s2io.c 244 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2010 Exar Corp.
  4. *
  5. * This software may be used and distributed according to the terms of
  6. * the GNU General Public License (GPL), incorporated herein by reference.
  7. * Drivers based on or derived from this code fall under the GPL and must
  8. * retain the authorship, copyright and license notice. This file is not
  9. * a complete program and may only be used when the entire operating
  10. * system is licensed under the GPL.
  11. * See the file COPYING in this distribution for more information.
  12. *
  13. * Credits:
  14. * Jeff Garzik : For pointing out the improper error condition
  15. * check in the s2io_xmit routine and also some
  16. * issues in the Tx watch dog function. Also for
  17. * patiently answering all those innumerable
  18. * questions regaring the 2.6 porting issues.
  19. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  20. * macros available only in 2.6 Kernel.
  21. * Francois Romieu : For pointing out all code part that were
  22. * deprecated and also styling related comments.
  23. * Grant Grundler : For helping me get rid of some Architecture
  24. * dependent code.
  25. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  26. *
  27. * The module loadable parameters that are supported by the driver and a brief
  28. * explanation of all the variables.
  29. *
  30. * rx_ring_num : This can be used to program the number of receive rings used
  31. * in the driver.
  32. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  33. * This is also an array of size 8.
  34. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  35. * values are 1, 2.
  36. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  37. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  38. * Tx descriptors that can be associated with each corresponding FIFO.
  39. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  40. * 2(MSI_X). Default value is '2(MSI_X)'
  41. * lro_max_pkts: This parameter defines maximum number of packets can be
  42. * aggregated as a single large packet
  43. * napi: This parameter used to enable/disable NAPI (polling Rx)
  44. * Possible values '1' for enable and '0' for disable. Default is '1'
  45. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  46. * Possible values '1' for enable and '0' for disable. Default is '0'
  47. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  48. * Possible values '1' for enable , '0' for disable.
  49. * Default is '2' - which means disable in promisc mode
  50. * and enable in non-promiscuous mode.
  51. * multiq: This parameter used to enable/disable MULTIQUEUE support.
  52. * Possible values '1' for enable and '0' for disable. Default is '0'
  53. ************************************************************************/
  54. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  55. #include <linux/module.h>
  56. #include <linux/types.h>
  57. #include <linux/errno.h>
  58. #include <linux/ioport.h>
  59. #include <linux/pci.h>
  60. #include <linux/dma-mapping.h>
  61. #include <linux/kernel.h>
  62. #include <linux/netdevice.h>
  63. #include <linux/etherdevice.h>
  64. #include <linux/mdio.h>
  65. #include <linux/skbuff.h>
  66. #include <linux/init.h>
  67. #include <linux/delay.h>
  68. #include <linux/stddef.h>
  69. #include <linux/ioctl.h>
  70. #include <linux/timex.h>
  71. #include <linux/ethtool.h>
  72. #include <linux/workqueue.h>
  73. #include <linux/if_vlan.h>
  74. #include <linux/ip.h>
  75. #include <linux/tcp.h>
  76. #include <linux/uaccess.h>
  77. #include <linux/io.h>
  78. #include <linux/slab.h>
  79. #include <net/tcp.h>
  80. #include <asm/system.h>
  81. #include <asm/div64.h>
  82. #include <asm/irq.h>
  83. /* local include */
  84. #include "s2io.h"
  85. #include "s2io-regs.h"
  86. #define DRV_VERSION "2.0.26.28"
  87. /* S2io Driver name & version. */
  88. static const char s2io_driver_name[] = "Neterion";
  89. static const char s2io_driver_version[] = DRV_VERSION;
  90. static const int rxd_size[2] = {32, 48};
  91. static const int rxd_count[2] = {127, 85};
  92. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  93. {
  94. int ret;
  95. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  96. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  97. return ret;
  98. }
  99. /*
  100. * Cards with following subsystem_id have a link state indication
  101. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  102. * macro below identifies these cards given the subsystem_id.
  103. */
  104. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  105. (dev_type == XFRAME_I_DEVICE) ? \
  106. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  107. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  108. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  109. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  110. static inline int is_s2io_card_up(const struct s2io_nic *sp)
  111. {
  112. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  113. }
  114. /* Ethtool related variables and Macros. */
  115. static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
  116. "Register test\t(offline)",
  117. "Eeprom test\t(offline)",
  118. "Link test\t(online)",
  119. "RLDRAM test\t(offline)",
  120. "BIST Test\t(offline)"
  121. };
  122. static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  123. {"tmac_frms"},
  124. {"tmac_data_octets"},
  125. {"tmac_drop_frms"},
  126. {"tmac_mcst_frms"},
  127. {"tmac_bcst_frms"},
  128. {"tmac_pause_ctrl_frms"},
  129. {"tmac_ttl_octets"},
  130. {"tmac_ucst_frms"},
  131. {"tmac_nucst_frms"},
  132. {"tmac_any_err_frms"},
  133. {"tmac_ttl_less_fb_octets"},
  134. {"tmac_vld_ip_octets"},
  135. {"tmac_vld_ip"},
  136. {"tmac_drop_ip"},
  137. {"tmac_icmp"},
  138. {"tmac_rst_tcp"},
  139. {"tmac_tcp"},
  140. {"tmac_udp"},
  141. {"rmac_vld_frms"},
  142. {"rmac_data_octets"},
  143. {"rmac_fcs_err_frms"},
  144. {"rmac_drop_frms"},
  145. {"rmac_vld_mcst_frms"},
  146. {"rmac_vld_bcst_frms"},
  147. {"rmac_in_rng_len_err_frms"},
  148. {"rmac_out_rng_len_err_frms"},
  149. {"rmac_long_frms"},
  150. {"rmac_pause_ctrl_frms"},
  151. {"rmac_unsup_ctrl_frms"},
  152. {"rmac_ttl_octets"},
  153. {"rmac_accepted_ucst_frms"},
  154. {"rmac_accepted_nucst_frms"},
  155. {"rmac_discarded_frms"},
  156. {"rmac_drop_events"},
  157. {"rmac_ttl_less_fb_octets"},
  158. {"rmac_ttl_frms"},
  159. {"rmac_usized_frms"},
  160. {"rmac_osized_frms"},
  161. {"rmac_frag_frms"},
  162. {"rmac_jabber_frms"},
  163. {"rmac_ttl_64_frms"},
  164. {"rmac_ttl_65_127_frms"},
  165. {"rmac_ttl_128_255_frms"},
  166. {"rmac_ttl_256_511_frms"},
  167. {"rmac_ttl_512_1023_frms"},
  168. {"rmac_ttl_1024_1518_frms"},
  169. {"rmac_ip"},
  170. {"rmac_ip_octets"},
  171. {"rmac_hdr_err_ip"},
  172. {"rmac_drop_ip"},
  173. {"rmac_icmp"},
  174. {"rmac_tcp"},
  175. {"rmac_udp"},
  176. {"rmac_err_drp_udp"},
  177. {"rmac_xgmii_err_sym"},
  178. {"rmac_frms_q0"},
  179. {"rmac_frms_q1"},
  180. {"rmac_frms_q2"},
  181. {"rmac_frms_q3"},
  182. {"rmac_frms_q4"},
  183. {"rmac_frms_q5"},
  184. {"rmac_frms_q6"},
  185. {"rmac_frms_q7"},
  186. {"rmac_full_q0"},
  187. {"rmac_full_q1"},
  188. {"rmac_full_q2"},
  189. {"rmac_full_q3"},
  190. {"rmac_full_q4"},
  191. {"rmac_full_q5"},
  192. {"rmac_full_q6"},
  193. {"rmac_full_q7"},
  194. {"rmac_pause_cnt"},
  195. {"rmac_xgmii_data_err_cnt"},
  196. {"rmac_xgmii_ctrl_err_cnt"},
  197. {"rmac_accepted_ip"},
  198. {"rmac_err_tcp"},
  199. {"rd_req_cnt"},
  200. {"new_rd_req_cnt"},
  201. {"new_rd_req_rtry_cnt"},
  202. {"rd_rtry_cnt"},
  203. {"wr_rtry_rd_ack_cnt"},
  204. {"wr_req_cnt"},
  205. {"new_wr_req_cnt"},
  206. {"new_wr_req_rtry_cnt"},
  207. {"wr_rtry_cnt"},
  208. {"wr_disc_cnt"},
  209. {"rd_rtry_wr_ack_cnt"},
  210. {"txp_wr_cnt"},
  211. {"txd_rd_cnt"},
  212. {"txd_wr_cnt"},
  213. {"rxd_rd_cnt"},
  214. {"rxd_wr_cnt"},
  215. {"txf_rd_cnt"},
  216. {"rxf_wr_cnt"}
  217. };
  218. static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  219. {"rmac_ttl_1519_4095_frms"},
  220. {"rmac_ttl_4096_8191_frms"},
  221. {"rmac_ttl_8192_max_frms"},
  222. {"rmac_ttl_gt_max_frms"},
  223. {"rmac_osized_alt_frms"},
  224. {"rmac_jabber_alt_frms"},
  225. {"rmac_gt_max_alt_frms"},
  226. {"rmac_vlan_frms"},
  227. {"rmac_len_discard"},
  228. {"rmac_fcs_discard"},
  229. {"rmac_pf_discard"},
  230. {"rmac_da_discard"},
  231. {"rmac_red_discard"},
  232. {"rmac_rts_discard"},
  233. {"rmac_ingm_full_discard"},
  234. {"link_fault_cnt"}
  235. };
  236. static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  237. {"\n DRIVER STATISTICS"},
  238. {"single_bit_ecc_errs"},
  239. {"double_bit_ecc_errs"},
  240. {"parity_err_cnt"},
  241. {"serious_err_cnt"},
  242. {"soft_reset_cnt"},
  243. {"fifo_full_cnt"},
  244. {"ring_0_full_cnt"},
  245. {"ring_1_full_cnt"},
  246. {"ring_2_full_cnt"},
  247. {"ring_3_full_cnt"},
  248. {"ring_4_full_cnt"},
  249. {"ring_5_full_cnt"},
  250. {"ring_6_full_cnt"},
  251. {"ring_7_full_cnt"},
  252. {"alarm_transceiver_temp_high"},
  253. {"alarm_transceiver_temp_low"},
  254. {"alarm_laser_bias_current_high"},
  255. {"alarm_laser_bias_current_low"},
  256. {"alarm_laser_output_power_high"},
  257. {"alarm_laser_output_power_low"},
  258. {"warn_transceiver_temp_high"},
  259. {"warn_transceiver_temp_low"},
  260. {"warn_laser_bias_current_high"},
  261. {"warn_laser_bias_current_low"},
  262. {"warn_laser_output_power_high"},
  263. {"warn_laser_output_power_low"},
  264. {"lro_aggregated_pkts"},
  265. {"lro_flush_both_count"},
  266. {"lro_out_of_sequence_pkts"},
  267. {"lro_flush_due_to_max_pkts"},
  268. {"lro_avg_aggr_pkts"},
  269. {"mem_alloc_fail_cnt"},
  270. {"pci_map_fail_cnt"},
  271. {"watchdog_timer_cnt"},
  272. {"mem_allocated"},
  273. {"mem_freed"},
  274. {"link_up_cnt"},
  275. {"link_down_cnt"},
  276. {"link_up_time"},
  277. {"link_down_time"},
  278. {"tx_tcode_buf_abort_cnt"},
  279. {"tx_tcode_desc_abort_cnt"},
  280. {"tx_tcode_parity_err_cnt"},
  281. {"tx_tcode_link_loss_cnt"},
  282. {"tx_tcode_list_proc_err_cnt"},
  283. {"rx_tcode_parity_err_cnt"},
  284. {"rx_tcode_abort_cnt"},
  285. {"rx_tcode_parity_abort_cnt"},
  286. {"rx_tcode_rda_fail_cnt"},
  287. {"rx_tcode_unkn_prot_cnt"},
  288. {"rx_tcode_fcs_err_cnt"},
  289. {"rx_tcode_buf_size_err_cnt"},
  290. {"rx_tcode_rxd_corrupt_cnt"},
  291. {"rx_tcode_unkn_err_cnt"},
  292. {"tda_err_cnt"},
  293. {"pfc_err_cnt"},
  294. {"pcc_err_cnt"},
  295. {"tti_err_cnt"},
  296. {"tpa_err_cnt"},
  297. {"sm_err_cnt"},
  298. {"lso_err_cnt"},
  299. {"mac_tmac_err_cnt"},
  300. {"mac_rmac_err_cnt"},
  301. {"xgxs_txgxs_err_cnt"},
  302. {"xgxs_rxgxs_err_cnt"},
  303. {"rc_err_cnt"},
  304. {"prc_pcix_err_cnt"},
  305. {"rpa_err_cnt"},
  306. {"rda_err_cnt"},
  307. {"rti_err_cnt"},
  308. {"mc_err_cnt"}
  309. };
  310. #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
  311. #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
  312. #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
  313. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
  314. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
  315. #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
  316. #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
  317. #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
  318. #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
  319. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  320. init_timer(&timer); \
  321. timer.function = handle; \
  322. timer.data = (unsigned long)arg; \
  323. mod_timer(&timer, (jiffies + exp)) \
  324. /* copy mac addr to def_mac_addr array */
  325. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  326. {
  327. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  328. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  329. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  330. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  331. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  332. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  333. }
  334. /* Add the vlan */
  335. static void s2io_vlan_rx_register(struct net_device *dev,
  336. struct vlan_group *grp)
  337. {
  338. int i;
  339. struct s2io_nic *nic = netdev_priv(dev);
  340. unsigned long flags[MAX_TX_FIFOS];
  341. struct config_param *config = &nic->config;
  342. struct mac_info *mac_control = &nic->mac_control;
  343. for (i = 0; i < config->tx_fifo_num; i++) {
  344. struct fifo_info *fifo = &mac_control->fifos[i];
  345. spin_lock_irqsave(&fifo->tx_lock, flags[i]);
  346. }
  347. nic->vlgrp = grp;
  348. for (i = config->tx_fifo_num - 1; i >= 0; i--) {
  349. struct fifo_info *fifo = &mac_control->fifos[i];
  350. spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
  351. }
  352. }
  353. /* Unregister the vlan */
  354. static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  355. {
  356. int i;
  357. struct s2io_nic *nic = netdev_priv(dev);
  358. unsigned long flags[MAX_TX_FIFOS];
  359. struct config_param *config = &nic->config;
  360. struct mac_info *mac_control = &nic->mac_control;
  361. for (i = 0; i < config->tx_fifo_num; i++) {
  362. struct fifo_info *fifo = &mac_control->fifos[i];
  363. spin_lock_irqsave(&fifo->tx_lock, flags[i]);
  364. }
  365. if (nic->vlgrp)
  366. vlan_group_set_device(nic->vlgrp, vid, NULL);
  367. for (i = config->tx_fifo_num - 1; i >= 0; i--) {
  368. struct fifo_info *fifo = &mac_control->fifos[i];
  369. spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
  370. }
  371. }
  372. /*
  373. * Constants to be programmed into the Xena's registers, to configure
  374. * the XAUI.
  375. */
  376. #define END_SIGN 0x0
  377. static const u64 herc_act_dtx_cfg[] = {
  378. /* Set address */
  379. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  380. /* Write data */
  381. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  382. /* Set address */
  383. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  384. /* Write data */
  385. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  386. /* Set address */
  387. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  388. /* Write data */
  389. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  390. /* Set address */
  391. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  392. /* Write data */
  393. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  394. /* Done */
  395. END_SIGN
  396. };
  397. static const u64 xena_dtx_cfg[] = {
  398. /* Set address */
  399. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  400. /* Write data */
  401. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  402. /* Set address */
  403. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  404. /* Write data */
  405. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  406. /* Set address */
  407. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  408. /* Write data */
  409. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  410. END_SIGN
  411. };
  412. /*
  413. * Constants for Fixing the MacAddress problem seen mostly on
  414. * Alpha machines.
  415. */
  416. static const u64 fix_mac[] = {
  417. 0x0060000000000000ULL, 0x0060600000000000ULL,
  418. 0x0040600000000000ULL, 0x0000600000000000ULL,
  419. 0x0020600000000000ULL, 0x0060600000000000ULL,
  420. 0x0020600000000000ULL, 0x0060600000000000ULL,
  421. 0x0020600000000000ULL, 0x0060600000000000ULL,
  422. 0x0020600000000000ULL, 0x0060600000000000ULL,
  423. 0x0020600000000000ULL, 0x0060600000000000ULL,
  424. 0x0020600000000000ULL, 0x0060600000000000ULL,
  425. 0x0020600000000000ULL, 0x0060600000000000ULL,
  426. 0x0020600000000000ULL, 0x0060600000000000ULL,
  427. 0x0020600000000000ULL, 0x0060600000000000ULL,
  428. 0x0020600000000000ULL, 0x0060600000000000ULL,
  429. 0x0020600000000000ULL, 0x0000600000000000ULL,
  430. 0x0040600000000000ULL, 0x0060600000000000ULL,
  431. END_SIGN
  432. };
  433. MODULE_LICENSE("GPL");
  434. MODULE_VERSION(DRV_VERSION);
  435. /* Module Loadable parameters. */
  436. S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
  437. S2IO_PARM_INT(rx_ring_num, 1);
  438. S2IO_PARM_INT(multiq, 0);
  439. S2IO_PARM_INT(rx_ring_mode, 1);
  440. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  441. S2IO_PARM_INT(rmac_pause_time, 0x100);
  442. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  443. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  444. S2IO_PARM_INT(shared_splits, 0);
  445. S2IO_PARM_INT(tmac_util_period, 5);
  446. S2IO_PARM_INT(rmac_util_period, 5);
  447. S2IO_PARM_INT(l3l4hdr_size, 128);
  448. /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
  449. S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
  450. /* Frequency of Rx desc syncs expressed as power of 2 */
  451. S2IO_PARM_INT(rxsync_frequency, 3);
  452. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  453. S2IO_PARM_INT(intr_type, 2);
  454. /* Large receive offload feature */
  455. /* Max pkts to be aggregated by LRO at one time. If not specified,
  456. * aggregation happens until we hit max IP pkt size(64K)
  457. */
  458. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  459. S2IO_PARM_INT(indicate_max_pkts, 0);
  460. S2IO_PARM_INT(napi, 1);
  461. S2IO_PARM_INT(ufo, 0);
  462. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  463. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  464. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  465. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  466. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  467. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  468. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  469. module_param_array(tx_fifo_len, uint, NULL, 0);
  470. module_param_array(rx_ring_sz, uint, NULL, 0);
  471. module_param_array(rts_frm_len, uint, NULL, 0);
  472. /*
  473. * S2IO device table.
  474. * This table lists all the devices that this driver supports.
  475. */
  476. static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
  477. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  478. PCI_ANY_ID, PCI_ANY_ID},
  479. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  480. PCI_ANY_ID, PCI_ANY_ID},
  481. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  482. PCI_ANY_ID, PCI_ANY_ID},
  483. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  484. PCI_ANY_ID, PCI_ANY_ID},
  485. {0,}
  486. };
  487. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  488. static struct pci_error_handlers s2io_err_handler = {
  489. .error_detected = s2io_io_error_detected,
  490. .slot_reset = s2io_io_slot_reset,
  491. .resume = s2io_io_resume,
  492. };
  493. static struct pci_driver s2io_driver = {
  494. .name = "S2IO",
  495. .id_table = s2io_tbl,
  496. .probe = s2io_init_nic,
  497. .remove = __devexit_p(s2io_rem_nic),
  498. .err_handler = &s2io_err_handler,
  499. };
  500. /* A simplifier macro used both by init and free shared_mem Fns(). */
  501. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  502. /* netqueue manipulation helper functions */
  503. static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
  504. {
  505. if (!sp->config.multiq) {
  506. int i;
  507. for (i = 0; i < sp->config.tx_fifo_num; i++)
  508. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
  509. }
  510. netif_tx_stop_all_queues(sp->dev);
  511. }
  512. static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
  513. {
  514. if (!sp->config.multiq)
  515. sp->mac_control.fifos[fifo_no].queue_state =
  516. FIFO_QUEUE_STOP;
  517. netif_tx_stop_all_queues(sp->dev);
  518. }
  519. static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
  520. {
  521. if (!sp->config.multiq) {
  522. int i;
  523. for (i = 0; i < sp->config.tx_fifo_num; i++)
  524. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  525. }
  526. netif_tx_start_all_queues(sp->dev);
  527. }
  528. static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
  529. {
  530. if (!sp->config.multiq)
  531. sp->mac_control.fifos[fifo_no].queue_state =
  532. FIFO_QUEUE_START;
  533. netif_tx_start_all_queues(sp->dev);
  534. }
  535. static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
  536. {
  537. if (!sp->config.multiq) {
  538. int i;
  539. for (i = 0; i < sp->config.tx_fifo_num; i++)
  540. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  541. }
  542. netif_tx_wake_all_queues(sp->dev);
  543. }
  544. static inline void s2io_wake_tx_queue(
  545. struct fifo_info *fifo, int cnt, u8 multiq)
  546. {
  547. if (multiq) {
  548. if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
  549. netif_wake_subqueue(fifo->dev, fifo->fifo_no);
  550. } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
  551. if (netif_queue_stopped(fifo->dev)) {
  552. fifo->queue_state = FIFO_QUEUE_START;
  553. netif_wake_queue(fifo->dev);
  554. }
  555. }
  556. }
  557. /**
  558. * init_shared_mem - Allocation and Initialization of Memory
  559. * @nic: Device private variable.
  560. * Description: The function allocates all the memory areas shared
  561. * between the NIC and the driver. This includes Tx descriptors,
  562. * Rx descriptors and the statistics block.
  563. */
  564. static int init_shared_mem(struct s2io_nic *nic)
  565. {
  566. u32 size;
  567. void *tmp_v_addr, *tmp_v_addr_next;
  568. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  569. struct RxD_block *pre_rxd_blk = NULL;
  570. int i, j, blk_cnt;
  571. int lst_size, lst_per_page;
  572. struct net_device *dev = nic->dev;
  573. unsigned long tmp;
  574. struct buffAdd *ba;
  575. struct config_param *config = &nic->config;
  576. struct mac_info *mac_control = &nic->mac_control;
  577. unsigned long long mem_allocated = 0;
  578. /* Allocation and initialization of TXDLs in FIFOs */
  579. size = 0;
  580. for (i = 0; i < config->tx_fifo_num; i++) {
  581. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  582. size += tx_cfg->fifo_len;
  583. }
  584. if (size > MAX_AVAILABLE_TXDS) {
  585. DBG_PRINT(ERR_DBG,
  586. "Too many TxDs requested: %d, max supported: %d\n",
  587. size, MAX_AVAILABLE_TXDS);
  588. return -EINVAL;
  589. }
  590. size = 0;
  591. for (i = 0; i < config->tx_fifo_num; i++) {
  592. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  593. size = tx_cfg->fifo_len;
  594. /*
  595. * Legal values are from 2 to 8192
  596. */
  597. if (size < 2) {
  598. DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
  599. "Valid lengths are 2 through 8192\n",
  600. i, size);
  601. return -EINVAL;
  602. }
  603. }
  604. lst_size = (sizeof(struct TxD) * config->max_txds);
  605. lst_per_page = PAGE_SIZE / lst_size;
  606. for (i = 0; i < config->tx_fifo_num; i++) {
  607. struct fifo_info *fifo = &mac_control->fifos[i];
  608. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  609. int fifo_len = tx_cfg->fifo_len;
  610. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  611. fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
  612. if (!fifo->list_info) {
  613. DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
  614. return -ENOMEM;
  615. }
  616. mem_allocated += list_holder_size;
  617. }
  618. for (i = 0; i < config->tx_fifo_num; i++) {
  619. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  620. lst_per_page);
  621. struct fifo_info *fifo = &mac_control->fifos[i];
  622. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  623. fifo->tx_curr_put_info.offset = 0;
  624. fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
  625. fifo->tx_curr_get_info.offset = 0;
  626. fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
  627. fifo->fifo_no = i;
  628. fifo->nic = nic;
  629. fifo->max_txds = MAX_SKB_FRAGS + 2;
  630. fifo->dev = dev;
  631. for (j = 0; j < page_num; j++) {
  632. int k = 0;
  633. dma_addr_t tmp_p;
  634. void *tmp_v;
  635. tmp_v = pci_alloc_consistent(nic->pdev,
  636. PAGE_SIZE, &tmp_p);
  637. if (!tmp_v) {
  638. DBG_PRINT(INFO_DBG,
  639. "pci_alloc_consistent failed for TxDL\n");
  640. return -ENOMEM;
  641. }
  642. /* If we got a zero DMA address(can happen on
  643. * certain platforms like PPC), reallocate.
  644. * Store virtual address of page we don't want,
  645. * to be freed later.
  646. */
  647. if (!tmp_p) {
  648. mac_control->zerodma_virt_addr = tmp_v;
  649. DBG_PRINT(INIT_DBG,
  650. "%s: Zero DMA address for TxDL. "
  651. "Virtual address %p\n",
  652. dev->name, tmp_v);
  653. tmp_v = pci_alloc_consistent(nic->pdev,
  654. PAGE_SIZE, &tmp_p);
  655. if (!tmp_v) {
  656. DBG_PRINT(INFO_DBG,
  657. "pci_alloc_consistent failed for TxDL\n");
  658. return -ENOMEM;
  659. }
  660. mem_allocated += PAGE_SIZE;
  661. }
  662. while (k < lst_per_page) {
  663. int l = (j * lst_per_page) + k;
  664. if (l == tx_cfg->fifo_len)
  665. break;
  666. fifo->list_info[l].list_virt_addr =
  667. tmp_v + (k * lst_size);
  668. fifo->list_info[l].list_phy_addr =
  669. tmp_p + (k * lst_size);
  670. k++;
  671. }
  672. }
  673. }
  674. for (i = 0; i < config->tx_fifo_num; i++) {
  675. struct fifo_info *fifo = &mac_control->fifos[i];
  676. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  677. size = tx_cfg->fifo_len;
  678. fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  679. if (!fifo->ufo_in_band_v)
  680. return -ENOMEM;
  681. mem_allocated += (size * sizeof(u64));
  682. }
  683. /* Allocation and initialization of RXDs in Rings */
  684. size = 0;
  685. for (i = 0; i < config->rx_ring_num; i++) {
  686. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  687. struct ring_info *ring = &mac_control->rings[i];
  688. if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
  689. DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
  690. "multiple of RxDs per Block\n",
  691. dev->name, i);
  692. return FAILURE;
  693. }
  694. size += rx_cfg->num_rxd;
  695. ring->block_count = rx_cfg->num_rxd /
  696. (rxd_count[nic->rxd_mode] + 1);
  697. ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
  698. }
  699. if (nic->rxd_mode == RXD_MODE_1)
  700. size = (size * (sizeof(struct RxD1)));
  701. else
  702. size = (size * (sizeof(struct RxD3)));
  703. for (i = 0; i < config->rx_ring_num; i++) {
  704. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  705. struct ring_info *ring = &mac_control->rings[i];
  706. ring->rx_curr_get_info.block_index = 0;
  707. ring->rx_curr_get_info.offset = 0;
  708. ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
  709. ring->rx_curr_put_info.block_index = 0;
  710. ring->rx_curr_put_info.offset = 0;
  711. ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
  712. ring->nic = nic;
  713. ring->ring_no = i;
  714. blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
  715. /* Allocating all the Rx blocks */
  716. for (j = 0; j < blk_cnt; j++) {
  717. struct rx_block_info *rx_blocks;
  718. int l;
  719. rx_blocks = &ring->rx_blocks[j];
  720. size = SIZE_OF_BLOCK; /* size is always page size */
  721. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  722. &tmp_p_addr);
  723. if (tmp_v_addr == NULL) {
  724. /*
  725. * In case of failure, free_shared_mem()
  726. * is called, which should free any
  727. * memory that was alloced till the
  728. * failure happened.
  729. */
  730. rx_blocks->block_virt_addr = tmp_v_addr;
  731. return -ENOMEM;
  732. }
  733. mem_allocated += size;
  734. memset(tmp_v_addr, 0, size);
  735. size = sizeof(struct rxd_info) *
  736. rxd_count[nic->rxd_mode];
  737. rx_blocks->block_virt_addr = tmp_v_addr;
  738. rx_blocks->block_dma_addr = tmp_p_addr;
  739. rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
  740. if (!rx_blocks->rxds)
  741. return -ENOMEM;
  742. mem_allocated += size;
  743. for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
  744. rx_blocks->rxds[l].virt_addr =
  745. rx_blocks->block_virt_addr +
  746. (rxd_size[nic->rxd_mode] * l);
  747. rx_blocks->rxds[l].dma_addr =
  748. rx_blocks->block_dma_addr +
  749. (rxd_size[nic->rxd_mode] * l);
  750. }
  751. }
  752. /* Interlinking all Rx Blocks */
  753. for (j = 0; j < blk_cnt; j++) {
  754. int next = (j + 1) % blk_cnt;
  755. tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
  756. tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
  757. tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
  758. tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
  759. pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
  760. pre_rxd_blk->reserved_2_pNext_RxD_block =
  761. (unsigned long)tmp_v_addr_next;
  762. pre_rxd_blk->pNext_RxD_Blk_physical =
  763. (u64)tmp_p_addr_next;
  764. }
  765. }
  766. if (nic->rxd_mode == RXD_MODE_3B) {
  767. /*
  768. * Allocation of Storages for buffer addresses in 2BUFF mode
  769. * and the buffers as well.
  770. */
  771. for (i = 0; i < config->rx_ring_num; i++) {
  772. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  773. struct ring_info *ring = &mac_control->rings[i];
  774. blk_cnt = rx_cfg->num_rxd /
  775. (rxd_count[nic->rxd_mode] + 1);
  776. size = sizeof(struct buffAdd *) * blk_cnt;
  777. ring->ba = kmalloc(size, GFP_KERNEL);
  778. if (!ring->ba)
  779. return -ENOMEM;
  780. mem_allocated += size;
  781. for (j = 0; j < blk_cnt; j++) {
  782. int k = 0;
  783. size = sizeof(struct buffAdd) *
  784. (rxd_count[nic->rxd_mode] + 1);
  785. ring->ba[j] = kmalloc(size, GFP_KERNEL);
  786. if (!ring->ba[j])
  787. return -ENOMEM;
  788. mem_allocated += size;
  789. while (k != rxd_count[nic->rxd_mode]) {
  790. ba = &ring->ba[j][k];
  791. size = BUF0_LEN + ALIGN_SIZE;
  792. ba->ba_0_org = kmalloc(size, GFP_KERNEL);
  793. if (!ba->ba_0_org)
  794. return -ENOMEM;
  795. mem_allocated += size;
  796. tmp = (unsigned long)ba->ba_0_org;
  797. tmp += ALIGN_SIZE;
  798. tmp &= ~((unsigned long)ALIGN_SIZE);
  799. ba->ba_0 = (void *)tmp;
  800. size = BUF1_LEN + ALIGN_SIZE;
  801. ba->ba_1_org = kmalloc(size, GFP_KERNEL);
  802. if (!ba->ba_1_org)
  803. return -ENOMEM;
  804. mem_allocated += size;
  805. tmp = (unsigned long)ba->ba_1_org;
  806. tmp += ALIGN_SIZE;
  807. tmp &= ~((unsigned long)ALIGN_SIZE);
  808. ba->ba_1 = (void *)tmp;
  809. k++;
  810. }
  811. }
  812. }
  813. }
  814. /* Allocation and initialization of Statistics block */
  815. size = sizeof(struct stat_block);
  816. mac_control->stats_mem =
  817. pci_alloc_consistent(nic->pdev, size,
  818. &mac_control->stats_mem_phy);
  819. if (!mac_control->stats_mem) {
  820. /*
  821. * In case of failure, free_shared_mem() is called, which
  822. * should free any memory that was alloced till the
  823. * failure happened.
  824. */
  825. return -ENOMEM;
  826. }
  827. mem_allocated += size;
  828. mac_control->stats_mem_sz = size;
  829. tmp_v_addr = mac_control->stats_mem;
  830. mac_control->stats_info = (struct stat_block *)tmp_v_addr;
  831. memset(tmp_v_addr, 0, size);
  832. DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
  833. dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
  834. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  835. return SUCCESS;
  836. }
  837. /**
  838. * free_shared_mem - Free the allocated Memory
  839. * @nic: Device private variable.
  840. * Description: This function is to free all memory locations allocated by
  841. * the init_shared_mem() function and return it to the kernel.
  842. */
  843. static void free_shared_mem(struct s2io_nic *nic)
  844. {
  845. int i, j, blk_cnt, size;
  846. void *tmp_v_addr;
  847. dma_addr_t tmp_p_addr;
  848. int lst_size, lst_per_page;
  849. struct net_device *dev;
  850. int page_num = 0;
  851. struct config_param *config;
  852. struct mac_info *mac_control;
  853. struct stat_block *stats;
  854. struct swStat *swstats;
  855. if (!nic)
  856. return;
  857. dev = nic->dev;
  858. config = &nic->config;
  859. mac_control = &nic->mac_control;
  860. stats = mac_control->stats_info;
  861. swstats = &stats->sw_stat;
  862. lst_size = sizeof(struct TxD) * config->max_txds;
  863. lst_per_page = PAGE_SIZE / lst_size;
  864. for (i = 0; i < config->tx_fifo_num; i++) {
  865. struct fifo_info *fifo = &mac_control->fifos[i];
  866. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  867. page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
  868. for (j = 0; j < page_num; j++) {
  869. int mem_blks = (j * lst_per_page);
  870. struct list_info_hold *fli;
  871. if (!fifo->list_info)
  872. return;
  873. fli = &fifo->list_info[mem_blks];
  874. if (!fli->list_virt_addr)
  875. break;
  876. pci_free_consistent(nic->pdev, PAGE_SIZE,
  877. fli->list_virt_addr,
  878. fli->list_phy_addr);
  879. swstats->mem_freed += PAGE_SIZE;
  880. }
  881. /* If we got a zero DMA address during allocation,
  882. * free the page now
  883. */
  884. if (mac_control->zerodma_virt_addr) {
  885. pci_free_consistent(nic->pdev, PAGE_SIZE,
  886. mac_control->zerodma_virt_addr,
  887. (dma_addr_t)0);
  888. DBG_PRINT(INIT_DBG,
  889. "%s: Freeing TxDL with zero DMA address. "
  890. "Virtual address %p\n",
  891. dev->name, mac_control->zerodma_virt_addr);
  892. swstats->mem_freed += PAGE_SIZE;
  893. }
  894. kfree(fifo->list_info);
  895. swstats->mem_freed += tx_cfg->fifo_len *
  896. sizeof(struct list_info_hold);
  897. }
  898. size = SIZE_OF_BLOCK;
  899. for (i = 0; i < config->rx_ring_num; i++) {
  900. struct ring_info *ring = &mac_control->rings[i];
  901. blk_cnt = ring->block_count;
  902. for (j = 0; j < blk_cnt; j++) {
  903. tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
  904. tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
  905. if (tmp_v_addr == NULL)
  906. break;
  907. pci_free_consistent(nic->pdev, size,
  908. tmp_v_addr, tmp_p_addr);
  909. swstats->mem_freed += size;
  910. kfree(ring->rx_blocks[j].rxds);
  911. swstats->mem_freed += sizeof(struct rxd_info) *
  912. rxd_count[nic->rxd_mode];
  913. }
  914. }
  915. if (nic->rxd_mode == RXD_MODE_3B) {
  916. /* Freeing buffer storage addresses in 2BUFF mode. */
  917. for (i = 0; i < config->rx_ring_num; i++) {
  918. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  919. struct ring_info *ring = &mac_control->rings[i];
  920. blk_cnt = rx_cfg->num_rxd /
  921. (rxd_count[nic->rxd_mode] + 1);
  922. for (j = 0; j < blk_cnt; j++) {
  923. int k = 0;
  924. if (!ring->ba[j])
  925. continue;
  926. while (k != rxd_count[nic->rxd_mode]) {
  927. struct buffAdd *ba = &ring->ba[j][k];
  928. kfree(ba->ba_0_org);
  929. swstats->mem_freed +=
  930. BUF0_LEN + ALIGN_SIZE;
  931. kfree(ba->ba_1_org);
  932. swstats->mem_freed +=
  933. BUF1_LEN + ALIGN_SIZE;
  934. k++;
  935. }
  936. kfree(ring->ba[j]);
  937. swstats->mem_freed += sizeof(struct buffAdd) *
  938. (rxd_count[nic->rxd_mode] + 1);
  939. }
  940. kfree(ring->ba);
  941. swstats->mem_freed += sizeof(struct buffAdd *) *
  942. blk_cnt;
  943. }
  944. }
  945. for (i = 0; i < nic->config.tx_fifo_num; i++) {
  946. struct fifo_info *fifo = &mac_control->fifos[i];
  947. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  948. if (fifo->ufo_in_band_v) {
  949. swstats->mem_freed += tx_cfg->fifo_len *
  950. sizeof(u64);
  951. kfree(fifo->ufo_in_band_v);
  952. }
  953. }
  954. if (mac_control->stats_mem) {
  955. swstats->mem_freed += mac_control->stats_mem_sz;
  956. pci_free_consistent(nic->pdev,
  957. mac_control->stats_mem_sz,
  958. mac_control->stats_mem,
  959. mac_control->stats_mem_phy);
  960. }
  961. }
  962. /**
  963. * s2io_verify_pci_mode -
  964. */
  965. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  966. {
  967. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  968. register u64 val64 = 0;
  969. int mode;
  970. val64 = readq(&bar0->pci_mode);
  971. mode = (u8)GET_PCI_MODE(val64);
  972. if (val64 & PCI_MODE_UNKNOWN_MODE)
  973. return -1; /* Unknown PCI mode */
  974. return mode;
  975. }
  976. #define NEC_VENID 0x1033
  977. #define NEC_DEVID 0x0125
  978. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  979. {
  980. struct pci_dev *tdev = NULL;
  981. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  982. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  983. if (tdev->bus == s2io_pdev->bus->parent) {
  984. pci_dev_put(tdev);
  985. return 1;
  986. }
  987. }
  988. }
  989. return 0;
  990. }
  991. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  992. /**
  993. * s2io_print_pci_mode -
  994. */
  995. static int s2io_print_pci_mode(struct s2io_nic *nic)
  996. {
  997. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  998. register u64 val64 = 0;
  999. int mode;
  1000. struct config_param *config = &nic->config;
  1001. const char *pcimode;
  1002. val64 = readq(&bar0->pci_mode);
  1003. mode = (u8)GET_PCI_MODE(val64);
  1004. if (val64 & PCI_MODE_UNKNOWN_MODE)
  1005. return -1; /* Unknown PCI mode */
  1006. config->bus_speed = bus_speed[mode];
  1007. if (s2io_on_nec_bridge(nic->pdev)) {
  1008. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  1009. nic->dev->name);
  1010. return mode;
  1011. }
  1012. switch (mode) {
  1013. case PCI_MODE_PCI_33:
  1014. pcimode = "33MHz PCI bus";
  1015. break;
  1016. case PCI_MODE_PCI_66:
  1017. pcimode = "66MHz PCI bus";
  1018. break;
  1019. case PCI_MODE_PCIX_M1_66:
  1020. pcimode = "66MHz PCIX(M1) bus";
  1021. break;
  1022. case PCI_MODE_PCIX_M1_100:
  1023. pcimode = "100MHz PCIX(M1) bus";
  1024. break;
  1025. case PCI_MODE_PCIX_M1_133:
  1026. pcimode = "133MHz PCIX(M1) bus";
  1027. break;
  1028. case PCI_MODE_PCIX_M2_66:
  1029. pcimode = "133MHz PCIX(M2) bus";
  1030. break;
  1031. case PCI_MODE_PCIX_M2_100:
  1032. pcimode = "200MHz PCIX(M2) bus";
  1033. break;
  1034. case PCI_MODE_PCIX_M2_133:
  1035. pcimode = "266MHz PCIX(M2) bus";
  1036. break;
  1037. default:
  1038. pcimode = "unsupported bus!";
  1039. mode = -1;
  1040. }
  1041. DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
  1042. nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
  1043. return mode;
  1044. }
  1045. /**
  1046. * init_tti - Initialization transmit traffic interrupt scheme
  1047. * @nic: device private variable
  1048. * @link: link status (UP/DOWN) used to enable/disable continuous
  1049. * transmit interrupts
  1050. * Description: The function configures transmit traffic interrupts
  1051. * Return Value: SUCCESS on success and
  1052. * '-1' on failure
  1053. */
  1054. static int init_tti(struct s2io_nic *nic, int link)
  1055. {
  1056. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1057. register u64 val64 = 0;
  1058. int i;
  1059. struct config_param *config = &nic->config;
  1060. for (i = 0; i < config->tx_fifo_num; i++) {
  1061. /*
  1062. * TTI Initialization. Default Tx timer gets us about
  1063. * 250 interrupts per sec. Continuous interrupts are enabled
  1064. * by default.
  1065. */
  1066. if (nic->device_type == XFRAME_II_DEVICE) {
  1067. int count = (nic->config.bus_speed * 125)/2;
  1068. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1069. } else
  1070. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1071. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1072. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1073. TTI_DATA1_MEM_TX_URNG_C(0x30) |
  1074. TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1075. if (i == 0)
  1076. if (use_continuous_tx_intrs && (link == LINK_UP))
  1077. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1078. writeq(val64, &bar0->tti_data1_mem);
  1079. if (nic->config.intr_type == MSI_X) {
  1080. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1081. TTI_DATA2_MEM_TX_UFC_B(0x100) |
  1082. TTI_DATA2_MEM_TX_UFC_C(0x200) |
  1083. TTI_DATA2_MEM_TX_UFC_D(0x300);
  1084. } else {
  1085. if ((nic->config.tx_steering_type ==
  1086. TX_DEFAULT_STEERING) &&
  1087. (config->tx_fifo_num > 1) &&
  1088. (i >= nic->udp_fifo_idx) &&
  1089. (i < (nic->udp_fifo_idx +
  1090. nic->total_udp_fifos)))
  1091. val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
  1092. TTI_DATA2_MEM_TX_UFC_B(0x80) |
  1093. TTI_DATA2_MEM_TX_UFC_C(0x100) |
  1094. TTI_DATA2_MEM_TX_UFC_D(0x120);
  1095. else
  1096. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1097. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1098. TTI_DATA2_MEM_TX_UFC_C(0x40) |
  1099. TTI_DATA2_MEM_TX_UFC_D(0x80);
  1100. }
  1101. writeq(val64, &bar0->tti_data2_mem);
  1102. val64 = TTI_CMD_MEM_WE |
  1103. TTI_CMD_MEM_STROBE_NEW_CMD |
  1104. TTI_CMD_MEM_OFFSET(i);
  1105. writeq(val64, &bar0->tti_command_mem);
  1106. if (wait_for_cmd_complete(&bar0->tti_command_mem,
  1107. TTI_CMD_MEM_STROBE_NEW_CMD,
  1108. S2IO_BIT_RESET) != SUCCESS)
  1109. return FAILURE;
  1110. }
  1111. return SUCCESS;
  1112. }
  1113. /**
  1114. * init_nic - Initialization of hardware
  1115. * @nic: device private variable
  1116. * Description: The function sequentially configures every block
  1117. * of the H/W from their reset values.
  1118. * Return Value: SUCCESS on success and
  1119. * '-1' on failure (endian settings incorrect).
  1120. */
  1121. static int init_nic(struct s2io_nic *nic)
  1122. {
  1123. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1124. struct net_device *dev = nic->dev;
  1125. register u64 val64 = 0;
  1126. void __iomem *add;
  1127. u32 time;
  1128. int i, j;
  1129. int dtx_cnt = 0;
  1130. unsigned long long mem_share;
  1131. int mem_size;
  1132. struct config_param *config = &nic->config;
  1133. struct mac_info *mac_control = &nic->mac_control;
  1134. /* to set the swapper controle on the card */
  1135. if (s2io_set_swapper(nic)) {
  1136. DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
  1137. return -EIO;
  1138. }
  1139. /*
  1140. * Herc requires EOI to be removed from reset before XGXS, so..
  1141. */
  1142. if (nic->device_type & XFRAME_II_DEVICE) {
  1143. val64 = 0xA500000000ULL;
  1144. writeq(val64, &bar0->sw_reset);
  1145. msleep(500);
  1146. val64 = readq(&bar0->sw_reset);
  1147. }
  1148. /* Remove XGXS from reset state */
  1149. val64 = 0;
  1150. writeq(val64, &bar0->sw_reset);
  1151. msleep(500);
  1152. val64 = readq(&bar0->sw_reset);
  1153. /* Ensure that it's safe to access registers by checking
  1154. * RIC_RUNNING bit is reset. Check is valid only for XframeII.
  1155. */
  1156. if (nic->device_type == XFRAME_II_DEVICE) {
  1157. for (i = 0; i < 50; i++) {
  1158. val64 = readq(&bar0->adapter_status);
  1159. if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
  1160. break;
  1161. msleep(10);
  1162. }
  1163. if (i == 50)
  1164. return -ENODEV;
  1165. }
  1166. /* Enable Receiving broadcasts */
  1167. add = &bar0->mac_cfg;
  1168. val64 = readq(&bar0->mac_cfg);
  1169. val64 |= MAC_RMAC_BCAST_ENABLE;
  1170. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1171. writel((u32)val64, add);
  1172. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1173. writel((u32) (val64 >> 32), (add + 4));
  1174. /* Read registers in all blocks */
  1175. val64 = readq(&bar0->mac_int_mask);
  1176. val64 = readq(&bar0->mc_int_mask);
  1177. val64 = readq(&bar0->xgxs_int_mask);
  1178. /* Set MTU */
  1179. val64 = dev->mtu;
  1180. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1181. if (nic->device_type & XFRAME_II_DEVICE) {
  1182. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1183. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1184. &bar0->dtx_control, UF);
  1185. if (dtx_cnt & 0x1)
  1186. msleep(1); /* Necessary!! */
  1187. dtx_cnt++;
  1188. }
  1189. } else {
  1190. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1191. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1192. &bar0->dtx_control, UF);
  1193. val64 = readq(&bar0->dtx_control);
  1194. dtx_cnt++;
  1195. }
  1196. }
  1197. /* Tx DMA Initialization */
  1198. val64 = 0;
  1199. writeq(val64, &bar0->tx_fifo_partition_0);
  1200. writeq(val64, &bar0->tx_fifo_partition_1);
  1201. writeq(val64, &bar0->tx_fifo_partition_2);
  1202. writeq(val64, &bar0->tx_fifo_partition_3);
  1203. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1204. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  1205. val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
  1206. vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
  1207. if (i == (config->tx_fifo_num - 1)) {
  1208. if (i % 2 == 0)
  1209. i++;
  1210. }
  1211. switch (i) {
  1212. case 1:
  1213. writeq(val64, &bar0->tx_fifo_partition_0);
  1214. val64 = 0;
  1215. j = 0;
  1216. break;
  1217. case 3:
  1218. writeq(val64, &bar0->tx_fifo_partition_1);
  1219. val64 = 0;
  1220. j = 0;
  1221. break;
  1222. case 5:
  1223. writeq(val64, &bar0->tx_fifo_partition_2);
  1224. val64 = 0;
  1225. j = 0;
  1226. break;
  1227. case 7:
  1228. writeq(val64, &bar0->tx_fifo_partition_3);
  1229. val64 = 0;
  1230. j = 0;
  1231. break;
  1232. default:
  1233. j++;
  1234. break;
  1235. }
  1236. }
  1237. /*
  1238. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1239. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1240. */
  1241. if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
  1242. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1243. val64 = readq(&bar0->tx_fifo_partition_0);
  1244. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1245. &bar0->tx_fifo_partition_0, (unsigned long long)val64);
  1246. /*
  1247. * Initialization of Tx_PA_CONFIG register to ignore packet
  1248. * integrity checking.
  1249. */
  1250. val64 = readq(&bar0->tx_pa_cfg);
  1251. val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
  1252. TX_PA_CFG_IGNORE_SNAP_OUI |
  1253. TX_PA_CFG_IGNORE_LLC_CTRL |
  1254. TX_PA_CFG_IGNORE_L2_ERR;
  1255. writeq(val64, &bar0->tx_pa_cfg);
  1256. /* Rx DMA intialization. */
  1257. val64 = 0;
  1258. for (i = 0; i < config->rx_ring_num; i++) {
  1259. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  1260. val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
  1261. }
  1262. writeq(val64, &bar0->rx_queue_priority);
  1263. /*
  1264. * Allocating equal share of memory to all the
  1265. * configured Rings.
  1266. */
  1267. val64 = 0;
  1268. if (nic->device_type & XFRAME_II_DEVICE)
  1269. mem_size = 32;
  1270. else
  1271. mem_size = 64;
  1272. for (i = 0; i < config->rx_ring_num; i++) {
  1273. switch (i) {
  1274. case 0:
  1275. mem_share = (mem_size / config->rx_ring_num +
  1276. mem_size % config->rx_ring_num);
  1277. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1278. continue;
  1279. case 1:
  1280. mem_share = (mem_size / config->rx_ring_num);
  1281. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1282. continue;
  1283. case 2:
  1284. mem_share = (mem_size / config->rx_ring_num);
  1285. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1286. continue;
  1287. case 3:
  1288. mem_share = (mem_size / config->rx_ring_num);
  1289. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1290. continue;
  1291. case 4:
  1292. mem_share = (mem_size / config->rx_ring_num);
  1293. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1294. continue;
  1295. case 5:
  1296. mem_share = (mem_size / config->rx_ring_num);
  1297. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1298. continue;
  1299. case 6:
  1300. mem_share = (mem_size / config->rx_ring_num);
  1301. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1302. continue;
  1303. case 7:
  1304. mem_share = (mem_size / config->rx_ring_num);
  1305. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1306. continue;
  1307. }
  1308. }
  1309. writeq(val64, &bar0->rx_queue_cfg);
  1310. /*
  1311. * Filling Tx round robin registers
  1312. * as per the number of FIFOs for equal scheduling priority
  1313. */
  1314. switch (config->tx_fifo_num) {
  1315. case 1:
  1316. val64 = 0x0;
  1317. writeq(val64, &bar0->tx_w_round_robin_0);
  1318. writeq(val64, &bar0->tx_w_round_robin_1);
  1319. writeq(val64, &bar0->tx_w_round_robin_2);
  1320. writeq(val64, &bar0->tx_w_round_robin_3);
  1321. writeq(val64, &bar0->tx_w_round_robin_4);
  1322. break;
  1323. case 2:
  1324. val64 = 0x0001000100010001ULL;
  1325. writeq(val64, &bar0->tx_w_round_robin_0);
  1326. writeq(val64, &bar0->tx_w_round_robin_1);
  1327. writeq(val64, &bar0->tx_w_round_robin_2);
  1328. writeq(val64, &bar0->tx_w_round_robin_3);
  1329. val64 = 0x0001000100000000ULL;
  1330. writeq(val64, &bar0->tx_w_round_robin_4);
  1331. break;
  1332. case 3:
  1333. val64 = 0x0001020001020001ULL;
  1334. writeq(val64, &bar0->tx_w_round_robin_0);
  1335. val64 = 0x0200010200010200ULL;
  1336. writeq(val64, &bar0->tx_w_round_robin_1);
  1337. val64 = 0x0102000102000102ULL;
  1338. writeq(val64, &bar0->tx_w_round_robin_2);
  1339. val64 = 0x0001020001020001ULL;
  1340. writeq(val64, &bar0->tx_w_round_robin_3);
  1341. val64 = 0x0200010200000000ULL;
  1342. writeq(val64, &bar0->tx_w_round_robin_4);
  1343. break;
  1344. case 4:
  1345. val64 = 0x0001020300010203ULL;
  1346. writeq(val64, &bar0->tx_w_round_robin_0);
  1347. writeq(val64, &bar0->tx_w_round_robin_1);
  1348. writeq(val64, &bar0->tx_w_round_robin_2);
  1349. writeq(val64, &bar0->tx_w_round_robin_3);
  1350. val64 = 0x0001020300000000ULL;
  1351. writeq(val64, &bar0->tx_w_round_robin_4);
  1352. break;
  1353. case 5:
  1354. val64 = 0x0001020304000102ULL;
  1355. writeq(val64, &bar0->tx_w_round_robin_0);
  1356. val64 = 0x0304000102030400ULL;
  1357. writeq(val64, &bar0->tx_w_round_robin_1);
  1358. val64 = 0x0102030400010203ULL;
  1359. writeq(val64, &bar0->tx_w_round_robin_2);
  1360. val64 = 0x0400010203040001ULL;
  1361. writeq(val64, &bar0->tx_w_round_robin_3);
  1362. val64 = 0x0203040000000000ULL;
  1363. writeq(val64, &bar0->tx_w_round_robin_4);
  1364. break;
  1365. case 6:
  1366. val64 = 0x0001020304050001ULL;
  1367. writeq(val64, &bar0->tx_w_round_robin_0);
  1368. val64 = 0x0203040500010203ULL;
  1369. writeq(val64, &bar0->tx_w_round_robin_1);
  1370. val64 = 0x0405000102030405ULL;
  1371. writeq(val64, &bar0->tx_w_round_robin_2);
  1372. val64 = 0x0001020304050001ULL;
  1373. writeq(val64, &bar0->tx_w_round_robin_3);
  1374. val64 = 0x0203040500000000ULL;
  1375. writeq(val64, &bar0->tx_w_round_robin_4);
  1376. break;
  1377. case 7:
  1378. val64 = 0x0001020304050600ULL;
  1379. writeq(val64, &bar0->tx_w_round_robin_0);
  1380. val64 = 0x0102030405060001ULL;
  1381. writeq(val64, &bar0->tx_w_round_robin_1);
  1382. val64 = 0x0203040506000102ULL;
  1383. writeq(val64, &bar0->tx_w_round_robin_2);
  1384. val64 = 0x0304050600010203ULL;
  1385. writeq(val64, &bar0->tx_w_round_robin_3);
  1386. val64 = 0x0405060000000000ULL;
  1387. writeq(val64, &bar0->tx_w_round_robin_4);
  1388. break;
  1389. case 8:
  1390. val64 = 0x0001020304050607ULL;
  1391. writeq(val64, &bar0->tx_w_round_robin_0);
  1392. writeq(val64, &bar0->tx_w_round_robin_1);
  1393. writeq(val64, &bar0->tx_w_round_robin_2);
  1394. writeq(val64, &bar0->tx_w_round_robin_3);
  1395. val64 = 0x0001020300000000ULL;
  1396. writeq(val64, &bar0->tx_w_round_robin_4);
  1397. break;
  1398. }
  1399. /* Enable all configured Tx FIFO partitions */
  1400. val64 = readq(&bar0->tx_fifo_partition_0);
  1401. val64 |= (TX_FIFO_PARTITION_EN);
  1402. writeq(val64, &bar0->tx_fifo_partition_0);
  1403. /* Filling the Rx round robin registers as per the
  1404. * number of Rings and steering based on QoS with
  1405. * equal priority.
  1406. */
  1407. switch (config->rx_ring_num) {
  1408. case 1:
  1409. val64 = 0x0;
  1410. writeq(val64, &bar0->rx_w_round_robin_0);
  1411. writeq(val64, &bar0->rx_w_round_robin_1);
  1412. writeq(val64, &bar0->rx_w_round_robin_2);
  1413. writeq(val64, &bar0->rx_w_round_robin_3);
  1414. writeq(val64, &bar0->rx_w_round_robin_4);
  1415. val64 = 0x8080808080808080ULL;
  1416. writeq(val64, &bar0->rts_qos_steering);
  1417. break;
  1418. case 2:
  1419. val64 = 0x0001000100010001ULL;
  1420. writeq(val64, &bar0->rx_w_round_robin_0);
  1421. writeq(val64, &bar0->rx_w_round_robin_1);
  1422. writeq(val64, &bar0->rx_w_round_robin_2);
  1423. writeq(val64, &bar0->rx_w_round_robin_3);
  1424. val64 = 0x0001000100000000ULL;
  1425. writeq(val64, &bar0->rx_w_round_robin_4);
  1426. val64 = 0x8080808040404040ULL;
  1427. writeq(val64, &bar0->rts_qos_steering);
  1428. break;
  1429. case 3:
  1430. val64 = 0x0001020001020001ULL;
  1431. writeq(val64, &bar0->rx_w_round_robin_0);
  1432. val64 = 0x0200010200010200ULL;
  1433. writeq(val64, &bar0->rx_w_round_robin_1);
  1434. val64 = 0x0102000102000102ULL;
  1435. writeq(val64, &bar0->rx_w_round_robin_2);
  1436. val64 = 0x0001020001020001ULL;
  1437. writeq(val64, &bar0->rx_w_round_robin_3);
  1438. val64 = 0x0200010200000000ULL;
  1439. writeq(val64, &bar0->rx_w_round_robin_4);
  1440. val64 = 0x8080804040402020ULL;
  1441. writeq(val64, &bar0->rts_qos_steering);
  1442. break;
  1443. case 4:
  1444. val64 = 0x0001020300010203ULL;
  1445. writeq(val64, &bar0->rx_w_round_robin_0);
  1446. writeq(val64, &bar0->rx_w_round_robin_1);
  1447. writeq(val64, &bar0->rx_w_round_robin_2);
  1448. writeq(val64, &bar0->rx_w_round_robin_3);
  1449. val64 = 0x0001020300000000ULL;
  1450. writeq(val64, &bar0->rx_w_round_robin_4);
  1451. val64 = 0x8080404020201010ULL;
  1452. writeq(val64, &bar0->rts_qos_steering);
  1453. break;
  1454. case 5:
  1455. val64 = 0x0001020304000102ULL;
  1456. writeq(val64, &bar0->rx_w_round_robin_0);
  1457. val64 = 0x0304000102030400ULL;
  1458. writeq(val64, &bar0->rx_w_round_robin_1);
  1459. val64 = 0x0102030400010203ULL;
  1460. writeq(val64, &bar0->rx_w_round_robin_2);
  1461. val64 = 0x0400010203040001ULL;
  1462. writeq(val64, &bar0->rx_w_round_robin_3);
  1463. val64 = 0x0203040000000000ULL;
  1464. writeq(val64, &bar0->rx_w_round_robin_4);
  1465. val64 = 0x8080404020201008ULL;
  1466. writeq(val64, &bar0->rts_qos_steering);
  1467. break;
  1468. case 6:
  1469. val64 = 0x0001020304050001ULL;
  1470. writeq(val64, &bar0->rx_w_round_robin_0);
  1471. val64 = 0x0203040500010203ULL;
  1472. writeq(val64, &bar0->rx_w_round_robin_1);
  1473. val64 = 0x0405000102030405ULL;
  1474. writeq(val64, &bar0->rx_w_round_robin_2);
  1475. val64 = 0x0001020304050001ULL;
  1476. writeq(val64, &bar0->rx_w_round_robin_3);
  1477. val64 = 0x0203040500000000ULL;
  1478. writeq(val64, &bar0->rx_w_round_robin_4);
  1479. val64 = 0x8080404020100804ULL;
  1480. writeq(val64, &bar0->rts_qos_steering);
  1481. break;
  1482. case 7:
  1483. val64 = 0x0001020304050600ULL;
  1484. writeq(val64, &bar0->rx_w_round_robin_0);
  1485. val64 = 0x0102030405060001ULL;
  1486. writeq(val64, &bar0->rx_w_round_robin_1);
  1487. val64 = 0x0203040506000102ULL;
  1488. writeq(val64, &bar0->rx_w_round_robin_2);
  1489. val64 = 0x0304050600010203ULL;
  1490. writeq(val64, &bar0->rx_w_round_robin_3);
  1491. val64 = 0x0405060000000000ULL;
  1492. writeq(val64, &bar0->rx_w_round_robin_4);
  1493. val64 = 0x8080402010080402ULL;
  1494. writeq(val64, &bar0->rts_qos_steering);
  1495. break;
  1496. case 8:
  1497. val64 = 0x0001020304050607ULL;
  1498. writeq(val64, &bar0->rx_w_round_robin_0);
  1499. writeq(val64, &bar0->rx_w_round_robin_1);
  1500. writeq(val64, &bar0->rx_w_round_robin_2);
  1501. writeq(val64, &bar0->rx_w_round_robin_3);
  1502. val64 = 0x0001020300000000ULL;
  1503. writeq(val64, &bar0->rx_w_round_robin_4);
  1504. val64 = 0x8040201008040201ULL;
  1505. writeq(val64, &bar0->rts_qos_steering);
  1506. break;
  1507. }
  1508. /* UDP Fix */
  1509. val64 = 0;
  1510. for (i = 0; i < 8; i++)
  1511. writeq(val64, &bar0->rts_frm_len_n[i]);
  1512. /* Set the default rts frame length for the rings configured */
  1513. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1514. for (i = 0 ; i < config->rx_ring_num ; i++)
  1515. writeq(val64, &bar0->rts_frm_len_n[i]);
  1516. /* Set the frame length for the configured rings
  1517. * desired by the user
  1518. */
  1519. for (i = 0; i < config->rx_ring_num; i++) {
  1520. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1521. * specified frame length steering.
  1522. * If the user provides the frame length then program
  1523. * the rts_frm_len register for those values or else
  1524. * leave it as it is.
  1525. */
  1526. if (rts_frm_len[i] != 0) {
  1527. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1528. &bar0->rts_frm_len_n[i]);
  1529. }
  1530. }
  1531. /* Disable differentiated services steering logic */
  1532. for (i = 0; i < 64; i++) {
  1533. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1534. DBG_PRINT(ERR_DBG,
  1535. "%s: rts_ds_steer failed on codepoint %d\n",
  1536. dev->name, i);
  1537. return -ENODEV;
  1538. }
  1539. }
  1540. /* Program statistics memory */
  1541. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1542. if (nic->device_type == XFRAME_II_DEVICE) {
  1543. val64 = STAT_BC(0x320);
  1544. writeq(val64, &bar0->stat_byte_cnt);
  1545. }
  1546. /*
  1547. * Initializing the sampling rate for the device to calculate the
  1548. * bandwidth utilization.
  1549. */
  1550. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1551. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1552. writeq(val64, &bar0->mac_link_util);
  1553. /*
  1554. * Initializing the Transmit and Receive Traffic Interrupt
  1555. * Scheme.
  1556. */
  1557. /* Initialize TTI */
  1558. if (SUCCESS != init_tti(nic, nic->last_link_state))
  1559. return -ENODEV;
  1560. /* RTI Initialization */
  1561. if (nic->device_type == XFRAME_II_DEVICE) {
  1562. /*
  1563. * Programmed to generate Apprx 500 Intrs per
  1564. * second
  1565. */
  1566. int count = (nic->config.bus_speed * 125)/4;
  1567. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1568. } else
  1569. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1570. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1571. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1572. RTI_DATA1_MEM_RX_URNG_C(0x30) |
  1573. RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1574. writeq(val64, &bar0->rti_data1_mem);
  1575. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1576. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1577. if (nic->config.intr_type == MSI_X)
  1578. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
  1579. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1580. else
  1581. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
  1582. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1583. writeq(val64, &bar0->rti_data2_mem);
  1584. for (i = 0; i < config->rx_ring_num; i++) {
  1585. val64 = RTI_CMD_MEM_WE |
  1586. RTI_CMD_MEM_STROBE_NEW_CMD |
  1587. RTI_CMD_MEM_OFFSET(i);
  1588. writeq(val64, &bar0->rti_command_mem);
  1589. /*
  1590. * Once the operation completes, the Strobe bit of the
  1591. * command register will be reset. We poll for this
  1592. * particular condition. We wait for a maximum of 500ms
  1593. * for the operation to complete, if it's not complete
  1594. * by then we return error.
  1595. */
  1596. time = 0;
  1597. while (true) {
  1598. val64 = readq(&bar0->rti_command_mem);
  1599. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1600. break;
  1601. if (time > 10) {
  1602. DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
  1603. dev->name);
  1604. return -ENODEV;
  1605. }
  1606. time++;
  1607. msleep(50);
  1608. }
  1609. }
  1610. /*
  1611. * Initializing proper values as Pause threshold into all
  1612. * the 8 Queues on Rx side.
  1613. */
  1614. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1615. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1616. /* Disable RMAC PAD STRIPPING */
  1617. add = &bar0->mac_cfg;
  1618. val64 = readq(&bar0->mac_cfg);
  1619. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1620. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1621. writel((u32) (val64), add);
  1622. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1623. writel((u32) (val64 >> 32), (add + 4));
  1624. val64 = readq(&bar0->mac_cfg);
  1625. /* Enable FCS stripping by adapter */
  1626. add = &bar0->mac_cfg;
  1627. val64 = readq(&bar0->mac_cfg);
  1628. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1629. if (nic->device_type == XFRAME_II_DEVICE)
  1630. writeq(val64, &bar0->mac_cfg);
  1631. else {
  1632. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1633. writel((u32) (val64), add);
  1634. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1635. writel((u32) (val64 >> 32), (add + 4));
  1636. }
  1637. /*
  1638. * Set the time value to be inserted in the pause frame
  1639. * generated by xena.
  1640. */
  1641. val64 = readq(&bar0->rmac_pause_cfg);
  1642. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1643. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1644. writeq(val64, &bar0->rmac_pause_cfg);
  1645. /*
  1646. * Set the Threshold Limit for Generating the pause frame
  1647. * If the amount of data in any Queue exceeds ratio of
  1648. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1649. * pause frame is generated
  1650. */
  1651. val64 = 0;
  1652. for (i = 0; i < 4; i++) {
  1653. val64 |= (((u64)0xFF00 |
  1654. nic->mac_control.mc_pause_threshold_q0q3)
  1655. << (i * 2 * 8));
  1656. }
  1657. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1658. val64 = 0;
  1659. for (i = 0; i < 4; i++) {
  1660. val64 |= (((u64)0xFF00 |
  1661. nic->mac_control.mc_pause_threshold_q4q7)
  1662. << (i * 2 * 8));
  1663. }
  1664. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1665. /*
  1666. * TxDMA will stop Read request if the number of read split has
  1667. * exceeded the limit pointed by shared_splits
  1668. */
  1669. val64 = readq(&bar0->pic_control);
  1670. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1671. writeq(val64, &bar0->pic_control);
  1672. if (nic->config.bus_speed == 266) {
  1673. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1674. writeq(0x0, &bar0->read_retry_delay);
  1675. writeq(0x0, &bar0->write_retry_delay);
  1676. }
  1677. /*
  1678. * Programming the Herc to split every write transaction
  1679. * that does not start on an ADB to reduce disconnects.
  1680. */
  1681. if (nic->device_type == XFRAME_II_DEVICE) {
  1682. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1683. MISC_LINK_STABILITY_PRD(3);
  1684. writeq(val64, &bar0->misc_control);
  1685. val64 = readq(&bar0->pic_control2);
  1686. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1687. writeq(val64, &bar0->pic_control2);
  1688. }
  1689. if (strstr(nic->product_name, "CX4")) {
  1690. val64 = TMAC_AVG_IPG(0x17);
  1691. writeq(val64, &bar0->tmac_avg_ipg);
  1692. }
  1693. return SUCCESS;
  1694. }
  1695. #define LINK_UP_DOWN_INTERRUPT 1
  1696. #define MAC_RMAC_ERR_TIMER 2
  1697. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1698. {
  1699. if (nic->device_type == XFRAME_II_DEVICE)
  1700. return LINK_UP_DOWN_INTERRUPT;
  1701. else
  1702. return MAC_RMAC_ERR_TIMER;
  1703. }
  1704. /**
  1705. * do_s2io_write_bits - update alarm bits in alarm register
  1706. * @value: alarm bits
  1707. * @flag: interrupt status
  1708. * @addr: address value
  1709. * Description: update alarm bits in alarm register
  1710. * Return Value:
  1711. * NONE.
  1712. */
  1713. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1714. {
  1715. u64 temp64;
  1716. temp64 = readq(addr);
  1717. if (flag == ENABLE_INTRS)
  1718. temp64 &= ~((u64)value);
  1719. else
  1720. temp64 |= ((u64)value);
  1721. writeq(temp64, addr);
  1722. }
  1723. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1724. {
  1725. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1726. register u64 gen_int_mask = 0;
  1727. u64 interruptible;
  1728. writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
  1729. if (mask & TX_DMA_INTR) {
  1730. gen_int_mask |= TXDMA_INT_M;
  1731. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1732. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1733. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1734. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1735. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1736. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1737. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1738. &bar0->pfc_err_mask);
  1739. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1740. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1741. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1742. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1743. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1744. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1745. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1746. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1747. PCC_TXB_ECC_SG_ERR,
  1748. flag, &bar0->pcc_err_mask);
  1749. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1750. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1751. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1752. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1753. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1754. flag, &bar0->lso_err_mask);
  1755. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1756. flag, &bar0->tpa_err_mask);
  1757. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1758. }
  1759. if (mask & TX_MAC_INTR) {
  1760. gen_int_mask |= TXMAC_INT_M;
  1761. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1762. &bar0->mac_int_mask);
  1763. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1764. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1765. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1766. flag, &bar0->mac_tmac_err_mask);
  1767. }
  1768. if (mask & TX_XGXS_INTR) {
  1769. gen_int_mask |= TXXGXS_INT_M;
  1770. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1771. &bar0->xgxs_int_mask);
  1772. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1773. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1774. flag, &bar0->xgxs_txgxs_err_mask);
  1775. }
  1776. if (mask & RX_DMA_INTR) {
  1777. gen_int_mask |= RXDMA_INT_M;
  1778. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1779. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1780. flag, &bar0->rxdma_int_mask);
  1781. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1782. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1783. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1784. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1785. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1786. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1787. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1788. &bar0->prc_pcix_err_mask);
  1789. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1790. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1791. &bar0->rpa_err_mask);
  1792. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1793. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1794. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1795. RDA_FRM_ECC_SG_ERR |
  1796. RDA_MISC_ERR|RDA_PCIX_ERR,
  1797. flag, &bar0->rda_err_mask);
  1798. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1799. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1800. flag, &bar0->rti_err_mask);
  1801. }
  1802. if (mask & RX_MAC_INTR) {
  1803. gen_int_mask |= RXMAC_INT_M;
  1804. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1805. &bar0->mac_int_mask);
  1806. interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1807. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1808. RMAC_DOUBLE_ECC_ERR);
  1809. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
  1810. interruptible |= RMAC_LINK_STATE_CHANGE_INT;
  1811. do_s2io_write_bits(interruptible,
  1812. flag, &bar0->mac_rmac_err_mask);
  1813. }
  1814. if (mask & RX_XGXS_INTR) {
  1815. gen_int_mask |= RXXGXS_INT_M;
  1816. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1817. &bar0->xgxs_int_mask);
  1818. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1819. &bar0->xgxs_rxgxs_err_mask);
  1820. }
  1821. if (mask & MC_INTR) {
  1822. gen_int_mask |= MC_INT_M;
  1823. do_s2io_write_bits(MC_INT_MASK_MC_INT,
  1824. flag, &bar0->mc_int_mask);
  1825. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1826. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1827. &bar0->mc_err_mask);
  1828. }
  1829. nic->general_int_mask = gen_int_mask;
  1830. /* Remove this line when alarm interrupts are enabled */
  1831. nic->general_int_mask = 0;
  1832. }
  1833. /**
  1834. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1835. * @nic: device private variable,
  1836. * @mask: A mask indicating which Intr block must be modified and,
  1837. * @flag: A flag indicating whether to enable or disable the Intrs.
  1838. * Description: This function will either disable or enable the interrupts
  1839. * depending on the flag argument. The mask argument can be used to
  1840. * enable/disable any Intr block.
  1841. * Return Value: NONE.
  1842. */
  1843. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1844. {
  1845. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1846. register u64 temp64 = 0, intr_mask = 0;
  1847. intr_mask = nic->general_int_mask;
  1848. /* Top level interrupt classification */
  1849. /* PIC Interrupts */
  1850. if (mask & TX_PIC_INTR) {
  1851. /* Enable PIC Intrs in the general intr mask register */
  1852. intr_mask |= TXPIC_INT_M;
  1853. if (flag == ENABLE_INTRS) {
  1854. /*
  1855. * If Hercules adapter enable GPIO otherwise
  1856. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1857. * interrupts for now.
  1858. * TODO
  1859. */
  1860. if (s2io_link_fault_indication(nic) ==
  1861. LINK_UP_DOWN_INTERRUPT) {
  1862. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1863. &bar0->pic_int_mask);
  1864. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1865. &bar0->gpio_int_mask);
  1866. } else
  1867. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1868. } else if (flag == DISABLE_INTRS) {
  1869. /*
  1870. * Disable PIC Intrs in the general
  1871. * intr mask register
  1872. */
  1873. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1874. }
  1875. }
  1876. /* Tx traffic interrupts */
  1877. if (mask & TX_TRAFFIC_INTR) {
  1878. intr_mask |= TXTRAFFIC_INT_M;
  1879. if (flag == ENABLE_INTRS) {
  1880. /*
  1881. * Enable all the Tx side interrupts
  1882. * writing 0 Enables all 64 TX interrupt levels
  1883. */
  1884. writeq(0x0, &bar0->tx_traffic_mask);
  1885. } else if (flag == DISABLE_INTRS) {
  1886. /*
  1887. * Disable Tx Traffic Intrs in the general intr mask
  1888. * register.
  1889. */
  1890. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1891. }
  1892. }
  1893. /* Rx traffic interrupts */
  1894. if (mask & RX_TRAFFIC_INTR) {
  1895. intr_mask |= RXTRAFFIC_INT_M;
  1896. if (flag == ENABLE_INTRS) {
  1897. /* writing 0 Enables all 8 RX interrupt levels */
  1898. writeq(0x0, &bar0->rx_traffic_mask);
  1899. } else if (flag == DISABLE_INTRS) {
  1900. /*
  1901. * Disable Rx Traffic Intrs in the general intr mask
  1902. * register.
  1903. */
  1904. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1905. }
  1906. }
  1907. temp64 = readq(&bar0->general_int_mask);
  1908. if (flag == ENABLE_INTRS)
  1909. temp64 &= ~((u64)intr_mask);
  1910. else
  1911. temp64 = DISABLE_ALL_INTRS;
  1912. writeq(temp64, &bar0->general_int_mask);
  1913. nic->general_int_mask = readq(&bar0->general_int_mask);
  1914. }
  1915. /**
  1916. * verify_pcc_quiescent- Checks for PCC quiescent state
  1917. * Return: 1 If PCC is quiescence
  1918. * 0 If PCC is not quiescence
  1919. */
  1920. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1921. {
  1922. int ret = 0, herc;
  1923. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1924. u64 val64 = readq(&bar0->adapter_status);
  1925. herc = (sp->device_type == XFRAME_II_DEVICE);
  1926. if (flag == false) {
  1927. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1928. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1929. ret = 1;
  1930. } else {
  1931. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1932. ret = 1;
  1933. }
  1934. } else {
  1935. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1936. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1937. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1938. ret = 1;
  1939. } else {
  1940. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1941. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1942. ret = 1;
  1943. }
  1944. }
  1945. return ret;
  1946. }
  1947. /**
  1948. * verify_xena_quiescence - Checks whether the H/W is ready
  1949. * Description: Returns whether the H/W is ready to go or not. Depending
  1950. * on whether adapter enable bit was written or not the comparison
  1951. * differs and the calling function passes the input argument flag to
  1952. * indicate this.
  1953. * Return: 1 If xena is quiescence
  1954. * 0 If Xena is not quiescence
  1955. */
  1956. static int verify_xena_quiescence(struct s2io_nic *sp)
  1957. {
  1958. int mode;
  1959. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1960. u64 val64 = readq(&bar0->adapter_status);
  1961. mode = s2io_verify_pci_mode(sp);
  1962. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1963. DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
  1964. return 0;
  1965. }
  1966. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1967. DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
  1968. return 0;
  1969. }
  1970. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1971. DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
  1972. return 0;
  1973. }
  1974. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1975. DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
  1976. return 0;
  1977. }
  1978. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1979. DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
  1980. return 0;
  1981. }
  1982. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1983. DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
  1984. return 0;
  1985. }
  1986. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1987. DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
  1988. return 0;
  1989. }
  1990. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1991. DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
  1992. return 0;
  1993. }
  1994. /*
  1995. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1996. * the the P_PLL_LOCK bit in the adapter_status register will
  1997. * not be asserted.
  1998. */
  1999. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  2000. sp->device_type == XFRAME_II_DEVICE &&
  2001. mode != PCI_MODE_PCI_33) {
  2002. DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
  2003. return 0;
  2004. }
  2005. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  2006. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  2007. DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
  2008. return 0;
  2009. }
  2010. return 1;
  2011. }
  2012. /**
  2013. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  2014. * @sp: Pointer to device specifc structure
  2015. * Description :
  2016. * New procedure to clear mac address reading problems on Alpha platforms
  2017. *
  2018. */
  2019. static void fix_mac_address(struct s2io_nic *sp)
  2020. {
  2021. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2022. int i = 0;
  2023. while (fix_mac[i] != END_SIGN) {
  2024. writeq(fix_mac[i++], &bar0->gpio_control);
  2025. udelay(10);
  2026. (void) readq(&bar0->gpio_control);
  2027. }
  2028. }
  2029. /**
  2030. * start_nic - Turns the device on
  2031. * @nic : device private variable.
  2032. * Description:
  2033. * This function actually turns the device on. Before this function is
  2034. * called,all Registers are configured from their reset states
  2035. * and shared memory is allocated but the NIC is still quiescent. On
  2036. * calling this function, the device interrupts are cleared and the NIC is
  2037. * literally switched on by writing into the adapter control register.
  2038. * Return Value:
  2039. * SUCCESS on success and -1 on failure.
  2040. */
  2041. static int start_nic(struct s2io_nic *nic)
  2042. {
  2043. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2044. struct net_device *dev = nic->dev;
  2045. register u64 val64 = 0;
  2046. u16 subid, i;
  2047. struct config_param *config = &nic->config;
  2048. struct mac_info *mac_control = &nic->mac_control;
  2049. /* PRC Initialization and configuration */
  2050. for (i = 0; i < config->rx_ring_num; i++) {
  2051. struct ring_info *ring = &mac_control->rings[i];
  2052. writeq((u64)ring->rx_blocks[0].block_dma_addr,
  2053. &bar0->prc_rxd0_n[i]);
  2054. val64 = readq(&bar0->prc_ctrl_n[i]);
  2055. if (nic->rxd_mode == RXD_MODE_1)
  2056. val64 |= PRC_CTRL_RC_ENABLED;
  2057. else
  2058. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  2059. if (nic->device_type == XFRAME_II_DEVICE)
  2060. val64 |= PRC_CTRL_GROUP_READS;
  2061. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  2062. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  2063. writeq(val64, &bar0->prc_ctrl_n[i]);
  2064. }
  2065. if (nic->rxd_mode == RXD_MODE_3B) {
  2066. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  2067. val64 = readq(&bar0->rx_pa_cfg);
  2068. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  2069. writeq(val64, &bar0->rx_pa_cfg);
  2070. }
  2071. if (vlan_tag_strip == 0) {
  2072. val64 = readq(&bar0->rx_pa_cfg);
  2073. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  2074. writeq(val64, &bar0->rx_pa_cfg);
  2075. nic->vlan_strip_flag = 0;
  2076. }
  2077. /*
  2078. * Enabling MC-RLDRAM. After enabling the device, we timeout
  2079. * for around 100ms, which is approximately the time required
  2080. * for the device to be ready for operation.
  2081. */
  2082. val64 = readq(&bar0->mc_rldram_mrs);
  2083. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  2084. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  2085. val64 = readq(&bar0->mc_rldram_mrs);
  2086. msleep(100); /* Delay by around 100 ms. */
  2087. /* Enabling ECC Protection. */
  2088. val64 = readq(&bar0->adapter_control);
  2089. val64 &= ~ADAPTER_ECC_EN;
  2090. writeq(val64, &bar0->adapter_control);
  2091. /*
  2092. * Verify if the device is ready to be enabled, if so enable
  2093. * it.
  2094. */
  2095. val64 = readq(&bar0->adapter_status);
  2096. if (!verify_xena_quiescence(nic)) {
  2097. DBG_PRINT(ERR_DBG, "%s: device is not ready, "
  2098. "Adapter status reads: 0x%llx\n",
  2099. dev->name, (unsigned long long)val64);
  2100. return FAILURE;
  2101. }
  2102. /*
  2103. * With some switches, link might be already up at this point.
  2104. * Because of this weird behavior, when we enable laser,
  2105. * we may not get link. We need to handle this. We cannot
  2106. * figure out which switch is misbehaving. So we are forced to
  2107. * make a global change.
  2108. */
  2109. /* Enabling Laser. */
  2110. val64 = readq(&bar0->adapter_control);
  2111. val64 |= ADAPTER_EOI_TX_ON;
  2112. writeq(val64, &bar0->adapter_control);
  2113. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2114. /*
  2115. * Dont see link state interrupts initially on some switches,
  2116. * so directly scheduling the link state task here.
  2117. */
  2118. schedule_work(&nic->set_link_task);
  2119. }
  2120. /* SXE-002: Initialize link and activity LED */
  2121. subid = nic->pdev->subsystem_device;
  2122. if (((subid & 0xFF) >= 0x07) &&
  2123. (nic->device_type == XFRAME_I_DEVICE)) {
  2124. val64 = readq(&bar0->gpio_control);
  2125. val64 |= 0x0000800000000000ULL;
  2126. writeq(val64, &bar0->gpio_control);
  2127. val64 = 0x0411040400000000ULL;
  2128. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2129. }
  2130. return SUCCESS;
  2131. }
  2132. /**
  2133. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2134. */
  2135. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
  2136. struct TxD *txdlp, int get_off)
  2137. {
  2138. struct s2io_nic *nic = fifo_data->nic;
  2139. struct sk_buff *skb;
  2140. struct TxD *txds;
  2141. u16 j, frg_cnt;
  2142. txds = txdlp;
  2143. if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
  2144. pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
  2145. sizeof(u64), PCI_DMA_TODEVICE);
  2146. txds++;
  2147. }
  2148. skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
  2149. if (!skb) {
  2150. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2151. return NULL;
  2152. }
  2153. pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
  2154. skb_headlen(skb), PCI_DMA_TODEVICE);
  2155. frg_cnt = skb_shinfo(skb)->nr_frags;
  2156. if (frg_cnt) {
  2157. txds++;
  2158. for (j = 0; j < frg_cnt; j++, txds++) {
  2159. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2160. if (!txds->Buffer_Pointer)
  2161. break;
  2162. pci_unmap_page(nic->pdev,
  2163. (dma_addr_t)txds->Buffer_Pointer,
  2164. frag->size, PCI_DMA_TODEVICE);
  2165. }
  2166. }
  2167. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2168. return skb;
  2169. }
  2170. /**
  2171. * free_tx_buffers - Free all queued Tx buffers
  2172. * @nic : device private variable.
  2173. * Description:
  2174. * Free all queued Tx buffers.
  2175. * Return Value: void
  2176. */
  2177. static void free_tx_buffers(struct s2io_nic *nic)
  2178. {
  2179. struct net_device *dev = nic->dev;
  2180. struct sk_buff *skb;
  2181. struct TxD *txdp;
  2182. int i, j;
  2183. int cnt = 0;
  2184. struct config_param *config = &nic->config;
  2185. struct mac_info *mac_control = &nic->mac_control;
  2186. struct stat_block *stats = mac_control->stats_info;
  2187. struct swStat *swstats = &stats->sw_stat;
  2188. for (i = 0; i < config->tx_fifo_num; i++) {
  2189. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  2190. struct fifo_info *fifo = &mac_control->fifos[i];
  2191. unsigned long flags;
  2192. spin_lock_irqsave(&fifo->tx_lock, flags);
  2193. for (j = 0; j < tx_cfg->fifo_len; j++) {
  2194. txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
  2195. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2196. if (skb) {
  2197. swstats->mem_freed += skb->truesize;
  2198. dev_kfree_skb(skb);
  2199. cnt++;
  2200. }
  2201. }
  2202. DBG_PRINT(INTR_DBG,
  2203. "%s: forcibly freeing %d skbs on FIFO%d\n",
  2204. dev->name, cnt, i);
  2205. fifo->tx_curr_get_info.offset = 0;
  2206. fifo->tx_curr_put_info.offset = 0;
  2207. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  2208. }
  2209. }
  2210. /**
  2211. * stop_nic - To stop the nic
  2212. * @nic ; device private variable.
  2213. * Description:
  2214. * This function does exactly the opposite of what the start_nic()
  2215. * function does. This function is called to stop the device.
  2216. * Return Value:
  2217. * void.
  2218. */
  2219. static void stop_nic(struct s2io_nic *nic)
  2220. {
  2221. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2222. register u64 val64 = 0;
  2223. u16 interruptible;
  2224. /* Disable all interrupts */
  2225. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2226. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2227. interruptible |= TX_PIC_INTR;
  2228. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2229. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2230. val64 = readq(&bar0->adapter_control);
  2231. val64 &= ~(ADAPTER_CNTL_EN);
  2232. writeq(val64, &bar0->adapter_control);
  2233. }
  2234. /**
  2235. * fill_rx_buffers - Allocates the Rx side skbs
  2236. * @ring_info: per ring structure
  2237. * @from_card_up: If this is true, we will map the buffer to get
  2238. * the dma address for buf0 and buf1 to give it to the card.
  2239. * Else we will sync the already mapped buffer to give it to the card.
  2240. * Description:
  2241. * The function allocates Rx side skbs and puts the physical
  2242. * address of these buffers into the RxD buffer pointers, so that the NIC
  2243. * can DMA the received frame into these locations.
  2244. * The NIC supports 3 receive modes, viz
  2245. * 1. single buffer,
  2246. * 2. three buffer and
  2247. * 3. Five buffer modes.
  2248. * Each mode defines how many fragments the received frame will be split
  2249. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2250. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2251. * is split into 3 fragments. As of now only single buffer mode is
  2252. * supported.
  2253. * Return Value:
  2254. * SUCCESS on success or an appropriate -ve value on failure.
  2255. */
  2256. static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
  2257. int from_card_up)
  2258. {
  2259. struct sk_buff *skb;
  2260. struct RxD_t *rxdp;
  2261. int off, size, block_no, block_no1;
  2262. u32 alloc_tab = 0;
  2263. u32 alloc_cnt;
  2264. u64 tmp;
  2265. struct buffAdd *ba;
  2266. struct RxD_t *first_rxdp = NULL;
  2267. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2268. int rxd_index = 0;
  2269. struct RxD1 *rxdp1;
  2270. struct RxD3 *rxdp3;
  2271. struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
  2272. alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
  2273. block_no1 = ring->rx_curr_get_info.block_index;
  2274. while (alloc_tab < alloc_cnt) {
  2275. block_no = ring->rx_curr_put_info.block_index;
  2276. off = ring->rx_curr_put_info.offset;
  2277. rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
  2278. rxd_index = off + 1;
  2279. if (block_no)
  2280. rxd_index += (block_no * ring->rxd_count);
  2281. if ((block_no == block_no1) &&
  2282. (off == ring->rx_curr_get_info.offset) &&
  2283. (rxdp->Host_Control)) {
  2284. DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
  2285. ring->dev->name);
  2286. goto end;
  2287. }
  2288. if (off && (off == ring->rxd_count)) {
  2289. ring->rx_curr_put_info.block_index++;
  2290. if (ring->rx_curr_put_info.block_index ==
  2291. ring->block_count)
  2292. ring->rx_curr_put_info.block_index = 0;
  2293. block_no = ring->rx_curr_put_info.block_index;
  2294. off = 0;
  2295. ring->rx_curr_put_info.offset = off;
  2296. rxdp = ring->rx_blocks[block_no].block_virt_addr;
  2297. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2298. ring->dev->name, rxdp);
  2299. }
  2300. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2301. ((ring->rxd_mode == RXD_MODE_3B) &&
  2302. (rxdp->Control_2 & s2BIT(0)))) {
  2303. ring->rx_curr_put_info.offset = off;
  2304. goto end;
  2305. }
  2306. /* calculate size of skb based on ring mode */
  2307. size = ring->mtu +
  2308. HEADER_ETHERNET_II_802_3_SIZE +
  2309. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2310. if (ring->rxd_mode == RXD_MODE_1)
  2311. size += NET_IP_ALIGN;
  2312. else
  2313. size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2314. /* allocate skb */
  2315. skb = dev_alloc_skb(size);
  2316. if (!skb) {
  2317. DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
  2318. ring->dev->name);
  2319. if (first_rxdp) {
  2320. wmb();
  2321. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2322. }
  2323. swstats->mem_alloc_fail_cnt++;
  2324. return -ENOMEM ;
  2325. }
  2326. swstats->mem_allocated += skb->truesize;
  2327. if (ring->rxd_mode == RXD_MODE_1) {
  2328. /* 1 buffer mode - normal operation mode */
  2329. rxdp1 = (struct RxD1 *)rxdp;
  2330. memset(rxdp, 0, sizeof(struct RxD1));
  2331. skb_reserve(skb, NET_IP_ALIGN);
  2332. rxdp1->Buffer0_ptr =
  2333. pci_map_single(ring->pdev, skb->data,
  2334. size - NET_IP_ALIGN,
  2335. PCI_DMA_FROMDEVICE);
  2336. if (pci_dma_mapping_error(nic->pdev,
  2337. rxdp1->Buffer0_ptr))
  2338. goto pci_map_failed;
  2339. rxdp->Control_2 =
  2340. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2341. rxdp->Host_Control = (unsigned long)skb;
  2342. } else if (ring->rxd_mode == RXD_MODE_3B) {
  2343. /*
  2344. * 2 buffer mode -
  2345. * 2 buffer mode provides 128
  2346. * byte aligned receive buffers.
  2347. */
  2348. rxdp3 = (struct RxD3 *)rxdp;
  2349. /* save buffer pointers to avoid frequent dma mapping */
  2350. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2351. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2352. memset(rxdp, 0, sizeof(struct RxD3));
  2353. /* restore the buffer pointers for dma sync*/
  2354. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2355. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2356. ba = &ring->ba[block_no][off];
  2357. skb_reserve(skb, BUF0_LEN);
  2358. tmp = (u64)(unsigned long)skb->data;
  2359. tmp += ALIGN_SIZE;
  2360. tmp &= ~ALIGN_SIZE;
  2361. skb->data = (void *) (unsigned long)tmp;
  2362. skb_reset_tail_pointer(skb);
  2363. if (from_card_up) {
  2364. rxdp3->Buffer0_ptr =
  2365. pci_map_single(ring->pdev, ba->ba_0,
  2366. BUF0_LEN,
  2367. PCI_DMA_FROMDEVICE);
  2368. if (pci_dma_mapping_error(nic->pdev,
  2369. rxdp3->Buffer0_ptr))
  2370. goto pci_map_failed;
  2371. } else
  2372. pci_dma_sync_single_for_device(ring->pdev,
  2373. (dma_addr_t)rxdp3->Buffer0_ptr,
  2374. BUF0_LEN,
  2375. PCI_DMA_FROMDEVICE);
  2376. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2377. if (ring->rxd_mode == RXD_MODE_3B) {
  2378. /* Two buffer mode */
  2379. /*
  2380. * Buffer2 will have L3/L4 header plus
  2381. * L4 payload
  2382. */
  2383. rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
  2384. skb->data,
  2385. ring->mtu + 4,
  2386. PCI_DMA_FROMDEVICE);
  2387. if (pci_dma_mapping_error(nic->pdev,
  2388. rxdp3->Buffer2_ptr))
  2389. goto pci_map_failed;
  2390. if (from_card_up) {
  2391. rxdp3->Buffer1_ptr =
  2392. pci_map_single(ring->pdev,
  2393. ba->ba_1,
  2394. BUF1_LEN,
  2395. PCI_DMA_FROMDEVICE);
  2396. if (pci_dma_mapping_error(nic->pdev,
  2397. rxdp3->Buffer1_ptr)) {
  2398. pci_unmap_single(ring->pdev,
  2399. (dma_addr_t)(unsigned long)
  2400. skb->data,
  2401. ring->mtu + 4,
  2402. PCI_DMA_FROMDEVICE);
  2403. goto pci_map_failed;
  2404. }
  2405. }
  2406. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2407. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2408. (ring->mtu + 4);
  2409. }
  2410. rxdp->Control_2 |= s2BIT(0);
  2411. rxdp->Host_Control = (unsigned long) (skb);
  2412. }
  2413. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2414. rxdp->Control_1 |= RXD_OWN_XENA;
  2415. off++;
  2416. if (off == (ring->rxd_count + 1))
  2417. off = 0;
  2418. ring->rx_curr_put_info.offset = off;
  2419. rxdp->Control_2 |= SET_RXD_MARKER;
  2420. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2421. if (first_rxdp) {
  2422. wmb();
  2423. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2424. }
  2425. first_rxdp = rxdp;
  2426. }
  2427. ring->rx_bufs_left += 1;
  2428. alloc_tab++;
  2429. }
  2430. end:
  2431. /* Transfer ownership of first descriptor to adapter just before
  2432. * exiting. Before that, use memory barrier so that ownership
  2433. * and other fields are seen by adapter correctly.
  2434. */
  2435. if (first_rxdp) {
  2436. wmb();
  2437. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2438. }
  2439. return SUCCESS;
  2440. pci_map_failed:
  2441. swstats->pci_map_fail_cnt++;
  2442. swstats->mem_freed += skb->truesize;
  2443. dev_kfree_skb_irq(skb);
  2444. return -ENOMEM;
  2445. }
  2446. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2447. {
  2448. struct net_device *dev = sp->dev;
  2449. int j;
  2450. struct sk_buff *skb;
  2451. struct RxD_t *rxdp;
  2452. struct RxD1 *rxdp1;
  2453. struct RxD3 *rxdp3;
  2454. struct mac_info *mac_control = &sp->mac_control;
  2455. struct stat_block *stats = mac_control->stats_info;
  2456. struct swStat *swstats = &stats->sw_stat;
  2457. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2458. rxdp = mac_control->rings[ring_no].
  2459. rx_blocks[blk].rxds[j].virt_addr;
  2460. skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
  2461. if (!skb)
  2462. continue;
  2463. if (sp->rxd_mode == RXD_MODE_1) {
  2464. rxdp1 = (struct RxD1 *)rxdp;
  2465. pci_unmap_single(sp->pdev,
  2466. (dma_addr_t)rxdp1->Buffer0_ptr,
  2467. dev->mtu +
  2468. HEADER_ETHERNET_II_802_3_SIZE +
  2469. HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
  2470. PCI_DMA_FROMDEVICE);
  2471. memset(rxdp, 0, sizeof(struct RxD1));
  2472. } else if (sp->rxd_mode == RXD_MODE_3B) {
  2473. rxdp3 = (struct RxD3 *)rxdp;
  2474. pci_unmap_single(sp->pdev,
  2475. (dma_addr_t)rxdp3->Buffer0_ptr,
  2476. BUF0_LEN,
  2477. PCI_DMA_FROMDEVICE);
  2478. pci_unmap_single(sp->pdev,
  2479. (dma_addr_t)rxdp3->Buffer1_ptr,
  2480. BUF1_LEN,
  2481. PCI_DMA_FROMDEVICE);
  2482. pci_unmap_single(sp->pdev,
  2483. (dma_addr_t)rxdp3->Buffer2_ptr,
  2484. dev->mtu + 4,
  2485. PCI_DMA_FROMDEVICE);
  2486. memset(rxdp, 0, sizeof(struct RxD3));
  2487. }
  2488. swstats->mem_freed += skb->truesize;
  2489. dev_kfree_skb(skb);
  2490. mac_control->rings[ring_no].rx_bufs_left -= 1;
  2491. }
  2492. }
  2493. /**
  2494. * free_rx_buffers - Frees all Rx buffers
  2495. * @sp: device private variable.
  2496. * Description:
  2497. * This function will free all Rx buffers allocated by host.
  2498. * Return Value:
  2499. * NONE.
  2500. */
  2501. static void free_rx_buffers(struct s2io_nic *sp)
  2502. {
  2503. struct net_device *dev = sp->dev;
  2504. int i, blk = 0, buf_cnt = 0;
  2505. struct config_param *config = &sp->config;
  2506. struct mac_info *mac_control = &sp->mac_control;
  2507. for (i = 0; i < config->rx_ring_num; i++) {
  2508. struct ring_info *ring = &mac_control->rings[i];
  2509. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2510. free_rxd_blk(sp, i, blk);
  2511. ring->rx_curr_put_info.block_index = 0;
  2512. ring->rx_curr_get_info.block_index = 0;
  2513. ring->rx_curr_put_info.offset = 0;
  2514. ring->rx_curr_get_info.offset = 0;
  2515. ring->rx_bufs_left = 0;
  2516. DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
  2517. dev->name, buf_cnt, i);
  2518. }
  2519. }
  2520. static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
  2521. {
  2522. if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
  2523. DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
  2524. ring->dev->name);
  2525. }
  2526. return 0;
  2527. }
  2528. /**
  2529. * s2io_poll - Rx interrupt handler for NAPI support
  2530. * @napi : pointer to the napi structure.
  2531. * @budget : The number of packets that were budgeted to be processed
  2532. * during one pass through the 'Poll" function.
  2533. * Description:
  2534. * Comes into picture only if NAPI support has been incorporated. It does
  2535. * the same thing that rx_intr_handler does, but not in a interrupt context
  2536. * also It will process only a given number of packets.
  2537. * Return value:
  2538. * 0 on success and 1 if there are No Rx packets to be processed.
  2539. */
  2540. static int s2io_poll_msix(struct napi_struct *napi, int budget)
  2541. {
  2542. struct ring_info *ring = container_of(napi, struct ring_info, napi);
  2543. struct net_device *dev = ring->dev;
  2544. int pkts_processed = 0;
  2545. u8 __iomem *addr = NULL;
  2546. u8 val8 = 0;
  2547. struct s2io_nic *nic = netdev_priv(dev);
  2548. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2549. int budget_org = budget;
  2550. if (unlikely(!is_s2io_card_up(nic)))
  2551. return 0;
  2552. pkts_processed = rx_intr_handler(ring, budget);
  2553. s2io_chk_rx_buffers(nic, ring);
  2554. if (pkts_processed < budget_org) {
  2555. napi_complete(napi);
  2556. /*Re Enable MSI-Rx Vector*/
  2557. addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
  2558. addr += 7 - ring->ring_no;
  2559. val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
  2560. writeb(val8, addr);
  2561. val8 = readb(addr);
  2562. }
  2563. return pkts_processed;
  2564. }
  2565. static int s2io_poll_inta(struct napi_struct *napi, int budget)
  2566. {
  2567. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2568. int pkts_processed = 0;
  2569. int ring_pkts_processed, i;
  2570. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2571. int budget_org = budget;
  2572. struct config_param *config = &nic->config;
  2573. struct mac_info *mac_control = &nic->mac_control;
  2574. if (unlikely(!is_s2io_card_up(nic)))
  2575. return 0;
  2576. for (i = 0; i < config->rx_ring_num; i++) {
  2577. struct ring_info *ring = &mac_control->rings[i];
  2578. ring_pkts_processed = rx_intr_handler(ring, budget);
  2579. s2io_chk_rx_buffers(nic, ring);
  2580. pkts_processed += ring_pkts_processed;
  2581. budget -= ring_pkts_processed;
  2582. if (budget <= 0)
  2583. break;
  2584. }
  2585. if (pkts_processed < budget_org) {
  2586. napi_complete(napi);
  2587. /* Re enable the Rx interrupts for the ring */
  2588. writeq(0, &bar0->rx_traffic_mask);
  2589. readl(&bar0->rx_traffic_mask);
  2590. }
  2591. return pkts_processed;
  2592. }
  2593. #ifdef CONFIG_NET_POLL_CONTROLLER
  2594. /**
  2595. * s2io_netpoll - netpoll event handler entry point
  2596. * @dev : pointer to the device structure.
  2597. * Description:
  2598. * This function will be called by upper layer to check for events on the
  2599. * interface in situations where interrupts are disabled. It is used for
  2600. * specific in-kernel networking tasks, such as remote consoles and kernel
  2601. * debugging over the network (example netdump in RedHat).
  2602. */
  2603. static void s2io_netpoll(struct net_device *dev)
  2604. {
  2605. struct s2io_nic *nic = netdev_priv(dev);
  2606. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2607. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2608. int i;
  2609. struct config_param *config = &nic->config;
  2610. struct mac_info *mac_control = &nic->mac_control;
  2611. if (pci_channel_offline(nic->pdev))
  2612. return;
  2613. disable_irq(dev->irq);
  2614. writeq(val64, &bar0->rx_traffic_int);
  2615. writeq(val64, &bar0->tx_traffic_int);
  2616. /* we need to free up the transmitted skbufs or else netpoll will
  2617. * run out of skbs and will fail and eventually netpoll application such
  2618. * as netdump will fail.
  2619. */
  2620. for (i = 0; i < config->tx_fifo_num; i++)
  2621. tx_intr_handler(&mac_control->fifos[i]);
  2622. /* check for received packet and indicate up to network */
  2623. for (i = 0; i < config->rx_ring_num; i++) {
  2624. struct ring_info *ring = &mac_control->rings[i];
  2625. rx_intr_handler(ring, 0);
  2626. }
  2627. for (i = 0; i < config->rx_ring_num; i++) {
  2628. struct ring_info *ring = &mac_control->rings[i];
  2629. if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
  2630. DBG_PRINT(INFO_DBG,
  2631. "%s: Out of memory in Rx Netpoll!!\n",
  2632. dev->name);
  2633. break;
  2634. }
  2635. }
  2636. enable_irq(dev->irq);
  2637. }
  2638. #endif
  2639. /**
  2640. * rx_intr_handler - Rx interrupt handler
  2641. * @ring_info: per ring structure.
  2642. * @budget: budget for napi processing.
  2643. * Description:
  2644. * If the interrupt is because of a received frame or if the
  2645. * receive ring contains fresh as yet un-processed frames,this function is
  2646. * called. It picks out the RxD at which place the last Rx processing had
  2647. * stopped and sends the skb to the OSM's Rx handler and then increments
  2648. * the offset.
  2649. * Return Value:
  2650. * No. of napi packets processed.
  2651. */
  2652. static int rx_intr_handler(struct ring_info *ring_data, int budget)
  2653. {
  2654. int get_block, put_block;
  2655. struct rx_curr_get_info get_info, put_info;
  2656. struct RxD_t *rxdp;
  2657. struct sk_buff *skb;
  2658. int pkt_cnt = 0, napi_pkts = 0;
  2659. int i;
  2660. struct RxD1 *rxdp1;
  2661. struct RxD3 *rxdp3;
  2662. get_info = ring_data->rx_curr_get_info;
  2663. get_block = get_info.block_index;
  2664. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2665. put_block = put_info.block_index;
  2666. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2667. while (RXD_IS_UP2DT(rxdp)) {
  2668. /*
  2669. * If your are next to put index then it's
  2670. * FIFO full condition
  2671. */
  2672. if ((get_block == put_block) &&
  2673. (get_info.offset + 1) == put_info.offset) {
  2674. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
  2675. ring_data->dev->name);
  2676. break;
  2677. }
  2678. skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
  2679. if (skb == NULL) {
  2680. DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
  2681. ring_data->dev->name);
  2682. return 0;
  2683. }
  2684. if (ring_data->rxd_mode == RXD_MODE_1) {
  2685. rxdp1 = (struct RxD1 *)rxdp;
  2686. pci_unmap_single(ring_data->pdev, (dma_addr_t)
  2687. rxdp1->Buffer0_ptr,
  2688. ring_data->mtu +
  2689. HEADER_ETHERNET_II_802_3_SIZE +
  2690. HEADER_802_2_SIZE +
  2691. HEADER_SNAP_SIZE,
  2692. PCI_DMA_FROMDEVICE);
  2693. } else if (ring_data->rxd_mode == RXD_MODE_3B) {
  2694. rxdp3 = (struct RxD3 *)rxdp;
  2695. pci_dma_sync_single_for_cpu(ring_data->pdev,
  2696. (dma_addr_t)rxdp3->Buffer0_ptr,
  2697. BUF0_LEN,
  2698. PCI_DMA_FROMDEVICE);
  2699. pci_unmap_single(ring_data->pdev,
  2700. (dma_addr_t)rxdp3->Buffer2_ptr,
  2701. ring_data->mtu + 4,
  2702. PCI_DMA_FROMDEVICE);
  2703. }
  2704. prefetch(skb->data);
  2705. rx_osm_handler(ring_data, rxdp);
  2706. get_info.offset++;
  2707. ring_data->rx_curr_get_info.offset = get_info.offset;
  2708. rxdp = ring_data->rx_blocks[get_block].
  2709. rxds[get_info.offset].virt_addr;
  2710. if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
  2711. get_info.offset = 0;
  2712. ring_data->rx_curr_get_info.offset = get_info.offset;
  2713. get_block++;
  2714. if (get_block == ring_data->block_count)
  2715. get_block = 0;
  2716. ring_data->rx_curr_get_info.block_index = get_block;
  2717. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2718. }
  2719. if (ring_data->nic->config.napi) {
  2720. budget--;
  2721. napi_pkts++;
  2722. if (!budget)
  2723. break;
  2724. }
  2725. pkt_cnt++;
  2726. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2727. break;
  2728. }
  2729. if (ring_data->lro) {
  2730. /* Clear all LRO sessions before exiting */
  2731. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  2732. struct lro *lro = &ring_data->lro0_n[i];
  2733. if (lro->in_use) {
  2734. update_L3L4_header(ring_data->nic, lro);
  2735. queue_rx_frame(lro->parent, lro->vlan_tag);
  2736. clear_lro_session(lro);
  2737. }
  2738. }
  2739. }
  2740. return napi_pkts;
  2741. }
  2742. /**
  2743. * tx_intr_handler - Transmit interrupt handler
  2744. * @nic : device private variable
  2745. * Description:
  2746. * If an interrupt was raised to indicate DMA complete of the
  2747. * Tx packet, this function is called. It identifies the last TxD
  2748. * whose buffer was freed and frees all skbs whose data have already
  2749. * DMA'ed into the NICs internal memory.
  2750. * Return Value:
  2751. * NONE
  2752. */
  2753. static void tx_intr_handler(struct fifo_info *fifo_data)
  2754. {
  2755. struct s2io_nic *nic = fifo_data->nic;
  2756. struct tx_curr_get_info get_info, put_info;
  2757. struct sk_buff *skb = NULL;
  2758. struct TxD *txdlp;
  2759. int pkt_cnt = 0;
  2760. unsigned long flags = 0;
  2761. u8 err_mask;
  2762. struct stat_block *stats = nic->mac_control.stats_info;
  2763. struct swStat *swstats = &stats->sw_stat;
  2764. if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
  2765. return;
  2766. get_info = fifo_data->tx_curr_get_info;
  2767. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2768. txdlp = (struct TxD *)
  2769. fifo_data->list_info[get_info.offset].list_virt_addr;
  2770. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2771. (get_info.offset != put_info.offset) &&
  2772. (txdlp->Host_Control)) {
  2773. /* Check for TxD errors */
  2774. if (txdlp->Control_1 & TXD_T_CODE) {
  2775. unsigned long long err;
  2776. err = txdlp->Control_1 & TXD_T_CODE;
  2777. if (err & 0x1) {
  2778. swstats->parity_err_cnt++;
  2779. }
  2780. /* update t_code statistics */
  2781. err_mask = err >> 48;
  2782. switch (err_mask) {
  2783. case 2:
  2784. swstats->tx_buf_abort_cnt++;
  2785. break;
  2786. case 3:
  2787. swstats->tx_desc_abort_cnt++;
  2788. break;
  2789. case 7:
  2790. swstats->tx_parity_err_cnt++;
  2791. break;
  2792. case 10:
  2793. swstats->tx_link_loss_cnt++;
  2794. break;
  2795. case 15:
  2796. swstats->tx_list_proc_err_cnt++;
  2797. break;
  2798. }
  2799. }
  2800. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2801. if (skb == NULL) {
  2802. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2803. DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
  2804. __func__);
  2805. return;
  2806. }
  2807. pkt_cnt++;
  2808. /* Updating the statistics block */
  2809. swstats->mem_freed += skb->truesize;
  2810. dev_kfree_skb_irq(skb);
  2811. get_info.offset++;
  2812. if (get_info.offset == get_info.fifo_len + 1)
  2813. get_info.offset = 0;
  2814. txdlp = (struct TxD *)
  2815. fifo_data->list_info[get_info.offset].list_virt_addr;
  2816. fifo_data->tx_curr_get_info.offset = get_info.offset;
  2817. }
  2818. s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
  2819. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2820. }
  2821. /**
  2822. * s2io_mdio_write - Function to write in to MDIO registers
  2823. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2824. * @addr : address value
  2825. * @value : data value
  2826. * @dev : pointer to net_device structure
  2827. * Description:
  2828. * This function is used to write values to the MDIO registers
  2829. * NONE
  2830. */
  2831. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
  2832. struct net_device *dev)
  2833. {
  2834. u64 val64;
  2835. struct s2io_nic *sp = netdev_priv(dev);
  2836. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2837. /* address transaction */
  2838. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2839. MDIO_MMD_DEV_ADDR(mmd_type) |
  2840. MDIO_MMS_PRT_ADDR(0x0);
  2841. writeq(val64, &bar0->mdio_control);
  2842. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2843. writeq(val64, &bar0->mdio_control);
  2844. udelay(100);
  2845. /* Data transaction */
  2846. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2847. MDIO_MMD_DEV_ADDR(mmd_type) |
  2848. MDIO_MMS_PRT_ADDR(0x0) |
  2849. MDIO_MDIO_DATA(value) |
  2850. MDIO_OP(MDIO_OP_WRITE_TRANS);
  2851. writeq(val64, &bar0->mdio_control);
  2852. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2853. writeq(val64, &bar0->mdio_control);
  2854. udelay(100);
  2855. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2856. MDIO_MMD_DEV_ADDR(mmd_type) |
  2857. MDIO_MMS_PRT_ADDR(0x0) |
  2858. MDIO_OP(MDIO_OP_READ_TRANS);
  2859. writeq(val64, &bar0->mdio_control);
  2860. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2861. writeq(val64, &bar0->mdio_control);
  2862. udelay(100);
  2863. }
  2864. /**
  2865. * s2io_mdio_read - Function to write in to MDIO registers
  2866. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2867. * @addr : address value
  2868. * @dev : pointer to net_device structure
  2869. * Description:
  2870. * This function is used to read values to the MDIO registers
  2871. * NONE
  2872. */
  2873. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2874. {
  2875. u64 val64 = 0x0;
  2876. u64 rval64 = 0x0;
  2877. struct s2io_nic *sp = netdev_priv(dev);
  2878. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2879. /* address transaction */
  2880. val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
  2881. | MDIO_MMD_DEV_ADDR(mmd_type)
  2882. | MDIO_MMS_PRT_ADDR(0x0));
  2883. writeq(val64, &bar0->mdio_control);
  2884. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2885. writeq(val64, &bar0->mdio_control);
  2886. udelay(100);
  2887. /* Data transaction */
  2888. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2889. MDIO_MMD_DEV_ADDR(mmd_type) |
  2890. MDIO_MMS_PRT_ADDR(0x0) |
  2891. MDIO_OP(MDIO_OP_READ_TRANS);
  2892. writeq(val64, &bar0->mdio_control);
  2893. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2894. writeq(val64, &bar0->mdio_control);
  2895. udelay(100);
  2896. /* Read the value from regs */
  2897. rval64 = readq(&bar0->mdio_control);
  2898. rval64 = rval64 & 0xFFFF0000;
  2899. rval64 = rval64 >> 16;
  2900. return rval64;
  2901. }
  2902. /**
  2903. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2904. * @counter : counter value to be updated
  2905. * @flag : flag to indicate the status
  2906. * @type : counter type
  2907. * Description:
  2908. * This function is to check the status of the xpak counters value
  2909. * NONE
  2910. */
  2911. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
  2912. u16 flag, u16 type)
  2913. {
  2914. u64 mask = 0x3;
  2915. u64 val64;
  2916. int i;
  2917. for (i = 0; i < index; i++)
  2918. mask = mask << 0x2;
  2919. if (flag > 0) {
  2920. *counter = *counter + 1;
  2921. val64 = *regs_stat & mask;
  2922. val64 = val64 >> (index * 0x2);
  2923. val64 = val64 + 1;
  2924. if (val64 == 3) {
  2925. switch (type) {
  2926. case 1:
  2927. DBG_PRINT(ERR_DBG,
  2928. "Take Xframe NIC out of service.\n");
  2929. DBG_PRINT(ERR_DBG,
  2930. "Excessive temperatures may result in premature transceiver failure.\n");
  2931. break;
  2932. case 2:
  2933. DBG_PRINT(ERR_DBG,
  2934. "Take Xframe NIC out of service.\n");
  2935. DBG_PRINT(ERR_DBG,
  2936. "Excessive bias currents may indicate imminent laser diode failure.\n");
  2937. break;
  2938. case 3:
  2939. DBG_PRINT(ERR_DBG,
  2940. "Take Xframe NIC out of service.\n");
  2941. DBG_PRINT(ERR_DBG,
  2942. "Excessive laser output power may saturate far-end receiver.\n");
  2943. break;
  2944. default:
  2945. DBG_PRINT(ERR_DBG,
  2946. "Incorrect XPAK Alarm type\n");
  2947. }
  2948. val64 = 0x0;
  2949. }
  2950. val64 = val64 << (index * 0x2);
  2951. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2952. } else {
  2953. *regs_stat = *regs_stat & (~mask);
  2954. }
  2955. }
  2956. /**
  2957. * s2io_updt_xpak_counter - Function to update the xpak counters
  2958. * @dev : pointer to net_device struct
  2959. * Description:
  2960. * This function is to upate the status of the xpak counters value
  2961. * NONE
  2962. */
  2963. static void s2io_updt_xpak_counter(struct net_device *dev)
  2964. {
  2965. u16 flag = 0x0;
  2966. u16 type = 0x0;
  2967. u16 val16 = 0x0;
  2968. u64 val64 = 0x0;
  2969. u64 addr = 0x0;
  2970. struct s2io_nic *sp = netdev_priv(dev);
  2971. struct stat_block *stats = sp->mac_control.stats_info;
  2972. struct xpakStat *xstats = &stats->xpak_stat;
  2973. /* Check the communication with the MDIO slave */
  2974. addr = MDIO_CTRL1;
  2975. val64 = 0x0;
  2976. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2977. if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
  2978. DBG_PRINT(ERR_DBG,
  2979. "ERR: MDIO slave access failed - Returned %llx\n",
  2980. (unsigned long long)val64);
  2981. return;
  2982. }
  2983. /* Check for the expected value of control reg 1 */
  2984. if (val64 != MDIO_CTRL1_SPEED10G) {
  2985. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
  2986. "Returned: %llx- Expected: 0x%x\n",
  2987. (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
  2988. return;
  2989. }
  2990. /* Loading the DOM register to MDIO register */
  2991. addr = 0xA100;
  2992. s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
  2993. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2994. /* Reading the Alarm flags */
  2995. addr = 0xA070;
  2996. val64 = 0x0;
  2997. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2998. flag = CHECKBIT(val64, 0x7);
  2999. type = 1;
  3000. s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
  3001. &xstats->xpak_regs_stat,
  3002. 0x0, flag, type);
  3003. if (CHECKBIT(val64, 0x6))
  3004. xstats->alarm_transceiver_temp_low++;
  3005. flag = CHECKBIT(val64, 0x3);
  3006. type = 2;
  3007. s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
  3008. &xstats->xpak_regs_stat,
  3009. 0x2, flag, type);
  3010. if (CHECKBIT(val64, 0x2))
  3011. xstats->alarm_laser_bias_current_low++;
  3012. flag = CHECKBIT(val64, 0x1);
  3013. type = 3;
  3014. s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
  3015. &xstats->xpak_regs_stat,
  3016. 0x4, flag, type);
  3017. if (CHECKBIT(val64, 0x0))
  3018. xstats->alarm_laser_output_power_low++;
  3019. /* Reading the Warning flags */
  3020. addr = 0xA074;
  3021. val64 = 0x0;
  3022. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  3023. if (CHECKBIT(val64, 0x7))
  3024. xstats->warn_transceiver_temp_high++;
  3025. if (CHECKBIT(val64, 0x6))
  3026. xstats->warn_transceiver_temp_low++;
  3027. if (CHECKBIT(val64, 0x3))
  3028. xstats->warn_laser_bias_current_high++;
  3029. if (CHECKBIT(val64, 0x2))
  3030. xstats->warn_laser_bias_current_low++;
  3031. if (CHECKBIT(val64, 0x1))
  3032. xstats->warn_laser_output_power_high++;
  3033. if (CHECKBIT(val64, 0x0))
  3034. xstats->warn_laser_output_power_low++;
  3035. }
  3036. /**
  3037. * wait_for_cmd_complete - waits for a command to complete.
  3038. * @sp : private member of the device structure, which is a pointer to the
  3039. * s2io_nic structure.
  3040. * Description: Function that waits for a command to Write into RMAC
  3041. * ADDR DATA registers to be completed and returns either success or
  3042. * error depending on whether the command was complete or not.
  3043. * Return value:
  3044. * SUCCESS on success and FAILURE on failure.
  3045. */
  3046. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  3047. int bit_state)
  3048. {
  3049. int ret = FAILURE, cnt = 0, delay = 1;
  3050. u64 val64;
  3051. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  3052. return FAILURE;
  3053. do {
  3054. val64 = readq(addr);
  3055. if (bit_state == S2IO_BIT_RESET) {
  3056. if (!(val64 & busy_bit)) {
  3057. ret = SUCCESS;
  3058. break;
  3059. }
  3060. } else {
  3061. if (val64 & busy_bit) {
  3062. ret = SUCCESS;
  3063. break;
  3064. }
  3065. }
  3066. if (in_interrupt())
  3067. mdelay(delay);
  3068. else
  3069. msleep(delay);
  3070. if (++cnt >= 10)
  3071. delay = 50;
  3072. } while (cnt < 20);
  3073. return ret;
  3074. }
  3075. /*
  3076. * check_pci_device_id - Checks if the device id is supported
  3077. * @id : device id
  3078. * Description: Function to check if the pci device id is supported by driver.
  3079. * Return value: Actual device id if supported else PCI_ANY_ID
  3080. */
  3081. static u16 check_pci_device_id(u16 id)
  3082. {
  3083. switch (id) {
  3084. case PCI_DEVICE_ID_HERC_WIN:
  3085. case PCI_DEVICE_ID_HERC_UNI:
  3086. return XFRAME_II_DEVICE;
  3087. case PCI_DEVICE_ID_S2IO_UNI:
  3088. case PCI_DEVICE_ID_S2IO_WIN:
  3089. return XFRAME_I_DEVICE;
  3090. default:
  3091. return PCI_ANY_ID;
  3092. }
  3093. }
  3094. /**
  3095. * s2io_reset - Resets the card.
  3096. * @sp : private member of the device structure.
  3097. * Description: Function to Reset the card. This function then also
  3098. * restores the previously saved PCI configuration space registers as
  3099. * the card reset also resets the configuration space.
  3100. * Return value:
  3101. * void.
  3102. */
  3103. static void s2io_reset(struct s2io_nic *sp)
  3104. {
  3105. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3106. u64 val64;
  3107. u16 subid, pci_cmd;
  3108. int i;
  3109. u16 val16;
  3110. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3111. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3112. struct stat_block *stats;
  3113. struct swStat *swstats;
  3114. DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
  3115. __func__, pci_name(sp->pdev));
  3116. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3117. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3118. val64 = SW_RESET_ALL;
  3119. writeq(val64, &bar0->sw_reset);
  3120. if (strstr(sp->product_name, "CX4"))
  3121. msleep(750);
  3122. msleep(250);
  3123. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3124. /* Restore the PCI state saved during initialization. */
  3125. pci_restore_state(sp->pdev);
  3126. pci_save_state(sp->pdev);
  3127. pci_read_config_word(sp->pdev, 0x2, &val16);
  3128. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3129. break;
  3130. msleep(200);
  3131. }
  3132. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
  3133. DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
  3134. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3135. s2io_init_pci(sp);
  3136. /* Set swapper to enable I/O register access */
  3137. s2io_set_swapper(sp);
  3138. /* restore mac_addr entries */
  3139. do_s2io_restore_unicast_mc(sp);
  3140. /* Restore the MSIX table entries from local variables */
  3141. restore_xmsi_data(sp);
  3142. /* Clear certain PCI/PCI-X fields after reset */
  3143. if (sp->device_type == XFRAME_II_DEVICE) {
  3144. /* Clear "detected parity error" bit */
  3145. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3146. /* Clearing PCIX Ecc status register */
  3147. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3148. /* Clearing PCI_STATUS error reflected here */
  3149. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3150. }
  3151. /* Reset device statistics maintained by OS */
  3152. memset(&sp->stats, 0, sizeof(struct net_device_stats));
  3153. stats = sp->mac_control.stats_info;
  3154. swstats = &stats->sw_stat;
  3155. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3156. up_cnt = swstats->link_up_cnt;
  3157. down_cnt = swstats->link_down_cnt;
  3158. up_time = swstats->link_up_time;
  3159. down_time = swstats->link_down_time;
  3160. reset_cnt = swstats->soft_reset_cnt;
  3161. mem_alloc_cnt = swstats->mem_allocated;
  3162. mem_free_cnt = swstats->mem_freed;
  3163. watchdog_cnt = swstats->watchdog_timer_cnt;
  3164. memset(stats, 0, sizeof(struct stat_block));
  3165. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3166. swstats->link_up_cnt = up_cnt;
  3167. swstats->link_down_cnt = down_cnt;
  3168. swstats->link_up_time = up_time;
  3169. swstats->link_down_time = down_time;
  3170. swstats->soft_reset_cnt = reset_cnt;
  3171. swstats->mem_allocated = mem_alloc_cnt;
  3172. swstats->mem_freed = mem_free_cnt;
  3173. swstats->watchdog_timer_cnt = watchdog_cnt;
  3174. /* SXE-002: Configure link and activity LED to turn it off */
  3175. subid = sp->pdev->subsystem_device;
  3176. if (((subid & 0xFF) >= 0x07) &&
  3177. (sp->device_type == XFRAME_I_DEVICE)) {
  3178. val64 = readq(&bar0->gpio_control);
  3179. val64 |= 0x0000800000000000ULL;
  3180. writeq(val64, &bar0->gpio_control);
  3181. val64 = 0x0411040400000000ULL;
  3182. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3183. }
  3184. /*
  3185. * Clear spurious ECC interrupts that would have occurred on
  3186. * XFRAME II cards after reset.
  3187. */
  3188. if (sp->device_type == XFRAME_II_DEVICE) {
  3189. val64 = readq(&bar0->pcc_err_reg);
  3190. writeq(val64, &bar0->pcc_err_reg);
  3191. }
  3192. sp->device_enabled_once = false;
  3193. }
  3194. /**
  3195. * s2io_set_swapper - to set the swapper controle on the card
  3196. * @sp : private member of the device structure,
  3197. * pointer to the s2io_nic structure.
  3198. * Description: Function to set the swapper control on the card
  3199. * correctly depending on the 'endianness' of the system.
  3200. * Return value:
  3201. * SUCCESS on success and FAILURE on failure.
  3202. */
  3203. static int s2io_set_swapper(struct s2io_nic *sp)
  3204. {
  3205. struct net_device *dev = sp->dev;
  3206. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3207. u64 val64, valt, valr;
  3208. /*
  3209. * Set proper endian settings and verify the same by reading
  3210. * the PIF Feed-back register.
  3211. */
  3212. val64 = readq(&bar0->pif_rd_swapper_fb);
  3213. if (val64 != 0x0123456789ABCDEFULL) {
  3214. int i = 0;
  3215. static const u64 value[] = {
  3216. 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3217. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3218. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3219. 0 /* FE=0, SE=0 */
  3220. };
  3221. while (i < 4) {
  3222. writeq(value[i], &bar0->swapper_ctrl);
  3223. val64 = readq(&bar0->pif_rd_swapper_fb);
  3224. if (val64 == 0x0123456789ABCDEFULL)
  3225. break;
  3226. i++;
  3227. }
  3228. if (i == 4) {
  3229. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
  3230. "feedback read %llx\n",
  3231. dev->name, (unsigned long long)val64);
  3232. return FAILURE;
  3233. }
  3234. valr = value[i];
  3235. } else {
  3236. valr = readq(&bar0->swapper_ctrl);
  3237. }
  3238. valt = 0x0123456789ABCDEFULL;
  3239. writeq(valt, &bar0->xmsi_address);
  3240. val64 = readq(&bar0->xmsi_address);
  3241. if (val64 != valt) {
  3242. int i = 0;
  3243. static const u64 value[] = {
  3244. 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3245. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3246. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3247. 0 /* FE=0, SE=0 */
  3248. };
  3249. while (i < 4) {
  3250. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3251. writeq(valt, &bar0->xmsi_address);
  3252. val64 = readq(&bar0->xmsi_address);
  3253. if (val64 == valt)
  3254. break;
  3255. i++;
  3256. }
  3257. if (i == 4) {
  3258. unsigned long long x = val64;
  3259. DBG_PRINT(ERR_DBG,
  3260. "Write failed, Xmsi_addr reads:0x%llx\n", x);
  3261. return FAILURE;
  3262. }
  3263. }
  3264. val64 = readq(&bar0->swapper_ctrl);
  3265. val64 &= 0xFFFF000000000000ULL;
  3266. #ifdef __BIG_ENDIAN
  3267. /*
  3268. * The device by default set to a big endian format, so a
  3269. * big endian driver need not set anything.
  3270. */
  3271. val64 |= (SWAPPER_CTRL_TXP_FE |
  3272. SWAPPER_CTRL_TXP_SE |
  3273. SWAPPER_CTRL_TXD_R_FE |
  3274. SWAPPER_CTRL_TXD_W_FE |
  3275. SWAPPER_CTRL_TXF_R_FE |
  3276. SWAPPER_CTRL_RXD_R_FE |
  3277. SWAPPER_CTRL_RXD_W_FE |
  3278. SWAPPER_CTRL_RXF_W_FE |
  3279. SWAPPER_CTRL_XMSI_FE |
  3280. SWAPPER_CTRL_STATS_FE |
  3281. SWAPPER_CTRL_STATS_SE);
  3282. if (sp->config.intr_type == INTA)
  3283. val64 |= SWAPPER_CTRL_XMSI_SE;
  3284. writeq(val64, &bar0->swapper_ctrl);
  3285. #else
  3286. /*
  3287. * Initially we enable all bits to make it accessible by the
  3288. * driver, then we selectively enable only those bits that
  3289. * we want to set.
  3290. */
  3291. val64 |= (SWAPPER_CTRL_TXP_FE |
  3292. SWAPPER_CTRL_TXP_SE |
  3293. SWAPPER_CTRL_TXD_R_FE |
  3294. SWAPPER_CTRL_TXD_R_SE |
  3295. SWAPPER_CTRL_TXD_W_FE |
  3296. SWAPPER_CTRL_TXD_W_SE |
  3297. SWAPPER_CTRL_TXF_R_FE |
  3298. SWAPPER_CTRL_RXD_R_FE |
  3299. SWAPPER_CTRL_RXD_R_SE |
  3300. SWAPPER_CTRL_RXD_W_FE |
  3301. SWAPPER_CTRL_RXD_W_SE |
  3302. SWAPPER_CTRL_RXF_W_FE |
  3303. SWAPPER_CTRL_XMSI_FE |
  3304. SWAPPER_CTRL_STATS_FE |
  3305. SWAPPER_CTRL_STATS_SE);
  3306. if (sp->config.intr_type == INTA)
  3307. val64 |= SWAPPER_CTRL_XMSI_SE;
  3308. writeq(val64, &bar0->swapper_ctrl);
  3309. #endif
  3310. val64 = readq(&bar0->swapper_ctrl);
  3311. /*
  3312. * Verifying if endian settings are accurate by reading a
  3313. * feedback register.
  3314. */
  3315. val64 = readq(&bar0->pif_rd_swapper_fb);
  3316. if (val64 != 0x0123456789ABCDEFULL) {
  3317. /* Endian settings are incorrect, calls for another dekko. */
  3318. DBG_PRINT(ERR_DBG,
  3319. "%s: Endian settings are wrong, feedback read %llx\n",
  3320. dev->name, (unsigned long long)val64);
  3321. return FAILURE;
  3322. }
  3323. return SUCCESS;
  3324. }
  3325. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3326. {
  3327. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3328. u64 val64;
  3329. int ret = 0, cnt = 0;
  3330. do {
  3331. val64 = readq(&bar0->xmsi_access);
  3332. if (!(val64 & s2BIT(15)))
  3333. break;
  3334. mdelay(1);
  3335. cnt++;
  3336. } while (cnt < 5);
  3337. if (cnt == 5) {
  3338. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3339. ret = 1;
  3340. }
  3341. return ret;
  3342. }
  3343. static void restore_xmsi_data(struct s2io_nic *nic)
  3344. {
  3345. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3346. u64 val64;
  3347. int i, msix_index;
  3348. if (nic->device_type == XFRAME_I_DEVICE)
  3349. return;
  3350. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3351. msix_index = (i) ? ((i-1) * 8 + 1) : 0;
  3352. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3353. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3354. val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
  3355. writeq(val64, &bar0->xmsi_access);
  3356. if (wait_for_msix_trans(nic, msix_index)) {
  3357. DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
  3358. __func__, msix_index);
  3359. continue;
  3360. }
  3361. }
  3362. }
  3363. static void store_xmsi_data(struct s2io_nic *nic)
  3364. {
  3365. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3366. u64 val64, addr, data;
  3367. int i, msix_index;
  3368. if (nic->device_type == XFRAME_I_DEVICE)
  3369. return;
  3370. /* Store and display */
  3371. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3372. msix_index = (i) ? ((i-1) * 8 + 1) : 0;
  3373. val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
  3374. writeq(val64, &bar0->xmsi_access);
  3375. if (wait_for_msix_trans(nic, msix_index)) {
  3376. DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
  3377. __func__, msix_index);
  3378. continue;
  3379. }
  3380. addr = readq(&bar0->xmsi_address);
  3381. data = readq(&bar0->xmsi_data);
  3382. if (addr && data) {
  3383. nic->msix_info[i].addr = addr;
  3384. nic->msix_info[i].data = data;
  3385. }
  3386. }
  3387. }
  3388. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3389. {
  3390. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3391. u64 rx_mat;
  3392. u16 msi_control; /* Temp variable */
  3393. int ret, i, j, msix_indx = 1;
  3394. int size;
  3395. struct stat_block *stats = nic->mac_control.stats_info;
  3396. struct swStat *swstats = &stats->sw_stat;
  3397. size = nic->num_entries * sizeof(struct msix_entry);
  3398. nic->entries = kzalloc(size, GFP_KERNEL);
  3399. if (!nic->entries) {
  3400. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3401. __func__);
  3402. swstats->mem_alloc_fail_cnt++;
  3403. return -ENOMEM;
  3404. }
  3405. swstats->mem_allocated += size;
  3406. size = nic->num_entries * sizeof(struct s2io_msix_entry);
  3407. nic->s2io_entries = kzalloc(size, GFP_KERNEL);
  3408. if (!nic->s2io_entries) {
  3409. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3410. __func__);
  3411. swstats->mem_alloc_fail_cnt++;
  3412. kfree(nic->entries);
  3413. swstats->mem_freed
  3414. += (nic->num_entries * sizeof(struct msix_entry));
  3415. return -ENOMEM;
  3416. }
  3417. swstats->mem_allocated += size;
  3418. nic->entries[0].entry = 0;
  3419. nic->s2io_entries[0].entry = 0;
  3420. nic->s2io_entries[0].in_use = MSIX_FLG;
  3421. nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
  3422. nic->s2io_entries[0].arg = &nic->mac_control.fifos;
  3423. for (i = 1; i < nic->num_entries; i++) {
  3424. nic->entries[i].entry = ((i - 1) * 8) + 1;
  3425. nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
  3426. nic->s2io_entries[i].arg = NULL;
  3427. nic->s2io_entries[i].in_use = 0;
  3428. }
  3429. rx_mat = readq(&bar0->rx_mat);
  3430. for (j = 0; j < nic->config.rx_ring_num; j++) {
  3431. rx_mat |= RX_MAT_SET(j, msix_indx);
  3432. nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
  3433. nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
  3434. nic->s2io_entries[j+1].in_use = MSIX_FLG;
  3435. msix_indx += 8;
  3436. }
  3437. writeq(rx_mat, &bar0->rx_mat);
  3438. readq(&bar0->rx_mat);
  3439. ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
  3440. /* We fail init if error or we get less vectors than min required */
  3441. if (ret) {
  3442. DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
  3443. kfree(nic->entries);
  3444. swstats->mem_freed += nic->num_entries *
  3445. sizeof(struct msix_entry);
  3446. kfree(nic->s2io_entries);
  3447. swstats->mem_freed += nic->num_entries *
  3448. sizeof(struct s2io_msix_entry);
  3449. nic->entries = NULL;
  3450. nic->s2io_entries = NULL;
  3451. return -ENOMEM;
  3452. }
  3453. /*
  3454. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3455. * in the herc NIC. (Temp change, needs to be removed later)
  3456. */
  3457. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3458. msi_control |= 0x1; /* Enable MSI */
  3459. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3460. return 0;
  3461. }
  3462. /* Handle software interrupt used during MSI(X) test */
  3463. static irqreturn_t s2io_test_intr(int irq, void *dev_id)
  3464. {
  3465. struct s2io_nic *sp = dev_id;
  3466. sp->msi_detected = 1;
  3467. wake_up(&sp->msi_wait);
  3468. return IRQ_HANDLED;
  3469. }
  3470. /* Test interrupt path by forcing a a software IRQ */
  3471. static int s2io_test_msi(struct s2io_nic *sp)
  3472. {
  3473. struct pci_dev *pdev = sp->pdev;
  3474. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3475. int err;
  3476. u64 val64, saved64;
  3477. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3478. sp->name, sp);
  3479. if (err) {
  3480. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3481. sp->dev->name, pci_name(pdev), pdev->irq);
  3482. return err;
  3483. }
  3484. init_waitqueue_head(&sp->msi_wait);
  3485. sp->msi_detected = 0;
  3486. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3487. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3488. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3489. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3490. writeq(val64, &bar0->scheduled_int_ctrl);
  3491. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3492. if (!sp->msi_detected) {
  3493. /* MSI(X) test failed, go back to INTx mode */
  3494. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
  3495. "using MSI(X) during test\n",
  3496. sp->dev->name, pci_name(pdev));
  3497. err = -EOPNOTSUPP;
  3498. }
  3499. free_irq(sp->entries[1].vector, sp);
  3500. writeq(saved64, &bar0->scheduled_int_ctrl);
  3501. return err;
  3502. }
  3503. static void remove_msix_isr(struct s2io_nic *sp)
  3504. {
  3505. int i;
  3506. u16 msi_control;
  3507. for (i = 0; i < sp->num_entries; i++) {
  3508. if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
  3509. int vector = sp->entries[i].vector;
  3510. void *arg = sp->s2io_entries[i].arg;
  3511. free_irq(vector, arg);
  3512. }
  3513. }
  3514. kfree(sp->entries);
  3515. kfree(sp->s2io_entries);
  3516. sp->entries = NULL;
  3517. sp->s2io_entries = NULL;
  3518. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3519. msi_control &= 0xFFFE; /* Disable MSI */
  3520. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3521. pci_disable_msix(sp->pdev);
  3522. }
  3523. static void remove_inta_isr(struct s2io_nic *sp)
  3524. {
  3525. struct net_device *dev = sp->dev;
  3526. free_irq(sp->pdev->irq, dev);
  3527. }
  3528. /* ********************************************************* *
  3529. * Functions defined below concern the OS part of the driver *
  3530. * ********************************************************* */
  3531. /**
  3532. * s2io_open - open entry point of the driver
  3533. * @dev : pointer to the device structure.
  3534. * Description:
  3535. * This function is the open entry point of the driver. It mainly calls a
  3536. * function to allocate Rx buffers and inserts them into the buffer
  3537. * descriptors and then enables the Rx part of the NIC.
  3538. * Return value:
  3539. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3540. * file on failure.
  3541. */
  3542. static int s2io_open(struct net_device *dev)
  3543. {
  3544. struct s2io_nic *sp = netdev_priv(dev);
  3545. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  3546. int err = 0;
  3547. /*
  3548. * Make sure you have link off by default every time
  3549. * Nic is initialized
  3550. */
  3551. netif_carrier_off(dev);
  3552. sp->last_link_state = 0;
  3553. /* Initialize H/W and enable interrupts */
  3554. err = s2io_card_up(sp);
  3555. if (err) {
  3556. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3557. dev->name);
  3558. goto hw_init_failed;
  3559. }
  3560. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3561. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3562. s2io_card_down(sp);
  3563. err = -ENODEV;
  3564. goto hw_init_failed;
  3565. }
  3566. s2io_start_all_tx_queue(sp);
  3567. return 0;
  3568. hw_init_failed:
  3569. if (sp->config.intr_type == MSI_X) {
  3570. if (sp->entries) {
  3571. kfree(sp->entries);
  3572. swstats->mem_freed += sp->num_entries *
  3573. sizeof(struct msix_entry);
  3574. }
  3575. if (sp->s2io_entries) {
  3576. kfree(sp->s2io_entries);
  3577. swstats->mem_freed += sp->num_entries *
  3578. sizeof(struct s2io_msix_entry);
  3579. }
  3580. }
  3581. return err;
  3582. }
  3583. /**
  3584. * s2io_close -close entry point of the driver
  3585. * @dev : device pointer.
  3586. * Description:
  3587. * This is the stop entry point of the driver. It needs to undo exactly
  3588. * whatever was done by the open entry point,thus it's usually referred to
  3589. * as the close function.Among other things this function mainly stops the
  3590. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3591. * Return value:
  3592. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3593. * file on failure.
  3594. */
  3595. static int s2io_close(struct net_device *dev)
  3596. {
  3597. struct s2io_nic *sp = netdev_priv(dev);
  3598. struct config_param *config = &sp->config;
  3599. u64 tmp64;
  3600. int offset;
  3601. /* Return if the device is already closed *
  3602. * Can happen when s2io_card_up failed in change_mtu *
  3603. */
  3604. if (!is_s2io_card_up(sp))
  3605. return 0;
  3606. s2io_stop_all_tx_queue(sp);
  3607. /* delete all populated mac entries */
  3608. for (offset = 1; offset < config->max_mc_addr; offset++) {
  3609. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  3610. if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
  3611. do_s2io_delete_unicast_mc(sp, tmp64);
  3612. }
  3613. s2io_card_down(sp);
  3614. return 0;
  3615. }
  3616. /**
  3617. * s2io_xmit - Tx entry point of te driver
  3618. * @skb : the socket buffer containing the Tx data.
  3619. * @dev : device pointer.
  3620. * Description :
  3621. * This function is the Tx entry point of the driver. S2IO NIC supports
  3622. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3623. * NOTE: when device can't queue the pkt,just the trans_start variable will
  3624. * not be upadted.
  3625. * Return value:
  3626. * 0 on success & 1 on failure.
  3627. */
  3628. static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3629. {
  3630. struct s2io_nic *sp = netdev_priv(dev);
  3631. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3632. register u64 val64;
  3633. struct TxD *txdp;
  3634. struct TxFIFO_element __iomem *tx_fifo;
  3635. unsigned long flags = 0;
  3636. u16 vlan_tag = 0;
  3637. struct fifo_info *fifo = NULL;
  3638. int do_spin_lock = 1;
  3639. int offload_type;
  3640. int enable_per_list_interrupt = 0;
  3641. struct config_param *config = &sp->config;
  3642. struct mac_info *mac_control = &sp->mac_control;
  3643. struct stat_block *stats = mac_control->stats_info;
  3644. struct swStat *swstats = &stats->sw_stat;
  3645. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3646. if (unlikely(skb->len <= 0)) {
  3647. DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
  3648. dev_kfree_skb_any(skb);
  3649. return NETDEV_TX_OK;
  3650. }
  3651. if (!is_s2io_card_up(sp)) {
  3652. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3653. dev->name);
  3654. dev_kfree_skb(skb);
  3655. return NETDEV_TX_OK;
  3656. }
  3657. queue = 0;
  3658. if (vlan_tx_tag_present(skb))
  3659. vlan_tag = vlan_tx_tag_get(skb);
  3660. if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
  3661. if (skb->protocol == htons(ETH_P_IP)) {
  3662. struct iphdr *ip;
  3663. struct tcphdr *th;
  3664. ip = ip_hdr(skb);
  3665. if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
  3666. th = (struct tcphdr *)(((unsigned char *)ip) +
  3667. ip->ihl*4);
  3668. if (ip->protocol == IPPROTO_TCP) {
  3669. queue_len = sp->total_tcp_fifos;
  3670. queue = (ntohs(th->source) +
  3671. ntohs(th->dest)) &
  3672. sp->fifo_selector[queue_len - 1];
  3673. if (queue >= queue_len)
  3674. queue = queue_len - 1;
  3675. } else if (ip->protocol == IPPROTO_UDP) {
  3676. queue_len = sp->total_udp_fifos;
  3677. queue = (ntohs(th->source) +
  3678. ntohs(th->dest)) &
  3679. sp->fifo_selector[queue_len - 1];
  3680. if (queue >= queue_len)
  3681. queue = queue_len - 1;
  3682. queue += sp->udp_fifo_idx;
  3683. if (skb->len > 1024)
  3684. enable_per_list_interrupt = 1;
  3685. do_spin_lock = 0;
  3686. }
  3687. }
  3688. }
  3689. } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
  3690. /* get fifo number based on skb->priority value */
  3691. queue = config->fifo_mapping
  3692. [skb->priority & (MAX_TX_FIFOS - 1)];
  3693. fifo = &mac_control->fifos[queue];
  3694. if (do_spin_lock)
  3695. spin_lock_irqsave(&fifo->tx_lock, flags);
  3696. else {
  3697. if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
  3698. return NETDEV_TX_LOCKED;
  3699. }
  3700. if (sp->config.multiq) {
  3701. if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
  3702. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3703. return NETDEV_TX_BUSY;
  3704. }
  3705. } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
  3706. if (netif_queue_stopped(dev)) {
  3707. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3708. return NETDEV_TX_BUSY;
  3709. }
  3710. }
  3711. put_off = (u16)fifo->tx_curr_put_info.offset;
  3712. get_off = (u16)fifo->tx_curr_get_info.offset;
  3713. txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
  3714. queue_len = fifo->tx_curr_put_info.fifo_len + 1;
  3715. /* Avoid "put" pointer going beyond "get" pointer */
  3716. if (txdp->Host_Control ||
  3717. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3718. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3719. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3720. dev_kfree_skb(skb);
  3721. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3722. return NETDEV_TX_OK;
  3723. }
  3724. offload_type = s2io_offload_type(skb);
  3725. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3726. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3727. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3728. }
  3729. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3730. txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
  3731. TXD_TX_CKO_TCP_EN |
  3732. TXD_TX_CKO_UDP_EN);
  3733. }
  3734. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3735. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3736. txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
  3737. if (enable_per_list_interrupt)
  3738. if (put_off & (queue_len >> 5))
  3739. txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
  3740. if (vlan_tag) {
  3741. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3742. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3743. }
  3744. frg_len = skb_headlen(skb);
  3745. if (offload_type == SKB_GSO_UDP) {
  3746. int ufo_size;
  3747. ufo_size = s2io_udp_mss(skb);
  3748. ufo_size &= ~7;
  3749. txdp->Control_1 |= TXD_UFO_EN;
  3750. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3751. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3752. #ifdef __BIG_ENDIAN
  3753. /* both variants do cpu_to_be64(be32_to_cpu(...)) */
  3754. fifo->ufo_in_band_v[put_off] =
  3755. (__force u64)skb_shinfo(skb)->ip6_frag_id;
  3756. #else
  3757. fifo->ufo_in_band_v[put_off] =
  3758. (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3759. #endif
  3760. txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
  3761. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3762. fifo->ufo_in_band_v,
  3763. sizeof(u64),
  3764. PCI_DMA_TODEVICE);
  3765. if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
  3766. goto pci_map_failed;
  3767. txdp++;
  3768. }
  3769. txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
  3770. frg_len, PCI_DMA_TODEVICE);
  3771. if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
  3772. goto pci_map_failed;
  3773. txdp->Host_Control = (unsigned long)skb;
  3774. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3775. if (offload_type == SKB_GSO_UDP)
  3776. txdp->Control_1 |= TXD_UFO_EN;
  3777. frg_cnt = skb_shinfo(skb)->nr_frags;
  3778. /* For fragmented SKB. */
  3779. for (i = 0; i < frg_cnt; i++) {
  3780. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3781. /* A '0' length fragment will be ignored */
  3782. if (!frag->size)
  3783. continue;
  3784. txdp++;
  3785. txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
  3786. frag->page_offset,
  3787. frag->size,
  3788. PCI_DMA_TODEVICE);
  3789. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3790. if (offload_type == SKB_GSO_UDP)
  3791. txdp->Control_1 |= TXD_UFO_EN;
  3792. }
  3793. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3794. if (offload_type == SKB_GSO_UDP)
  3795. frg_cnt++; /* as Txd0 was used for inband header */
  3796. tx_fifo = mac_control->tx_FIFO_start[queue];
  3797. val64 = fifo->list_info[put_off].list_phy_addr;
  3798. writeq(val64, &tx_fifo->TxDL_Pointer);
  3799. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3800. TX_FIFO_LAST_LIST);
  3801. if (offload_type)
  3802. val64 |= TX_FIFO_SPECIAL_FUNC;
  3803. writeq(val64, &tx_fifo->List_Control);
  3804. mmiowb();
  3805. put_off++;
  3806. if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
  3807. put_off = 0;
  3808. fifo->tx_curr_put_info.offset = put_off;
  3809. /* Avoid "put" pointer going beyond "get" pointer */
  3810. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3811. swstats->fifo_full_cnt++;
  3812. DBG_PRINT(TX_DBG,
  3813. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3814. put_off, get_off);
  3815. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3816. }
  3817. swstats->mem_allocated += skb->truesize;
  3818. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3819. if (sp->config.intr_type == MSI_X)
  3820. tx_intr_handler(fifo);
  3821. return NETDEV_TX_OK;
  3822. pci_map_failed:
  3823. swstats->pci_map_fail_cnt++;
  3824. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3825. swstats->mem_freed += skb->truesize;
  3826. dev_kfree_skb(skb);
  3827. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3828. return NETDEV_TX_OK;
  3829. }
  3830. static void
  3831. s2io_alarm_handle(unsigned long data)
  3832. {
  3833. struct s2io_nic *sp = (struct s2io_nic *)data;
  3834. struct net_device *dev = sp->dev;
  3835. s2io_handle_errors(dev);
  3836. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3837. }
  3838. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3839. {
  3840. struct ring_info *ring = (struct ring_info *)dev_id;
  3841. struct s2io_nic *sp = ring->nic;
  3842. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3843. if (unlikely(!is_s2io_card_up(sp)))
  3844. return IRQ_HANDLED;
  3845. if (sp->config.napi) {
  3846. u8 __iomem *addr = NULL;
  3847. u8 val8 = 0;
  3848. addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
  3849. addr += (7 - ring->ring_no);
  3850. val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
  3851. writeb(val8, addr);
  3852. val8 = readb(addr);
  3853. napi_schedule(&ring->napi);
  3854. } else {
  3855. rx_intr_handler(ring, 0);
  3856. s2io_chk_rx_buffers(sp, ring);
  3857. }
  3858. return IRQ_HANDLED;
  3859. }
  3860. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3861. {
  3862. int i;
  3863. struct fifo_info *fifos = (struct fifo_info *)dev_id;
  3864. struct s2io_nic *sp = fifos->nic;
  3865. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3866. struct config_param *config = &sp->config;
  3867. u64 reason;
  3868. if (unlikely(!is_s2io_card_up(sp)))
  3869. return IRQ_NONE;
  3870. reason = readq(&bar0->general_int_status);
  3871. if (unlikely(reason == S2IO_MINUS_ONE))
  3872. /* Nothing much can be done. Get out */
  3873. return IRQ_HANDLED;
  3874. if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
  3875. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  3876. if (reason & GEN_INTR_TXPIC)
  3877. s2io_txpic_intr_handle(sp);
  3878. if (reason & GEN_INTR_TXTRAFFIC)
  3879. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  3880. for (i = 0; i < config->tx_fifo_num; i++)
  3881. tx_intr_handler(&fifos[i]);
  3882. writeq(sp->general_int_mask, &bar0->general_int_mask);
  3883. readl(&bar0->general_int_status);
  3884. return IRQ_HANDLED;
  3885. }
  3886. /* The interrupt was not raised by us */
  3887. return IRQ_NONE;
  3888. }
  3889. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3890. {
  3891. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3892. u64 val64;
  3893. val64 = readq(&bar0->pic_int_status);
  3894. if (val64 & PIC_INT_GPIO) {
  3895. val64 = readq(&bar0->gpio_int_reg);
  3896. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3897. (val64 & GPIO_INT_REG_LINK_UP)) {
  3898. /*
  3899. * This is unstable state so clear both up/down
  3900. * interrupt and adapter to re-evaluate the link state.
  3901. */
  3902. val64 |= GPIO_INT_REG_LINK_DOWN;
  3903. val64 |= GPIO_INT_REG_LINK_UP;
  3904. writeq(val64, &bar0->gpio_int_reg);
  3905. val64 = readq(&bar0->gpio_int_mask);
  3906. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3907. GPIO_INT_MASK_LINK_DOWN);
  3908. writeq(val64, &bar0->gpio_int_mask);
  3909. } else if (val64 & GPIO_INT_REG_LINK_UP) {
  3910. val64 = readq(&bar0->adapter_status);
  3911. /* Enable Adapter */
  3912. val64 = readq(&bar0->adapter_control);
  3913. val64 |= ADAPTER_CNTL_EN;
  3914. writeq(val64, &bar0->adapter_control);
  3915. val64 |= ADAPTER_LED_ON;
  3916. writeq(val64, &bar0->adapter_control);
  3917. if (!sp->device_enabled_once)
  3918. sp->device_enabled_once = 1;
  3919. s2io_link(sp, LINK_UP);
  3920. /*
  3921. * unmask link down interrupt and mask link-up
  3922. * intr
  3923. */
  3924. val64 = readq(&bar0->gpio_int_mask);
  3925. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3926. val64 |= GPIO_INT_MASK_LINK_UP;
  3927. writeq(val64, &bar0->gpio_int_mask);
  3928. } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3929. val64 = readq(&bar0->adapter_status);
  3930. s2io_link(sp, LINK_DOWN);
  3931. /* Link is down so unmaks link up interrupt */
  3932. val64 = readq(&bar0->gpio_int_mask);
  3933. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3934. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3935. writeq(val64, &bar0->gpio_int_mask);
  3936. /* turn off LED */
  3937. val64 = readq(&bar0->adapter_control);
  3938. val64 = val64 & (~ADAPTER_LED_ON);
  3939. writeq(val64, &bar0->adapter_control);
  3940. }
  3941. }
  3942. val64 = readq(&bar0->gpio_int_mask);
  3943. }
  3944. /**
  3945. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3946. * @value: alarm bits
  3947. * @addr: address value
  3948. * @cnt: counter variable
  3949. * Description: Check for alarm and increment the counter
  3950. * Return Value:
  3951. * 1 - if alarm bit set
  3952. * 0 - if alarm bit is not set
  3953. */
  3954. static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
  3955. unsigned long long *cnt)
  3956. {
  3957. u64 val64;
  3958. val64 = readq(addr);
  3959. if (val64 & value) {
  3960. writeq(val64, addr);
  3961. (*cnt)++;
  3962. return 1;
  3963. }
  3964. return 0;
  3965. }
  3966. /**
  3967. * s2io_handle_errors - Xframe error indication handler
  3968. * @nic: device private variable
  3969. * Description: Handle alarms such as loss of link, single or
  3970. * double ECC errors, critical and serious errors.
  3971. * Return Value:
  3972. * NONE
  3973. */
  3974. static void s2io_handle_errors(void *dev_id)
  3975. {
  3976. struct net_device *dev = (struct net_device *)dev_id;
  3977. struct s2io_nic *sp = netdev_priv(dev);
  3978. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3979. u64 temp64 = 0, val64 = 0;
  3980. int i = 0;
  3981. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3982. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3983. if (!is_s2io_card_up(sp))
  3984. return;
  3985. if (pci_channel_offline(sp->pdev))
  3986. return;
  3987. memset(&sw_stat->ring_full_cnt, 0,
  3988. sizeof(sw_stat->ring_full_cnt));
  3989. /* Handling the XPAK counters update */
  3990. if (stats->xpak_timer_count < 72000) {
  3991. /* waiting for an hour */
  3992. stats->xpak_timer_count++;
  3993. } else {
  3994. s2io_updt_xpak_counter(dev);
  3995. /* reset the count to zero */
  3996. stats->xpak_timer_count = 0;
  3997. }
  3998. /* Handling link status change error Intr */
  3999. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  4000. val64 = readq(&bar0->mac_rmac_err_reg);
  4001. writeq(val64, &bar0->mac_rmac_err_reg);
  4002. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  4003. schedule_work(&sp->set_link_task);
  4004. }
  4005. /* In case of a serious error, the device will be Reset. */
  4006. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  4007. &sw_stat->serious_err_cnt))
  4008. goto reset;
  4009. /* Check for data parity error */
  4010. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  4011. &sw_stat->parity_err_cnt))
  4012. goto reset;
  4013. /* Check for ring full counter */
  4014. if (sp->device_type == XFRAME_II_DEVICE) {
  4015. val64 = readq(&bar0->ring_bump_counter1);
  4016. for (i = 0; i < 4; i++) {
  4017. temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
  4018. temp64 >>= 64 - ((i+1)*16);
  4019. sw_stat->ring_full_cnt[i] += temp64;
  4020. }
  4021. val64 = readq(&bar0->ring_bump_counter2);
  4022. for (i = 0; i < 4; i++) {
  4023. temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
  4024. temp64 >>= 64 - ((i+1)*16);
  4025. sw_stat->ring_full_cnt[i+4] += temp64;
  4026. }
  4027. }
  4028. val64 = readq(&bar0->txdma_int_status);
  4029. /*check for pfc_err*/
  4030. if (val64 & TXDMA_PFC_INT) {
  4031. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  4032. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  4033. PFC_PCIX_ERR,
  4034. &bar0->pfc_err_reg,
  4035. &sw_stat->pfc_err_cnt))
  4036. goto reset;
  4037. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
  4038. &bar0->pfc_err_reg,
  4039. &sw_stat->pfc_err_cnt);
  4040. }
  4041. /*check for tda_err*/
  4042. if (val64 & TXDMA_TDA_INT) {
  4043. if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
  4044. TDA_SM0_ERR_ALARM |
  4045. TDA_SM1_ERR_ALARM,
  4046. &bar0->tda_err_reg,
  4047. &sw_stat->tda_err_cnt))
  4048. goto reset;
  4049. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  4050. &bar0->tda_err_reg,
  4051. &sw_stat->tda_err_cnt);
  4052. }
  4053. /*check for pcc_err*/
  4054. if (val64 & TXDMA_PCC_INT) {
  4055. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  4056. PCC_N_SERR | PCC_6_COF_OV_ERR |
  4057. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  4058. PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
  4059. PCC_TXB_ECC_DB_ERR,
  4060. &bar0->pcc_err_reg,
  4061. &sw_stat->pcc_err_cnt))
  4062. goto reset;
  4063. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  4064. &bar0->pcc_err_reg,
  4065. &sw_stat->pcc_err_cnt);
  4066. }
  4067. /*check for tti_err*/
  4068. if (val64 & TXDMA_TTI_INT) {
  4069. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
  4070. &bar0->tti_err_reg,
  4071. &sw_stat->tti_err_cnt))
  4072. goto reset;
  4073. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  4074. &bar0->tti_err_reg,
  4075. &sw_stat->tti_err_cnt);
  4076. }
  4077. /*check for lso_err*/
  4078. if (val64 & TXDMA_LSO_INT) {
  4079. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
  4080. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  4081. &bar0->lso_err_reg,
  4082. &sw_stat->lso_err_cnt))
  4083. goto reset;
  4084. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  4085. &bar0->lso_err_reg,
  4086. &sw_stat->lso_err_cnt);
  4087. }
  4088. /*check for tpa_err*/
  4089. if (val64 & TXDMA_TPA_INT) {
  4090. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
  4091. &bar0->tpa_err_reg,
  4092. &sw_stat->tpa_err_cnt))
  4093. goto reset;
  4094. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
  4095. &bar0->tpa_err_reg,
  4096. &sw_stat->tpa_err_cnt);
  4097. }
  4098. /*check for sm_err*/
  4099. if (val64 & TXDMA_SM_INT) {
  4100. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
  4101. &bar0->sm_err_reg,
  4102. &sw_stat->sm_err_cnt))
  4103. goto reset;
  4104. }
  4105. val64 = readq(&bar0->mac_int_status);
  4106. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  4107. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  4108. &bar0->mac_tmac_err_reg,
  4109. &sw_stat->mac_tmac_err_cnt))
  4110. goto reset;
  4111. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  4112. TMAC_DESC_ECC_SG_ERR |
  4113. TMAC_DESC_ECC_DB_ERR,
  4114. &bar0->mac_tmac_err_reg,
  4115. &sw_stat->mac_tmac_err_cnt);
  4116. }
  4117. val64 = readq(&bar0->xgxs_int_status);
  4118. if (val64 & XGXS_INT_STATUS_TXGXS) {
  4119. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  4120. &bar0->xgxs_txgxs_err_reg,
  4121. &sw_stat->xgxs_txgxs_err_cnt))
  4122. goto reset;
  4123. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  4124. &bar0->xgxs_txgxs_err_reg,
  4125. &sw_stat->xgxs_txgxs_err_cnt);
  4126. }
  4127. val64 = readq(&bar0->rxdma_int_status);
  4128. if (val64 & RXDMA_INT_RC_INT_M) {
  4129. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
  4130. RC_FTC_ECC_DB_ERR |
  4131. RC_PRCn_SM_ERR_ALARM |
  4132. RC_FTC_SM_ERR_ALARM,
  4133. &bar0->rc_err_reg,
  4134. &sw_stat->rc_err_cnt))
  4135. goto reset;
  4136. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
  4137. RC_FTC_ECC_SG_ERR |
  4138. RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4139. &sw_stat->rc_err_cnt);
  4140. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
  4141. PRC_PCI_AB_WR_Rn |
  4142. PRC_PCI_AB_F_WR_Rn,
  4143. &bar0->prc_pcix_err_reg,
  4144. &sw_stat->prc_pcix_err_cnt))
  4145. goto reset;
  4146. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
  4147. PRC_PCI_DP_WR_Rn |
  4148. PRC_PCI_DP_F_WR_Rn,
  4149. &bar0->prc_pcix_err_reg,
  4150. &sw_stat->prc_pcix_err_cnt);
  4151. }
  4152. if (val64 & RXDMA_INT_RPA_INT_M) {
  4153. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4154. &bar0->rpa_err_reg,
  4155. &sw_stat->rpa_err_cnt))
  4156. goto reset;
  4157. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4158. &bar0->rpa_err_reg,
  4159. &sw_stat->rpa_err_cnt);
  4160. }
  4161. if (val64 & RXDMA_INT_RDA_INT_M) {
  4162. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
  4163. RDA_FRM_ECC_DB_N_AERR |
  4164. RDA_SM1_ERR_ALARM |
  4165. RDA_SM0_ERR_ALARM |
  4166. RDA_RXD_ECC_DB_SERR,
  4167. &bar0->rda_err_reg,
  4168. &sw_stat->rda_err_cnt))
  4169. goto reset;
  4170. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
  4171. RDA_FRM_ECC_SG_ERR |
  4172. RDA_MISC_ERR |
  4173. RDA_PCIX_ERR,
  4174. &bar0->rda_err_reg,
  4175. &sw_stat->rda_err_cnt);
  4176. }
  4177. if (val64 & RXDMA_INT_RTI_INT_M) {
  4178. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
  4179. &bar0->rti_err_reg,
  4180. &sw_stat->rti_err_cnt))
  4181. goto reset;
  4182. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4183. &bar0->rti_err_reg,
  4184. &sw_stat->rti_err_cnt);
  4185. }
  4186. val64 = readq(&bar0->mac_int_status);
  4187. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4188. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4189. &bar0->mac_rmac_err_reg,
  4190. &sw_stat->mac_rmac_err_cnt))
  4191. goto reset;
  4192. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
  4193. RMAC_SINGLE_ECC_ERR |
  4194. RMAC_DOUBLE_ECC_ERR,
  4195. &bar0->mac_rmac_err_reg,
  4196. &sw_stat->mac_rmac_err_cnt);
  4197. }
  4198. val64 = readq(&bar0->xgxs_int_status);
  4199. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4200. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4201. &bar0->xgxs_rxgxs_err_reg,
  4202. &sw_stat->xgxs_rxgxs_err_cnt))
  4203. goto reset;
  4204. }
  4205. val64 = readq(&bar0->mc_int_status);
  4206. if (val64 & MC_INT_STATUS_MC_INT) {
  4207. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
  4208. &bar0->mc_err_reg,
  4209. &sw_stat->mc_err_cnt))
  4210. goto reset;
  4211. /* Handling Ecc errors */
  4212. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4213. writeq(val64, &bar0->mc_err_reg);
  4214. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4215. sw_stat->double_ecc_errs++;
  4216. if (sp->device_type != XFRAME_II_DEVICE) {
  4217. /*
  4218. * Reset XframeI only if critical error
  4219. */
  4220. if (val64 &
  4221. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4222. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4223. goto reset;
  4224. }
  4225. } else
  4226. sw_stat->single_ecc_errs++;
  4227. }
  4228. }
  4229. return;
  4230. reset:
  4231. s2io_stop_all_tx_queue(sp);
  4232. schedule_work(&sp->rst_timer_task);
  4233. sw_stat->soft_reset_cnt++;
  4234. }
  4235. /**
  4236. * s2io_isr - ISR handler of the device .
  4237. * @irq: the irq of the device.
  4238. * @dev_id: a void pointer to the dev structure of the NIC.
  4239. * Description: This function is the ISR handler of the device. It
  4240. * identifies the reason for the interrupt and calls the relevant
  4241. * service routines. As a contongency measure, this ISR allocates the
  4242. * recv buffers, if their numbers are below the panic value which is
  4243. * presently set to 25% of the original number of rcv buffers allocated.
  4244. * Return value:
  4245. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4246. * IRQ_NONE: will be returned if interrupt is not from our device
  4247. */
  4248. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4249. {
  4250. struct net_device *dev = (struct net_device *)dev_id;
  4251. struct s2io_nic *sp = netdev_priv(dev);
  4252. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4253. int i;
  4254. u64 reason = 0;
  4255. struct mac_info *mac_control;
  4256. struct config_param *config;
  4257. /* Pretend we handled any irq's from a disconnected card */
  4258. if (pci_channel_offline(sp->pdev))
  4259. return IRQ_NONE;
  4260. if (!is_s2io_card_up(sp))
  4261. return IRQ_NONE;
  4262. config = &sp->config;
  4263. mac_control = &sp->mac_control;
  4264. /*
  4265. * Identify the cause for interrupt and call the appropriate
  4266. * interrupt handler. Causes for the interrupt could be;
  4267. * 1. Rx of packet.
  4268. * 2. Tx complete.
  4269. * 3. Link down.
  4270. */
  4271. reason = readq(&bar0->general_int_status);
  4272. if (unlikely(reason == S2IO_MINUS_ONE))
  4273. return IRQ_HANDLED; /* Nothing much can be done. Get out */
  4274. if (reason &
  4275. (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
  4276. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4277. if (config->napi) {
  4278. if (reason & GEN_INTR_RXTRAFFIC) {
  4279. napi_schedule(&sp->napi);
  4280. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
  4281. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4282. readl(&bar0->rx_traffic_int);
  4283. }
  4284. } else {
  4285. /*
  4286. * rx_traffic_int reg is an R1 register, writing all 1's
  4287. * will ensure that the actual interrupt causing bit
  4288. * get's cleared and hence a read can be avoided.
  4289. */
  4290. if (reason & GEN_INTR_RXTRAFFIC)
  4291. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4292. for (i = 0; i < config->rx_ring_num; i++) {
  4293. struct ring_info *ring = &mac_control->rings[i];
  4294. rx_intr_handler(ring, 0);
  4295. }
  4296. }
  4297. /*
  4298. * tx_traffic_int reg is an R1 register, writing all 1's
  4299. * will ensure that the actual interrupt causing bit get's
  4300. * cleared and hence a read can be avoided.
  4301. */
  4302. if (reason & GEN_INTR_TXTRAFFIC)
  4303. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4304. for (i = 0; i < config->tx_fifo_num; i++)
  4305. tx_intr_handler(&mac_control->fifos[i]);
  4306. if (reason & GEN_INTR_TXPIC)
  4307. s2io_txpic_intr_handle(sp);
  4308. /*
  4309. * Reallocate the buffers from the interrupt handler itself.
  4310. */
  4311. if (!config->napi) {
  4312. for (i = 0; i < config->rx_ring_num; i++) {
  4313. struct ring_info *ring = &mac_control->rings[i];
  4314. s2io_chk_rx_buffers(sp, ring);
  4315. }
  4316. }
  4317. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4318. readl(&bar0->general_int_status);
  4319. return IRQ_HANDLED;
  4320. } else if (!reason) {
  4321. /* The interrupt was not raised by us */
  4322. return IRQ_NONE;
  4323. }
  4324. return IRQ_HANDLED;
  4325. }
  4326. /**
  4327. * s2io_updt_stats -
  4328. */
  4329. static void s2io_updt_stats(struct s2io_nic *sp)
  4330. {
  4331. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4332. u64 val64;
  4333. int cnt = 0;
  4334. if (is_s2io_card_up(sp)) {
  4335. /* Apprx 30us on a 133 MHz bus */
  4336. val64 = SET_UPDT_CLICKS(10) |
  4337. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4338. writeq(val64, &bar0->stat_cfg);
  4339. do {
  4340. udelay(100);
  4341. val64 = readq(&bar0->stat_cfg);
  4342. if (!(val64 & s2BIT(0)))
  4343. break;
  4344. cnt++;
  4345. if (cnt == 5)
  4346. break; /* Updt failed */
  4347. } while (1);
  4348. }
  4349. }
  4350. /**
  4351. * s2io_get_stats - Updates the device statistics structure.
  4352. * @dev : pointer to the device structure.
  4353. * Description:
  4354. * This function updates the device statistics structure in the s2io_nic
  4355. * structure and returns a pointer to the same.
  4356. * Return value:
  4357. * pointer to the updated net_device_stats structure.
  4358. */
  4359. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4360. {
  4361. struct s2io_nic *sp = netdev_priv(dev);
  4362. struct mac_info *mac_control = &sp->mac_control;
  4363. struct stat_block *stats = mac_control->stats_info;
  4364. u64 delta;
  4365. /* Configure Stats for immediate updt */
  4366. s2io_updt_stats(sp);
  4367. /* A device reset will cause the on-adapter statistics to be zero'ed.
  4368. * This can be done while running by changing the MTU. To prevent the
  4369. * system from having the stats zero'ed, the driver keeps a copy of the
  4370. * last update to the system (which is also zero'ed on reset). This
  4371. * enables the driver to accurately know the delta between the last
  4372. * update and the current update.
  4373. */
  4374. delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
  4375. le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
  4376. sp->stats.rx_packets += delta;
  4377. dev->stats.rx_packets += delta;
  4378. delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
  4379. le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
  4380. sp->stats.tx_packets += delta;
  4381. dev->stats.tx_packets += delta;
  4382. delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
  4383. le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
  4384. sp->stats.rx_bytes += delta;
  4385. dev->stats.rx_bytes += delta;
  4386. delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
  4387. le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
  4388. sp->stats.tx_bytes += delta;
  4389. dev->stats.tx_bytes += delta;
  4390. delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
  4391. sp->stats.rx_errors += delta;
  4392. dev->stats.rx_errors += delta;
  4393. delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
  4394. le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
  4395. sp->stats.tx_errors += delta;
  4396. dev->stats.tx_errors += delta;
  4397. delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
  4398. sp->stats.rx_dropped += delta;
  4399. dev->stats.rx_dropped += delta;
  4400. delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
  4401. sp->stats.tx_dropped += delta;
  4402. dev->stats.tx_dropped += delta;
  4403. /* The adapter MAC interprets pause frames as multicast packets, but
  4404. * does not pass them up. This erroneously increases the multicast
  4405. * packet count and needs to be deducted when the multicast frame count
  4406. * is queried.
  4407. */
  4408. delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
  4409. le32_to_cpu(stats->rmac_vld_mcst_frms);
  4410. delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
  4411. delta -= sp->stats.multicast;
  4412. sp->stats.multicast += delta;
  4413. dev->stats.multicast += delta;
  4414. delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
  4415. le32_to_cpu(stats->rmac_usized_frms)) +
  4416. le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
  4417. sp->stats.rx_length_errors += delta;
  4418. dev->stats.rx_length_errors += delta;
  4419. delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
  4420. sp->stats.rx_crc_errors += delta;
  4421. dev->stats.rx_crc_errors += delta;
  4422. return &dev->stats;
  4423. }
  4424. /**
  4425. * s2io_set_multicast - entry point for multicast address enable/disable.
  4426. * @dev : pointer to the device structure
  4427. * Description:
  4428. * This function is a driver entry point which gets called by the kernel
  4429. * whenever multicast addresses must be enabled/disabled. This also gets
  4430. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4431. * determine, if multicast address must be enabled or if promiscuous mode
  4432. * is to be disabled etc.
  4433. * Return value:
  4434. * void.
  4435. */
  4436. static void s2io_set_multicast(struct net_device *dev)
  4437. {
  4438. int i, j, prev_cnt;
  4439. struct netdev_hw_addr *ha;
  4440. struct s2io_nic *sp = netdev_priv(dev);
  4441. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4442. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4443. 0xfeffffffffffULL;
  4444. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
  4445. void __iomem *add;
  4446. struct config_param *config = &sp->config;
  4447. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4448. /* Enable all Multicast addresses */
  4449. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4450. &bar0->rmac_addr_data0_mem);
  4451. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4452. &bar0->rmac_addr_data1_mem);
  4453. val64 = RMAC_ADDR_CMD_MEM_WE |
  4454. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4455. RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
  4456. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4457. /* Wait till command completes */
  4458. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4459. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4460. S2IO_BIT_RESET);
  4461. sp->m_cast_flg = 1;
  4462. sp->all_multi_pos = config->max_mc_addr - 1;
  4463. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4464. /* Disable all Multicast addresses */
  4465. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4466. &bar0->rmac_addr_data0_mem);
  4467. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4468. &bar0->rmac_addr_data1_mem);
  4469. val64 = RMAC_ADDR_CMD_MEM_WE |
  4470. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4471. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4472. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4473. /* Wait till command completes */
  4474. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4475. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4476. S2IO_BIT_RESET);
  4477. sp->m_cast_flg = 0;
  4478. sp->all_multi_pos = 0;
  4479. }
  4480. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4481. /* Put the NIC into promiscuous mode */
  4482. add = &bar0->mac_cfg;
  4483. val64 = readq(&bar0->mac_cfg);
  4484. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4485. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4486. writel((u32)val64, add);
  4487. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4488. writel((u32) (val64 >> 32), (add + 4));
  4489. if (vlan_tag_strip != 1) {
  4490. val64 = readq(&bar0->rx_pa_cfg);
  4491. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4492. writeq(val64, &bar0->rx_pa_cfg);
  4493. sp->vlan_strip_flag = 0;
  4494. }
  4495. val64 = readq(&bar0->mac_cfg);
  4496. sp->promisc_flg = 1;
  4497. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4498. dev->name);
  4499. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4500. /* Remove the NIC from promiscuous mode */
  4501. add = &bar0->mac_cfg;
  4502. val64 = readq(&bar0->mac_cfg);
  4503. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4504. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4505. writel((u32)val64, add);
  4506. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4507. writel((u32) (val64 >> 32), (add + 4));
  4508. if (vlan_tag_strip != 0) {
  4509. val64 = readq(&bar0->rx_pa_cfg);
  4510. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4511. writeq(val64, &bar0->rx_pa_cfg);
  4512. sp->vlan_strip_flag = 1;
  4513. }
  4514. val64 = readq(&bar0->mac_cfg);
  4515. sp->promisc_flg = 0;
  4516. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
  4517. }
  4518. /* Update individual M_CAST address list */
  4519. if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
  4520. if (netdev_mc_count(dev) >
  4521. (config->max_mc_addr - config->max_mac_addr)) {
  4522. DBG_PRINT(ERR_DBG,
  4523. "%s: No more Rx filters can be added - "
  4524. "please enable ALL_MULTI instead\n",
  4525. dev->name);
  4526. return;
  4527. }
  4528. prev_cnt = sp->mc_addr_count;
  4529. sp->mc_addr_count = netdev_mc_count(dev);
  4530. /* Clear out the previous list of Mc in the H/W. */
  4531. for (i = 0; i < prev_cnt; i++) {
  4532. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4533. &bar0->rmac_addr_data0_mem);
  4534. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4535. &bar0->rmac_addr_data1_mem);
  4536. val64 = RMAC_ADDR_CMD_MEM_WE |
  4537. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4538. RMAC_ADDR_CMD_MEM_OFFSET
  4539. (config->mc_start_offset + i);
  4540. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4541. /* Wait for command completes */
  4542. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4543. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4544. S2IO_BIT_RESET)) {
  4545. DBG_PRINT(ERR_DBG,
  4546. "%s: Adding Multicasts failed\n",
  4547. dev->name);
  4548. return;
  4549. }
  4550. }
  4551. /* Create the new Rx filter list and update the same in H/W. */
  4552. i = 0;
  4553. netdev_for_each_mc_addr(ha, dev) {
  4554. mac_addr = 0;
  4555. for (j = 0; j < ETH_ALEN; j++) {
  4556. mac_addr |= ha->addr[j];
  4557. mac_addr <<= 8;
  4558. }
  4559. mac_addr >>= 8;
  4560. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4561. &bar0->rmac_addr_data0_mem);
  4562. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4563. &bar0->rmac_addr_data1_mem);
  4564. val64 = RMAC_ADDR_CMD_MEM_WE |
  4565. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4566. RMAC_ADDR_CMD_MEM_OFFSET
  4567. (i + config->mc_start_offset);
  4568. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4569. /* Wait for command completes */
  4570. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4571. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4572. S2IO_BIT_RESET)) {
  4573. DBG_PRINT(ERR_DBG,
  4574. "%s: Adding Multicasts failed\n",
  4575. dev->name);
  4576. return;
  4577. }
  4578. i++;
  4579. }
  4580. }
  4581. }
  4582. /* read from CAM unicast & multicast addresses and store it in
  4583. * def_mac_addr structure
  4584. */
  4585. static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
  4586. {
  4587. int offset;
  4588. u64 mac_addr = 0x0;
  4589. struct config_param *config = &sp->config;
  4590. /* store unicast & multicast mac addresses */
  4591. for (offset = 0; offset < config->max_mc_addr; offset++) {
  4592. mac_addr = do_s2io_read_unicast_mc(sp, offset);
  4593. /* if read fails disable the entry */
  4594. if (mac_addr == FAILURE)
  4595. mac_addr = S2IO_DISABLE_MAC_ENTRY;
  4596. do_s2io_copy_mac_addr(sp, offset, mac_addr);
  4597. }
  4598. }
  4599. /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
  4600. static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
  4601. {
  4602. int offset;
  4603. struct config_param *config = &sp->config;
  4604. /* restore unicast mac address */
  4605. for (offset = 0; offset < config->max_mac_addr; offset++)
  4606. do_s2io_prog_unicast(sp->dev,
  4607. sp->def_mac_addr[offset].mac_addr);
  4608. /* restore multicast mac address */
  4609. for (offset = config->mc_start_offset;
  4610. offset < config->max_mc_addr; offset++)
  4611. do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
  4612. }
  4613. /* add a multicast MAC address to CAM */
  4614. static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
  4615. {
  4616. int i;
  4617. u64 mac_addr = 0;
  4618. struct config_param *config = &sp->config;
  4619. for (i = 0; i < ETH_ALEN; i++) {
  4620. mac_addr <<= 8;
  4621. mac_addr |= addr[i];
  4622. }
  4623. if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
  4624. return SUCCESS;
  4625. /* check if the multicast mac already preset in CAM */
  4626. for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
  4627. u64 tmp64;
  4628. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4629. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4630. break;
  4631. if (tmp64 == mac_addr)
  4632. return SUCCESS;
  4633. }
  4634. if (i == config->max_mc_addr) {
  4635. DBG_PRINT(ERR_DBG,
  4636. "CAM full no space left for multicast MAC\n");
  4637. return FAILURE;
  4638. }
  4639. /* Update the internal structure with this new mac address */
  4640. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4641. return do_s2io_add_mac(sp, mac_addr, i);
  4642. }
  4643. /* add MAC address to CAM */
  4644. static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
  4645. {
  4646. u64 val64;
  4647. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4648. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4649. &bar0->rmac_addr_data0_mem);
  4650. val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4651. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4652. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4653. /* Wait till command completes */
  4654. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4655. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4656. S2IO_BIT_RESET)) {
  4657. DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
  4658. return FAILURE;
  4659. }
  4660. return SUCCESS;
  4661. }
  4662. /* deletes a specified unicast/multicast mac entry from CAM */
  4663. static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
  4664. {
  4665. int offset;
  4666. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
  4667. struct config_param *config = &sp->config;
  4668. for (offset = 1;
  4669. offset < config->max_mc_addr; offset++) {
  4670. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  4671. if (tmp64 == addr) {
  4672. /* disable the entry by writing 0xffffffffffffULL */
  4673. if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
  4674. return FAILURE;
  4675. /* store the new mac list from CAM */
  4676. do_s2io_store_unicast_mc(sp);
  4677. return SUCCESS;
  4678. }
  4679. }
  4680. DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
  4681. (unsigned long long)addr);
  4682. return FAILURE;
  4683. }
  4684. /* read mac entries from CAM */
  4685. static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
  4686. {
  4687. u64 tmp64 = 0xffffffffffff0000ULL, val64;
  4688. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4689. /* read mac addr */
  4690. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4691. RMAC_ADDR_CMD_MEM_OFFSET(offset);
  4692. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4693. /* Wait till command completes */
  4694. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4695. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4696. S2IO_BIT_RESET)) {
  4697. DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
  4698. return FAILURE;
  4699. }
  4700. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  4701. return tmp64 >> 16;
  4702. }
  4703. /**
  4704. * s2io_set_mac_addr driver entry point
  4705. */
  4706. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4707. {
  4708. struct sockaddr *addr = p;
  4709. if (!is_valid_ether_addr(addr->sa_data))
  4710. return -EINVAL;
  4711. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4712. /* store the MAC address in CAM */
  4713. return do_s2io_prog_unicast(dev, dev->dev_addr);
  4714. }
  4715. /**
  4716. * do_s2io_prog_unicast - Programs the Xframe mac address
  4717. * @dev : pointer to the device structure.
  4718. * @addr: a uchar pointer to the new mac address which is to be set.
  4719. * Description : This procedure will program the Xframe to receive
  4720. * frames with new Mac Address
  4721. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4722. * as defined in errno.h file on failure.
  4723. */
  4724. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4725. {
  4726. struct s2io_nic *sp = netdev_priv(dev);
  4727. register u64 mac_addr = 0, perm_addr = 0;
  4728. int i;
  4729. u64 tmp64;
  4730. struct config_param *config = &sp->config;
  4731. /*
  4732. * Set the new MAC address as the new unicast filter and reflect this
  4733. * change on the device address registered with the OS. It will be
  4734. * at offset 0.
  4735. */
  4736. for (i = 0; i < ETH_ALEN; i++) {
  4737. mac_addr <<= 8;
  4738. mac_addr |= addr[i];
  4739. perm_addr <<= 8;
  4740. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4741. }
  4742. /* check if the dev_addr is different than perm_addr */
  4743. if (mac_addr == perm_addr)
  4744. return SUCCESS;
  4745. /* check if the mac already preset in CAM */
  4746. for (i = 1; i < config->max_mac_addr; i++) {
  4747. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4748. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4749. break;
  4750. if (tmp64 == mac_addr) {
  4751. DBG_PRINT(INFO_DBG,
  4752. "MAC addr:0x%llx already present in CAM\n",
  4753. (unsigned long long)mac_addr);
  4754. return SUCCESS;
  4755. }
  4756. }
  4757. if (i == config->max_mac_addr) {
  4758. DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
  4759. return FAILURE;
  4760. }
  4761. /* Update the internal structure with this new mac address */
  4762. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4763. return do_s2io_add_mac(sp, mac_addr, i);
  4764. }
  4765. /**
  4766. * s2io_ethtool_sset - Sets different link parameters.
  4767. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4768. * @info: pointer to the structure with parameters given by ethtool to set
  4769. * link information.
  4770. * Description:
  4771. * The function sets different link parameters provided by the user onto
  4772. * the NIC.
  4773. * Return value:
  4774. * 0 on success.
  4775. */
  4776. static int s2io_ethtool_sset(struct net_device *dev,
  4777. struct ethtool_cmd *info)
  4778. {
  4779. struct s2io_nic *sp = netdev_priv(dev);
  4780. if ((info->autoneg == AUTONEG_ENABLE) ||
  4781. (info->speed != SPEED_10000) ||
  4782. (info->duplex != DUPLEX_FULL))
  4783. return -EINVAL;
  4784. else {
  4785. s2io_close(sp->dev);
  4786. s2io_open(sp->dev);
  4787. }
  4788. return 0;
  4789. }
  4790. /**
  4791. * s2io_ethtol_gset - Return link specific information.
  4792. * @sp : private member of the device structure, pointer to the
  4793. * s2io_nic structure.
  4794. * @info : pointer to the structure with parameters given by ethtool
  4795. * to return link information.
  4796. * Description:
  4797. * Returns link specific information like speed, duplex etc.. to ethtool.
  4798. * Return value :
  4799. * return 0 on success.
  4800. */
  4801. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4802. {
  4803. struct s2io_nic *sp = netdev_priv(dev);
  4804. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4805. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4806. info->port = PORT_FIBRE;
  4807. /* info->transceiver */
  4808. info->transceiver = XCVR_EXTERNAL;
  4809. if (netif_carrier_ok(sp->dev)) {
  4810. info->speed = 10000;
  4811. info->duplex = DUPLEX_FULL;
  4812. } else {
  4813. info->speed = -1;
  4814. info->duplex = -1;
  4815. }
  4816. info->autoneg = AUTONEG_DISABLE;
  4817. return 0;
  4818. }
  4819. /**
  4820. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4821. * @sp : private member of the device structure, which is a pointer to the
  4822. * s2io_nic structure.
  4823. * @info : pointer to the structure with parameters given by ethtool to
  4824. * return driver information.
  4825. * Description:
  4826. * Returns driver specefic information like name, version etc.. to ethtool.
  4827. * Return value:
  4828. * void
  4829. */
  4830. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4831. struct ethtool_drvinfo *info)
  4832. {
  4833. struct s2io_nic *sp = netdev_priv(dev);
  4834. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4835. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4836. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4837. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4838. info->regdump_len = XENA_REG_SPACE;
  4839. info->eedump_len = XENA_EEPROM_SPACE;
  4840. }
  4841. /**
  4842. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4843. * @sp: private member of the device structure, which is a pointer to the
  4844. * s2io_nic structure.
  4845. * @regs : pointer to the structure with parameters given by ethtool for
  4846. * dumping the registers.
  4847. * @reg_space: The input argumnet into which all the registers are dumped.
  4848. * Description:
  4849. * Dumps the entire register space of xFrame NIC into the user given
  4850. * buffer area.
  4851. * Return value :
  4852. * void .
  4853. */
  4854. static void s2io_ethtool_gregs(struct net_device *dev,
  4855. struct ethtool_regs *regs, void *space)
  4856. {
  4857. int i;
  4858. u64 reg;
  4859. u8 *reg_space = (u8 *)space;
  4860. struct s2io_nic *sp = netdev_priv(dev);
  4861. regs->len = XENA_REG_SPACE;
  4862. regs->version = sp->pdev->subsystem_device;
  4863. for (i = 0; i < regs->len; i += 8) {
  4864. reg = readq(sp->bar0 + i);
  4865. memcpy((reg_space + i), &reg, 8);
  4866. }
  4867. }
  4868. /*
  4869. * s2io_set_led - control NIC led
  4870. */
  4871. static void s2io_set_led(struct s2io_nic *sp, bool on)
  4872. {
  4873. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4874. u16 subid = sp->pdev->subsystem_device;
  4875. u64 val64;
  4876. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4877. ((subid & 0xFF) >= 0x07)) {
  4878. val64 = readq(&bar0->gpio_control);
  4879. if (on)
  4880. val64 |= GPIO_CTRL_GPIO_0;
  4881. else
  4882. val64 &= ~GPIO_CTRL_GPIO_0;
  4883. writeq(val64, &bar0->gpio_control);
  4884. } else {
  4885. val64 = readq(&bar0->adapter_control);
  4886. if (on)
  4887. val64 |= ADAPTER_LED_ON;
  4888. else
  4889. val64 &= ~ADAPTER_LED_ON;
  4890. writeq(val64, &bar0->adapter_control);
  4891. }
  4892. }
  4893. /**
  4894. * s2io_ethtool_set_led - To physically identify the nic on the system.
  4895. * @dev : network device
  4896. * @state: led setting
  4897. *
  4898. * Description: Used to physically identify the NIC on the system.
  4899. * The Link LED will blink for a time specified by the user for
  4900. * identification.
  4901. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4902. * identification is possible only if it's link is up.
  4903. */
  4904. static int s2io_ethtool_set_led(struct net_device *dev,
  4905. enum ethtool_phys_id_state state)
  4906. {
  4907. struct s2io_nic *sp = netdev_priv(dev);
  4908. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4909. u16 subid = sp->pdev->subsystem_device;
  4910. if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
  4911. u64 val64 = readq(&bar0->adapter_control);
  4912. if (!(val64 & ADAPTER_CNTL_EN)) {
  4913. pr_err("Adapter Link down, cannot blink LED\n");
  4914. return -EAGAIN;
  4915. }
  4916. }
  4917. switch (state) {
  4918. case ETHTOOL_ID_ACTIVE:
  4919. sp->adapt_ctrl_org = readq(&bar0->gpio_control);
  4920. return -EINVAL;
  4921. case ETHTOOL_ID_ON:
  4922. s2io_set_led(sp, true);
  4923. break;
  4924. case ETHTOOL_ID_OFF:
  4925. s2io_set_led(sp, false);
  4926. break;
  4927. case ETHTOOL_ID_INACTIVE:
  4928. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
  4929. writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
  4930. }
  4931. return 0;
  4932. }
  4933. static void s2io_ethtool_gringparam(struct net_device *dev,
  4934. struct ethtool_ringparam *ering)
  4935. {
  4936. struct s2io_nic *sp = netdev_priv(dev);
  4937. int i, tx_desc_count = 0, rx_desc_count = 0;
  4938. if (sp->rxd_mode == RXD_MODE_1) {
  4939. ering->rx_max_pending = MAX_RX_DESC_1;
  4940. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4941. } else {
  4942. ering->rx_max_pending = MAX_RX_DESC_2;
  4943. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4944. }
  4945. ering->rx_mini_max_pending = 0;
  4946. ering->tx_max_pending = MAX_TX_DESC;
  4947. for (i = 0; i < sp->config.rx_ring_num; i++)
  4948. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4949. ering->rx_pending = rx_desc_count;
  4950. ering->rx_jumbo_pending = rx_desc_count;
  4951. ering->rx_mini_pending = 0;
  4952. for (i = 0; i < sp->config.tx_fifo_num; i++)
  4953. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4954. ering->tx_pending = tx_desc_count;
  4955. DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
  4956. }
  4957. /**
  4958. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4959. * @sp : private member of the device structure, which is a pointer to the
  4960. * s2io_nic structure.
  4961. * @ep : pointer to the structure with pause parameters given by ethtool.
  4962. * Description:
  4963. * Returns the Pause frame generation and reception capability of the NIC.
  4964. * Return value:
  4965. * void
  4966. */
  4967. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4968. struct ethtool_pauseparam *ep)
  4969. {
  4970. u64 val64;
  4971. struct s2io_nic *sp = netdev_priv(dev);
  4972. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4973. val64 = readq(&bar0->rmac_pause_cfg);
  4974. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4975. ep->tx_pause = true;
  4976. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4977. ep->rx_pause = true;
  4978. ep->autoneg = false;
  4979. }
  4980. /**
  4981. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4982. * @sp : private member of the device structure, which is a pointer to the
  4983. * s2io_nic structure.
  4984. * @ep : pointer to the structure with pause parameters given by ethtool.
  4985. * Description:
  4986. * It can be used to set or reset Pause frame generation or reception
  4987. * support of the NIC.
  4988. * Return value:
  4989. * int, returns 0 on Success
  4990. */
  4991. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4992. struct ethtool_pauseparam *ep)
  4993. {
  4994. u64 val64;
  4995. struct s2io_nic *sp = netdev_priv(dev);
  4996. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4997. val64 = readq(&bar0->rmac_pause_cfg);
  4998. if (ep->tx_pause)
  4999. val64 |= RMAC_PAUSE_GEN_ENABLE;
  5000. else
  5001. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  5002. if (ep->rx_pause)
  5003. val64 |= RMAC_PAUSE_RX_ENABLE;
  5004. else
  5005. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  5006. writeq(val64, &bar0->rmac_pause_cfg);
  5007. return 0;
  5008. }
  5009. /**
  5010. * read_eeprom - reads 4 bytes of data from user given offset.
  5011. * @sp : private member of the device structure, which is a pointer to the
  5012. * s2io_nic structure.
  5013. * @off : offset at which the data must be written
  5014. * @data : Its an output parameter where the data read at the given
  5015. * offset is stored.
  5016. * Description:
  5017. * Will read 4 bytes of data from the user given offset and return the
  5018. * read data.
  5019. * NOTE: Will allow to read only part of the EEPROM visible through the
  5020. * I2C bus.
  5021. * Return value:
  5022. * -1 on failure and 0 on success.
  5023. */
  5024. #define S2IO_DEV_ID 5
  5025. static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
  5026. {
  5027. int ret = -1;
  5028. u32 exit_cnt = 0;
  5029. u64 val64;
  5030. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5031. if (sp->device_type == XFRAME_I_DEVICE) {
  5032. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
  5033. I2C_CONTROL_ADDR(off) |
  5034. I2C_CONTROL_BYTE_CNT(0x3) |
  5035. I2C_CONTROL_READ |
  5036. I2C_CONTROL_CNTL_START;
  5037. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  5038. while (exit_cnt < 5) {
  5039. val64 = readq(&bar0->i2c_control);
  5040. if (I2C_CONTROL_CNTL_END(val64)) {
  5041. *data = I2C_CONTROL_GET_DATA(val64);
  5042. ret = 0;
  5043. break;
  5044. }
  5045. msleep(50);
  5046. exit_cnt++;
  5047. }
  5048. }
  5049. if (sp->device_type == XFRAME_II_DEVICE) {
  5050. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  5051. SPI_CONTROL_BYTECNT(0x3) |
  5052. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  5053. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5054. val64 |= SPI_CONTROL_REQ;
  5055. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5056. while (exit_cnt < 5) {
  5057. val64 = readq(&bar0->spi_control);
  5058. if (val64 & SPI_CONTROL_NACK) {
  5059. ret = 1;
  5060. break;
  5061. } else if (val64 & SPI_CONTROL_DONE) {
  5062. *data = readq(&bar0->spi_data);
  5063. *data &= 0xffffff;
  5064. ret = 0;
  5065. break;
  5066. }
  5067. msleep(50);
  5068. exit_cnt++;
  5069. }
  5070. }
  5071. return ret;
  5072. }
  5073. /**
  5074. * write_eeprom - actually writes the relevant part of the data value.
  5075. * @sp : private member of the device structure, which is a pointer to the
  5076. * s2io_nic structure.
  5077. * @off : offset at which the data must be written
  5078. * @data : The data that is to be written
  5079. * @cnt : Number of bytes of the data that are actually to be written into
  5080. * the Eeprom. (max of 3)
  5081. * Description:
  5082. * Actually writes the relevant part of the data value into the Eeprom
  5083. * through the I2C bus.
  5084. * Return value:
  5085. * 0 on success, -1 on failure.
  5086. */
  5087. static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
  5088. {
  5089. int exit_cnt = 0, ret = -1;
  5090. u64 val64;
  5091. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5092. if (sp->device_type == XFRAME_I_DEVICE) {
  5093. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
  5094. I2C_CONTROL_ADDR(off) |
  5095. I2C_CONTROL_BYTE_CNT(cnt) |
  5096. I2C_CONTROL_SET_DATA((u32)data) |
  5097. I2C_CONTROL_CNTL_START;
  5098. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  5099. while (exit_cnt < 5) {
  5100. val64 = readq(&bar0->i2c_control);
  5101. if (I2C_CONTROL_CNTL_END(val64)) {
  5102. if (!(val64 & I2C_CONTROL_NACK))
  5103. ret = 0;
  5104. break;
  5105. }
  5106. msleep(50);
  5107. exit_cnt++;
  5108. }
  5109. }
  5110. if (sp->device_type == XFRAME_II_DEVICE) {
  5111. int write_cnt = (cnt == 8) ? 0 : cnt;
  5112. writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
  5113. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  5114. SPI_CONTROL_BYTECNT(write_cnt) |
  5115. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  5116. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5117. val64 |= SPI_CONTROL_REQ;
  5118. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5119. while (exit_cnt < 5) {
  5120. val64 = readq(&bar0->spi_control);
  5121. if (val64 & SPI_CONTROL_NACK) {
  5122. ret = 1;
  5123. break;
  5124. } else if (val64 & SPI_CONTROL_DONE) {
  5125. ret = 0;
  5126. break;
  5127. }
  5128. msleep(50);
  5129. exit_cnt++;
  5130. }
  5131. }
  5132. return ret;
  5133. }
  5134. static void s2io_vpd_read(struct s2io_nic *nic)
  5135. {
  5136. u8 *vpd_data;
  5137. u8 data;
  5138. int i = 0, cnt, len, fail = 0;
  5139. int vpd_addr = 0x80;
  5140. struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
  5141. if (nic->device_type == XFRAME_II_DEVICE) {
  5142. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  5143. vpd_addr = 0x80;
  5144. } else {
  5145. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  5146. vpd_addr = 0x50;
  5147. }
  5148. strcpy(nic->serial_num, "NOT AVAILABLE");
  5149. vpd_data = kmalloc(256, GFP_KERNEL);
  5150. if (!vpd_data) {
  5151. swstats->mem_alloc_fail_cnt++;
  5152. return;
  5153. }
  5154. swstats->mem_allocated += 256;
  5155. for (i = 0; i < 256; i += 4) {
  5156. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  5157. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  5158. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  5159. for (cnt = 0; cnt < 5; cnt++) {
  5160. msleep(2);
  5161. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  5162. if (data == 0x80)
  5163. break;
  5164. }
  5165. if (cnt >= 5) {
  5166. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  5167. fail = 1;
  5168. break;
  5169. }
  5170. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  5171. (u32 *)&vpd_data[i]);
  5172. }
  5173. if (!fail) {
  5174. /* read serial number of adapter */
  5175. for (cnt = 0; cnt < 252; cnt++) {
  5176. if ((vpd_data[cnt] == 'S') &&
  5177. (vpd_data[cnt+1] == 'N')) {
  5178. len = vpd_data[cnt+2];
  5179. if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
  5180. memcpy(nic->serial_num,
  5181. &vpd_data[cnt + 3],
  5182. len);
  5183. memset(nic->serial_num+len,
  5184. 0,
  5185. VPD_STRING_LEN-len);
  5186. break;
  5187. }
  5188. }
  5189. }
  5190. }
  5191. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  5192. len = vpd_data[1];
  5193. memcpy(nic->product_name, &vpd_data[3], len);
  5194. nic->product_name[len] = 0;
  5195. }
  5196. kfree(vpd_data);
  5197. swstats->mem_freed += 256;
  5198. }
  5199. /**
  5200. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  5201. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  5202. * @eeprom : pointer to the user level structure provided by ethtool,
  5203. * containing all relevant information.
  5204. * @data_buf : user defined value to be written into Eeprom.
  5205. * Description: Reads the values stored in the Eeprom at given offset
  5206. * for a given length. Stores these values int the input argument data
  5207. * buffer 'data_buf' and returns these to the caller (ethtool.)
  5208. * Return value:
  5209. * int 0 on success
  5210. */
  5211. static int s2io_ethtool_geeprom(struct net_device *dev,
  5212. struct ethtool_eeprom *eeprom, u8 * data_buf)
  5213. {
  5214. u32 i, valid;
  5215. u64 data;
  5216. struct s2io_nic *sp = netdev_priv(dev);
  5217. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  5218. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  5219. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  5220. for (i = 0; i < eeprom->len; i += 4) {
  5221. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  5222. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  5223. return -EFAULT;
  5224. }
  5225. valid = INV(data);
  5226. memcpy((data_buf + i), &valid, 4);
  5227. }
  5228. return 0;
  5229. }
  5230. /**
  5231. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  5232. * @sp : private member of the device structure, which is a pointer to the
  5233. * s2io_nic structure.
  5234. * @eeprom : pointer to the user level structure provided by ethtool,
  5235. * containing all relevant information.
  5236. * @data_buf ; user defined value to be written into Eeprom.
  5237. * Description:
  5238. * Tries to write the user provided value in the Eeprom, at the offset
  5239. * given by the user.
  5240. * Return value:
  5241. * 0 on success, -EFAULT on failure.
  5242. */
  5243. static int s2io_ethtool_seeprom(struct net_device *dev,
  5244. struct ethtool_eeprom *eeprom,
  5245. u8 *data_buf)
  5246. {
  5247. int len = eeprom->len, cnt = 0;
  5248. u64 valid = 0, data;
  5249. struct s2io_nic *sp = netdev_priv(dev);
  5250. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  5251. DBG_PRINT(ERR_DBG,
  5252. "ETHTOOL_WRITE_EEPROM Err: "
  5253. "Magic value is wrong, it is 0x%x should be 0x%x\n",
  5254. (sp->pdev->vendor | (sp->pdev->device << 16)),
  5255. eeprom->magic);
  5256. return -EFAULT;
  5257. }
  5258. while (len) {
  5259. data = (u32)data_buf[cnt] & 0x000000FF;
  5260. if (data)
  5261. valid = (u32)(data << 24);
  5262. else
  5263. valid = data;
  5264. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  5265. DBG_PRINT(ERR_DBG,
  5266. "ETHTOOL_WRITE_EEPROM Err: "
  5267. "Cannot write into the specified offset\n");
  5268. return -EFAULT;
  5269. }
  5270. cnt++;
  5271. len--;
  5272. }
  5273. return 0;
  5274. }
  5275. /**
  5276. * s2io_register_test - reads and writes into all clock domains.
  5277. * @sp : private member of the device structure, which is a pointer to the
  5278. * s2io_nic structure.
  5279. * @data : variable that returns the result of each of the test conducted b
  5280. * by the driver.
  5281. * Description:
  5282. * Read and write into all clock domains. The NIC has 3 clock domains,
  5283. * see that registers in all the three regions are accessible.
  5284. * Return value:
  5285. * 0 on success.
  5286. */
  5287. static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
  5288. {
  5289. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5290. u64 val64 = 0, exp_val;
  5291. int fail = 0;
  5292. val64 = readq(&bar0->pif_rd_swapper_fb);
  5293. if (val64 != 0x123456789abcdefULL) {
  5294. fail = 1;
  5295. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
  5296. }
  5297. val64 = readq(&bar0->rmac_pause_cfg);
  5298. if (val64 != 0xc000ffff00000000ULL) {
  5299. fail = 1;
  5300. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
  5301. }
  5302. val64 = readq(&bar0->rx_queue_cfg);
  5303. if (sp->device_type == XFRAME_II_DEVICE)
  5304. exp_val = 0x0404040404040404ULL;
  5305. else
  5306. exp_val = 0x0808080808080808ULL;
  5307. if (val64 != exp_val) {
  5308. fail = 1;
  5309. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
  5310. }
  5311. val64 = readq(&bar0->xgxs_efifo_cfg);
  5312. if (val64 != 0x000000001923141EULL) {
  5313. fail = 1;
  5314. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
  5315. }
  5316. val64 = 0x5A5A5A5A5A5A5A5AULL;
  5317. writeq(val64, &bar0->xmsi_data);
  5318. val64 = readq(&bar0->xmsi_data);
  5319. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5320. fail = 1;
  5321. DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
  5322. }
  5323. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5324. writeq(val64, &bar0->xmsi_data);
  5325. val64 = readq(&bar0->xmsi_data);
  5326. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5327. fail = 1;
  5328. DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
  5329. }
  5330. *data = fail;
  5331. return fail;
  5332. }
  5333. /**
  5334. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5335. * @sp : private member of the device structure, which is a pointer to the
  5336. * s2io_nic structure.
  5337. * @data:variable that returns the result of each of the test conducted by
  5338. * the driver.
  5339. * Description:
  5340. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5341. * register.
  5342. * Return value:
  5343. * 0 on success.
  5344. */
  5345. static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
  5346. {
  5347. int fail = 0;
  5348. u64 ret_data, org_4F0, org_7F0;
  5349. u8 saved_4F0 = 0, saved_7F0 = 0;
  5350. struct net_device *dev = sp->dev;
  5351. /* Test Write Error at offset 0 */
  5352. /* Note that SPI interface allows write access to all areas
  5353. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5354. */
  5355. if (sp->device_type == XFRAME_I_DEVICE)
  5356. if (!write_eeprom(sp, 0, 0, 3))
  5357. fail = 1;
  5358. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5359. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5360. saved_4F0 = 1;
  5361. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5362. saved_7F0 = 1;
  5363. /* Test Write at offset 4f0 */
  5364. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5365. fail = 1;
  5366. if (read_eeprom(sp, 0x4F0, &ret_data))
  5367. fail = 1;
  5368. if (ret_data != 0x012345) {
  5369. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5370. "Data written %llx Data read %llx\n",
  5371. dev->name, (unsigned long long)0x12345,
  5372. (unsigned long long)ret_data);
  5373. fail = 1;
  5374. }
  5375. /* Reset the EEPROM data go FFFF */
  5376. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5377. /* Test Write Request Error at offset 0x7c */
  5378. if (sp->device_type == XFRAME_I_DEVICE)
  5379. if (!write_eeprom(sp, 0x07C, 0, 3))
  5380. fail = 1;
  5381. /* Test Write Request at offset 0x7f0 */
  5382. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5383. fail = 1;
  5384. if (read_eeprom(sp, 0x7F0, &ret_data))
  5385. fail = 1;
  5386. if (ret_data != 0x012345) {
  5387. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5388. "Data written %llx Data read %llx\n",
  5389. dev->name, (unsigned long long)0x12345,
  5390. (unsigned long long)ret_data);
  5391. fail = 1;
  5392. }
  5393. /* Reset the EEPROM data go FFFF */
  5394. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5395. if (sp->device_type == XFRAME_I_DEVICE) {
  5396. /* Test Write Error at offset 0x80 */
  5397. if (!write_eeprom(sp, 0x080, 0, 3))
  5398. fail = 1;
  5399. /* Test Write Error at offset 0xfc */
  5400. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5401. fail = 1;
  5402. /* Test Write Error at offset 0x100 */
  5403. if (!write_eeprom(sp, 0x100, 0, 3))
  5404. fail = 1;
  5405. /* Test Write Error at offset 4ec */
  5406. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5407. fail = 1;
  5408. }
  5409. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5410. if (saved_4F0)
  5411. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5412. if (saved_7F0)
  5413. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5414. *data = fail;
  5415. return fail;
  5416. }
  5417. /**
  5418. * s2io_bist_test - invokes the MemBist test of the card .
  5419. * @sp : private member of the device structure, which is a pointer to the
  5420. * s2io_nic structure.
  5421. * @data:variable that returns the result of each of the test conducted by
  5422. * the driver.
  5423. * Description:
  5424. * This invokes the MemBist test of the card. We give around
  5425. * 2 secs time for the Test to complete. If it's still not complete
  5426. * within this peiod, we consider that the test failed.
  5427. * Return value:
  5428. * 0 on success and -1 on failure.
  5429. */
  5430. static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
  5431. {
  5432. u8 bist = 0;
  5433. int cnt = 0, ret = -1;
  5434. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5435. bist |= PCI_BIST_START;
  5436. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5437. while (cnt < 20) {
  5438. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5439. if (!(bist & PCI_BIST_START)) {
  5440. *data = (bist & PCI_BIST_CODE_MASK);
  5441. ret = 0;
  5442. break;
  5443. }
  5444. msleep(100);
  5445. cnt++;
  5446. }
  5447. return ret;
  5448. }
  5449. /**
  5450. * s2io-link_test - verifies the link state of the nic
  5451. * @sp ; private member of the device structure, which is a pointer to the
  5452. * s2io_nic structure.
  5453. * @data: variable that returns the result of each of the test conducted by
  5454. * the driver.
  5455. * Description:
  5456. * The function verifies the link state of the NIC and updates the input
  5457. * argument 'data' appropriately.
  5458. * Return value:
  5459. * 0 on success.
  5460. */
  5461. static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
  5462. {
  5463. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5464. u64 val64;
  5465. val64 = readq(&bar0->adapter_status);
  5466. if (!(LINK_IS_UP(val64)))
  5467. *data = 1;
  5468. else
  5469. *data = 0;
  5470. return *data;
  5471. }
  5472. /**
  5473. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5474. * @sp - private member of the device structure, which is a pointer to the
  5475. * s2io_nic structure.
  5476. * @data - variable that returns the result of each of the test
  5477. * conducted by the driver.
  5478. * Description:
  5479. * This is one of the offline test that tests the read and write
  5480. * access to the RldRam chip on the NIC.
  5481. * Return value:
  5482. * 0 on success.
  5483. */
  5484. static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
  5485. {
  5486. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5487. u64 val64;
  5488. int cnt, iteration = 0, test_fail = 0;
  5489. val64 = readq(&bar0->adapter_control);
  5490. val64 &= ~ADAPTER_ECC_EN;
  5491. writeq(val64, &bar0->adapter_control);
  5492. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5493. val64 |= MC_RLDRAM_TEST_MODE;
  5494. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5495. val64 = readq(&bar0->mc_rldram_mrs);
  5496. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5497. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5498. val64 |= MC_RLDRAM_MRS_ENABLE;
  5499. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5500. while (iteration < 2) {
  5501. val64 = 0x55555555aaaa0000ULL;
  5502. if (iteration == 1)
  5503. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5504. writeq(val64, &bar0->mc_rldram_test_d0);
  5505. val64 = 0xaaaa5a5555550000ULL;
  5506. if (iteration == 1)
  5507. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5508. writeq(val64, &bar0->mc_rldram_test_d1);
  5509. val64 = 0x55aaaaaaaa5a0000ULL;
  5510. if (iteration == 1)
  5511. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5512. writeq(val64, &bar0->mc_rldram_test_d2);
  5513. val64 = (u64) (0x0000003ffffe0100ULL);
  5514. writeq(val64, &bar0->mc_rldram_test_add);
  5515. val64 = MC_RLDRAM_TEST_MODE |
  5516. MC_RLDRAM_TEST_WRITE |
  5517. MC_RLDRAM_TEST_GO;
  5518. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5519. for (cnt = 0; cnt < 5; cnt++) {
  5520. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5521. if (val64 & MC_RLDRAM_TEST_DONE)
  5522. break;
  5523. msleep(200);
  5524. }
  5525. if (cnt == 5)
  5526. break;
  5527. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5528. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5529. for (cnt = 0; cnt < 5; cnt++) {
  5530. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5531. if (val64 & MC_RLDRAM_TEST_DONE)
  5532. break;
  5533. msleep(500);
  5534. }
  5535. if (cnt == 5)
  5536. break;
  5537. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5538. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5539. test_fail = 1;
  5540. iteration++;
  5541. }
  5542. *data = test_fail;
  5543. /* Bring the adapter out of test mode */
  5544. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5545. return test_fail;
  5546. }
  5547. /**
  5548. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5549. * @sp : private member of the device structure, which is a pointer to the
  5550. * s2io_nic structure.
  5551. * @ethtest : pointer to a ethtool command specific structure that will be
  5552. * returned to the user.
  5553. * @data : variable that returns the result of each of the test
  5554. * conducted by the driver.
  5555. * Description:
  5556. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5557. * the health of the card.
  5558. * Return value:
  5559. * void
  5560. */
  5561. static void s2io_ethtool_test(struct net_device *dev,
  5562. struct ethtool_test *ethtest,
  5563. uint64_t *data)
  5564. {
  5565. struct s2io_nic *sp = netdev_priv(dev);
  5566. int orig_state = netif_running(sp->dev);
  5567. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5568. /* Offline Tests. */
  5569. if (orig_state)
  5570. s2io_close(sp->dev);
  5571. if (s2io_register_test(sp, &data[0]))
  5572. ethtest->flags |= ETH_TEST_FL_FAILED;
  5573. s2io_reset(sp);
  5574. if (s2io_rldram_test(sp, &data[3]))
  5575. ethtest->flags |= ETH_TEST_FL_FAILED;
  5576. s2io_reset(sp);
  5577. if (s2io_eeprom_test(sp, &data[1]))
  5578. ethtest->flags |= ETH_TEST_FL_FAILED;
  5579. if (s2io_bist_test(sp, &data[4]))
  5580. ethtest->flags |= ETH_TEST_FL_FAILED;
  5581. if (orig_state)
  5582. s2io_open(sp->dev);
  5583. data[2] = 0;
  5584. } else {
  5585. /* Online Tests. */
  5586. if (!orig_state) {
  5587. DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
  5588. dev->name);
  5589. data[0] = -1;
  5590. data[1] = -1;
  5591. data[2] = -1;
  5592. data[3] = -1;
  5593. data[4] = -1;
  5594. }
  5595. if (s2io_link_test(sp, &data[2]))
  5596. ethtest->flags |= ETH_TEST_FL_FAILED;
  5597. data[0] = 0;
  5598. data[1] = 0;
  5599. data[3] = 0;
  5600. data[4] = 0;
  5601. }
  5602. }
  5603. static void s2io_get_ethtool_stats(struct net_device *dev,
  5604. struct ethtool_stats *estats,
  5605. u64 *tmp_stats)
  5606. {
  5607. int i = 0, k;
  5608. struct s2io_nic *sp = netdev_priv(dev);
  5609. struct stat_block *stats = sp->mac_control.stats_info;
  5610. struct swStat *swstats = &stats->sw_stat;
  5611. struct xpakStat *xstats = &stats->xpak_stat;
  5612. s2io_updt_stats(sp);
  5613. tmp_stats[i++] =
  5614. (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
  5615. le32_to_cpu(stats->tmac_frms);
  5616. tmp_stats[i++] =
  5617. (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
  5618. le32_to_cpu(stats->tmac_data_octets);
  5619. tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
  5620. tmp_stats[i++] =
  5621. (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
  5622. le32_to_cpu(stats->tmac_mcst_frms);
  5623. tmp_stats[i++] =
  5624. (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
  5625. le32_to_cpu(stats->tmac_bcst_frms);
  5626. tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
  5627. tmp_stats[i++] =
  5628. (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
  5629. le32_to_cpu(stats->tmac_ttl_octets);
  5630. tmp_stats[i++] =
  5631. (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
  5632. le32_to_cpu(stats->tmac_ucst_frms);
  5633. tmp_stats[i++] =
  5634. (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
  5635. le32_to_cpu(stats->tmac_nucst_frms);
  5636. tmp_stats[i++] =
  5637. (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
  5638. le32_to_cpu(stats->tmac_any_err_frms);
  5639. tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
  5640. tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
  5641. tmp_stats[i++] =
  5642. (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
  5643. le32_to_cpu(stats->tmac_vld_ip);
  5644. tmp_stats[i++] =
  5645. (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
  5646. le32_to_cpu(stats->tmac_drop_ip);
  5647. tmp_stats[i++] =
  5648. (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
  5649. le32_to_cpu(stats->tmac_icmp);
  5650. tmp_stats[i++] =
  5651. (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
  5652. le32_to_cpu(stats->tmac_rst_tcp);
  5653. tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
  5654. tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
  5655. le32_to_cpu(stats->tmac_udp);
  5656. tmp_stats[i++] =
  5657. (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
  5658. le32_to_cpu(stats->rmac_vld_frms);
  5659. tmp_stats[i++] =
  5660. (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
  5661. le32_to_cpu(stats->rmac_data_octets);
  5662. tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
  5663. tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
  5664. tmp_stats[i++] =
  5665. (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
  5666. le32_to_cpu(stats->rmac_vld_mcst_frms);
  5667. tmp_stats[i++] =
  5668. (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
  5669. le32_to_cpu(stats->rmac_vld_bcst_frms);
  5670. tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
  5671. tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
  5672. tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
  5673. tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
  5674. tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
  5675. tmp_stats[i++] =
  5676. (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
  5677. le32_to_cpu(stats->rmac_ttl_octets);
  5678. tmp_stats[i++] =
  5679. (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
  5680. | le32_to_cpu(stats->rmac_accepted_ucst_frms);
  5681. tmp_stats[i++] =
  5682. (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
  5683. << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
  5684. tmp_stats[i++] =
  5685. (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
  5686. le32_to_cpu(stats->rmac_discarded_frms);
  5687. tmp_stats[i++] =
  5688. (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
  5689. << 32 | le32_to_cpu(stats->rmac_drop_events);
  5690. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
  5691. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
  5692. tmp_stats[i++] =
  5693. (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
  5694. le32_to_cpu(stats->rmac_usized_frms);
  5695. tmp_stats[i++] =
  5696. (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
  5697. le32_to_cpu(stats->rmac_osized_frms);
  5698. tmp_stats[i++] =
  5699. (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
  5700. le32_to_cpu(stats->rmac_frag_frms);
  5701. tmp_stats[i++] =
  5702. (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
  5703. le32_to_cpu(stats->rmac_jabber_frms);
  5704. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
  5705. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
  5706. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
  5707. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
  5708. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
  5709. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
  5710. tmp_stats[i++] =
  5711. (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
  5712. le32_to_cpu(stats->rmac_ip);
  5713. tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
  5714. tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
  5715. tmp_stats[i++] =
  5716. (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
  5717. le32_to_cpu(stats->rmac_drop_ip);
  5718. tmp_stats[i++] =
  5719. (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
  5720. le32_to_cpu(stats->rmac_icmp);
  5721. tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
  5722. tmp_stats[i++] =
  5723. (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
  5724. le32_to_cpu(stats->rmac_udp);
  5725. tmp_stats[i++] =
  5726. (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
  5727. le32_to_cpu(stats->rmac_err_drp_udp);
  5728. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
  5729. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
  5730. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
  5731. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
  5732. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
  5733. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
  5734. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
  5735. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
  5736. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
  5737. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
  5738. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
  5739. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
  5740. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
  5741. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
  5742. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
  5743. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
  5744. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
  5745. tmp_stats[i++] =
  5746. (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
  5747. le32_to_cpu(stats->rmac_pause_cnt);
  5748. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
  5749. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
  5750. tmp_stats[i++] =
  5751. (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
  5752. le32_to_cpu(stats->rmac_accepted_ip);
  5753. tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
  5754. tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
  5755. tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
  5756. tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
  5757. tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
  5758. tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
  5759. tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
  5760. tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
  5761. tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
  5762. tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
  5763. tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
  5764. tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
  5765. tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
  5766. tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
  5767. tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
  5768. tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
  5769. tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
  5770. tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
  5771. tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
  5772. /* Enhanced statistics exist only for Hercules */
  5773. if (sp->device_type == XFRAME_II_DEVICE) {
  5774. tmp_stats[i++] =
  5775. le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
  5776. tmp_stats[i++] =
  5777. le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
  5778. tmp_stats[i++] =
  5779. le64_to_cpu(stats->rmac_ttl_8192_max_frms);
  5780. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
  5781. tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
  5782. tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
  5783. tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
  5784. tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
  5785. tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
  5786. tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
  5787. tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
  5788. tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
  5789. tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
  5790. tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
  5791. tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
  5792. tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
  5793. }
  5794. tmp_stats[i++] = 0;
  5795. tmp_stats[i++] = swstats->single_ecc_errs;
  5796. tmp_stats[i++] = swstats->double_ecc_errs;
  5797. tmp_stats[i++] = swstats->parity_err_cnt;
  5798. tmp_stats[i++] = swstats->serious_err_cnt;
  5799. tmp_stats[i++] = swstats->soft_reset_cnt;
  5800. tmp_stats[i++] = swstats->fifo_full_cnt;
  5801. for (k = 0; k < MAX_RX_RINGS; k++)
  5802. tmp_stats[i++] = swstats->ring_full_cnt[k];
  5803. tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
  5804. tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
  5805. tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
  5806. tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
  5807. tmp_stats[i++] = xstats->alarm_laser_output_power_high;
  5808. tmp_stats[i++] = xstats->alarm_laser_output_power_low;
  5809. tmp_stats[i++] = xstats->warn_transceiver_temp_high;
  5810. tmp_stats[i++] = xstats->warn_transceiver_temp_low;
  5811. tmp_stats[i++] = xstats->warn_laser_bias_current_high;
  5812. tmp_stats[i++] = xstats->warn_laser_bias_current_low;
  5813. tmp_stats[i++] = xstats->warn_laser_output_power_high;
  5814. tmp_stats[i++] = xstats->warn_laser_output_power_low;
  5815. tmp_stats[i++] = swstats->clubbed_frms_cnt;
  5816. tmp_stats[i++] = swstats->sending_both;
  5817. tmp_stats[i++] = swstats->outof_sequence_pkts;
  5818. tmp_stats[i++] = swstats->flush_max_pkts;
  5819. if (swstats->num_aggregations) {
  5820. u64 tmp = swstats->sum_avg_pkts_aggregated;
  5821. int count = 0;
  5822. /*
  5823. * Since 64-bit divide does not work on all platforms,
  5824. * do repeated subtraction.
  5825. */
  5826. while (tmp >= swstats->num_aggregations) {
  5827. tmp -= swstats->num_aggregations;
  5828. count++;
  5829. }
  5830. tmp_stats[i++] = count;
  5831. } else
  5832. tmp_stats[i++] = 0;
  5833. tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
  5834. tmp_stats[i++] = swstats->pci_map_fail_cnt;
  5835. tmp_stats[i++] = swstats->watchdog_timer_cnt;
  5836. tmp_stats[i++] = swstats->mem_allocated;
  5837. tmp_stats[i++] = swstats->mem_freed;
  5838. tmp_stats[i++] = swstats->link_up_cnt;
  5839. tmp_stats[i++] = swstats->link_down_cnt;
  5840. tmp_stats[i++] = swstats->link_up_time;
  5841. tmp_stats[i++] = swstats->link_down_time;
  5842. tmp_stats[i++] = swstats->tx_buf_abort_cnt;
  5843. tmp_stats[i++] = swstats->tx_desc_abort_cnt;
  5844. tmp_stats[i++] = swstats->tx_parity_err_cnt;
  5845. tmp_stats[i++] = swstats->tx_link_loss_cnt;
  5846. tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
  5847. tmp_stats[i++] = swstats->rx_parity_err_cnt;
  5848. tmp_stats[i++] = swstats->rx_abort_cnt;
  5849. tmp_stats[i++] = swstats->rx_parity_abort_cnt;
  5850. tmp_stats[i++] = swstats->rx_rda_fail_cnt;
  5851. tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
  5852. tmp_stats[i++] = swstats->rx_fcs_err_cnt;
  5853. tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
  5854. tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
  5855. tmp_stats[i++] = swstats->rx_unkn_err_cnt;
  5856. tmp_stats[i++] = swstats->tda_err_cnt;
  5857. tmp_stats[i++] = swstats->pfc_err_cnt;
  5858. tmp_stats[i++] = swstats->pcc_err_cnt;
  5859. tmp_stats[i++] = swstats->tti_err_cnt;
  5860. tmp_stats[i++] = swstats->tpa_err_cnt;
  5861. tmp_stats[i++] = swstats->sm_err_cnt;
  5862. tmp_stats[i++] = swstats->lso_err_cnt;
  5863. tmp_stats[i++] = swstats->mac_tmac_err_cnt;
  5864. tmp_stats[i++] = swstats->mac_rmac_err_cnt;
  5865. tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
  5866. tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
  5867. tmp_stats[i++] = swstats->rc_err_cnt;
  5868. tmp_stats[i++] = swstats->prc_pcix_err_cnt;
  5869. tmp_stats[i++] = swstats->rpa_err_cnt;
  5870. tmp_stats[i++] = swstats->rda_err_cnt;
  5871. tmp_stats[i++] = swstats->rti_err_cnt;
  5872. tmp_stats[i++] = swstats->mc_err_cnt;
  5873. }
  5874. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5875. {
  5876. return XENA_REG_SPACE;
  5877. }
  5878. static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
  5879. {
  5880. struct s2io_nic *sp = netdev_priv(dev);
  5881. return sp->rx_csum;
  5882. }
  5883. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5884. {
  5885. struct s2io_nic *sp = netdev_priv(dev);
  5886. if (data)
  5887. sp->rx_csum = 1;
  5888. else
  5889. sp->rx_csum = 0;
  5890. return 0;
  5891. }
  5892. static int s2io_get_eeprom_len(struct net_device *dev)
  5893. {
  5894. return XENA_EEPROM_SPACE;
  5895. }
  5896. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5897. {
  5898. struct s2io_nic *sp = netdev_priv(dev);
  5899. switch (sset) {
  5900. case ETH_SS_TEST:
  5901. return S2IO_TEST_LEN;
  5902. case ETH_SS_STATS:
  5903. switch (sp->device_type) {
  5904. case XFRAME_I_DEVICE:
  5905. return XFRAME_I_STAT_LEN;
  5906. case XFRAME_II_DEVICE:
  5907. return XFRAME_II_STAT_LEN;
  5908. default:
  5909. return 0;
  5910. }
  5911. default:
  5912. return -EOPNOTSUPP;
  5913. }
  5914. }
  5915. static void s2io_ethtool_get_strings(struct net_device *dev,
  5916. u32 stringset, u8 *data)
  5917. {
  5918. int stat_size = 0;
  5919. struct s2io_nic *sp = netdev_priv(dev);
  5920. switch (stringset) {
  5921. case ETH_SS_TEST:
  5922. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5923. break;
  5924. case ETH_SS_STATS:
  5925. stat_size = sizeof(ethtool_xena_stats_keys);
  5926. memcpy(data, &ethtool_xena_stats_keys, stat_size);
  5927. if (sp->device_type == XFRAME_II_DEVICE) {
  5928. memcpy(data + stat_size,
  5929. &ethtool_enhanced_stats_keys,
  5930. sizeof(ethtool_enhanced_stats_keys));
  5931. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5932. }
  5933. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5934. sizeof(ethtool_driver_stats_keys));
  5935. }
  5936. }
  5937. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5938. {
  5939. if (data)
  5940. dev->features |= NETIF_F_IP_CSUM;
  5941. else
  5942. dev->features &= ~NETIF_F_IP_CSUM;
  5943. return 0;
  5944. }
  5945. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5946. {
  5947. return (dev->features & NETIF_F_TSO) != 0;
  5948. }
  5949. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5950. {
  5951. if (data)
  5952. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5953. else
  5954. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5955. return 0;
  5956. }
  5957. static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
  5958. {
  5959. struct s2io_nic *sp = netdev_priv(dev);
  5960. int rc = 0;
  5961. int changed = 0;
  5962. if (ethtool_invalid_flags(dev, data, ETH_FLAG_LRO))
  5963. return -EINVAL;
  5964. if (data & ETH_FLAG_LRO) {
  5965. if (!(dev->features & NETIF_F_LRO)) {
  5966. dev->features |= NETIF_F_LRO;
  5967. changed = 1;
  5968. }
  5969. } else if (dev->features & NETIF_F_LRO) {
  5970. dev->features &= ~NETIF_F_LRO;
  5971. changed = 1;
  5972. }
  5973. if (changed && netif_running(dev)) {
  5974. s2io_stop_all_tx_queue(sp);
  5975. s2io_card_down(sp);
  5976. rc = s2io_card_up(sp);
  5977. if (rc)
  5978. s2io_reset(sp);
  5979. else
  5980. s2io_start_all_tx_queue(sp);
  5981. }
  5982. return rc;
  5983. }
  5984. static const struct ethtool_ops netdev_ethtool_ops = {
  5985. .get_settings = s2io_ethtool_gset,
  5986. .set_settings = s2io_ethtool_sset,
  5987. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5988. .get_regs_len = s2io_ethtool_get_regs_len,
  5989. .get_regs = s2io_ethtool_gregs,
  5990. .get_link = ethtool_op_get_link,
  5991. .get_eeprom_len = s2io_get_eeprom_len,
  5992. .get_eeprom = s2io_ethtool_geeprom,
  5993. .set_eeprom = s2io_ethtool_seeprom,
  5994. .get_ringparam = s2io_ethtool_gringparam,
  5995. .get_pauseparam = s2io_ethtool_getpause_data,
  5996. .set_pauseparam = s2io_ethtool_setpause_data,
  5997. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5998. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5999. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  6000. .set_flags = s2io_ethtool_set_flags,
  6001. .get_flags = ethtool_op_get_flags,
  6002. .set_sg = ethtool_op_set_sg,
  6003. .get_tso = s2io_ethtool_op_get_tso,
  6004. .set_tso = s2io_ethtool_op_set_tso,
  6005. .set_ufo = ethtool_op_set_ufo,
  6006. .self_test = s2io_ethtool_test,
  6007. .get_strings = s2io_ethtool_get_strings,
  6008. .set_phys_id = s2io_ethtool_set_led,
  6009. .get_ethtool_stats = s2io_get_ethtool_stats,
  6010. .get_sset_count = s2io_get_sset_count,
  6011. };
  6012. /**
  6013. * s2io_ioctl - Entry point for the Ioctl
  6014. * @dev : Device pointer.
  6015. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  6016. * a proprietary structure used to pass information to the driver.
  6017. * @cmd : This is used to distinguish between the different commands that
  6018. * can be passed to the IOCTL functions.
  6019. * Description:
  6020. * Currently there are no special functionality supported in IOCTL, hence
  6021. * function always return EOPNOTSUPPORTED
  6022. */
  6023. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  6024. {
  6025. return -EOPNOTSUPP;
  6026. }
  6027. /**
  6028. * s2io_change_mtu - entry point to change MTU size for the device.
  6029. * @dev : device pointer.
  6030. * @new_mtu : the new MTU size for the device.
  6031. * Description: A driver entry point to change MTU size for the device.
  6032. * Before changing the MTU the device must be stopped.
  6033. * Return value:
  6034. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  6035. * file on failure.
  6036. */
  6037. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  6038. {
  6039. struct s2io_nic *sp = netdev_priv(dev);
  6040. int ret = 0;
  6041. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  6042. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
  6043. return -EPERM;
  6044. }
  6045. dev->mtu = new_mtu;
  6046. if (netif_running(dev)) {
  6047. s2io_stop_all_tx_queue(sp);
  6048. s2io_card_down(sp);
  6049. ret = s2io_card_up(sp);
  6050. if (ret) {
  6051. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6052. __func__);
  6053. return ret;
  6054. }
  6055. s2io_wake_all_tx_queue(sp);
  6056. } else { /* Device is down */
  6057. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6058. u64 val64 = new_mtu;
  6059. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  6060. }
  6061. return ret;
  6062. }
  6063. /**
  6064. * s2io_set_link - Set the LInk status
  6065. * @data: long pointer to device private structue
  6066. * Description: Sets the link status for the adapter
  6067. */
  6068. static void s2io_set_link(struct work_struct *work)
  6069. {
  6070. struct s2io_nic *nic = container_of(work, struct s2io_nic,
  6071. set_link_task);
  6072. struct net_device *dev = nic->dev;
  6073. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6074. register u64 val64;
  6075. u16 subid;
  6076. rtnl_lock();
  6077. if (!netif_running(dev))
  6078. goto out_unlock;
  6079. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  6080. /* The card is being reset, no point doing anything */
  6081. goto out_unlock;
  6082. }
  6083. subid = nic->pdev->subsystem_device;
  6084. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  6085. /*
  6086. * Allow a small delay for the NICs self initiated
  6087. * cleanup to complete.
  6088. */
  6089. msleep(100);
  6090. }
  6091. val64 = readq(&bar0->adapter_status);
  6092. if (LINK_IS_UP(val64)) {
  6093. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  6094. if (verify_xena_quiescence(nic)) {
  6095. val64 = readq(&bar0->adapter_control);
  6096. val64 |= ADAPTER_CNTL_EN;
  6097. writeq(val64, &bar0->adapter_control);
  6098. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  6099. nic->device_type, subid)) {
  6100. val64 = readq(&bar0->gpio_control);
  6101. val64 |= GPIO_CTRL_GPIO_0;
  6102. writeq(val64, &bar0->gpio_control);
  6103. val64 = readq(&bar0->gpio_control);
  6104. } else {
  6105. val64 |= ADAPTER_LED_ON;
  6106. writeq(val64, &bar0->adapter_control);
  6107. }
  6108. nic->device_enabled_once = true;
  6109. } else {
  6110. DBG_PRINT(ERR_DBG,
  6111. "%s: Error: device is not Quiescent\n",
  6112. dev->name);
  6113. s2io_stop_all_tx_queue(nic);
  6114. }
  6115. }
  6116. val64 = readq(&bar0->adapter_control);
  6117. val64 |= ADAPTER_LED_ON;
  6118. writeq(val64, &bar0->adapter_control);
  6119. s2io_link(nic, LINK_UP);
  6120. } else {
  6121. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  6122. subid)) {
  6123. val64 = readq(&bar0->gpio_control);
  6124. val64 &= ~GPIO_CTRL_GPIO_0;
  6125. writeq(val64, &bar0->gpio_control);
  6126. val64 = readq(&bar0->gpio_control);
  6127. }
  6128. /* turn off LED */
  6129. val64 = readq(&bar0->adapter_control);
  6130. val64 = val64 & (~ADAPTER_LED_ON);
  6131. writeq(val64, &bar0->adapter_control);
  6132. s2io_link(nic, LINK_DOWN);
  6133. }
  6134. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  6135. out_unlock:
  6136. rtnl_unlock();
  6137. }
  6138. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  6139. struct buffAdd *ba,
  6140. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  6141. u64 *temp2, int size)
  6142. {
  6143. struct net_device *dev = sp->dev;
  6144. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6145. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  6146. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  6147. /* allocate skb */
  6148. if (*skb) {
  6149. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  6150. /*
  6151. * As Rx frame are not going to be processed,
  6152. * using same mapped address for the Rxd
  6153. * buffer pointer
  6154. */
  6155. rxdp1->Buffer0_ptr = *temp0;
  6156. } else {
  6157. *skb = dev_alloc_skb(size);
  6158. if (!(*skb)) {
  6159. DBG_PRINT(INFO_DBG,
  6160. "%s: Out of memory to allocate %s\n",
  6161. dev->name, "1 buf mode SKBs");
  6162. stats->mem_alloc_fail_cnt++;
  6163. return -ENOMEM ;
  6164. }
  6165. stats->mem_allocated += (*skb)->truesize;
  6166. /* storing the mapped addr in a temp variable
  6167. * such it will be used for next rxd whose
  6168. * Host Control is NULL
  6169. */
  6170. rxdp1->Buffer0_ptr = *temp0 =
  6171. pci_map_single(sp->pdev, (*skb)->data,
  6172. size - NET_IP_ALIGN,
  6173. PCI_DMA_FROMDEVICE);
  6174. if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
  6175. goto memalloc_failed;
  6176. rxdp->Host_Control = (unsigned long) (*skb);
  6177. }
  6178. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  6179. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  6180. /* Two buffer Mode */
  6181. if (*skb) {
  6182. rxdp3->Buffer2_ptr = *temp2;
  6183. rxdp3->Buffer0_ptr = *temp0;
  6184. rxdp3->Buffer1_ptr = *temp1;
  6185. } else {
  6186. *skb = dev_alloc_skb(size);
  6187. if (!(*skb)) {
  6188. DBG_PRINT(INFO_DBG,
  6189. "%s: Out of memory to allocate %s\n",
  6190. dev->name,
  6191. "2 buf mode SKBs");
  6192. stats->mem_alloc_fail_cnt++;
  6193. return -ENOMEM;
  6194. }
  6195. stats->mem_allocated += (*skb)->truesize;
  6196. rxdp3->Buffer2_ptr = *temp2 =
  6197. pci_map_single(sp->pdev, (*skb)->data,
  6198. dev->mtu + 4,
  6199. PCI_DMA_FROMDEVICE);
  6200. if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
  6201. goto memalloc_failed;
  6202. rxdp3->Buffer0_ptr = *temp0 =
  6203. pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
  6204. PCI_DMA_FROMDEVICE);
  6205. if (pci_dma_mapping_error(sp->pdev,
  6206. rxdp3->Buffer0_ptr)) {
  6207. pci_unmap_single(sp->pdev,
  6208. (dma_addr_t)rxdp3->Buffer2_ptr,
  6209. dev->mtu + 4,
  6210. PCI_DMA_FROMDEVICE);
  6211. goto memalloc_failed;
  6212. }
  6213. rxdp->Host_Control = (unsigned long) (*skb);
  6214. /* Buffer-1 will be dummy buffer not used */
  6215. rxdp3->Buffer1_ptr = *temp1 =
  6216. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  6217. PCI_DMA_FROMDEVICE);
  6218. if (pci_dma_mapping_error(sp->pdev,
  6219. rxdp3->Buffer1_ptr)) {
  6220. pci_unmap_single(sp->pdev,
  6221. (dma_addr_t)rxdp3->Buffer0_ptr,
  6222. BUF0_LEN, PCI_DMA_FROMDEVICE);
  6223. pci_unmap_single(sp->pdev,
  6224. (dma_addr_t)rxdp3->Buffer2_ptr,
  6225. dev->mtu + 4,
  6226. PCI_DMA_FROMDEVICE);
  6227. goto memalloc_failed;
  6228. }
  6229. }
  6230. }
  6231. return 0;
  6232. memalloc_failed:
  6233. stats->pci_map_fail_cnt++;
  6234. stats->mem_freed += (*skb)->truesize;
  6235. dev_kfree_skb(*skb);
  6236. return -ENOMEM;
  6237. }
  6238. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  6239. int size)
  6240. {
  6241. struct net_device *dev = sp->dev;
  6242. if (sp->rxd_mode == RXD_MODE_1) {
  6243. rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  6244. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6245. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  6246. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  6247. rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
  6248. }
  6249. }
  6250. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  6251. {
  6252. int i, j, k, blk_cnt = 0, size;
  6253. struct config_param *config = &sp->config;
  6254. struct mac_info *mac_control = &sp->mac_control;
  6255. struct net_device *dev = sp->dev;
  6256. struct RxD_t *rxdp = NULL;
  6257. struct sk_buff *skb = NULL;
  6258. struct buffAdd *ba = NULL;
  6259. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  6260. /* Calculate the size based on ring mode */
  6261. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  6262. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  6263. if (sp->rxd_mode == RXD_MODE_1)
  6264. size += NET_IP_ALIGN;
  6265. else if (sp->rxd_mode == RXD_MODE_3B)
  6266. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  6267. for (i = 0; i < config->rx_ring_num; i++) {
  6268. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  6269. struct ring_info *ring = &mac_control->rings[i];
  6270. blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
  6271. for (j = 0; j < blk_cnt; j++) {
  6272. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  6273. rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
  6274. if (sp->rxd_mode == RXD_MODE_3B)
  6275. ba = &ring->ba[j][k];
  6276. if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
  6277. (u64 *)&temp0_64,
  6278. (u64 *)&temp1_64,
  6279. (u64 *)&temp2_64,
  6280. size) == -ENOMEM) {
  6281. return 0;
  6282. }
  6283. set_rxd_buffer_size(sp, rxdp, size);
  6284. wmb();
  6285. /* flip the Ownership bit to Hardware */
  6286. rxdp->Control_1 |= RXD_OWN_XENA;
  6287. }
  6288. }
  6289. }
  6290. return 0;
  6291. }
  6292. static int s2io_add_isr(struct s2io_nic *sp)
  6293. {
  6294. int ret = 0;
  6295. struct net_device *dev = sp->dev;
  6296. int err = 0;
  6297. if (sp->config.intr_type == MSI_X)
  6298. ret = s2io_enable_msi_x(sp);
  6299. if (ret) {
  6300. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  6301. sp->config.intr_type = INTA;
  6302. }
  6303. /*
  6304. * Store the values of the MSIX table in
  6305. * the struct s2io_nic structure
  6306. */
  6307. store_xmsi_data(sp);
  6308. /* After proper initialization of H/W, register ISR */
  6309. if (sp->config.intr_type == MSI_X) {
  6310. int i, msix_rx_cnt = 0;
  6311. for (i = 0; i < sp->num_entries; i++) {
  6312. if (sp->s2io_entries[i].in_use == MSIX_FLG) {
  6313. if (sp->s2io_entries[i].type ==
  6314. MSIX_RING_TYPE) {
  6315. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6316. dev->name, i);
  6317. err = request_irq(sp->entries[i].vector,
  6318. s2io_msix_ring_handle,
  6319. 0,
  6320. sp->desc[i],
  6321. sp->s2io_entries[i].arg);
  6322. } else if (sp->s2io_entries[i].type ==
  6323. MSIX_ALARM_TYPE) {
  6324. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6325. dev->name, i);
  6326. err = request_irq(sp->entries[i].vector,
  6327. s2io_msix_fifo_handle,
  6328. 0,
  6329. sp->desc[i],
  6330. sp->s2io_entries[i].arg);
  6331. }
  6332. /* if either data or addr is zero print it. */
  6333. if (!(sp->msix_info[i].addr &&
  6334. sp->msix_info[i].data)) {
  6335. DBG_PRINT(ERR_DBG,
  6336. "%s @Addr:0x%llx Data:0x%llx\n",
  6337. sp->desc[i],
  6338. (unsigned long long)
  6339. sp->msix_info[i].addr,
  6340. (unsigned long long)
  6341. ntohl(sp->msix_info[i].data));
  6342. } else
  6343. msix_rx_cnt++;
  6344. if (err) {
  6345. remove_msix_isr(sp);
  6346. DBG_PRINT(ERR_DBG,
  6347. "%s:MSI-X-%d registration "
  6348. "failed\n", dev->name, i);
  6349. DBG_PRINT(ERR_DBG,
  6350. "%s: Defaulting to INTA\n",
  6351. dev->name);
  6352. sp->config.intr_type = INTA;
  6353. break;
  6354. }
  6355. sp->s2io_entries[i].in_use =
  6356. MSIX_REGISTERED_SUCCESS;
  6357. }
  6358. }
  6359. if (!err) {
  6360. pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
  6361. DBG_PRINT(INFO_DBG,
  6362. "MSI-X-TX entries enabled through alarm vector\n");
  6363. }
  6364. }
  6365. if (sp->config.intr_type == INTA) {
  6366. err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6367. sp->name, dev);
  6368. if (err) {
  6369. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6370. dev->name);
  6371. return -1;
  6372. }
  6373. }
  6374. return 0;
  6375. }
  6376. static void s2io_rem_isr(struct s2io_nic *sp)
  6377. {
  6378. if (sp->config.intr_type == MSI_X)
  6379. remove_msix_isr(sp);
  6380. else
  6381. remove_inta_isr(sp);
  6382. }
  6383. static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
  6384. {
  6385. int cnt = 0;
  6386. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6387. register u64 val64 = 0;
  6388. struct config_param *config;
  6389. config = &sp->config;
  6390. if (!is_s2io_card_up(sp))
  6391. return;
  6392. del_timer_sync(&sp->alarm_timer);
  6393. /* If s2io_set_link task is executing, wait till it completes. */
  6394. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
  6395. msleep(50);
  6396. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6397. /* Disable napi */
  6398. if (sp->config.napi) {
  6399. int off = 0;
  6400. if (config->intr_type == MSI_X) {
  6401. for (; off < sp->config.rx_ring_num; off++)
  6402. napi_disable(&sp->mac_control.rings[off].napi);
  6403. }
  6404. else
  6405. napi_disable(&sp->napi);
  6406. }
  6407. /* disable Tx and Rx traffic on the NIC */
  6408. if (do_io)
  6409. stop_nic(sp);
  6410. s2io_rem_isr(sp);
  6411. /* stop the tx queue, indicate link down */
  6412. s2io_link(sp, LINK_DOWN);
  6413. /* Check if the device is Quiescent and then Reset the NIC */
  6414. while (do_io) {
  6415. /* As per the HW requirement we need to replenish the
  6416. * receive buffer to avoid the ring bump. Since there is
  6417. * no intention of processing the Rx frame at this pointwe are
  6418. * just settting the ownership bit of rxd in Each Rx
  6419. * ring to HW and set the appropriate buffer size
  6420. * based on the ring mode
  6421. */
  6422. rxd_owner_bit_reset(sp);
  6423. val64 = readq(&bar0->adapter_status);
  6424. if (verify_xena_quiescence(sp)) {
  6425. if (verify_pcc_quiescent(sp, sp->device_enabled_once))
  6426. break;
  6427. }
  6428. msleep(50);
  6429. cnt++;
  6430. if (cnt == 10) {
  6431. DBG_PRINT(ERR_DBG, "Device not Quiescent - "
  6432. "adapter status reads 0x%llx\n",
  6433. (unsigned long long)val64);
  6434. break;
  6435. }
  6436. }
  6437. if (do_io)
  6438. s2io_reset(sp);
  6439. /* Free all Tx buffers */
  6440. free_tx_buffers(sp);
  6441. /* Free all Rx buffers */
  6442. free_rx_buffers(sp);
  6443. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6444. }
  6445. static void s2io_card_down(struct s2io_nic *sp)
  6446. {
  6447. do_s2io_card_down(sp, 1);
  6448. }
  6449. static int s2io_card_up(struct s2io_nic *sp)
  6450. {
  6451. int i, ret = 0;
  6452. struct config_param *config;
  6453. struct mac_info *mac_control;
  6454. struct net_device *dev = (struct net_device *)sp->dev;
  6455. u16 interruptible;
  6456. /* Initialize the H/W I/O registers */
  6457. ret = init_nic(sp);
  6458. if (ret != 0) {
  6459. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6460. dev->name);
  6461. if (ret != -EIO)
  6462. s2io_reset(sp);
  6463. return ret;
  6464. }
  6465. /*
  6466. * Initializing the Rx buffers. For now we are considering only 1
  6467. * Rx ring and initializing buffers into 30 Rx blocks
  6468. */
  6469. config = &sp->config;
  6470. mac_control = &sp->mac_control;
  6471. for (i = 0; i < config->rx_ring_num; i++) {
  6472. struct ring_info *ring = &mac_control->rings[i];
  6473. ring->mtu = dev->mtu;
  6474. ring->lro = !!(dev->features & NETIF_F_LRO);
  6475. ret = fill_rx_buffers(sp, ring, 1);
  6476. if (ret) {
  6477. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6478. dev->name);
  6479. s2io_reset(sp);
  6480. free_rx_buffers(sp);
  6481. return -ENOMEM;
  6482. }
  6483. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6484. ring->rx_bufs_left);
  6485. }
  6486. /* Initialise napi */
  6487. if (config->napi) {
  6488. if (config->intr_type == MSI_X) {
  6489. for (i = 0; i < sp->config.rx_ring_num; i++)
  6490. napi_enable(&sp->mac_control.rings[i].napi);
  6491. } else {
  6492. napi_enable(&sp->napi);
  6493. }
  6494. }
  6495. /* Maintain the state prior to the open */
  6496. if (sp->promisc_flg)
  6497. sp->promisc_flg = 0;
  6498. if (sp->m_cast_flg) {
  6499. sp->m_cast_flg = 0;
  6500. sp->all_multi_pos = 0;
  6501. }
  6502. /* Setting its receive mode */
  6503. s2io_set_multicast(dev);
  6504. if (dev->features & NETIF_F_LRO) {
  6505. /* Initialize max aggregatable pkts per session based on MTU */
  6506. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6507. /* Check if we can use (if specified) user provided value */
  6508. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6509. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6510. }
  6511. /* Enable Rx Traffic and interrupts on the NIC */
  6512. if (start_nic(sp)) {
  6513. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6514. s2io_reset(sp);
  6515. free_rx_buffers(sp);
  6516. return -ENODEV;
  6517. }
  6518. /* Add interrupt service routine */
  6519. if (s2io_add_isr(sp) != 0) {
  6520. if (sp->config.intr_type == MSI_X)
  6521. s2io_rem_isr(sp);
  6522. s2io_reset(sp);
  6523. free_rx_buffers(sp);
  6524. return -ENODEV;
  6525. }
  6526. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6527. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6528. /* Enable select interrupts */
  6529. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6530. if (sp->config.intr_type != INTA) {
  6531. interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
  6532. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6533. } else {
  6534. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6535. interruptible |= TX_PIC_INTR;
  6536. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6537. }
  6538. return 0;
  6539. }
  6540. /**
  6541. * s2io_restart_nic - Resets the NIC.
  6542. * @data : long pointer to the device private structure
  6543. * Description:
  6544. * This function is scheduled to be run by the s2io_tx_watchdog
  6545. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6546. * the run time of the watch dog routine which is run holding a
  6547. * spin lock.
  6548. */
  6549. static void s2io_restart_nic(struct work_struct *work)
  6550. {
  6551. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6552. struct net_device *dev = sp->dev;
  6553. rtnl_lock();
  6554. if (!netif_running(dev))
  6555. goto out_unlock;
  6556. s2io_card_down(sp);
  6557. if (s2io_card_up(sp)) {
  6558. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
  6559. }
  6560. s2io_wake_all_tx_queue(sp);
  6561. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
  6562. out_unlock:
  6563. rtnl_unlock();
  6564. }
  6565. /**
  6566. * s2io_tx_watchdog - Watchdog for transmit side.
  6567. * @dev : Pointer to net device structure
  6568. * Description:
  6569. * This function is triggered if the Tx Queue is stopped
  6570. * for a pre-defined amount of time when the Interface is still up.
  6571. * If the Interface is jammed in such a situation, the hardware is
  6572. * reset (by s2io_close) and restarted again (by s2io_open) to
  6573. * overcome any problem that might have been caused in the hardware.
  6574. * Return value:
  6575. * void
  6576. */
  6577. static void s2io_tx_watchdog(struct net_device *dev)
  6578. {
  6579. struct s2io_nic *sp = netdev_priv(dev);
  6580. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6581. if (netif_carrier_ok(dev)) {
  6582. swstats->watchdog_timer_cnt++;
  6583. schedule_work(&sp->rst_timer_task);
  6584. swstats->soft_reset_cnt++;
  6585. }
  6586. }
  6587. /**
  6588. * rx_osm_handler - To perform some OS related operations on SKB.
  6589. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6590. * @skb : the socket buffer pointer.
  6591. * @len : length of the packet
  6592. * @cksum : FCS checksum of the frame.
  6593. * @ring_no : the ring from which this RxD was extracted.
  6594. * Description:
  6595. * This function is called by the Rx interrupt serivce routine to perform
  6596. * some OS related operations on the SKB before passing it to the upper
  6597. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6598. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6599. * to the upper layer. If the checksum is wrong, it increments the Rx
  6600. * packet error count, frees the SKB and returns error.
  6601. * Return value:
  6602. * SUCCESS on success and -1 on failure.
  6603. */
  6604. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6605. {
  6606. struct s2io_nic *sp = ring_data->nic;
  6607. struct net_device *dev = (struct net_device *)ring_data->dev;
  6608. struct sk_buff *skb = (struct sk_buff *)
  6609. ((unsigned long)rxdp->Host_Control);
  6610. int ring_no = ring_data->ring_no;
  6611. u16 l3_csum, l4_csum;
  6612. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6613. struct lro *uninitialized_var(lro);
  6614. u8 err_mask;
  6615. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6616. skb->dev = dev;
  6617. if (err) {
  6618. /* Check for parity error */
  6619. if (err & 0x1)
  6620. swstats->parity_err_cnt++;
  6621. err_mask = err >> 48;
  6622. switch (err_mask) {
  6623. case 1:
  6624. swstats->rx_parity_err_cnt++;
  6625. break;
  6626. case 2:
  6627. swstats->rx_abort_cnt++;
  6628. break;
  6629. case 3:
  6630. swstats->rx_parity_abort_cnt++;
  6631. break;
  6632. case 4:
  6633. swstats->rx_rda_fail_cnt++;
  6634. break;
  6635. case 5:
  6636. swstats->rx_unkn_prot_cnt++;
  6637. break;
  6638. case 6:
  6639. swstats->rx_fcs_err_cnt++;
  6640. break;
  6641. case 7:
  6642. swstats->rx_buf_size_err_cnt++;
  6643. break;
  6644. case 8:
  6645. swstats->rx_rxd_corrupt_cnt++;
  6646. break;
  6647. case 15:
  6648. swstats->rx_unkn_err_cnt++;
  6649. break;
  6650. }
  6651. /*
  6652. * Drop the packet if bad transfer code. Exception being
  6653. * 0x5, which could be due to unsupported IPv6 extension header.
  6654. * In this case, we let stack handle the packet.
  6655. * Note that in this case, since checksum will be incorrect,
  6656. * stack will validate the same.
  6657. */
  6658. if (err_mask != 0x5) {
  6659. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6660. dev->name, err_mask);
  6661. dev->stats.rx_crc_errors++;
  6662. swstats->mem_freed
  6663. += skb->truesize;
  6664. dev_kfree_skb(skb);
  6665. ring_data->rx_bufs_left -= 1;
  6666. rxdp->Host_Control = 0;
  6667. return 0;
  6668. }
  6669. }
  6670. rxdp->Host_Control = 0;
  6671. if (sp->rxd_mode == RXD_MODE_1) {
  6672. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6673. skb_put(skb, len);
  6674. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6675. int get_block = ring_data->rx_curr_get_info.block_index;
  6676. int get_off = ring_data->rx_curr_get_info.offset;
  6677. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6678. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6679. unsigned char *buff = skb_push(skb, buf0_len);
  6680. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6681. memcpy(buff, ba->ba_0, buf0_len);
  6682. skb_put(skb, buf2_len);
  6683. }
  6684. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
  6685. ((!ring_data->lro) ||
  6686. (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6687. (sp->rx_csum)) {
  6688. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6689. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6690. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6691. /*
  6692. * NIC verifies if the Checksum of the received
  6693. * frame is Ok or not and accordingly returns
  6694. * a flag in the RxD.
  6695. */
  6696. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6697. if (ring_data->lro) {
  6698. u32 tcp_len = 0;
  6699. u8 *tcp;
  6700. int ret = 0;
  6701. ret = s2io_club_tcp_session(ring_data,
  6702. skb->data, &tcp,
  6703. &tcp_len, &lro,
  6704. rxdp, sp);
  6705. switch (ret) {
  6706. case 3: /* Begin anew */
  6707. lro->parent = skb;
  6708. goto aggregate;
  6709. case 1: /* Aggregate */
  6710. lro_append_pkt(sp, lro, skb, tcp_len);
  6711. goto aggregate;
  6712. case 4: /* Flush session */
  6713. lro_append_pkt(sp, lro, skb, tcp_len);
  6714. queue_rx_frame(lro->parent,
  6715. lro->vlan_tag);
  6716. clear_lro_session(lro);
  6717. swstats->flush_max_pkts++;
  6718. goto aggregate;
  6719. case 2: /* Flush both */
  6720. lro->parent->data_len = lro->frags_len;
  6721. swstats->sending_both++;
  6722. queue_rx_frame(lro->parent,
  6723. lro->vlan_tag);
  6724. clear_lro_session(lro);
  6725. goto send_up;
  6726. case 0: /* sessions exceeded */
  6727. case -1: /* non-TCP or not L2 aggregatable */
  6728. case 5: /*
  6729. * First pkt in session not
  6730. * L3/L4 aggregatable
  6731. */
  6732. break;
  6733. default:
  6734. DBG_PRINT(ERR_DBG,
  6735. "%s: Samadhana!!\n",
  6736. __func__);
  6737. BUG();
  6738. }
  6739. }
  6740. } else {
  6741. /*
  6742. * Packet with erroneous checksum, let the
  6743. * upper layers deal with it.
  6744. */
  6745. skb_checksum_none_assert(skb);
  6746. }
  6747. } else
  6748. skb_checksum_none_assert(skb);
  6749. swstats->mem_freed += skb->truesize;
  6750. send_up:
  6751. skb_record_rx_queue(skb, ring_no);
  6752. queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
  6753. aggregate:
  6754. sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
  6755. return SUCCESS;
  6756. }
  6757. /**
  6758. * s2io_link - stops/starts the Tx queue.
  6759. * @sp : private member of the device structure, which is a pointer to the
  6760. * s2io_nic structure.
  6761. * @link : inidicates whether link is UP/DOWN.
  6762. * Description:
  6763. * This function stops/starts the Tx queue depending on whether the link
  6764. * status of the NIC is is down or up. This is called by the Alarm
  6765. * interrupt handler whenever a link change interrupt comes up.
  6766. * Return value:
  6767. * void.
  6768. */
  6769. static void s2io_link(struct s2io_nic *sp, int link)
  6770. {
  6771. struct net_device *dev = (struct net_device *)sp->dev;
  6772. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6773. if (link != sp->last_link_state) {
  6774. init_tti(sp, link);
  6775. if (link == LINK_DOWN) {
  6776. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6777. s2io_stop_all_tx_queue(sp);
  6778. netif_carrier_off(dev);
  6779. if (swstats->link_up_cnt)
  6780. swstats->link_up_time =
  6781. jiffies - sp->start_time;
  6782. swstats->link_down_cnt++;
  6783. } else {
  6784. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6785. if (swstats->link_down_cnt)
  6786. swstats->link_down_time =
  6787. jiffies - sp->start_time;
  6788. swstats->link_up_cnt++;
  6789. netif_carrier_on(dev);
  6790. s2io_wake_all_tx_queue(sp);
  6791. }
  6792. }
  6793. sp->last_link_state = link;
  6794. sp->start_time = jiffies;
  6795. }
  6796. /**
  6797. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6798. * @sp : private member of the device structure, which is a pointer to the
  6799. * s2io_nic structure.
  6800. * Description:
  6801. * This function initializes a few of the PCI and PCI-X configuration registers
  6802. * with recommended values.
  6803. * Return value:
  6804. * void
  6805. */
  6806. static void s2io_init_pci(struct s2io_nic *sp)
  6807. {
  6808. u16 pci_cmd = 0, pcix_cmd = 0;
  6809. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6810. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6811. &(pcix_cmd));
  6812. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6813. (pcix_cmd | 1));
  6814. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6815. &(pcix_cmd));
  6816. /* Set the PErr Response bit in PCI command register. */
  6817. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6818. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6819. (pci_cmd | PCI_COMMAND_PARITY));
  6820. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6821. }
  6822. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
  6823. u8 *dev_multiq)
  6824. {
  6825. int i;
  6826. if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
  6827. DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
  6828. "(%d) not supported\n", tx_fifo_num);
  6829. if (tx_fifo_num < 1)
  6830. tx_fifo_num = 1;
  6831. else
  6832. tx_fifo_num = MAX_TX_FIFOS;
  6833. DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
  6834. }
  6835. if (multiq)
  6836. *dev_multiq = multiq;
  6837. if (tx_steering_type && (1 == tx_fifo_num)) {
  6838. if (tx_steering_type != TX_DEFAULT_STEERING)
  6839. DBG_PRINT(ERR_DBG,
  6840. "Tx steering is not supported with "
  6841. "one fifo. Disabling Tx steering.\n");
  6842. tx_steering_type = NO_STEERING;
  6843. }
  6844. if ((tx_steering_type < NO_STEERING) ||
  6845. (tx_steering_type > TX_DEFAULT_STEERING)) {
  6846. DBG_PRINT(ERR_DBG,
  6847. "Requested transmit steering not supported\n");
  6848. DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
  6849. tx_steering_type = NO_STEERING;
  6850. }
  6851. if (rx_ring_num > MAX_RX_RINGS) {
  6852. DBG_PRINT(ERR_DBG,
  6853. "Requested number of rx rings not supported\n");
  6854. DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
  6855. MAX_RX_RINGS);
  6856. rx_ring_num = MAX_RX_RINGS;
  6857. }
  6858. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6859. DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
  6860. "Defaulting to INTA\n");
  6861. *dev_intr_type = INTA;
  6862. }
  6863. if ((*dev_intr_type == MSI_X) &&
  6864. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6865. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6866. DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
  6867. "Defaulting to INTA\n");
  6868. *dev_intr_type = INTA;
  6869. }
  6870. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6871. DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
  6872. DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
  6873. rx_ring_mode = 1;
  6874. }
  6875. for (i = 0; i < MAX_RX_RINGS; i++)
  6876. if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
  6877. DBG_PRINT(ERR_DBG, "Requested rx ring size not "
  6878. "supported\nDefaulting to %d\n",
  6879. MAX_RX_BLOCKS_PER_RING);
  6880. rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
  6881. }
  6882. return SUCCESS;
  6883. }
  6884. /**
  6885. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6886. * or Traffic class respectively.
  6887. * @nic: device private variable
  6888. * Description: The function configures the receive steering to
  6889. * desired receive ring.
  6890. * Return Value: SUCCESS on success and
  6891. * '-1' on failure (endian settings incorrect).
  6892. */
  6893. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6894. {
  6895. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6896. register u64 val64 = 0;
  6897. if (ds_codepoint > 63)
  6898. return FAILURE;
  6899. val64 = RTS_DS_MEM_DATA(ring);
  6900. writeq(val64, &bar0->rts_ds_mem_data);
  6901. val64 = RTS_DS_MEM_CTRL_WE |
  6902. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6903. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6904. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6905. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6906. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6907. S2IO_BIT_RESET);
  6908. }
  6909. static const struct net_device_ops s2io_netdev_ops = {
  6910. .ndo_open = s2io_open,
  6911. .ndo_stop = s2io_close,
  6912. .ndo_get_stats = s2io_get_stats,
  6913. .ndo_start_xmit = s2io_xmit,
  6914. .ndo_validate_addr = eth_validate_addr,
  6915. .ndo_set_multicast_list = s2io_set_multicast,
  6916. .ndo_do_ioctl = s2io_ioctl,
  6917. .ndo_set_mac_address = s2io_set_mac_addr,
  6918. .ndo_change_mtu = s2io_change_mtu,
  6919. .ndo_vlan_rx_register = s2io_vlan_rx_register,
  6920. .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
  6921. .ndo_tx_timeout = s2io_tx_watchdog,
  6922. #ifdef CONFIG_NET_POLL_CONTROLLER
  6923. .ndo_poll_controller = s2io_netpoll,
  6924. #endif
  6925. };
  6926. /**
  6927. * s2io_init_nic - Initialization of the adapter .
  6928. * @pdev : structure containing the PCI related information of the device.
  6929. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6930. * Description:
  6931. * The function initializes an adapter identified by the pci_dec structure.
  6932. * All OS related initialization including memory and device structure and
  6933. * initlaization of the device private variable is done. Also the swapper
  6934. * control register is initialized to enable read and write into the I/O
  6935. * registers of the device.
  6936. * Return value:
  6937. * returns 0 on success and negative on failure.
  6938. */
  6939. static int __devinit
  6940. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6941. {
  6942. struct s2io_nic *sp;
  6943. struct net_device *dev;
  6944. int i, j, ret;
  6945. int dma_flag = false;
  6946. u32 mac_up, mac_down;
  6947. u64 val64 = 0, tmp64 = 0;
  6948. struct XENA_dev_config __iomem *bar0 = NULL;
  6949. u16 subid;
  6950. struct config_param *config;
  6951. struct mac_info *mac_control;
  6952. int mode;
  6953. u8 dev_intr_type = intr_type;
  6954. u8 dev_multiq = 0;
  6955. ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
  6956. if (ret)
  6957. return ret;
  6958. ret = pci_enable_device(pdev);
  6959. if (ret) {
  6960. DBG_PRINT(ERR_DBG,
  6961. "%s: pci_enable_device failed\n", __func__);
  6962. return ret;
  6963. }
  6964. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  6965. DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
  6966. dma_flag = true;
  6967. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  6968. DBG_PRINT(ERR_DBG,
  6969. "Unable to obtain 64bit DMA "
  6970. "for consistent allocations\n");
  6971. pci_disable_device(pdev);
  6972. return -ENOMEM;
  6973. }
  6974. } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  6975. DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
  6976. } else {
  6977. pci_disable_device(pdev);
  6978. return -ENOMEM;
  6979. }
  6980. ret = pci_request_regions(pdev, s2io_driver_name);
  6981. if (ret) {
  6982. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
  6983. __func__, ret);
  6984. pci_disable_device(pdev);
  6985. return -ENODEV;
  6986. }
  6987. if (dev_multiq)
  6988. dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
  6989. else
  6990. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6991. if (dev == NULL) {
  6992. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6993. pci_disable_device(pdev);
  6994. pci_release_regions(pdev);
  6995. return -ENODEV;
  6996. }
  6997. pci_set_master(pdev);
  6998. pci_set_drvdata(pdev, dev);
  6999. SET_NETDEV_DEV(dev, &pdev->dev);
  7000. /* Private member variable initialized to s2io NIC structure */
  7001. sp = netdev_priv(dev);
  7002. sp->dev = dev;
  7003. sp->pdev = pdev;
  7004. sp->high_dma_flag = dma_flag;
  7005. sp->device_enabled_once = false;
  7006. if (rx_ring_mode == 1)
  7007. sp->rxd_mode = RXD_MODE_1;
  7008. if (rx_ring_mode == 2)
  7009. sp->rxd_mode = RXD_MODE_3B;
  7010. sp->config.intr_type = dev_intr_type;
  7011. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  7012. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  7013. sp->device_type = XFRAME_II_DEVICE;
  7014. else
  7015. sp->device_type = XFRAME_I_DEVICE;
  7016. /* Initialize some PCI/PCI-X fields of the NIC. */
  7017. s2io_init_pci(sp);
  7018. /*
  7019. * Setting the device configuration parameters.
  7020. * Most of these parameters can be specified by the user during
  7021. * module insertion as they are module loadable parameters. If
  7022. * these parameters are not not specified during load time, they
  7023. * are initialized with default values.
  7024. */
  7025. config = &sp->config;
  7026. mac_control = &sp->mac_control;
  7027. config->napi = napi;
  7028. config->tx_steering_type = tx_steering_type;
  7029. /* Tx side parameters. */
  7030. if (config->tx_steering_type == TX_PRIORITY_STEERING)
  7031. config->tx_fifo_num = MAX_TX_FIFOS;
  7032. else
  7033. config->tx_fifo_num = tx_fifo_num;
  7034. /* Initialize the fifos used for tx steering */
  7035. if (config->tx_fifo_num < 5) {
  7036. if (config->tx_fifo_num == 1)
  7037. sp->total_tcp_fifos = 1;
  7038. else
  7039. sp->total_tcp_fifos = config->tx_fifo_num - 1;
  7040. sp->udp_fifo_idx = config->tx_fifo_num - 1;
  7041. sp->total_udp_fifos = 1;
  7042. sp->other_fifo_idx = sp->total_tcp_fifos - 1;
  7043. } else {
  7044. sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
  7045. FIFO_OTHER_MAX_NUM);
  7046. sp->udp_fifo_idx = sp->total_tcp_fifos;
  7047. sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
  7048. sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
  7049. }
  7050. config->multiq = dev_multiq;
  7051. for (i = 0; i < config->tx_fifo_num; i++) {
  7052. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  7053. tx_cfg->fifo_len = tx_fifo_len[i];
  7054. tx_cfg->fifo_priority = i;
  7055. }
  7056. /* mapping the QoS priority to the configured fifos */
  7057. for (i = 0; i < MAX_TX_FIFOS; i++)
  7058. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
  7059. /* map the hashing selector table to the configured fifos */
  7060. for (i = 0; i < config->tx_fifo_num; i++)
  7061. sp->fifo_selector[i] = fifo_selector[i];
  7062. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  7063. for (i = 0; i < config->tx_fifo_num; i++) {
  7064. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  7065. tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  7066. if (tx_cfg->fifo_len < 65) {
  7067. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  7068. break;
  7069. }
  7070. }
  7071. /* + 2 because one Txd for skb->data and one Txd for UFO */
  7072. config->max_txds = MAX_SKB_FRAGS + 2;
  7073. /* Rx side parameters. */
  7074. config->rx_ring_num = rx_ring_num;
  7075. for (i = 0; i < config->rx_ring_num; i++) {
  7076. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  7077. struct ring_info *ring = &mac_control->rings[i];
  7078. rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
  7079. rx_cfg->ring_priority = i;
  7080. ring->rx_bufs_left = 0;
  7081. ring->rxd_mode = sp->rxd_mode;
  7082. ring->rxd_count = rxd_count[sp->rxd_mode];
  7083. ring->pdev = sp->pdev;
  7084. ring->dev = sp->dev;
  7085. }
  7086. for (i = 0; i < rx_ring_num; i++) {
  7087. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  7088. rx_cfg->ring_org = RING_ORG_BUFF1;
  7089. rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  7090. }
  7091. /* Setting Mac Control parameters */
  7092. mac_control->rmac_pause_time = rmac_pause_time;
  7093. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  7094. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  7095. /* initialize the shared memory used by the NIC and the host */
  7096. if (init_shared_mem(sp)) {
  7097. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
  7098. ret = -ENOMEM;
  7099. goto mem_alloc_failed;
  7100. }
  7101. sp->bar0 = pci_ioremap_bar(pdev, 0);
  7102. if (!sp->bar0) {
  7103. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  7104. dev->name);
  7105. ret = -ENOMEM;
  7106. goto bar0_remap_failed;
  7107. }
  7108. sp->bar1 = pci_ioremap_bar(pdev, 2);
  7109. if (!sp->bar1) {
  7110. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  7111. dev->name);
  7112. ret = -ENOMEM;
  7113. goto bar1_remap_failed;
  7114. }
  7115. dev->irq = pdev->irq;
  7116. dev->base_addr = (unsigned long)sp->bar0;
  7117. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  7118. for (j = 0; j < MAX_TX_FIFOS; j++) {
  7119. mac_control->tx_FIFO_start[j] =
  7120. (struct TxFIFO_element __iomem *)
  7121. (sp->bar1 + (j * 0x00020000));
  7122. }
  7123. /* Driver entry points */
  7124. dev->netdev_ops = &s2io_netdev_ops;
  7125. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  7126. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  7127. dev->features |= NETIF_F_LRO;
  7128. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  7129. if (sp->high_dma_flag == true)
  7130. dev->features |= NETIF_F_HIGHDMA;
  7131. dev->features |= NETIF_F_TSO;
  7132. dev->features |= NETIF_F_TSO6;
  7133. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  7134. dev->features |= NETIF_F_UFO;
  7135. dev->features |= NETIF_F_HW_CSUM;
  7136. }
  7137. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  7138. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  7139. INIT_WORK(&sp->set_link_task, s2io_set_link);
  7140. pci_save_state(sp->pdev);
  7141. /* Setting swapper control on the NIC, for proper reset operation */
  7142. if (s2io_set_swapper(sp)) {
  7143. DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
  7144. dev->name);
  7145. ret = -EAGAIN;
  7146. goto set_swap_failed;
  7147. }
  7148. /* Verify if the Herc works on the slot its placed into */
  7149. if (sp->device_type & XFRAME_II_DEVICE) {
  7150. mode = s2io_verify_pci_mode(sp);
  7151. if (mode < 0) {
  7152. DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
  7153. __func__);
  7154. ret = -EBADSLT;
  7155. goto set_swap_failed;
  7156. }
  7157. }
  7158. if (sp->config.intr_type == MSI_X) {
  7159. sp->num_entries = config->rx_ring_num + 1;
  7160. ret = s2io_enable_msi_x(sp);
  7161. if (!ret) {
  7162. ret = s2io_test_msi(sp);
  7163. /* rollback MSI-X, will re-enable during add_isr() */
  7164. remove_msix_isr(sp);
  7165. }
  7166. if (ret) {
  7167. DBG_PRINT(ERR_DBG,
  7168. "MSI-X requested but failed to enable\n");
  7169. sp->config.intr_type = INTA;
  7170. }
  7171. }
  7172. if (config->intr_type == MSI_X) {
  7173. for (i = 0; i < config->rx_ring_num ; i++) {
  7174. struct ring_info *ring = &mac_control->rings[i];
  7175. netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
  7176. }
  7177. } else {
  7178. netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
  7179. }
  7180. /* Not needed for Herc */
  7181. if (sp->device_type & XFRAME_I_DEVICE) {
  7182. /*
  7183. * Fix for all "FFs" MAC address problems observed on
  7184. * Alpha platforms
  7185. */
  7186. fix_mac_address(sp);
  7187. s2io_reset(sp);
  7188. }
  7189. /*
  7190. * MAC address initialization.
  7191. * For now only one mac address will be read and used.
  7192. */
  7193. bar0 = sp->bar0;
  7194. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  7195. RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
  7196. writeq(val64, &bar0->rmac_addr_cmd_mem);
  7197. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  7198. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  7199. S2IO_BIT_RESET);
  7200. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  7201. mac_down = (u32)tmp64;
  7202. mac_up = (u32) (tmp64 >> 32);
  7203. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  7204. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  7205. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  7206. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  7207. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  7208. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  7209. /* Set the factory defined MAC address initially */
  7210. dev->addr_len = ETH_ALEN;
  7211. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  7212. memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
  7213. /* initialize number of multicast & unicast MAC entries variables */
  7214. if (sp->device_type == XFRAME_I_DEVICE) {
  7215. config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
  7216. config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
  7217. config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
  7218. } else if (sp->device_type == XFRAME_II_DEVICE) {
  7219. config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
  7220. config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
  7221. config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
  7222. }
  7223. /* store mac addresses from CAM to s2io_nic structure */
  7224. do_s2io_store_unicast_mc(sp);
  7225. /* Configure MSIX vector for number of rings configured plus one */
  7226. if ((sp->device_type == XFRAME_II_DEVICE) &&
  7227. (config->intr_type == MSI_X))
  7228. sp->num_entries = config->rx_ring_num + 1;
  7229. /* Store the values of the MSIX table in the s2io_nic structure */
  7230. store_xmsi_data(sp);
  7231. /* reset Nic and bring it to known state */
  7232. s2io_reset(sp);
  7233. /*
  7234. * Initialize link state flags
  7235. * and the card state parameter
  7236. */
  7237. sp->state = 0;
  7238. /* Initialize spinlocks */
  7239. for (i = 0; i < sp->config.tx_fifo_num; i++) {
  7240. struct fifo_info *fifo = &mac_control->fifos[i];
  7241. spin_lock_init(&fifo->tx_lock);
  7242. }
  7243. /*
  7244. * SXE-002: Configure link and activity LED to init state
  7245. * on driver load.
  7246. */
  7247. subid = sp->pdev->subsystem_device;
  7248. if ((subid & 0xFF) >= 0x07) {
  7249. val64 = readq(&bar0->gpio_control);
  7250. val64 |= 0x0000800000000000ULL;
  7251. writeq(val64, &bar0->gpio_control);
  7252. val64 = 0x0411040400000000ULL;
  7253. writeq(val64, (void __iomem *)bar0 + 0x2700);
  7254. val64 = readq(&bar0->gpio_control);
  7255. }
  7256. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  7257. if (register_netdev(dev)) {
  7258. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  7259. ret = -ENODEV;
  7260. goto register_failed;
  7261. }
  7262. s2io_vpd_read(sp);
  7263. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
  7264. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
  7265. sp->product_name, pdev->revision);
  7266. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  7267. s2io_driver_version);
  7268. DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
  7269. DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
  7270. if (sp->device_type & XFRAME_II_DEVICE) {
  7271. mode = s2io_print_pci_mode(sp);
  7272. if (mode < 0) {
  7273. ret = -EBADSLT;
  7274. unregister_netdev(dev);
  7275. goto set_swap_failed;
  7276. }
  7277. }
  7278. switch (sp->rxd_mode) {
  7279. case RXD_MODE_1:
  7280. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  7281. dev->name);
  7282. break;
  7283. case RXD_MODE_3B:
  7284. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  7285. dev->name);
  7286. break;
  7287. }
  7288. switch (sp->config.napi) {
  7289. case 0:
  7290. DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
  7291. break;
  7292. case 1:
  7293. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  7294. break;
  7295. }
  7296. DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
  7297. sp->config.tx_fifo_num);
  7298. DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
  7299. sp->config.rx_ring_num);
  7300. switch (sp->config.intr_type) {
  7301. case INTA:
  7302. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  7303. break;
  7304. case MSI_X:
  7305. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  7306. break;
  7307. }
  7308. if (sp->config.multiq) {
  7309. for (i = 0; i < sp->config.tx_fifo_num; i++) {
  7310. struct fifo_info *fifo = &mac_control->fifos[i];
  7311. fifo->multiq = config->multiq;
  7312. }
  7313. DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
  7314. dev->name);
  7315. } else
  7316. DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
  7317. dev->name);
  7318. switch (sp->config.tx_steering_type) {
  7319. case NO_STEERING:
  7320. DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
  7321. dev->name);
  7322. break;
  7323. case TX_PRIORITY_STEERING:
  7324. DBG_PRINT(ERR_DBG,
  7325. "%s: Priority steering enabled for transmit\n",
  7326. dev->name);
  7327. break;
  7328. case TX_DEFAULT_STEERING:
  7329. DBG_PRINT(ERR_DBG,
  7330. "%s: Default steering enabled for transmit\n",
  7331. dev->name);
  7332. }
  7333. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  7334. dev->name);
  7335. if (ufo)
  7336. DBG_PRINT(ERR_DBG,
  7337. "%s: UDP Fragmentation Offload(UFO) enabled\n",
  7338. dev->name);
  7339. /* Initialize device name */
  7340. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  7341. if (vlan_tag_strip)
  7342. sp->vlan_strip_flag = 1;
  7343. else
  7344. sp->vlan_strip_flag = 0;
  7345. /*
  7346. * Make Link state as off at this point, when the Link change
  7347. * interrupt comes the state will be automatically changed to
  7348. * the right state.
  7349. */
  7350. netif_carrier_off(dev);
  7351. return 0;
  7352. register_failed:
  7353. set_swap_failed:
  7354. iounmap(sp->bar1);
  7355. bar1_remap_failed:
  7356. iounmap(sp->bar0);
  7357. bar0_remap_failed:
  7358. mem_alloc_failed:
  7359. free_shared_mem(sp);
  7360. pci_disable_device(pdev);
  7361. pci_release_regions(pdev);
  7362. pci_set_drvdata(pdev, NULL);
  7363. free_netdev(dev);
  7364. return ret;
  7365. }
  7366. /**
  7367. * s2io_rem_nic - Free the PCI device
  7368. * @pdev: structure containing the PCI related information of the device.
  7369. * Description: This function is called by the Pci subsystem to release a
  7370. * PCI device and free up all resource held up by the device. This could
  7371. * be in response to a Hot plug event or when the driver is to be removed
  7372. * from memory.
  7373. */
  7374. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  7375. {
  7376. struct net_device *dev = pci_get_drvdata(pdev);
  7377. struct s2io_nic *sp;
  7378. if (dev == NULL) {
  7379. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  7380. return;
  7381. }
  7382. sp = netdev_priv(dev);
  7383. cancel_work_sync(&sp->rst_timer_task);
  7384. cancel_work_sync(&sp->set_link_task);
  7385. unregister_netdev(dev);
  7386. free_shared_mem(sp);
  7387. iounmap(sp->bar0);
  7388. iounmap(sp->bar1);
  7389. pci_release_regions(pdev);
  7390. pci_set_drvdata(pdev, NULL);
  7391. free_netdev(dev);
  7392. pci_disable_device(pdev);
  7393. }
  7394. /**
  7395. * s2io_starter - Entry point for the driver
  7396. * Description: This function is the entry point for the driver. It verifies
  7397. * the module loadable parameters and initializes PCI configuration space.
  7398. */
  7399. static int __init s2io_starter(void)
  7400. {
  7401. return pci_register_driver(&s2io_driver);
  7402. }
  7403. /**
  7404. * s2io_closer - Cleanup routine for the driver
  7405. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  7406. */
  7407. static __exit void s2io_closer(void)
  7408. {
  7409. pci_unregister_driver(&s2io_driver);
  7410. DBG_PRINT(INIT_DBG, "cleanup done\n");
  7411. }
  7412. module_init(s2io_starter);
  7413. module_exit(s2io_closer);
  7414. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7415. struct tcphdr **tcp, struct RxD_t *rxdp,
  7416. struct s2io_nic *sp)
  7417. {
  7418. int ip_off;
  7419. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7420. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7421. DBG_PRINT(INIT_DBG,
  7422. "%s: Non-TCP frames not supported for LRO\n",
  7423. __func__);
  7424. return -1;
  7425. }
  7426. /* Checking for DIX type or DIX type with VLAN */
  7427. if ((l2_type == 0) || (l2_type == 4)) {
  7428. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7429. /*
  7430. * If vlan stripping is disabled and the frame is VLAN tagged,
  7431. * shift the offset by the VLAN header size bytes.
  7432. */
  7433. if ((!sp->vlan_strip_flag) &&
  7434. (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
  7435. ip_off += HEADER_VLAN_SIZE;
  7436. } else {
  7437. /* LLC, SNAP etc are considered non-mergeable */
  7438. return -1;
  7439. }
  7440. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7441. ip_len = (u8)((*ip)->ihl);
  7442. ip_len <<= 2;
  7443. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7444. return 0;
  7445. }
  7446. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7447. struct tcphdr *tcp)
  7448. {
  7449. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7450. if ((lro->iph->saddr != ip->saddr) ||
  7451. (lro->iph->daddr != ip->daddr) ||
  7452. (lro->tcph->source != tcp->source) ||
  7453. (lro->tcph->dest != tcp->dest))
  7454. return -1;
  7455. return 0;
  7456. }
  7457. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7458. {
  7459. return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
  7460. }
  7461. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7462. struct iphdr *ip, struct tcphdr *tcp,
  7463. u32 tcp_pyld_len, u16 vlan_tag)
  7464. {
  7465. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7466. lro->l2h = l2h;
  7467. lro->iph = ip;
  7468. lro->tcph = tcp;
  7469. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7470. lro->tcp_ack = tcp->ack_seq;
  7471. lro->sg_num = 1;
  7472. lro->total_len = ntohs(ip->tot_len);
  7473. lro->frags_len = 0;
  7474. lro->vlan_tag = vlan_tag;
  7475. /*
  7476. * Check if we saw TCP timestamp.
  7477. * Other consistency checks have already been done.
  7478. */
  7479. if (tcp->doff == 8) {
  7480. __be32 *ptr;
  7481. ptr = (__be32 *)(tcp+1);
  7482. lro->saw_ts = 1;
  7483. lro->cur_tsval = ntohl(*(ptr+1));
  7484. lro->cur_tsecr = *(ptr+2);
  7485. }
  7486. lro->in_use = 1;
  7487. }
  7488. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7489. {
  7490. struct iphdr *ip = lro->iph;
  7491. struct tcphdr *tcp = lro->tcph;
  7492. __sum16 nchk;
  7493. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7494. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7495. /* Update L3 header */
  7496. ip->tot_len = htons(lro->total_len);
  7497. ip->check = 0;
  7498. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7499. ip->check = nchk;
  7500. /* Update L4 header */
  7501. tcp->ack_seq = lro->tcp_ack;
  7502. tcp->window = lro->window;
  7503. /* Update tsecr field if this session has timestamps enabled */
  7504. if (lro->saw_ts) {
  7505. __be32 *ptr = (__be32 *)(tcp + 1);
  7506. *(ptr+2) = lro->cur_tsecr;
  7507. }
  7508. /* Update counters required for calculation of
  7509. * average no. of packets aggregated.
  7510. */
  7511. swstats->sum_avg_pkts_aggregated += lro->sg_num;
  7512. swstats->num_aggregations++;
  7513. }
  7514. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7515. struct tcphdr *tcp, u32 l4_pyld)
  7516. {
  7517. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7518. lro->total_len += l4_pyld;
  7519. lro->frags_len += l4_pyld;
  7520. lro->tcp_next_seq += l4_pyld;
  7521. lro->sg_num++;
  7522. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7523. lro->tcp_ack = tcp->ack_seq;
  7524. lro->window = tcp->window;
  7525. if (lro->saw_ts) {
  7526. __be32 *ptr;
  7527. /* Update tsecr and tsval from this packet */
  7528. ptr = (__be32 *)(tcp+1);
  7529. lro->cur_tsval = ntohl(*(ptr+1));
  7530. lro->cur_tsecr = *(ptr + 2);
  7531. }
  7532. }
  7533. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7534. struct tcphdr *tcp, u32 tcp_pyld_len)
  7535. {
  7536. u8 *ptr;
  7537. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7538. if (!tcp_pyld_len) {
  7539. /* Runt frame or a pure ack */
  7540. return -1;
  7541. }
  7542. if (ip->ihl != 5) /* IP has options */
  7543. return -1;
  7544. /* If we see CE codepoint in IP header, packet is not mergeable */
  7545. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7546. return -1;
  7547. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7548. if (tcp->urg || tcp->psh || tcp->rst ||
  7549. tcp->syn || tcp->fin ||
  7550. tcp->ece || tcp->cwr || !tcp->ack) {
  7551. /*
  7552. * Currently recognize only the ack control word and
  7553. * any other control field being set would result in
  7554. * flushing the LRO session
  7555. */
  7556. return -1;
  7557. }
  7558. /*
  7559. * Allow only one TCP timestamp option. Don't aggregate if
  7560. * any other options are detected.
  7561. */
  7562. if (tcp->doff != 5 && tcp->doff != 8)
  7563. return -1;
  7564. if (tcp->doff == 8) {
  7565. ptr = (u8 *)(tcp + 1);
  7566. while (*ptr == TCPOPT_NOP)
  7567. ptr++;
  7568. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7569. return -1;
  7570. /* Ensure timestamp value increases monotonically */
  7571. if (l_lro)
  7572. if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
  7573. return -1;
  7574. /* timestamp echo reply should be non-zero */
  7575. if (*((__be32 *)(ptr+6)) == 0)
  7576. return -1;
  7577. }
  7578. return 0;
  7579. }
  7580. static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
  7581. u8 **tcp, u32 *tcp_len, struct lro **lro,
  7582. struct RxD_t *rxdp, struct s2io_nic *sp)
  7583. {
  7584. struct iphdr *ip;
  7585. struct tcphdr *tcph;
  7586. int ret = 0, i;
  7587. u16 vlan_tag = 0;
  7588. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7589. ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7590. rxdp, sp);
  7591. if (ret)
  7592. return ret;
  7593. DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
  7594. vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
  7595. tcph = (struct tcphdr *)*tcp;
  7596. *tcp_len = get_l4_pyld_length(ip, tcph);
  7597. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  7598. struct lro *l_lro = &ring_data->lro0_n[i];
  7599. if (l_lro->in_use) {
  7600. if (check_for_socket_match(l_lro, ip, tcph))
  7601. continue;
  7602. /* Sock pair matched */
  7603. *lro = l_lro;
  7604. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7605. DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
  7606. "expected 0x%x, actual 0x%x\n",
  7607. __func__,
  7608. (*lro)->tcp_next_seq,
  7609. ntohl(tcph->seq));
  7610. swstats->outof_sequence_pkts++;
  7611. ret = 2;
  7612. break;
  7613. }
  7614. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
  7615. *tcp_len))
  7616. ret = 1; /* Aggregate */
  7617. else
  7618. ret = 2; /* Flush both */
  7619. break;
  7620. }
  7621. }
  7622. if (ret == 0) {
  7623. /* Before searching for available LRO objects,
  7624. * check if the pkt is L3/L4 aggregatable. If not
  7625. * don't create new LRO session. Just send this
  7626. * packet up.
  7627. */
  7628. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
  7629. return 5;
  7630. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  7631. struct lro *l_lro = &ring_data->lro0_n[i];
  7632. if (!(l_lro->in_use)) {
  7633. *lro = l_lro;
  7634. ret = 3; /* Begin anew */
  7635. break;
  7636. }
  7637. }
  7638. }
  7639. if (ret == 0) { /* sessions exceeded */
  7640. DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
  7641. __func__);
  7642. *lro = NULL;
  7643. return ret;
  7644. }
  7645. switch (ret) {
  7646. case 3:
  7647. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
  7648. vlan_tag);
  7649. break;
  7650. case 2:
  7651. update_L3L4_header(sp, *lro);
  7652. break;
  7653. case 1:
  7654. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7655. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7656. update_L3L4_header(sp, *lro);
  7657. ret = 4; /* Flush the LRO */
  7658. }
  7659. break;
  7660. default:
  7661. DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
  7662. break;
  7663. }
  7664. return ret;
  7665. }
  7666. static void clear_lro_session(struct lro *lro)
  7667. {
  7668. static u16 lro_struct_size = sizeof(struct lro);
  7669. memset(lro, 0, lro_struct_size);
  7670. }
  7671. static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
  7672. {
  7673. struct net_device *dev = skb->dev;
  7674. struct s2io_nic *sp = netdev_priv(dev);
  7675. skb->protocol = eth_type_trans(skb, dev);
  7676. if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
  7677. /* Queueing the vlan frame to the upper layer */
  7678. if (sp->config.napi)
  7679. vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
  7680. else
  7681. vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
  7682. } else {
  7683. if (sp->config.napi)
  7684. netif_receive_skb(skb);
  7685. else
  7686. netif_rx(skb);
  7687. }
  7688. }
  7689. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7690. struct sk_buff *skb, u32 tcp_len)
  7691. {
  7692. struct sk_buff *first = lro->parent;
  7693. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7694. first->len += tcp_len;
  7695. first->data_len = lro->frags_len;
  7696. skb_pull(skb, (skb->len - tcp_len));
  7697. if (skb_shinfo(first)->frag_list)
  7698. lro->last_frag->next = skb;
  7699. else
  7700. skb_shinfo(first)->frag_list = skb;
  7701. first->truesize += skb->truesize;
  7702. lro->last_frag = skb;
  7703. swstats->clubbed_frms_cnt++;
  7704. }
  7705. /**
  7706. * s2io_io_error_detected - called when PCI error is detected
  7707. * @pdev: Pointer to PCI device
  7708. * @state: The current pci connection state
  7709. *
  7710. * This function is called after a PCI bus error affecting
  7711. * this device has been detected.
  7712. */
  7713. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7714. pci_channel_state_t state)
  7715. {
  7716. struct net_device *netdev = pci_get_drvdata(pdev);
  7717. struct s2io_nic *sp = netdev_priv(netdev);
  7718. netif_device_detach(netdev);
  7719. if (state == pci_channel_io_perm_failure)
  7720. return PCI_ERS_RESULT_DISCONNECT;
  7721. if (netif_running(netdev)) {
  7722. /* Bring down the card, while avoiding PCI I/O */
  7723. do_s2io_card_down(sp, 0);
  7724. }
  7725. pci_disable_device(pdev);
  7726. return PCI_ERS_RESULT_NEED_RESET;
  7727. }
  7728. /**
  7729. * s2io_io_slot_reset - called after the pci bus has been reset.
  7730. * @pdev: Pointer to PCI device
  7731. *
  7732. * Restart the card from scratch, as if from a cold-boot.
  7733. * At this point, the card has exprienced a hard reset,
  7734. * followed by fixups by BIOS, and has its config space
  7735. * set up identically to what it was at cold boot.
  7736. */
  7737. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7738. {
  7739. struct net_device *netdev = pci_get_drvdata(pdev);
  7740. struct s2io_nic *sp = netdev_priv(netdev);
  7741. if (pci_enable_device(pdev)) {
  7742. pr_err("Cannot re-enable PCI device after reset.\n");
  7743. return PCI_ERS_RESULT_DISCONNECT;
  7744. }
  7745. pci_set_master(pdev);
  7746. s2io_reset(sp);
  7747. return PCI_ERS_RESULT_RECOVERED;
  7748. }
  7749. /**
  7750. * s2io_io_resume - called when traffic can start flowing again.
  7751. * @pdev: Pointer to PCI device
  7752. *
  7753. * This callback is called when the error recovery driver tells
  7754. * us that its OK to resume normal operation.
  7755. */
  7756. static void s2io_io_resume(struct pci_dev *pdev)
  7757. {
  7758. struct net_device *netdev = pci_get_drvdata(pdev);
  7759. struct s2io_nic *sp = netdev_priv(netdev);
  7760. if (netif_running(netdev)) {
  7761. if (s2io_card_up(sp)) {
  7762. pr_err("Can't bring device back up after reset.\n");
  7763. return;
  7764. }
  7765. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7766. s2io_card_down(sp);
  7767. pr_err("Can't restore mac addr after reset.\n");
  7768. return;
  7769. }
  7770. }
  7771. netif_device_attach(netdev);
  7772. netif_tx_wake_all_queues(netdev);
  7773. }