=
  1115. BIT(NL80211_IFTYPE_ADHOC) |
  1116. BIT(NL80211_IFTYPE_AP) |
  1117. #ifdef CONFIG_MAC80211_MESH
  1118. BIT(NL80211_IFTYPE_MESH_POINT) |
  1119. #endif
  1120. BIT(NL80211_IFTYPE_WDS);
  1121. rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
  1122. /*
  1123. * Initialize work.
  1124. */
  1125. rt2x00dev->workqueue =
  1126. alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
  1127. if (!rt2x00dev->workqueue) {
  1128. retval = -ENOMEM;
  1129. goto exit;
  1130. }
  1131. INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
  1132. INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
  1133. INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
  1134. /*
  1135. * Let the driver probe the device to detect the capabilities.
  1136. */
  1137. retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
  1138. if (retval) {
  1139. rt2x00_err(rt2x00dev, "Failed to allocate device\n");
  1140. goto exit;
  1141. }
  1142. /*
  1143. * Allocate queue array.
  1144. */
  1145. retval = rt2x00queue_allocate(rt2x00dev);
  1146. if (retval)
  1147. goto exit;
  1148. /*
  1149. * Initialize ieee80211 structure.
  1150. */
  1151. retval = rt2x00lib_probe_hw(rt2x00dev);
  1152. if (retval) {
  1153. rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
  1154. goto exit;
  1155. }
  1156. /*
  1157. * Register extra components.
  1158. */
  1159. rt2x00link_register(rt2x00dev);
  1160. rt2x00leds_register(rt2x00dev);
  1161. rt2x00debug_register(rt2x00dev);
  1162. rt2x00rfkill_register(rt2x00dev);
  1163. return 0;
  1164. exit:
  1165. rt2x00lib_remove_dev(rt2x00dev);
  1166. return retval;
  1167. }
  1168. EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
  1169. void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
  1170. {
  1171. clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  1172. /*
  1173. * Disable radio.
  1174. */
  1175. rt2x00lib_disable_radio(rt2x00dev);
  1176. /*
  1177. * Stop all work.
  1178. */
  1179. cancel_work_sync(&rt2x00dev->intf_work);
  1180. cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
  1181. cancel_work_sync(&rt2x00dev->sleep_work);
  1182. if (rt2x00_is_usb(rt2x00dev)) {
  1183. hrtimer_cancel(&rt2x00dev->txstatus_timer);
  1184. cancel_work_sync(&rt2x00dev->rxdone_work);
  1185. cancel_work_sync(&rt2x00dev->txdone_work);
  1186. }
  1187. if (rt2x00dev->workqueue)
  1188. destroy_workqueue(rt2x00dev->workqueue);
  1189. /*
  1190. * Free the tx status fifo.
  1191. */
  1192. kfifo_free(&rt2x00dev->txstatus_fifo);
  1193. /*
  1194. * Kill the tx status tasklet.
  1195. */
  1196. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  1197. tasklet_kill(&rt2x00dev->pretbtt_tasklet);
  1198. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  1199. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  1200. tasklet_kill(&rt2x00dev->autowake_tasklet);
  1201. /*
  1202. * Uninitialize device.
  1203. */
  1204. rt2x00lib_uninitialize(rt2x00dev);
  1205. /*
  1206. * Free extra components
  1207. */
  1208. rt2x00debug_deregister(rt2x00dev);
  1209. rt2x00leds_unregister(rt2x00dev);
  1210. /*
  1211. * Free ieee80211_hw memory.
  1212. */
  1213. rt2x00lib_remove_hw(rt2x00dev);
  1214. /*
  1215. * Free firmware image.
  1216. */
  1217. rt2x00lib_free_firmware(rt2x00dev);
  1218. /*
  1219. * Free queue structures.
  1220. */
  1221. rt2x00queue_free(rt2x00dev);
  1222. /*
  1223. * Free the driver data.
  1224. */
  1225. if (rt2x00dev->drv_data)
  1226. kfree(rt2x00dev->drv_data);
  1227. }
  1228. EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
  1229. /*
  1230. * Device state handlers
  1231. */
  1232. #ifdef CONFIG_PM
  1233. int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
  1234. {
  1235. rt2x00_dbg(rt2x00dev, "Going to sleep\n");
  1236. /*
  1237. * Prevent mac80211 from accessing driver while suspended.
  1238. */
  1239. if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
  1240. return 0;
  1241. /*
  1242. * Cleanup as much as possible.
  1243. */
  1244. rt2x00lib_uninitialize(rt2x00dev);
  1245. /*
  1246. * Suspend/disable extra components.
  1247. */
  1248. rt2x00leds_suspend(rt2x00dev);
  1249. rt2x00debug_deregister(rt2x00dev);
  1250. /*
  1251. * Set device mode to sleep for power management,
  1252. * on some hardware this call seems to consistently fail.
  1253. * From the specifications it is hard to tell why it fails,
  1254. * and if this is a "bad thing".
  1255. * Overall it is safe to just ignore the failure and
  1256. * continue suspending. The only downside is that the
  1257. * device will not be in optimal power save mode, but with
  1258. * the radio and the other components already disabled the
  1259. * device is as good as disabled.
  1260. */
  1261. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
  1262. rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
  1263. return 0;
  1264. }
  1265. EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
  1266. int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
  1267. {
  1268. rt2x00_dbg(rt2x00dev, "Waking up\n");
  1269. /*
  1270. * Restore/enable extra components.
  1271. */
  1272. rt2x00debug_register(rt2x00dev);
  1273. rt2x00leds_resume(rt2x00dev);
  1274. /*
  1275. * We are ready again to receive requests from mac80211.
  1276. */
  1277. set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
  1278. return 0;
  1279. }
  1280. EXPORT_SYMBOL_GPL(rt2x00lib_resume);
  1281. #endif /* CONFIG_PM */
  1282. /*
  1283. * rt2x00lib module information.
  1284. */
  1285. MODULE_AUTHOR(DRV_PROJECT);
  1286. MODULE_VERSION(DRV_VERSION);
  1287. MODULE_DESCRIPTION("rt2x00 library");
  1288. MODULE_LICENSE("GPL");