security.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* Boot-time LSM user choice */
  19. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
  20. /* things that live in capability.c */
  21. extern struct security_operations default_security_ops;
  22. extern void security_fixup_ops(struct security_operations *ops);
  23. struct security_operations *security_ops; /* Initialized to NULL */
  24. /* amount of vm to protect from userspace access */
  25. unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
  26. static inline int verify(struct security_operations *ops)
  27. {
  28. /* verify the security_operations structure exists */
  29. if (!ops)
  30. return -EINVAL;
  31. security_fixup_ops(ops);
  32. return 0;
  33. }
  34. static void __init do_security_initcalls(void)
  35. {
  36. initcall_t *call;
  37. call = __security_initcall_start;
  38. while (call < __security_initcall_end) {
  39. (*call) ();
  40. call++;
  41. }
  42. }
  43. /**
  44. * security_init - initializes the security framework
  45. *
  46. * This should be called early in the kernel initialization sequence.
  47. */
  48. int __init security_init(void)
  49. {
  50. printk(KERN_INFO "Security Framework initialized\n");
  51. security_fixup_ops(&default_security_ops);
  52. security_ops = &default_security_ops;
  53. do_security_initcalls();
  54. return 0;
  55. }
  56. /* Save user chosen LSM */
  57. static int __init choose_lsm(char *str)
  58. {
  59. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  60. return 1;
  61. }
  62. __setup("security=", choose_lsm);
  63. /**
  64. * security_module_enable - Load given security module on boot ?
  65. * @ops: a pointer to the struct security_operations that is to be checked.
  66. *
  67. * Each LSM must pass this method before registering its own operations
  68. * to avoid security registration races. This method may also be used
  69. * to check if your LSM is currently loaded during kernel initialization.
  70. *
  71. * Return true if:
  72. * -The passed LSM is the one chosen by user at boot time,
  73. * -or user didn't specify a specific LSM and we're the first to ask
  74. * for registration permission,
  75. * -or the passed LSM is currently loaded.
  76. * Otherwise, return false.
  77. */
  78. int __init security_module_enable(struct security_operations *ops)
  79. {
  80. if (!*chosen_lsm)
  81. strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
  82. else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
  83. return 0;
  84. return 1;
  85. }
  86. /**
  87. * register_security - registers a security framework with the kernel
  88. * @ops: a pointer to the struct security_options that is to be registered
  89. *
  90. * This function allows a security module to register itself with the
  91. * kernel security subsystem. Some rudimentary checking is done on the @ops
  92. * value passed to this function. You'll need to check first if your LSM
  93. * is allowed to register its @ops by calling security_module_enable(@ops).
  94. *
  95. * If there is already a security module registered with the kernel,
  96. * an error will be returned. Otherwise %0 is returned on success.
  97. */
  98. int register_security(struct security_operations *ops)
  99. {
  100. if (verify(ops)) {
  101. printk(KERN_DEBUG "%s could not verify "
  102. "security_operations structure.\n", __func__);
  103. return -EINVAL;
  104. }
  105. if (security_ops != &default_security_ops)
  106. return -EAGAIN;
  107. security_ops = ops;
  108. return 0;
  109. }
  110. /* Security operations */
  111. int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
  112. {
  113. return security_ops->ptrace_may_access(child, mode);
  114. }
  115. int security_ptrace_traceme(struct task_struct *parent)
  116. {
  117. return security_ops->ptrace_traceme(parent);
  118. }
  119. int security_capget(struct task_struct *target,
  120. kernel_cap_t *effective,
  121. kernel_cap_t *inheritable,
  122. kernel_cap_t *permitted)
  123. {
  124. return security_ops->capget(target, effective, inheritable, permitted);
  125. }
  126. int security_capset(struct cred *new, const struct cred *old,
  127. const kernel_cap_t *effective,
  128. const kernel_cap_t *inheritable,
  129. const kernel_cap_t *permitted)
  130. {
  131. return security_ops->capset(new, old,
  132. effective, inheritable, permitted);
  133. }
  134. int security_capable(struct task_struct *tsk, int cap)
  135. {
  136. return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT);
  137. }
  138. int security_capable_noaudit(struct task_struct *tsk, int cap)
  139. {
  140. return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT);
  141. }
  142. int security_acct(struct file *file)
  143. {
  144. return security_ops->acct(file);
  145. }
  146. int security_sysctl(struct ctl_table *table, int op)
  147. {
  148. return security_ops->sysctl(table, op);
  149. }
  150. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  151. {
  152. return security_ops->quotactl(cmds, type, id, sb);
  153. }
  154. int security_quota_on(struct dentry *dentry)
  155. {
  156. return security_ops->quota_on(dentry);
  157. }
  158. int security_syslog(int type)
  159. {
  160. return security_ops->syslog(type);
  161. }
  162. int security_settime(struct timespec *ts, struct timezone *tz)
  163. {
  164. return security_ops->settime(ts, tz);
  165. }
  166. int security_vm_enough_memory(long pages)
  167. {
  168. WARN_ON(current->mm == NULL);
  169. return security_ops->vm_enough_memory(current->mm, pages);
  170. }
  171. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  172. {
  173. WARN_ON(mm == NULL);
  174. return security_ops->vm_enough_memory(mm, pages);
  175. }
  176. int security_vm_enough_memory_kern(long pages)
  177. {
  178. /* If current->mm is a kernel thread then we will pass NULL,
  179. for this specific case that is fine */
  180. return security_ops->vm_enough_memory(current->mm, pages);
  181. }
  182. int security_bprm_alloc(struct linux_binprm *bprm)
  183. {
  184. return security_ops->bprm_alloc_security(bprm);
  185. }
  186. void security_bprm_free(struct linux_binprm *bprm)
  187. {
  188. security_ops->bprm_free_security(bprm);
  189. }
  190. int security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  191. {
  192. return security_ops->bprm_apply_creds(bprm, unsafe);
  193. }
  194. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  195. {
  196. security_ops->bprm_post_apply_creds(bprm);
  197. }
  198. int security_bprm_set(struct linux_binprm *bprm)
  199. {
  200. return security_ops->bprm_set_security(bprm);
  201. }
  202. int security_bprm_check(struct linux_binprm *bprm)
  203. {
  204. return security_ops->bprm_check_security(bprm);
  205. }
  206. int security_bprm_secureexec(struct linux_binprm *bprm)
  207. {
  208. return security_ops->bprm_secureexec(bprm);
  209. }
  210. int security_sb_alloc(struct super_block *sb)
  211. {
  212. return security_ops->sb_alloc_security(sb);
  213. }
  214. void security_sb_free(struct super_block *sb)
  215. {
  216. security_ops->sb_free_security(sb);
  217. }
  218. int security_sb_copy_data(char *orig, char *copy)
  219. {
  220. return security_ops->sb_copy_data(orig, copy);
  221. }
  222. EXPORT_SYMBOL(security_sb_copy_data);
  223. int security_sb_kern_mount(struct super_block *sb, void *data)
  224. {
  225. return security_ops->sb_kern_mount(sb, data);
  226. }
  227. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  228. {
  229. return security_ops->sb_show_options(m, sb);
  230. }
  231. int security_sb_statfs(struct dentry *dentry)
  232. {
  233. return security_ops->sb_statfs(dentry);
  234. }
  235. int security_sb_mount(char *dev_name, struct path *path,
  236. char *type, unsigned long flags, void *data)
  237. {
  238. return security_ops->sb_mount(dev_name, path, type, flags, data);
  239. }
  240. int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
  241. {
  242. return security_ops->sb_check_sb(mnt, path);
  243. }
  244. int security_sb_umount(struct vfsmount *mnt, int flags)
  245. {
  246. return security_ops->sb_umount(mnt, flags);
  247. }
  248. void security_sb_umount_close(struct vfsmount *mnt)
  249. {
  250. security_ops->sb_umount_close(mnt);
  251. }
  252. void security_sb_umount_busy(struct vfsmount *mnt)
  253. {
  254. security_ops->sb_umount_busy(mnt);
  255. }
  256. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  257. {
  258. security_ops->sb_post_remount(mnt, flags, data);
  259. }
  260. void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
  261. {
  262. security_ops->sb_post_addmount(mnt, mountpoint);
  263. }
  264. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  265. {
  266. return security_ops->sb_pivotroot(old_path, new_path);
  267. }
  268. void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
  269. {
  270. security_ops->sb_post_pivotroot(old_path, new_path);
  271. }
  272. int security_sb_set_mnt_opts(struct super_block *sb,
  273. struct security_mnt_opts *opts)
  274. {
  275. return security_ops->sb_set_mnt_opts(sb, opts);
  276. }
  277. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  278. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  279. struct super_block *newsb)
  280. {
  281. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  282. }
  283. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  284. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  285. {
  286. return security_ops->sb_parse_opts_str(options, opts);
  287. }
  288. EXPORT_SYMBOL(security_sb_parse_opts_str);
  289. int security_inode_alloc(struct inode *inode)
  290. {
  291. inode->i_security = NULL;
  292. return security_ops->inode_alloc_security(inode);
  293. }
  294. void security_inode_free(struct inode *inode)
  295. {
  296. security_ops->inode_free_security(inode);
  297. }
  298. int security_inode_init_security(struct inode *inode, struct inode *dir,
  299. char **name, void **value, size_t *len)
  300. {
  301. if (unlikely(IS_PRIVATE(inode)))
  302. return -EOPNOTSUPP;
  303. return security_ops->inode_init_security(inode, dir, name, value, len);
  304. }
  305. EXPORT_SYMBOL(security_inode_init_security);
  306. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  307. {
  308. if (unlikely(IS_PRIVATE(dir)))
  309. return 0;
  310. return security_ops->inode_create(dir, dentry, mode);
  311. }
  312. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  313. struct dentry *new_dentry)
  314. {
  315. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  316. return 0;
  317. return security_ops->inode_link(old_dentry, dir, new_dentry);
  318. }
  319. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  320. {
  321. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  322. return 0;
  323. return security_ops->inode_unlink(dir, dentry);
  324. }
  325. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  326. const char *old_name)
  327. {
  328. if (unlikely(IS_PRIVATE(dir)))
  329. return 0;
  330. return security_ops->inode_symlink(dir, dentry, old_name);
  331. }
  332. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  333. {
  334. if (unlikely(IS_PRIVATE(dir)))
  335. return 0;
  336. return security_ops->inode_mkdir(dir, dentry, mode);
  337. }
  338. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  339. {
  340. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  341. return 0;
  342. return security_ops->inode_rmdir(dir, dentry);
  343. }
  344. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  345. {
  346. if (unlikely(IS_PRIVATE(dir)))
  347. return 0;
  348. return security_ops->inode_mknod(dir, dentry, mode, dev);
  349. }
  350. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  351. struct inode *new_dir, struct dentry *new_dentry)
  352. {
  353. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  354. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  355. return 0;
  356. return security_ops->inode_rename(old_dir, old_dentry,
  357. new_dir, new_dentry);
  358. }
  359. int security_inode_readlink(struct dentry *dentry)
  360. {
  361. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  362. return 0;
  363. return security_ops->inode_readlink(dentry);
  364. }
  365. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  366. {
  367. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  368. return 0;
  369. return security_ops->inode_follow_link(dentry, nd);
  370. }
  371. int security_inode_permission(struct inode *inode, int mask)
  372. {
  373. if (unlikely(IS_PRIVATE(inode)))
  374. return 0;
  375. return security_ops->inode_permission(inode, mask);
  376. }
  377. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  378. {
  379. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  380. return 0;
  381. return security_ops->inode_setattr(dentry, attr);
  382. }
  383. EXPORT_SYMBOL_GPL(security_inode_setattr);
  384. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  385. {
  386. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  387. return 0;
  388. return security_ops->inode_getattr(mnt, dentry);
  389. }
  390. void security_inode_delete(struct inode *inode)
  391. {
  392. if (unlikely(IS_PRIVATE(inode)))
  393. return;
  394. security_ops->inode_delete(inode);
  395. }
  396. int security_inode_setxattr(struct dentry *dentry, const char *name,
  397. const void *value, size_t size, int flags)
  398. {
  399. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  400. return 0;
  401. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  402. }
  403. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  404. const void *value, size_t size, int flags)
  405. {
  406. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  407. return;
  408. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  409. }
  410. int security_inode_getxattr(struct dentry *dentry, const char *name)
  411. {
  412. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  413. return 0;
  414. return security_ops->inode_getxattr(dentry, name);
  415. }
  416. int security_inode_listxattr(struct dentry *dentry)
  417. {
  418. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  419. return 0;
  420. return security_ops->inode_listxattr(dentry);
  421. }
  422. int security_inode_removexattr(struct dentry *dentry, const char *name)
  423. {
  424. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  425. return 0;
  426. return security_ops->inode_removexattr(dentry, name);
  427. }
  428. int security_inode_need_killpriv(struct dentry *dentry)
  429. {
  430. return security_ops->inode_need_killpriv(dentry);
  431. }
  432. int security_inode_killpriv(struct dentry *dentry)
  433. {
  434. return security_ops->inode_killpriv(dentry);
  435. }
  436. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  437. {
  438. if (unlikely(IS_PRIVATE(inode)))
  439. return 0;
  440. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  441. }
  442. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  443. {
  444. if (unlikely(IS_PRIVATE(inode)))
  445. return 0;
  446. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  447. }
  448. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  449. {
  450. if (unlikely(IS_PRIVATE(inode)))
  451. return 0;
  452. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  453. }
  454. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  455. {
  456. security_ops->inode_getsecid(inode, secid);
  457. }
  458. int security_file_permission(struct file *file, int mask)
  459. {
  460. return security_ops->file_permission(file, mask);
  461. }
  462. int security_file_alloc(struct file *file)
  463. {
  464. return security_ops->file_alloc_security(file);
  465. }
  466. void security_file_free(struct file *file)
  467. {
  468. security_ops->file_free_security(file);
  469. }
  470. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  471. {
  472. return security_ops->file_ioctl(file, cmd, arg);
  473. }
  474. int security_file_mmap(struct file *file, unsigned long reqprot,
  475. unsigned long prot, unsigned long flags,
  476. unsigned long addr, unsigned long addr_only)
  477. {
  478. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  479. }
  480. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  481. unsigned long prot)
  482. {
  483. return security_ops->file_mprotect(vma, reqprot, prot);
  484. }
  485. int security_file_lock(struct file *file, unsigned int cmd)
  486. {
  487. return security_ops->file_lock(file, cmd);
  488. }
  489. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  490. {
  491. return security_ops->file_fcntl(file, cmd, arg);
  492. }
  493. int security_file_set_fowner(struct file *file)
  494. {
  495. return security_ops->file_set_fowner(file);
  496. }
  497. int security_file_send_sigiotask(struct task_struct *tsk,
  498. struct fown_struct *fown, int sig)
  499. {
  500. return security_ops->file_send_sigiotask(tsk, fown, sig);
  501. }
  502. int security_file_receive(struct file *file)
  503. {
  504. return security_ops->file_receive(file);
  505. }
  506. int security_dentry_open(struct file *file, const struct cred *cred)
  507. {
  508. return security_ops->dentry_open(file, cred);
  509. }
  510. int security_task_create(unsigned long clone_flags)
  511. {
  512. return security_ops->task_create(clone_flags);
  513. }
  514. void security_cred_free(struct cred *cred)
  515. {
  516. security_ops->cred_free(cred);
  517. }
  518. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  519. {
  520. return security_ops->cred_prepare(new, old, gfp);
  521. }
  522. void security_commit_creds(struct cred *new, const struct cred *old)
  523. {
  524. return security_ops->cred_commit(new, old);
  525. }
  526. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  527. {
  528. return security_ops->task_setuid(id0, id1, id2, flags);
  529. }
  530. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  531. int flags)
  532. {
  533. return security_ops->task_fix_setuid(new, old, flags);
  534. }
  535. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  536. {
  537. return security_ops->task_setgid(id0, id1, id2, flags);
  538. }
  539. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  540. {
  541. return security_ops->task_setpgid(p, pgid);
  542. }
  543. int security_task_getpgid(struct task_struct *p)
  544. {
  545. return security_ops->task_getpgid(p);
  546. }
  547. int security_task_getsid(struct task_struct *p)
  548. {
  549. return security_ops->task_getsid(p);
  550. }
  551. void security_task_getsecid(struct task_struct *p, u32 *secid)
  552. {
  553. security_ops->task_getsecid(p, secid);
  554. }
  555. EXPORT_SYMBOL(security_task_getsecid);
  556. int security_task_setgroups(struct group_info *group_info)
  557. {
  558. return security_ops->task_setgroups(group_info);
  559. }
  560. int security_task_setnice(struct task_struct *p, int nice)
  561. {
  562. return security_ops->task_setnice(p, nice);
  563. }
  564. int security_task_setioprio(struct task_struct *p, int ioprio)
  565. {
  566. return security_ops->task_setioprio(p, ioprio);
  567. }
  568. int security_task_getioprio(struct task_struct *p)
  569. {
  570. return security_ops->task_getioprio(p);
  571. }
  572. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  573. {
  574. return security_ops->task_setrlimit(resource, new_rlim);
  575. }
  576. int security_task_setscheduler(struct task_struct *p,
  577. int policy, struct sched_param *lp)
  578. {
  579. return security_ops->task_setscheduler(p, policy, lp);
  580. }
  581. int security_task_getscheduler(struct task_struct *p)
  582. {
  583. return security_ops->task_getscheduler(p);
  584. }
  585. int security_task_movememory(struct task_struct *p)
  586. {
  587. return security_ops->task_movememory(p);
  588. }
  589. int security_task_kill(struct task_struct *p, struct siginfo *info,
  590. int sig, u32 secid)
  591. {
  592. return security_ops->task_kill(p, info, sig, secid);
  593. }
  594. int security_task_wait(struct task_struct *p)
  595. {
  596. return security_ops->task_wait(p);
  597. }
  598. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  599. unsigned long arg4, unsigned long arg5)
  600. {
  601. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  602. }
  603. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  604. {
  605. security_ops->task_to_inode(p, inode);
  606. }
  607. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  608. {
  609. return security_ops->ipc_permission(ipcp, flag);
  610. }
  611. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  612. {
  613. security_ops->ipc_getsecid(ipcp, secid);
  614. }
  615. int security_msg_msg_alloc(struct msg_msg *msg)
  616. {
  617. return security_ops->msg_msg_alloc_security(msg);
  618. }
  619. void security_msg_msg_free(struct msg_msg *msg)
  620. {
  621. security_ops->msg_msg_free_security(msg);
  622. }
  623. int security_msg_queue_alloc(struct msg_queue *msq)
  624. {
  625. return security_ops->msg_queue_alloc_security(msq);
  626. }
  627. void security_msg_queue_free(struct msg_queue *msq)
  628. {
  629. security_ops->msg_queue_free_security(msq);
  630. }
  631. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  632. {
  633. return security_ops->msg_queue_associate(msq, msqflg);
  634. }
  635. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  636. {
  637. return security_ops->msg_queue_msgctl(msq, cmd);
  638. }
  639. int security_msg_queue_msgsnd(struct msg_queue *msq,
  640. struct msg_msg *msg, int msqflg)
  641. {
  642. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  643. }
  644. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  645. struct task_struct *target, long type, int mode)
  646. {
  647. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  648. }
  649. int security_shm_alloc(struct shmid_kernel *shp)
  650. {
  651. return security_ops->shm_alloc_security(shp);
  652. }
  653. void security_shm_free(struct shmid_kernel *shp)
  654. {
  655. security_ops->shm_free_security(shp);
  656. }
  657. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  658. {
  659. return security_ops->shm_associate(shp, shmflg);
  660. }
  661. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  662. {
  663. return security_ops->shm_shmctl(shp, cmd);
  664. }
  665. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  666. {
  667. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  668. }
  669. int security_sem_alloc(struct sem_array *sma)
  670. {
  671. return security_ops->sem_alloc_security(sma);
  672. }
  673. void security_sem_free(struct sem_array *sma)
  674. {
  675. security_ops->sem_free_security(sma);
  676. }
  677. int security_sem_associate(struct sem_array *sma, int semflg)
  678. {
  679. return security_ops->sem_associate(sma, semflg);
  680. }
  681. int security_sem_semctl(struct sem_array *sma, int cmd)
  682. {
  683. return security_ops->sem_semctl(sma, cmd);
  684. }
  685. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  686. unsigned nsops, int alter)
  687. {
  688. return security_ops->sem_semop(sma, sops, nsops, alter);
  689. }
  690. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  691. {
  692. if (unlikely(inode && IS_PRIVATE(inode)))
  693. return;
  694. security_ops->d_instantiate(dentry, inode);
  695. }
  696. EXPORT_SYMBOL(security_d_instantiate);
  697. int security_getprocattr(struct task_struct *p, char *name, char **value)
  698. {
  699. return security_ops->getprocattr(p, name, value);
  700. }
  701. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  702. {
  703. return security_ops->setprocattr(p, name, value, size);
  704. }
  705. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  706. {
  707. return security_ops->netlink_send(sk, skb);
  708. }
  709. int security_netlink_recv(struct sk_buff *skb, int cap)
  710. {
  711. return security_ops->netlink_recv(skb, cap);
  712. }
  713. EXPORT_SYMBOL(security_netlink_recv);
  714. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  715. {
  716. return security_ops->secid_to_secctx(secid, secdata, seclen);
  717. }
  718. EXPORT_SYMBOL(security_secid_to_secctx);
  719. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  720. {
  721. return security_ops->secctx_to_secid(secdata, seclen, secid);
  722. }
  723. EXPORT_SYMBOL(security_secctx_to_secid);
  724. void security_release_secctx(char *secdata, u32 seclen)
  725. {
  726. security_ops->release_secctx(secdata, seclen);
  727. }
  728. EXPORT_SYMBOL(security_release_secctx);
  729. #ifdef CONFIG_SECURITY_NETWORK
  730. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  731. struct sock *newsk)
  732. {
  733. return security_ops->unix_stream_connect(sock, other, newsk);
  734. }
  735. EXPORT_SYMBOL(security_unix_stream_connect);
  736. int security_unix_may_send(struct socket *sock, struct socket *other)
  737. {
  738. return security_ops->unix_may_send(sock, other);
  739. }
  740. EXPORT_SYMBOL(security_unix_may_send);
  741. int security_socket_create(int family, int type, int protocol, int kern)
  742. {
  743. return security_ops->socket_create(family, type, protocol, kern);
  744. }
  745. int security_socket_post_create(struct socket *sock, int family,
  746. int type, int protocol, int kern)
  747. {
  748. return security_ops->socket_post_create(sock, family, type,
  749. protocol, kern);
  750. }
  751. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  752. {
  753. return security_ops->socket_bind(sock, address, addrlen);
  754. }
  755. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  756. {
  757. return security_ops->socket_connect(sock, address, addrlen);
  758. }
  759. int security_socket_listen(struct socket *sock, int backlog)
  760. {
  761. return security_ops->socket_listen(sock, backlog);
  762. }
  763. int security_socket_accept(struct socket *sock, struct socket *newsock)
  764. {
  765. return security_ops->socket_accept(sock, newsock);
  766. }
  767. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  768. {
  769. security_ops->socket_post_accept(sock, newsock);
  770. }
  771. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  772. {
  773. return security_ops->socket_sendmsg(sock, msg, size);
  774. }
  775. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  776. int size, int flags)
  777. {
  778. return security_ops->socket_recvmsg(sock, msg, size, flags);
  779. }
  780. int security_socket_getsockname(struct socket *sock)
  781. {
  782. return security_ops->socket_getsockname(sock);
  783. }
  784. int security_socket_getpeername(struct socket *sock)
  785. {
  786. return security_ops->socket_getpeername(sock);
  787. }
  788. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  789. {
  790. return security_ops->socket_getsockopt(sock, level, optname);
  791. }
  792. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  793. {
  794. return security_ops->socket_setsockopt(sock, level, optname);
  795. }
  796. int security_socket_shutdown(struct socket *sock, int how)
  797. {
  798. return security_ops->socket_shutdown(sock, how);
  799. }
  800. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  801. {
  802. return security_ops->socket_sock_rcv_skb(sk, skb);
  803. }
  804. EXPORT_SYMBOL(security_sock_rcv_skb);
  805. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  806. int __user *optlen, unsigned len)
  807. {
  808. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  809. }
  810. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  811. {
  812. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  813. }
  814. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  815. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  816. {
  817. return security_ops->sk_alloc_security(sk, family, priority);
  818. }
  819. void security_sk_free(struct sock *sk)
  820. {
  821. security_ops->sk_free_security(sk);
  822. }
  823. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  824. {
  825. security_ops->sk_clone_security(sk, newsk);
  826. }
  827. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  828. {
  829. security_ops->sk_getsecid(sk, &fl->secid);
  830. }
  831. EXPORT_SYMBOL(security_sk_classify_flow);
  832. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  833. {
  834. security_ops->req_classify_flow(req, fl);
  835. }
  836. EXPORT_SYMBOL(security_req_classify_flow);
  837. void security_sock_graft(struct sock *sk, struct socket *parent)
  838. {
  839. security_ops->sock_graft(sk, parent);
  840. }
  841. EXPORT_SYMBOL(security_sock_graft);
  842. int security_inet_conn_request(struct sock *sk,
  843. struct sk_buff *skb, struct request_sock *req)
  844. {
  845. return security_ops->inet_conn_request(sk, skb, req);
  846. }
  847. EXPORT_SYMBOL(security_inet_conn_request);
  848. void security_inet_csk_clone(struct sock *newsk,
  849. const struct request_sock *req)
  850. {
  851. security_ops->inet_csk_clone(newsk, req);
  852. }
  853. void security_inet_conn_established(struct sock *sk,
  854. struct sk_buff *skb)
  855. {
  856. security_ops->inet_conn_established(sk, skb);
  857. }
  858. #endif /* CONFIG_SECURITY_NETWORK */
  859. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  860. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  861. {
  862. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  863. }
  864. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  865. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  866. struct xfrm_sec_ctx **new_ctxp)
  867. {
  868. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  869. }
  870. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  871. {
  872. security_ops->xfrm_policy_free_security(ctx);
  873. }
  874. EXPORT_SYMBOL(security_xfrm_policy_free);
  875. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  876. {
  877. return security_ops->xfrm_policy_delete_security(ctx);
  878. }
  879. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  880. {
  881. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  882. }
  883. EXPORT_SYMBOL(security_xfrm_state_alloc);
  884. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  885. struct xfrm_sec_ctx *polsec, u32 secid)
  886. {
  887. if (!polsec)
  888. return 0;
  889. /*
  890. * We want the context to be taken from secid which is usually
  891. * from the sock.
  892. */
  893. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  894. }
  895. int security_xfrm_state_delete(struct xfrm_state *x)
  896. {
  897. return security_ops->xfrm_state_delete_security(x);
  898. }
  899. EXPORT_SYMBOL(security_xfrm_state_delete);
  900. void security_xfrm_state_free(struct xfrm_state *x)
  901. {
  902. security_ops->xfrm_state_free_security(x);
  903. }
  904. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  905. {
  906. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  907. }
  908. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  909. struct xfrm_policy *xp, struct flowi *fl)
  910. {
  911. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  912. }
  913. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  914. {
  915. return security_ops->xfrm_decode_session(skb, secid, 1);
  916. }
  917. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  918. {
  919. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  920. BUG_ON(rc);
  921. }
  922. EXPORT_SYMBOL(security_skb_classify_flow);
  923. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  924. #ifdef CONFIG_KEYS
  925. int security_key_alloc(struct key *key, const struct cred *cred,
  926. unsigned long flags)
  927. {
  928. return security_ops->key_alloc(key, cred, flags);
  929. }
  930. void security_key_free(struct key *key)
  931. {
  932. security_ops->key_free(key);
  933. }
  934. int security_key_permission(key_ref_t key_ref,
  935. const struct cred *cred, key_perm_t perm)
  936. {
  937. return security_ops->key_permission(key_ref, cred, perm);
  938. }
  939. int security_key_getsecurity(struct key *key, char **_buffer)
  940. {
  941. return security_ops->key_getsecurity(key, _buffer);
  942. }
  943. #endif /* CONFIG_KEYS */
  944. #ifdef CONFIG_AUDIT
  945. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  946. {
  947. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  948. }
  949. int security_audit_rule_known(struct audit_krule *krule)
  950. {
  951. return security_ops->audit_rule_known(krule);
  952. }
  953. void security_audit_rule_free(void *lsmrule)
  954. {
  955. security_ops->audit_rule_free(lsmrule);
  956. }
  957. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  958. struct audit_context *actx)
  959. {
  960. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  961. }
  962. #endif /* CONFIG_AUDIT */