intel_display.c 293 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. /* FDI */
  64. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  65. int
  66. intel_pch_rawclk(struct drm_device *dev)
  67. {
  68. struct drm_i915_private *dev_priv = dev->dev_private;
  69. WARN_ON(!HAS_PCH_SPLIT(dev));
  70. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  71. }
  72. static inline u32 /* units of 100MHz */
  73. intel_fdi_link_freq(struct drm_device *dev)
  74. {
  75. if (IS_GEN5(dev)) {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  78. } else
  79. return 27;
  80. }
  81. static const intel_limit_t intel_limits_i8xx_dac = {
  82. .dot = { .min = 25000, .max = 350000 },
  83. .vco = { .min = 930000, .max = 1400000 },
  84. .n = { .min = 3, .max = 16 },
  85. .m = { .min = 96, .max = 140 },
  86. .m1 = { .min = 18, .max = 26 },
  87. .m2 = { .min = 6, .max = 16 },
  88. .p = { .min = 4, .max = 128 },
  89. .p1 = { .min = 2, .max = 33 },
  90. .p2 = { .dot_limit = 165000,
  91. .p2_slow = 4, .p2_fast = 2 },
  92. };
  93. static const intel_limit_t intel_limits_i8xx_dvo = {
  94. .dot = { .min = 25000, .max = 350000 },
  95. .vco = { .min = 930000, .max = 1400000 },
  96. .n = { .min = 3, .max = 16 },
  97. .m = { .min = 96, .max = 140 },
  98. .m1 = { .min = 18, .max = 26 },
  99. .m2 = { .min = 6, .max = 16 },
  100. .p = { .min = 4, .max = 128 },
  101. .p1 = { .min = 2, .max = 33 },
  102. .p2 = { .dot_limit = 165000,
  103. .p2_slow = 4, .p2_fast = 4 },
  104. };
  105. static const intel_limit_t intel_limits_i8xx_lvds = {
  106. .dot = { .min = 25000, .max = 350000 },
  107. .vco = { .min = 930000, .max = 1400000 },
  108. .n = { .min = 3, .max = 16 },
  109. .m = { .min = 96, .max = 140 },
  110. .m1 = { .min = 18, .max = 26 },
  111. .m2 = { .min = 6, .max = 16 },
  112. .p = { .min = 4, .max = 128 },
  113. .p1 = { .min = 1, .max = 6 },
  114. .p2 = { .dot_limit = 165000,
  115. .p2_slow = 14, .p2_fast = 7 },
  116. };
  117. static const intel_limit_t intel_limits_i9xx_sdvo = {
  118. .dot = { .min = 20000, .max = 400000 },
  119. .vco = { .min = 1400000, .max = 2800000 },
  120. .n = { .min = 1, .max = 6 },
  121. .m = { .min = 70, .max = 120 },
  122. .m1 = { .min = 8, .max = 18 },
  123. .m2 = { .min = 3, .max = 7 },
  124. .p = { .min = 5, .max = 80 },
  125. .p1 = { .min = 1, .max = 8 },
  126. .p2 = { .dot_limit = 200000,
  127. .p2_slow = 10, .p2_fast = 5 },
  128. };
  129. static const intel_limit_t intel_limits_i9xx_lvds = {
  130. .dot = { .min = 20000, .max = 400000 },
  131. .vco = { .min = 1400000, .max = 2800000 },
  132. .n = { .min = 1, .max = 6 },
  133. .m = { .min = 70, .max = 120 },
  134. .m1 = { .min = 8, .max = 18 },
  135. .m2 = { .min = 3, .max = 7 },
  136. .p = { .min = 7, .max = 98 },
  137. .p1 = { .min = 1, .max = 8 },
  138. .p2 = { .dot_limit = 112000,
  139. .p2_slow = 14, .p2_fast = 7 },
  140. };
  141. static const intel_limit_t intel_limits_g4x_sdvo = {
  142. .dot = { .min = 25000, .max = 270000 },
  143. .vco = { .min = 1750000, .max = 3500000},
  144. .n = { .min = 1, .max = 4 },
  145. .m = { .min = 104, .max = 138 },
  146. .m1 = { .min = 17, .max = 23 },
  147. .m2 = { .min = 5, .max = 11 },
  148. .p = { .min = 10, .max = 30 },
  149. .p1 = { .min = 1, .max = 3},
  150. .p2 = { .dot_limit = 270000,
  151. .p2_slow = 10,
  152. .p2_fast = 10
  153. },
  154. };
  155. static const intel_limit_t intel_limits_g4x_hdmi = {
  156. .dot = { .min = 22000, .max = 400000 },
  157. .vco = { .min = 1750000, .max = 3500000},
  158. .n = { .min = 1, .max = 4 },
  159. .m = { .min = 104, .max = 138 },
  160. .m1 = { .min = 16, .max = 23 },
  161. .m2 = { .min = 5, .max = 11 },
  162. .p = { .min = 5, .max = 80 },
  163. .p1 = { .min = 1, .max = 8},
  164. .p2 = { .dot_limit = 165000,
  165. .p2_slow = 10, .p2_fast = 5 },
  166. };
  167. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  168. .dot = { .min = 20000, .max = 115000 },
  169. .vco = { .min = 1750000, .max = 3500000 },
  170. .n = { .min = 1, .max = 3 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 17, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 28, .max = 112 },
  175. .p1 = { .min = 2, .max = 8 },
  176. .p2 = { .dot_limit = 0,
  177. .p2_slow = 14, .p2_fast = 14
  178. },
  179. };
  180. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  181. .dot = { .min = 80000, .max = 224000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 14, .max = 42 },
  188. .p1 = { .min = 2, .max = 6 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 7, .p2_fast = 7
  191. },
  192. };
  193. static const intel_limit_t intel_limits_pineview_sdvo = {
  194. .dot = { .min = 20000, .max = 400000},
  195. .vco = { .min = 1700000, .max = 3500000 },
  196. /* Pineview's Ncounter is a ring counter */
  197. .n = { .min = 3, .max = 6 },
  198. .m = { .min = 2, .max = 256 },
  199. /* Pineview only has one combined m divider, which we treat as m2. */
  200. .m1 = { .min = 0, .max = 0 },
  201. .m2 = { .min = 0, .max = 254 },
  202. .p = { .min = 5, .max = 80 },
  203. .p1 = { .min = 1, .max = 8 },
  204. .p2 = { .dot_limit = 200000,
  205. .p2_slow = 10, .p2_fast = 5 },
  206. };
  207. static const intel_limit_t intel_limits_pineview_lvds = {
  208. .dot = { .min = 20000, .max = 400000 },
  209. .vco = { .min = 1700000, .max = 3500000 },
  210. .n = { .min = 3, .max = 6 },
  211. .m = { .min = 2, .max = 256 },
  212. .m1 = { .min = 0, .max = 0 },
  213. .m2 = { .min = 0, .max = 254 },
  214. .p = { .min = 7, .max = 112 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 112000,
  217. .p2_slow = 14, .p2_fast = 14 },
  218. };
  219. /* Ironlake / Sandybridge
  220. *
  221. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  222. * the range value for them is (actual_value - 2).
  223. */
  224. static const intel_limit_t intel_limits_ironlake_dac = {
  225. .dot = { .min = 25000, .max = 350000 },
  226. .vco = { .min = 1760000, .max = 3510000 },
  227. .n = { .min = 1, .max = 5 },
  228. .m = { .min = 79, .max = 127 },
  229. .m1 = { .min = 12, .max = 22 },
  230. .m2 = { .min = 5, .max = 9 },
  231. .p = { .min = 5, .max = 80 },
  232. .p1 = { .min = 1, .max = 8 },
  233. .p2 = { .dot_limit = 225000,
  234. .p2_slow = 10, .p2_fast = 5 },
  235. };
  236. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  237. .dot = { .min = 25000, .max = 350000 },
  238. .vco = { .min = 1760000, .max = 3510000 },
  239. .n = { .min = 1, .max = 3 },
  240. .m = { .min = 79, .max = 118 },
  241. .m1 = { .min = 12, .max = 22 },
  242. .m2 = { .min = 5, .max = 9 },
  243. .p = { .min = 28, .max = 112 },
  244. .p1 = { .min = 2, .max = 8 },
  245. .p2 = { .dot_limit = 225000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. };
  248. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  249. .dot = { .min = 25000, .max = 350000 },
  250. .vco = { .min = 1760000, .max = 3510000 },
  251. .n = { .min = 1, .max = 3 },
  252. .m = { .min = 79, .max = 127 },
  253. .m1 = { .min = 12, .max = 22 },
  254. .m2 = { .min = 5, .max = 9 },
  255. .p = { .min = 14, .max = 56 },
  256. .p1 = { .min = 2, .max = 8 },
  257. .p2 = { .dot_limit = 225000,
  258. .p2_slow = 7, .p2_fast = 7 },
  259. };
  260. /* LVDS 100mhz refclk limits. */
  261. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  262. .dot = { .min = 25000, .max = 350000 },
  263. .vco = { .min = 1760000, .max = 3510000 },
  264. .n = { .min = 1, .max = 2 },
  265. .m = { .min = 79, .max = 126 },
  266. .m1 = { .min = 12, .max = 22 },
  267. .m2 = { .min = 5, .max = 9 },
  268. .p = { .min = 28, .max = 112 },
  269. .p1 = { .min = 2, .max = 8 },
  270. .p2 = { .dot_limit = 225000,
  271. .p2_slow = 14, .p2_fast = 14 },
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 126 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 42 },
  281. .p1 = { .min = 2, .max = 6 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. };
  285. static const intel_limit_t intel_limits_vlv_dac = {
  286. .dot = { .min = 25000, .max = 270000 },
  287. .vco = { .min = 4000000, .max = 6000000 },
  288. .n = { .min = 1, .max = 7 },
  289. .m = { .min = 22, .max = 450 }, /* guess */
  290. .m1 = { .min = 2, .max = 3 },
  291. .m2 = { .min = 11, .max = 156 },
  292. .p = { .min = 10, .max = 30 },
  293. .p1 = { .min = 1, .max = 3 },
  294. .p2 = { .dot_limit = 270000,
  295. .p2_slow = 2, .p2_fast = 20 },
  296. };
  297. static const intel_limit_t intel_limits_vlv_hdmi = {
  298. .dot = { .min = 25000, .max = 270000 },
  299. .vco = { .min = 4000000, .max = 6000000 },
  300. .n = { .min = 1, .max = 7 },
  301. .m = { .min = 60, .max = 300 }, /* guess */
  302. .m1 = { .min = 2, .max = 3 },
  303. .m2 = { .min = 11, .max = 156 },
  304. .p = { .min = 10, .max = 30 },
  305. .p1 = { .min = 2, .max = 3 },
  306. .p2 = { .dot_limit = 270000,
  307. .p2_slow = 2, .p2_fast = 20 },
  308. };
  309. static const intel_limit_t intel_limits_vlv_dp = {
  310. .dot = { .min = 25000, .max = 270000 },
  311. .vco = { .min = 4000000, .max = 6000000 },
  312. .n = { .min = 1, .max = 7 },
  313. .m = { .min = 22, .max = 450 },
  314. .m1 = { .min = 2, .max = 3 },
  315. .m2 = { .min = 11, .max = 156 },
  316. .p = { .min = 10, .max = 30 },
  317. .p1 = { .min = 1, .max = 3 },
  318. .p2 = { .dot_limit = 270000,
  319. .p2_slow = 2, .p2_fast = 20 },
  320. };
  321. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  322. int refclk)
  323. {
  324. struct drm_device *dev = crtc->dev;
  325. const intel_limit_t *limit;
  326. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  327. if (intel_is_dual_link_lvds(dev)) {
  328. if (refclk == 100000)
  329. limit = &intel_limits_ironlake_dual_lvds_100m;
  330. else
  331. limit = &intel_limits_ironlake_dual_lvds;
  332. } else {
  333. if (refclk == 100000)
  334. limit = &intel_limits_ironlake_single_lvds_100m;
  335. else
  336. limit = &intel_limits_ironlake_single_lvds;
  337. }
  338. } else
  339. limit = &intel_limits_ironlake_dac;
  340. return limit;
  341. }
  342. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  343. {
  344. struct drm_device *dev = crtc->dev;
  345. const intel_limit_t *limit;
  346. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  347. if (intel_is_dual_link_lvds(dev))
  348. limit = &intel_limits_g4x_dual_channel_lvds;
  349. else
  350. limit = &intel_limits_g4x_single_channel_lvds;
  351. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  352. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  353. limit = &intel_limits_g4x_hdmi;
  354. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  355. limit = &intel_limits_g4x_sdvo;
  356. } else /* The option is for other outputs */
  357. limit = &intel_limits_i9xx_sdvo;
  358. return limit;
  359. }
  360. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  361. {
  362. struct drm_device *dev = crtc->dev;
  363. const intel_limit_t *limit;
  364. if (HAS_PCH_SPLIT(dev))
  365. limit = intel_ironlake_limit(crtc, refclk);
  366. else if (IS_G4X(dev)) {
  367. limit = intel_g4x_limit(crtc);
  368. } else if (IS_PINEVIEW(dev)) {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_pineview_lvds;
  371. else
  372. limit = &intel_limits_pineview_sdvo;
  373. } else if (IS_VALLEYVIEW(dev)) {
  374. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  375. limit = &intel_limits_vlv_dac;
  376. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  377. limit = &intel_limits_vlv_hdmi;
  378. else
  379. limit = &intel_limits_vlv_dp;
  380. } else if (!IS_GEN2(dev)) {
  381. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  382. limit = &intel_limits_i9xx_lvds;
  383. else
  384. limit = &intel_limits_i9xx_sdvo;
  385. } else {
  386. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  387. limit = &intel_limits_i8xx_lvds;
  388. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  389. limit = &intel_limits_i8xx_dvo;
  390. else
  391. limit = &intel_limits_i8xx_dac;
  392. }
  393. return limit;
  394. }
  395. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  396. static void pineview_clock(int refclk, intel_clock_t *clock)
  397. {
  398. clock->m = clock->m2 + 2;
  399. clock->p = clock->p1 * clock->p2;
  400. clock->vco = refclk * clock->m / clock->n;
  401. clock->dot = clock->vco / clock->p;
  402. }
  403. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  404. {
  405. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  406. }
  407. static void i9xx_clock(int refclk, intel_clock_t *clock)
  408. {
  409. clock->m = i9xx_dpll_compute_m(clock);
  410. clock->p = clock->p1 * clock->p2;
  411. clock->vco = refclk * clock->m / (clock->n + 2);
  412. clock->dot = clock->vco / clock->p;
  413. }
  414. /**
  415. * Returns whether any output on the specified pipe is of the specified type
  416. */
  417. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  418. {
  419. struct drm_device *dev = crtc->dev;
  420. struct intel_encoder *encoder;
  421. for_each_encoder_on_crtc(dev, crtc, encoder)
  422. if (encoder->type == type)
  423. return true;
  424. return false;
  425. }
  426. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  427. /**
  428. * Returns whether the given set of divisors are valid for a given refclk with
  429. * the given connectors.
  430. */
  431. static bool intel_PLL_is_valid(struct drm_device *dev,
  432. const intel_limit_t *limit,
  433. const intel_clock_t *clock)
  434. {
  435. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  436. INTELPllInvalid("p1 out of range\n");
  437. if (clock->p < limit->p.min || limit->p.max < clock->p)
  438. INTELPllInvalid("p out of range\n");
  439. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  440. INTELPllInvalid("m2 out of range\n");
  441. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  442. INTELPllInvalid("m1 out of range\n");
  443. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  444. INTELPllInvalid("m1 <= m2\n");
  445. if (clock->m < limit->m.min || limit->m.max < clock->m)
  446. INTELPllInvalid("m out of range\n");
  447. if (clock->n < limit->n.min || limit->n.max < clock->n)
  448. INTELPllInvalid("n out of range\n");
  449. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  450. INTELPllInvalid("vco out of range\n");
  451. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  452. * connector, etc., rather than just a single range.
  453. */
  454. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  455. INTELPllInvalid("dot out of range\n");
  456. return true;
  457. }
  458. static bool
  459. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  460. int target, int refclk, intel_clock_t *match_clock,
  461. intel_clock_t *best_clock)
  462. {
  463. struct drm_device *dev = crtc->dev;
  464. intel_clock_t clock;
  465. int err = target;
  466. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  467. /*
  468. * For LVDS just rely on its current settings for dual-channel.
  469. * We haven't figured out how to reliably set up different
  470. * single/dual channel state, if we even can.
  471. */
  472. if (intel_is_dual_link_lvds(dev))
  473. clock.p2 = limit->p2.p2_fast;
  474. else
  475. clock.p2 = limit->p2.p2_slow;
  476. } else {
  477. if (target < limit->p2.dot_limit)
  478. clock.p2 = limit->p2.p2_slow;
  479. else
  480. clock.p2 = limit->p2.p2_fast;
  481. }
  482. memset(best_clock, 0, sizeof(*best_clock));
  483. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  484. clock.m1++) {
  485. for (clock.m2 = limit->m2.min;
  486. clock.m2 <= limit->m2.max; clock.m2++) {
  487. if (clock.m2 >= clock.m1)
  488. break;
  489. for (clock.n = limit->n.min;
  490. clock.n <= limit->n.max; clock.n++) {
  491. for (clock.p1 = limit->p1.min;
  492. clock.p1 <= limit->p1.max; clock.p1++) {
  493. int this_err;
  494. i9xx_clock(refclk, &clock);
  495. if (!intel_PLL_is_valid(dev, limit,
  496. &clock))
  497. continue;
  498. if (match_clock &&
  499. clock.p != match_clock->p)
  500. continue;
  501. this_err = abs(clock.dot - target);
  502. if (this_err < err) {
  503. *best_clock = clock;
  504. err = this_err;
  505. }
  506. }
  507. }
  508. }
  509. }
  510. return (err != target);
  511. }
  512. static bool
  513. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  514. int target, int refclk, intel_clock_t *match_clock,
  515. intel_clock_t *best_clock)
  516. {
  517. struct drm_device *dev = crtc->dev;
  518. intel_clock_t clock;
  519. int err = target;
  520. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  521. /*
  522. * For LVDS just rely on its current settings for dual-channel.
  523. * We haven't figured out how to reliably set up different
  524. * single/dual channel state, if we even can.
  525. */
  526. if (intel_is_dual_link_lvds(dev))
  527. clock.p2 = limit->p2.p2_fast;
  528. else
  529. clock.p2 = limit->p2.p2_slow;
  530. } else {
  531. if (target < limit->p2.dot_limit)
  532. clock.p2 = limit->p2.p2_slow;
  533. else
  534. clock.p2 = limit->p2.p2_fast;
  535. }
  536. memset(best_clock, 0, sizeof(*best_clock));
  537. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  538. clock.m1++) {
  539. for (clock.m2 = limit->m2.min;
  540. clock.m2 <= limit->m2.max; clock.m2++) {
  541. for (clock.n = limit->n.min;
  542. clock.n <= limit->n.max; clock.n++) {
  543. for (clock.p1 = limit->p1.min;
  544. clock.p1 <= limit->p1.max; clock.p1++) {
  545. int this_err;
  546. pineview_clock(refclk, &clock);
  547. if (!intel_PLL_is_valid(dev, limit,
  548. &clock))
  549. continue;
  550. if (match_clock &&
  551. clock.p != match_clock->p)
  552. continue;
  553. this_err = abs(clock.dot - target);
  554. if (this_err < err) {
  555. *best_clock = clock;
  556. err = this_err;
  557. }
  558. }
  559. }
  560. }
  561. }
  562. return (err != target);
  563. }
  564. static bool
  565. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  566. int target, int refclk, intel_clock_t *match_clock,
  567. intel_clock_t *best_clock)
  568. {
  569. struct drm_device *dev = crtc->dev;
  570. intel_clock_t clock;
  571. int max_n;
  572. bool found;
  573. /* approximately equals target * 0.00585 */
  574. int err_most = (target >> 8) + (target >> 9);
  575. found = false;
  576. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  577. if (intel_is_dual_link_lvds(dev))
  578. clock.p2 = limit->p2.p2_fast;
  579. else
  580. clock.p2 = limit->p2.p2_slow;
  581. } else {
  582. if (target < limit->p2.dot_limit)
  583. clock.p2 = limit->p2.p2_slow;
  584. else
  585. clock.p2 = limit->p2.p2_fast;
  586. }
  587. memset(best_clock, 0, sizeof(*best_clock));
  588. max_n = limit->n.max;
  589. /* based on hardware requirement, prefer smaller n to precision */
  590. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  591. /* based on hardware requirement, prefere larger m1,m2 */
  592. for (clock.m1 = limit->m1.max;
  593. clock.m1 >= limit->m1.min; clock.m1--) {
  594. for (clock.m2 = limit->m2.max;
  595. clock.m2 >= limit->m2.min; clock.m2--) {
  596. for (clock.p1 = limit->p1.max;
  597. clock.p1 >= limit->p1.min; clock.p1--) {
  598. int this_err;
  599. i9xx_clock(refclk, &clock);
  600. if (!intel_PLL_is_valid(dev, limit,
  601. &clock))
  602. continue;
  603. this_err = abs(clock.dot - target);
  604. if (this_err < err_most) {
  605. *best_clock = clock;
  606. err_most = this_err;
  607. max_n = clock.n;
  608. found = true;
  609. }
  610. }
  611. }
  612. }
  613. }
  614. return found;
  615. }
  616. static bool
  617. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  618. int target, int refclk, intel_clock_t *match_clock,
  619. intel_clock_t *best_clock)
  620. {
  621. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  622. u32 m, n, fastclk;
  623. u32 updrate, minupdate, p;
  624. unsigned long bestppm, ppm, absppm;
  625. int dotclk, flag;
  626. flag = 0;
  627. dotclk = target * 1000;
  628. bestppm = 1000000;
  629. ppm = absppm = 0;
  630. fastclk = dotclk / (2*100);
  631. updrate = 0;
  632. minupdate = 19200;
  633. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  634. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  635. /* based on hardware requirement, prefer smaller n to precision */
  636. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  637. updrate = refclk / n;
  638. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  639. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  640. if (p2 > 10)
  641. p2 = p2 - 1;
  642. p = p1 * p2;
  643. /* based on hardware requirement, prefer bigger m1,m2 values */
  644. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  645. m2 = (((2*(fastclk * p * n / m1 )) +
  646. refclk) / (2*refclk));
  647. m = m1 * m2;
  648. vco = updrate * m;
  649. if (vco >= limit->vco.min && vco < limit->vco.max) {
  650. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  651. absppm = (ppm > 0) ? ppm : (-ppm);
  652. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  653. bestppm = 0;
  654. flag = 1;
  655. }
  656. if (absppm < bestppm - 10) {
  657. bestppm = absppm;
  658. flag = 1;
  659. }
  660. if (flag) {
  661. bestn = n;
  662. bestm1 = m1;
  663. bestm2 = m2;
  664. bestp1 = p1;
  665. bestp2 = p2;
  666. flag = 0;
  667. }
  668. }
  669. }
  670. }
  671. }
  672. }
  673. best_clock->n = bestn;
  674. best_clock->m1 = bestm1;
  675. best_clock->m2 = bestm2;
  676. best_clock->p1 = bestp1;
  677. best_clock->p2 = bestp2;
  678. return true;
  679. }
  680. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  681. enum pipe pipe)
  682. {
  683. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  684. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  685. return intel_crtc->config.cpu_transcoder;
  686. }
  687. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. u32 frame, frame_reg = PIPEFRAME(pipe);
  691. frame = I915_READ(frame_reg);
  692. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  693. DRM_DEBUG_KMS("vblank wait timed out\n");
  694. }
  695. /**
  696. * intel_wait_for_vblank - wait for vblank on a given pipe
  697. * @dev: drm device
  698. * @pipe: pipe to wait for
  699. *
  700. * Wait for vblank to occur on a given pipe. Needed for various bits of
  701. * mode setting code.
  702. */
  703. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  704. {
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. int pipestat_reg = PIPESTAT(pipe);
  707. if (INTEL_INFO(dev)->gen >= 5) {
  708. ironlake_wait_for_vblank(dev, pipe);
  709. return;
  710. }
  711. /* Clear existing vblank status. Note this will clear any other
  712. * sticky status fields as well.
  713. *
  714. * This races with i915_driver_irq_handler() with the result
  715. * that either function could miss a vblank event. Here it is not
  716. * fatal, as we will either wait upon the next vblank interrupt or
  717. * timeout. Generally speaking intel_wait_for_vblank() is only
  718. * called during modeset at which time the GPU should be idle and
  719. * should *not* be performing page flips and thus not waiting on
  720. * vblanks...
  721. * Currently, the result of us stealing a vblank from the irq
  722. * handler is that a single frame will be skipped during swapbuffers.
  723. */
  724. I915_WRITE(pipestat_reg,
  725. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  726. /* Wait for vblank interrupt bit to set */
  727. if (wait_for(I915_READ(pipestat_reg) &
  728. PIPE_VBLANK_INTERRUPT_STATUS,
  729. 50))
  730. DRM_DEBUG_KMS("vblank wait timed out\n");
  731. }
  732. /*
  733. * intel_wait_for_pipe_off - wait for pipe to turn off
  734. * @dev: drm device
  735. * @pipe: pipe to wait for
  736. *
  737. * After disabling a pipe, we can't wait for vblank in the usual way,
  738. * spinning on the vblank interrupt status bit, since we won't actually
  739. * see an interrupt when the pipe is disabled.
  740. *
  741. * On Gen4 and above:
  742. * wait for the pipe register state bit to turn off
  743. *
  744. * Otherwise:
  745. * wait for the display line value to settle (it usually
  746. * ends up stopping at the start of the next frame).
  747. *
  748. */
  749. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  750. {
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  753. pipe);
  754. if (INTEL_INFO(dev)->gen >= 4) {
  755. int reg = PIPECONF(cpu_transcoder);
  756. /* Wait for the Pipe State to go off */
  757. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  758. 100))
  759. WARN(1, "pipe_off wait timed out\n");
  760. } else {
  761. u32 last_line, line_mask;
  762. int reg = PIPEDSL(pipe);
  763. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  764. if (IS_GEN2(dev))
  765. line_mask = DSL_LINEMASK_GEN2;
  766. else
  767. line_mask = DSL_LINEMASK_GEN3;
  768. /* Wait for the display line to settle */
  769. do {
  770. last_line = I915_READ(reg) & line_mask;
  771. mdelay(5);
  772. } while (((I915_READ(reg) & line_mask) != last_line) &&
  773. time_after(timeout, jiffies));
  774. if (time_after(jiffies, timeout))
  775. WARN(1, "pipe_off wait timed out\n");
  776. }
  777. }
  778. /*
  779. * ibx_digital_port_connected - is the specified port connected?
  780. * @dev_priv: i915 private structure
  781. * @port: the port to test
  782. *
  783. * Returns true if @port is connected, false otherwise.
  784. */
  785. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  786. struct intel_digital_port *port)
  787. {
  788. u32 bit;
  789. if (HAS_PCH_IBX(dev_priv->dev)) {
  790. switch(port->port) {
  791. case PORT_B:
  792. bit = SDE_PORTB_HOTPLUG;
  793. break;
  794. case PORT_C:
  795. bit = SDE_PORTC_HOTPLUG;
  796. break;
  797. case PORT_D:
  798. bit = SDE_PORTD_HOTPLUG;
  799. break;
  800. default:
  801. return true;
  802. }
  803. } else {
  804. switch(port->port) {
  805. case PORT_B:
  806. bit = SDE_PORTB_HOTPLUG_CPT;
  807. break;
  808. case PORT_C:
  809. bit = SDE_PORTC_HOTPLUG_CPT;
  810. break;
  811. case PORT_D:
  812. bit = SDE_PORTD_HOTPLUG_CPT;
  813. break;
  814. default:
  815. return true;
  816. }
  817. }
  818. return I915_READ(SDEISR) & bit;
  819. }
  820. static const char *state_string(bool enabled)
  821. {
  822. return enabled ? "on" : "off";
  823. }
  824. /* Only for pre-ILK configs */
  825. void assert_pll(struct drm_i915_private *dev_priv,
  826. enum pipe pipe, bool state)
  827. {
  828. int reg;
  829. u32 val;
  830. bool cur_state;
  831. reg = DPLL(pipe);
  832. val = I915_READ(reg);
  833. cur_state = !!(val & DPLL_VCO_ENABLE);
  834. WARN(cur_state != state,
  835. "PLL state assertion failure (expected %s, current %s)\n",
  836. state_string(state), state_string(cur_state));
  837. }
  838. struct intel_shared_dpll *
  839. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  840. {
  841. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  842. if (crtc->config.shared_dpll < 0)
  843. return NULL;
  844. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  845. }
  846. /* For ILK+ */
  847. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  848. struct intel_shared_dpll *pll,
  849. bool state)
  850. {
  851. bool cur_state;
  852. struct intel_dpll_hw_state hw_state;
  853. if (HAS_PCH_LPT(dev_priv->dev)) {
  854. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  855. return;
  856. }
  857. if (WARN (!pll,
  858. "asserting DPLL %s with no DPLL\n", state_string(state)))
  859. return;
  860. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  861. WARN(cur_state != state,
  862. "%s assertion failure (expected %s, current %s)\n",
  863. pll->name, state_string(state), state_string(cur_state));
  864. }
  865. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  866. enum pipe pipe, bool state)
  867. {
  868. int reg;
  869. u32 val;
  870. bool cur_state;
  871. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  872. pipe);
  873. if (HAS_DDI(dev_priv->dev)) {
  874. /* DDI does not have a specific FDI_TX register */
  875. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  876. val = I915_READ(reg);
  877. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  878. } else {
  879. reg = FDI_TX_CTL(pipe);
  880. val = I915_READ(reg);
  881. cur_state = !!(val & FDI_TX_ENABLE);
  882. }
  883. WARN(cur_state != state,
  884. "FDI TX state assertion failure (expected %s, current %s)\n",
  885. state_string(state), state_string(cur_state));
  886. }
  887. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  888. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  889. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  890. enum pipe pipe, bool state)
  891. {
  892. int reg;
  893. u32 val;
  894. bool cur_state;
  895. reg = FDI_RX_CTL(pipe);
  896. val = I915_READ(reg);
  897. cur_state = !!(val & FDI_RX_ENABLE);
  898. WARN(cur_state != state,
  899. "FDI RX state assertion failure (expected %s, current %s)\n",
  900. state_string(state), state_string(cur_state));
  901. }
  902. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  903. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  904. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  905. enum pipe pipe)
  906. {
  907. int reg;
  908. u32 val;
  909. /* ILK FDI PLL is always enabled */
  910. if (dev_priv->info->gen == 5)
  911. return;
  912. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  913. if (HAS_DDI(dev_priv->dev))
  914. return;
  915. reg = FDI_TX_CTL(pipe);
  916. val = I915_READ(reg);
  917. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  918. }
  919. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  920. enum pipe pipe, bool state)
  921. {
  922. int reg;
  923. u32 val;
  924. bool cur_state;
  925. reg = FDI_RX_CTL(pipe);
  926. val = I915_READ(reg);
  927. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  928. WARN(cur_state != state,
  929. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  930. state_string(state), state_string(cur_state));
  931. }
  932. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  933. enum pipe pipe)
  934. {
  935. int pp_reg, lvds_reg;
  936. u32 val;
  937. enum pipe panel_pipe = PIPE_A;
  938. bool locked = true;
  939. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  940. pp_reg = PCH_PP_CONTROL;
  941. lvds_reg = PCH_LVDS;
  942. } else {
  943. pp_reg = PP_CONTROL;
  944. lvds_reg = LVDS;
  945. }
  946. val = I915_READ(pp_reg);
  947. if (!(val & PANEL_POWER_ON) ||
  948. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  949. locked = false;
  950. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  951. panel_pipe = PIPE_B;
  952. WARN(panel_pipe == pipe && locked,
  953. "panel assertion failure, pipe %c regs locked\n",
  954. pipe_name(pipe));
  955. }
  956. void assert_pipe(struct drm_i915_private *dev_priv,
  957. enum pipe pipe, bool state)
  958. {
  959. int reg;
  960. u32 val;
  961. bool cur_state;
  962. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  963. pipe);
  964. /* if we need the pipe A quirk it must be always on */
  965. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  966. state = true;
  967. if (!intel_display_power_enabled(dev_priv->dev,
  968. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  969. cur_state = false;
  970. } else {
  971. reg = PIPECONF(cpu_transcoder);
  972. val = I915_READ(reg);
  973. cur_state = !!(val & PIPECONF_ENABLE);
  974. }
  975. WARN(cur_state != state,
  976. "pipe %c assertion failure (expected %s, current %s)\n",
  977. pipe_name(pipe), state_string(state), state_string(cur_state));
  978. }
  979. static void assert_plane(struct drm_i915_private *dev_priv,
  980. enum plane plane, bool state)
  981. {
  982. int reg;
  983. u32 val;
  984. bool cur_state;
  985. reg = DSPCNTR(plane);
  986. val = I915_READ(reg);
  987. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  988. WARN(cur_state != state,
  989. "plane %c assertion failure (expected %s, current %s)\n",
  990. plane_name(plane), state_string(state), state_string(cur_state));
  991. }
  992. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  993. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  994. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  995. enum pipe pipe)
  996. {
  997. struct drm_device *dev = dev_priv->dev;
  998. int reg, i;
  999. u32 val;
  1000. int cur_pipe;
  1001. /* Primary planes are fixed to pipes on gen4+ */
  1002. if (INTEL_INFO(dev)->gen >= 4) {
  1003. reg = DSPCNTR(pipe);
  1004. val = I915_READ(reg);
  1005. WARN((val & DISPLAY_PLANE_ENABLE),
  1006. "plane %c assertion failure, should be disabled but not\n",
  1007. plane_name(pipe));
  1008. return;
  1009. }
  1010. /* Need to check both planes against the pipe */
  1011. for_each_pipe(i) {
  1012. reg = DSPCNTR(i);
  1013. val = I915_READ(reg);
  1014. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1015. DISPPLANE_SEL_PIPE_SHIFT;
  1016. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1017. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1018. plane_name(i), pipe_name(pipe));
  1019. }
  1020. }
  1021. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1022. enum pipe pipe)
  1023. {
  1024. struct drm_device *dev = dev_priv->dev;
  1025. int reg, i;
  1026. u32 val;
  1027. if (IS_VALLEYVIEW(dev)) {
  1028. for (i = 0; i < dev_priv->num_plane; i++) {
  1029. reg = SPCNTR(pipe, i);
  1030. val = I915_READ(reg);
  1031. WARN((val & SP_ENABLE),
  1032. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1033. sprite_name(pipe, i), pipe_name(pipe));
  1034. }
  1035. } else if (INTEL_INFO(dev)->gen >= 7) {
  1036. reg = SPRCTL(pipe);
  1037. val = I915_READ(reg);
  1038. WARN((val & SPRITE_ENABLE),
  1039. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1040. plane_name(pipe), pipe_name(pipe));
  1041. } else if (INTEL_INFO(dev)->gen >= 5) {
  1042. reg = DVSCNTR(pipe);
  1043. val = I915_READ(reg);
  1044. WARN((val & DVS_ENABLE),
  1045. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1046. plane_name(pipe), pipe_name(pipe));
  1047. }
  1048. }
  1049. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1050. {
  1051. u32 val;
  1052. bool enabled;
  1053. if (HAS_PCH_LPT(dev_priv->dev)) {
  1054. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1055. return;
  1056. }
  1057. val = I915_READ(PCH_DREF_CONTROL);
  1058. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1059. DREF_SUPERSPREAD_SOURCE_MASK));
  1060. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1061. }
  1062. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1063. enum pipe pipe)
  1064. {
  1065. int reg;
  1066. u32 val;
  1067. bool enabled;
  1068. reg = PCH_TRANSCONF(pipe);
  1069. val = I915_READ(reg);
  1070. enabled = !!(val & TRANS_ENABLE);
  1071. WARN(enabled,
  1072. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1073. pipe_name(pipe));
  1074. }
  1075. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1076. enum pipe pipe, u32 port_sel, u32 val)
  1077. {
  1078. if ((val & DP_PORT_EN) == 0)
  1079. return false;
  1080. if (HAS_PCH_CPT(dev_priv->dev)) {
  1081. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1082. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1083. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1084. return false;
  1085. } else {
  1086. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1087. return false;
  1088. }
  1089. return true;
  1090. }
  1091. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 val)
  1093. {
  1094. if ((val & SDVO_ENABLE) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1098. return false;
  1099. } else {
  1100. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1101. return false;
  1102. }
  1103. return true;
  1104. }
  1105. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1106. enum pipe pipe, u32 val)
  1107. {
  1108. if ((val & LVDS_PORT_EN) == 0)
  1109. return false;
  1110. if (HAS_PCH_CPT(dev_priv->dev)) {
  1111. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1112. return false;
  1113. } else {
  1114. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1115. return false;
  1116. }
  1117. return true;
  1118. }
  1119. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1120. enum pipe pipe, u32 val)
  1121. {
  1122. if ((val & ADPA_DAC_ENABLE) == 0)
  1123. return false;
  1124. if (HAS_PCH_CPT(dev_priv->dev)) {
  1125. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1126. return false;
  1127. } else {
  1128. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1129. return false;
  1130. }
  1131. return true;
  1132. }
  1133. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1134. enum pipe pipe, int reg, u32 port_sel)
  1135. {
  1136. u32 val = I915_READ(reg);
  1137. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1138. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1139. reg, pipe_name(pipe));
  1140. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1141. && (val & DP_PIPEB_SELECT),
  1142. "IBX PCH dp port still using transcoder B\n");
  1143. }
  1144. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1145. enum pipe pipe, int reg)
  1146. {
  1147. u32 val = I915_READ(reg);
  1148. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1149. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1150. reg, pipe_name(pipe));
  1151. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1152. && (val & SDVO_PIPE_B_SELECT),
  1153. "IBX PCH hdmi port still using transcoder B\n");
  1154. }
  1155. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1156. enum pipe pipe)
  1157. {
  1158. int reg;
  1159. u32 val;
  1160. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1161. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1162. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1163. reg = PCH_ADPA;
  1164. val = I915_READ(reg);
  1165. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1166. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1167. pipe_name(pipe));
  1168. reg = PCH_LVDS;
  1169. val = I915_READ(reg);
  1170. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1171. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1172. pipe_name(pipe));
  1173. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1174. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1175. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1176. }
  1177. static void vlv_enable_pll(struct intel_crtc *crtc)
  1178. {
  1179. struct drm_device *dev = crtc->base.dev;
  1180. struct drm_i915_private *dev_priv = dev->dev_private;
  1181. int reg = DPLL(crtc->pipe);
  1182. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1183. assert_pipe_disabled(dev_priv, crtc->pipe);
  1184. /* No really, not for ILK+ */
  1185. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1186. /* PLL is protected by panel, make sure we can write it */
  1187. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1188. assert_panel_unlocked(dev_priv, crtc->pipe);
  1189. I915_WRITE(reg, dpll);
  1190. POSTING_READ(reg);
  1191. udelay(150);
  1192. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1193. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1194. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1195. POSTING_READ(DPLL_MD(crtc->pipe));
  1196. /* We do this three times for luck */
  1197. I915_WRITE(reg, dpll);
  1198. POSTING_READ(reg);
  1199. udelay(150); /* wait for warmup */
  1200. I915_WRITE(reg, dpll);
  1201. POSTING_READ(reg);
  1202. udelay(150); /* wait for warmup */
  1203. I915_WRITE(reg, dpll);
  1204. POSTING_READ(reg);
  1205. udelay(150); /* wait for warmup */
  1206. }
  1207. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1208. {
  1209. struct drm_device *dev = crtc->base.dev;
  1210. struct drm_i915_private *dev_priv = dev->dev_private;
  1211. int reg = DPLL(crtc->pipe);
  1212. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1213. assert_pipe_disabled(dev_priv, crtc->pipe);
  1214. /* No really, not for ILK+ */
  1215. BUG_ON(dev_priv->info->gen >= 5);
  1216. /* PLL is protected by panel, make sure we can write it */
  1217. if (IS_MOBILE(dev) && !IS_I830(dev))
  1218. assert_panel_unlocked(dev_priv, crtc->pipe);
  1219. I915_WRITE(reg, dpll);
  1220. /* Wait for the clocks to stabilize. */
  1221. POSTING_READ(reg);
  1222. udelay(150);
  1223. if (INTEL_INFO(dev)->gen >= 4) {
  1224. I915_WRITE(DPLL_MD(crtc->pipe),
  1225. crtc->config.dpll_hw_state.dpll_md);
  1226. } else {
  1227. /* The pixel multiplier can only be updated once the
  1228. * DPLL is enabled and the clocks are stable.
  1229. *
  1230. * So write it again.
  1231. */
  1232. I915_WRITE(reg, dpll);
  1233. }
  1234. /* We do this three times for luck */
  1235. I915_WRITE(reg, dpll);
  1236. POSTING_READ(reg);
  1237. udelay(150); /* wait for warmup */
  1238. I915_WRITE(reg, dpll);
  1239. POSTING_READ(reg);
  1240. udelay(150); /* wait for warmup */
  1241. I915_WRITE(reg, dpll);
  1242. POSTING_READ(reg);
  1243. udelay(150); /* wait for warmup */
  1244. }
  1245. /**
  1246. * i9xx_disable_pll - disable a PLL
  1247. * @dev_priv: i915 private structure
  1248. * @pipe: pipe PLL to disable
  1249. *
  1250. * Disable the PLL for @pipe, making sure the pipe is off first.
  1251. *
  1252. * Note! This is for pre-ILK only.
  1253. */
  1254. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1255. {
  1256. /* Don't disable pipe A or pipe A PLLs if needed */
  1257. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1258. return;
  1259. /* Make sure the pipe isn't still relying on us */
  1260. assert_pipe_disabled(dev_priv, pipe);
  1261. I915_WRITE(DPLL(pipe), 0);
  1262. POSTING_READ(DPLL(pipe));
  1263. }
  1264. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1265. {
  1266. u32 port_mask;
  1267. if (!port)
  1268. port_mask = DPLL_PORTB_READY_MASK;
  1269. else
  1270. port_mask = DPLL_PORTC_READY_MASK;
  1271. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1272. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1273. 'B' + port, I915_READ(DPLL(0)));
  1274. }
  1275. /**
  1276. * ironlake_enable_shared_dpll - enable PCH PLL
  1277. * @dev_priv: i915 private structure
  1278. * @pipe: pipe PLL to enable
  1279. *
  1280. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1281. * drives the transcoder clock.
  1282. */
  1283. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1284. {
  1285. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1286. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1287. /* PCH PLLs only available on ILK, SNB and IVB */
  1288. BUG_ON(dev_priv->info->gen < 5);
  1289. if (WARN_ON(pll == NULL))
  1290. return;
  1291. if (WARN_ON(pll->refcount == 0))
  1292. return;
  1293. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1294. pll->name, pll->active, pll->on,
  1295. crtc->base.base.id);
  1296. if (pll->active++) {
  1297. WARN_ON(!pll->on);
  1298. assert_shared_dpll_enabled(dev_priv, pll);
  1299. return;
  1300. }
  1301. WARN_ON(pll->on);
  1302. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1303. pll->enable(dev_priv, pll);
  1304. pll->on = true;
  1305. }
  1306. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1307. {
  1308. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1309. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1310. /* PCH only available on ILK+ */
  1311. BUG_ON(dev_priv->info->gen < 5);
  1312. if (WARN_ON(pll == NULL))
  1313. return;
  1314. if (WARN_ON(pll->refcount == 0))
  1315. return;
  1316. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1317. pll->name, pll->active, pll->on,
  1318. crtc->base.base.id);
  1319. if (WARN_ON(pll->active == 0)) {
  1320. assert_shared_dpll_disabled(dev_priv, pll);
  1321. return;
  1322. }
  1323. assert_shared_dpll_enabled(dev_priv, pll);
  1324. WARN_ON(!pll->on);
  1325. if (--pll->active)
  1326. return;
  1327. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1328. pll->disable(dev_priv, pll);
  1329. pll->on = false;
  1330. }
  1331. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1332. enum pipe pipe)
  1333. {
  1334. struct drm_device *dev = dev_priv->dev;
  1335. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1336. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1337. uint32_t reg, val, pipeconf_val;
  1338. /* PCH only available on ILK+ */
  1339. BUG_ON(dev_priv->info->gen < 5);
  1340. /* Make sure PCH DPLL is enabled */
  1341. assert_shared_dpll_enabled(dev_priv,
  1342. intel_crtc_to_shared_dpll(intel_crtc));
  1343. /* FDI must be feeding us bits for PCH ports */
  1344. assert_fdi_tx_enabled(dev_priv, pipe);
  1345. assert_fdi_rx_enabled(dev_priv, pipe);
  1346. if (HAS_PCH_CPT(dev)) {
  1347. /* Workaround: Set the timing override bit before enabling the
  1348. * pch transcoder. */
  1349. reg = TRANS_CHICKEN2(pipe);
  1350. val = I915_READ(reg);
  1351. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1352. I915_WRITE(reg, val);
  1353. }
  1354. reg = PCH_TRANSCONF(pipe);
  1355. val = I915_READ(reg);
  1356. pipeconf_val = I915_READ(PIPECONF(pipe));
  1357. if (HAS_PCH_IBX(dev_priv->dev)) {
  1358. /*
  1359. * make the BPC in transcoder be consistent with
  1360. * that in pipeconf reg.
  1361. */
  1362. val &= ~PIPECONF_BPC_MASK;
  1363. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1364. }
  1365. val &= ~TRANS_INTERLACE_MASK;
  1366. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1367. if (HAS_PCH_IBX(dev_priv->dev) &&
  1368. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1369. val |= TRANS_LEGACY_INTERLACED_ILK;
  1370. else
  1371. val |= TRANS_INTERLACED;
  1372. else
  1373. val |= TRANS_PROGRESSIVE;
  1374. I915_WRITE(reg, val | TRANS_ENABLE);
  1375. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1376. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1377. }
  1378. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1379. enum transcoder cpu_transcoder)
  1380. {
  1381. u32 val, pipeconf_val;
  1382. /* PCH only available on ILK+ */
  1383. BUG_ON(dev_priv->info->gen < 5);
  1384. /* FDI must be feeding us bits for PCH ports */
  1385. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1386. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1387. /* Workaround: set timing override bit. */
  1388. val = I915_READ(_TRANSA_CHICKEN2);
  1389. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1390. I915_WRITE(_TRANSA_CHICKEN2, val);
  1391. val = TRANS_ENABLE;
  1392. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1393. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1394. PIPECONF_INTERLACED_ILK)
  1395. val |= TRANS_INTERLACED;
  1396. else
  1397. val |= TRANS_PROGRESSIVE;
  1398. I915_WRITE(LPT_TRANSCONF, val);
  1399. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1400. DRM_ERROR("Failed to enable PCH transcoder\n");
  1401. }
  1402. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1403. enum pipe pipe)
  1404. {
  1405. struct drm_device *dev = dev_priv->dev;
  1406. uint32_t reg, val;
  1407. /* FDI relies on the transcoder */
  1408. assert_fdi_tx_disabled(dev_priv, pipe);
  1409. assert_fdi_rx_disabled(dev_priv, pipe);
  1410. /* Ports must be off as well */
  1411. assert_pch_ports_disabled(dev_priv, pipe);
  1412. reg = PCH_TRANSCONF(pipe);
  1413. val = I915_READ(reg);
  1414. val &= ~TRANS_ENABLE;
  1415. I915_WRITE(reg, val);
  1416. /* wait for PCH transcoder off, transcoder state */
  1417. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1418. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1419. if (!HAS_PCH_IBX(dev)) {
  1420. /* Workaround: Clear the timing override chicken bit again. */
  1421. reg = TRANS_CHICKEN2(pipe);
  1422. val = I915_READ(reg);
  1423. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1424. I915_WRITE(reg, val);
  1425. }
  1426. }
  1427. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1428. {
  1429. u32 val;
  1430. val = I915_READ(LPT_TRANSCONF);
  1431. val &= ~TRANS_ENABLE;
  1432. I915_WRITE(LPT_TRANSCONF, val);
  1433. /* wait for PCH transcoder off, transcoder state */
  1434. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1435. DRM_ERROR("Failed to disable PCH transcoder\n");
  1436. /* Workaround: clear timing override bit. */
  1437. val = I915_READ(_TRANSA_CHICKEN2);
  1438. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1439. I915_WRITE(_TRANSA_CHICKEN2, val);
  1440. }
  1441. /**
  1442. * intel_enable_pipe - enable a pipe, asserting requirements
  1443. * @dev_priv: i915 private structure
  1444. * @pipe: pipe to enable
  1445. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1446. *
  1447. * Enable @pipe, making sure that various hardware specific requirements
  1448. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1449. *
  1450. * @pipe should be %PIPE_A or %PIPE_B.
  1451. *
  1452. * Will wait until the pipe is actually running (i.e. first vblank) before
  1453. * returning.
  1454. */
  1455. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1456. bool pch_port)
  1457. {
  1458. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1459. pipe);
  1460. enum pipe pch_transcoder;
  1461. int reg;
  1462. u32 val;
  1463. assert_planes_disabled(dev_priv, pipe);
  1464. assert_sprites_disabled(dev_priv, pipe);
  1465. if (HAS_PCH_LPT(dev_priv->dev))
  1466. pch_transcoder = TRANSCODER_A;
  1467. else
  1468. pch_transcoder = pipe;
  1469. /*
  1470. * A pipe without a PLL won't actually be able to drive bits from
  1471. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1472. * need the check.
  1473. */
  1474. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1475. assert_pll_enabled(dev_priv, pipe);
  1476. else {
  1477. if (pch_port) {
  1478. /* if driving the PCH, we need FDI enabled */
  1479. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1480. assert_fdi_tx_pll_enabled(dev_priv,
  1481. (enum pipe) cpu_transcoder);
  1482. }
  1483. /* FIXME: assert CPU port conditions for SNB+ */
  1484. }
  1485. reg = PIPECONF(cpu_transcoder);
  1486. val = I915_READ(reg);
  1487. if (val & PIPECONF_ENABLE)
  1488. return;
  1489. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1490. intel_wait_for_vblank(dev_priv->dev, pipe);
  1491. }
  1492. /**
  1493. * intel_disable_pipe - disable a pipe, asserting requirements
  1494. * @dev_priv: i915 private structure
  1495. * @pipe: pipe to disable
  1496. *
  1497. * Disable @pipe, making sure that various hardware specific requirements
  1498. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1499. *
  1500. * @pipe should be %PIPE_A or %PIPE_B.
  1501. *
  1502. * Will wait until the pipe has shut down before returning.
  1503. */
  1504. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1505. enum pipe pipe)
  1506. {
  1507. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1508. pipe);
  1509. int reg;
  1510. u32 val;
  1511. /*
  1512. * Make sure planes won't keep trying to pump pixels to us,
  1513. * or we might hang the display.
  1514. */
  1515. assert_planes_disabled(dev_priv, pipe);
  1516. assert_sprites_disabled(dev_priv, pipe);
  1517. /* Don't disable pipe A or pipe A PLLs if needed */
  1518. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1519. return;
  1520. reg = PIPECONF(cpu_transcoder);
  1521. val = I915_READ(reg);
  1522. if ((val & PIPECONF_ENABLE) == 0)
  1523. return;
  1524. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1525. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1526. }
  1527. /*
  1528. * Plane regs are double buffered, going from enabled->disabled needs a
  1529. * trigger in order to latch. The display address reg provides this.
  1530. */
  1531. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1532. enum plane plane)
  1533. {
  1534. if (dev_priv->info->gen >= 4)
  1535. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1536. else
  1537. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1538. }
  1539. /**
  1540. * intel_enable_plane - enable a display plane on a given pipe
  1541. * @dev_priv: i915 private structure
  1542. * @plane: plane to enable
  1543. * @pipe: pipe being fed
  1544. *
  1545. * Enable @plane on @pipe, making sure that @pipe is running first.
  1546. */
  1547. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1548. enum plane plane, enum pipe pipe)
  1549. {
  1550. int reg;
  1551. u32 val;
  1552. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1553. assert_pipe_enabled(dev_priv, pipe);
  1554. reg = DSPCNTR(plane);
  1555. val = I915_READ(reg);
  1556. if (val & DISPLAY_PLANE_ENABLE)
  1557. return;
  1558. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1559. intel_flush_display_plane(dev_priv, plane);
  1560. intel_wait_for_vblank(dev_priv->dev, pipe);
  1561. }
  1562. /**
  1563. * intel_disable_plane - disable a display plane
  1564. * @dev_priv: i915 private structure
  1565. * @plane: plane to disable
  1566. * @pipe: pipe consuming the data
  1567. *
  1568. * Disable @plane; should be an independent operation.
  1569. */
  1570. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1571. enum plane plane, enum pipe pipe)
  1572. {
  1573. int reg;
  1574. u32 val;
  1575. reg = DSPCNTR(plane);
  1576. val = I915_READ(reg);
  1577. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1578. return;
  1579. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1580. intel_flush_display_plane(dev_priv, plane);
  1581. intel_wait_for_vblank(dev_priv->dev, pipe);
  1582. }
  1583. static bool need_vtd_wa(struct drm_device *dev)
  1584. {
  1585. #ifdef CONFIG_INTEL_IOMMU
  1586. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1587. return true;
  1588. #endif
  1589. return false;
  1590. }
  1591. int
  1592. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1593. struct drm_i915_gem_object *obj,
  1594. struct intel_ring_buffer *pipelined)
  1595. {
  1596. struct drm_i915_private *dev_priv = dev->dev_private;
  1597. u32 alignment;
  1598. int ret;
  1599. switch (obj->tiling_mode) {
  1600. case I915_TILING_NONE:
  1601. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1602. alignment = 128 * 1024;
  1603. else if (INTEL_INFO(dev)->gen >= 4)
  1604. alignment = 4 * 1024;
  1605. else
  1606. alignment = 64 * 1024;
  1607. break;
  1608. case I915_TILING_X:
  1609. /* pin() will align the object as required by fence */
  1610. alignment = 0;
  1611. break;
  1612. case I915_TILING_Y:
  1613. /* Despite that we check this in framebuffer_init userspace can
  1614. * screw us over and change the tiling after the fact. Only
  1615. * pinned buffers can't change their tiling. */
  1616. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1617. return -EINVAL;
  1618. default:
  1619. BUG();
  1620. }
  1621. /* Note that the w/a also requires 64 PTE of padding following the
  1622. * bo. We currently fill all unused PTE with the shadow page and so
  1623. * we should always have valid PTE following the scanout preventing
  1624. * the VT-d warning.
  1625. */
  1626. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1627. alignment = 256 * 1024;
  1628. dev_priv->mm.interruptible = false;
  1629. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1630. if (ret)
  1631. goto err_interruptible;
  1632. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1633. * fence, whereas 965+ only requires a fence if using
  1634. * framebuffer compression. For simplicity, we always install
  1635. * a fence as the cost is not that onerous.
  1636. */
  1637. ret = i915_gem_object_get_fence(obj);
  1638. if (ret)
  1639. goto err_unpin;
  1640. i915_gem_object_pin_fence(obj);
  1641. dev_priv->mm.interruptible = true;
  1642. return 0;
  1643. err_unpin:
  1644. i915_gem_object_unpin_from_display_plane(obj);
  1645. err_interruptible:
  1646. dev_priv->mm.interruptible = true;
  1647. return ret;
  1648. }
  1649. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1650. {
  1651. i915_gem_object_unpin_fence(obj);
  1652. i915_gem_object_unpin_from_display_plane(obj);
  1653. }
  1654. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1655. * is assumed to be a power-of-two. */
  1656. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1657. unsigned int tiling_mode,
  1658. unsigned int cpp,
  1659. unsigned int pitch)
  1660. {
  1661. if (tiling_mode != I915_TILING_NONE) {
  1662. unsigned int tile_rows, tiles;
  1663. tile_rows = *y / 8;
  1664. *y %= 8;
  1665. tiles = *x / (512/cpp);
  1666. *x %= 512/cpp;
  1667. return tile_rows * pitch * 8 + tiles * 4096;
  1668. } else {
  1669. unsigned int offset;
  1670. offset = *y * pitch + *x * cpp;
  1671. *y = 0;
  1672. *x = (offset & 4095) / cpp;
  1673. return offset & -4096;
  1674. }
  1675. }
  1676. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1677. int x, int y)
  1678. {
  1679. struct drm_device *dev = crtc->dev;
  1680. struct drm_i915_private *dev_priv = dev->dev_private;
  1681. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1682. struct intel_framebuffer *intel_fb;
  1683. struct drm_i915_gem_object *obj;
  1684. int plane = intel_crtc->plane;
  1685. unsigned long linear_offset;
  1686. u32 dspcntr;
  1687. u32 reg;
  1688. switch (plane) {
  1689. case 0:
  1690. case 1:
  1691. break;
  1692. default:
  1693. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1694. return -EINVAL;
  1695. }
  1696. intel_fb = to_intel_framebuffer(fb);
  1697. obj = intel_fb->obj;
  1698. reg = DSPCNTR(plane);
  1699. dspcntr = I915_READ(reg);
  1700. /* Mask out pixel format bits in case we change it */
  1701. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1702. switch (fb->pixel_format) {
  1703. case DRM_FORMAT_C8:
  1704. dspcntr |= DISPPLANE_8BPP;
  1705. break;
  1706. case DRM_FORMAT_XRGB1555:
  1707. case DRM_FORMAT_ARGB1555:
  1708. dspcntr |= DISPPLANE_BGRX555;
  1709. break;
  1710. case DRM_FORMAT_RGB565:
  1711. dspcntr |= DISPPLANE_BGRX565;
  1712. break;
  1713. case DRM_FORMAT_XRGB8888:
  1714. case DRM_FORMAT_ARGB8888:
  1715. dspcntr |= DISPPLANE_BGRX888;
  1716. break;
  1717. case DRM_FORMAT_XBGR8888:
  1718. case DRM_FORMAT_ABGR8888:
  1719. dspcntr |= DISPPLANE_RGBX888;
  1720. break;
  1721. case DRM_FORMAT_XRGB2101010:
  1722. case DRM_FORMAT_ARGB2101010:
  1723. dspcntr |= DISPPLANE_BGRX101010;
  1724. break;
  1725. case DRM_FORMAT_XBGR2101010:
  1726. case DRM_FORMAT_ABGR2101010:
  1727. dspcntr |= DISPPLANE_RGBX101010;
  1728. break;
  1729. default:
  1730. BUG();
  1731. }
  1732. if (INTEL_INFO(dev)->gen >= 4) {
  1733. if (obj->tiling_mode != I915_TILING_NONE)
  1734. dspcntr |= DISPPLANE_TILED;
  1735. else
  1736. dspcntr &= ~DISPPLANE_TILED;
  1737. }
  1738. if (IS_G4X(dev))
  1739. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1740. I915_WRITE(reg, dspcntr);
  1741. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1742. if (INTEL_INFO(dev)->gen >= 4) {
  1743. intel_crtc->dspaddr_offset =
  1744. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1745. fb->bits_per_pixel / 8,
  1746. fb->pitches[0]);
  1747. linear_offset -= intel_crtc->dspaddr_offset;
  1748. } else {
  1749. intel_crtc->dspaddr_offset = linear_offset;
  1750. }
  1751. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1752. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1753. fb->pitches[0]);
  1754. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1755. if (INTEL_INFO(dev)->gen >= 4) {
  1756. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1757. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1758. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1759. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1760. } else
  1761. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1762. POSTING_READ(reg);
  1763. return 0;
  1764. }
  1765. static int ironlake_update_plane(struct drm_crtc *crtc,
  1766. struct drm_framebuffer *fb, int x, int y)
  1767. {
  1768. struct drm_device *dev = crtc->dev;
  1769. struct drm_i915_private *dev_priv = dev->dev_private;
  1770. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1771. struct intel_framebuffer *intel_fb;
  1772. struct drm_i915_gem_object *obj;
  1773. int plane = intel_crtc->plane;
  1774. unsigned long linear_offset;
  1775. u32 dspcntr;
  1776. u32 reg;
  1777. switch (plane) {
  1778. case 0:
  1779. case 1:
  1780. case 2:
  1781. break;
  1782. default:
  1783. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1784. return -EINVAL;
  1785. }
  1786. intel_fb = to_intel_framebuffer(fb);
  1787. obj = intel_fb->obj;
  1788. reg = DSPCNTR(plane);
  1789. dspcntr = I915_READ(reg);
  1790. /* Mask out pixel format bits in case we change it */
  1791. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1792. switch (fb->pixel_format) {
  1793. case DRM_FORMAT_C8:
  1794. dspcntr |= DISPPLANE_8BPP;
  1795. break;
  1796. case DRM_FORMAT_RGB565:
  1797. dspcntr |= DISPPLANE_BGRX565;
  1798. break;
  1799. case DRM_FORMAT_XRGB8888:
  1800. case DRM_FORMAT_ARGB8888:
  1801. dspcntr |= DISPPLANE_BGRX888;
  1802. break;
  1803. case DRM_FORMAT_XBGR8888:
  1804. case DRM_FORMAT_ABGR8888:
  1805. dspcntr |= DISPPLANE_RGBX888;
  1806. break;
  1807. case DRM_FORMAT_XRGB2101010:
  1808. case DRM_FORMAT_ARGB2101010:
  1809. dspcntr |= DISPPLANE_BGRX101010;
  1810. break;
  1811. case DRM_FORMAT_XBGR2101010:
  1812. case DRM_FORMAT_ABGR2101010:
  1813. dspcntr |= DISPPLANE_RGBX101010;
  1814. break;
  1815. default:
  1816. BUG();
  1817. }
  1818. if (obj->tiling_mode != I915_TILING_NONE)
  1819. dspcntr |= DISPPLANE_TILED;
  1820. else
  1821. dspcntr &= ~DISPPLANE_TILED;
  1822. if (IS_HASWELL(dev))
  1823. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1824. else
  1825. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1826. I915_WRITE(reg, dspcntr);
  1827. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1828. intel_crtc->dspaddr_offset =
  1829. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1830. fb->bits_per_pixel / 8,
  1831. fb->pitches[0]);
  1832. linear_offset -= intel_crtc->dspaddr_offset;
  1833. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1834. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1835. fb->pitches[0]);
  1836. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1837. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1838. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1839. if (IS_HASWELL(dev)) {
  1840. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1841. } else {
  1842. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1843. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1844. }
  1845. POSTING_READ(reg);
  1846. return 0;
  1847. }
  1848. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1849. static int
  1850. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1851. int x, int y, enum mode_set_atomic state)
  1852. {
  1853. struct drm_device *dev = crtc->dev;
  1854. struct drm_i915_private *dev_priv = dev->dev_private;
  1855. if (dev_priv->display.disable_fbc)
  1856. dev_priv->display.disable_fbc(dev);
  1857. intel_increase_pllclock(crtc);
  1858. return dev_priv->display.update_plane(crtc, fb, x, y);
  1859. }
  1860. void intel_display_handle_reset(struct drm_device *dev)
  1861. {
  1862. struct drm_i915_private *dev_priv = dev->dev_private;
  1863. struct drm_crtc *crtc;
  1864. /*
  1865. * Flips in the rings have been nuked by the reset,
  1866. * so complete all pending flips so that user space
  1867. * will get its events and not get stuck.
  1868. *
  1869. * Also update the base address of all primary
  1870. * planes to the the last fb to make sure we're
  1871. * showing the correct fb after a reset.
  1872. *
  1873. * Need to make two loops over the crtcs so that we
  1874. * don't try to grab a crtc mutex before the
  1875. * pending_flip_queue really got woken up.
  1876. */
  1877. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1879. enum plane plane = intel_crtc->plane;
  1880. intel_prepare_page_flip(dev, plane);
  1881. intel_finish_page_flip_plane(dev, plane);
  1882. }
  1883. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1885. mutex_lock(&crtc->mutex);
  1886. if (intel_crtc->active)
  1887. dev_priv->display.update_plane(crtc, crtc->fb,
  1888. crtc->x, crtc->y);
  1889. mutex_unlock(&crtc->mutex);
  1890. }
  1891. }
  1892. static int
  1893. intel_finish_fb(struct drm_framebuffer *old_fb)
  1894. {
  1895. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1896. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1897. bool was_interruptible = dev_priv->mm.interruptible;
  1898. int ret;
  1899. /* Big Hammer, we also need to ensure that any pending
  1900. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1901. * current scanout is retired before unpinning the old
  1902. * framebuffer.
  1903. *
  1904. * This should only fail upon a hung GPU, in which case we
  1905. * can safely continue.
  1906. */
  1907. dev_priv->mm.interruptible = false;
  1908. ret = i915_gem_object_finish_gpu(obj);
  1909. dev_priv->mm.interruptible = was_interruptible;
  1910. return ret;
  1911. }
  1912. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1913. {
  1914. struct drm_device *dev = crtc->dev;
  1915. struct drm_i915_master_private *master_priv;
  1916. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1917. if (!dev->primary->master)
  1918. return;
  1919. master_priv = dev->primary->master->driver_priv;
  1920. if (!master_priv->sarea_priv)
  1921. return;
  1922. switch (intel_crtc->pipe) {
  1923. case 0:
  1924. master_priv->sarea_priv->pipeA_x = x;
  1925. master_priv->sarea_priv->pipeA_y = y;
  1926. break;
  1927. case 1:
  1928. master_priv->sarea_priv->pipeB_x = x;
  1929. master_priv->sarea_priv->pipeB_y = y;
  1930. break;
  1931. default:
  1932. break;
  1933. }
  1934. }
  1935. static int
  1936. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1937. struct drm_framebuffer *fb)
  1938. {
  1939. struct drm_device *dev = crtc->dev;
  1940. struct drm_i915_private *dev_priv = dev->dev_private;
  1941. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1942. struct drm_framebuffer *old_fb;
  1943. int ret;
  1944. /* no fb bound */
  1945. if (!fb) {
  1946. DRM_ERROR("No FB bound\n");
  1947. return 0;
  1948. }
  1949. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1950. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1951. plane_name(intel_crtc->plane),
  1952. INTEL_INFO(dev)->num_pipes);
  1953. return -EINVAL;
  1954. }
  1955. mutex_lock(&dev->struct_mutex);
  1956. ret = intel_pin_and_fence_fb_obj(dev,
  1957. to_intel_framebuffer(fb)->obj,
  1958. NULL);
  1959. if (ret != 0) {
  1960. mutex_unlock(&dev->struct_mutex);
  1961. DRM_ERROR("pin & fence failed\n");
  1962. return ret;
  1963. }
  1964. /* Update pipe size and adjust fitter if needed */
  1965. if (i915_fastboot) {
  1966. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1967. ((crtc->mode.hdisplay - 1) << 16) |
  1968. (crtc->mode.vdisplay - 1));
  1969. if (!intel_crtc->config.pch_pfit.enabled &&
  1970. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1971. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1972. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1973. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1974. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1975. }
  1976. }
  1977. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1978. if (ret) {
  1979. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1980. mutex_unlock(&dev->struct_mutex);
  1981. DRM_ERROR("failed to update base address\n");
  1982. return ret;
  1983. }
  1984. old_fb = crtc->fb;
  1985. crtc->fb = fb;
  1986. crtc->x = x;
  1987. crtc->y = y;
  1988. if (old_fb) {
  1989. if (intel_crtc->active && old_fb != fb)
  1990. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1991. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1992. }
  1993. intel_update_fbc(dev);
  1994. intel_edp_psr_update(dev);
  1995. mutex_unlock(&dev->struct_mutex);
  1996. intel_crtc_update_sarea_pos(crtc, x, y);
  1997. return 0;
  1998. }
  1999. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2000. {
  2001. struct drm_device *dev = crtc->dev;
  2002. struct drm_i915_private *dev_priv = dev->dev_private;
  2003. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2004. int pipe = intel_crtc->pipe;
  2005. u32 reg, temp;
  2006. /* enable normal train */
  2007. reg = FDI_TX_CTL(pipe);
  2008. temp = I915_READ(reg);
  2009. if (IS_IVYBRIDGE(dev)) {
  2010. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2011. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2012. } else {
  2013. temp &= ~FDI_LINK_TRAIN_NONE;
  2014. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2015. }
  2016. I915_WRITE(reg, temp);
  2017. reg = FDI_RX_CTL(pipe);
  2018. temp = I915_READ(reg);
  2019. if (HAS_PCH_CPT(dev)) {
  2020. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2021. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2022. } else {
  2023. temp &= ~FDI_LINK_TRAIN_NONE;
  2024. temp |= FDI_LINK_TRAIN_NONE;
  2025. }
  2026. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2027. /* wait one idle pattern time */
  2028. POSTING_READ(reg);
  2029. udelay(1000);
  2030. /* IVB wants error correction enabled */
  2031. if (IS_IVYBRIDGE(dev))
  2032. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2033. FDI_FE_ERRC_ENABLE);
  2034. }
  2035. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2036. {
  2037. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2038. }
  2039. static void ivb_modeset_global_resources(struct drm_device *dev)
  2040. {
  2041. struct drm_i915_private *dev_priv = dev->dev_private;
  2042. struct intel_crtc *pipe_B_crtc =
  2043. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2044. struct intel_crtc *pipe_C_crtc =
  2045. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2046. uint32_t temp;
  2047. /*
  2048. * When everything is off disable fdi C so that we could enable fdi B
  2049. * with all lanes. Note that we don't care about enabled pipes without
  2050. * an enabled pch encoder.
  2051. */
  2052. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2053. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2054. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2055. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2056. temp = I915_READ(SOUTH_CHICKEN1);
  2057. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2058. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2059. I915_WRITE(SOUTH_CHICKEN1, temp);
  2060. }
  2061. }
  2062. /* The FDI link training functions for ILK/Ibexpeak. */
  2063. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2064. {
  2065. struct drm_device *dev = crtc->dev;
  2066. struct drm_i915_private *dev_priv = dev->dev_private;
  2067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2068. int pipe = intel_crtc->pipe;
  2069. int plane = intel_crtc->plane;
  2070. u32 reg, temp, tries;
  2071. /* FDI needs bits from pipe & plane first */
  2072. assert_pipe_enabled(dev_priv, pipe);
  2073. assert_plane_enabled(dev_priv, plane);
  2074. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2075. for train result */
  2076. reg = FDI_RX_IMR(pipe);
  2077. temp = I915_READ(reg);
  2078. temp &= ~FDI_RX_SYMBOL_LOCK;
  2079. temp &= ~FDI_RX_BIT_LOCK;
  2080. I915_WRITE(reg, temp);
  2081. I915_READ(reg);
  2082. udelay(150);
  2083. /* enable CPU FDI TX and PCH FDI RX */
  2084. reg = FDI_TX_CTL(pipe);
  2085. temp = I915_READ(reg);
  2086. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2087. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2088. temp &= ~FDI_LINK_TRAIN_NONE;
  2089. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2090. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2091. reg = FDI_RX_CTL(pipe);
  2092. temp = I915_READ(reg);
  2093. temp &= ~FDI_LINK_TRAIN_NONE;
  2094. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2095. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2096. POSTING_READ(reg);
  2097. udelay(150);
  2098. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2099. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2100. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2101. FDI_RX_PHASE_SYNC_POINTER_EN);
  2102. reg = FDI_RX_IIR(pipe);
  2103. for (tries = 0; tries < 5; tries++) {
  2104. temp = I915_READ(reg);
  2105. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2106. if ((temp & FDI_RX_BIT_LOCK)) {
  2107. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2108. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2109. break;
  2110. }
  2111. }
  2112. if (tries == 5)
  2113. DRM_ERROR("FDI train 1 fail!\n");
  2114. /* Train 2 */
  2115. reg = FDI_TX_CTL(pipe);
  2116. temp = I915_READ(reg);
  2117. temp &= ~FDI_LINK_TRAIN_NONE;
  2118. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2119. I915_WRITE(reg, temp);
  2120. reg = FDI_RX_CTL(pipe);
  2121. temp = I915_READ(reg);
  2122. temp &= ~FDI_LINK_TRAIN_NONE;
  2123. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2124. I915_WRITE(reg, temp);
  2125. POSTING_READ(reg);
  2126. udelay(150);
  2127. reg = FDI_RX_IIR(pipe);
  2128. for (tries = 0; tries < 5; tries++) {
  2129. temp = I915_READ(reg);
  2130. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2131. if (temp & FDI_RX_SYMBOL_LOCK) {
  2132. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2133. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2134. break;
  2135. }
  2136. }
  2137. if (tries == 5)
  2138. DRM_ERROR("FDI train 2 fail!\n");
  2139. DRM_DEBUG_KMS("FDI train done\n");
  2140. }
  2141. static const int snb_b_fdi_train_param[] = {
  2142. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2143. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2144. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2145. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2146. };
  2147. /* The FDI link training functions for SNB/Cougarpoint. */
  2148. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2149. {
  2150. struct drm_device *dev = crtc->dev;
  2151. struct drm_i915_private *dev_priv = dev->dev_private;
  2152. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2153. int pipe = intel_crtc->pipe;
  2154. u32 reg, temp, i, retry;
  2155. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2156. for train result */
  2157. reg = FDI_RX_IMR(pipe);
  2158. temp = I915_READ(reg);
  2159. temp &= ~FDI_RX_SYMBOL_LOCK;
  2160. temp &= ~FDI_RX_BIT_LOCK;
  2161. I915_WRITE(reg, temp);
  2162. POSTING_READ(reg);
  2163. udelay(150);
  2164. /* enable CPU FDI TX and PCH FDI RX */
  2165. reg = FDI_TX_CTL(pipe);
  2166. temp = I915_READ(reg);
  2167. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2168. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2169. temp &= ~FDI_LINK_TRAIN_NONE;
  2170. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2171. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2172. /* SNB-B */
  2173. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2174. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2175. I915_WRITE(FDI_RX_MISC(pipe),
  2176. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2177. reg = FDI_RX_CTL(pipe);
  2178. temp = I915_READ(reg);
  2179. if (HAS_PCH_CPT(dev)) {
  2180. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2181. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2182. } else {
  2183. temp &= ~FDI_LINK_TRAIN_NONE;
  2184. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2185. }
  2186. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2187. POSTING_READ(reg);
  2188. udelay(150);
  2189. for (i = 0; i < 4; i++) {
  2190. reg = FDI_TX_CTL(pipe);
  2191. temp = I915_READ(reg);
  2192. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2193. temp |= snb_b_fdi_train_param[i];
  2194. I915_WRITE(reg, temp);
  2195. POSTING_READ(reg);
  2196. udelay(500);
  2197. for (retry = 0; retry < 5; retry++) {
  2198. reg = FDI_RX_IIR(pipe);
  2199. temp = I915_READ(reg);
  2200. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2201. if (temp & FDI_RX_BIT_LOCK) {
  2202. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2203. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2204. break;
  2205. }
  2206. udelay(50);
  2207. }
  2208. if (retry < 5)
  2209. break;
  2210. }
  2211. if (i == 4)
  2212. DRM_ERROR("FDI train 1 fail!\n");
  2213. /* Train 2 */
  2214. reg = FDI_TX_CTL(pipe);
  2215. temp = I915_READ(reg);
  2216. temp &= ~FDI_LINK_TRAIN_NONE;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2218. if (IS_GEN6(dev)) {
  2219. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2220. /* SNB-B */
  2221. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2222. }
  2223. I915_WRITE(reg, temp);
  2224. reg = FDI_RX_CTL(pipe);
  2225. temp = I915_READ(reg);
  2226. if (HAS_PCH_CPT(dev)) {
  2227. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2228. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2229. } else {
  2230. temp &= ~FDI_LINK_TRAIN_NONE;
  2231. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2232. }
  2233. I915_WRITE(reg, temp);
  2234. POSTING_READ(reg);
  2235. udelay(150);
  2236. for (i = 0; i < 4; i++) {
  2237. reg = FDI_TX_CTL(pipe);
  2238. temp = I915_READ(reg);
  2239. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2240. temp |= snb_b_fdi_train_param[i];
  2241. I915_WRITE(reg, temp);
  2242. POSTING_READ(reg);
  2243. udelay(500);
  2244. for (retry = 0; retry < 5; retry++) {
  2245. reg = FDI_RX_IIR(pipe);
  2246. temp = I915_READ(reg);
  2247. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2248. if (temp & FDI_RX_SYMBOL_LOCK) {
  2249. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2250. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2251. break;
  2252. }
  2253. udelay(50);
  2254. }
  2255. if (retry < 5)
  2256. break;
  2257. }
  2258. if (i == 4)
  2259. DRM_ERROR("FDI train 2 fail!\n");
  2260. DRM_DEBUG_KMS("FDI train done.\n");
  2261. }
  2262. /* Manual link training for Ivy Bridge A0 parts */
  2263. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2264. {
  2265. struct drm_device *dev = crtc->dev;
  2266. struct drm_i915_private *dev_priv = dev->dev_private;
  2267. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2268. int pipe = intel_crtc->pipe;
  2269. u32 reg, temp, i, j;
  2270. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2271. for train result */
  2272. reg = FDI_RX_IMR(pipe);
  2273. temp = I915_READ(reg);
  2274. temp &= ~FDI_RX_SYMBOL_LOCK;
  2275. temp &= ~FDI_RX_BIT_LOCK;
  2276. I915_WRITE(reg, temp);
  2277. POSTING_READ(reg);
  2278. udelay(150);
  2279. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2280. I915_READ(FDI_RX_IIR(pipe)));
  2281. /* Try each vswing and preemphasis setting twice before moving on */
  2282. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2283. /* disable first in case we need to retry */
  2284. reg = FDI_TX_CTL(pipe);
  2285. temp = I915_READ(reg);
  2286. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2287. temp &= ~FDI_TX_ENABLE;
  2288. I915_WRITE(reg, temp);
  2289. reg = FDI_RX_CTL(pipe);
  2290. temp = I915_READ(reg);
  2291. temp &= ~FDI_LINK_TRAIN_AUTO;
  2292. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2293. temp &= ~FDI_RX_ENABLE;
  2294. I915_WRITE(reg, temp);
  2295. /* enable CPU FDI TX and PCH FDI RX */
  2296. reg = FDI_TX_CTL(pipe);
  2297. temp = I915_READ(reg);
  2298. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2299. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2300. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2301. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2302. temp |= snb_b_fdi_train_param[j/2];
  2303. temp |= FDI_COMPOSITE_SYNC;
  2304. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2305. I915_WRITE(FDI_RX_MISC(pipe),
  2306. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2307. reg = FDI_RX_CTL(pipe);
  2308. temp = I915_READ(reg);
  2309. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2310. temp |= FDI_COMPOSITE_SYNC;
  2311. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2312. POSTING_READ(reg);
  2313. udelay(1); /* should be 0.5us */
  2314. for (i = 0; i < 4; i++) {
  2315. reg = FDI_RX_IIR(pipe);
  2316. temp = I915_READ(reg);
  2317. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2318. if (temp & FDI_RX_BIT_LOCK ||
  2319. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2320. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2321. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2322. i);
  2323. break;
  2324. }
  2325. udelay(1); /* should be 0.5us */
  2326. }
  2327. if (i == 4) {
  2328. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2329. continue;
  2330. }
  2331. /* Train 2 */
  2332. reg = FDI_TX_CTL(pipe);
  2333. temp = I915_READ(reg);
  2334. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2335. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2336. I915_WRITE(reg, temp);
  2337. reg = FDI_RX_CTL(pipe);
  2338. temp = I915_READ(reg);
  2339. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2340. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2341. I915_WRITE(reg, temp);
  2342. POSTING_READ(reg);
  2343. udelay(2); /* should be 1.5us */
  2344. for (i = 0; i < 4; i++) {
  2345. reg = FDI_RX_IIR(pipe);
  2346. temp = I915_READ(reg);
  2347. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2348. if (temp & FDI_RX_SYMBOL_LOCK ||
  2349. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2350. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2351. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2352. i);
  2353. goto train_done;
  2354. }
  2355. udelay(2); /* should be 1.5us */
  2356. }
  2357. if (i == 4)
  2358. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2359. }
  2360. train_done:
  2361. DRM_DEBUG_KMS("FDI train done.\n");
  2362. }
  2363. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2364. {
  2365. struct drm_device *dev = intel_crtc->base.dev;
  2366. struct drm_i915_private *dev_priv = dev->dev_private;
  2367. int pipe = intel_crtc->pipe;
  2368. u32 reg, temp;
  2369. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2370. reg = FDI_RX_CTL(pipe);
  2371. temp = I915_READ(reg);
  2372. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2373. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2374. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2375. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2376. POSTING_READ(reg);
  2377. udelay(200);
  2378. /* Switch from Rawclk to PCDclk */
  2379. temp = I915_READ(reg);
  2380. I915_WRITE(reg, temp | FDI_PCDCLK);
  2381. POSTING_READ(reg);
  2382. udelay(200);
  2383. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2384. reg = FDI_TX_CTL(pipe);
  2385. temp = I915_READ(reg);
  2386. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2387. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2388. POSTING_READ(reg);
  2389. udelay(100);
  2390. }
  2391. }
  2392. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2393. {
  2394. struct drm_device *dev = intel_crtc->base.dev;
  2395. struct drm_i915_private *dev_priv = dev->dev_private;
  2396. int pipe = intel_crtc->pipe;
  2397. u32 reg, temp;
  2398. /* Switch from PCDclk to Rawclk */
  2399. reg = FDI_RX_CTL(pipe);
  2400. temp = I915_READ(reg);
  2401. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2402. /* Disable CPU FDI TX PLL */
  2403. reg = FDI_TX_CTL(pipe);
  2404. temp = I915_READ(reg);
  2405. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2406. POSTING_READ(reg);
  2407. udelay(100);
  2408. reg = FDI_RX_CTL(pipe);
  2409. temp = I915_READ(reg);
  2410. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2411. /* Wait for the clocks to turn off. */
  2412. POSTING_READ(reg);
  2413. udelay(100);
  2414. }
  2415. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2416. {
  2417. struct drm_device *dev = crtc->dev;
  2418. struct drm_i915_private *dev_priv = dev->dev_private;
  2419. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2420. int pipe = intel_crtc->pipe;
  2421. u32 reg, temp;
  2422. /* disable CPU FDI tx and PCH FDI rx */
  2423. reg = FDI_TX_CTL(pipe);
  2424. temp = I915_READ(reg);
  2425. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2426. POSTING_READ(reg);
  2427. reg = FDI_RX_CTL(pipe);
  2428. temp = I915_READ(reg);
  2429. temp &= ~(0x7 << 16);
  2430. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2431. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2432. POSTING_READ(reg);
  2433. udelay(100);
  2434. /* Ironlake workaround, disable clock pointer after downing FDI */
  2435. if (HAS_PCH_IBX(dev)) {
  2436. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2437. }
  2438. /* still set train pattern 1 */
  2439. reg = FDI_TX_CTL(pipe);
  2440. temp = I915_READ(reg);
  2441. temp &= ~FDI_LINK_TRAIN_NONE;
  2442. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2443. I915_WRITE(reg, temp);
  2444. reg = FDI_RX_CTL(pipe);
  2445. temp = I915_READ(reg);
  2446. if (HAS_PCH_CPT(dev)) {
  2447. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2448. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2449. } else {
  2450. temp &= ~FDI_LINK_TRAIN_NONE;
  2451. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2452. }
  2453. /* BPC in FDI rx is consistent with that in PIPECONF */
  2454. temp &= ~(0x07 << 16);
  2455. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2456. I915_WRITE(reg, temp);
  2457. POSTING_READ(reg);
  2458. udelay(100);
  2459. }
  2460. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2461. {
  2462. struct drm_device *dev = crtc->dev;
  2463. struct drm_i915_private *dev_priv = dev->dev_private;
  2464. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2465. unsigned long flags;
  2466. bool pending;
  2467. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2468. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2469. return false;
  2470. spin_lock_irqsave(&dev->event_lock, flags);
  2471. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2472. spin_unlock_irqrestore(&dev->event_lock, flags);
  2473. return pending;
  2474. }
  2475. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2476. {
  2477. struct drm_device *dev = crtc->dev;
  2478. struct drm_i915_private *dev_priv = dev->dev_private;
  2479. if (crtc->fb == NULL)
  2480. return;
  2481. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2482. wait_event(dev_priv->pending_flip_queue,
  2483. !intel_crtc_has_pending_flip(crtc));
  2484. mutex_lock(&dev->struct_mutex);
  2485. intel_finish_fb(crtc->fb);
  2486. mutex_unlock(&dev->struct_mutex);
  2487. }
  2488. /* Program iCLKIP clock to the desired frequency */
  2489. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2490. {
  2491. struct drm_device *dev = crtc->dev;
  2492. struct drm_i915_private *dev_priv = dev->dev_private;
  2493. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2494. u32 temp;
  2495. mutex_lock(&dev_priv->dpio_lock);
  2496. /* It is necessary to ungate the pixclk gate prior to programming
  2497. * the divisors, and gate it back when it is done.
  2498. */
  2499. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2500. /* Disable SSCCTL */
  2501. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2502. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2503. SBI_SSCCTL_DISABLE,
  2504. SBI_ICLK);
  2505. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2506. if (crtc->mode.clock == 20000) {
  2507. auxdiv = 1;
  2508. divsel = 0x41;
  2509. phaseinc = 0x20;
  2510. } else {
  2511. /* The iCLK virtual clock root frequency is in MHz,
  2512. * but the crtc->mode.clock in in KHz. To get the divisors,
  2513. * it is necessary to divide one by another, so we
  2514. * convert the virtual clock precision to KHz here for higher
  2515. * precision.
  2516. */
  2517. u32 iclk_virtual_root_freq = 172800 * 1000;
  2518. u32 iclk_pi_range = 64;
  2519. u32 desired_divisor, msb_divisor_value, pi_value;
  2520. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2521. msb_divisor_value = desired_divisor / iclk_pi_range;
  2522. pi_value = desired_divisor % iclk_pi_range;
  2523. auxdiv = 0;
  2524. divsel = msb_divisor_value - 2;
  2525. phaseinc = pi_value;
  2526. }
  2527. /* This should not happen with any sane values */
  2528. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2529. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2530. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2531. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2532. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2533. crtc->mode.clock,
  2534. auxdiv,
  2535. divsel,
  2536. phasedir,
  2537. phaseinc);
  2538. /* Program SSCDIVINTPHASE6 */
  2539. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2540. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2541. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2542. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2543. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2544. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2545. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2546. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2547. /* Program SSCAUXDIV */
  2548. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2549. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2550. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2551. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2552. /* Enable modulator and associated divider */
  2553. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2554. temp &= ~SBI_SSCCTL_DISABLE;
  2555. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2556. /* Wait for initialization time */
  2557. udelay(24);
  2558. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2559. mutex_unlock(&dev_priv->dpio_lock);
  2560. }
  2561. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2562. enum pipe pch_transcoder)
  2563. {
  2564. struct drm_device *dev = crtc->base.dev;
  2565. struct drm_i915_private *dev_priv = dev->dev_private;
  2566. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2567. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2568. I915_READ(HTOTAL(cpu_transcoder)));
  2569. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2570. I915_READ(HBLANK(cpu_transcoder)));
  2571. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2572. I915_READ(HSYNC(cpu_transcoder)));
  2573. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2574. I915_READ(VTOTAL(cpu_transcoder)));
  2575. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2576. I915_READ(VBLANK(cpu_transcoder)));
  2577. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2578. I915_READ(VSYNC(cpu_transcoder)));
  2579. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2580. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2581. }
  2582. /*
  2583. * Enable PCH resources required for PCH ports:
  2584. * - PCH PLLs
  2585. * - FDI training & RX/TX
  2586. * - update transcoder timings
  2587. * - DP transcoding bits
  2588. * - transcoder
  2589. */
  2590. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2591. {
  2592. struct drm_device *dev = crtc->dev;
  2593. struct drm_i915_private *dev_priv = dev->dev_private;
  2594. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2595. int pipe = intel_crtc->pipe;
  2596. u32 reg, temp;
  2597. assert_pch_transcoder_disabled(dev_priv, pipe);
  2598. /* Write the TU size bits before fdi link training, so that error
  2599. * detection works. */
  2600. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2601. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2602. /* For PCH output, training FDI link */
  2603. dev_priv->display.fdi_link_train(crtc);
  2604. /* We need to program the right clock selection before writing the pixel
  2605. * mutliplier into the DPLL. */
  2606. if (HAS_PCH_CPT(dev)) {
  2607. u32 sel;
  2608. temp = I915_READ(PCH_DPLL_SEL);
  2609. temp |= TRANS_DPLL_ENABLE(pipe);
  2610. sel = TRANS_DPLLB_SEL(pipe);
  2611. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2612. temp |= sel;
  2613. else
  2614. temp &= ~sel;
  2615. I915_WRITE(PCH_DPLL_SEL, temp);
  2616. }
  2617. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2618. * transcoder, and we actually should do this to not upset any PCH
  2619. * transcoder that already use the clock when we share it.
  2620. *
  2621. * Note that enable_shared_dpll tries to do the right thing, but
  2622. * get_shared_dpll unconditionally resets the pll - we need that to have
  2623. * the right LVDS enable sequence. */
  2624. ironlake_enable_shared_dpll(intel_crtc);
  2625. /* set transcoder timing, panel must allow it */
  2626. assert_panel_unlocked(dev_priv, pipe);
  2627. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2628. intel_fdi_normal_train(crtc);
  2629. /* For PCH DP, enable TRANS_DP_CTL */
  2630. if (HAS_PCH_CPT(dev) &&
  2631. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2632. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2633. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2634. reg = TRANS_DP_CTL(pipe);
  2635. temp = I915_READ(reg);
  2636. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2637. TRANS_DP_SYNC_MASK |
  2638. TRANS_DP_BPC_MASK);
  2639. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2640. TRANS_DP_ENH_FRAMING);
  2641. temp |= bpc << 9; /* same format but at 11:9 */
  2642. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2643. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2644. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2645. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2646. switch (intel_trans_dp_port_sel(crtc)) {
  2647. case PCH_DP_B:
  2648. temp |= TRANS_DP_PORT_SEL_B;
  2649. break;
  2650. case PCH_DP_C:
  2651. temp |= TRANS_DP_PORT_SEL_C;
  2652. break;
  2653. case PCH_DP_D:
  2654. temp |= TRANS_DP_PORT_SEL_D;
  2655. break;
  2656. default:
  2657. BUG();
  2658. }
  2659. I915_WRITE(reg, temp);
  2660. }
  2661. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2662. }
  2663. static void lpt_pch_enable(struct drm_crtc *crtc)
  2664. {
  2665. struct drm_device *dev = crtc->dev;
  2666. struct drm_i915_private *dev_priv = dev->dev_private;
  2667. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2668. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2669. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2670. lpt_program_iclkip(crtc);
  2671. /* Set transcoder timing. */
  2672. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2673. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2674. }
  2675. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2676. {
  2677. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2678. if (pll == NULL)
  2679. return;
  2680. if (pll->refcount == 0) {
  2681. WARN(1, "bad %s refcount\n", pll->name);
  2682. return;
  2683. }
  2684. if (--pll->refcount == 0) {
  2685. WARN_ON(pll->on);
  2686. WARN_ON(pll->active);
  2687. }
  2688. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2689. }
  2690. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2691. {
  2692. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2693. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2694. enum intel_dpll_id i;
  2695. if (pll) {
  2696. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2697. crtc->base.base.id, pll->name);
  2698. intel_put_shared_dpll(crtc);
  2699. }
  2700. if (HAS_PCH_IBX(dev_priv->dev)) {
  2701. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2702. i = (enum intel_dpll_id) crtc->pipe;
  2703. pll = &dev_priv->shared_dplls[i];
  2704. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2705. crtc->base.base.id, pll->name);
  2706. goto found;
  2707. }
  2708. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2709. pll = &dev_priv->shared_dplls[i];
  2710. /* Only want to check enabled timings first */
  2711. if (pll->refcount == 0)
  2712. continue;
  2713. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2714. sizeof(pll->hw_state)) == 0) {
  2715. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2716. crtc->base.base.id,
  2717. pll->name, pll->refcount, pll->active);
  2718. goto found;
  2719. }
  2720. }
  2721. /* Ok no matching timings, maybe there's a free one? */
  2722. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2723. pll = &dev_priv->shared_dplls[i];
  2724. if (pll->refcount == 0) {
  2725. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2726. crtc->base.base.id, pll->name);
  2727. goto found;
  2728. }
  2729. }
  2730. return NULL;
  2731. found:
  2732. crtc->config.shared_dpll = i;
  2733. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2734. pipe_name(crtc->pipe));
  2735. if (pll->active == 0) {
  2736. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2737. sizeof(pll->hw_state));
  2738. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2739. WARN_ON(pll->on);
  2740. assert_shared_dpll_disabled(dev_priv, pll);
  2741. pll->mode_set(dev_priv, pll);
  2742. }
  2743. pll->refcount++;
  2744. return pll;
  2745. }
  2746. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2747. {
  2748. struct drm_i915_private *dev_priv = dev->dev_private;
  2749. int dslreg = PIPEDSL(pipe);
  2750. u32 temp;
  2751. temp = I915_READ(dslreg);
  2752. udelay(500);
  2753. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2754. if (wait_for(I915_READ(dslreg) != temp, 5))
  2755. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2756. }
  2757. }
  2758. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2759. {
  2760. struct drm_device *dev = crtc->base.dev;
  2761. struct drm_i915_private *dev_priv = dev->dev_private;
  2762. int pipe = crtc->pipe;
  2763. if (crtc->config.pch_pfit.enabled) {
  2764. /* Force use of hard-coded filter coefficients
  2765. * as some pre-programmed values are broken,
  2766. * e.g. x201.
  2767. */
  2768. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2769. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2770. PF_PIPE_SEL_IVB(pipe));
  2771. else
  2772. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2773. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2774. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2775. }
  2776. }
  2777. static void intel_enable_planes(struct drm_crtc *crtc)
  2778. {
  2779. struct drm_device *dev = crtc->dev;
  2780. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2781. struct intel_plane *intel_plane;
  2782. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2783. if (intel_plane->pipe == pipe)
  2784. intel_plane_restore(&intel_plane->base);
  2785. }
  2786. static void intel_disable_planes(struct drm_crtc *crtc)
  2787. {
  2788. struct drm_device *dev = crtc->dev;
  2789. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2790. struct intel_plane *intel_plane;
  2791. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2792. if (intel_plane->pipe == pipe)
  2793. intel_plane_disable(&intel_plane->base);
  2794. }
  2795. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2796. {
  2797. struct drm_device *dev = crtc->dev;
  2798. struct drm_i915_private *dev_priv = dev->dev_private;
  2799. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2800. struct intel_encoder *encoder;
  2801. int pipe = intel_crtc->pipe;
  2802. int plane = intel_crtc->plane;
  2803. WARN_ON(!crtc->enabled);
  2804. if (intel_crtc->active)
  2805. return;
  2806. intel_crtc->active = true;
  2807. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2808. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2809. intel_update_watermarks(dev);
  2810. for_each_encoder_on_crtc(dev, crtc, encoder)
  2811. if (encoder->pre_enable)
  2812. encoder->pre_enable(encoder);
  2813. if (intel_crtc->config.has_pch_encoder) {
  2814. /* Note: FDI PLL enabling _must_ be done before we enable the
  2815. * cpu pipes, hence this is separate from all the other fdi/pch
  2816. * enabling. */
  2817. ironlake_fdi_pll_enable(intel_crtc);
  2818. } else {
  2819. assert_fdi_tx_disabled(dev_priv, pipe);
  2820. assert_fdi_rx_disabled(dev_priv, pipe);
  2821. }
  2822. ironlake_pfit_enable(intel_crtc);
  2823. /*
  2824. * On ILK+ LUT must be loaded before the pipe is running but with
  2825. * clocks enabled
  2826. */
  2827. intel_crtc_load_lut(crtc);
  2828. intel_enable_pipe(dev_priv, pipe,
  2829. intel_crtc->config.has_pch_encoder);
  2830. intel_enable_plane(dev_priv, plane, pipe);
  2831. intel_enable_planes(crtc);
  2832. intel_crtc_update_cursor(crtc, true);
  2833. if (intel_crtc->config.has_pch_encoder)
  2834. ironlake_pch_enable(crtc);
  2835. mutex_lock(&dev->struct_mutex);
  2836. intel_update_fbc(dev);
  2837. mutex_unlock(&dev->struct_mutex);
  2838. for_each_encoder_on_crtc(dev, crtc, encoder)
  2839. encoder->enable(encoder);
  2840. if (HAS_PCH_CPT(dev))
  2841. cpt_verify_modeset(dev, intel_crtc->pipe);
  2842. /*
  2843. * There seems to be a race in PCH platform hw (at least on some
  2844. * outputs) where an enabled pipe still completes any pageflip right
  2845. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2846. * as the first vblank happend, everything works as expected. Hence just
  2847. * wait for one vblank before returning to avoid strange things
  2848. * happening.
  2849. */
  2850. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2851. }
  2852. /* IPS only exists on ULT machines and is tied to pipe A. */
  2853. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2854. {
  2855. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2856. }
  2857. static void hsw_enable_ips(struct intel_crtc *crtc)
  2858. {
  2859. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2860. if (!crtc->config.ips_enabled)
  2861. return;
  2862. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2863. * We guarantee that the plane is enabled by calling intel_enable_ips
  2864. * only after intel_enable_plane. And intel_enable_plane already waits
  2865. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2866. assert_plane_enabled(dev_priv, crtc->plane);
  2867. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2868. }
  2869. static void hsw_disable_ips(struct intel_crtc *crtc)
  2870. {
  2871. struct drm_device *dev = crtc->base.dev;
  2872. struct drm_i915_private *dev_priv = dev->dev_private;
  2873. if (!crtc->config.ips_enabled)
  2874. return;
  2875. assert_plane_enabled(dev_priv, crtc->plane);
  2876. I915_WRITE(IPS_CTL, 0);
  2877. /* We need to wait for a vblank before we can disable the plane. */
  2878. intel_wait_for_vblank(dev, crtc->pipe);
  2879. }
  2880. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2881. {
  2882. struct drm_device *dev = crtc->dev;
  2883. struct drm_i915_private *dev_priv = dev->dev_private;
  2884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2885. struct intel_encoder *encoder;
  2886. int pipe = intel_crtc->pipe;
  2887. int plane = intel_crtc->plane;
  2888. WARN_ON(!crtc->enabled);
  2889. if (intel_crtc->active)
  2890. return;
  2891. intel_crtc->active = true;
  2892. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2893. if (intel_crtc->config.has_pch_encoder)
  2894. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2895. intel_update_watermarks(dev);
  2896. if (intel_crtc->config.has_pch_encoder)
  2897. dev_priv->display.fdi_link_train(crtc);
  2898. for_each_encoder_on_crtc(dev, crtc, encoder)
  2899. if (encoder->pre_enable)
  2900. encoder->pre_enable(encoder);
  2901. intel_ddi_enable_pipe_clock(intel_crtc);
  2902. ironlake_pfit_enable(intel_crtc);
  2903. /*
  2904. * On ILK+ LUT must be loaded before the pipe is running but with
  2905. * clocks enabled
  2906. */
  2907. intel_crtc_load_lut(crtc);
  2908. intel_ddi_set_pipe_settings(crtc);
  2909. intel_ddi_enable_transcoder_func(crtc);
  2910. intel_enable_pipe(dev_priv, pipe,
  2911. intel_crtc->config.has_pch_encoder);
  2912. intel_enable_plane(dev_priv, plane, pipe);
  2913. intel_enable_planes(crtc);
  2914. intel_crtc_update_cursor(crtc, true);
  2915. hsw_enable_ips(intel_crtc);
  2916. if (intel_crtc->config.has_pch_encoder)
  2917. lpt_pch_enable(crtc);
  2918. mutex_lock(&dev->struct_mutex);
  2919. intel_update_fbc(dev);
  2920. mutex_unlock(&dev->struct_mutex);
  2921. for_each_encoder_on_crtc(dev, crtc, encoder)
  2922. encoder->enable(encoder);
  2923. /*
  2924. * There seems to be a race in PCH platform hw (at least on some
  2925. * outputs) where an enabled pipe still completes any pageflip right
  2926. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2927. * as the first vblank happend, everything works as expected. Hence just
  2928. * wait for one vblank before returning to avoid strange things
  2929. * happening.
  2930. */
  2931. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2932. }
  2933. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2934. {
  2935. struct drm_device *dev = crtc->base.dev;
  2936. struct drm_i915_private *dev_priv = dev->dev_private;
  2937. int pipe = crtc->pipe;
  2938. /* To avoid upsetting the power well on haswell only disable the pfit if
  2939. * it's in use. The hw state code will make sure we get this right. */
  2940. if (crtc->config.pch_pfit.enabled) {
  2941. I915_WRITE(PF_CTL(pipe), 0);
  2942. I915_WRITE(PF_WIN_POS(pipe), 0);
  2943. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2944. }
  2945. }
  2946. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2947. {
  2948. struct drm_device *dev = crtc->dev;
  2949. struct drm_i915_private *dev_priv = dev->dev_private;
  2950. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2951. struct intel_encoder *encoder;
  2952. int pipe = intel_crtc->pipe;
  2953. int plane = intel_crtc->plane;
  2954. u32 reg, temp;
  2955. if (!intel_crtc->active)
  2956. return;
  2957. for_each_encoder_on_crtc(dev, crtc, encoder)
  2958. encoder->disable(encoder);
  2959. intel_crtc_wait_for_pending_flips(crtc);
  2960. drm_vblank_off(dev, pipe);
  2961. if (dev_priv->fbc.plane == plane)
  2962. intel_disable_fbc(dev);
  2963. intel_crtc_update_cursor(crtc, false);
  2964. intel_disable_planes(crtc);
  2965. intel_disable_plane(dev_priv, plane, pipe);
  2966. if (intel_crtc->config.has_pch_encoder)
  2967. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2968. intel_disable_pipe(dev_priv, pipe);
  2969. ironlake_pfit_disable(intel_crtc);
  2970. for_each_encoder_on_crtc(dev, crtc, encoder)
  2971. if (encoder->post_disable)
  2972. encoder->post_disable(encoder);
  2973. if (intel_crtc->config.has_pch_encoder) {
  2974. ironlake_fdi_disable(crtc);
  2975. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2976. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2977. if (HAS_PCH_CPT(dev)) {
  2978. /* disable TRANS_DP_CTL */
  2979. reg = TRANS_DP_CTL(pipe);
  2980. temp = I915_READ(reg);
  2981. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2982. TRANS_DP_PORT_SEL_MASK);
  2983. temp |= TRANS_DP_PORT_SEL_NONE;
  2984. I915_WRITE(reg, temp);
  2985. /* disable DPLL_SEL */
  2986. temp = I915_READ(PCH_DPLL_SEL);
  2987. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2988. I915_WRITE(PCH_DPLL_SEL, temp);
  2989. }
  2990. /* disable PCH DPLL */
  2991. intel_disable_shared_dpll(intel_crtc);
  2992. ironlake_fdi_pll_disable(intel_crtc);
  2993. }
  2994. intel_crtc->active = false;
  2995. intel_update_watermarks(dev);
  2996. mutex_lock(&dev->struct_mutex);
  2997. intel_update_fbc(dev);
  2998. mutex_unlock(&dev->struct_mutex);
  2999. }
  3000. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3001. {
  3002. struct drm_device *dev = crtc->dev;
  3003. struct drm_i915_private *dev_priv = dev->dev_private;
  3004. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3005. struct intel_encoder *encoder;
  3006. int pipe = intel_crtc->pipe;
  3007. int plane = intel_crtc->plane;
  3008. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3009. if (!intel_crtc->active)
  3010. return;
  3011. for_each_encoder_on_crtc(dev, crtc, encoder)
  3012. encoder->disable(encoder);
  3013. intel_crtc_wait_for_pending_flips(crtc);
  3014. drm_vblank_off(dev, pipe);
  3015. /* FBC must be disabled before disabling the plane on HSW. */
  3016. if (dev_priv->fbc.plane == plane)
  3017. intel_disable_fbc(dev);
  3018. hsw_disable_ips(intel_crtc);
  3019. intel_crtc_update_cursor(crtc, false);
  3020. intel_disable_planes(crtc);
  3021. intel_disable_plane(dev_priv, plane, pipe);
  3022. if (intel_crtc->config.has_pch_encoder)
  3023. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3024. intel_disable_pipe(dev_priv, pipe);
  3025. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3026. ironlake_pfit_disable(intel_crtc);
  3027. intel_ddi_disable_pipe_clock(intel_crtc);
  3028. for_each_encoder_on_crtc(dev, crtc, encoder)
  3029. if (encoder->post_disable)
  3030. encoder->post_disable(encoder);
  3031. if (intel_crtc->config.has_pch_encoder) {
  3032. lpt_disable_pch_transcoder(dev_priv);
  3033. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3034. intel_ddi_fdi_disable(crtc);
  3035. }
  3036. intel_crtc->active = false;
  3037. intel_update_watermarks(dev);
  3038. mutex_lock(&dev->struct_mutex);
  3039. intel_update_fbc(dev);
  3040. mutex_unlock(&dev->struct_mutex);
  3041. }
  3042. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3043. {
  3044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3045. intel_put_shared_dpll(intel_crtc);
  3046. }
  3047. static void haswell_crtc_off(struct drm_crtc *crtc)
  3048. {
  3049. intel_ddi_put_crtc_pll(crtc);
  3050. }
  3051. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3052. {
  3053. if (!enable && intel_crtc->overlay) {
  3054. struct drm_device *dev = intel_crtc->base.dev;
  3055. struct drm_i915_private *dev_priv = dev->dev_private;
  3056. mutex_lock(&dev->struct_mutex);
  3057. dev_priv->mm.interruptible = false;
  3058. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3059. dev_priv->mm.interruptible = true;
  3060. mutex_unlock(&dev->struct_mutex);
  3061. }
  3062. /* Let userspace switch the overlay on again. In most cases userspace
  3063. * has to recompute where to put it anyway.
  3064. */
  3065. }
  3066. /**
  3067. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3068. * cursor plane briefly if not already running after enabling the display
  3069. * plane.
  3070. * This workaround avoids occasional blank screens when self refresh is
  3071. * enabled.
  3072. */
  3073. static void
  3074. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3075. {
  3076. u32 cntl = I915_READ(CURCNTR(pipe));
  3077. if ((cntl & CURSOR_MODE) == 0) {
  3078. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3079. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3080. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3081. intel_wait_for_vblank(dev_priv->dev, pipe);
  3082. I915_WRITE(CURCNTR(pipe), cntl);
  3083. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3084. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3085. }
  3086. }
  3087. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3088. {
  3089. struct drm_device *dev = crtc->base.dev;
  3090. struct drm_i915_private *dev_priv = dev->dev_private;
  3091. struct intel_crtc_config *pipe_config = &crtc->config;
  3092. if (!crtc->config.gmch_pfit.control)
  3093. return;
  3094. /*
  3095. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3096. * according to register description and PRM.
  3097. */
  3098. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3099. assert_pipe_disabled(dev_priv, crtc->pipe);
  3100. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3101. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3102. /* Border color in case we don't scale up to the full screen. Black by
  3103. * default, change to something else for debugging. */
  3104. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3105. }
  3106. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3107. {
  3108. struct drm_device *dev = crtc->dev;
  3109. struct drm_i915_private *dev_priv = dev->dev_private;
  3110. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3111. struct intel_encoder *encoder;
  3112. int pipe = intel_crtc->pipe;
  3113. int plane = intel_crtc->plane;
  3114. WARN_ON(!crtc->enabled);
  3115. if (intel_crtc->active)
  3116. return;
  3117. intel_crtc->active = true;
  3118. intel_update_watermarks(dev);
  3119. for_each_encoder_on_crtc(dev, crtc, encoder)
  3120. if (encoder->pre_pll_enable)
  3121. encoder->pre_pll_enable(encoder);
  3122. vlv_enable_pll(intel_crtc);
  3123. for_each_encoder_on_crtc(dev, crtc, encoder)
  3124. if (encoder->pre_enable)
  3125. encoder->pre_enable(encoder);
  3126. i9xx_pfit_enable(intel_crtc);
  3127. intel_crtc_load_lut(crtc);
  3128. intel_enable_pipe(dev_priv, pipe, false);
  3129. intel_enable_plane(dev_priv, plane, pipe);
  3130. intel_enable_planes(crtc);
  3131. intel_crtc_update_cursor(crtc, true);
  3132. intel_update_fbc(dev);
  3133. for_each_encoder_on_crtc(dev, crtc, encoder)
  3134. encoder->enable(encoder);
  3135. }
  3136. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3137. {
  3138. struct drm_device *dev = crtc->dev;
  3139. struct drm_i915_private *dev_priv = dev->dev_private;
  3140. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3141. struct intel_encoder *encoder;
  3142. int pipe = intel_crtc->pipe;
  3143. int plane = intel_crtc->plane;
  3144. WARN_ON(!crtc->enabled);
  3145. if (intel_crtc->active)
  3146. return;
  3147. intel_crtc->active = true;
  3148. intel_update_watermarks(dev);
  3149. for_each_encoder_on_crtc(dev, crtc, encoder)
  3150. if (encoder->pre_enable)
  3151. encoder->pre_enable(encoder);
  3152. i9xx_enable_pll(intel_crtc);
  3153. i9xx_pfit_enable(intel_crtc);
  3154. intel_crtc_load_lut(crtc);
  3155. intel_enable_pipe(dev_priv, pipe, false);
  3156. intel_enable_plane(dev_priv, plane, pipe);
  3157. intel_enable_planes(crtc);
  3158. /* The fixup needs to happen before cursor is enabled */
  3159. if (IS_G4X(dev))
  3160. g4x_fixup_plane(dev_priv, pipe);
  3161. intel_crtc_update_cursor(crtc, true);
  3162. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3163. intel_crtc_dpms_overlay(intel_crtc, true);
  3164. intel_update_fbc(dev);
  3165. for_each_encoder_on_crtc(dev, crtc, encoder)
  3166. encoder->enable(encoder);
  3167. }
  3168. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3169. {
  3170. struct drm_device *dev = crtc->base.dev;
  3171. struct drm_i915_private *dev_priv = dev->dev_private;
  3172. if (!crtc->config.gmch_pfit.control)
  3173. return;
  3174. assert_pipe_disabled(dev_priv, crtc->pipe);
  3175. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3176. I915_READ(PFIT_CONTROL));
  3177. I915_WRITE(PFIT_CONTROL, 0);
  3178. }
  3179. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3180. {
  3181. struct drm_device *dev = crtc->dev;
  3182. struct drm_i915_private *dev_priv = dev->dev_private;
  3183. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3184. struct intel_encoder *encoder;
  3185. int pipe = intel_crtc->pipe;
  3186. int plane = intel_crtc->plane;
  3187. if (!intel_crtc->active)
  3188. return;
  3189. for_each_encoder_on_crtc(dev, crtc, encoder)
  3190. encoder->disable(encoder);
  3191. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3192. intel_crtc_wait_for_pending_flips(crtc);
  3193. drm_vblank_off(dev, pipe);
  3194. if (dev_priv->fbc.plane == plane)
  3195. intel_disable_fbc(dev);
  3196. intel_crtc_dpms_overlay(intel_crtc, false);
  3197. intel_crtc_update_cursor(crtc, false);
  3198. intel_disable_planes(crtc);
  3199. intel_disable_plane(dev_priv, plane, pipe);
  3200. intel_disable_pipe(dev_priv, pipe);
  3201. i9xx_pfit_disable(intel_crtc);
  3202. for_each_encoder_on_crtc(dev, crtc, encoder)
  3203. if (encoder->post_disable)
  3204. encoder->post_disable(encoder);
  3205. i9xx_disable_pll(dev_priv, pipe);
  3206. intel_crtc->active = false;
  3207. intel_update_fbc(dev);
  3208. intel_update_watermarks(dev);
  3209. }
  3210. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3211. {
  3212. }
  3213. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3214. bool enabled)
  3215. {
  3216. struct drm_device *dev = crtc->dev;
  3217. struct drm_i915_master_private *master_priv;
  3218. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3219. int pipe = intel_crtc->pipe;
  3220. if (!dev->primary->master)
  3221. return;
  3222. master_priv = dev->primary->master->driver_priv;
  3223. if (!master_priv->sarea_priv)
  3224. return;
  3225. switch (pipe) {
  3226. case 0:
  3227. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3228. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3229. break;
  3230. case 1:
  3231. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3232. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3233. break;
  3234. default:
  3235. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3236. break;
  3237. }
  3238. }
  3239. /**
  3240. * Sets the power management mode of the pipe and plane.
  3241. */
  3242. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3243. {
  3244. struct drm_device *dev = crtc->dev;
  3245. struct drm_i915_private *dev_priv = dev->dev_private;
  3246. struct intel_encoder *intel_encoder;
  3247. bool enable = false;
  3248. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3249. enable |= intel_encoder->connectors_active;
  3250. if (enable)
  3251. dev_priv->display.crtc_enable(crtc);
  3252. else
  3253. dev_priv->display.crtc_disable(crtc);
  3254. intel_crtc_update_sarea(crtc, enable);
  3255. }
  3256. static void intel_crtc_disable(struct drm_crtc *crtc)
  3257. {
  3258. struct drm_device *dev = crtc->dev;
  3259. struct drm_connector *connector;
  3260. struct drm_i915_private *dev_priv = dev->dev_private;
  3261. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3262. /* crtc should still be enabled when we disable it. */
  3263. WARN_ON(!crtc->enabled);
  3264. dev_priv->display.crtc_disable(crtc);
  3265. intel_crtc->eld_vld = false;
  3266. intel_crtc_update_sarea(crtc, false);
  3267. dev_priv->display.off(crtc);
  3268. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3269. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3270. if (crtc->fb) {
  3271. mutex_lock(&dev->struct_mutex);
  3272. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3273. mutex_unlock(&dev->struct_mutex);
  3274. crtc->fb = NULL;
  3275. }
  3276. /* Update computed state. */
  3277. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3278. if (!connector->encoder || !connector->encoder->crtc)
  3279. continue;
  3280. if (connector->encoder->crtc != crtc)
  3281. continue;
  3282. connector->dpms = DRM_MODE_DPMS_OFF;
  3283. to_intel_encoder(connector->encoder)->connectors_active = false;
  3284. }
  3285. }
  3286. void intel_encoder_destroy(struct drm_encoder *encoder)
  3287. {
  3288. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3289. drm_encoder_cleanup(encoder);
  3290. kfree(intel_encoder);
  3291. }
  3292. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3293. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3294. * state of the entire output pipe. */
  3295. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3296. {
  3297. if (mode == DRM_MODE_DPMS_ON) {
  3298. encoder->connectors_active = true;
  3299. intel_crtc_update_dpms(encoder->base.crtc);
  3300. } else {
  3301. encoder->connectors_active = false;
  3302. intel_crtc_update_dpms(encoder->base.crtc);
  3303. }
  3304. }
  3305. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3306. * internal consistency). */
  3307. static void intel_connector_check_state(struct intel_connector *connector)
  3308. {
  3309. if (connector->get_hw_state(connector)) {
  3310. struct intel_encoder *encoder = connector->encoder;
  3311. struct drm_crtc *crtc;
  3312. bool encoder_enabled;
  3313. enum pipe pipe;
  3314. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3315. connector->base.base.id,
  3316. drm_get_connector_name(&connector->base));
  3317. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3318. "wrong connector dpms state\n");
  3319. WARN(connector->base.encoder != &encoder->base,
  3320. "active connector not linked to encoder\n");
  3321. WARN(!encoder->connectors_active,
  3322. "encoder->connectors_active not set\n");
  3323. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3324. WARN(!encoder_enabled, "encoder not enabled\n");
  3325. if (WARN_ON(!encoder->base.crtc))
  3326. return;
  3327. crtc = encoder->base.crtc;
  3328. WARN(!crtc->enabled, "crtc not enabled\n");
  3329. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3330. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3331. "encoder active on the wrong pipe\n");
  3332. }
  3333. }
  3334. /* Even simpler default implementation, if there's really no special case to
  3335. * consider. */
  3336. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3337. {
  3338. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3339. /* All the simple cases only support two dpms states. */
  3340. if (mode != DRM_MODE_DPMS_ON)
  3341. mode = DRM_MODE_DPMS_OFF;
  3342. if (mode == connector->dpms)
  3343. return;
  3344. connector->dpms = mode;
  3345. /* Only need to change hw state when actually enabled */
  3346. if (encoder->base.crtc)
  3347. intel_encoder_dpms(encoder, mode);
  3348. else
  3349. WARN_ON(encoder->connectors_active != false);
  3350. intel_modeset_check_state(connector->dev);
  3351. }
  3352. /* Simple connector->get_hw_state implementation for encoders that support only
  3353. * one connector and no cloning and hence the encoder state determines the state
  3354. * of the connector. */
  3355. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3356. {
  3357. enum pipe pipe = 0;
  3358. struct intel_encoder *encoder = connector->encoder;
  3359. return encoder->get_hw_state(encoder, &pipe);
  3360. }
  3361. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3362. struct intel_crtc_config *pipe_config)
  3363. {
  3364. struct drm_i915_private *dev_priv = dev->dev_private;
  3365. struct intel_crtc *pipe_B_crtc =
  3366. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3367. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3368. pipe_name(pipe), pipe_config->fdi_lanes);
  3369. if (pipe_config->fdi_lanes > 4) {
  3370. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3371. pipe_name(pipe), pipe_config->fdi_lanes);
  3372. return false;
  3373. }
  3374. if (IS_HASWELL(dev)) {
  3375. if (pipe_config->fdi_lanes > 2) {
  3376. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3377. pipe_config->fdi_lanes);
  3378. return false;
  3379. } else {
  3380. return true;
  3381. }
  3382. }
  3383. if (INTEL_INFO(dev)->num_pipes == 2)
  3384. return true;
  3385. /* Ivybridge 3 pipe is really complicated */
  3386. switch (pipe) {
  3387. case PIPE_A:
  3388. return true;
  3389. case PIPE_B:
  3390. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3391. pipe_config->fdi_lanes > 2) {
  3392. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3393. pipe_name(pipe), pipe_config->fdi_lanes);
  3394. return false;
  3395. }
  3396. return true;
  3397. case PIPE_C:
  3398. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3399. pipe_B_crtc->config.fdi_lanes <= 2) {
  3400. if (pipe_config->fdi_lanes > 2) {
  3401. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3402. pipe_name(pipe), pipe_config->fdi_lanes);
  3403. return false;
  3404. }
  3405. } else {
  3406. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3407. return false;
  3408. }
  3409. return true;
  3410. default:
  3411. BUG();
  3412. }
  3413. }
  3414. #define RETRY 1
  3415. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3416. struct intel_crtc_config *pipe_config)
  3417. {
  3418. struct drm_device *dev = intel_crtc->base.dev;
  3419. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3420. int lane, link_bw, fdi_dotclock;
  3421. bool setup_ok, needs_recompute = false;
  3422. retry:
  3423. /* FDI is a binary signal running at ~2.7GHz, encoding
  3424. * each output octet as 10 bits. The actual frequency
  3425. * is stored as a divider into a 100MHz clock, and the
  3426. * mode pixel clock is stored in units of 1KHz.
  3427. * Hence the bw of each lane in terms of the mode signal
  3428. * is:
  3429. */
  3430. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3431. fdi_dotclock = adjusted_mode->clock;
  3432. fdi_dotclock /= pipe_config->pixel_multiplier;
  3433. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3434. pipe_config->pipe_bpp);
  3435. pipe_config->fdi_lanes = lane;
  3436. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3437. link_bw, &pipe_config->fdi_m_n);
  3438. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3439. intel_crtc->pipe, pipe_config);
  3440. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3441. pipe_config->pipe_bpp -= 2*3;
  3442. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3443. pipe_config->pipe_bpp);
  3444. needs_recompute = true;
  3445. pipe_config->bw_constrained = true;
  3446. goto retry;
  3447. }
  3448. if (needs_recompute)
  3449. return RETRY;
  3450. return setup_ok ? 0 : -EINVAL;
  3451. }
  3452. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3453. struct intel_crtc_config *pipe_config)
  3454. {
  3455. pipe_config->ips_enabled = i915_enable_ips &&
  3456. hsw_crtc_supports_ips(crtc) &&
  3457. pipe_config->pipe_bpp <= 24;
  3458. }
  3459. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3460. struct intel_crtc_config *pipe_config)
  3461. {
  3462. struct drm_device *dev = crtc->base.dev;
  3463. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3464. if (HAS_PCH_SPLIT(dev)) {
  3465. /* FDI link clock is fixed at 2.7G */
  3466. if (pipe_config->requested_mode.clock * 3
  3467. > IRONLAKE_FDI_FREQ * 4)
  3468. return -EINVAL;
  3469. }
  3470. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3471. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3472. */
  3473. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3474. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3475. return -EINVAL;
  3476. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3477. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3478. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3479. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3480. * for lvds. */
  3481. pipe_config->pipe_bpp = 8*3;
  3482. }
  3483. if (HAS_IPS(dev))
  3484. hsw_compute_ips_config(crtc, pipe_config);
  3485. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3486. * clock survives for now. */
  3487. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3488. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3489. if (pipe_config->has_pch_encoder)
  3490. return ironlake_fdi_compute_config(crtc, pipe_config);
  3491. return 0;
  3492. }
  3493. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3494. {
  3495. return 400000; /* FIXME */
  3496. }
  3497. static int i945_get_display_clock_speed(struct drm_device *dev)
  3498. {
  3499. return 400000;
  3500. }
  3501. static int i915_get_display_clock_speed(struct drm_device *dev)
  3502. {
  3503. return 333000;
  3504. }
  3505. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3506. {
  3507. return 200000;
  3508. }
  3509. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3510. {
  3511. u16 gcfgc = 0;
  3512. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3513. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3514. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3515. return 267000;
  3516. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3517. return 333000;
  3518. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3519. return 444000;
  3520. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3521. return 200000;
  3522. default:
  3523. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3524. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3525. return 133000;
  3526. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3527. return 167000;
  3528. }
  3529. }
  3530. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3531. {
  3532. u16 gcfgc = 0;
  3533. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3534. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3535. return 133000;
  3536. else {
  3537. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3538. case GC_DISPLAY_CLOCK_333_MHZ:
  3539. return 333000;
  3540. default:
  3541. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3542. return 190000;
  3543. }
  3544. }
  3545. }
  3546. static int i865_get_display_clock_speed(struct drm_device *dev)
  3547. {
  3548. return 266000;
  3549. }
  3550. static int i855_get_display_clock_speed(struct drm_device *dev)
  3551. {
  3552. u16 hpllcc = 0;
  3553. /* Assume that the hardware is in the high speed state. This
  3554. * should be the default.
  3555. */
  3556. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3557. case GC_CLOCK_133_200:
  3558. case GC_CLOCK_100_200:
  3559. return 200000;
  3560. case GC_CLOCK_166_250:
  3561. return 250000;
  3562. case GC_CLOCK_100_133:
  3563. return 133000;
  3564. }
  3565. /* Shouldn't happen */
  3566. return 0;
  3567. }
  3568. static int i830_get_display_clock_speed(struct drm_device *dev)
  3569. {
  3570. return 133000;
  3571. }
  3572. static void
  3573. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3574. {
  3575. while (*num > DATA_LINK_M_N_MASK ||
  3576. *den > DATA_LINK_M_N_MASK) {
  3577. *num >>= 1;
  3578. *den >>= 1;
  3579. }
  3580. }
  3581. static void compute_m_n(unsigned int m, unsigned int n,
  3582. uint32_t *ret_m, uint32_t *ret_n)
  3583. {
  3584. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3585. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3586. intel_reduce_m_n_ratio(ret_m, ret_n);
  3587. }
  3588. void
  3589. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3590. int pixel_clock, int link_clock,
  3591. struct intel_link_m_n *m_n)
  3592. {
  3593. m_n->tu = 64;
  3594. compute_m_n(bits_per_pixel * pixel_clock,
  3595. link_clock * nlanes * 8,
  3596. &m_n->gmch_m, &m_n->gmch_n);
  3597. compute_m_n(pixel_clock, link_clock,
  3598. &m_n->link_m, &m_n->link_n);
  3599. }
  3600. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3601. {
  3602. if (i915_panel_use_ssc >= 0)
  3603. return i915_panel_use_ssc != 0;
  3604. return dev_priv->vbt.lvds_use_ssc
  3605. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3606. }
  3607. static int vlv_get_refclk(struct drm_crtc *crtc)
  3608. {
  3609. struct drm_device *dev = crtc->dev;
  3610. struct drm_i915_private *dev_priv = dev->dev_private;
  3611. int refclk = 27000; /* for DP & HDMI */
  3612. return 100000; /* only one validated so far */
  3613. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3614. refclk = 96000;
  3615. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3616. if (intel_panel_use_ssc(dev_priv))
  3617. refclk = 100000;
  3618. else
  3619. refclk = 96000;
  3620. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3621. refclk = 100000;
  3622. }
  3623. return refclk;
  3624. }
  3625. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3626. {
  3627. struct drm_device *dev = crtc->dev;
  3628. struct drm_i915_private *dev_priv = dev->dev_private;
  3629. int refclk;
  3630. if (IS_VALLEYVIEW(dev)) {
  3631. refclk = vlv_get_refclk(crtc);
  3632. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3633. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3634. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3635. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3636. refclk / 1000);
  3637. } else if (!IS_GEN2(dev)) {
  3638. refclk = 96000;
  3639. } else {
  3640. refclk = 48000;
  3641. }
  3642. return refclk;
  3643. }
  3644. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3645. {
  3646. return (1 << dpll->n) << 16 | dpll->m2;
  3647. }
  3648. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3649. {
  3650. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3651. }
  3652. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3653. intel_clock_t *reduced_clock)
  3654. {
  3655. struct drm_device *dev = crtc->base.dev;
  3656. struct drm_i915_private *dev_priv = dev->dev_private;
  3657. int pipe = crtc->pipe;
  3658. u32 fp, fp2 = 0;
  3659. if (IS_PINEVIEW(dev)) {
  3660. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3661. if (reduced_clock)
  3662. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3663. } else {
  3664. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3665. if (reduced_clock)
  3666. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3667. }
  3668. I915_WRITE(FP0(pipe), fp);
  3669. crtc->config.dpll_hw_state.fp0 = fp;
  3670. crtc->lowfreq_avail = false;
  3671. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3672. reduced_clock && i915_powersave) {
  3673. I915_WRITE(FP1(pipe), fp2);
  3674. crtc->config.dpll_hw_state.fp1 = fp2;
  3675. crtc->lowfreq_avail = true;
  3676. } else {
  3677. I915_WRITE(FP1(pipe), fp);
  3678. crtc->config.dpll_hw_state.fp1 = fp;
  3679. }
  3680. }
  3681. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3682. {
  3683. u32 reg_val;
  3684. /*
  3685. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3686. * and set it to a reasonable value instead.
  3687. */
  3688. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3689. reg_val &= 0xffffff00;
  3690. reg_val |= 0x00000030;
  3691. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3692. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3693. reg_val &= 0x8cffffff;
  3694. reg_val = 0x8c000000;
  3695. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3696. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3697. reg_val &= 0xffffff00;
  3698. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3699. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3700. reg_val &= 0x00ffffff;
  3701. reg_val |= 0xb0000000;
  3702. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3703. }
  3704. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3705. struct intel_link_m_n *m_n)
  3706. {
  3707. struct drm_device *dev = crtc->base.dev;
  3708. struct drm_i915_private *dev_priv = dev->dev_private;
  3709. int pipe = crtc->pipe;
  3710. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3711. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3712. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3713. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3714. }
  3715. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3716. struct intel_link_m_n *m_n)
  3717. {
  3718. struct drm_device *dev = crtc->base.dev;
  3719. struct drm_i915_private *dev_priv = dev->dev_private;
  3720. int pipe = crtc->pipe;
  3721. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3722. if (INTEL_INFO(dev)->gen >= 5) {
  3723. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3724. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3725. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3726. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3727. } else {
  3728. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3729. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3730. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3731. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3732. }
  3733. }
  3734. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3735. {
  3736. if (crtc->config.has_pch_encoder)
  3737. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3738. else
  3739. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3740. }
  3741. static void vlv_update_pll(struct intel_crtc *crtc)
  3742. {
  3743. struct drm_device *dev = crtc->base.dev;
  3744. struct drm_i915_private *dev_priv = dev->dev_private;
  3745. int pipe = crtc->pipe;
  3746. u32 dpll, mdiv;
  3747. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3748. u32 coreclk, reg_val, dpll_md;
  3749. mutex_lock(&dev_priv->dpio_lock);
  3750. bestn = crtc->config.dpll.n;
  3751. bestm1 = crtc->config.dpll.m1;
  3752. bestm2 = crtc->config.dpll.m2;
  3753. bestp1 = crtc->config.dpll.p1;
  3754. bestp2 = crtc->config.dpll.p2;
  3755. /* See eDP HDMI DPIO driver vbios notes doc */
  3756. /* PLL B needs special handling */
  3757. if (pipe)
  3758. vlv_pllb_recal_opamp(dev_priv);
  3759. /* Set up Tx target for periodic Rcomp update */
  3760. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3761. /* Disable target IRef on PLL */
  3762. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3763. reg_val &= 0x00ffffff;
  3764. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3765. /* Disable fast lock */
  3766. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3767. /* Set idtafcrecal before PLL is enabled */
  3768. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3769. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3770. mdiv |= ((bestn << DPIO_N_SHIFT));
  3771. mdiv |= (1 << DPIO_K_SHIFT);
  3772. /*
  3773. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3774. * but we don't support that).
  3775. * Note: don't use the DAC post divider as it seems unstable.
  3776. */
  3777. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3778. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3779. mdiv |= DPIO_ENABLE_CALIBRATION;
  3780. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3781. /* Set HBR and RBR LPF coefficients */
  3782. if (crtc->config.port_clock == 162000 ||
  3783. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3784. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3785. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3786. 0x009f0003);
  3787. else
  3788. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3789. 0x00d0000f);
  3790. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3791. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3792. /* Use SSC source */
  3793. if (!pipe)
  3794. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3795. 0x0df40000);
  3796. else
  3797. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3798. 0x0df70000);
  3799. } else { /* HDMI or VGA */
  3800. /* Use bend source */
  3801. if (!pipe)
  3802. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3803. 0x0df70000);
  3804. else
  3805. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3806. 0x0df40000);
  3807. }
  3808. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3809. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3810. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3811. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3812. coreclk |= 0x01000000;
  3813. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3814. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3815. /* Enable DPIO clock input */
  3816. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3817. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3818. if (pipe)
  3819. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3820. dpll |= DPLL_VCO_ENABLE;
  3821. crtc->config.dpll_hw_state.dpll = dpll;
  3822. dpll_md = (crtc->config.pixel_multiplier - 1)
  3823. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3824. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3825. if (crtc->config.has_dp_encoder)
  3826. intel_dp_set_m_n(crtc);
  3827. mutex_unlock(&dev_priv->dpio_lock);
  3828. }
  3829. static void i9xx_update_pll(struct intel_crtc *crtc,
  3830. intel_clock_t *reduced_clock,
  3831. int num_connectors)
  3832. {
  3833. struct drm_device *dev = crtc->base.dev;
  3834. struct drm_i915_private *dev_priv = dev->dev_private;
  3835. u32 dpll;
  3836. bool is_sdvo;
  3837. struct dpll *clock = &crtc->config.dpll;
  3838. i9xx_update_pll_dividers(crtc, reduced_clock);
  3839. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3840. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3841. dpll = DPLL_VGA_MODE_DIS;
  3842. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3843. dpll |= DPLLB_MODE_LVDS;
  3844. else
  3845. dpll |= DPLLB_MODE_DAC_SERIAL;
  3846. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3847. dpll |= (crtc->config.pixel_multiplier - 1)
  3848. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3849. }
  3850. if (is_sdvo)
  3851. dpll |= DPLL_SDVO_HIGH_SPEED;
  3852. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3853. dpll |= DPLL_SDVO_HIGH_SPEED;
  3854. /* compute bitmask from p1 value */
  3855. if (IS_PINEVIEW(dev))
  3856. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3857. else {
  3858. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3859. if (IS_G4X(dev) && reduced_clock)
  3860. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3861. }
  3862. switch (clock->p2) {
  3863. case 5:
  3864. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3865. break;
  3866. case 7:
  3867. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3868. break;
  3869. case 10:
  3870. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3871. break;
  3872. case 14:
  3873. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3874. break;
  3875. }
  3876. if (INTEL_INFO(dev)->gen >= 4)
  3877. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3878. if (crtc->config.sdvo_tv_clock)
  3879. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3880. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3881. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3882. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3883. else
  3884. dpll |= PLL_REF_INPUT_DREFCLK;
  3885. dpll |= DPLL_VCO_ENABLE;
  3886. crtc->config.dpll_hw_state.dpll = dpll;
  3887. if (INTEL_INFO(dev)->gen >= 4) {
  3888. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3889. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3890. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3891. }
  3892. if (crtc->config.has_dp_encoder)
  3893. intel_dp_set_m_n(crtc);
  3894. }
  3895. static void i8xx_update_pll(struct intel_crtc *crtc,
  3896. intel_clock_t *reduced_clock,
  3897. int num_connectors)
  3898. {
  3899. struct drm_device *dev = crtc->base.dev;
  3900. struct drm_i915_private *dev_priv = dev->dev_private;
  3901. u32 dpll;
  3902. struct dpll *clock = &crtc->config.dpll;
  3903. i9xx_update_pll_dividers(crtc, reduced_clock);
  3904. dpll = DPLL_VGA_MODE_DIS;
  3905. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3906. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3907. } else {
  3908. if (clock->p1 == 2)
  3909. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3910. else
  3911. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3912. if (clock->p2 == 4)
  3913. dpll |= PLL_P2_DIVIDE_BY_4;
  3914. }
  3915. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3916. dpll |= DPLL_DVO_2X_MODE;
  3917. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3918. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3919. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3920. else
  3921. dpll |= PLL_REF_INPUT_DREFCLK;
  3922. dpll |= DPLL_VCO_ENABLE;
  3923. crtc->config.dpll_hw_state.dpll = dpll;
  3924. }
  3925. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3926. {
  3927. struct drm_device *dev = intel_crtc->base.dev;
  3928. struct drm_i915_private *dev_priv = dev->dev_private;
  3929. enum pipe pipe = intel_crtc->pipe;
  3930. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3931. struct drm_display_mode *adjusted_mode =
  3932. &intel_crtc->config.adjusted_mode;
  3933. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3934. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3935. /* We need to be careful not to changed the adjusted mode, for otherwise
  3936. * the hw state checker will get angry at the mismatch. */
  3937. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3938. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3939. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3940. /* the chip adds 2 halflines automatically */
  3941. crtc_vtotal -= 1;
  3942. crtc_vblank_end -= 1;
  3943. vsyncshift = adjusted_mode->crtc_hsync_start
  3944. - adjusted_mode->crtc_htotal / 2;
  3945. } else {
  3946. vsyncshift = 0;
  3947. }
  3948. if (INTEL_INFO(dev)->gen > 3)
  3949. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3950. I915_WRITE(HTOTAL(cpu_transcoder),
  3951. (adjusted_mode->crtc_hdisplay - 1) |
  3952. ((adjusted_mode->crtc_htotal - 1) << 16));
  3953. I915_WRITE(HBLANK(cpu_transcoder),
  3954. (adjusted_mode->crtc_hblank_start - 1) |
  3955. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3956. I915_WRITE(HSYNC(cpu_transcoder),
  3957. (adjusted_mode->crtc_hsync_start - 1) |
  3958. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3959. I915_WRITE(VTOTAL(cpu_transcoder),
  3960. (adjusted_mode->crtc_vdisplay - 1) |
  3961. ((crtc_vtotal - 1) << 16));
  3962. I915_WRITE(VBLANK(cpu_transcoder),
  3963. (adjusted_mode->crtc_vblank_start - 1) |
  3964. ((crtc_vblank_end - 1) << 16));
  3965. I915_WRITE(VSYNC(cpu_transcoder),
  3966. (adjusted_mode->crtc_vsync_start - 1) |
  3967. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3968. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3969. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3970. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3971. * bits. */
  3972. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3973. (pipe == PIPE_B || pipe == PIPE_C))
  3974. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3975. /* pipesrc controls the size that is scaled from, which should
  3976. * always be the user's requested size.
  3977. */
  3978. I915_WRITE(PIPESRC(pipe),
  3979. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3980. }
  3981. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3982. struct intel_crtc_config *pipe_config)
  3983. {
  3984. struct drm_device *dev = crtc->base.dev;
  3985. struct drm_i915_private *dev_priv = dev->dev_private;
  3986. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3987. uint32_t tmp;
  3988. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3989. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3990. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3991. tmp = I915_READ(HBLANK(cpu_transcoder));
  3992. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3993. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3994. tmp = I915_READ(HSYNC(cpu_transcoder));
  3995. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3996. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3997. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3998. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3999. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4000. tmp = I915_READ(VBLANK(cpu_transcoder));
  4001. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4002. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4003. tmp = I915_READ(VSYNC(cpu_transcoder));
  4004. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4005. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4006. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4007. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4008. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4009. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4010. }
  4011. tmp = I915_READ(PIPESRC(crtc->pipe));
  4012. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4013. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4014. }
  4015. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4016. struct intel_crtc_config *pipe_config)
  4017. {
  4018. struct drm_crtc *crtc = &intel_crtc->base;
  4019. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4020. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4021. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4022. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4023. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4024. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4025. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4026. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4027. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4028. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4029. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4030. }
  4031. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4032. {
  4033. struct drm_device *dev = intel_crtc->base.dev;
  4034. struct drm_i915_private *dev_priv = dev->dev_private;
  4035. uint32_t pipeconf;
  4036. pipeconf = 0;
  4037. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4038. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4039. * core speed.
  4040. *
  4041. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4042. * pipe == 0 check?
  4043. */
  4044. if (intel_crtc->config.requested_mode.clock >
  4045. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4046. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4047. }
  4048. /* only g4x and later have fancy bpc/dither controls */
  4049. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4050. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4051. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4052. pipeconf |= PIPECONF_DITHER_EN |
  4053. PIPECONF_DITHER_TYPE_SP;
  4054. switch (intel_crtc->config.pipe_bpp) {
  4055. case 18:
  4056. pipeconf |= PIPECONF_6BPC;
  4057. break;
  4058. case 24:
  4059. pipeconf |= PIPECONF_8BPC;
  4060. break;
  4061. case 30:
  4062. pipeconf |= PIPECONF_10BPC;
  4063. break;
  4064. default:
  4065. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4066. BUG();
  4067. }
  4068. }
  4069. if (HAS_PIPE_CXSR(dev)) {
  4070. if (intel_crtc->lowfreq_avail) {
  4071. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4072. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4073. } else {
  4074. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4075. }
  4076. }
  4077. if (!IS_GEN2(dev) &&
  4078. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4079. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4080. else
  4081. pipeconf |= PIPECONF_PROGRESSIVE;
  4082. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4083. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4084. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4085. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4086. }
  4087. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4088. int x, int y,
  4089. struct drm_framebuffer *fb)
  4090. {
  4091. struct drm_device *dev = crtc->dev;
  4092. struct drm_i915_private *dev_priv = dev->dev_private;
  4093. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4094. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4095. int pipe = intel_crtc->pipe;
  4096. int plane = intel_crtc->plane;
  4097. int refclk, num_connectors = 0;
  4098. intel_clock_t clock, reduced_clock;
  4099. u32 dspcntr;
  4100. bool ok, has_reduced_clock = false;
  4101. bool is_lvds = false;
  4102. struct intel_encoder *encoder;
  4103. const intel_limit_t *limit;
  4104. int ret;
  4105. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4106. switch (encoder->type) {
  4107. case INTEL_OUTPUT_LVDS:
  4108. is_lvds = true;
  4109. break;
  4110. }
  4111. num_connectors++;
  4112. }
  4113. refclk = i9xx_get_refclk(crtc, num_connectors);
  4114. /*
  4115. * Returns a set of divisors for the desired target clock with the given
  4116. * refclk, or FALSE. The returned values represent the clock equation:
  4117. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4118. */
  4119. limit = intel_limit(crtc, refclk);
  4120. ok = dev_priv->display.find_dpll(limit, crtc,
  4121. intel_crtc->config.port_clock,
  4122. refclk, NULL, &clock);
  4123. if (!ok && !intel_crtc->config.clock_set) {
  4124. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4125. return -EINVAL;
  4126. }
  4127. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4128. /*
  4129. * Ensure we match the reduced clock's P to the target clock.
  4130. * If the clocks don't match, we can't switch the display clock
  4131. * by using the FP0/FP1. In such case we will disable the LVDS
  4132. * downclock feature.
  4133. */
  4134. has_reduced_clock =
  4135. dev_priv->display.find_dpll(limit, crtc,
  4136. dev_priv->lvds_downclock,
  4137. refclk, &clock,
  4138. &reduced_clock);
  4139. }
  4140. /* Compat-code for transition, will disappear. */
  4141. if (!intel_crtc->config.clock_set) {
  4142. intel_crtc->config.dpll.n = clock.n;
  4143. intel_crtc->config.dpll.m1 = clock.m1;
  4144. intel_crtc->config.dpll.m2 = clock.m2;
  4145. intel_crtc->config.dpll.p1 = clock.p1;
  4146. intel_crtc->config.dpll.p2 = clock.p2;
  4147. }
  4148. if (IS_GEN2(dev))
  4149. i8xx_update_pll(intel_crtc,
  4150. has_reduced_clock ? &reduced_clock : NULL,
  4151. num_connectors);
  4152. else if (IS_VALLEYVIEW(dev))
  4153. vlv_update_pll(intel_crtc);
  4154. else
  4155. i9xx_update_pll(intel_crtc,
  4156. has_reduced_clock ? &reduced_clock : NULL,
  4157. num_connectors);
  4158. /* Set up the display plane register */
  4159. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4160. if (!IS_VALLEYVIEW(dev)) {
  4161. if (pipe == 0)
  4162. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4163. else
  4164. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4165. }
  4166. intel_set_pipe_timings(intel_crtc);
  4167. /* pipesrc and dspsize control the size that is scaled from,
  4168. * which should always be the user's requested size.
  4169. */
  4170. I915_WRITE(DSPSIZE(plane),
  4171. ((mode->vdisplay - 1) << 16) |
  4172. (mode->hdisplay - 1));
  4173. I915_WRITE(DSPPOS(plane), 0);
  4174. i9xx_set_pipeconf(intel_crtc);
  4175. I915_WRITE(DSPCNTR(plane), dspcntr);
  4176. POSTING_READ(DSPCNTR(plane));
  4177. ret = intel_pipe_set_base(crtc, x, y, fb);
  4178. intel_update_watermarks(dev);
  4179. return ret;
  4180. }
  4181. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4182. struct intel_crtc_config *pipe_config)
  4183. {
  4184. struct drm_device *dev = crtc->base.dev;
  4185. struct drm_i915_private *dev_priv = dev->dev_private;
  4186. uint32_t tmp;
  4187. tmp = I915_READ(PFIT_CONTROL);
  4188. if (!(tmp & PFIT_ENABLE))
  4189. return;
  4190. /* Check whether the pfit is attached to our pipe. */
  4191. if (INTEL_INFO(dev)->gen < 4) {
  4192. if (crtc->pipe != PIPE_B)
  4193. return;
  4194. } else {
  4195. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4196. return;
  4197. }
  4198. pipe_config->gmch_pfit.control = tmp;
  4199. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4200. if (INTEL_INFO(dev)->gen < 5)
  4201. pipe_config->gmch_pfit.lvds_border_bits =
  4202. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4203. }
  4204. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4205. struct intel_crtc_config *pipe_config)
  4206. {
  4207. struct drm_device *dev = crtc->base.dev;
  4208. struct drm_i915_private *dev_priv = dev->dev_private;
  4209. uint32_t tmp;
  4210. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4211. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4212. tmp = I915_READ(PIPECONF(crtc->pipe));
  4213. if (!(tmp & PIPECONF_ENABLE))
  4214. return false;
  4215. intel_get_pipe_timings(crtc, pipe_config);
  4216. i9xx_get_pfit_config(crtc, pipe_config);
  4217. if (INTEL_INFO(dev)->gen >= 4) {
  4218. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4219. pipe_config->pixel_multiplier =
  4220. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4221. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4222. pipe_config->dpll_hw_state.dpll_md = tmp;
  4223. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4224. tmp = I915_READ(DPLL(crtc->pipe));
  4225. pipe_config->pixel_multiplier =
  4226. ((tmp & SDVO_MULTIPLIER_MASK)
  4227. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4228. } else {
  4229. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4230. * port and will be fixed up in the encoder->get_config
  4231. * function. */
  4232. pipe_config->pixel_multiplier = 1;
  4233. }
  4234. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4235. if (!IS_VALLEYVIEW(dev)) {
  4236. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4237. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4238. } else {
  4239. /* Mask out read-only status bits. */
  4240. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4241. DPLL_PORTC_READY_MASK |
  4242. DPLL_PORTB_READY_MASK);
  4243. }
  4244. return true;
  4245. }
  4246. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4247. {
  4248. struct drm_i915_private *dev_priv = dev->dev_private;
  4249. struct drm_mode_config *mode_config = &dev->mode_config;
  4250. struct intel_encoder *encoder;
  4251. u32 val, final;
  4252. bool has_lvds = false;
  4253. bool has_cpu_edp = false;
  4254. bool has_panel = false;
  4255. bool has_ck505 = false;
  4256. bool can_ssc = false;
  4257. /* We need to take the global config into account */
  4258. list_for_each_entry(encoder, &mode_config->encoder_list,
  4259. base.head) {
  4260. switch (encoder->type) {
  4261. case INTEL_OUTPUT_LVDS:
  4262. has_panel = true;
  4263. has_lvds = true;
  4264. break;
  4265. case INTEL_OUTPUT_EDP:
  4266. has_panel = true;
  4267. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4268. has_cpu_edp = true;
  4269. break;
  4270. }
  4271. }
  4272. if (HAS_PCH_IBX(dev)) {
  4273. has_ck505 = dev_priv->vbt.display_clock_mode;
  4274. can_ssc = has_ck505;
  4275. } else {
  4276. has_ck505 = false;
  4277. can_ssc = true;
  4278. }
  4279. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4280. has_panel, has_lvds, has_ck505);
  4281. /* Ironlake: try to setup display ref clock before DPLL
  4282. * enabling. This is only under driver's control after
  4283. * PCH B stepping, previous chipset stepping should be
  4284. * ignoring this setting.
  4285. */
  4286. val = I915_READ(PCH_DREF_CONTROL);
  4287. /* As we must carefully and slowly disable/enable each source in turn,
  4288. * compute the final state we want first and check if we need to
  4289. * make any changes at all.
  4290. */
  4291. final = val;
  4292. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4293. if (has_ck505)
  4294. final |= DREF_NONSPREAD_CK505_ENABLE;
  4295. else
  4296. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4297. final &= ~DREF_SSC_SOURCE_MASK;
  4298. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4299. final &= ~DREF_SSC1_ENABLE;
  4300. if (has_panel) {
  4301. final |= DREF_SSC_SOURCE_ENABLE;
  4302. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4303. final |= DREF_SSC1_ENABLE;
  4304. if (has_cpu_edp) {
  4305. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4306. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4307. else
  4308. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4309. } else
  4310. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4311. } else {
  4312. final |= DREF_SSC_SOURCE_DISABLE;
  4313. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4314. }
  4315. if (final == val)
  4316. return;
  4317. /* Always enable nonspread source */
  4318. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4319. if (has_ck505)
  4320. val |= DREF_NONSPREAD_CK505_ENABLE;
  4321. else
  4322. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4323. if (has_panel) {
  4324. val &= ~DREF_SSC_SOURCE_MASK;
  4325. val |= DREF_SSC_SOURCE_ENABLE;
  4326. /* SSC must be turned on before enabling the CPU output */
  4327. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4328. DRM_DEBUG_KMS("Using SSC on panel\n");
  4329. val |= DREF_SSC1_ENABLE;
  4330. } else
  4331. val &= ~DREF_SSC1_ENABLE;
  4332. /* Get SSC going before enabling the outputs */
  4333. I915_WRITE(PCH_DREF_CONTROL, val);
  4334. POSTING_READ(PCH_DREF_CONTROL);
  4335. udelay(200);
  4336. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4337. /* Enable CPU source on CPU attached eDP */
  4338. if (has_cpu_edp) {
  4339. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4340. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4341. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4342. }
  4343. else
  4344. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4345. } else
  4346. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4347. I915_WRITE(PCH_DREF_CONTROL, val);
  4348. POSTING_READ(PCH_DREF_CONTROL);
  4349. udelay(200);
  4350. } else {
  4351. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4352. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4353. /* Turn off CPU output */
  4354. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4355. I915_WRITE(PCH_DREF_CONTROL, val);
  4356. POSTING_READ(PCH_DREF_CONTROL);
  4357. udelay(200);
  4358. /* Turn off the SSC source */
  4359. val &= ~DREF_SSC_SOURCE_MASK;
  4360. val |= DREF_SSC_SOURCE_DISABLE;
  4361. /* Turn off SSC1 */
  4362. val &= ~DREF_SSC1_ENABLE;
  4363. I915_WRITE(PCH_DREF_CONTROL, val);
  4364. POSTING_READ(PCH_DREF_CONTROL);
  4365. udelay(200);
  4366. }
  4367. BUG_ON(val != final);
  4368. }
  4369. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4370. {
  4371. uint32_t tmp;
  4372. tmp = I915_READ(SOUTH_CHICKEN2);
  4373. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4374. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4375. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4376. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4377. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4378. tmp = I915_READ(SOUTH_CHICKEN2);
  4379. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4380. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4381. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4382. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4383. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4384. }
  4385. /* WaMPhyProgramming:hsw */
  4386. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4387. {
  4388. uint32_t tmp;
  4389. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4390. tmp &= ~(0xFF << 24);
  4391. tmp |= (0x12 << 24);
  4392. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4393. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4394. tmp |= (1 << 11);
  4395. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4396. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4397. tmp |= (1 << 11);
  4398. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4399. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4400. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4401. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4402. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4403. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4404. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4405. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4406. tmp &= ~(7 << 13);
  4407. tmp |= (5 << 13);
  4408. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4409. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4410. tmp &= ~(7 << 13);
  4411. tmp |= (5 << 13);
  4412. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4413. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4414. tmp &= ~0xFF;
  4415. tmp |= 0x1C;
  4416. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4417. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4418. tmp &= ~0xFF;
  4419. tmp |= 0x1C;
  4420. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4421. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4422. tmp &= ~(0xFF << 16);
  4423. tmp |= (0x1C << 16);
  4424. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4425. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4426. tmp &= ~(0xFF << 16);
  4427. tmp |= (0x1C << 16);
  4428. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4429. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4430. tmp |= (1 << 27);
  4431. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4432. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4433. tmp |= (1 << 27);
  4434. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4435. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4436. tmp &= ~(0xF << 28);
  4437. tmp |= (4 << 28);
  4438. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4439. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4440. tmp &= ~(0xF << 28);
  4441. tmp |= (4 << 28);
  4442. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4443. }
  4444. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4445. * Programming" based on the parameters passed:
  4446. * - Sequence to enable CLKOUT_DP
  4447. * - Sequence to enable CLKOUT_DP without spread
  4448. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4449. */
  4450. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4451. bool with_fdi)
  4452. {
  4453. struct drm_i915_private *dev_priv = dev->dev_private;
  4454. uint32_t reg, tmp;
  4455. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4456. with_spread = true;
  4457. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4458. with_fdi, "LP PCH doesn't have FDI\n"))
  4459. with_fdi = false;
  4460. mutex_lock(&dev_priv->dpio_lock);
  4461. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4462. tmp &= ~SBI_SSCCTL_DISABLE;
  4463. tmp |= SBI_SSCCTL_PATHALT;
  4464. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4465. udelay(24);
  4466. if (with_spread) {
  4467. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4468. tmp &= ~SBI_SSCCTL_PATHALT;
  4469. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4470. if (with_fdi) {
  4471. lpt_reset_fdi_mphy(dev_priv);
  4472. lpt_program_fdi_mphy(dev_priv);
  4473. }
  4474. }
  4475. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4476. SBI_GEN0 : SBI_DBUFF0;
  4477. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4478. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4479. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4480. mutex_unlock(&dev_priv->dpio_lock);
  4481. }
  4482. /* Sequence to disable CLKOUT_DP */
  4483. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4484. {
  4485. struct drm_i915_private *dev_priv = dev->dev_private;
  4486. uint32_t reg, tmp;
  4487. mutex_lock(&dev_priv->dpio_lock);
  4488. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4489. SBI_GEN0 : SBI_DBUFF0;
  4490. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4491. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4492. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4493. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4494. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4495. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4496. tmp |= SBI_SSCCTL_PATHALT;
  4497. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4498. udelay(32);
  4499. }
  4500. tmp |= SBI_SSCCTL_DISABLE;
  4501. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4502. }
  4503. mutex_unlock(&dev_priv->dpio_lock);
  4504. }
  4505. static void lpt_init_pch_refclk(struct drm_device *dev)
  4506. {
  4507. struct drm_mode_config *mode_config = &dev->mode_config;
  4508. struct intel_encoder *encoder;
  4509. bool has_vga = false;
  4510. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4511. switch (encoder->type) {
  4512. case INTEL_OUTPUT_ANALOG:
  4513. has_vga = true;
  4514. break;
  4515. }
  4516. }
  4517. if (has_vga)
  4518. lpt_enable_clkout_dp(dev, true, true);
  4519. else
  4520. lpt_disable_clkout_dp(dev);
  4521. }
  4522. /*
  4523. * Initialize reference clocks when the driver loads
  4524. */
  4525. void intel_init_pch_refclk(struct drm_device *dev)
  4526. {
  4527. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4528. ironlake_init_pch_refclk(dev);
  4529. else if (HAS_PCH_LPT(dev))
  4530. lpt_init_pch_refclk(dev);
  4531. }
  4532. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4533. {
  4534. struct drm_device *dev = crtc->dev;
  4535. struct drm_i915_private *dev_priv = dev->dev_private;
  4536. struct intel_encoder *encoder;
  4537. int num_connectors = 0;
  4538. bool is_lvds = false;
  4539. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4540. switch (encoder->type) {
  4541. case INTEL_OUTPUT_LVDS:
  4542. is_lvds = true;
  4543. break;
  4544. }
  4545. num_connectors++;
  4546. }
  4547. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4548. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4549. dev_priv->vbt.lvds_ssc_freq);
  4550. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4551. }
  4552. return 120000;
  4553. }
  4554. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4555. {
  4556. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4557. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4558. int pipe = intel_crtc->pipe;
  4559. uint32_t val;
  4560. val = 0;
  4561. switch (intel_crtc->config.pipe_bpp) {
  4562. case 18:
  4563. val |= PIPECONF_6BPC;
  4564. break;
  4565. case 24:
  4566. val |= PIPECONF_8BPC;
  4567. break;
  4568. case 30:
  4569. val |= PIPECONF_10BPC;
  4570. break;
  4571. case 36:
  4572. val |= PIPECONF_12BPC;
  4573. break;
  4574. default:
  4575. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4576. BUG();
  4577. }
  4578. if (intel_crtc->config.dither)
  4579. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4580. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4581. val |= PIPECONF_INTERLACED_ILK;
  4582. else
  4583. val |= PIPECONF_PROGRESSIVE;
  4584. if (intel_crtc->config.limited_color_range)
  4585. val |= PIPECONF_COLOR_RANGE_SELECT;
  4586. I915_WRITE(PIPECONF(pipe), val);
  4587. POSTING_READ(PIPECONF(pipe));
  4588. }
  4589. /*
  4590. * Set up the pipe CSC unit.
  4591. *
  4592. * Currently only full range RGB to limited range RGB conversion
  4593. * is supported, but eventually this should handle various
  4594. * RGB<->YCbCr scenarios as well.
  4595. */
  4596. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4597. {
  4598. struct drm_device *dev = crtc->dev;
  4599. struct drm_i915_private *dev_priv = dev->dev_private;
  4600. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4601. int pipe = intel_crtc->pipe;
  4602. uint16_t coeff = 0x7800; /* 1.0 */
  4603. /*
  4604. * TODO: Check what kind of values actually come out of the pipe
  4605. * with these coeff/postoff values and adjust to get the best
  4606. * accuracy. Perhaps we even need to take the bpc value into
  4607. * consideration.
  4608. */
  4609. if (intel_crtc->config.limited_color_range)
  4610. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4611. /*
  4612. * GY/GU and RY/RU should be the other way around according
  4613. * to BSpec, but reality doesn't agree. Just set them up in
  4614. * a way that results in the correct picture.
  4615. */
  4616. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4617. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4618. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4619. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4620. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4621. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4622. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4623. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4624. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4625. if (INTEL_INFO(dev)->gen > 6) {
  4626. uint16_t postoff = 0;
  4627. if (intel_crtc->config.limited_color_range)
  4628. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4629. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4630. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4631. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4632. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4633. } else {
  4634. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4635. if (intel_crtc->config.limited_color_range)
  4636. mode |= CSC_BLACK_SCREEN_OFFSET;
  4637. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4638. }
  4639. }
  4640. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4641. {
  4642. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4643. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4644. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4645. uint32_t val;
  4646. val = 0;
  4647. if (intel_crtc->config.dither)
  4648. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4649. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4650. val |= PIPECONF_INTERLACED_ILK;
  4651. else
  4652. val |= PIPECONF_PROGRESSIVE;
  4653. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4654. POSTING_READ(PIPECONF(cpu_transcoder));
  4655. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4656. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4657. }
  4658. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4659. intel_clock_t *clock,
  4660. bool *has_reduced_clock,
  4661. intel_clock_t *reduced_clock)
  4662. {
  4663. struct drm_device *dev = crtc->dev;
  4664. struct drm_i915_private *dev_priv = dev->dev_private;
  4665. struct intel_encoder *intel_encoder;
  4666. int refclk;
  4667. const intel_limit_t *limit;
  4668. bool ret, is_lvds = false;
  4669. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4670. switch (intel_encoder->type) {
  4671. case INTEL_OUTPUT_LVDS:
  4672. is_lvds = true;
  4673. break;
  4674. }
  4675. }
  4676. refclk = ironlake_get_refclk(crtc);
  4677. /*
  4678. * Returns a set of divisors for the desired target clock with the given
  4679. * refclk, or FALSE. The returned values represent the clock equation:
  4680. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4681. */
  4682. limit = intel_limit(crtc, refclk);
  4683. ret = dev_priv->display.find_dpll(limit, crtc,
  4684. to_intel_crtc(crtc)->config.port_clock,
  4685. refclk, NULL, clock);
  4686. if (!ret)
  4687. return false;
  4688. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4689. /*
  4690. * Ensure we match the reduced clock's P to the target clock.
  4691. * If the clocks don't match, we can't switch the display clock
  4692. * by using the FP0/FP1. In such case we will disable the LVDS
  4693. * downclock feature.
  4694. */
  4695. *has_reduced_clock =
  4696. dev_priv->display.find_dpll(limit, crtc,
  4697. dev_priv->lvds_downclock,
  4698. refclk, clock,
  4699. reduced_clock);
  4700. }
  4701. return true;
  4702. }
  4703. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4704. {
  4705. struct drm_i915_private *dev_priv = dev->dev_private;
  4706. uint32_t temp;
  4707. temp = I915_READ(SOUTH_CHICKEN1);
  4708. if (temp & FDI_BC_BIFURCATION_SELECT)
  4709. return;
  4710. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4711. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4712. temp |= FDI_BC_BIFURCATION_SELECT;
  4713. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4714. I915_WRITE(SOUTH_CHICKEN1, temp);
  4715. POSTING_READ(SOUTH_CHICKEN1);
  4716. }
  4717. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4718. {
  4719. struct drm_device *dev = intel_crtc->base.dev;
  4720. struct drm_i915_private *dev_priv = dev->dev_private;
  4721. switch (intel_crtc->pipe) {
  4722. case PIPE_A:
  4723. break;
  4724. case PIPE_B:
  4725. if (intel_crtc->config.fdi_lanes > 2)
  4726. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4727. else
  4728. cpt_enable_fdi_bc_bifurcation(dev);
  4729. break;
  4730. case PIPE_C:
  4731. cpt_enable_fdi_bc_bifurcation(dev);
  4732. break;
  4733. default:
  4734. BUG();
  4735. }
  4736. }
  4737. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4738. {
  4739. /*
  4740. * Account for spread spectrum to avoid
  4741. * oversubscribing the link. Max center spread
  4742. * is 2.5%; use 5% for safety's sake.
  4743. */
  4744. u32 bps = target_clock * bpp * 21 / 20;
  4745. return bps / (link_bw * 8) + 1;
  4746. }
  4747. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4748. {
  4749. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4750. }
  4751. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4752. u32 *fp,
  4753. intel_clock_t *reduced_clock, u32 *fp2)
  4754. {
  4755. struct drm_crtc *crtc = &intel_crtc->base;
  4756. struct drm_device *dev = crtc->dev;
  4757. struct drm_i915_private *dev_priv = dev->dev_private;
  4758. struct intel_encoder *intel_encoder;
  4759. uint32_t dpll;
  4760. int factor, num_connectors = 0;
  4761. bool is_lvds = false, is_sdvo = false;
  4762. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4763. switch (intel_encoder->type) {
  4764. case INTEL_OUTPUT_LVDS:
  4765. is_lvds = true;
  4766. break;
  4767. case INTEL_OUTPUT_SDVO:
  4768. case INTEL_OUTPUT_HDMI:
  4769. is_sdvo = true;
  4770. break;
  4771. }
  4772. num_connectors++;
  4773. }
  4774. /* Enable autotuning of the PLL clock (if permissible) */
  4775. factor = 21;
  4776. if (is_lvds) {
  4777. if ((intel_panel_use_ssc(dev_priv) &&
  4778. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4779. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4780. factor = 25;
  4781. } else if (intel_crtc->config.sdvo_tv_clock)
  4782. factor = 20;
  4783. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4784. *fp |= FP_CB_TUNE;
  4785. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4786. *fp2 |= FP_CB_TUNE;
  4787. dpll = 0;
  4788. if (is_lvds)
  4789. dpll |= DPLLB_MODE_LVDS;
  4790. else
  4791. dpll |= DPLLB_MODE_DAC_SERIAL;
  4792. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4793. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4794. if (is_sdvo)
  4795. dpll |= DPLL_SDVO_HIGH_SPEED;
  4796. if (intel_crtc->config.has_dp_encoder)
  4797. dpll |= DPLL_SDVO_HIGH_SPEED;
  4798. /* compute bitmask from p1 value */
  4799. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4800. /* also FPA1 */
  4801. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4802. switch (intel_crtc->config.dpll.p2) {
  4803. case 5:
  4804. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4805. break;
  4806. case 7:
  4807. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4808. break;
  4809. case 10:
  4810. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4811. break;
  4812. case 14:
  4813. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4814. break;
  4815. }
  4816. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4817. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4818. else
  4819. dpll |= PLL_REF_INPUT_DREFCLK;
  4820. return dpll | DPLL_VCO_ENABLE;
  4821. }
  4822. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4823. int x, int y,
  4824. struct drm_framebuffer *fb)
  4825. {
  4826. struct drm_device *dev = crtc->dev;
  4827. struct drm_i915_private *dev_priv = dev->dev_private;
  4828. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4829. int pipe = intel_crtc->pipe;
  4830. int plane = intel_crtc->plane;
  4831. int num_connectors = 0;
  4832. intel_clock_t clock, reduced_clock;
  4833. u32 dpll = 0, fp = 0, fp2 = 0;
  4834. bool ok, has_reduced_clock = false;
  4835. bool is_lvds = false;
  4836. struct intel_encoder *encoder;
  4837. struct intel_shared_dpll *pll;
  4838. int ret;
  4839. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4840. switch (encoder->type) {
  4841. case INTEL_OUTPUT_LVDS:
  4842. is_lvds = true;
  4843. break;
  4844. }
  4845. num_connectors++;
  4846. }
  4847. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4848. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4849. ok = ironlake_compute_clocks(crtc, &clock,
  4850. &has_reduced_clock, &reduced_clock);
  4851. if (!ok && !intel_crtc->config.clock_set) {
  4852. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4853. return -EINVAL;
  4854. }
  4855. /* Compat-code for transition, will disappear. */
  4856. if (!intel_crtc->config.clock_set) {
  4857. intel_crtc->config.dpll.n = clock.n;
  4858. intel_crtc->config.dpll.m1 = clock.m1;
  4859. intel_crtc->config.dpll.m2 = clock.m2;
  4860. intel_crtc->config.dpll.p1 = clock.p1;
  4861. intel_crtc->config.dpll.p2 = clock.p2;
  4862. }
  4863. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4864. if (intel_crtc->config.has_pch_encoder) {
  4865. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4866. if (has_reduced_clock)
  4867. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4868. dpll = ironlake_compute_dpll(intel_crtc,
  4869. &fp, &reduced_clock,
  4870. has_reduced_clock ? &fp2 : NULL);
  4871. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4872. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4873. if (has_reduced_clock)
  4874. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4875. else
  4876. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4877. pll = intel_get_shared_dpll(intel_crtc);
  4878. if (pll == NULL) {
  4879. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4880. pipe_name(pipe));
  4881. return -EINVAL;
  4882. }
  4883. } else
  4884. intel_put_shared_dpll(intel_crtc);
  4885. if (intel_crtc->config.has_dp_encoder)
  4886. intel_dp_set_m_n(intel_crtc);
  4887. if (is_lvds && has_reduced_clock && i915_powersave)
  4888. intel_crtc->lowfreq_avail = true;
  4889. else
  4890. intel_crtc->lowfreq_avail = false;
  4891. if (intel_crtc->config.has_pch_encoder) {
  4892. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4893. }
  4894. intel_set_pipe_timings(intel_crtc);
  4895. if (intel_crtc->config.has_pch_encoder) {
  4896. intel_cpu_transcoder_set_m_n(intel_crtc,
  4897. &intel_crtc->config.fdi_m_n);
  4898. }
  4899. if (IS_IVYBRIDGE(dev))
  4900. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4901. ironlake_set_pipeconf(crtc);
  4902. /* Set up the display plane register */
  4903. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4904. POSTING_READ(DSPCNTR(plane));
  4905. ret = intel_pipe_set_base(crtc, x, y, fb);
  4906. intel_update_watermarks(dev);
  4907. return ret;
  4908. }
  4909. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4910. struct intel_crtc_config *pipe_config)
  4911. {
  4912. struct drm_device *dev = crtc->base.dev;
  4913. struct drm_i915_private *dev_priv = dev->dev_private;
  4914. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4915. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4916. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4917. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4918. & ~TU_SIZE_MASK;
  4919. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4920. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4921. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4922. }
  4923. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4924. struct intel_crtc_config *pipe_config)
  4925. {
  4926. struct drm_device *dev = crtc->base.dev;
  4927. struct drm_i915_private *dev_priv = dev->dev_private;
  4928. uint32_t tmp;
  4929. tmp = I915_READ(PF_CTL(crtc->pipe));
  4930. if (tmp & PF_ENABLE) {
  4931. pipe_config->pch_pfit.enabled = true;
  4932. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4933. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4934. /* We currently do not free assignements of panel fitters on
  4935. * ivb/hsw (since we don't use the higher upscaling modes which
  4936. * differentiates them) so just WARN about this case for now. */
  4937. if (IS_GEN7(dev)) {
  4938. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4939. PF_PIPE_SEL_IVB(crtc->pipe));
  4940. }
  4941. }
  4942. }
  4943. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4944. struct intel_crtc_config *pipe_config)
  4945. {
  4946. struct drm_device *dev = crtc->base.dev;
  4947. struct drm_i915_private *dev_priv = dev->dev_private;
  4948. uint32_t tmp;
  4949. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4950. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4951. tmp = I915_READ(PIPECONF(crtc->pipe));
  4952. if (!(tmp & PIPECONF_ENABLE))
  4953. return false;
  4954. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4955. struct intel_shared_dpll *pll;
  4956. pipe_config->has_pch_encoder = true;
  4957. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4958. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4959. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4960. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4961. if (HAS_PCH_IBX(dev_priv->dev)) {
  4962. pipe_config->shared_dpll =
  4963. (enum intel_dpll_id) crtc->pipe;
  4964. } else {
  4965. tmp = I915_READ(PCH_DPLL_SEL);
  4966. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4967. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4968. else
  4969. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4970. }
  4971. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4972. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4973. &pipe_config->dpll_hw_state));
  4974. tmp = pipe_config->dpll_hw_state.dpll;
  4975. pipe_config->pixel_multiplier =
  4976. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  4977. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  4978. } else {
  4979. pipe_config->pixel_multiplier = 1;
  4980. }
  4981. intel_get_pipe_timings(crtc, pipe_config);
  4982. ironlake_get_pfit_config(crtc, pipe_config);
  4983. return true;
  4984. }
  4985. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  4986. {
  4987. struct drm_device *dev = dev_priv->dev;
  4988. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  4989. struct intel_crtc *crtc;
  4990. unsigned long irqflags;
  4991. uint32_t val;
  4992. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  4993. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  4994. pipe_name(crtc->pipe));
  4995. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  4996. WARN(plls->spll_refcount, "SPLL enabled\n");
  4997. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  4998. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  4999. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5000. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5001. "CPU PWM1 enabled\n");
  5002. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5003. "CPU PWM2 enabled\n");
  5004. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5005. "PCH PWM1 enabled\n");
  5006. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5007. "Utility pin enabled\n");
  5008. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5009. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5010. val = I915_READ(DEIMR);
  5011. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5012. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5013. val = I915_READ(SDEIMR);
  5014. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5015. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5016. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5017. }
  5018. /*
  5019. * This function implements pieces of two sequences from BSpec:
  5020. * - Sequence for display software to disable LCPLL
  5021. * - Sequence for display software to allow package C8+
  5022. * The steps implemented here are just the steps that actually touch the LCPLL
  5023. * register. Callers should take care of disabling all the display engine
  5024. * functions, doing the mode unset, fixing interrupts, etc.
  5025. */
  5026. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5027. bool switch_to_fclk, bool allow_power_down)
  5028. {
  5029. uint32_t val;
  5030. assert_can_disable_lcpll(dev_priv);
  5031. val = I915_READ(LCPLL_CTL);
  5032. if (switch_to_fclk) {
  5033. val |= LCPLL_CD_SOURCE_FCLK;
  5034. I915_WRITE(LCPLL_CTL, val);
  5035. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5036. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5037. DRM_ERROR("Switching to FCLK failed\n");
  5038. val = I915_READ(LCPLL_CTL);
  5039. }
  5040. val |= LCPLL_PLL_DISABLE;
  5041. I915_WRITE(LCPLL_CTL, val);
  5042. POSTING_READ(LCPLL_CTL);
  5043. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5044. DRM_ERROR("LCPLL still locked\n");
  5045. val = I915_READ(D_COMP);
  5046. val |= D_COMP_COMP_DISABLE;
  5047. I915_WRITE(D_COMP, val);
  5048. POSTING_READ(D_COMP);
  5049. ndelay(100);
  5050. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5051. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5052. if (allow_power_down) {
  5053. val = I915_READ(LCPLL_CTL);
  5054. val |= LCPLL_POWER_DOWN_ALLOW;
  5055. I915_WRITE(LCPLL_CTL, val);
  5056. POSTING_READ(LCPLL_CTL);
  5057. }
  5058. }
  5059. /*
  5060. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5061. * source.
  5062. */
  5063. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5064. {
  5065. uint32_t val;
  5066. val = I915_READ(LCPLL_CTL);
  5067. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5068. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5069. return;
  5070. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5071. * we'll hang the machine! */
  5072. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5073. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5074. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5075. I915_WRITE(LCPLL_CTL, val);
  5076. POSTING_READ(LCPLL_CTL);
  5077. }
  5078. val = I915_READ(D_COMP);
  5079. val |= D_COMP_COMP_FORCE;
  5080. val &= ~D_COMP_COMP_DISABLE;
  5081. I915_WRITE(D_COMP, val);
  5082. POSTING_READ(D_COMP);
  5083. val = I915_READ(LCPLL_CTL);
  5084. val &= ~LCPLL_PLL_DISABLE;
  5085. I915_WRITE(LCPLL_CTL, val);
  5086. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5087. DRM_ERROR("LCPLL not locked yet\n");
  5088. if (val & LCPLL_CD_SOURCE_FCLK) {
  5089. val = I915_READ(LCPLL_CTL);
  5090. val &= ~LCPLL_CD_SOURCE_FCLK;
  5091. I915_WRITE(LCPLL_CTL, val);
  5092. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5093. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5094. DRM_ERROR("Switching back to LCPLL failed\n");
  5095. }
  5096. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5097. }
  5098. void hsw_enable_pc8_work(struct work_struct *__work)
  5099. {
  5100. struct drm_i915_private *dev_priv =
  5101. container_of(to_delayed_work(__work), struct drm_i915_private,
  5102. pc8.enable_work);
  5103. struct drm_device *dev = dev_priv->dev;
  5104. uint32_t val;
  5105. if (dev_priv->pc8.enabled)
  5106. return;
  5107. DRM_DEBUG_KMS("Enabling package C8+\n");
  5108. dev_priv->pc8.enabled = true;
  5109. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5110. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5111. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5112. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5113. }
  5114. lpt_disable_clkout_dp(dev);
  5115. hsw_pc8_disable_interrupts(dev);
  5116. hsw_disable_lcpll(dev_priv, true, true);
  5117. }
  5118. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5119. {
  5120. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5121. WARN(dev_priv->pc8.disable_count < 1,
  5122. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5123. dev_priv->pc8.disable_count--;
  5124. if (dev_priv->pc8.disable_count != 0)
  5125. return;
  5126. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5127. msecs_to_jiffies(i915_pc8_timeout));
  5128. }
  5129. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5130. {
  5131. struct drm_device *dev = dev_priv->dev;
  5132. uint32_t val;
  5133. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5134. WARN(dev_priv->pc8.disable_count < 0,
  5135. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5136. dev_priv->pc8.disable_count++;
  5137. if (dev_priv->pc8.disable_count != 1)
  5138. return;
  5139. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5140. if (!dev_priv->pc8.enabled)
  5141. return;
  5142. DRM_DEBUG_KMS("Disabling package C8+\n");
  5143. hsw_restore_lcpll(dev_priv);
  5144. hsw_pc8_restore_interrupts(dev);
  5145. lpt_init_pch_refclk(dev);
  5146. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5147. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5148. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5149. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5150. }
  5151. intel_prepare_ddi(dev);
  5152. i915_gem_init_swizzling(dev);
  5153. mutex_lock(&dev_priv->rps.hw_lock);
  5154. gen6_update_ring_freq(dev);
  5155. mutex_unlock(&dev_priv->rps.hw_lock);
  5156. dev_priv->pc8.enabled = false;
  5157. }
  5158. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5159. {
  5160. mutex_lock(&dev_priv->pc8.lock);
  5161. __hsw_enable_package_c8(dev_priv);
  5162. mutex_unlock(&dev_priv->pc8.lock);
  5163. }
  5164. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5165. {
  5166. mutex_lock(&dev_priv->pc8.lock);
  5167. __hsw_disable_package_c8(dev_priv);
  5168. mutex_unlock(&dev_priv->pc8.lock);
  5169. }
  5170. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5171. {
  5172. struct drm_device *dev = dev_priv->dev;
  5173. struct intel_crtc *crtc;
  5174. uint32_t val;
  5175. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5176. if (crtc->base.enabled)
  5177. return false;
  5178. /* This case is still possible since we have the i915.disable_power_well
  5179. * parameter and also the KVMr or something else might be requesting the
  5180. * power well. */
  5181. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5182. if (val != 0) {
  5183. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5184. return false;
  5185. }
  5186. return true;
  5187. }
  5188. /* Since we're called from modeset_global_resources there's no way to
  5189. * symmetrically increase and decrease the refcount, so we use
  5190. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5191. * or not.
  5192. */
  5193. static void hsw_update_package_c8(struct drm_device *dev)
  5194. {
  5195. struct drm_i915_private *dev_priv = dev->dev_private;
  5196. bool allow;
  5197. if (!i915_enable_pc8)
  5198. return;
  5199. mutex_lock(&dev_priv->pc8.lock);
  5200. allow = hsw_can_enable_package_c8(dev_priv);
  5201. if (allow == dev_priv->pc8.requirements_met)
  5202. goto done;
  5203. dev_priv->pc8.requirements_met = allow;
  5204. if (allow)
  5205. __hsw_enable_package_c8(dev_priv);
  5206. else
  5207. __hsw_disable_package_c8(dev_priv);
  5208. done:
  5209. mutex_unlock(&dev_priv->pc8.lock);
  5210. }
  5211. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5212. {
  5213. if (!dev_priv->pc8.gpu_idle) {
  5214. dev_priv->pc8.gpu_idle = true;
  5215. hsw_enable_package_c8(dev_priv);
  5216. }
  5217. }
  5218. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5219. {
  5220. if (dev_priv->pc8.gpu_idle) {
  5221. dev_priv->pc8.gpu_idle = false;
  5222. hsw_disable_package_c8(dev_priv);
  5223. }
  5224. }
  5225. static void haswell_modeset_global_resources(struct drm_device *dev)
  5226. {
  5227. bool enable = false;
  5228. struct intel_crtc *crtc;
  5229. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5230. if (!crtc->base.enabled)
  5231. continue;
  5232. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
  5233. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5234. enable = true;
  5235. }
  5236. intel_set_power_well(dev, enable);
  5237. hsw_update_package_c8(dev);
  5238. }
  5239. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5240. int x, int y,
  5241. struct drm_framebuffer *fb)
  5242. {
  5243. struct drm_device *dev = crtc->dev;
  5244. struct drm_i915_private *dev_priv = dev->dev_private;
  5245. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5246. int plane = intel_crtc->plane;
  5247. int ret;
  5248. if (!intel_ddi_pll_mode_set(crtc))
  5249. return -EINVAL;
  5250. if (intel_crtc->config.has_dp_encoder)
  5251. intel_dp_set_m_n(intel_crtc);
  5252. intel_crtc->lowfreq_avail = false;
  5253. intel_set_pipe_timings(intel_crtc);
  5254. if (intel_crtc->config.has_pch_encoder) {
  5255. intel_cpu_transcoder_set_m_n(intel_crtc,
  5256. &intel_crtc->config.fdi_m_n);
  5257. }
  5258. haswell_set_pipeconf(crtc);
  5259. intel_set_pipe_csc(crtc);
  5260. /* Set up the display plane register */
  5261. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5262. POSTING_READ(DSPCNTR(plane));
  5263. ret = intel_pipe_set_base(crtc, x, y, fb);
  5264. intel_update_watermarks(dev);
  5265. return ret;
  5266. }
  5267. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5268. struct intel_crtc_config *pipe_config)
  5269. {
  5270. struct drm_device *dev = crtc->base.dev;
  5271. struct drm_i915_private *dev_priv = dev->dev_private;
  5272. enum intel_display_power_domain pfit_domain;
  5273. uint32_t tmp;
  5274. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5275. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5276. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5277. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5278. enum pipe trans_edp_pipe;
  5279. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5280. default:
  5281. WARN(1, "unknown pipe linked to edp transcoder\n");
  5282. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5283. case TRANS_DDI_EDP_INPUT_A_ON:
  5284. trans_edp_pipe = PIPE_A;
  5285. break;
  5286. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5287. trans_edp_pipe = PIPE_B;
  5288. break;
  5289. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5290. trans_edp_pipe = PIPE_C;
  5291. break;
  5292. }
  5293. if (trans_edp_pipe == crtc->pipe)
  5294. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5295. }
  5296. if (!intel_display_power_enabled(dev,
  5297. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5298. return false;
  5299. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5300. if (!(tmp & PIPECONF_ENABLE))
  5301. return false;
  5302. /*
  5303. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5304. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5305. * the PCH transcoder is on.
  5306. */
  5307. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5308. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5309. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5310. pipe_config->has_pch_encoder = true;
  5311. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5312. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5313. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5314. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5315. }
  5316. intel_get_pipe_timings(crtc, pipe_config);
  5317. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5318. if (intel_display_power_enabled(dev, pfit_domain))
  5319. ironlake_get_pfit_config(crtc, pipe_config);
  5320. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5321. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5322. pipe_config->pixel_multiplier = 1;
  5323. return true;
  5324. }
  5325. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5326. int x, int y,
  5327. struct drm_framebuffer *fb)
  5328. {
  5329. struct drm_device *dev = crtc->dev;
  5330. struct drm_i915_private *dev_priv = dev->dev_private;
  5331. struct intel_encoder *encoder;
  5332. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5333. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5334. int pipe = intel_crtc->pipe;
  5335. int ret;
  5336. drm_vblank_pre_modeset(dev, pipe);
  5337. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5338. drm_vblank_post_modeset(dev, pipe);
  5339. if (ret != 0)
  5340. return ret;
  5341. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5342. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5343. encoder->base.base.id,
  5344. drm_get_encoder_name(&encoder->base),
  5345. mode->base.id, mode->name);
  5346. encoder->mode_set(encoder);
  5347. }
  5348. return 0;
  5349. }
  5350. static bool intel_eld_uptodate(struct drm_connector *connector,
  5351. int reg_eldv, uint32_t bits_eldv,
  5352. int reg_elda, uint32_t bits_elda,
  5353. int reg_edid)
  5354. {
  5355. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5356. uint8_t *eld = connector->eld;
  5357. uint32_t i;
  5358. i = I915_READ(reg_eldv);
  5359. i &= bits_eldv;
  5360. if (!eld[0])
  5361. return !i;
  5362. if (!i)
  5363. return false;
  5364. i = I915_READ(reg_elda);
  5365. i &= ~bits_elda;
  5366. I915_WRITE(reg_elda, i);
  5367. for (i = 0; i < eld[2]; i++)
  5368. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5369. return false;
  5370. return true;
  5371. }
  5372. static void g4x_write_eld(struct drm_connector *connector,
  5373. struct drm_crtc *crtc)
  5374. {
  5375. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5376. uint8_t *eld = connector->eld;
  5377. uint32_t eldv;
  5378. uint32_t len;
  5379. uint32_t i;
  5380. i = I915_READ(G4X_AUD_VID_DID);
  5381. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5382. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5383. else
  5384. eldv = G4X_ELDV_DEVCTG;
  5385. if (intel_eld_uptodate(connector,
  5386. G4X_AUD_CNTL_ST, eldv,
  5387. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5388. G4X_HDMIW_HDMIEDID))
  5389. return;
  5390. i = I915_READ(G4X_AUD_CNTL_ST);
  5391. i &= ~(eldv | G4X_ELD_ADDR);
  5392. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5393. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5394. if (!eld[0])
  5395. return;
  5396. len = min_t(uint8_t, eld[2], len);
  5397. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5398. for (i = 0; i < len; i++)
  5399. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5400. i = I915_READ(G4X_AUD_CNTL_ST);
  5401. i |= eldv;
  5402. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5403. }
  5404. static void haswell_write_eld(struct drm_connector *connector,
  5405. struct drm_crtc *crtc)
  5406. {
  5407. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5408. uint8_t *eld = connector->eld;
  5409. struct drm_device *dev = crtc->dev;
  5410. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5411. uint32_t eldv;
  5412. uint32_t i;
  5413. int len;
  5414. int pipe = to_intel_crtc(crtc)->pipe;
  5415. int tmp;
  5416. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5417. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5418. int aud_config = HSW_AUD_CFG(pipe);
  5419. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5420. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5421. /* Audio output enable */
  5422. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5423. tmp = I915_READ(aud_cntrl_st2);
  5424. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5425. I915_WRITE(aud_cntrl_st2, tmp);
  5426. /* Wait for 1 vertical blank */
  5427. intel_wait_for_vblank(dev, pipe);
  5428. /* Set ELD valid state */
  5429. tmp = I915_READ(aud_cntrl_st2);
  5430. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  5431. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5432. I915_WRITE(aud_cntrl_st2, tmp);
  5433. tmp = I915_READ(aud_cntrl_st2);
  5434. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  5435. /* Enable HDMI mode */
  5436. tmp = I915_READ(aud_config);
  5437. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  5438. /* clear N_programing_enable and N_value_index */
  5439. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5440. I915_WRITE(aud_config, tmp);
  5441. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5442. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5443. intel_crtc->eld_vld = true;
  5444. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5445. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5446. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5447. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5448. } else
  5449. I915_WRITE(aud_config, 0);
  5450. if (intel_eld_uptodate(connector,
  5451. aud_cntrl_st2, eldv,
  5452. aud_cntl_st, IBX_ELD_ADDRESS,
  5453. hdmiw_hdmiedid))
  5454. return;
  5455. i = I915_READ(aud_cntrl_st2);
  5456. i &= ~eldv;
  5457. I915_WRITE(aud_cntrl_st2, i);
  5458. if (!eld[0])
  5459. return;
  5460. i = I915_READ(aud_cntl_st);
  5461. i &= ~IBX_ELD_ADDRESS;
  5462. I915_WRITE(aud_cntl_st, i);
  5463. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5464. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5465. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5466. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5467. for (i = 0; i < len; i++)
  5468. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5469. i = I915_READ(aud_cntrl_st2);
  5470. i |= eldv;
  5471. I915_WRITE(aud_cntrl_st2, i);
  5472. }
  5473. static void ironlake_write_eld(struct drm_connector *connector,
  5474. struct drm_crtc *crtc)
  5475. {
  5476. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5477. uint8_t *eld = connector->eld;
  5478. uint32_t eldv;
  5479. uint32_t i;
  5480. int len;
  5481. int hdmiw_hdmiedid;
  5482. int aud_config;
  5483. int aud_cntl_st;
  5484. int aud_cntrl_st2;
  5485. int pipe = to_intel_crtc(crtc)->pipe;
  5486. if (HAS_PCH_IBX(connector->dev)) {
  5487. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5488. aud_config = IBX_AUD_CFG(pipe);
  5489. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5490. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5491. } else {
  5492. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5493. aud_config = CPT_AUD_CFG(pipe);
  5494. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5495. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5496. }
  5497. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5498. i = I915_READ(aud_cntl_st);
  5499. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5500. if (!i) {
  5501. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5502. /* operate blindly on all ports */
  5503. eldv = IBX_ELD_VALIDB;
  5504. eldv |= IBX_ELD_VALIDB << 4;
  5505. eldv |= IBX_ELD_VALIDB << 8;
  5506. } else {
  5507. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5508. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5509. }
  5510. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5511. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5512. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5513. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5514. } else
  5515. I915_WRITE(aud_config, 0);
  5516. if (intel_eld_uptodate(connector,
  5517. aud_cntrl_st2, eldv,
  5518. aud_cntl_st, IBX_ELD_ADDRESS,
  5519. hdmiw_hdmiedid))
  5520. return;
  5521. i = I915_READ(aud_cntrl_st2);
  5522. i &= ~eldv;
  5523. I915_WRITE(aud_cntrl_st2, i);
  5524. if (!eld[0])
  5525. return;
  5526. i = I915_READ(aud_cntl_st);
  5527. i &= ~IBX_ELD_ADDRESS;
  5528. I915_WRITE(aud_cntl_st, i);
  5529. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5530. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5531. for (i = 0; i < len; i++)
  5532. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5533. i = I915_READ(aud_cntrl_st2);
  5534. i |= eldv;
  5535. I915_WRITE(aud_cntrl_st2, i);
  5536. }
  5537. void intel_write_eld(struct drm_encoder *encoder,
  5538. struct drm_display_mode *mode)
  5539. {
  5540. struct drm_crtc *crtc = encoder->crtc;
  5541. struct drm_connector *connector;
  5542. struct drm_device *dev = encoder->dev;
  5543. struct drm_i915_private *dev_priv = dev->dev_private;
  5544. connector = drm_select_eld(encoder, mode);
  5545. if (!connector)
  5546. return;
  5547. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5548. connector->base.id,
  5549. drm_get_connector_name(connector),
  5550. connector->encoder->base.id,
  5551. drm_get_encoder_name(connector->encoder));
  5552. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5553. if (dev_priv->display.write_eld)
  5554. dev_priv->display.write_eld(connector, crtc);
  5555. }
  5556. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5557. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5558. {
  5559. struct drm_device *dev = crtc->dev;
  5560. struct drm_i915_private *dev_priv = dev->dev_private;
  5561. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5562. enum pipe pipe = intel_crtc->pipe;
  5563. int palreg = PALETTE(pipe);
  5564. int i;
  5565. bool reenable_ips = false;
  5566. /* The clocks have to be on to load the palette. */
  5567. if (!crtc->enabled || !intel_crtc->active)
  5568. return;
  5569. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5570. assert_pll_enabled(dev_priv, pipe);
  5571. /* use legacy palette for Ironlake */
  5572. if (HAS_PCH_SPLIT(dev))
  5573. palreg = LGC_PALETTE(pipe);
  5574. /* Workaround : Do not read or write the pipe palette/gamma data while
  5575. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5576. */
  5577. if (intel_crtc->config.ips_enabled &&
  5578. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5579. GAMMA_MODE_MODE_SPLIT)) {
  5580. hsw_disable_ips(intel_crtc);
  5581. reenable_ips = true;
  5582. }
  5583. for (i = 0; i < 256; i++) {
  5584. I915_WRITE(palreg + 4 * i,
  5585. (intel_crtc->lut_r[i] << 16) |
  5586. (intel_crtc->lut_g[i] << 8) |
  5587. intel_crtc->lut_b[i]);
  5588. }
  5589. if (reenable_ips)
  5590. hsw_enable_ips(intel_crtc);
  5591. }
  5592. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5593. {
  5594. struct drm_device *dev = crtc->dev;
  5595. struct drm_i915_private *dev_priv = dev->dev_private;
  5596. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5597. bool visible = base != 0;
  5598. u32 cntl;
  5599. if (intel_crtc->cursor_visible == visible)
  5600. return;
  5601. cntl = I915_READ(_CURACNTR);
  5602. if (visible) {
  5603. /* On these chipsets we can only modify the base whilst
  5604. * the cursor is disabled.
  5605. */
  5606. I915_WRITE(_CURABASE, base);
  5607. cntl &= ~(CURSOR_FORMAT_MASK);
  5608. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5609. cntl |= CURSOR_ENABLE |
  5610. CURSOR_GAMMA_ENABLE |
  5611. CURSOR_FORMAT_ARGB;
  5612. } else
  5613. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5614. I915_WRITE(_CURACNTR, cntl);
  5615. intel_crtc->cursor_visible = visible;
  5616. }
  5617. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5618. {
  5619. struct drm_device *dev = crtc->dev;
  5620. struct drm_i915_private *dev_priv = dev->dev_private;
  5621. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5622. int pipe = intel_crtc->pipe;
  5623. bool visible = base != 0;
  5624. if (intel_crtc->cursor_visible != visible) {
  5625. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5626. if (base) {
  5627. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5628. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5629. cntl |= pipe << 28; /* Connect to correct pipe */
  5630. } else {
  5631. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5632. cntl |= CURSOR_MODE_DISABLE;
  5633. }
  5634. I915_WRITE(CURCNTR(pipe), cntl);
  5635. intel_crtc->cursor_visible = visible;
  5636. }
  5637. /* and commit changes on next vblank */
  5638. I915_WRITE(CURBASE(pipe), base);
  5639. }
  5640. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5641. {
  5642. struct drm_device *dev = crtc->dev;
  5643. struct drm_i915_private *dev_priv = dev->dev_private;
  5644. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5645. int pipe = intel_crtc->pipe;
  5646. bool visible = base != 0;
  5647. if (intel_crtc->cursor_visible != visible) {
  5648. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5649. if (base) {
  5650. cntl &= ~CURSOR_MODE;
  5651. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5652. } else {
  5653. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5654. cntl |= CURSOR_MODE_DISABLE;
  5655. }
  5656. if (IS_HASWELL(dev)) {
  5657. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5658. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5659. }
  5660. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5661. intel_crtc->cursor_visible = visible;
  5662. }
  5663. /* and commit changes on next vblank */
  5664. I915_WRITE(CURBASE_IVB(pipe), base);
  5665. }
  5666. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5667. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5668. bool on)
  5669. {
  5670. struct drm_device *dev = crtc->dev;
  5671. struct drm_i915_private *dev_priv = dev->dev_private;
  5672. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5673. int pipe = intel_crtc->pipe;
  5674. int x = intel_crtc->cursor_x;
  5675. int y = intel_crtc->cursor_y;
  5676. u32 base, pos;
  5677. bool visible;
  5678. pos = 0;
  5679. if (on && crtc->enabled && crtc->fb) {
  5680. base = intel_crtc->cursor_addr;
  5681. if (x > (int) crtc->fb->width)
  5682. base = 0;
  5683. if (y > (int) crtc->fb->height)
  5684. base = 0;
  5685. } else
  5686. base = 0;
  5687. if (x < 0) {
  5688. if (x + intel_crtc->cursor_width < 0)
  5689. base = 0;
  5690. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5691. x = -x;
  5692. }
  5693. pos |= x << CURSOR_X_SHIFT;
  5694. if (y < 0) {
  5695. if (y + intel_crtc->cursor_height < 0)
  5696. base = 0;
  5697. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5698. y = -y;
  5699. }
  5700. pos |= y << CURSOR_Y_SHIFT;
  5701. visible = base != 0;
  5702. if (!visible && !intel_crtc->cursor_visible)
  5703. return;
  5704. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5705. I915_WRITE(CURPOS_IVB(pipe), pos);
  5706. ivb_update_cursor(crtc, base);
  5707. } else {
  5708. I915_WRITE(CURPOS(pipe), pos);
  5709. if (IS_845G(dev) || IS_I865G(dev))
  5710. i845_update_cursor(crtc, base);
  5711. else
  5712. i9xx_update_cursor(crtc, base);
  5713. }
  5714. }
  5715. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5716. struct drm_file *file,
  5717. uint32_t handle,
  5718. uint32_t width, uint32_t height)
  5719. {
  5720. struct drm_device *dev = crtc->dev;
  5721. struct drm_i915_private *dev_priv = dev->dev_private;
  5722. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5723. struct drm_i915_gem_object *obj;
  5724. uint32_t addr;
  5725. int ret;
  5726. /* if we want to turn off the cursor ignore width and height */
  5727. if (!handle) {
  5728. DRM_DEBUG_KMS("cursor off\n");
  5729. addr = 0;
  5730. obj = NULL;
  5731. mutex_lock(&dev->struct_mutex);
  5732. goto finish;
  5733. }
  5734. /* Currently we only support 64x64 cursors */
  5735. if (width != 64 || height != 64) {
  5736. DRM_ERROR("we currently only support 64x64 cursors\n");
  5737. return -EINVAL;
  5738. }
  5739. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5740. if (&obj->base == NULL)
  5741. return -ENOENT;
  5742. if (obj->base.size < width * height * 4) {
  5743. DRM_ERROR("buffer is to small\n");
  5744. ret = -ENOMEM;
  5745. goto fail;
  5746. }
  5747. /* we only need to pin inside GTT if cursor is non-phy */
  5748. mutex_lock(&dev->struct_mutex);
  5749. if (!dev_priv->info->cursor_needs_physical) {
  5750. unsigned alignment;
  5751. if (obj->tiling_mode) {
  5752. DRM_ERROR("cursor cannot be tiled\n");
  5753. ret = -EINVAL;
  5754. goto fail_locked;
  5755. }
  5756. /* Note that the w/a also requires 2 PTE of padding following
  5757. * the bo. We currently fill all unused PTE with the shadow
  5758. * page and so we should always have valid PTE following the
  5759. * cursor preventing the VT-d warning.
  5760. */
  5761. alignment = 0;
  5762. if (need_vtd_wa(dev))
  5763. alignment = 64*1024;
  5764. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5765. if (ret) {
  5766. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5767. goto fail_locked;
  5768. }
  5769. ret = i915_gem_object_put_fence(obj);
  5770. if (ret) {
  5771. DRM_ERROR("failed to release fence for cursor");
  5772. goto fail_unpin;
  5773. }
  5774. addr = i915_gem_obj_ggtt_offset(obj);
  5775. } else {
  5776. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5777. ret = i915_gem_attach_phys_object(dev, obj,
  5778. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5779. align);
  5780. if (ret) {
  5781. DRM_ERROR("failed to attach phys object\n");
  5782. goto fail_locked;
  5783. }
  5784. addr = obj->phys_obj->handle->busaddr;
  5785. }
  5786. if (IS_GEN2(dev))
  5787. I915_WRITE(CURSIZE, (height << 12) | width);
  5788. finish:
  5789. if (intel_crtc->cursor_bo) {
  5790. if (dev_priv->info->cursor_needs_physical) {
  5791. if (intel_crtc->cursor_bo != obj)
  5792. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5793. } else
  5794. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5795. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5796. }
  5797. mutex_unlock(&dev->struct_mutex);
  5798. intel_crtc->cursor_addr = addr;
  5799. intel_crtc->cursor_bo = obj;
  5800. intel_crtc->cursor_width = width;
  5801. intel_crtc->cursor_height = height;
  5802. if (intel_crtc->active)
  5803. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5804. return 0;
  5805. fail_unpin:
  5806. i915_gem_object_unpin_from_display_plane(obj);
  5807. fail_locked:
  5808. mutex_unlock(&dev->struct_mutex);
  5809. fail:
  5810. drm_gem_object_unreference_unlocked(&obj->base);
  5811. return ret;
  5812. }
  5813. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5814. {
  5815. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5816. intel_crtc->cursor_x = x;
  5817. intel_crtc->cursor_y = y;
  5818. if (intel_crtc->active)
  5819. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5820. return 0;
  5821. }
  5822. /** Sets the color ramps on behalf of RandR */
  5823. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5824. u16 blue, int regno)
  5825. {
  5826. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5827. intel_crtc->lut_r[regno] = red >> 8;
  5828. intel_crtc->lut_g[regno] = green >> 8;
  5829. intel_crtc->lut_b[regno] = blue >> 8;
  5830. }
  5831. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5832. u16 *blue, int regno)
  5833. {
  5834. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5835. *red = intel_crtc->lut_r[regno] << 8;
  5836. *green = intel_crtc->lut_g[regno] << 8;
  5837. *blue = intel_crtc->lut_b[regno] << 8;
  5838. }
  5839. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5840. u16 *blue, uint32_t start, uint32_t size)
  5841. {
  5842. int end = (start + size > 256) ? 256 : start + size, i;
  5843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5844. for (i = start; i < end; i++) {
  5845. intel_crtc->lut_r[i] = red[i] >> 8;
  5846. intel_crtc->lut_g[i] = green[i] >> 8;
  5847. intel_crtc->lut_b[i] = blue[i] >> 8;
  5848. }
  5849. intel_crtc_load_lut(crtc);
  5850. }
  5851. /* VESA 640x480x72Hz mode to set on the pipe */
  5852. static struct drm_display_mode load_detect_mode = {
  5853. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5854. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5855. };
  5856. static struct drm_framebuffer *
  5857. intel_framebuffer_create(struct drm_device *dev,
  5858. struct drm_mode_fb_cmd2 *mode_cmd,
  5859. struct drm_i915_gem_object *obj)
  5860. {
  5861. struct intel_framebuffer *intel_fb;
  5862. int ret;
  5863. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5864. if (!intel_fb) {
  5865. drm_gem_object_unreference_unlocked(&obj->base);
  5866. return ERR_PTR(-ENOMEM);
  5867. }
  5868. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5869. if (ret) {
  5870. drm_gem_object_unreference_unlocked(&obj->base);
  5871. kfree(intel_fb);
  5872. return ERR_PTR(ret);
  5873. }
  5874. return &intel_fb->base;
  5875. }
  5876. static u32
  5877. intel_framebuffer_pitch_for_width(int width, int bpp)
  5878. {
  5879. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5880. return ALIGN(pitch, 64);
  5881. }
  5882. static u32
  5883. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5884. {
  5885. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5886. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5887. }
  5888. static struct drm_framebuffer *
  5889. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5890. struct drm_display_mode *mode,
  5891. int depth, int bpp)
  5892. {
  5893. struct drm_i915_gem_object *obj;
  5894. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5895. obj = i915_gem_alloc_object(dev,
  5896. intel_framebuffer_size_for_mode(mode, bpp));
  5897. if (obj == NULL)
  5898. return ERR_PTR(-ENOMEM);
  5899. mode_cmd.width = mode->hdisplay;
  5900. mode_cmd.height = mode->vdisplay;
  5901. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5902. bpp);
  5903. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5904. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5905. }
  5906. static struct drm_framebuffer *
  5907. mode_fits_in_fbdev(struct drm_device *dev,
  5908. struct drm_display_mode *mode)
  5909. {
  5910. struct drm_i915_private *dev_priv = dev->dev_private;
  5911. struct drm_i915_gem_object *obj;
  5912. struct drm_framebuffer *fb;
  5913. if (dev_priv->fbdev == NULL)
  5914. return NULL;
  5915. obj = dev_priv->fbdev->ifb.obj;
  5916. if (obj == NULL)
  5917. return NULL;
  5918. fb = &dev_priv->fbdev->ifb.base;
  5919. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5920. fb->bits_per_pixel))
  5921. return NULL;
  5922. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5923. return NULL;
  5924. return fb;
  5925. }
  5926. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5927. struct drm_display_mode *mode,
  5928. struct intel_load_detect_pipe *old)
  5929. {
  5930. struct intel_crtc *intel_crtc;
  5931. struct intel_encoder *intel_encoder =
  5932. intel_attached_encoder(connector);
  5933. struct drm_crtc *possible_crtc;
  5934. struct drm_encoder *encoder = &intel_encoder->base;
  5935. struct drm_crtc *crtc = NULL;
  5936. struct drm_device *dev = encoder->dev;
  5937. struct drm_framebuffer *fb;
  5938. int i = -1;
  5939. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5940. connector->base.id, drm_get_connector_name(connector),
  5941. encoder->base.id, drm_get_encoder_name(encoder));
  5942. /*
  5943. * Algorithm gets a little messy:
  5944. *
  5945. * - if the connector already has an assigned crtc, use it (but make
  5946. * sure it's on first)
  5947. *
  5948. * - try to find the first unused crtc that can drive this connector,
  5949. * and use that if we find one
  5950. */
  5951. /* See if we already have a CRTC for this connector */
  5952. if (encoder->crtc) {
  5953. crtc = encoder->crtc;
  5954. mutex_lock(&crtc->mutex);
  5955. old->dpms_mode = connector->dpms;
  5956. old->load_detect_temp = false;
  5957. /* Make sure the crtc and connector are running */
  5958. if (connector->dpms != DRM_MODE_DPMS_ON)
  5959. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5960. return true;
  5961. }
  5962. /* Find an unused one (if possible) */
  5963. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5964. i++;
  5965. if (!(encoder->possible_crtcs & (1 << i)))
  5966. continue;
  5967. if (!possible_crtc->enabled) {
  5968. crtc = possible_crtc;
  5969. break;
  5970. }
  5971. }
  5972. /*
  5973. * If we didn't find an unused CRTC, don't use any.
  5974. */
  5975. if (!crtc) {
  5976. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5977. return false;
  5978. }
  5979. mutex_lock(&crtc->mutex);
  5980. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5981. to_intel_connector(connector)->new_encoder = intel_encoder;
  5982. intel_crtc = to_intel_crtc(crtc);
  5983. old->dpms_mode = connector->dpms;
  5984. old->load_detect_temp = true;
  5985. old->release_fb = NULL;
  5986. if (!mode)
  5987. mode = &load_detect_mode;
  5988. /* We need a framebuffer large enough to accommodate all accesses
  5989. * that the plane may generate whilst we perform load detection.
  5990. * We can not rely on the fbcon either being present (we get called
  5991. * during its initialisation to detect all boot displays, or it may
  5992. * not even exist) or that it is large enough to satisfy the
  5993. * requested mode.
  5994. */
  5995. fb = mode_fits_in_fbdev(dev, mode);
  5996. if (fb == NULL) {
  5997. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5998. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5999. old->release_fb = fb;
  6000. } else
  6001. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6002. if (IS_ERR(fb)) {
  6003. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6004. mutex_unlock(&crtc->mutex);
  6005. return false;
  6006. }
  6007. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6008. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6009. if (old->release_fb)
  6010. old->release_fb->funcs->destroy(old->release_fb);
  6011. mutex_unlock(&crtc->mutex);
  6012. return false;
  6013. }
  6014. /* let the connector get through one full cycle before testing */
  6015. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6016. return true;
  6017. }
  6018. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6019. struct intel_load_detect_pipe *old)
  6020. {
  6021. struct intel_encoder *intel_encoder =
  6022. intel_attached_encoder(connector);
  6023. struct drm_encoder *encoder = &intel_encoder->base;
  6024. struct drm_crtc *crtc = encoder->crtc;
  6025. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6026. connector->base.id, drm_get_connector_name(connector),
  6027. encoder->base.id, drm_get_encoder_name(encoder));
  6028. if (old->load_detect_temp) {
  6029. to_intel_connector(connector)->new_encoder = NULL;
  6030. intel_encoder->new_crtc = NULL;
  6031. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6032. if (old->release_fb) {
  6033. drm_framebuffer_unregister_private(old->release_fb);
  6034. drm_framebuffer_unreference(old->release_fb);
  6035. }
  6036. mutex_unlock(&crtc->mutex);
  6037. return;
  6038. }
  6039. /* Switch crtc and encoder back off if necessary */
  6040. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6041. connector->funcs->dpms(connector, old->dpms_mode);
  6042. mutex_unlock(&crtc->mutex);
  6043. }
  6044. /* Returns the clock of the currently programmed mode of the given pipe. */
  6045. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6046. struct intel_crtc_config *pipe_config)
  6047. {
  6048. struct drm_device *dev = crtc->base.dev;
  6049. struct drm_i915_private *dev_priv = dev->dev_private;
  6050. int pipe = pipe_config->cpu_transcoder;
  6051. u32 dpll = I915_READ(DPLL(pipe));
  6052. u32 fp;
  6053. intel_clock_t clock;
  6054. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6055. fp = I915_READ(FP0(pipe));
  6056. else
  6057. fp = I915_READ(FP1(pipe));
  6058. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6059. if (IS_PINEVIEW(dev)) {
  6060. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6061. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6062. } else {
  6063. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6064. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6065. }
  6066. if (!IS_GEN2(dev)) {
  6067. if (IS_PINEVIEW(dev))
  6068. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6069. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6070. else
  6071. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6072. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6073. switch (dpll & DPLL_MODE_MASK) {
  6074. case DPLLB_MODE_DAC_SERIAL:
  6075. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6076. 5 : 10;
  6077. break;
  6078. case DPLLB_MODE_LVDS:
  6079. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6080. 7 : 14;
  6081. break;
  6082. default:
  6083. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6084. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6085. pipe_config->adjusted_mode.clock = 0;
  6086. return;
  6087. }
  6088. if (IS_PINEVIEW(dev))
  6089. pineview_clock(96000, &clock);
  6090. else
  6091. i9xx_clock(96000, &clock);
  6092. } else {
  6093. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6094. if (is_lvds) {
  6095. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6096. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6097. clock.p2 = 14;
  6098. if ((dpll & PLL_REF_INPUT_MASK) ==
  6099. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6100. /* XXX: might not be 66MHz */
  6101. i9xx_clock(66000, &clock);
  6102. } else
  6103. i9xx_clock(48000, &clock);
  6104. } else {
  6105. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6106. clock.p1 = 2;
  6107. else {
  6108. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6109. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6110. }
  6111. if (dpll & PLL_P2_DIVIDE_BY_4)
  6112. clock.p2 = 4;
  6113. else
  6114. clock.p2 = 2;
  6115. i9xx_clock(48000, &clock);
  6116. }
  6117. }
  6118. pipe_config->adjusted_mode.clock = clock.dot;
  6119. }
  6120. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  6121. struct intel_crtc_config *pipe_config)
  6122. {
  6123. struct drm_device *dev = crtc->base.dev;
  6124. struct drm_i915_private *dev_priv = dev->dev_private;
  6125. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  6126. int link_freq, repeat;
  6127. u64 clock;
  6128. u32 link_m, link_n;
  6129. repeat = pipe_config->pixel_multiplier;
  6130. /*
  6131. * The calculation for the data clock is:
  6132. * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
  6133. * But we want to avoid losing precison if possible, so:
  6134. * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
  6135. *
  6136. * and the link clock is simpler:
  6137. * link_clock = (m * link_clock * repeat) / n
  6138. */
  6139. /*
  6140. * We need to get the FDI or DP link clock here to derive
  6141. * the M/N dividers.
  6142. *
  6143. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  6144. * For DP, it's either 1.62GHz or 2.7GHz.
  6145. * We do our calculations in 10*MHz since we don't need much precison.
  6146. */
  6147. if (pipe_config->has_pch_encoder)
  6148. link_freq = intel_fdi_link_freq(dev) * 10000;
  6149. else
  6150. link_freq = pipe_config->port_clock;
  6151. link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  6152. link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  6153. if (!link_m || !link_n)
  6154. return;
  6155. clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
  6156. do_div(clock, link_n);
  6157. pipe_config->adjusted_mode.clock = clock;
  6158. }
  6159. /** Returns the currently programmed mode of the given pipe. */
  6160. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6161. struct drm_crtc *crtc)
  6162. {
  6163. struct drm_i915_private *dev_priv = dev->dev_private;
  6164. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6165. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6166. struct drm_display_mode *mode;
  6167. struct intel_crtc_config pipe_config;
  6168. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6169. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6170. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6171. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6172. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6173. if (!mode)
  6174. return NULL;
  6175. /*
  6176. * Construct a pipe_config sufficient for getting the clock info
  6177. * back out of crtc_clock_get.
  6178. *
  6179. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6180. * to use a real value here instead.
  6181. */
  6182. pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  6183. pipe_config.pixel_multiplier = 1;
  6184. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6185. mode->clock = pipe_config.adjusted_mode.clock;
  6186. mode->hdisplay = (htot & 0xffff) + 1;
  6187. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6188. mode->hsync_start = (hsync & 0xffff) + 1;
  6189. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6190. mode->vdisplay = (vtot & 0xffff) + 1;
  6191. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6192. mode->vsync_start = (vsync & 0xffff) + 1;
  6193. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6194. drm_mode_set_name(mode);
  6195. return mode;
  6196. }
  6197. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6198. {
  6199. struct drm_device *dev = crtc->dev;
  6200. drm_i915_private_t *dev_priv = dev->dev_private;
  6201. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6202. int pipe = intel_crtc->pipe;
  6203. int dpll_reg = DPLL(pipe);
  6204. int dpll;
  6205. if (HAS_PCH_SPLIT(dev))
  6206. return;
  6207. if (!dev_priv->lvds_downclock_avail)
  6208. return;
  6209. dpll = I915_READ(dpll_reg);
  6210. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6211. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6212. assert_panel_unlocked(dev_priv, pipe);
  6213. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6214. I915_WRITE(dpll_reg, dpll);
  6215. intel_wait_for_vblank(dev, pipe);
  6216. dpll = I915_READ(dpll_reg);
  6217. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6218. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6219. }
  6220. }
  6221. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6222. {
  6223. struct drm_device *dev = crtc->dev;
  6224. drm_i915_private_t *dev_priv = dev->dev_private;
  6225. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6226. if (HAS_PCH_SPLIT(dev))
  6227. return;
  6228. if (!dev_priv->lvds_downclock_avail)
  6229. return;
  6230. /*
  6231. * Since this is called by a timer, we should never get here in
  6232. * the manual case.
  6233. */
  6234. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6235. int pipe = intel_crtc->pipe;
  6236. int dpll_reg = DPLL(pipe);
  6237. int dpll;
  6238. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6239. assert_panel_unlocked(dev_priv, pipe);
  6240. dpll = I915_READ(dpll_reg);
  6241. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6242. I915_WRITE(dpll_reg, dpll);
  6243. intel_wait_for_vblank(dev, pipe);
  6244. dpll = I915_READ(dpll_reg);
  6245. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6246. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6247. }
  6248. }
  6249. void intel_mark_busy(struct drm_device *dev)
  6250. {
  6251. struct drm_i915_private *dev_priv = dev->dev_private;
  6252. hsw_package_c8_gpu_busy(dev_priv);
  6253. i915_update_gfx_val(dev_priv);
  6254. }
  6255. void intel_mark_idle(struct drm_device *dev)
  6256. {
  6257. struct drm_i915_private *dev_priv = dev->dev_private;
  6258. struct drm_crtc *crtc;
  6259. hsw_package_c8_gpu_idle(dev_priv);
  6260. if (!i915_powersave)
  6261. return;
  6262. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6263. if (!crtc->fb)
  6264. continue;
  6265. intel_decrease_pllclock(crtc);
  6266. }
  6267. }
  6268. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6269. struct intel_ring_buffer *ring)
  6270. {
  6271. struct drm_device *dev = obj->base.dev;
  6272. struct drm_crtc *crtc;
  6273. if (!i915_powersave)
  6274. return;
  6275. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6276. if (!crtc->fb)
  6277. continue;
  6278. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6279. continue;
  6280. intel_increase_pllclock(crtc);
  6281. if (ring && intel_fbc_enabled(dev))
  6282. ring->fbc_dirty = true;
  6283. }
  6284. }
  6285. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6286. {
  6287. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6288. struct drm_device *dev = crtc->dev;
  6289. struct intel_unpin_work *work;
  6290. unsigned long flags;
  6291. spin_lock_irqsave(&dev->event_lock, flags);
  6292. work = intel_crtc->unpin_work;
  6293. intel_crtc->unpin_work = NULL;
  6294. spin_unlock_irqrestore(&dev->event_lock, flags);
  6295. if (work) {
  6296. cancel_work_sync(&work->work);
  6297. kfree(work);
  6298. }
  6299. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6300. drm_crtc_cleanup(crtc);
  6301. kfree(intel_crtc);
  6302. }
  6303. static void intel_unpin_work_fn(struct work_struct *__work)
  6304. {
  6305. struct intel_unpin_work *work =
  6306. container_of(__work, struct intel_unpin_work, work);
  6307. struct drm_device *dev = work->crtc->dev;
  6308. mutex_lock(&dev->struct_mutex);
  6309. intel_unpin_fb_obj(work->old_fb_obj);
  6310. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6311. drm_gem_object_unreference(&work->old_fb_obj->base);
  6312. intel_update_fbc(dev);
  6313. mutex_unlock(&dev->struct_mutex);
  6314. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6315. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6316. kfree(work);
  6317. }
  6318. static void do_intel_finish_page_flip(struct drm_device *dev,
  6319. struct drm_crtc *crtc)
  6320. {
  6321. drm_i915_private_t *dev_priv = dev->dev_private;
  6322. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6323. struct intel_unpin_work *work;
  6324. unsigned long flags;
  6325. /* Ignore early vblank irqs */
  6326. if (intel_crtc == NULL)
  6327. return;
  6328. spin_lock_irqsave(&dev->event_lock, flags);
  6329. work = intel_crtc->unpin_work;
  6330. /* Ensure we don't miss a work->pending update ... */
  6331. smp_rmb();
  6332. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6333. spin_unlock_irqrestore(&dev->event_lock, flags);
  6334. return;
  6335. }
  6336. /* and that the unpin work is consistent wrt ->pending. */
  6337. smp_rmb();
  6338. intel_crtc->unpin_work = NULL;
  6339. if (work->event)
  6340. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6341. drm_vblank_put(dev, intel_crtc->pipe);
  6342. spin_unlock_irqrestore(&dev->event_lock, flags);
  6343. wake_up_all(&dev_priv->pending_flip_queue);
  6344. queue_work(dev_priv->wq, &work->work);
  6345. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6346. }
  6347. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6348. {
  6349. drm_i915_private_t *dev_priv = dev->dev_private;
  6350. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6351. do_intel_finish_page_flip(dev, crtc);
  6352. }
  6353. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6354. {
  6355. drm_i915_private_t *dev_priv = dev->dev_private;
  6356. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6357. do_intel_finish_page_flip(dev, crtc);
  6358. }
  6359. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6360. {
  6361. drm_i915_private_t *dev_priv = dev->dev_private;
  6362. struct intel_crtc *intel_crtc =
  6363. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6364. unsigned long flags;
  6365. /* NB: An MMIO update of the plane base pointer will also
  6366. * generate a page-flip completion irq, i.e. every modeset
  6367. * is also accompanied by a spurious intel_prepare_page_flip().
  6368. */
  6369. spin_lock_irqsave(&dev->event_lock, flags);
  6370. if (intel_crtc->unpin_work)
  6371. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6372. spin_unlock_irqrestore(&dev->event_lock, flags);
  6373. }
  6374. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6375. {
  6376. /* Ensure that the work item is consistent when activating it ... */
  6377. smp_wmb();
  6378. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6379. /* and that it is marked active as soon as the irq could fire. */
  6380. smp_wmb();
  6381. }
  6382. static int intel_gen2_queue_flip(struct drm_device *dev,
  6383. struct drm_crtc *crtc,
  6384. struct drm_framebuffer *fb,
  6385. struct drm_i915_gem_object *obj,
  6386. uint32_t flags)
  6387. {
  6388. struct drm_i915_private *dev_priv = dev->dev_private;
  6389. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6390. u32 flip_mask;
  6391. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6392. int ret;
  6393. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6394. if (ret)
  6395. goto err;
  6396. ret = intel_ring_begin(ring, 6);
  6397. if (ret)
  6398. goto err_unpin;
  6399. /* Can't queue multiple flips, so wait for the previous
  6400. * one to finish before executing the next.
  6401. */
  6402. if (intel_crtc->plane)
  6403. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6404. else
  6405. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6406. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6407. intel_ring_emit(ring, MI_NOOP);
  6408. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6409. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6410. intel_ring_emit(ring, fb->pitches[0]);
  6411. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6412. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6413. intel_mark_page_flip_active(intel_crtc);
  6414. intel_ring_advance(ring);
  6415. return 0;
  6416. err_unpin:
  6417. intel_unpin_fb_obj(obj);
  6418. err:
  6419. return ret;
  6420. }
  6421. static int intel_gen3_queue_flip(struct drm_device *dev,
  6422. struct drm_crtc *crtc,
  6423. struct drm_framebuffer *fb,
  6424. struct drm_i915_gem_object *obj,
  6425. uint32_t flags)
  6426. {
  6427. struct drm_i915_private *dev_priv = dev->dev_private;
  6428. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6429. u32 flip_mask;
  6430. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6431. int ret;
  6432. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6433. if (ret)
  6434. goto err;
  6435. ret = intel_ring_begin(ring, 6);
  6436. if (ret)
  6437. goto err_unpin;
  6438. if (intel_crtc->plane)
  6439. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6440. else
  6441. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6442. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6443. intel_ring_emit(ring, MI_NOOP);
  6444. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6445. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6446. intel_ring_emit(ring, fb->pitches[0]);
  6447. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6448. intel_ring_emit(ring, MI_NOOP);
  6449. intel_mark_page_flip_active(intel_crtc);
  6450. intel_ring_advance(ring);
  6451. return 0;
  6452. err_unpin:
  6453. intel_unpin_fb_obj(obj);
  6454. err:
  6455. return ret;
  6456. }
  6457. static int intel_gen4_queue_flip(struct drm_device *dev,
  6458. struct drm_crtc *crtc,
  6459. struct drm_framebuffer *fb,
  6460. struct drm_i915_gem_object *obj,
  6461. uint32_t flags)
  6462. {
  6463. struct drm_i915_private *dev_priv = dev->dev_private;
  6464. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6465. uint32_t pf, pipesrc;
  6466. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6467. int ret;
  6468. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6469. if (ret)
  6470. goto err;
  6471. ret = intel_ring_begin(ring, 4);
  6472. if (ret)
  6473. goto err_unpin;
  6474. /* i965+ uses the linear or tiled offsets from the
  6475. * Display Registers (which do not change across a page-flip)
  6476. * so we need only reprogram the base address.
  6477. */
  6478. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6479. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6480. intel_ring_emit(ring, fb->pitches[0]);
  6481. intel_ring_emit(ring,
  6482. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6483. obj->tiling_mode);
  6484. /* XXX Enabling the panel-fitter across page-flip is so far
  6485. * untested on non-native modes, so ignore it for now.
  6486. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6487. */
  6488. pf = 0;
  6489. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6490. intel_ring_emit(ring, pf | pipesrc);
  6491. intel_mark_page_flip_active(intel_crtc);
  6492. intel_ring_advance(ring);
  6493. return 0;
  6494. err_unpin:
  6495. intel_unpin_fb_obj(obj);
  6496. err:
  6497. return ret;
  6498. }
  6499. static int intel_gen6_queue_flip(struct drm_device *dev,
  6500. struct drm_crtc *crtc,
  6501. struct drm_framebuffer *fb,
  6502. struct drm_i915_gem_object *obj,
  6503. uint32_t flags)
  6504. {
  6505. struct drm_i915_private *dev_priv = dev->dev_private;
  6506. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6507. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6508. uint32_t pf, pipesrc;
  6509. int ret;
  6510. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6511. if (ret)
  6512. goto err;
  6513. ret = intel_ring_begin(ring, 4);
  6514. if (ret)
  6515. goto err_unpin;
  6516. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6517. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6518. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6519. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6520. /* Contrary to the suggestions in the documentation,
  6521. * "Enable Panel Fitter" does not seem to be required when page
  6522. * flipping with a non-native mode, and worse causes a normal
  6523. * modeset to fail.
  6524. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6525. */
  6526. pf = 0;
  6527. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6528. intel_ring_emit(ring, pf | pipesrc);
  6529. intel_mark_page_flip_active(intel_crtc);
  6530. intel_ring_advance(ring);
  6531. return 0;
  6532. err_unpin:
  6533. intel_unpin_fb_obj(obj);
  6534. err:
  6535. return ret;
  6536. }
  6537. static int intel_gen7_queue_flip(struct drm_device *dev,
  6538. struct drm_crtc *crtc,
  6539. struct drm_framebuffer *fb,
  6540. struct drm_i915_gem_object *obj,
  6541. uint32_t flags)
  6542. {
  6543. struct drm_i915_private *dev_priv = dev->dev_private;
  6544. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6545. struct intel_ring_buffer *ring;
  6546. uint32_t plane_bit = 0;
  6547. int len, ret;
  6548. ring = obj->ring;
  6549. if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  6550. ring = &dev_priv->ring[BCS];
  6551. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6552. if (ret)
  6553. goto err;
  6554. switch(intel_crtc->plane) {
  6555. case PLANE_A:
  6556. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6557. break;
  6558. case PLANE_B:
  6559. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6560. break;
  6561. case PLANE_C:
  6562. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6563. break;
  6564. default:
  6565. WARN_ONCE(1, "unknown plane in flip command\n");
  6566. ret = -ENODEV;
  6567. goto err_unpin;
  6568. }
  6569. len = 4;
  6570. if (ring->id == RCS)
  6571. len += 6;
  6572. ret = intel_ring_begin(ring, len);
  6573. if (ret)
  6574. goto err_unpin;
  6575. /* Unmask the flip-done completion message. Note that the bspec says that
  6576. * we should do this for both the BCS and RCS, and that we must not unmask
  6577. * more than one flip event at any time (or ensure that one flip message
  6578. * can be sent by waiting for flip-done prior to queueing new flips).
  6579. * Experimentation says that BCS works despite DERRMR masking all
  6580. * flip-done completion events and that unmasking all planes at once
  6581. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6582. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6583. */
  6584. if (ring->id == RCS) {
  6585. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6586. intel_ring_emit(ring, DERRMR);
  6587. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6588. DERRMR_PIPEB_PRI_FLIP_DONE |
  6589. DERRMR_PIPEC_PRI_FLIP_DONE));
  6590. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6591. intel_ring_emit(ring, DERRMR);
  6592. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6593. }
  6594. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6595. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6596. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6597. intel_ring_emit(ring, (MI_NOOP));
  6598. intel_mark_page_flip_active(intel_crtc);
  6599. intel_ring_advance(ring);
  6600. return 0;
  6601. err_unpin:
  6602. intel_unpin_fb_obj(obj);
  6603. err:
  6604. return ret;
  6605. }
  6606. static int intel_default_queue_flip(struct drm_device *dev,
  6607. struct drm_crtc *crtc,
  6608. struct drm_framebuffer *fb,
  6609. struct drm_i915_gem_object *obj,
  6610. uint32_t flags)
  6611. {
  6612. return -ENODEV;
  6613. }
  6614. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6615. struct drm_framebuffer *fb,
  6616. struct drm_pending_vblank_event *event,
  6617. uint32_t page_flip_flags)
  6618. {
  6619. struct drm_device *dev = crtc->dev;
  6620. struct drm_i915_private *dev_priv = dev->dev_private;
  6621. struct drm_framebuffer *old_fb = crtc->fb;
  6622. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6623. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6624. struct intel_unpin_work *work;
  6625. unsigned long flags;
  6626. int ret;
  6627. /* Can't change pixel format via MI display flips. */
  6628. if (fb->pixel_format != crtc->fb->pixel_format)
  6629. return -EINVAL;
  6630. /*
  6631. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6632. * Note that pitch changes could also affect these register.
  6633. */
  6634. if (INTEL_INFO(dev)->gen > 3 &&
  6635. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6636. fb->pitches[0] != crtc->fb->pitches[0]))
  6637. return -EINVAL;
  6638. work = kzalloc(sizeof *work, GFP_KERNEL);
  6639. if (work == NULL)
  6640. return -ENOMEM;
  6641. work->event = event;
  6642. work->crtc = crtc;
  6643. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6644. INIT_WORK(&work->work, intel_unpin_work_fn);
  6645. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6646. if (ret)
  6647. goto free_work;
  6648. /* We borrow the event spin lock for protecting unpin_work */
  6649. spin_lock_irqsave(&dev->event_lock, flags);
  6650. if (intel_crtc->unpin_work) {
  6651. spin_unlock_irqrestore(&dev->event_lock, flags);
  6652. kfree(work);
  6653. drm_vblank_put(dev, intel_crtc->pipe);
  6654. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6655. return -EBUSY;
  6656. }
  6657. intel_crtc->unpin_work = work;
  6658. spin_unlock_irqrestore(&dev->event_lock, flags);
  6659. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6660. flush_workqueue(dev_priv->wq);
  6661. ret = i915_mutex_lock_interruptible(dev);
  6662. if (ret)
  6663. goto cleanup;
  6664. /* Reference the objects for the scheduled work. */
  6665. drm_gem_object_reference(&work->old_fb_obj->base);
  6666. drm_gem_object_reference(&obj->base);
  6667. crtc->fb = fb;
  6668. work->pending_flip_obj = obj;
  6669. work->enable_stall_check = true;
  6670. atomic_inc(&intel_crtc->unpin_work_count);
  6671. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6672. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6673. if (ret)
  6674. goto cleanup_pending;
  6675. intel_disable_fbc(dev);
  6676. intel_mark_fb_busy(obj, NULL);
  6677. mutex_unlock(&dev->struct_mutex);
  6678. trace_i915_flip_request(intel_crtc->plane, obj);
  6679. return 0;
  6680. cleanup_pending:
  6681. atomic_dec(&intel_crtc->unpin_work_count);
  6682. crtc->fb = old_fb;
  6683. drm_gem_object_unreference(&work->old_fb_obj->base);
  6684. drm_gem_object_unreference(&obj->base);
  6685. mutex_unlock(&dev->struct_mutex);
  6686. cleanup:
  6687. spin_lock_irqsave(&dev->event_lock, flags);
  6688. intel_crtc->unpin_work = NULL;
  6689. spin_unlock_irqrestore(&dev->event_lock, flags);
  6690. drm_vblank_put(dev, intel_crtc->pipe);
  6691. free_work:
  6692. kfree(work);
  6693. return ret;
  6694. }
  6695. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6696. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6697. .load_lut = intel_crtc_load_lut,
  6698. };
  6699. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6700. struct drm_crtc *crtc)
  6701. {
  6702. struct drm_device *dev;
  6703. struct drm_crtc *tmp;
  6704. int crtc_mask = 1;
  6705. WARN(!crtc, "checking null crtc?\n");
  6706. dev = crtc->dev;
  6707. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6708. if (tmp == crtc)
  6709. break;
  6710. crtc_mask <<= 1;
  6711. }
  6712. if (encoder->possible_crtcs & crtc_mask)
  6713. return true;
  6714. return false;
  6715. }
  6716. /**
  6717. * intel_modeset_update_staged_output_state
  6718. *
  6719. * Updates the staged output configuration state, e.g. after we've read out the
  6720. * current hw state.
  6721. */
  6722. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6723. {
  6724. struct intel_encoder *encoder;
  6725. struct intel_connector *connector;
  6726. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6727. base.head) {
  6728. connector->new_encoder =
  6729. to_intel_encoder(connector->base.encoder);
  6730. }
  6731. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6732. base.head) {
  6733. encoder->new_crtc =
  6734. to_intel_crtc(encoder->base.crtc);
  6735. }
  6736. }
  6737. /**
  6738. * intel_modeset_commit_output_state
  6739. *
  6740. * This function copies the stage display pipe configuration to the real one.
  6741. */
  6742. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6743. {
  6744. struct intel_encoder *encoder;
  6745. struct intel_connector *connector;
  6746. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6747. base.head) {
  6748. connector->base.encoder = &connector->new_encoder->base;
  6749. }
  6750. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6751. base.head) {
  6752. encoder->base.crtc = &encoder->new_crtc->base;
  6753. }
  6754. }
  6755. static void
  6756. connected_sink_compute_bpp(struct intel_connector * connector,
  6757. struct intel_crtc_config *pipe_config)
  6758. {
  6759. int bpp = pipe_config->pipe_bpp;
  6760. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6761. connector->base.base.id,
  6762. drm_get_connector_name(&connector->base));
  6763. /* Don't use an invalid EDID bpc value */
  6764. if (connector->base.display_info.bpc &&
  6765. connector->base.display_info.bpc * 3 < bpp) {
  6766. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6767. bpp, connector->base.display_info.bpc*3);
  6768. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6769. }
  6770. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6771. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6772. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6773. bpp);
  6774. pipe_config->pipe_bpp = 24;
  6775. }
  6776. }
  6777. static int
  6778. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6779. struct drm_framebuffer *fb,
  6780. struct intel_crtc_config *pipe_config)
  6781. {
  6782. struct drm_device *dev = crtc->base.dev;
  6783. struct intel_connector *connector;
  6784. int bpp;
  6785. switch (fb->pixel_format) {
  6786. case DRM_FORMAT_C8:
  6787. bpp = 8*3; /* since we go through a colormap */
  6788. break;
  6789. case DRM_FORMAT_XRGB1555:
  6790. case DRM_FORMAT_ARGB1555:
  6791. /* checked in intel_framebuffer_init already */
  6792. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6793. return -EINVAL;
  6794. case DRM_FORMAT_RGB565:
  6795. bpp = 6*3; /* min is 18bpp */
  6796. break;
  6797. case DRM_FORMAT_XBGR8888:
  6798. case DRM_FORMAT_ABGR8888:
  6799. /* checked in intel_framebuffer_init already */
  6800. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6801. return -EINVAL;
  6802. case DRM_FORMAT_XRGB8888:
  6803. case DRM_FORMAT_ARGB8888:
  6804. bpp = 8*3;
  6805. break;
  6806. case DRM_FORMAT_XRGB2101010:
  6807. case DRM_FORMAT_ARGB2101010:
  6808. case DRM_FORMAT_XBGR2101010:
  6809. case DRM_FORMAT_ABGR2101010:
  6810. /* checked in intel_framebuffer_init already */
  6811. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6812. return -EINVAL;
  6813. bpp = 10*3;
  6814. break;
  6815. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6816. default:
  6817. DRM_DEBUG_KMS("unsupported depth\n");
  6818. return -EINVAL;
  6819. }
  6820. pipe_config->pipe_bpp = bpp;
  6821. /* Clamp display bpp to EDID value */
  6822. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6823. base.head) {
  6824. if (!connector->new_encoder ||
  6825. connector->new_encoder->new_crtc != crtc)
  6826. continue;
  6827. connected_sink_compute_bpp(connector, pipe_config);
  6828. }
  6829. return bpp;
  6830. }
  6831. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6832. struct intel_crtc_config *pipe_config,
  6833. const char *context)
  6834. {
  6835. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6836. context, pipe_name(crtc->pipe));
  6837. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6838. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6839. pipe_config->pipe_bpp, pipe_config->dither);
  6840. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6841. pipe_config->has_pch_encoder,
  6842. pipe_config->fdi_lanes,
  6843. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6844. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6845. pipe_config->fdi_m_n.tu);
  6846. DRM_DEBUG_KMS("requested mode:\n");
  6847. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6848. DRM_DEBUG_KMS("adjusted mode:\n");
  6849. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6850. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6851. pipe_config->gmch_pfit.control,
  6852. pipe_config->gmch_pfit.pgm_ratios,
  6853. pipe_config->gmch_pfit.lvds_border_bits);
  6854. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  6855. pipe_config->pch_pfit.pos,
  6856. pipe_config->pch_pfit.size,
  6857. pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  6858. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6859. }
  6860. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6861. {
  6862. int num_encoders = 0;
  6863. bool uncloneable_encoders = false;
  6864. struct intel_encoder *encoder;
  6865. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6866. base.head) {
  6867. if (&encoder->new_crtc->base != crtc)
  6868. continue;
  6869. num_encoders++;
  6870. if (!encoder->cloneable)
  6871. uncloneable_encoders = true;
  6872. }
  6873. return !(num_encoders > 1 && uncloneable_encoders);
  6874. }
  6875. static struct intel_crtc_config *
  6876. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6877. struct drm_framebuffer *fb,
  6878. struct drm_display_mode *mode)
  6879. {
  6880. struct drm_device *dev = crtc->dev;
  6881. struct intel_encoder *encoder;
  6882. struct intel_crtc_config *pipe_config;
  6883. int plane_bpp, ret = -EINVAL;
  6884. bool retry = true;
  6885. if (!check_encoder_cloning(crtc)) {
  6886. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6887. return ERR_PTR(-EINVAL);
  6888. }
  6889. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6890. if (!pipe_config)
  6891. return ERR_PTR(-ENOMEM);
  6892. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6893. drm_mode_copy(&pipe_config->requested_mode, mode);
  6894. pipe_config->cpu_transcoder =
  6895. (enum transcoder) to_intel_crtc(crtc)->pipe;
  6896. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6897. /*
  6898. * Sanitize sync polarity flags based on requested ones. If neither
  6899. * positive or negative polarity is requested, treat this as meaning
  6900. * negative polarity.
  6901. */
  6902. if (!(pipe_config->adjusted_mode.flags &
  6903. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  6904. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  6905. if (!(pipe_config->adjusted_mode.flags &
  6906. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  6907. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  6908. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6909. * plane pixel format and any sink constraints into account. Returns the
  6910. * source plane bpp so that dithering can be selected on mismatches
  6911. * after encoders and crtc also have had their say. */
  6912. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6913. fb, pipe_config);
  6914. if (plane_bpp < 0)
  6915. goto fail;
  6916. encoder_retry:
  6917. /* Ensure the port clock defaults are reset when retrying. */
  6918. pipe_config->port_clock = 0;
  6919. pipe_config->pixel_multiplier = 1;
  6920. /* Fill in default crtc timings, allow encoders to overwrite them. */
  6921. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  6922. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6923. * adjust it according to limitations or connector properties, and also
  6924. * a chance to reject the mode entirely.
  6925. */
  6926. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6927. base.head) {
  6928. if (&encoder->new_crtc->base != crtc)
  6929. continue;
  6930. if (!(encoder->compute_config(encoder, pipe_config))) {
  6931. DRM_DEBUG_KMS("Encoder config failure\n");
  6932. goto fail;
  6933. }
  6934. }
  6935. /* Set default port clock if not overwritten by the encoder. Needs to be
  6936. * done afterwards in case the encoder adjusts the mode. */
  6937. if (!pipe_config->port_clock)
  6938. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6939. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6940. if (ret < 0) {
  6941. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6942. goto fail;
  6943. }
  6944. if (ret == RETRY) {
  6945. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6946. ret = -EINVAL;
  6947. goto fail;
  6948. }
  6949. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6950. retry = false;
  6951. goto encoder_retry;
  6952. }
  6953. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6954. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6955. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6956. return pipe_config;
  6957. fail:
  6958. kfree(pipe_config);
  6959. return ERR_PTR(ret);
  6960. }
  6961. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6962. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6963. static void
  6964. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6965. unsigned *prepare_pipes, unsigned *disable_pipes)
  6966. {
  6967. struct intel_crtc *intel_crtc;
  6968. struct drm_device *dev = crtc->dev;
  6969. struct intel_encoder *encoder;
  6970. struct intel_connector *connector;
  6971. struct drm_crtc *tmp_crtc;
  6972. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6973. /* Check which crtcs have changed outputs connected to them, these need
  6974. * to be part of the prepare_pipes mask. We don't (yet) support global
  6975. * modeset across multiple crtcs, so modeset_pipes will only have one
  6976. * bit set at most. */
  6977. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6978. base.head) {
  6979. if (connector->base.encoder == &connector->new_encoder->base)
  6980. continue;
  6981. if (connector->base.encoder) {
  6982. tmp_crtc = connector->base.encoder->crtc;
  6983. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6984. }
  6985. if (connector->new_encoder)
  6986. *prepare_pipes |=
  6987. 1 << connector->new_encoder->new_crtc->pipe;
  6988. }
  6989. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6990. base.head) {
  6991. if (encoder->base.crtc == &encoder->new_crtc->base)
  6992. continue;
  6993. if (encoder->base.crtc) {
  6994. tmp_crtc = encoder->base.crtc;
  6995. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6996. }
  6997. if (encoder->new_crtc)
  6998. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6999. }
  7000. /* Check for any pipes that will be fully disabled ... */
  7001. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7002. base.head) {
  7003. bool used = false;
  7004. /* Don't try to disable disabled crtcs. */
  7005. if (!intel_crtc->base.enabled)
  7006. continue;
  7007. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7008. base.head) {
  7009. if (encoder->new_crtc == intel_crtc)
  7010. used = true;
  7011. }
  7012. if (!used)
  7013. *disable_pipes |= 1 << intel_crtc->pipe;
  7014. }
  7015. /* set_mode is also used to update properties on life display pipes. */
  7016. intel_crtc = to_intel_crtc(crtc);
  7017. if (crtc->enabled)
  7018. *prepare_pipes |= 1 << intel_crtc->pipe;
  7019. /*
  7020. * For simplicity do a full modeset on any pipe where the output routing
  7021. * changed. We could be more clever, but that would require us to be
  7022. * more careful with calling the relevant encoder->mode_set functions.
  7023. */
  7024. if (*prepare_pipes)
  7025. *modeset_pipes = *prepare_pipes;
  7026. /* ... and mask these out. */
  7027. *modeset_pipes &= ~(*disable_pipes);
  7028. *prepare_pipes &= ~(*disable_pipes);
  7029. /*
  7030. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7031. * obies this rule, but the modeset restore mode of
  7032. * intel_modeset_setup_hw_state does not.
  7033. */
  7034. *modeset_pipes &= 1 << intel_crtc->pipe;
  7035. *prepare_pipes &= 1 << intel_crtc->pipe;
  7036. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7037. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7038. }
  7039. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7040. {
  7041. struct drm_encoder *encoder;
  7042. struct drm_device *dev = crtc->dev;
  7043. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7044. if (encoder->crtc == crtc)
  7045. return true;
  7046. return false;
  7047. }
  7048. static void
  7049. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7050. {
  7051. struct intel_encoder *intel_encoder;
  7052. struct intel_crtc *intel_crtc;
  7053. struct drm_connector *connector;
  7054. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7055. base.head) {
  7056. if (!intel_encoder->base.crtc)
  7057. continue;
  7058. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7059. if (prepare_pipes & (1 << intel_crtc->pipe))
  7060. intel_encoder->connectors_active = false;
  7061. }
  7062. intel_modeset_commit_output_state(dev);
  7063. /* Update computed state. */
  7064. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7065. base.head) {
  7066. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7067. }
  7068. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7069. if (!connector->encoder || !connector->encoder->crtc)
  7070. continue;
  7071. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7072. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7073. struct drm_property *dpms_property =
  7074. dev->mode_config.dpms_property;
  7075. connector->dpms = DRM_MODE_DPMS_ON;
  7076. drm_object_property_set_value(&connector->base,
  7077. dpms_property,
  7078. DRM_MODE_DPMS_ON);
  7079. intel_encoder = to_intel_encoder(connector->encoder);
  7080. intel_encoder->connectors_active = true;
  7081. }
  7082. }
  7083. }
  7084. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  7085. struct intel_crtc_config *new)
  7086. {
  7087. int clock1, clock2, diff;
  7088. clock1 = cur->adjusted_mode.clock;
  7089. clock2 = new->adjusted_mode.clock;
  7090. if (clock1 == clock2)
  7091. return true;
  7092. if (!clock1 || !clock2)
  7093. return false;
  7094. diff = abs(clock1 - clock2);
  7095. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7096. return true;
  7097. return false;
  7098. }
  7099. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7100. list_for_each_entry((intel_crtc), \
  7101. &(dev)->mode_config.crtc_list, \
  7102. base.head) \
  7103. if (mask & (1 <<(intel_crtc)->pipe))
  7104. static bool
  7105. intel_pipe_config_compare(struct drm_device *dev,
  7106. struct intel_crtc_config *current_config,
  7107. struct intel_crtc_config *pipe_config)
  7108. {
  7109. #define PIPE_CONF_CHECK_X(name) \
  7110. if (current_config->name != pipe_config->name) { \
  7111. DRM_ERROR("mismatch in " #name " " \
  7112. "(expected 0x%08x, found 0x%08x)\n", \
  7113. current_config->name, \
  7114. pipe_config->name); \
  7115. return false; \
  7116. }
  7117. #define PIPE_CONF_CHECK_I(name) \
  7118. if (current_config->name != pipe_config->name) { \
  7119. DRM_ERROR("mismatch in " #name " " \
  7120. "(expected %i, found %i)\n", \
  7121. current_config->name, \
  7122. pipe_config->name); \
  7123. return false; \
  7124. }
  7125. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7126. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7127. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7128. "(expected %i, found %i)\n", \
  7129. current_config->name & (mask), \
  7130. pipe_config->name & (mask)); \
  7131. return false; \
  7132. }
  7133. #define PIPE_CONF_QUIRK(quirk) \
  7134. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7135. PIPE_CONF_CHECK_I(cpu_transcoder);
  7136. PIPE_CONF_CHECK_I(has_pch_encoder);
  7137. PIPE_CONF_CHECK_I(fdi_lanes);
  7138. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7139. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7140. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7141. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7142. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7143. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7144. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7145. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7146. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7147. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7148. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7149. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7150. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7151. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7152. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7153. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7154. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7155. PIPE_CONF_CHECK_I(pixel_multiplier);
  7156. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7157. DRM_MODE_FLAG_INTERLACE);
  7158. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7159. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7160. DRM_MODE_FLAG_PHSYNC);
  7161. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7162. DRM_MODE_FLAG_NHSYNC);
  7163. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7164. DRM_MODE_FLAG_PVSYNC);
  7165. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7166. DRM_MODE_FLAG_NVSYNC);
  7167. }
  7168. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  7169. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  7170. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7171. /* pfit ratios are autocomputed by the hw on gen4+ */
  7172. if (INTEL_INFO(dev)->gen < 4)
  7173. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7174. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7175. PIPE_CONF_CHECK_I(pch_pfit.enabled);
  7176. if (current_config->pch_pfit.enabled) {
  7177. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7178. PIPE_CONF_CHECK_I(pch_pfit.size);
  7179. }
  7180. PIPE_CONF_CHECK_I(ips_enabled);
  7181. PIPE_CONF_CHECK_I(shared_dpll);
  7182. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7183. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7184. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7185. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7186. #undef PIPE_CONF_CHECK_X
  7187. #undef PIPE_CONF_CHECK_I
  7188. #undef PIPE_CONF_CHECK_FLAGS
  7189. #undef PIPE_CONF_QUIRK
  7190. if (!IS_HASWELL(dev)) {
  7191. if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  7192. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  7193. current_config->adjusted_mode.clock,
  7194. pipe_config->adjusted_mode.clock);
  7195. return false;
  7196. }
  7197. }
  7198. return true;
  7199. }
  7200. static void
  7201. check_connector_state(struct drm_device *dev)
  7202. {
  7203. struct intel_connector *connector;
  7204. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7205. base.head) {
  7206. /* This also checks the encoder/connector hw state with the
  7207. * ->get_hw_state callbacks. */
  7208. intel_connector_check_state(connector);
  7209. WARN(&connector->new_encoder->base != connector->base.encoder,
  7210. "connector's staged encoder doesn't match current encoder\n");
  7211. }
  7212. }
  7213. static void
  7214. check_encoder_state(struct drm_device *dev)
  7215. {
  7216. struct intel_encoder *encoder;
  7217. struct intel_connector *connector;
  7218. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7219. base.head) {
  7220. bool enabled = false;
  7221. bool active = false;
  7222. enum pipe pipe, tracked_pipe;
  7223. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7224. encoder->base.base.id,
  7225. drm_get_encoder_name(&encoder->base));
  7226. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7227. "encoder's stage crtc doesn't match current crtc\n");
  7228. WARN(encoder->connectors_active && !encoder->base.crtc,
  7229. "encoder's active_connectors set, but no crtc\n");
  7230. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7231. base.head) {
  7232. if (connector->base.encoder != &encoder->base)
  7233. continue;
  7234. enabled = true;
  7235. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7236. active = true;
  7237. }
  7238. WARN(!!encoder->base.crtc != enabled,
  7239. "encoder's enabled state mismatch "
  7240. "(expected %i, found %i)\n",
  7241. !!encoder->base.crtc, enabled);
  7242. WARN(active && !encoder->base.crtc,
  7243. "active encoder with no crtc\n");
  7244. WARN(encoder->connectors_active != active,
  7245. "encoder's computed active state doesn't match tracked active state "
  7246. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7247. active = encoder->get_hw_state(encoder, &pipe);
  7248. WARN(active != encoder->connectors_active,
  7249. "encoder's hw state doesn't match sw tracking "
  7250. "(expected %i, found %i)\n",
  7251. encoder->connectors_active, active);
  7252. if (!encoder->base.crtc)
  7253. continue;
  7254. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7255. WARN(active && pipe != tracked_pipe,
  7256. "active encoder's pipe doesn't match"
  7257. "(expected %i, found %i)\n",
  7258. tracked_pipe, pipe);
  7259. }
  7260. }
  7261. static void
  7262. check_crtc_state(struct drm_device *dev)
  7263. {
  7264. drm_i915_private_t *dev_priv = dev->dev_private;
  7265. struct intel_crtc *crtc;
  7266. struct intel_encoder *encoder;
  7267. struct intel_crtc_config pipe_config;
  7268. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7269. base.head) {
  7270. bool enabled = false;
  7271. bool active = false;
  7272. memset(&pipe_config, 0, sizeof(pipe_config));
  7273. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7274. crtc->base.base.id);
  7275. WARN(crtc->active && !crtc->base.enabled,
  7276. "active crtc, but not enabled in sw tracking\n");
  7277. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7278. base.head) {
  7279. if (encoder->base.crtc != &crtc->base)
  7280. continue;
  7281. enabled = true;
  7282. if (encoder->connectors_active)
  7283. active = true;
  7284. }
  7285. WARN(active != crtc->active,
  7286. "crtc's computed active state doesn't match tracked active state "
  7287. "(expected %i, found %i)\n", active, crtc->active);
  7288. WARN(enabled != crtc->base.enabled,
  7289. "crtc's computed enabled state doesn't match tracked enabled state "
  7290. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7291. active = dev_priv->display.get_pipe_config(crtc,
  7292. &pipe_config);
  7293. /* hw state is inconsistent with the pipe A quirk */
  7294. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7295. active = crtc->active;
  7296. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7297. base.head) {
  7298. enum pipe pipe;
  7299. if (encoder->base.crtc != &crtc->base)
  7300. continue;
  7301. if (encoder->get_config &&
  7302. encoder->get_hw_state(encoder, &pipe))
  7303. encoder->get_config(encoder, &pipe_config);
  7304. }
  7305. if (dev_priv->display.get_clock)
  7306. dev_priv->display.get_clock(crtc, &pipe_config);
  7307. WARN(crtc->active != active,
  7308. "crtc active state doesn't match with hw state "
  7309. "(expected %i, found %i)\n", crtc->active, active);
  7310. if (active &&
  7311. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7312. WARN(1, "pipe state doesn't match!\n");
  7313. intel_dump_pipe_config(crtc, &pipe_config,
  7314. "[hw state]");
  7315. intel_dump_pipe_config(crtc, &crtc->config,
  7316. "[sw state]");
  7317. }
  7318. }
  7319. }
  7320. static void
  7321. check_shared_dpll_state(struct drm_device *dev)
  7322. {
  7323. drm_i915_private_t *dev_priv = dev->dev_private;
  7324. struct intel_crtc *crtc;
  7325. struct intel_dpll_hw_state dpll_hw_state;
  7326. int i;
  7327. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7328. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7329. int enabled_crtcs = 0, active_crtcs = 0;
  7330. bool active;
  7331. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7332. DRM_DEBUG_KMS("%s\n", pll->name);
  7333. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7334. WARN(pll->active > pll->refcount,
  7335. "more active pll users than references: %i vs %i\n",
  7336. pll->active, pll->refcount);
  7337. WARN(pll->active && !pll->on,
  7338. "pll in active use but not on in sw tracking\n");
  7339. WARN(pll->on && !pll->active,
  7340. "pll in on but not on in use in sw tracking\n");
  7341. WARN(pll->on != active,
  7342. "pll on state mismatch (expected %i, found %i)\n",
  7343. pll->on, active);
  7344. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7345. base.head) {
  7346. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7347. enabled_crtcs++;
  7348. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7349. active_crtcs++;
  7350. }
  7351. WARN(pll->active != active_crtcs,
  7352. "pll active crtcs mismatch (expected %i, found %i)\n",
  7353. pll->active, active_crtcs);
  7354. WARN(pll->refcount != enabled_crtcs,
  7355. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7356. pll->refcount, enabled_crtcs);
  7357. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7358. sizeof(dpll_hw_state)),
  7359. "pll hw state mismatch\n");
  7360. }
  7361. }
  7362. void
  7363. intel_modeset_check_state(struct drm_device *dev)
  7364. {
  7365. check_connector_state(dev);
  7366. check_encoder_state(dev);
  7367. check_crtc_state(dev);
  7368. check_shared_dpll_state(dev);
  7369. }
  7370. static int __intel_set_mode(struct drm_crtc *crtc,
  7371. struct drm_display_mode *mode,
  7372. int x, int y, struct drm_framebuffer *fb)
  7373. {
  7374. struct drm_device *dev = crtc->dev;
  7375. drm_i915_private_t *dev_priv = dev->dev_private;
  7376. struct drm_display_mode *saved_mode, *saved_hwmode;
  7377. struct intel_crtc_config *pipe_config = NULL;
  7378. struct intel_crtc *intel_crtc;
  7379. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7380. int ret = 0;
  7381. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7382. if (!saved_mode)
  7383. return -ENOMEM;
  7384. saved_hwmode = saved_mode + 1;
  7385. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7386. &prepare_pipes, &disable_pipes);
  7387. *saved_hwmode = crtc->hwmode;
  7388. *saved_mode = crtc->mode;
  7389. /* Hack: Because we don't (yet) support global modeset on multiple
  7390. * crtcs, we don't keep track of the new mode for more than one crtc.
  7391. * Hence simply check whether any bit is set in modeset_pipes in all the
  7392. * pieces of code that are not yet converted to deal with mutliple crtcs
  7393. * changing their mode at the same time. */
  7394. if (modeset_pipes) {
  7395. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7396. if (IS_ERR(pipe_config)) {
  7397. ret = PTR_ERR(pipe_config);
  7398. pipe_config = NULL;
  7399. goto out;
  7400. }
  7401. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7402. "[modeset]");
  7403. }
  7404. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7405. intel_crtc_disable(&intel_crtc->base);
  7406. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7407. if (intel_crtc->base.enabled)
  7408. dev_priv->display.crtc_disable(&intel_crtc->base);
  7409. }
  7410. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7411. * to set it here already despite that we pass it down the callchain.
  7412. */
  7413. if (modeset_pipes) {
  7414. crtc->mode = *mode;
  7415. /* mode_set/enable/disable functions rely on a correct pipe
  7416. * config. */
  7417. to_intel_crtc(crtc)->config = *pipe_config;
  7418. }
  7419. /* Only after disabling all output pipelines that will be changed can we
  7420. * update the the output configuration. */
  7421. intel_modeset_update_state(dev, prepare_pipes);
  7422. if (dev_priv->display.modeset_global_resources)
  7423. dev_priv->display.modeset_global_resources(dev);
  7424. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7425. * on the DPLL.
  7426. */
  7427. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7428. ret = intel_crtc_mode_set(&intel_crtc->base,
  7429. x, y, fb);
  7430. if (ret)
  7431. goto done;
  7432. }
  7433. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7434. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7435. dev_priv->display.crtc_enable(&intel_crtc->base);
  7436. if (modeset_pipes) {
  7437. /* Store real post-adjustment hardware mode. */
  7438. crtc->hwmode = pipe_config->adjusted_mode;
  7439. /* Calculate and store various constants which
  7440. * are later needed by vblank and swap-completion
  7441. * timestamping. They are derived from true hwmode.
  7442. */
  7443. drm_calc_timestamping_constants(crtc);
  7444. }
  7445. /* FIXME: add subpixel order */
  7446. done:
  7447. if (ret && crtc->enabled) {
  7448. crtc->hwmode = *saved_hwmode;
  7449. crtc->mode = *saved_mode;
  7450. }
  7451. out:
  7452. kfree(pipe_config);
  7453. kfree(saved_mode);
  7454. return ret;
  7455. }
  7456. static int intel_set_mode(struct drm_crtc *crtc,
  7457. struct drm_display_mode *mode,
  7458. int x, int y, struct drm_framebuffer *fb)
  7459. {
  7460. int ret;
  7461. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7462. if (ret == 0)
  7463. intel_modeset_check_state(crtc->dev);
  7464. return ret;
  7465. }
  7466. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7467. {
  7468. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7469. }
  7470. #undef for_each_intel_crtc_masked
  7471. static void intel_set_config_free(struct intel_set_config *config)
  7472. {
  7473. if (!config)
  7474. return;
  7475. kfree(config->save_connector_encoders);
  7476. kfree(config->save_encoder_crtcs);
  7477. kfree(config);
  7478. }
  7479. static int intel_set_config_save_state(struct drm_device *dev,
  7480. struct intel_set_config *config)
  7481. {
  7482. struct drm_encoder *encoder;
  7483. struct drm_connector *connector;
  7484. int count;
  7485. config->save_encoder_crtcs =
  7486. kcalloc(dev->mode_config.num_encoder,
  7487. sizeof(struct drm_crtc *), GFP_KERNEL);
  7488. if (!config->save_encoder_crtcs)
  7489. return -ENOMEM;
  7490. config->save_connector_encoders =
  7491. kcalloc(dev->mode_config.num_connector,
  7492. sizeof(struct drm_encoder *), GFP_KERNEL);
  7493. if (!config->save_connector_encoders)
  7494. return -ENOMEM;
  7495. /* Copy data. Note that driver private data is not affected.
  7496. * Should anything bad happen only the expected state is
  7497. * restored, not the drivers personal bookkeeping.
  7498. */
  7499. count = 0;
  7500. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7501. config->save_encoder_crtcs[count++] = encoder->crtc;
  7502. }
  7503. count = 0;
  7504. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7505. config->save_connector_encoders[count++] = connector->encoder;
  7506. }
  7507. return 0;
  7508. }
  7509. static void intel_set_config_restore_state(struct drm_device *dev,
  7510. struct intel_set_config *config)
  7511. {
  7512. struct intel_encoder *encoder;
  7513. struct intel_connector *connector;
  7514. int count;
  7515. count = 0;
  7516. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7517. encoder->new_crtc =
  7518. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7519. }
  7520. count = 0;
  7521. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7522. connector->new_encoder =
  7523. to_intel_encoder(config->save_connector_encoders[count++]);
  7524. }
  7525. }
  7526. static bool
  7527. is_crtc_connector_off(struct drm_mode_set *set)
  7528. {
  7529. int i;
  7530. if (set->num_connectors == 0)
  7531. return false;
  7532. if (WARN_ON(set->connectors == NULL))
  7533. return false;
  7534. for (i = 0; i < set->num_connectors; i++)
  7535. if (set->connectors[i]->encoder &&
  7536. set->connectors[i]->encoder->crtc == set->crtc &&
  7537. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7538. return true;
  7539. return false;
  7540. }
  7541. static void
  7542. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7543. struct intel_set_config *config)
  7544. {
  7545. /* We should be able to check here if the fb has the same properties
  7546. * and then just flip_or_move it */
  7547. if (is_crtc_connector_off(set)) {
  7548. config->mode_changed = true;
  7549. } else if (set->crtc->fb != set->fb) {
  7550. /* If we have no fb then treat it as a full mode set */
  7551. if (set->crtc->fb == NULL) {
  7552. struct intel_crtc *intel_crtc =
  7553. to_intel_crtc(set->crtc);
  7554. if (intel_crtc->active && i915_fastboot) {
  7555. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7556. config->fb_changed = true;
  7557. } else {
  7558. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7559. config->mode_changed = true;
  7560. }
  7561. } else if (set->fb == NULL) {
  7562. config->mode_changed = true;
  7563. } else if (set->fb->pixel_format !=
  7564. set->crtc->fb->pixel_format) {
  7565. config->mode_changed = true;
  7566. } else {
  7567. config->fb_changed = true;
  7568. }
  7569. }
  7570. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7571. config->fb_changed = true;
  7572. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7573. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7574. drm_mode_debug_printmodeline(&set->crtc->mode);
  7575. drm_mode_debug_printmodeline(set->mode);
  7576. config->mode_changed = true;
  7577. }
  7578. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7579. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7580. }
  7581. static int
  7582. intel_modeset_stage_output_state(struct drm_device *dev,
  7583. struct drm_mode_set *set,
  7584. struct intel_set_config *config)
  7585. {
  7586. struct drm_crtc *new_crtc;
  7587. struct intel_connector *connector;
  7588. struct intel_encoder *encoder;
  7589. int ro;
  7590. /* The upper layers ensure that we either disable a crtc or have a list
  7591. * of connectors. For paranoia, double-check this. */
  7592. WARN_ON(!set->fb && (set->num_connectors != 0));
  7593. WARN_ON(set->fb && (set->num_connectors == 0));
  7594. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7595. base.head) {
  7596. /* Otherwise traverse passed in connector list and get encoders
  7597. * for them. */
  7598. for (ro = 0; ro < set->num_connectors; ro++) {
  7599. if (set->connectors[ro] == &connector->base) {
  7600. connector->new_encoder = connector->encoder;
  7601. break;
  7602. }
  7603. }
  7604. /* If we disable the crtc, disable all its connectors. Also, if
  7605. * the connector is on the changing crtc but not on the new
  7606. * connector list, disable it. */
  7607. if ((!set->fb || ro == set->num_connectors) &&
  7608. connector->base.encoder &&
  7609. connector->base.encoder->crtc == set->crtc) {
  7610. connector->new_encoder = NULL;
  7611. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7612. connector->base.base.id,
  7613. drm_get_connector_name(&connector->base));
  7614. }
  7615. if (&connector->new_encoder->base != connector->base.encoder) {
  7616. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7617. config->mode_changed = true;
  7618. }
  7619. }
  7620. /* connector->new_encoder is now updated for all connectors. */
  7621. /* Update crtc of enabled connectors. */
  7622. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7623. base.head) {
  7624. if (!connector->new_encoder)
  7625. continue;
  7626. new_crtc = connector->new_encoder->base.crtc;
  7627. for (ro = 0; ro < set->num_connectors; ro++) {
  7628. if (set->connectors[ro] == &connector->base)
  7629. new_crtc = set->crtc;
  7630. }
  7631. /* Make sure the new CRTC will work with the encoder */
  7632. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7633. new_crtc)) {
  7634. return -EINVAL;
  7635. }
  7636. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7637. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7638. connector->base.base.id,
  7639. drm_get_connector_name(&connector->base),
  7640. new_crtc->base.id);
  7641. }
  7642. /* Check for any encoders that needs to be disabled. */
  7643. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7644. base.head) {
  7645. list_for_each_entry(connector,
  7646. &dev->mode_config.connector_list,
  7647. base.head) {
  7648. if (connector->new_encoder == encoder) {
  7649. WARN_ON(!connector->new_encoder->new_crtc);
  7650. goto next_encoder;
  7651. }
  7652. }
  7653. encoder->new_crtc = NULL;
  7654. next_encoder:
  7655. /* Only now check for crtc changes so we don't miss encoders
  7656. * that will be disabled. */
  7657. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7658. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7659. config->mode_changed = true;
  7660. }
  7661. }
  7662. /* Now we've also updated encoder->new_crtc for all encoders. */
  7663. return 0;
  7664. }
  7665. static int intel_crtc_set_config(struct drm_mode_set *set)
  7666. {
  7667. struct drm_device *dev;
  7668. struct drm_mode_set save_set;
  7669. struct intel_set_config *config;
  7670. int ret;
  7671. BUG_ON(!set);
  7672. BUG_ON(!set->crtc);
  7673. BUG_ON(!set->crtc->helper_private);
  7674. /* Enforce sane interface api - has been abused by the fb helper. */
  7675. BUG_ON(!set->mode && set->fb);
  7676. BUG_ON(set->fb && set->num_connectors == 0);
  7677. if (set->fb) {
  7678. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7679. set->crtc->base.id, set->fb->base.id,
  7680. (int)set->num_connectors, set->x, set->y);
  7681. } else {
  7682. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7683. }
  7684. dev = set->crtc->dev;
  7685. ret = -ENOMEM;
  7686. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7687. if (!config)
  7688. goto out_config;
  7689. ret = intel_set_config_save_state(dev, config);
  7690. if (ret)
  7691. goto out_config;
  7692. save_set.crtc = set->crtc;
  7693. save_set.mode = &set->crtc->mode;
  7694. save_set.x = set->crtc->x;
  7695. save_set.y = set->crtc->y;
  7696. save_set.fb = set->crtc->fb;
  7697. /* Compute whether we need a full modeset, only an fb base update or no
  7698. * change at all. In the future we might also check whether only the
  7699. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7700. * such cases. */
  7701. intel_set_config_compute_mode_changes(set, config);
  7702. ret = intel_modeset_stage_output_state(dev, set, config);
  7703. if (ret)
  7704. goto fail;
  7705. if (config->mode_changed) {
  7706. ret = intel_set_mode(set->crtc, set->mode,
  7707. set->x, set->y, set->fb);
  7708. } else if (config->fb_changed) {
  7709. intel_crtc_wait_for_pending_flips(set->crtc);
  7710. ret = intel_pipe_set_base(set->crtc,
  7711. set->x, set->y, set->fb);
  7712. }
  7713. if (ret) {
  7714. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7715. set->crtc->base.id, ret);
  7716. fail:
  7717. intel_set_config_restore_state(dev, config);
  7718. /* Try to restore the config */
  7719. if (config->mode_changed &&
  7720. intel_set_mode(save_set.crtc, save_set.mode,
  7721. save_set.x, save_set.y, save_set.fb))
  7722. DRM_ERROR("failed to restore config after modeset failure\n");
  7723. }
  7724. out_config:
  7725. intel_set_config_free(config);
  7726. return ret;
  7727. }
  7728. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7729. .cursor_set = intel_crtc_cursor_set,
  7730. .cursor_move = intel_crtc_cursor_move,
  7731. .gamma_set = intel_crtc_gamma_set,
  7732. .set_config = intel_crtc_set_config,
  7733. .destroy = intel_crtc_destroy,
  7734. .page_flip = intel_crtc_page_flip,
  7735. };
  7736. static void intel_cpu_pll_init(struct drm_device *dev)
  7737. {
  7738. if (HAS_DDI(dev))
  7739. intel_ddi_pll_init(dev);
  7740. }
  7741. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7742. struct intel_shared_dpll *pll,
  7743. struct intel_dpll_hw_state *hw_state)
  7744. {
  7745. uint32_t val;
  7746. val = I915_READ(PCH_DPLL(pll->id));
  7747. hw_state->dpll = val;
  7748. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7749. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7750. return val & DPLL_VCO_ENABLE;
  7751. }
  7752. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7753. struct intel_shared_dpll *pll)
  7754. {
  7755. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7756. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7757. }
  7758. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7759. struct intel_shared_dpll *pll)
  7760. {
  7761. /* PCH refclock must be enabled first */
  7762. assert_pch_refclk_enabled(dev_priv);
  7763. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7764. /* Wait for the clocks to stabilize. */
  7765. POSTING_READ(PCH_DPLL(pll->id));
  7766. udelay(150);
  7767. /* The pixel multiplier can only be updated once the
  7768. * DPLL is enabled and the clocks are stable.
  7769. *
  7770. * So write it again.
  7771. */
  7772. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7773. POSTING_READ(PCH_DPLL(pll->id));
  7774. udelay(200);
  7775. }
  7776. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7777. struct intel_shared_dpll *pll)
  7778. {
  7779. struct drm_device *dev = dev_priv->dev;
  7780. struct intel_crtc *crtc;
  7781. /* Make sure no transcoder isn't still depending on us. */
  7782. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7783. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7784. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7785. }
  7786. I915_WRITE(PCH_DPLL(pll->id), 0);
  7787. POSTING_READ(PCH_DPLL(pll->id));
  7788. udelay(200);
  7789. }
  7790. static char *ibx_pch_dpll_names[] = {
  7791. "PCH DPLL A",
  7792. "PCH DPLL B",
  7793. };
  7794. static void ibx_pch_dpll_init(struct drm_device *dev)
  7795. {
  7796. struct drm_i915_private *dev_priv = dev->dev_private;
  7797. int i;
  7798. dev_priv->num_shared_dpll = 2;
  7799. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7800. dev_priv->shared_dplls[i].id = i;
  7801. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7802. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7803. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7804. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7805. dev_priv->shared_dplls[i].get_hw_state =
  7806. ibx_pch_dpll_get_hw_state;
  7807. }
  7808. }
  7809. static void intel_shared_dpll_init(struct drm_device *dev)
  7810. {
  7811. struct drm_i915_private *dev_priv = dev->dev_private;
  7812. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7813. ibx_pch_dpll_init(dev);
  7814. else
  7815. dev_priv->num_shared_dpll = 0;
  7816. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7817. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7818. dev_priv->num_shared_dpll);
  7819. }
  7820. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7821. {
  7822. drm_i915_private_t *dev_priv = dev->dev_private;
  7823. struct intel_crtc *intel_crtc;
  7824. int i;
  7825. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7826. if (intel_crtc == NULL)
  7827. return;
  7828. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7829. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7830. for (i = 0; i < 256; i++) {
  7831. intel_crtc->lut_r[i] = i;
  7832. intel_crtc->lut_g[i] = i;
  7833. intel_crtc->lut_b[i] = i;
  7834. }
  7835. /* Swap pipes & planes for FBC on pre-965 */
  7836. intel_crtc->pipe = pipe;
  7837. intel_crtc->plane = pipe;
  7838. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7839. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7840. intel_crtc->plane = !pipe;
  7841. }
  7842. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7843. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7844. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7845. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7846. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7847. }
  7848. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7849. struct drm_file *file)
  7850. {
  7851. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7852. struct drm_mode_object *drmmode_obj;
  7853. struct intel_crtc *crtc;
  7854. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7855. return -ENODEV;
  7856. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7857. DRM_MODE_OBJECT_CRTC);
  7858. if (!drmmode_obj) {
  7859. DRM_ERROR("no such CRTC id\n");
  7860. return -EINVAL;
  7861. }
  7862. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7863. pipe_from_crtc_id->pipe = crtc->pipe;
  7864. return 0;
  7865. }
  7866. static int intel_encoder_clones(struct intel_encoder *encoder)
  7867. {
  7868. struct drm_device *dev = encoder->base.dev;
  7869. struct intel_encoder *source_encoder;
  7870. int index_mask = 0;
  7871. int entry = 0;
  7872. list_for_each_entry(source_encoder,
  7873. &dev->mode_config.encoder_list, base.head) {
  7874. if (encoder == source_encoder)
  7875. index_mask |= (1 << entry);
  7876. /* Intel hw has only one MUX where enocoders could be cloned. */
  7877. if (encoder->cloneable && source_encoder->cloneable)
  7878. index_mask |= (1 << entry);
  7879. entry++;
  7880. }
  7881. return index_mask;
  7882. }
  7883. static bool has_edp_a(struct drm_device *dev)
  7884. {
  7885. struct drm_i915_private *dev_priv = dev->dev_private;
  7886. if (!IS_MOBILE(dev))
  7887. return false;
  7888. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7889. return false;
  7890. if (IS_GEN5(dev) &&
  7891. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7892. return false;
  7893. return true;
  7894. }
  7895. static void intel_setup_outputs(struct drm_device *dev)
  7896. {
  7897. struct drm_i915_private *dev_priv = dev->dev_private;
  7898. struct intel_encoder *encoder;
  7899. bool dpd_is_edp = false;
  7900. intel_lvds_init(dev);
  7901. if (!IS_ULT(dev))
  7902. intel_crt_init(dev);
  7903. if (HAS_DDI(dev)) {
  7904. int found;
  7905. /* Haswell uses DDI functions to detect digital outputs */
  7906. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7907. /* DDI A only supports eDP */
  7908. if (found)
  7909. intel_ddi_init(dev, PORT_A);
  7910. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7911. * register */
  7912. found = I915_READ(SFUSE_STRAP);
  7913. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7914. intel_ddi_init(dev, PORT_B);
  7915. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7916. intel_ddi_init(dev, PORT_C);
  7917. if (found & SFUSE_STRAP_DDID_DETECTED)
  7918. intel_ddi_init(dev, PORT_D);
  7919. } else if (HAS_PCH_SPLIT(dev)) {
  7920. int found;
  7921. dpd_is_edp = intel_dpd_is_edp(dev);
  7922. if (has_edp_a(dev))
  7923. intel_dp_init(dev, DP_A, PORT_A);
  7924. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7925. /* PCH SDVOB multiplex with HDMIB */
  7926. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7927. if (!found)
  7928. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7929. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7930. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7931. }
  7932. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7933. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7934. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7935. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7936. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7937. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7938. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7939. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7940. } else if (IS_VALLEYVIEW(dev)) {
  7941. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7942. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  7943. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  7944. PORT_C);
  7945. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7946. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  7947. PORT_C);
  7948. }
  7949. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7950. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7951. PORT_B);
  7952. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7953. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7954. }
  7955. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7956. bool found = false;
  7957. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7958. DRM_DEBUG_KMS("probing SDVOB\n");
  7959. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7960. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7961. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7962. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7963. }
  7964. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7965. intel_dp_init(dev, DP_B, PORT_B);
  7966. }
  7967. /* Before G4X SDVOC doesn't have its own detect register */
  7968. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7969. DRM_DEBUG_KMS("probing SDVOC\n");
  7970. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7971. }
  7972. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7973. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7974. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7975. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7976. }
  7977. if (SUPPORTS_INTEGRATED_DP(dev))
  7978. intel_dp_init(dev, DP_C, PORT_C);
  7979. }
  7980. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7981. (I915_READ(DP_D) & DP_DETECTED))
  7982. intel_dp_init(dev, DP_D, PORT_D);
  7983. } else if (IS_GEN2(dev))
  7984. intel_dvo_init(dev);
  7985. if (SUPPORTS_TV(dev))
  7986. intel_tv_init(dev);
  7987. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7988. encoder->base.possible_crtcs = encoder->crtc_mask;
  7989. encoder->base.possible_clones =
  7990. intel_encoder_clones(encoder);
  7991. }
  7992. intel_init_pch_refclk(dev);
  7993. drm_helper_move_panel_connectors_to_head(dev);
  7994. }
  7995. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  7996. {
  7997. drm_framebuffer_cleanup(&fb->base);
  7998. drm_gem_object_unreference_unlocked(&fb->obj->base);
  7999. }
  8000. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8001. {
  8002. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8003. intel_framebuffer_fini(intel_fb);
  8004. kfree(intel_fb);
  8005. }
  8006. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8007. struct drm_file *file,
  8008. unsigned int *handle)
  8009. {
  8010. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8011. struct drm_i915_gem_object *obj = intel_fb->obj;
  8012. return drm_gem_handle_create(file, &obj->base, handle);
  8013. }
  8014. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8015. .destroy = intel_user_framebuffer_destroy,
  8016. .create_handle = intel_user_framebuffer_create_handle,
  8017. };
  8018. int intel_framebuffer_init(struct drm_device *dev,
  8019. struct intel_framebuffer *intel_fb,
  8020. struct drm_mode_fb_cmd2 *mode_cmd,
  8021. struct drm_i915_gem_object *obj)
  8022. {
  8023. int pitch_limit;
  8024. int ret;
  8025. if (obj->tiling_mode == I915_TILING_Y) {
  8026. DRM_DEBUG("hardware does not support tiling Y\n");
  8027. return -EINVAL;
  8028. }
  8029. if (mode_cmd->pitches[0] & 63) {
  8030. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8031. mode_cmd->pitches[0]);
  8032. return -EINVAL;
  8033. }
  8034. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8035. pitch_limit = 32*1024;
  8036. } else if (INTEL_INFO(dev)->gen >= 4) {
  8037. if (obj->tiling_mode)
  8038. pitch_limit = 16*1024;
  8039. else
  8040. pitch_limit = 32*1024;
  8041. } else if (INTEL_INFO(dev)->gen >= 3) {
  8042. if (obj->tiling_mode)
  8043. pitch_limit = 8*1024;
  8044. else
  8045. pitch_limit = 16*1024;
  8046. } else
  8047. /* XXX DSPC is limited to 4k tiled */
  8048. pitch_limit = 8*1024;
  8049. if (mode_cmd->pitches[0] > pitch_limit) {
  8050. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8051. obj->tiling_mode ? "tiled" : "linear",
  8052. mode_cmd->pitches[0], pitch_limit);
  8053. return -EINVAL;
  8054. }
  8055. if (obj->tiling_mode != I915_TILING_NONE &&
  8056. mode_cmd->pitches[0] != obj->stride) {
  8057. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8058. mode_cmd->pitches[0], obj->stride);
  8059. return -EINVAL;
  8060. }
  8061. /* Reject formats not supported by any plane early. */
  8062. switch (mode_cmd->pixel_format) {
  8063. case DRM_FORMAT_C8:
  8064. case DRM_FORMAT_RGB565:
  8065. case DRM_FORMAT_XRGB8888:
  8066. case DRM_FORMAT_ARGB8888:
  8067. break;
  8068. case DRM_FORMAT_XRGB1555:
  8069. case DRM_FORMAT_ARGB1555:
  8070. if (INTEL_INFO(dev)->gen > 3) {
  8071. DRM_DEBUG("unsupported pixel format: %s\n",
  8072. drm_get_format_name(mode_cmd->pixel_format));
  8073. return -EINVAL;
  8074. }
  8075. break;
  8076. case DRM_FORMAT_XBGR8888:
  8077. case DRM_FORMAT_ABGR8888:
  8078. case DRM_FORMAT_XRGB2101010:
  8079. case DRM_FORMAT_ARGB2101010:
  8080. case DRM_FORMAT_XBGR2101010:
  8081. case DRM_FORMAT_ABGR2101010:
  8082. if (INTEL_INFO(dev)->gen < 4) {
  8083. DRM_DEBUG("unsupported pixel format: %s\n",
  8084. drm_get_format_name(mode_cmd->pixel_format));
  8085. return -EINVAL;
  8086. }
  8087. break;
  8088. case DRM_FORMAT_YUYV:
  8089. case DRM_FORMAT_UYVY:
  8090. case DRM_FORMAT_YVYU:
  8091. case DRM_FORMAT_VYUY:
  8092. if (INTEL_INFO(dev)->gen < 5) {
  8093. DRM_DEBUG("unsupported pixel format: %s\n",
  8094. drm_get_format_name(mode_cmd->pixel_format));
  8095. return -EINVAL;
  8096. }
  8097. break;
  8098. default:
  8099. DRM_DEBUG("unsupported pixel format: %s\n",
  8100. drm_get_format_name(mode_cmd->pixel_format));
  8101. return -EINVAL;
  8102. }
  8103. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8104. if (mode_cmd->offsets[0] != 0)
  8105. return -EINVAL;
  8106. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8107. intel_fb->obj = obj;
  8108. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8109. if (ret) {
  8110. DRM_ERROR("framebuffer init failed %d\n", ret);
  8111. return ret;
  8112. }
  8113. return 0;
  8114. }
  8115. static struct drm_framebuffer *
  8116. intel_user_framebuffer_create(struct drm_device *dev,
  8117. struct drm_file *filp,
  8118. struct drm_mode_fb_cmd2 *mode_cmd)
  8119. {
  8120. struct drm_i915_gem_object *obj;
  8121. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8122. mode_cmd->handles[0]));
  8123. if (&obj->base == NULL)
  8124. return ERR_PTR(-ENOENT);
  8125. return intel_framebuffer_create(dev, mode_cmd, obj);
  8126. }
  8127. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8128. .fb_create = intel_user_framebuffer_create,
  8129. .output_poll_changed = intel_fb_output_poll_changed,
  8130. };
  8131. /* Set up chip specific display functions */
  8132. static void intel_init_display(struct drm_device *dev)
  8133. {
  8134. struct drm_i915_private *dev_priv = dev->dev_private;
  8135. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8136. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8137. else if (IS_VALLEYVIEW(dev))
  8138. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8139. else if (IS_PINEVIEW(dev))
  8140. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8141. else
  8142. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8143. if (HAS_DDI(dev)) {
  8144. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8145. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8146. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8147. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8148. dev_priv->display.off = haswell_crtc_off;
  8149. dev_priv->display.update_plane = ironlake_update_plane;
  8150. } else if (HAS_PCH_SPLIT(dev)) {
  8151. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8152. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  8153. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8154. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8155. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8156. dev_priv->display.off = ironlake_crtc_off;
  8157. dev_priv->display.update_plane = ironlake_update_plane;
  8158. } else if (IS_VALLEYVIEW(dev)) {
  8159. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8160. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8161. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8162. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8163. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8164. dev_priv->display.off = i9xx_crtc_off;
  8165. dev_priv->display.update_plane = i9xx_update_plane;
  8166. } else {
  8167. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8168. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8169. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8170. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8171. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8172. dev_priv->display.off = i9xx_crtc_off;
  8173. dev_priv->display.update_plane = i9xx_update_plane;
  8174. }
  8175. /* Returns the core display clock speed */
  8176. if (IS_VALLEYVIEW(dev))
  8177. dev_priv->display.get_display_clock_speed =
  8178. valleyview_get_display_clock_speed;
  8179. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8180. dev_priv->display.get_display_clock_speed =
  8181. i945_get_display_clock_speed;
  8182. else if (IS_I915G(dev))
  8183. dev_priv->display.get_display_clock_speed =
  8184. i915_get_display_clock_speed;
  8185. else if (IS_I945GM(dev) || IS_845G(dev))
  8186. dev_priv->display.get_display_clock_speed =
  8187. i9xx_misc_get_display_clock_speed;
  8188. else if (IS_PINEVIEW(dev))
  8189. dev_priv->display.get_display_clock_speed =
  8190. pnv_get_display_clock_speed;
  8191. else if (IS_I915GM(dev))
  8192. dev_priv->display.get_display_clock_speed =
  8193. i915gm_get_display_clock_speed;
  8194. else if (IS_I865G(dev))
  8195. dev_priv->display.get_display_clock_speed =
  8196. i865_get_display_clock_speed;
  8197. else if (IS_I85X(dev))
  8198. dev_priv->display.get_display_clock_speed =
  8199. i855_get_display_clock_speed;
  8200. else /* 852, 830 */
  8201. dev_priv->display.get_display_clock_speed =
  8202. i830_get_display_clock_speed;
  8203. if (HAS_PCH_SPLIT(dev)) {
  8204. if (IS_GEN5(dev)) {
  8205. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8206. dev_priv->display.write_eld = ironlake_write_eld;
  8207. } else if (IS_GEN6(dev)) {
  8208. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8209. dev_priv->display.write_eld = ironlake_write_eld;
  8210. } else if (IS_IVYBRIDGE(dev)) {
  8211. /* FIXME: detect B0+ stepping and use auto training */
  8212. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8213. dev_priv->display.write_eld = ironlake_write_eld;
  8214. dev_priv->display.modeset_global_resources =
  8215. ivb_modeset_global_resources;
  8216. } else if (IS_HASWELL(dev)) {
  8217. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8218. dev_priv->display.write_eld = haswell_write_eld;
  8219. dev_priv->display.modeset_global_resources =
  8220. haswell_modeset_global_resources;
  8221. }
  8222. } else if (IS_G4X(dev)) {
  8223. dev_priv->display.write_eld = g4x_write_eld;
  8224. }
  8225. /* Default just returns -ENODEV to indicate unsupported */
  8226. dev_priv->display.queue_flip = intel_default_queue_flip;
  8227. switch (INTEL_INFO(dev)->gen) {
  8228. case 2:
  8229. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8230. break;
  8231. case 3:
  8232. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8233. break;
  8234. case 4:
  8235. case 5:
  8236. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8237. break;
  8238. case 6:
  8239. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8240. break;
  8241. case 7:
  8242. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8243. break;
  8244. }
  8245. }
  8246. /*
  8247. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8248. * resume, or other times. This quirk makes sure that's the case for
  8249. * affected systems.
  8250. */
  8251. static void quirk_pipea_force(struct drm_device *dev)
  8252. {
  8253. struct drm_i915_private *dev_priv = dev->dev_private;
  8254. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8255. DRM_INFO("applying pipe a force quirk\n");
  8256. }
  8257. /*
  8258. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8259. */
  8260. static void quirk_ssc_force_disable(struct drm_device *dev)
  8261. {
  8262. struct drm_i915_private *dev_priv = dev->dev_private;
  8263. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8264. DRM_INFO("applying lvds SSC disable quirk\n");
  8265. }
  8266. /*
  8267. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8268. * brightness value
  8269. */
  8270. static void quirk_invert_brightness(struct drm_device *dev)
  8271. {
  8272. struct drm_i915_private *dev_priv = dev->dev_private;
  8273. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8274. DRM_INFO("applying inverted panel brightness quirk\n");
  8275. }
  8276. /*
  8277. * Some machines (Dell XPS13) suffer broken backlight controls if
  8278. * BLM_PCH_PWM_ENABLE is set.
  8279. */
  8280. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8281. {
  8282. struct drm_i915_private *dev_priv = dev->dev_private;
  8283. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8284. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8285. }
  8286. struct intel_quirk {
  8287. int device;
  8288. int subsystem_vendor;
  8289. int subsystem_device;
  8290. void (*hook)(struct drm_device *dev);
  8291. };
  8292. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8293. struct intel_dmi_quirk {
  8294. void (*hook)(struct drm_device *dev);
  8295. const struct dmi_system_id (*dmi_id_list)[];
  8296. };
  8297. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8298. {
  8299. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8300. return 1;
  8301. }
  8302. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8303. {
  8304. .dmi_id_list = &(const struct dmi_system_id[]) {
  8305. {
  8306. .callback = intel_dmi_reverse_brightness,
  8307. .ident = "NCR Corporation",
  8308. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8309. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8310. },
  8311. },
  8312. { } /* terminating entry */
  8313. },
  8314. .hook = quirk_invert_brightness,
  8315. },
  8316. };
  8317. static struct intel_quirk intel_quirks[] = {
  8318. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8319. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8320. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8321. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8322. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8323. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8324. /* 830/845 need to leave pipe A & dpll A up */
  8325. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8326. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8327. /* Lenovo U160 cannot use SSC on LVDS */
  8328. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8329. /* Sony Vaio Y cannot use SSC on LVDS */
  8330. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8331. /* Acer Aspire 5734Z must invert backlight brightness */
  8332. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8333. /* Acer/eMachines G725 */
  8334. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8335. /* Acer/eMachines e725 */
  8336. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8337. /* Acer/Packard Bell NCL20 */
  8338. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8339. /* Acer Aspire 4736Z */
  8340. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8341. /* Dell XPS13 HD Sandy Bridge */
  8342. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8343. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8344. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8345. };
  8346. static void intel_init_quirks(struct drm_device *dev)
  8347. {
  8348. struct pci_dev *d = dev->pdev;
  8349. int i;
  8350. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8351. struct intel_quirk *q = &intel_quirks[i];
  8352. if (d->device == q->device &&
  8353. (d->subsystem_vendor == q->subsystem_vendor ||
  8354. q->subsystem_vendor == PCI_ANY_ID) &&
  8355. (d->subsystem_device == q->subsystem_device ||
  8356. q->subsystem_device == PCI_ANY_ID))
  8357. q->hook(dev);
  8358. }
  8359. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8360. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8361. intel_dmi_quirks[i].hook(dev);
  8362. }
  8363. }
  8364. /* Disable the VGA plane that we never use */
  8365. static void i915_disable_vga(struct drm_device *dev)
  8366. {
  8367. struct drm_i915_private *dev_priv = dev->dev_private;
  8368. u8 sr1;
  8369. u32 vga_reg = i915_vgacntrl_reg(dev);
  8370. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8371. outb(SR01, VGA_SR_INDEX);
  8372. sr1 = inb(VGA_SR_DATA);
  8373. outb(sr1 | 1<<5, VGA_SR_DATA);
  8374. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8375. udelay(300);
  8376. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8377. POSTING_READ(vga_reg);
  8378. }
  8379. static void i915_enable_vga_mem(struct drm_device *dev)
  8380. {
  8381. /* Enable VGA memory on Intel HD */
  8382. if (HAS_PCH_SPLIT(dev)) {
  8383. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8384. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8385. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8386. VGA_RSRC_LEGACY_MEM |
  8387. VGA_RSRC_NORMAL_IO |
  8388. VGA_RSRC_NORMAL_MEM);
  8389. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8390. }
  8391. }
  8392. void i915_disable_vga_mem(struct drm_device *dev)
  8393. {
  8394. /* Disable VGA memory on Intel HD */
  8395. if (HAS_PCH_SPLIT(dev)) {
  8396. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8397. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8398. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8399. VGA_RSRC_NORMAL_IO |
  8400. VGA_RSRC_NORMAL_MEM);
  8401. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8402. }
  8403. }
  8404. void intel_modeset_init_hw(struct drm_device *dev)
  8405. {
  8406. intel_init_power_well(dev);
  8407. intel_prepare_ddi(dev);
  8408. intel_init_clock_gating(dev);
  8409. mutex_lock(&dev->struct_mutex);
  8410. intel_enable_gt_powersave(dev);
  8411. mutex_unlock(&dev->struct_mutex);
  8412. }
  8413. void intel_modeset_suspend_hw(struct drm_device *dev)
  8414. {
  8415. intel_suspend_hw(dev);
  8416. }
  8417. void intel_modeset_init(struct drm_device *dev)
  8418. {
  8419. struct drm_i915_private *dev_priv = dev->dev_private;
  8420. int i, j, ret;
  8421. drm_mode_config_init(dev);
  8422. dev->mode_config.min_width = 0;
  8423. dev->mode_config.min_height = 0;
  8424. dev->mode_config.preferred_depth = 24;
  8425. dev->mode_config.prefer_shadow = 1;
  8426. dev->mode_config.funcs = &intel_mode_funcs;
  8427. intel_init_quirks(dev);
  8428. intel_init_pm(dev);
  8429. if (INTEL_INFO(dev)->num_pipes == 0)
  8430. return;
  8431. intel_init_display(dev);
  8432. if (IS_GEN2(dev)) {
  8433. dev->mode_config.max_width = 2048;
  8434. dev->mode_config.max_height = 2048;
  8435. } else if (IS_GEN3(dev)) {
  8436. dev->mode_config.max_width = 4096;
  8437. dev->mode_config.max_height = 4096;
  8438. } else {
  8439. dev->mode_config.max_width = 8192;
  8440. dev->mode_config.max_height = 8192;
  8441. }
  8442. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8443. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8444. INTEL_INFO(dev)->num_pipes,
  8445. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8446. for_each_pipe(i) {
  8447. intel_crtc_init(dev, i);
  8448. for (j = 0; j < dev_priv->num_plane; j++) {
  8449. ret = intel_plane_init(dev, i, j);
  8450. if (ret)
  8451. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8452. pipe_name(i), sprite_name(i, j), ret);
  8453. }
  8454. }
  8455. intel_cpu_pll_init(dev);
  8456. intel_shared_dpll_init(dev);
  8457. /* Just disable it once at startup */
  8458. i915_disable_vga(dev);
  8459. intel_setup_outputs(dev);
  8460. /* Just in case the BIOS is doing something questionable. */
  8461. intel_disable_fbc(dev);
  8462. }
  8463. static void
  8464. intel_connector_break_all_links(struct intel_connector *connector)
  8465. {
  8466. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8467. connector->base.encoder = NULL;
  8468. connector->encoder->connectors_active = false;
  8469. connector->encoder->base.crtc = NULL;
  8470. }
  8471. static void intel_enable_pipe_a(struct drm_device *dev)
  8472. {
  8473. struct intel_connector *connector;
  8474. struct drm_connector *crt = NULL;
  8475. struct intel_load_detect_pipe load_detect_temp;
  8476. /* We can't just switch on the pipe A, we need to set things up with a
  8477. * proper mode and output configuration. As a gross hack, enable pipe A
  8478. * by enabling the load detect pipe once. */
  8479. list_for_each_entry(connector,
  8480. &dev->mode_config.connector_list,
  8481. base.head) {
  8482. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8483. crt = &connector->base;
  8484. break;
  8485. }
  8486. }
  8487. if (!crt)
  8488. return;
  8489. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8490. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8491. }
  8492. static bool
  8493. intel_check_plane_mapping(struct intel_crtc *crtc)
  8494. {
  8495. struct drm_device *dev = crtc->base.dev;
  8496. struct drm_i915_private *dev_priv = dev->dev_private;
  8497. u32 reg, val;
  8498. if (INTEL_INFO(dev)->num_pipes == 1)
  8499. return true;
  8500. reg = DSPCNTR(!crtc->plane);
  8501. val = I915_READ(reg);
  8502. if ((val & DISPLAY_PLANE_ENABLE) &&
  8503. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8504. return false;
  8505. return true;
  8506. }
  8507. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8508. {
  8509. struct drm_device *dev = crtc->base.dev;
  8510. struct drm_i915_private *dev_priv = dev->dev_private;
  8511. u32 reg;
  8512. /* Clear any frame start delays used for debugging left by the BIOS */
  8513. reg = PIPECONF(crtc->config.cpu_transcoder);
  8514. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8515. /* We need to sanitize the plane -> pipe mapping first because this will
  8516. * disable the crtc (and hence change the state) if it is wrong. Note
  8517. * that gen4+ has a fixed plane -> pipe mapping. */
  8518. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8519. struct intel_connector *connector;
  8520. bool plane;
  8521. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8522. crtc->base.base.id);
  8523. /* Pipe has the wrong plane attached and the plane is active.
  8524. * Temporarily change the plane mapping and disable everything
  8525. * ... */
  8526. plane = crtc->plane;
  8527. crtc->plane = !plane;
  8528. dev_priv->display.crtc_disable(&crtc->base);
  8529. crtc->plane = plane;
  8530. /* ... and break all links. */
  8531. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8532. base.head) {
  8533. if (connector->encoder->base.crtc != &crtc->base)
  8534. continue;
  8535. intel_connector_break_all_links(connector);
  8536. }
  8537. WARN_ON(crtc->active);
  8538. crtc->base.enabled = false;
  8539. }
  8540. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8541. crtc->pipe == PIPE_A && !crtc->active) {
  8542. /* BIOS forgot to enable pipe A, this mostly happens after
  8543. * resume. Force-enable the pipe to fix this, the update_dpms
  8544. * call below we restore the pipe to the right state, but leave
  8545. * the required bits on. */
  8546. intel_enable_pipe_a(dev);
  8547. }
  8548. /* Adjust the state of the output pipe according to whether we
  8549. * have active connectors/encoders. */
  8550. intel_crtc_update_dpms(&crtc->base);
  8551. if (crtc->active != crtc->base.enabled) {
  8552. struct intel_encoder *encoder;
  8553. /* This can happen either due to bugs in the get_hw_state
  8554. * functions or because the pipe is force-enabled due to the
  8555. * pipe A quirk. */
  8556. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8557. crtc->base.base.id,
  8558. crtc->base.enabled ? "enabled" : "disabled",
  8559. crtc->active ? "enabled" : "disabled");
  8560. crtc->base.enabled = crtc->active;
  8561. /* Because we only establish the connector -> encoder ->
  8562. * crtc links if something is active, this means the
  8563. * crtc is now deactivated. Break the links. connector
  8564. * -> encoder links are only establish when things are
  8565. * actually up, hence no need to break them. */
  8566. WARN_ON(crtc->active);
  8567. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8568. WARN_ON(encoder->connectors_active);
  8569. encoder->base.crtc = NULL;
  8570. }
  8571. }
  8572. }
  8573. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8574. {
  8575. struct intel_connector *connector;
  8576. struct drm_device *dev = encoder->base.dev;
  8577. /* We need to check both for a crtc link (meaning that the
  8578. * encoder is active and trying to read from a pipe) and the
  8579. * pipe itself being active. */
  8580. bool has_active_crtc = encoder->base.crtc &&
  8581. to_intel_crtc(encoder->base.crtc)->active;
  8582. if (encoder->connectors_active && !has_active_crtc) {
  8583. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8584. encoder->base.base.id,
  8585. drm_get_encoder_name(&encoder->base));
  8586. /* Connector is active, but has no active pipe. This is
  8587. * fallout from our resume register restoring. Disable
  8588. * the encoder manually again. */
  8589. if (encoder->base.crtc) {
  8590. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8591. encoder->base.base.id,
  8592. drm_get_encoder_name(&encoder->base));
  8593. encoder->disable(encoder);
  8594. }
  8595. /* Inconsistent output/port/pipe state happens presumably due to
  8596. * a bug in one of the get_hw_state functions. Or someplace else
  8597. * in our code, like the register restore mess on resume. Clamp
  8598. * things to off as a safer default. */
  8599. list_for_each_entry(connector,
  8600. &dev->mode_config.connector_list,
  8601. base.head) {
  8602. if (connector->encoder != encoder)
  8603. continue;
  8604. intel_connector_break_all_links(connector);
  8605. }
  8606. }
  8607. /* Enabled encoders without active connectors will be fixed in
  8608. * the crtc fixup. */
  8609. }
  8610. void i915_redisable_vga(struct drm_device *dev)
  8611. {
  8612. struct drm_i915_private *dev_priv = dev->dev_private;
  8613. u32 vga_reg = i915_vgacntrl_reg(dev);
  8614. /* This function can be called both from intel_modeset_setup_hw_state or
  8615. * at a very early point in our resume sequence, where the power well
  8616. * structures are not yet restored. Since this function is at a very
  8617. * paranoid "someone might have enabled VGA while we were not looking"
  8618. * level, just check if the power well is enabled instead of trying to
  8619. * follow the "don't touch the power well if we don't need it" policy
  8620. * the rest of the driver uses. */
  8621. if (HAS_POWER_WELL(dev) &&
  8622. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8623. return;
  8624. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8625. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8626. i915_disable_vga(dev);
  8627. i915_disable_vga_mem(dev);
  8628. }
  8629. }
  8630. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8631. {
  8632. struct drm_i915_private *dev_priv = dev->dev_private;
  8633. enum pipe pipe;
  8634. struct intel_crtc *crtc;
  8635. struct intel_encoder *encoder;
  8636. struct intel_connector *connector;
  8637. int i;
  8638. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8639. base.head) {
  8640. memset(&crtc->config, 0, sizeof(crtc->config));
  8641. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8642. &crtc->config);
  8643. crtc->base.enabled = crtc->active;
  8644. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8645. crtc->base.base.id,
  8646. crtc->active ? "enabled" : "disabled");
  8647. }
  8648. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8649. if (HAS_DDI(dev))
  8650. intel_ddi_setup_hw_pll_state(dev);
  8651. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8652. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8653. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8654. pll->active = 0;
  8655. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8656. base.head) {
  8657. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8658. pll->active++;
  8659. }
  8660. pll->refcount = pll->active;
  8661. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8662. pll->name, pll->refcount, pll->on);
  8663. }
  8664. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8665. base.head) {
  8666. pipe = 0;
  8667. if (encoder->get_hw_state(encoder, &pipe)) {
  8668. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8669. encoder->base.crtc = &crtc->base;
  8670. if (encoder->get_config)
  8671. encoder->get_config(encoder, &crtc->config);
  8672. } else {
  8673. encoder->base.crtc = NULL;
  8674. }
  8675. encoder->connectors_active = false;
  8676. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8677. encoder->base.base.id,
  8678. drm_get_encoder_name(&encoder->base),
  8679. encoder->base.crtc ? "enabled" : "disabled",
  8680. pipe);
  8681. }
  8682. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8683. base.head) {
  8684. if (!crtc->active)
  8685. continue;
  8686. if (dev_priv->display.get_clock)
  8687. dev_priv->display.get_clock(crtc,
  8688. &crtc->config);
  8689. }
  8690. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8691. base.head) {
  8692. if (connector->get_hw_state(connector)) {
  8693. connector->base.dpms = DRM_MODE_DPMS_ON;
  8694. connector->encoder->connectors_active = true;
  8695. connector->base.encoder = &connector->encoder->base;
  8696. } else {
  8697. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8698. connector->base.encoder = NULL;
  8699. }
  8700. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8701. connector->base.base.id,
  8702. drm_get_connector_name(&connector->base),
  8703. connector->base.encoder ? "enabled" : "disabled");
  8704. }
  8705. }
  8706. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8707. * and i915 state tracking structures. */
  8708. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8709. bool force_restore)
  8710. {
  8711. struct drm_i915_private *dev_priv = dev->dev_private;
  8712. enum pipe pipe;
  8713. struct drm_plane *plane;
  8714. struct intel_crtc *crtc;
  8715. struct intel_encoder *encoder;
  8716. int i;
  8717. intel_modeset_readout_hw_state(dev);
  8718. /*
  8719. * Now that we have the config, copy it to each CRTC struct
  8720. * Note that this could go away if we move to using crtc_config
  8721. * checking everywhere.
  8722. */
  8723. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8724. base.head) {
  8725. if (crtc->active && i915_fastboot) {
  8726. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8727. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8728. crtc->base.base.id);
  8729. drm_mode_debug_printmodeline(&crtc->base.mode);
  8730. }
  8731. }
  8732. /* HW state is read out, now we need to sanitize this mess. */
  8733. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8734. base.head) {
  8735. intel_sanitize_encoder(encoder);
  8736. }
  8737. for_each_pipe(pipe) {
  8738. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8739. intel_sanitize_crtc(crtc);
  8740. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8741. }
  8742. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8743. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8744. if (!pll->on || pll->active)
  8745. continue;
  8746. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8747. pll->disable(dev_priv, pll);
  8748. pll->on = false;
  8749. }
  8750. if (force_restore) {
  8751. /*
  8752. * We need to use raw interfaces for restoring state to avoid
  8753. * checking (bogus) intermediate states.
  8754. */
  8755. for_each_pipe(pipe) {
  8756. struct drm_crtc *crtc =
  8757. dev_priv->pipe_to_crtc_mapping[pipe];
  8758. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8759. crtc->fb);
  8760. }
  8761. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8762. intel_plane_restore(plane);
  8763. i915_redisable_vga(dev);
  8764. } else {
  8765. intel_modeset_update_staged_output_state(dev);
  8766. }
  8767. intel_modeset_check_state(dev);
  8768. drm_mode_config_reset(dev);
  8769. }
  8770. void intel_modeset_gem_init(struct drm_device *dev)
  8771. {
  8772. intel_modeset_init_hw(dev);
  8773. intel_setup_overlay(dev);
  8774. intel_modeset_setup_hw_state(dev, false);
  8775. }
  8776. void intel_modeset_cleanup(struct drm_device *dev)
  8777. {
  8778. struct drm_i915_private *dev_priv = dev->dev_private;
  8779. struct drm_crtc *crtc;
  8780. /*
  8781. * Interrupts and polling as the first thing to avoid creating havoc.
  8782. * Too much stuff here (turning of rps, connectors, ...) would
  8783. * experience fancy races otherwise.
  8784. */
  8785. drm_irq_uninstall(dev);
  8786. cancel_work_sync(&dev_priv->hotplug_work);
  8787. /*
  8788. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8789. * poll handlers. Hence disable polling after hpd handling is shut down.
  8790. */
  8791. drm_kms_helper_poll_fini(dev);
  8792. mutex_lock(&dev->struct_mutex);
  8793. intel_unregister_dsm_handler();
  8794. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8795. /* Skip inactive CRTCs */
  8796. if (!crtc->fb)
  8797. continue;
  8798. intel_increase_pllclock(crtc);
  8799. }
  8800. intel_disable_fbc(dev);
  8801. i915_enable_vga_mem(dev);
  8802. intel_disable_gt_powersave(dev);
  8803. ironlake_teardown_rc6(dev);
  8804. mutex_unlock(&dev->struct_mutex);
  8805. /* flush any delayed tasks or pending work */
  8806. flush_scheduled_work();
  8807. /* destroy backlight, if any, before the connectors */
  8808. intel_panel_destroy_backlight(dev);
  8809. drm_mode_config_cleanup(dev);
  8810. intel_cleanup_overlay(dev);
  8811. }
  8812. /*
  8813. * Return which encoder is currently attached for connector.
  8814. */
  8815. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8816. {
  8817. return &intel_attached_encoder(connector)->base;
  8818. }
  8819. void intel_connector_attach_encoder(struct intel_connector *connector,
  8820. struct intel_encoder *encoder)
  8821. {
  8822. connector->encoder = encoder;
  8823. drm_mode_connector_attach_encoder(&connector->base,
  8824. &encoder->base);
  8825. }
  8826. /*
  8827. * set vga decode state - true == enable VGA decode
  8828. */
  8829. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8830. {
  8831. struct drm_i915_private *dev_priv = dev->dev_private;
  8832. u16 gmch_ctrl;
  8833. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8834. if (state)
  8835. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8836. else
  8837. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8838. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8839. return 0;
  8840. }
  8841. struct intel_display_error_state {
  8842. u32 power_well_driver;
  8843. int num_transcoders;
  8844. struct intel_cursor_error_state {
  8845. u32 control;
  8846. u32 position;
  8847. u32 base;
  8848. u32 size;
  8849. } cursor[I915_MAX_PIPES];
  8850. struct intel_pipe_error_state {
  8851. u32 source;
  8852. } pipe[I915_MAX_PIPES];
  8853. struct intel_plane_error_state {
  8854. u32 control;
  8855. u32 stride;
  8856. u32 size;
  8857. u32 pos;
  8858. u32 addr;
  8859. u32 surface;
  8860. u32 tile_offset;
  8861. } plane[I915_MAX_PIPES];
  8862. struct intel_transcoder_error_state {
  8863. enum transcoder cpu_transcoder;
  8864. u32 conf;
  8865. u32 htotal;
  8866. u32 hblank;
  8867. u32 hsync;
  8868. u32 vtotal;
  8869. u32 vblank;
  8870. u32 vsync;
  8871. } transcoder[4];
  8872. };
  8873. struct intel_display_error_state *
  8874. intel_display_capture_error_state(struct drm_device *dev)
  8875. {
  8876. drm_i915_private_t *dev_priv = dev->dev_private;
  8877. struct intel_display_error_state *error;
  8878. int transcoders[] = {
  8879. TRANSCODER_A,
  8880. TRANSCODER_B,
  8881. TRANSCODER_C,
  8882. TRANSCODER_EDP,
  8883. };
  8884. int i;
  8885. if (INTEL_INFO(dev)->num_pipes == 0)
  8886. return NULL;
  8887. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8888. if (error == NULL)
  8889. return NULL;
  8890. if (HAS_POWER_WELL(dev))
  8891. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8892. for_each_pipe(i) {
  8893. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8894. error->cursor[i].control = I915_READ(CURCNTR(i));
  8895. error->cursor[i].position = I915_READ(CURPOS(i));
  8896. error->cursor[i].base = I915_READ(CURBASE(i));
  8897. } else {
  8898. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8899. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8900. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8901. }
  8902. error->plane[i].control = I915_READ(DSPCNTR(i));
  8903. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8904. if (INTEL_INFO(dev)->gen <= 3) {
  8905. error->plane[i].size = I915_READ(DSPSIZE(i));
  8906. error->plane[i].pos = I915_READ(DSPPOS(i));
  8907. }
  8908. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8909. error->plane[i].addr = I915_READ(DSPADDR(i));
  8910. if (INTEL_INFO(dev)->gen >= 4) {
  8911. error->plane[i].surface = I915_READ(DSPSURF(i));
  8912. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8913. }
  8914. error->pipe[i].source = I915_READ(PIPESRC(i));
  8915. }
  8916. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  8917. if (HAS_DDI(dev_priv->dev))
  8918. error->num_transcoders++; /* Account for eDP. */
  8919. for (i = 0; i < error->num_transcoders; i++) {
  8920. enum transcoder cpu_transcoder = transcoders[i];
  8921. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  8922. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8923. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8924. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8925. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8926. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8927. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8928. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8929. }
  8930. /* In the code above we read the registers without checking if the power
  8931. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8932. * prevent the next I915_WRITE from detecting it and printing an error
  8933. * message. */
  8934. intel_uncore_clear_errors(dev);
  8935. return error;
  8936. }
  8937. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8938. void
  8939. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8940. struct drm_device *dev,
  8941. struct intel_display_error_state *error)
  8942. {
  8943. int i;
  8944. if (!error)
  8945. return;
  8946. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8947. if (HAS_POWER_WELL(dev))
  8948. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8949. error->power_well_driver);
  8950. for_each_pipe(i) {
  8951. err_printf(m, "Pipe [%d]:\n", i);
  8952. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8953. err_printf(m, "Plane [%d]:\n", i);
  8954. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8955. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8956. if (INTEL_INFO(dev)->gen <= 3) {
  8957. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8958. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8959. }
  8960. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8961. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8962. if (INTEL_INFO(dev)->gen >= 4) {
  8963. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8964. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8965. }
  8966. err_printf(m, "Cursor [%d]:\n", i);
  8967. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8968. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8969. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8970. }
  8971. for (i = 0; i < error->num_transcoders; i++) {
  8972. err_printf(m, " CPU transcoder: %c\n",
  8973. transcoder_name(error->transcoder[i].cpu_transcoder));
  8974. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  8975. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  8976. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  8977. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  8978. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  8979. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  8980. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  8981. }
  8982. }