ieee1394_transactions.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. /*
  2. * IEEE 1394 for Linux
  3. *
  4. * Transaction support.
  5. *
  6. * Copyright (C) 1999 Andreas E. Bombe
  7. *
  8. * This code is licensed under the GPL. See the file COPYING in the root
  9. * directory of the kernel sources for details.
  10. */
  11. #include <linux/sched.h>
  12. #include <linux/bitops.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/interrupt.h>
  15. #include <asm/bug.h>
  16. #include <asm/errno.h>
  17. #include "ieee1394.h"
  18. #include "ieee1394_types.h"
  19. #include "hosts.h"
  20. #include "ieee1394_core.h"
  21. #include "highlevel.h"
  22. #include "nodemgr.h"
  23. #include "ieee1394_transactions.h"
  24. #define PREP_ASYNC_HEAD_ADDRESS(tc) \
  25. packet->tcode = tc; \
  26. packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
  27. | (1 << 8) | (tc << 4); \
  28. packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
  29. packet->header[2] = addr & 0xffffffff
  30. static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
  31. {
  32. PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
  33. packet->header_size = 12;
  34. packet->data_size = 0;
  35. packet->expect_response = 1;
  36. }
  37. static void fill_async_readblock(struct hpsb_packet *packet, u64 addr,
  38. int length)
  39. {
  40. PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
  41. packet->header[3] = length << 16;
  42. packet->header_size = 16;
  43. packet->data_size = 0;
  44. packet->expect_response = 1;
  45. }
  46. static void fill_async_writequad(struct hpsb_packet *packet, u64 addr,
  47. quadlet_t data)
  48. {
  49. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
  50. packet->header[3] = data;
  51. packet->header_size = 16;
  52. packet->data_size = 0;
  53. packet->expect_response = 1;
  54. }
  55. static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr,
  56. int length)
  57. {
  58. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
  59. packet->header[3] = length << 16;
  60. packet->header_size = 16;
  61. packet->expect_response = 1;
  62. packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
  63. }
  64. static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
  65. int length)
  66. {
  67. PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
  68. packet->header[3] = (length << 16) | extcode;
  69. packet->header_size = 16;
  70. packet->data_size = length;
  71. packet->expect_response = 1;
  72. }
  73. static void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
  74. int tag, int sync)
  75. {
  76. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  77. | (TCODE_ISO_DATA << 4) | sync;
  78. packet->header_size = 4;
  79. packet->data_size = length;
  80. packet->type = hpsb_iso;
  81. packet->tcode = TCODE_ISO_DATA;
  82. }
  83. static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
  84. {
  85. packet->header[0] = data;
  86. packet->header[1] = ~data;
  87. packet->header_size = 8;
  88. packet->data_size = 0;
  89. packet->expect_response = 0;
  90. packet->type = hpsb_raw; /* No CRC added */
  91. packet->speed_code = IEEE1394_SPEED_100; /* Force speed to be 100Mbps */
  92. }
  93. static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
  94. int channel, int tag, int sync)
  95. {
  96. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  97. | (TCODE_STREAM_DATA << 4) | sync;
  98. packet->header_size = 4;
  99. packet->data_size = length;
  100. packet->type = hpsb_async;
  101. packet->tcode = TCODE_ISO_DATA;
  102. }
  103. /**
  104. * hpsb_get_tlabel - allocate a transaction label
  105. * @packet: the packet who's tlabel/tpool we set
  106. *
  107. * Every asynchronous transaction on the 1394 bus needs a transaction
  108. * label to match the response to the request. This label has to be
  109. * different from any other transaction label in an outstanding request to
  110. * the same node to make matching possible without ambiguity.
  111. *
  112. * There are 64 different tlabels, so an allocated tlabel has to be freed
  113. * with hpsb_free_tlabel() after the transaction is complete (unless it's
  114. * reused again for the same target node).
  115. *
  116. * Return value: Zero on success, otherwise non-zero. A non-zero return
  117. * generally means there are no available tlabels. If this is called out
  118. * of interrupt or atomic context, then it will sleep until can return a
  119. * tlabel.
  120. */
  121. int hpsb_get_tlabel(struct hpsb_packet *packet)
  122. {
  123. unsigned long flags;
  124. struct hpsb_tlabel_pool *tp;
  125. int n = NODEID_TO_NODE(packet->node_id);
  126. if (unlikely(n == ALL_NODES))
  127. return 0;
  128. tp = &packet->host->tpool[n];
  129. if (irqs_disabled() || in_atomic()) {
  130. if (down_trylock(&tp->count))
  131. return 1;
  132. } else {
  133. down(&tp->count);
  134. }
  135. spin_lock_irqsave(&tp->lock, flags);
  136. packet->tlabel = find_next_zero_bit(tp->pool, 64, tp->next);
  137. if (packet->tlabel > 63)
  138. packet->tlabel = find_first_zero_bit(tp->pool, 64);
  139. tp->next = (packet->tlabel + 1) % 64;
  140. /* Should _never_ happen */
  141. BUG_ON(test_and_set_bit(packet->tlabel, tp->pool));
  142. tp->allocations++;
  143. spin_unlock_irqrestore(&tp->lock, flags);
  144. return 0;
  145. }
  146. /**
  147. * hpsb_free_tlabel - free an allocated transaction label
  148. * @packet: packet whos tlabel/tpool needs to be cleared
  149. *
  150. * Frees the transaction label allocated with hpsb_get_tlabel(). The
  151. * tlabel has to be freed after the transaction is complete (i.e. response
  152. * was received for a split transaction or packet was sent for a unified
  153. * transaction).
  154. *
  155. * A tlabel must not be freed twice.
  156. */
  157. void hpsb_free_tlabel(struct hpsb_packet *packet)
  158. {
  159. unsigned long flags;
  160. struct hpsb_tlabel_pool *tp;
  161. int n = NODEID_TO_NODE(packet->node_id);
  162. if (unlikely(n == ALL_NODES))
  163. return;
  164. tp = &packet->host->tpool[n];
  165. BUG_ON(packet->tlabel > 63 || packet->tlabel < 0);
  166. spin_lock_irqsave(&tp->lock, flags);
  167. BUG_ON(!test_and_clear_bit(packet->tlabel, tp->pool));
  168. spin_unlock_irqrestore(&tp->lock, flags);
  169. up(&tp->count);
  170. }
  171. int hpsb_packet_success(struct hpsb_packet *packet)
  172. {
  173. switch (packet->ack_code) {
  174. case ACK_PENDING:
  175. switch ((packet->header[1] >> 12) & 0xf) {
  176. case RCODE_COMPLETE:
  177. return 0;
  178. case RCODE_CONFLICT_ERROR:
  179. return -EAGAIN;
  180. case RCODE_DATA_ERROR:
  181. return -EREMOTEIO;
  182. case RCODE_TYPE_ERROR:
  183. return -EACCES;
  184. case RCODE_ADDRESS_ERROR:
  185. return -EINVAL;
  186. default:
  187. HPSB_ERR("received reserved rcode %d from node %d",
  188. (packet->header[1] >> 12) & 0xf,
  189. packet->node_id);
  190. return -EAGAIN;
  191. }
  192. BUG();
  193. case ACK_BUSY_X:
  194. case ACK_BUSY_A:
  195. case ACK_BUSY_B:
  196. return -EBUSY;
  197. case ACK_TYPE_ERROR:
  198. return -EACCES;
  199. case ACK_COMPLETE:
  200. if (packet->tcode == TCODE_WRITEQ
  201. || packet->tcode == TCODE_WRITEB) {
  202. return 0;
  203. } else {
  204. HPSB_ERR("impossible ack_complete from node %d "
  205. "(tcode %d)", packet->node_id, packet->tcode);
  206. return -EAGAIN;
  207. }
  208. case ACK_DATA_ERROR:
  209. if (packet->tcode == TCODE_WRITEB
  210. || packet->tcode == TCODE_LOCK_REQUEST) {
  211. return -EAGAIN;
  212. } else {
  213. HPSB_ERR("impossible ack_data_error from node %d "
  214. "(tcode %d)", packet->node_id, packet->tcode);
  215. return -EAGAIN;
  216. }
  217. case ACK_ADDRESS_ERROR:
  218. return -EINVAL;
  219. case ACK_TARDY:
  220. case ACK_CONFLICT_ERROR:
  221. case ACKX_NONE:
  222. case ACKX_SEND_ERROR:
  223. case ACKX_ABORTED:
  224. case ACKX_TIMEOUT:
  225. /* error while sending */
  226. return -EAGAIN;
  227. default:
  228. HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
  229. packet->ack_code, packet->node_id, packet->tcode);
  230. return -EAGAIN;
  231. }
  232. BUG();
  233. }
  234. struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
  235. u64 addr, size_t length)
  236. {
  237. struct hpsb_packet *packet;
  238. if (length == 0)
  239. return NULL;
  240. packet = hpsb_alloc_packet(length);
  241. if (!packet)
  242. return NULL;
  243. packet->host = host;
  244. packet->node_id = node;
  245. if (hpsb_get_tlabel(packet)) {
  246. hpsb_free_packet(packet);
  247. return NULL;
  248. }
  249. if (length == 4)
  250. fill_async_readquad(packet, addr);
  251. else
  252. fill_async_readblock(packet, addr, length);
  253. return packet;
  254. }
  255. struct hpsb_packet *hpsb_make_writepacket(struct hpsb_host *host, nodeid_t node,
  256. u64 addr, quadlet_t * buffer,
  257. size_t length)
  258. {
  259. struct hpsb_packet *packet;
  260. if (length == 0)
  261. return NULL;
  262. packet = hpsb_alloc_packet(length);
  263. if (!packet)
  264. return NULL;
  265. if (length % 4) { /* zero padding bytes */
  266. packet->data[length >> 2] = 0;
  267. }
  268. packet->host = host;
  269. packet->node_id = node;
  270. if (hpsb_get_tlabel(packet)) {
  271. hpsb_free_packet(packet);
  272. return NULL;
  273. }
  274. if (length == 4) {
  275. fill_async_writequad(packet, addr, buffer ? *buffer : 0);
  276. } else {
  277. fill_async_writeblock(packet, addr, length);
  278. if (buffer)
  279. memcpy(packet->data, buffer, length);
  280. }
  281. return packet;
  282. }
  283. struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 * buffer,
  284. int length, int channel, int tag,
  285. int sync)
  286. {
  287. struct hpsb_packet *packet;
  288. if (length == 0)
  289. return NULL;
  290. packet = hpsb_alloc_packet(length);
  291. if (!packet)
  292. return NULL;
  293. if (length % 4) { /* zero padding bytes */
  294. packet->data[length >> 2] = 0;
  295. }
  296. packet->host = host;
  297. if (hpsb_get_tlabel(packet)) {
  298. hpsb_free_packet(packet);
  299. return NULL;
  300. }
  301. fill_async_stream_packet(packet, length, channel, tag, sync);
  302. if (buffer)
  303. memcpy(packet->data, buffer, length);
  304. return packet;
  305. }
  306. struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
  307. u64 addr, int extcode,
  308. quadlet_t * data, quadlet_t arg)
  309. {
  310. struct hpsb_packet *p;
  311. u32 length;
  312. p = hpsb_alloc_packet(8);
  313. if (!p)
  314. return NULL;
  315. p->host = host;
  316. p->node_id = node;
  317. if (hpsb_get_tlabel(p)) {
  318. hpsb_free_packet(p);
  319. return NULL;
  320. }
  321. switch (extcode) {
  322. case EXTCODE_FETCH_ADD:
  323. case EXTCODE_LITTLE_ADD:
  324. length = 4;
  325. if (data)
  326. p->data[0] = *data;
  327. break;
  328. default:
  329. length = 8;
  330. if (data) {
  331. p->data[0] = arg;
  332. p->data[1] = *data;
  333. }
  334. break;
  335. }
  336. fill_async_lock(p, addr, extcode, length);
  337. return p;
  338. }
  339. struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host,
  340. nodeid_t node, u64 addr, int extcode,
  341. octlet_t * data, octlet_t arg)
  342. {
  343. struct hpsb_packet *p;
  344. u32 length;
  345. p = hpsb_alloc_packet(16);
  346. if (!p)
  347. return NULL;
  348. p->host = host;
  349. p->node_id = node;
  350. if (hpsb_get_tlabel(p)) {
  351. hpsb_free_packet(p);
  352. return NULL;
  353. }
  354. switch (extcode) {
  355. case EXTCODE_FETCH_ADD:
  356. case EXTCODE_LITTLE_ADD:
  357. length = 8;
  358. if (data) {
  359. p->data[0] = *data >> 32;
  360. p->data[1] = *data & 0xffffffff;
  361. }
  362. break;
  363. default:
  364. length = 16;
  365. if (data) {
  366. p->data[0] = arg >> 32;
  367. p->data[1] = arg & 0xffffffff;
  368. p->data[2] = *data >> 32;
  369. p->data[3] = *data & 0xffffffff;
  370. }
  371. break;
  372. }
  373. fill_async_lock(p, addr, extcode, length);
  374. return p;
  375. }
  376. struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host, quadlet_t data)
  377. {
  378. struct hpsb_packet *p;
  379. p = hpsb_alloc_packet(0);
  380. if (!p)
  381. return NULL;
  382. p->host = host;
  383. fill_phy_packet(p, data);
  384. return p;
  385. }
  386. struct hpsb_packet *hpsb_make_isopacket(struct hpsb_host *host,
  387. int length, int channel,
  388. int tag, int sync)
  389. {
  390. struct hpsb_packet *p;
  391. p = hpsb_alloc_packet(length);
  392. if (!p)
  393. return NULL;
  394. p->host = host;
  395. fill_iso_packet(p, length, channel, tag, sync);
  396. p->generation = get_hpsb_generation(host);
  397. return p;
  398. }
  399. /*
  400. * FIXME - these functions should probably read from / write to user space to
  401. * avoid in kernel buffers for user space callers
  402. */
  403. int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  404. u64 addr, quadlet_t * buffer, size_t length)
  405. {
  406. struct hpsb_packet *packet;
  407. int retval = 0;
  408. if (length == 0)
  409. return -EINVAL;
  410. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  411. packet = hpsb_make_readpacket(host, node, addr, length);
  412. if (!packet) {
  413. return -ENOMEM;
  414. }
  415. packet->generation = generation;
  416. retval = hpsb_send_packet_and_wait(packet);
  417. if (retval < 0)
  418. goto hpsb_read_fail;
  419. retval = hpsb_packet_success(packet);
  420. if (retval == 0) {
  421. if (length == 4) {
  422. *buffer = packet->header[3];
  423. } else {
  424. memcpy(buffer, packet->data, length);
  425. }
  426. }
  427. hpsb_read_fail:
  428. hpsb_free_tlabel(packet);
  429. hpsb_free_packet(packet);
  430. return retval;
  431. }
  432. int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  433. u64 addr, quadlet_t * buffer, size_t length)
  434. {
  435. struct hpsb_packet *packet;
  436. int retval;
  437. if (length == 0)
  438. return -EINVAL;
  439. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  440. packet = hpsb_make_writepacket(host, node, addr, buffer, length);
  441. if (!packet)
  442. return -ENOMEM;
  443. packet->generation = generation;
  444. retval = hpsb_send_packet_and_wait(packet);
  445. if (retval < 0)
  446. goto hpsb_write_fail;
  447. retval = hpsb_packet_success(packet);
  448. hpsb_write_fail:
  449. hpsb_free_tlabel(packet);
  450. hpsb_free_packet(packet);
  451. return retval;
  452. }
  453. #if 0
  454. int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  455. u64 addr, int extcode, quadlet_t * data, quadlet_t arg)
  456. {
  457. struct hpsb_packet *packet;
  458. int retval = 0;
  459. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  460. packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
  461. if (!packet)
  462. return -ENOMEM;
  463. packet->generation = generation;
  464. retval = hpsb_send_packet_and_wait(packet);
  465. if (retval < 0)
  466. goto hpsb_lock_fail;
  467. retval = hpsb_packet_success(packet);
  468. if (retval == 0) {
  469. *data = packet->data[0];
  470. }
  471. hpsb_lock_fail:
  472. hpsb_free_tlabel(packet);
  473. hpsb_free_packet(packet);
  474. return retval;
  475. }
  476. int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
  477. quadlet_t * buffer, size_t length, u32 specifier_id,
  478. unsigned int version)
  479. {
  480. struct hpsb_packet *packet;
  481. int retval = 0;
  482. u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
  483. u8 specifier_id_lo = specifier_id & 0xff;
  484. HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
  485. length += 8;
  486. packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
  487. if (!packet)
  488. return -ENOMEM;
  489. packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
  490. packet->data[1] =
  491. cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
  492. memcpy(&(packet->data[2]), buffer, length - 8);
  493. packet->generation = generation;
  494. packet->no_waiter = 1;
  495. retval = hpsb_send_packet(packet);
  496. if (retval < 0)
  497. hpsb_free_packet(packet);
  498. return retval;
  499. }
  500. #endif /* 0 */