x86.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include "kvm.h"
  17. #include "x86.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/fs.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/module.h>
  25. #include <linux/mman.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/msr.h>
  28. #define MAX_IO_MSRS 256
  29. #define CR0_RESERVED_BITS \
  30. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  31. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  32. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  33. #define CR4_RESERVED_BITS \
  34. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  35. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  36. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  37. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  38. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  39. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  40. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  41. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  42. struct kvm_x86_ops *kvm_x86_ops;
  43. struct kvm_stats_debugfs_item debugfs_entries[] = {
  44. { "pf_fixed", VCPU_STAT(pf_fixed) },
  45. { "pf_guest", VCPU_STAT(pf_guest) },
  46. { "tlb_flush", VCPU_STAT(tlb_flush) },
  47. { "invlpg", VCPU_STAT(invlpg) },
  48. { "exits", VCPU_STAT(exits) },
  49. { "io_exits", VCPU_STAT(io_exits) },
  50. { "mmio_exits", VCPU_STAT(mmio_exits) },
  51. { "signal_exits", VCPU_STAT(signal_exits) },
  52. { "irq_window", VCPU_STAT(irq_window_exits) },
  53. { "halt_exits", VCPU_STAT(halt_exits) },
  54. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  55. { "request_irq", VCPU_STAT(request_irq_exits) },
  56. { "irq_exits", VCPU_STAT(irq_exits) },
  57. { "host_state_reload", VCPU_STAT(host_state_reload) },
  58. { "efer_reload", VCPU_STAT(efer_reload) },
  59. { "fpu_reload", VCPU_STAT(fpu_reload) },
  60. { "insn_emulation", VCPU_STAT(insn_emulation) },
  61. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  62. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  63. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  64. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  65. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  66. { "mmu_flooded", VM_STAT(mmu_flooded) },
  67. { "mmu_recycled", VM_STAT(mmu_recycled) },
  68. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  69. { NULL }
  70. };
  71. unsigned long segment_base(u16 selector)
  72. {
  73. struct descriptor_table gdt;
  74. struct segment_descriptor *d;
  75. unsigned long table_base;
  76. unsigned long v;
  77. if (selector == 0)
  78. return 0;
  79. asm("sgdt %0" : "=m"(gdt));
  80. table_base = gdt.base;
  81. if (selector & 4) { /* from ldt */
  82. u16 ldt_selector;
  83. asm("sldt %0" : "=g"(ldt_selector));
  84. table_base = segment_base(ldt_selector);
  85. }
  86. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  87. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  88. ((unsigned long)d->base_high << 24);
  89. #ifdef CONFIG_X86_64
  90. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  91. v |= ((unsigned long) \
  92. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  93. #endif
  94. return v;
  95. }
  96. EXPORT_SYMBOL_GPL(segment_base);
  97. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  98. {
  99. if (irqchip_in_kernel(vcpu->kvm))
  100. return vcpu->apic_base;
  101. else
  102. return vcpu->apic_base;
  103. }
  104. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  105. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  106. {
  107. /* TODO: reserve bits check */
  108. if (irqchip_in_kernel(vcpu->kvm))
  109. kvm_lapic_set_base(vcpu, data);
  110. else
  111. vcpu->apic_base = data;
  112. }
  113. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  114. static void inject_gp(struct kvm_vcpu *vcpu)
  115. {
  116. kvm_x86_ops->inject_gp(vcpu, 0);
  117. }
  118. /*
  119. * Load the pae pdptrs. Return true is they are all valid.
  120. */
  121. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  122. {
  123. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  124. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  125. int i;
  126. int ret;
  127. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  128. mutex_lock(&vcpu->kvm->lock);
  129. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  130. offset * sizeof(u64), sizeof(pdpte));
  131. if (ret < 0) {
  132. ret = 0;
  133. goto out;
  134. }
  135. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  136. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  137. ret = 0;
  138. goto out;
  139. }
  140. }
  141. ret = 1;
  142. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  143. out:
  144. mutex_unlock(&vcpu->kvm->lock);
  145. return ret;
  146. }
  147. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  148. {
  149. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  150. bool changed = true;
  151. int r;
  152. if (is_long_mode(vcpu) || !is_pae(vcpu))
  153. return false;
  154. mutex_lock(&vcpu->kvm->lock);
  155. r = kvm_read_guest(vcpu->kvm, vcpu->cr3 & ~31u, pdpte, sizeof(pdpte));
  156. if (r < 0)
  157. goto out;
  158. changed = memcmp(pdpte, vcpu->pdptrs, sizeof(pdpte)) != 0;
  159. out:
  160. mutex_unlock(&vcpu->kvm->lock);
  161. return changed;
  162. }
  163. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  164. {
  165. if (cr0 & CR0_RESERVED_BITS) {
  166. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  167. cr0, vcpu->cr0);
  168. inject_gp(vcpu);
  169. return;
  170. }
  171. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  172. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  173. inject_gp(vcpu);
  174. return;
  175. }
  176. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  177. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  178. "and a clear PE flag\n");
  179. inject_gp(vcpu);
  180. return;
  181. }
  182. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  183. #ifdef CONFIG_X86_64
  184. if ((vcpu->shadow_efer & EFER_LME)) {
  185. int cs_db, cs_l;
  186. if (!is_pae(vcpu)) {
  187. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  188. "in long mode while PAE is disabled\n");
  189. inject_gp(vcpu);
  190. return;
  191. }
  192. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  193. if (cs_l) {
  194. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  195. "in long mode while CS.L == 1\n");
  196. inject_gp(vcpu);
  197. return;
  198. }
  199. } else
  200. #endif
  201. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  202. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  203. "reserved bits\n");
  204. inject_gp(vcpu);
  205. return;
  206. }
  207. }
  208. kvm_x86_ops->set_cr0(vcpu, cr0);
  209. vcpu->cr0 = cr0;
  210. mutex_lock(&vcpu->kvm->lock);
  211. kvm_mmu_reset_context(vcpu);
  212. mutex_unlock(&vcpu->kvm->lock);
  213. return;
  214. }
  215. EXPORT_SYMBOL_GPL(set_cr0);
  216. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  217. {
  218. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  219. }
  220. EXPORT_SYMBOL_GPL(lmsw);
  221. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  222. {
  223. if (cr4 & CR4_RESERVED_BITS) {
  224. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  225. inject_gp(vcpu);
  226. return;
  227. }
  228. if (is_long_mode(vcpu)) {
  229. if (!(cr4 & X86_CR4_PAE)) {
  230. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  231. "in long mode\n");
  232. inject_gp(vcpu);
  233. return;
  234. }
  235. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  236. && !load_pdptrs(vcpu, vcpu->cr3)) {
  237. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  238. inject_gp(vcpu);
  239. return;
  240. }
  241. if (cr4 & X86_CR4_VMXE) {
  242. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  243. inject_gp(vcpu);
  244. return;
  245. }
  246. kvm_x86_ops->set_cr4(vcpu, cr4);
  247. vcpu->cr4 = cr4;
  248. mutex_lock(&vcpu->kvm->lock);
  249. kvm_mmu_reset_context(vcpu);
  250. mutex_unlock(&vcpu->kvm->lock);
  251. }
  252. EXPORT_SYMBOL_GPL(set_cr4);
  253. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  254. {
  255. if (cr3 == vcpu->cr3 && !pdptrs_changed(vcpu)) {
  256. kvm_mmu_flush_tlb(vcpu);
  257. return;
  258. }
  259. if (is_long_mode(vcpu)) {
  260. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  261. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  262. inject_gp(vcpu);
  263. return;
  264. }
  265. } else {
  266. if (is_pae(vcpu)) {
  267. if (cr3 & CR3_PAE_RESERVED_BITS) {
  268. printk(KERN_DEBUG
  269. "set_cr3: #GP, reserved bits\n");
  270. inject_gp(vcpu);
  271. return;
  272. }
  273. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  274. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  275. "reserved bits\n");
  276. inject_gp(vcpu);
  277. return;
  278. }
  279. }
  280. /*
  281. * We don't check reserved bits in nonpae mode, because
  282. * this isn't enforced, and VMware depends on this.
  283. */
  284. }
  285. mutex_lock(&vcpu->kvm->lock);
  286. /*
  287. * Does the new cr3 value map to physical memory? (Note, we
  288. * catch an invalid cr3 even in real-mode, because it would
  289. * cause trouble later on when we turn on paging anyway.)
  290. *
  291. * A real CPU would silently accept an invalid cr3 and would
  292. * attempt to use it - with largely undefined (and often hard
  293. * to debug) behavior on the guest side.
  294. */
  295. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  296. inject_gp(vcpu);
  297. else {
  298. vcpu->cr3 = cr3;
  299. vcpu->mmu.new_cr3(vcpu);
  300. }
  301. mutex_unlock(&vcpu->kvm->lock);
  302. }
  303. EXPORT_SYMBOL_GPL(set_cr3);
  304. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  305. {
  306. if (cr8 & CR8_RESERVED_BITS) {
  307. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  308. inject_gp(vcpu);
  309. return;
  310. }
  311. if (irqchip_in_kernel(vcpu->kvm))
  312. kvm_lapic_set_tpr(vcpu, cr8);
  313. else
  314. vcpu->cr8 = cr8;
  315. }
  316. EXPORT_SYMBOL_GPL(set_cr8);
  317. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  318. {
  319. if (irqchip_in_kernel(vcpu->kvm))
  320. return kvm_lapic_get_cr8(vcpu);
  321. else
  322. return vcpu->cr8;
  323. }
  324. EXPORT_SYMBOL_GPL(get_cr8);
  325. /*
  326. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  327. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  328. *
  329. * This list is modified at module load time to reflect the
  330. * capabilities of the host cpu.
  331. */
  332. static u32 msrs_to_save[] = {
  333. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  334. MSR_K6_STAR,
  335. #ifdef CONFIG_X86_64
  336. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  337. #endif
  338. MSR_IA32_TIME_STAMP_COUNTER,
  339. };
  340. static unsigned num_msrs_to_save;
  341. static u32 emulated_msrs[] = {
  342. MSR_IA32_MISC_ENABLE,
  343. };
  344. #ifdef CONFIG_X86_64
  345. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  346. {
  347. if (efer & EFER_RESERVED_BITS) {
  348. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  349. efer);
  350. inject_gp(vcpu);
  351. return;
  352. }
  353. if (is_paging(vcpu)
  354. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  355. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  356. inject_gp(vcpu);
  357. return;
  358. }
  359. kvm_x86_ops->set_efer(vcpu, efer);
  360. efer &= ~EFER_LMA;
  361. efer |= vcpu->shadow_efer & EFER_LMA;
  362. vcpu->shadow_efer = efer;
  363. }
  364. #endif
  365. /*
  366. * Writes msr value into into the appropriate "register".
  367. * Returns 0 on success, non-0 otherwise.
  368. * Assumes vcpu_load() was already called.
  369. */
  370. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  371. {
  372. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  373. }
  374. /*
  375. * Adapt set_msr() to msr_io()'s calling convention
  376. */
  377. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  378. {
  379. return kvm_set_msr(vcpu, index, *data);
  380. }
  381. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  382. {
  383. switch (msr) {
  384. #ifdef CONFIG_X86_64
  385. case MSR_EFER:
  386. set_efer(vcpu, data);
  387. break;
  388. #endif
  389. case MSR_IA32_MC0_STATUS:
  390. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  391. __FUNCTION__, data);
  392. break;
  393. case MSR_IA32_MCG_STATUS:
  394. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  395. __FUNCTION__, data);
  396. break;
  397. case MSR_IA32_UCODE_REV:
  398. case MSR_IA32_UCODE_WRITE:
  399. case 0x200 ... 0x2ff: /* MTRRs */
  400. break;
  401. case MSR_IA32_APICBASE:
  402. kvm_set_apic_base(vcpu, data);
  403. break;
  404. case MSR_IA32_MISC_ENABLE:
  405. vcpu->ia32_misc_enable_msr = data;
  406. break;
  407. default:
  408. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  409. return 1;
  410. }
  411. return 0;
  412. }
  413. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  414. /*
  415. * Reads an msr value (of 'msr_index') into 'pdata'.
  416. * Returns 0 on success, non-0 otherwise.
  417. * Assumes vcpu_load() was already called.
  418. */
  419. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  420. {
  421. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  422. }
  423. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  424. {
  425. u64 data;
  426. switch (msr) {
  427. case 0xc0010010: /* SYSCFG */
  428. case 0xc0010015: /* HWCR */
  429. case MSR_IA32_PLATFORM_ID:
  430. case MSR_IA32_P5_MC_ADDR:
  431. case MSR_IA32_P5_MC_TYPE:
  432. case MSR_IA32_MC0_CTL:
  433. case MSR_IA32_MCG_STATUS:
  434. case MSR_IA32_MCG_CAP:
  435. case MSR_IA32_MC0_MISC:
  436. case MSR_IA32_MC0_MISC+4:
  437. case MSR_IA32_MC0_MISC+8:
  438. case MSR_IA32_MC0_MISC+12:
  439. case MSR_IA32_MC0_MISC+16:
  440. case MSR_IA32_UCODE_REV:
  441. case MSR_IA32_PERF_STATUS:
  442. case MSR_IA32_EBL_CR_POWERON:
  443. /* MTRR registers */
  444. case 0xfe:
  445. case 0x200 ... 0x2ff:
  446. data = 0;
  447. break;
  448. case 0xcd: /* fsb frequency */
  449. data = 3;
  450. break;
  451. case MSR_IA32_APICBASE:
  452. data = kvm_get_apic_base(vcpu);
  453. break;
  454. case MSR_IA32_MISC_ENABLE:
  455. data = vcpu->ia32_misc_enable_msr;
  456. break;
  457. #ifdef CONFIG_X86_64
  458. case MSR_EFER:
  459. data = vcpu->shadow_efer;
  460. break;
  461. #endif
  462. default:
  463. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  464. return 1;
  465. }
  466. *pdata = data;
  467. return 0;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  470. /*
  471. * Read or write a bunch of msrs. All parameters are kernel addresses.
  472. *
  473. * @return number of msrs set successfully.
  474. */
  475. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  476. struct kvm_msr_entry *entries,
  477. int (*do_msr)(struct kvm_vcpu *vcpu,
  478. unsigned index, u64 *data))
  479. {
  480. int i;
  481. vcpu_load(vcpu);
  482. for (i = 0; i < msrs->nmsrs; ++i)
  483. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  484. break;
  485. vcpu_put(vcpu);
  486. return i;
  487. }
  488. /*
  489. * Read or write a bunch of msrs. Parameters are user addresses.
  490. *
  491. * @return number of msrs set successfully.
  492. */
  493. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  494. int (*do_msr)(struct kvm_vcpu *vcpu,
  495. unsigned index, u64 *data),
  496. int writeback)
  497. {
  498. struct kvm_msrs msrs;
  499. struct kvm_msr_entry *entries;
  500. int r, n;
  501. unsigned size;
  502. r = -EFAULT;
  503. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  504. goto out;
  505. r = -E2BIG;
  506. if (msrs.nmsrs >= MAX_IO_MSRS)
  507. goto out;
  508. r = -ENOMEM;
  509. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  510. entries = vmalloc(size);
  511. if (!entries)
  512. goto out;
  513. r = -EFAULT;
  514. if (copy_from_user(entries, user_msrs->entries, size))
  515. goto out_free;
  516. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  517. if (r < 0)
  518. goto out_free;
  519. r = -EFAULT;
  520. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  521. goto out_free;
  522. r = n;
  523. out_free:
  524. vfree(entries);
  525. out:
  526. return r;
  527. }
  528. /*
  529. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  530. * cached on it.
  531. */
  532. void decache_vcpus_on_cpu(int cpu)
  533. {
  534. struct kvm *vm;
  535. struct kvm_vcpu *vcpu;
  536. int i;
  537. spin_lock(&kvm_lock);
  538. list_for_each_entry(vm, &vm_list, vm_list)
  539. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  540. vcpu = vm->vcpus[i];
  541. if (!vcpu)
  542. continue;
  543. /*
  544. * If the vcpu is locked, then it is running on some
  545. * other cpu and therefore it is not cached on the
  546. * cpu in question.
  547. *
  548. * If it's not locked, check the last cpu it executed
  549. * on.
  550. */
  551. if (mutex_trylock(&vcpu->mutex)) {
  552. if (vcpu->cpu == cpu) {
  553. kvm_x86_ops->vcpu_decache(vcpu);
  554. vcpu->cpu = -1;
  555. }
  556. mutex_unlock(&vcpu->mutex);
  557. }
  558. }
  559. spin_unlock(&kvm_lock);
  560. }
  561. int kvm_dev_ioctl_check_extension(long ext)
  562. {
  563. int r;
  564. switch (ext) {
  565. case KVM_CAP_IRQCHIP:
  566. case KVM_CAP_HLT:
  567. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  568. case KVM_CAP_USER_MEMORY:
  569. case KVM_CAP_SET_TSS_ADDR:
  570. r = 1;
  571. break;
  572. default:
  573. r = 0;
  574. break;
  575. }
  576. return r;
  577. }
  578. long kvm_arch_dev_ioctl(struct file *filp,
  579. unsigned int ioctl, unsigned long arg)
  580. {
  581. void __user *argp = (void __user *)arg;
  582. long r;
  583. switch (ioctl) {
  584. case KVM_GET_MSR_INDEX_LIST: {
  585. struct kvm_msr_list __user *user_msr_list = argp;
  586. struct kvm_msr_list msr_list;
  587. unsigned n;
  588. r = -EFAULT;
  589. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  590. goto out;
  591. n = msr_list.nmsrs;
  592. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  593. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  594. goto out;
  595. r = -E2BIG;
  596. if (n < num_msrs_to_save)
  597. goto out;
  598. r = -EFAULT;
  599. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  600. num_msrs_to_save * sizeof(u32)))
  601. goto out;
  602. if (copy_to_user(user_msr_list->indices
  603. + num_msrs_to_save * sizeof(u32),
  604. &emulated_msrs,
  605. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  606. goto out;
  607. r = 0;
  608. break;
  609. }
  610. default:
  611. r = -EINVAL;
  612. }
  613. out:
  614. return r;
  615. }
  616. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  617. {
  618. kvm_x86_ops->vcpu_load(vcpu, cpu);
  619. }
  620. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  621. {
  622. kvm_x86_ops->vcpu_put(vcpu);
  623. kvm_put_guest_fpu(vcpu);
  624. }
  625. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  626. {
  627. u64 efer;
  628. int i;
  629. struct kvm_cpuid_entry *e, *entry;
  630. rdmsrl(MSR_EFER, efer);
  631. entry = NULL;
  632. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  633. e = &vcpu->cpuid_entries[i];
  634. if (e->function == 0x80000001) {
  635. entry = e;
  636. break;
  637. }
  638. }
  639. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  640. entry->edx &= ~(1 << 20);
  641. printk(KERN_INFO "kvm: guest NX capability removed\n");
  642. }
  643. }
  644. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  645. struct kvm_cpuid *cpuid,
  646. struct kvm_cpuid_entry __user *entries)
  647. {
  648. int r;
  649. r = -E2BIG;
  650. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  651. goto out;
  652. r = -EFAULT;
  653. if (copy_from_user(&vcpu->cpuid_entries, entries,
  654. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  655. goto out;
  656. vcpu->cpuid_nent = cpuid->nent;
  657. cpuid_fix_nx_cap(vcpu);
  658. return 0;
  659. out:
  660. return r;
  661. }
  662. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  663. struct kvm_lapic_state *s)
  664. {
  665. vcpu_load(vcpu);
  666. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  667. vcpu_put(vcpu);
  668. return 0;
  669. }
  670. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  671. struct kvm_lapic_state *s)
  672. {
  673. vcpu_load(vcpu);
  674. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  675. kvm_apic_post_state_restore(vcpu);
  676. vcpu_put(vcpu);
  677. return 0;
  678. }
  679. long kvm_arch_vcpu_ioctl(struct file *filp,
  680. unsigned int ioctl, unsigned long arg)
  681. {
  682. struct kvm_vcpu *vcpu = filp->private_data;
  683. void __user *argp = (void __user *)arg;
  684. int r;
  685. switch (ioctl) {
  686. case KVM_GET_LAPIC: {
  687. struct kvm_lapic_state lapic;
  688. memset(&lapic, 0, sizeof lapic);
  689. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  690. if (r)
  691. goto out;
  692. r = -EFAULT;
  693. if (copy_to_user(argp, &lapic, sizeof lapic))
  694. goto out;
  695. r = 0;
  696. break;
  697. }
  698. case KVM_SET_LAPIC: {
  699. struct kvm_lapic_state lapic;
  700. r = -EFAULT;
  701. if (copy_from_user(&lapic, argp, sizeof lapic))
  702. goto out;
  703. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  704. if (r)
  705. goto out;
  706. r = 0;
  707. break;
  708. }
  709. case KVM_SET_CPUID: {
  710. struct kvm_cpuid __user *cpuid_arg = argp;
  711. struct kvm_cpuid cpuid;
  712. r = -EFAULT;
  713. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  714. goto out;
  715. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  716. if (r)
  717. goto out;
  718. break;
  719. }
  720. case KVM_GET_MSRS:
  721. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  722. break;
  723. case KVM_SET_MSRS:
  724. r = msr_io(vcpu, argp, do_set_msr, 0);
  725. break;
  726. default:
  727. r = -EINVAL;
  728. }
  729. out:
  730. return r;
  731. }
  732. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  733. {
  734. int ret;
  735. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  736. return -1;
  737. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  738. return ret;
  739. }
  740. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  741. u32 kvm_nr_mmu_pages)
  742. {
  743. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  744. return -EINVAL;
  745. mutex_lock(&kvm->lock);
  746. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  747. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  748. mutex_unlock(&kvm->lock);
  749. return 0;
  750. }
  751. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  752. {
  753. return kvm->n_alloc_mmu_pages;
  754. }
  755. /*
  756. * Set a new alias region. Aliases map a portion of physical memory into
  757. * another portion. This is useful for memory windows, for example the PC
  758. * VGA region.
  759. */
  760. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  761. struct kvm_memory_alias *alias)
  762. {
  763. int r, n;
  764. struct kvm_mem_alias *p;
  765. r = -EINVAL;
  766. /* General sanity checks */
  767. if (alias->memory_size & (PAGE_SIZE - 1))
  768. goto out;
  769. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  770. goto out;
  771. if (alias->slot >= KVM_ALIAS_SLOTS)
  772. goto out;
  773. if (alias->guest_phys_addr + alias->memory_size
  774. < alias->guest_phys_addr)
  775. goto out;
  776. if (alias->target_phys_addr + alias->memory_size
  777. < alias->target_phys_addr)
  778. goto out;
  779. mutex_lock(&kvm->lock);
  780. p = &kvm->aliases[alias->slot];
  781. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  782. p->npages = alias->memory_size >> PAGE_SHIFT;
  783. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  784. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  785. if (kvm->aliases[n - 1].npages)
  786. break;
  787. kvm->naliases = n;
  788. kvm_mmu_zap_all(kvm);
  789. mutex_unlock(&kvm->lock);
  790. return 0;
  791. out:
  792. return r;
  793. }
  794. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  795. {
  796. int r;
  797. r = 0;
  798. switch (chip->chip_id) {
  799. case KVM_IRQCHIP_PIC_MASTER:
  800. memcpy(&chip->chip.pic,
  801. &pic_irqchip(kvm)->pics[0],
  802. sizeof(struct kvm_pic_state));
  803. break;
  804. case KVM_IRQCHIP_PIC_SLAVE:
  805. memcpy(&chip->chip.pic,
  806. &pic_irqchip(kvm)->pics[1],
  807. sizeof(struct kvm_pic_state));
  808. break;
  809. case KVM_IRQCHIP_IOAPIC:
  810. memcpy(&chip->chip.ioapic,
  811. ioapic_irqchip(kvm),
  812. sizeof(struct kvm_ioapic_state));
  813. break;
  814. default:
  815. r = -EINVAL;
  816. break;
  817. }
  818. return r;
  819. }
  820. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  821. {
  822. int r;
  823. r = 0;
  824. switch (chip->chip_id) {
  825. case KVM_IRQCHIP_PIC_MASTER:
  826. memcpy(&pic_irqchip(kvm)->pics[0],
  827. &chip->chip.pic,
  828. sizeof(struct kvm_pic_state));
  829. break;
  830. case KVM_IRQCHIP_PIC_SLAVE:
  831. memcpy(&pic_irqchip(kvm)->pics[1],
  832. &chip->chip.pic,
  833. sizeof(struct kvm_pic_state));
  834. break;
  835. case KVM_IRQCHIP_IOAPIC:
  836. memcpy(ioapic_irqchip(kvm),
  837. &chip->chip.ioapic,
  838. sizeof(struct kvm_ioapic_state));
  839. break;
  840. default:
  841. r = -EINVAL;
  842. break;
  843. }
  844. kvm_pic_update_irq(pic_irqchip(kvm));
  845. return r;
  846. }
  847. /*
  848. * Get (and clear) the dirty memory log for a memory slot.
  849. */
  850. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  851. struct kvm_dirty_log *log)
  852. {
  853. int r;
  854. int n;
  855. struct kvm_memory_slot *memslot;
  856. int is_dirty = 0;
  857. mutex_lock(&kvm->lock);
  858. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  859. if (r)
  860. goto out;
  861. /* If nothing is dirty, don't bother messing with page tables. */
  862. if (is_dirty) {
  863. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  864. kvm_flush_remote_tlbs(kvm);
  865. memslot = &kvm->memslots[log->slot];
  866. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  867. memset(memslot->dirty_bitmap, 0, n);
  868. }
  869. r = 0;
  870. out:
  871. mutex_unlock(&kvm->lock);
  872. return r;
  873. }
  874. long kvm_arch_vm_ioctl(struct file *filp,
  875. unsigned int ioctl, unsigned long arg)
  876. {
  877. struct kvm *kvm = filp->private_data;
  878. void __user *argp = (void __user *)arg;
  879. int r = -EINVAL;
  880. switch (ioctl) {
  881. case KVM_SET_TSS_ADDR:
  882. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  883. if (r < 0)
  884. goto out;
  885. break;
  886. case KVM_SET_MEMORY_REGION: {
  887. struct kvm_memory_region kvm_mem;
  888. struct kvm_userspace_memory_region kvm_userspace_mem;
  889. r = -EFAULT;
  890. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  891. goto out;
  892. kvm_userspace_mem.slot = kvm_mem.slot;
  893. kvm_userspace_mem.flags = kvm_mem.flags;
  894. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  895. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  896. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  897. if (r)
  898. goto out;
  899. break;
  900. }
  901. case KVM_SET_NR_MMU_PAGES:
  902. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  903. if (r)
  904. goto out;
  905. break;
  906. case KVM_GET_NR_MMU_PAGES:
  907. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  908. break;
  909. case KVM_SET_MEMORY_ALIAS: {
  910. struct kvm_memory_alias alias;
  911. r = -EFAULT;
  912. if (copy_from_user(&alias, argp, sizeof alias))
  913. goto out;
  914. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  915. if (r)
  916. goto out;
  917. break;
  918. }
  919. case KVM_CREATE_IRQCHIP:
  920. r = -ENOMEM;
  921. kvm->vpic = kvm_create_pic(kvm);
  922. if (kvm->vpic) {
  923. r = kvm_ioapic_init(kvm);
  924. if (r) {
  925. kfree(kvm->vpic);
  926. kvm->vpic = NULL;
  927. goto out;
  928. }
  929. } else
  930. goto out;
  931. break;
  932. case KVM_IRQ_LINE: {
  933. struct kvm_irq_level irq_event;
  934. r = -EFAULT;
  935. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  936. goto out;
  937. if (irqchip_in_kernel(kvm)) {
  938. mutex_lock(&kvm->lock);
  939. if (irq_event.irq < 16)
  940. kvm_pic_set_irq(pic_irqchip(kvm),
  941. irq_event.irq,
  942. irq_event.level);
  943. kvm_ioapic_set_irq(kvm->vioapic,
  944. irq_event.irq,
  945. irq_event.level);
  946. mutex_unlock(&kvm->lock);
  947. r = 0;
  948. }
  949. break;
  950. }
  951. case KVM_GET_IRQCHIP: {
  952. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  953. struct kvm_irqchip chip;
  954. r = -EFAULT;
  955. if (copy_from_user(&chip, argp, sizeof chip))
  956. goto out;
  957. r = -ENXIO;
  958. if (!irqchip_in_kernel(kvm))
  959. goto out;
  960. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  961. if (r)
  962. goto out;
  963. r = -EFAULT;
  964. if (copy_to_user(argp, &chip, sizeof chip))
  965. goto out;
  966. r = 0;
  967. break;
  968. }
  969. case KVM_SET_IRQCHIP: {
  970. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  971. struct kvm_irqchip chip;
  972. r = -EFAULT;
  973. if (copy_from_user(&chip, argp, sizeof chip))
  974. goto out;
  975. r = -ENXIO;
  976. if (!irqchip_in_kernel(kvm))
  977. goto out;
  978. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  979. if (r)
  980. goto out;
  981. r = 0;
  982. break;
  983. }
  984. default:
  985. ;
  986. }
  987. out:
  988. return r;
  989. }
  990. static void kvm_init_msr_list(void)
  991. {
  992. u32 dummy[2];
  993. unsigned i, j;
  994. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  995. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  996. continue;
  997. if (j < i)
  998. msrs_to_save[j] = msrs_to_save[i];
  999. j++;
  1000. }
  1001. num_msrs_to_save = j;
  1002. }
  1003. /*
  1004. * Only apic need an MMIO device hook, so shortcut now..
  1005. */
  1006. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1007. gpa_t addr)
  1008. {
  1009. struct kvm_io_device *dev;
  1010. if (vcpu->apic) {
  1011. dev = &vcpu->apic->dev;
  1012. if (dev->in_range(dev, addr))
  1013. return dev;
  1014. }
  1015. return NULL;
  1016. }
  1017. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1018. gpa_t addr)
  1019. {
  1020. struct kvm_io_device *dev;
  1021. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1022. if (dev == NULL)
  1023. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1024. return dev;
  1025. }
  1026. int emulator_read_std(unsigned long addr,
  1027. void *val,
  1028. unsigned int bytes,
  1029. struct kvm_vcpu *vcpu)
  1030. {
  1031. void *data = val;
  1032. while (bytes) {
  1033. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1034. unsigned offset = addr & (PAGE_SIZE-1);
  1035. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1036. int ret;
  1037. if (gpa == UNMAPPED_GVA)
  1038. return X86EMUL_PROPAGATE_FAULT;
  1039. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1040. if (ret < 0)
  1041. return X86EMUL_UNHANDLEABLE;
  1042. bytes -= tocopy;
  1043. data += tocopy;
  1044. addr += tocopy;
  1045. }
  1046. return X86EMUL_CONTINUE;
  1047. }
  1048. EXPORT_SYMBOL_GPL(emulator_read_std);
  1049. static int emulator_read_emulated(unsigned long addr,
  1050. void *val,
  1051. unsigned int bytes,
  1052. struct kvm_vcpu *vcpu)
  1053. {
  1054. struct kvm_io_device *mmio_dev;
  1055. gpa_t gpa;
  1056. if (vcpu->mmio_read_completed) {
  1057. memcpy(val, vcpu->mmio_data, bytes);
  1058. vcpu->mmio_read_completed = 0;
  1059. return X86EMUL_CONTINUE;
  1060. }
  1061. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1062. /* For APIC access vmexit */
  1063. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1064. goto mmio;
  1065. if (emulator_read_std(addr, val, bytes, vcpu)
  1066. == X86EMUL_CONTINUE)
  1067. return X86EMUL_CONTINUE;
  1068. if (gpa == UNMAPPED_GVA)
  1069. return X86EMUL_PROPAGATE_FAULT;
  1070. mmio:
  1071. /*
  1072. * Is this MMIO handled locally?
  1073. */
  1074. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1075. if (mmio_dev) {
  1076. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1077. return X86EMUL_CONTINUE;
  1078. }
  1079. vcpu->mmio_needed = 1;
  1080. vcpu->mmio_phys_addr = gpa;
  1081. vcpu->mmio_size = bytes;
  1082. vcpu->mmio_is_write = 0;
  1083. return X86EMUL_UNHANDLEABLE;
  1084. }
  1085. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1086. const void *val, int bytes)
  1087. {
  1088. int ret;
  1089. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1090. if (ret < 0)
  1091. return 0;
  1092. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1093. return 1;
  1094. }
  1095. static int emulator_write_emulated_onepage(unsigned long addr,
  1096. const void *val,
  1097. unsigned int bytes,
  1098. struct kvm_vcpu *vcpu)
  1099. {
  1100. struct kvm_io_device *mmio_dev;
  1101. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1102. if (gpa == UNMAPPED_GVA) {
  1103. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1104. return X86EMUL_PROPAGATE_FAULT;
  1105. }
  1106. /* For APIC access vmexit */
  1107. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1108. goto mmio;
  1109. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1110. return X86EMUL_CONTINUE;
  1111. mmio:
  1112. /*
  1113. * Is this MMIO handled locally?
  1114. */
  1115. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1116. if (mmio_dev) {
  1117. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1118. return X86EMUL_CONTINUE;
  1119. }
  1120. vcpu->mmio_needed = 1;
  1121. vcpu->mmio_phys_addr = gpa;
  1122. vcpu->mmio_size = bytes;
  1123. vcpu->mmio_is_write = 1;
  1124. memcpy(vcpu->mmio_data, val, bytes);
  1125. return X86EMUL_CONTINUE;
  1126. }
  1127. int emulator_write_emulated(unsigned long addr,
  1128. const void *val,
  1129. unsigned int bytes,
  1130. struct kvm_vcpu *vcpu)
  1131. {
  1132. /* Crossing a page boundary? */
  1133. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1134. int rc, now;
  1135. now = -addr & ~PAGE_MASK;
  1136. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1137. if (rc != X86EMUL_CONTINUE)
  1138. return rc;
  1139. addr += now;
  1140. val += now;
  1141. bytes -= now;
  1142. }
  1143. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1144. }
  1145. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1146. static int emulator_cmpxchg_emulated(unsigned long addr,
  1147. const void *old,
  1148. const void *new,
  1149. unsigned int bytes,
  1150. struct kvm_vcpu *vcpu)
  1151. {
  1152. static int reported;
  1153. if (!reported) {
  1154. reported = 1;
  1155. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1156. }
  1157. return emulator_write_emulated(addr, new, bytes, vcpu);
  1158. }
  1159. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1160. {
  1161. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1162. }
  1163. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1164. {
  1165. return X86EMUL_CONTINUE;
  1166. }
  1167. int emulate_clts(struct kvm_vcpu *vcpu)
  1168. {
  1169. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1170. return X86EMUL_CONTINUE;
  1171. }
  1172. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1173. {
  1174. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1175. switch (dr) {
  1176. case 0 ... 3:
  1177. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1178. return X86EMUL_CONTINUE;
  1179. default:
  1180. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1181. return X86EMUL_UNHANDLEABLE;
  1182. }
  1183. }
  1184. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1185. {
  1186. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1187. int exception;
  1188. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1189. if (exception) {
  1190. /* FIXME: better handling */
  1191. return X86EMUL_UNHANDLEABLE;
  1192. }
  1193. return X86EMUL_CONTINUE;
  1194. }
  1195. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1196. {
  1197. static int reported;
  1198. u8 opcodes[4];
  1199. unsigned long rip = vcpu->rip;
  1200. unsigned long rip_linear;
  1201. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1202. if (reported)
  1203. return;
  1204. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1205. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1206. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1207. reported = 1;
  1208. }
  1209. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1210. struct x86_emulate_ops emulate_ops = {
  1211. .read_std = emulator_read_std,
  1212. .read_emulated = emulator_read_emulated,
  1213. .write_emulated = emulator_write_emulated,
  1214. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1215. };
  1216. int emulate_instruction(struct kvm_vcpu *vcpu,
  1217. struct kvm_run *run,
  1218. unsigned long cr2,
  1219. u16 error_code,
  1220. int no_decode)
  1221. {
  1222. int r;
  1223. vcpu->mmio_fault_cr2 = cr2;
  1224. kvm_x86_ops->cache_regs(vcpu);
  1225. vcpu->mmio_is_write = 0;
  1226. vcpu->pio.string = 0;
  1227. if (!no_decode) {
  1228. int cs_db, cs_l;
  1229. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1230. vcpu->emulate_ctxt.vcpu = vcpu;
  1231. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1232. vcpu->emulate_ctxt.cr2 = cr2;
  1233. vcpu->emulate_ctxt.mode =
  1234. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1235. ? X86EMUL_MODE_REAL : cs_l
  1236. ? X86EMUL_MODE_PROT64 : cs_db
  1237. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1238. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1239. vcpu->emulate_ctxt.cs_base = 0;
  1240. vcpu->emulate_ctxt.ds_base = 0;
  1241. vcpu->emulate_ctxt.es_base = 0;
  1242. vcpu->emulate_ctxt.ss_base = 0;
  1243. } else {
  1244. vcpu->emulate_ctxt.cs_base =
  1245. get_segment_base(vcpu, VCPU_SREG_CS);
  1246. vcpu->emulate_ctxt.ds_base =
  1247. get_segment_base(vcpu, VCPU_SREG_DS);
  1248. vcpu->emulate_ctxt.es_base =
  1249. get_segment_base(vcpu, VCPU_SREG_ES);
  1250. vcpu->emulate_ctxt.ss_base =
  1251. get_segment_base(vcpu, VCPU_SREG_SS);
  1252. }
  1253. vcpu->emulate_ctxt.gs_base =
  1254. get_segment_base(vcpu, VCPU_SREG_GS);
  1255. vcpu->emulate_ctxt.fs_base =
  1256. get_segment_base(vcpu, VCPU_SREG_FS);
  1257. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1258. ++vcpu->stat.insn_emulation;
  1259. if (r) {
  1260. ++vcpu->stat.insn_emulation_fail;
  1261. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1262. return EMULATE_DONE;
  1263. return EMULATE_FAIL;
  1264. }
  1265. }
  1266. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1267. if (vcpu->pio.string)
  1268. return EMULATE_DO_MMIO;
  1269. if ((r || vcpu->mmio_is_write) && run) {
  1270. run->exit_reason = KVM_EXIT_MMIO;
  1271. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1272. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1273. run->mmio.len = vcpu->mmio_size;
  1274. run->mmio.is_write = vcpu->mmio_is_write;
  1275. }
  1276. if (r) {
  1277. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1278. return EMULATE_DONE;
  1279. if (!vcpu->mmio_needed) {
  1280. kvm_report_emulation_failure(vcpu, "mmio");
  1281. return EMULATE_FAIL;
  1282. }
  1283. return EMULATE_DO_MMIO;
  1284. }
  1285. kvm_x86_ops->decache_regs(vcpu);
  1286. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1287. if (vcpu->mmio_is_write) {
  1288. vcpu->mmio_needed = 0;
  1289. return EMULATE_DO_MMIO;
  1290. }
  1291. return EMULATE_DONE;
  1292. }
  1293. EXPORT_SYMBOL_GPL(emulate_instruction);
  1294. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1295. {
  1296. int i;
  1297. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  1298. if (vcpu->pio.guest_pages[i]) {
  1299. kvm_release_page_dirty(vcpu->pio.guest_pages[i]);
  1300. vcpu->pio.guest_pages[i] = NULL;
  1301. }
  1302. }
  1303. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1304. {
  1305. void *p = vcpu->pio_data;
  1306. void *q;
  1307. unsigned bytes;
  1308. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1309. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1310. PAGE_KERNEL);
  1311. if (!q) {
  1312. free_pio_guest_pages(vcpu);
  1313. return -ENOMEM;
  1314. }
  1315. q += vcpu->pio.guest_page_offset;
  1316. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1317. if (vcpu->pio.in)
  1318. memcpy(q, p, bytes);
  1319. else
  1320. memcpy(p, q, bytes);
  1321. q -= vcpu->pio.guest_page_offset;
  1322. vunmap(q);
  1323. free_pio_guest_pages(vcpu);
  1324. return 0;
  1325. }
  1326. int complete_pio(struct kvm_vcpu *vcpu)
  1327. {
  1328. struct kvm_pio_request *io = &vcpu->pio;
  1329. long delta;
  1330. int r;
  1331. kvm_x86_ops->cache_regs(vcpu);
  1332. if (!io->string) {
  1333. if (io->in)
  1334. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1335. io->size);
  1336. } else {
  1337. if (io->in) {
  1338. r = pio_copy_data(vcpu);
  1339. if (r) {
  1340. kvm_x86_ops->cache_regs(vcpu);
  1341. return r;
  1342. }
  1343. }
  1344. delta = 1;
  1345. if (io->rep) {
  1346. delta *= io->cur_count;
  1347. /*
  1348. * The size of the register should really depend on
  1349. * current address size.
  1350. */
  1351. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1352. }
  1353. if (io->down)
  1354. delta = -delta;
  1355. delta *= io->size;
  1356. if (io->in)
  1357. vcpu->regs[VCPU_REGS_RDI] += delta;
  1358. else
  1359. vcpu->regs[VCPU_REGS_RSI] += delta;
  1360. }
  1361. kvm_x86_ops->decache_regs(vcpu);
  1362. io->count -= io->cur_count;
  1363. io->cur_count = 0;
  1364. return 0;
  1365. }
  1366. static void kernel_pio(struct kvm_io_device *pio_dev,
  1367. struct kvm_vcpu *vcpu,
  1368. void *pd)
  1369. {
  1370. /* TODO: String I/O for in kernel device */
  1371. mutex_lock(&vcpu->kvm->lock);
  1372. if (vcpu->pio.in)
  1373. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1374. vcpu->pio.size,
  1375. pd);
  1376. else
  1377. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1378. vcpu->pio.size,
  1379. pd);
  1380. mutex_unlock(&vcpu->kvm->lock);
  1381. }
  1382. static void pio_string_write(struct kvm_io_device *pio_dev,
  1383. struct kvm_vcpu *vcpu)
  1384. {
  1385. struct kvm_pio_request *io = &vcpu->pio;
  1386. void *pd = vcpu->pio_data;
  1387. int i;
  1388. mutex_lock(&vcpu->kvm->lock);
  1389. for (i = 0; i < io->cur_count; i++) {
  1390. kvm_iodevice_write(pio_dev, io->port,
  1391. io->size,
  1392. pd);
  1393. pd += io->size;
  1394. }
  1395. mutex_unlock(&vcpu->kvm->lock);
  1396. }
  1397. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1398. gpa_t addr)
  1399. {
  1400. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1401. }
  1402. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1403. int size, unsigned port)
  1404. {
  1405. struct kvm_io_device *pio_dev;
  1406. vcpu->run->exit_reason = KVM_EXIT_IO;
  1407. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1408. vcpu->run->io.size = vcpu->pio.size = size;
  1409. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1410. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1411. vcpu->run->io.port = vcpu->pio.port = port;
  1412. vcpu->pio.in = in;
  1413. vcpu->pio.string = 0;
  1414. vcpu->pio.down = 0;
  1415. vcpu->pio.guest_page_offset = 0;
  1416. vcpu->pio.rep = 0;
  1417. kvm_x86_ops->cache_regs(vcpu);
  1418. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1419. kvm_x86_ops->decache_regs(vcpu);
  1420. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1421. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1422. if (pio_dev) {
  1423. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1424. complete_pio(vcpu);
  1425. return 1;
  1426. }
  1427. return 0;
  1428. }
  1429. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1430. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1431. int size, unsigned long count, int down,
  1432. gva_t address, int rep, unsigned port)
  1433. {
  1434. unsigned now, in_page;
  1435. int i, ret = 0;
  1436. int nr_pages = 1;
  1437. struct page *page;
  1438. struct kvm_io_device *pio_dev;
  1439. vcpu->run->exit_reason = KVM_EXIT_IO;
  1440. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1441. vcpu->run->io.size = vcpu->pio.size = size;
  1442. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1443. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1444. vcpu->run->io.port = vcpu->pio.port = port;
  1445. vcpu->pio.in = in;
  1446. vcpu->pio.string = 1;
  1447. vcpu->pio.down = down;
  1448. vcpu->pio.guest_page_offset = offset_in_page(address);
  1449. vcpu->pio.rep = rep;
  1450. if (!count) {
  1451. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1452. return 1;
  1453. }
  1454. if (!down)
  1455. in_page = PAGE_SIZE - offset_in_page(address);
  1456. else
  1457. in_page = offset_in_page(address) + size;
  1458. now = min(count, (unsigned long)in_page / size);
  1459. if (!now) {
  1460. /*
  1461. * String I/O straddles page boundary. Pin two guest pages
  1462. * so that we satisfy atomicity constraints. Do just one
  1463. * transaction to avoid complexity.
  1464. */
  1465. nr_pages = 2;
  1466. now = 1;
  1467. }
  1468. if (down) {
  1469. /*
  1470. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1471. */
  1472. pr_unimpl(vcpu, "guest string pio down\n");
  1473. inject_gp(vcpu);
  1474. return 1;
  1475. }
  1476. vcpu->run->io.count = now;
  1477. vcpu->pio.cur_count = now;
  1478. if (vcpu->pio.cur_count == vcpu->pio.count)
  1479. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1480. for (i = 0; i < nr_pages; ++i) {
  1481. mutex_lock(&vcpu->kvm->lock);
  1482. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1483. vcpu->pio.guest_pages[i] = page;
  1484. mutex_unlock(&vcpu->kvm->lock);
  1485. if (!page) {
  1486. inject_gp(vcpu);
  1487. free_pio_guest_pages(vcpu);
  1488. return 1;
  1489. }
  1490. }
  1491. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1492. if (!vcpu->pio.in) {
  1493. /* string PIO write */
  1494. ret = pio_copy_data(vcpu);
  1495. if (ret >= 0 && pio_dev) {
  1496. pio_string_write(pio_dev, vcpu);
  1497. complete_pio(vcpu);
  1498. if (vcpu->pio.count == 0)
  1499. ret = 1;
  1500. }
  1501. } else if (pio_dev)
  1502. pr_unimpl(vcpu, "no string pio read support yet, "
  1503. "port %x size %d count %ld\n",
  1504. port, size, count);
  1505. return ret;
  1506. }
  1507. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1508. int kvm_arch_init(void *opaque)
  1509. {
  1510. int r;
  1511. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  1512. r = kvm_mmu_module_init();
  1513. if (r)
  1514. goto out_fail;
  1515. kvm_init_msr_list();
  1516. if (kvm_x86_ops) {
  1517. printk(KERN_ERR "kvm: already loaded the other module\n");
  1518. r = -EEXIST;
  1519. goto out;
  1520. }
  1521. if (!ops->cpu_has_kvm_support()) {
  1522. printk(KERN_ERR "kvm: no hardware support\n");
  1523. r = -EOPNOTSUPP;
  1524. goto out;
  1525. }
  1526. if (ops->disabled_by_bios()) {
  1527. printk(KERN_ERR "kvm: disabled by bios\n");
  1528. r = -EOPNOTSUPP;
  1529. goto out;
  1530. }
  1531. kvm_x86_ops = ops;
  1532. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1533. return 0;
  1534. out:
  1535. kvm_mmu_module_exit();
  1536. out_fail:
  1537. return r;
  1538. }
  1539. void kvm_arch_exit(void)
  1540. {
  1541. kvm_x86_ops = NULL;
  1542. kvm_mmu_module_exit();
  1543. }
  1544. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1545. {
  1546. ++vcpu->stat.halt_exits;
  1547. if (irqchip_in_kernel(vcpu->kvm)) {
  1548. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1549. kvm_vcpu_block(vcpu);
  1550. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1551. return -EINTR;
  1552. return 1;
  1553. } else {
  1554. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1555. return 0;
  1556. }
  1557. }
  1558. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1559. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1560. {
  1561. unsigned long nr, a0, a1, a2, a3, ret;
  1562. kvm_x86_ops->cache_regs(vcpu);
  1563. nr = vcpu->regs[VCPU_REGS_RAX];
  1564. a0 = vcpu->regs[VCPU_REGS_RBX];
  1565. a1 = vcpu->regs[VCPU_REGS_RCX];
  1566. a2 = vcpu->regs[VCPU_REGS_RDX];
  1567. a3 = vcpu->regs[VCPU_REGS_RSI];
  1568. if (!is_long_mode(vcpu)) {
  1569. nr &= 0xFFFFFFFF;
  1570. a0 &= 0xFFFFFFFF;
  1571. a1 &= 0xFFFFFFFF;
  1572. a2 &= 0xFFFFFFFF;
  1573. a3 &= 0xFFFFFFFF;
  1574. }
  1575. switch (nr) {
  1576. default:
  1577. ret = -KVM_ENOSYS;
  1578. break;
  1579. }
  1580. vcpu->regs[VCPU_REGS_RAX] = ret;
  1581. kvm_x86_ops->decache_regs(vcpu);
  1582. return 0;
  1583. }
  1584. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1585. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1586. {
  1587. char instruction[3];
  1588. int ret = 0;
  1589. mutex_lock(&vcpu->kvm->lock);
  1590. /*
  1591. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1592. * to ensure that the updated hypercall appears atomically across all
  1593. * VCPUs.
  1594. */
  1595. kvm_mmu_zap_all(vcpu->kvm);
  1596. kvm_x86_ops->cache_regs(vcpu);
  1597. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1598. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1599. != X86EMUL_CONTINUE)
  1600. ret = -EFAULT;
  1601. mutex_unlock(&vcpu->kvm->lock);
  1602. return ret;
  1603. }
  1604. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1605. {
  1606. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1607. }
  1608. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1609. {
  1610. struct descriptor_table dt = { limit, base };
  1611. kvm_x86_ops->set_gdt(vcpu, &dt);
  1612. }
  1613. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1614. {
  1615. struct descriptor_table dt = { limit, base };
  1616. kvm_x86_ops->set_idt(vcpu, &dt);
  1617. }
  1618. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1619. unsigned long *rflags)
  1620. {
  1621. lmsw(vcpu, msw);
  1622. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1623. }
  1624. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1625. {
  1626. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1627. switch (cr) {
  1628. case 0:
  1629. return vcpu->cr0;
  1630. case 2:
  1631. return vcpu->cr2;
  1632. case 3:
  1633. return vcpu->cr3;
  1634. case 4:
  1635. return vcpu->cr4;
  1636. default:
  1637. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1638. return 0;
  1639. }
  1640. }
  1641. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1642. unsigned long *rflags)
  1643. {
  1644. switch (cr) {
  1645. case 0:
  1646. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1647. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1648. break;
  1649. case 2:
  1650. vcpu->cr2 = val;
  1651. break;
  1652. case 3:
  1653. set_cr3(vcpu, val);
  1654. break;
  1655. case 4:
  1656. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1657. break;
  1658. default:
  1659. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1660. }
  1661. }
  1662. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1663. {
  1664. int i;
  1665. u32 function;
  1666. struct kvm_cpuid_entry *e, *best;
  1667. kvm_x86_ops->cache_regs(vcpu);
  1668. function = vcpu->regs[VCPU_REGS_RAX];
  1669. vcpu->regs[VCPU_REGS_RAX] = 0;
  1670. vcpu->regs[VCPU_REGS_RBX] = 0;
  1671. vcpu->regs[VCPU_REGS_RCX] = 0;
  1672. vcpu->regs[VCPU_REGS_RDX] = 0;
  1673. best = NULL;
  1674. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1675. e = &vcpu->cpuid_entries[i];
  1676. if (e->function == function) {
  1677. best = e;
  1678. break;
  1679. }
  1680. /*
  1681. * Both basic or both extended?
  1682. */
  1683. if (((e->function ^ function) & 0x80000000) == 0)
  1684. if (!best || e->function > best->function)
  1685. best = e;
  1686. }
  1687. if (best) {
  1688. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1689. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1690. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1691. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1692. }
  1693. kvm_x86_ops->decache_regs(vcpu);
  1694. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1695. }
  1696. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1697. /*
  1698. * Check if userspace requested an interrupt window, and that the
  1699. * interrupt window is open.
  1700. *
  1701. * No need to exit to userspace if we already have an interrupt queued.
  1702. */
  1703. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1704. struct kvm_run *kvm_run)
  1705. {
  1706. return (!vcpu->irq_summary &&
  1707. kvm_run->request_interrupt_window &&
  1708. vcpu->interrupt_window_open &&
  1709. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1710. }
  1711. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1712. struct kvm_run *kvm_run)
  1713. {
  1714. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1715. kvm_run->cr8 = get_cr8(vcpu);
  1716. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1717. if (irqchip_in_kernel(vcpu->kvm))
  1718. kvm_run->ready_for_interrupt_injection = 1;
  1719. else
  1720. kvm_run->ready_for_interrupt_injection =
  1721. (vcpu->interrupt_window_open &&
  1722. vcpu->irq_summary == 0);
  1723. }
  1724. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1725. {
  1726. int r;
  1727. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1728. pr_debug("vcpu %d received sipi with vector # %x\n",
  1729. vcpu->vcpu_id, vcpu->sipi_vector);
  1730. kvm_lapic_reset(vcpu);
  1731. r = kvm_x86_ops->vcpu_reset(vcpu);
  1732. if (r)
  1733. return r;
  1734. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1735. }
  1736. preempted:
  1737. if (vcpu->guest_debug.enabled)
  1738. kvm_x86_ops->guest_debug_pre(vcpu);
  1739. again:
  1740. r = kvm_mmu_reload(vcpu);
  1741. if (unlikely(r))
  1742. goto out;
  1743. kvm_inject_pending_timer_irqs(vcpu);
  1744. preempt_disable();
  1745. kvm_x86_ops->prepare_guest_switch(vcpu);
  1746. kvm_load_guest_fpu(vcpu);
  1747. local_irq_disable();
  1748. if (signal_pending(current)) {
  1749. local_irq_enable();
  1750. preempt_enable();
  1751. r = -EINTR;
  1752. kvm_run->exit_reason = KVM_EXIT_INTR;
  1753. ++vcpu->stat.signal_exits;
  1754. goto out;
  1755. }
  1756. if (irqchip_in_kernel(vcpu->kvm))
  1757. kvm_x86_ops->inject_pending_irq(vcpu);
  1758. else if (!vcpu->mmio_read_completed)
  1759. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1760. vcpu->guest_mode = 1;
  1761. kvm_guest_enter();
  1762. if (vcpu->requests)
  1763. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1764. kvm_x86_ops->tlb_flush(vcpu);
  1765. kvm_x86_ops->run(vcpu, kvm_run);
  1766. vcpu->guest_mode = 0;
  1767. local_irq_enable();
  1768. ++vcpu->stat.exits;
  1769. /*
  1770. * We must have an instruction between local_irq_enable() and
  1771. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1772. * the interrupt shadow. The stat.exits increment will do nicely.
  1773. * But we need to prevent reordering, hence this barrier():
  1774. */
  1775. barrier();
  1776. kvm_guest_exit();
  1777. preempt_enable();
  1778. /*
  1779. * Profile KVM exit RIPs:
  1780. */
  1781. if (unlikely(prof_on == KVM_PROFILING)) {
  1782. kvm_x86_ops->cache_regs(vcpu);
  1783. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1784. }
  1785. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1786. if (r > 0) {
  1787. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1788. r = -EINTR;
  1789. kvm_run->exit_reason = KVM_EXIT_INTR;
  1790. ++vcpu->stat.request_irq_exits;
  1791. goto out;
  1792. }
  1793. if (!need_resched())
  1794. goto again;
  1795. }
  1796. out:
  1797. if (r > 0) {
  1798. kvm_resched(vcpu);
  1799. goto preempted;
  1800. }
  1801. post_kvm_run_save(vcpu, kvm_run);
  1802. return r;
  1803. }
  1804. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1805. {
  1806. int r;
  1807. sigset_t sigsaved;
  1808. vcpu_load(vcpu);
  1809. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1810. kvm_vcpu_block(vcpu);
  1811. vcpu_put(vcpu);
  1812. return -EAGAIN;
  1813. }
  1814. if (vcpu->sigset_active)
  1815. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1816. /* re-sync apic's tpr */
  1817. if (!irqchip_in_kernel(vcpu->kvm))
  1818. set_cr8(vcpu, kvm_run->cr8);
  1819. if (vcpu->pio.cur_count) {
  1820. r = complete_pio(vcpu);
  1821. if (r)
  1822. goto out;
  1823. }
  1824. #if CONFIG_HAS_IOMEM
  1825. if (vcpu->mmio_needed) {
  1826. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1827. vcpu->mmio_read_completed = 1;
  1828. vcpu->mmio_needed = 0;
  1829. r = emulate_instruction(vcpu, kvm_run,
  1830. vcpu->mmio_fault_cr2, 0, 1);
  1831. if (r == EMULATE_DO_MMIO) {
  1832. /*
  1833. * Read-modify-write. Back to userspace.
  1834. */
  1835. r = 0;
  1836. goto out;
  1837. }
  1838. }
  1839. #endif
  1840. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1841. kvm_x86_ops->cache_regs(vcpu);
  1842. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1843. kvm_x86_ops->decache_regs(vcpu);
  1844. }
  1845. r = __vcpu_run(vcpu, kvm_run);
  1846. out:
  1847. if (vcpu->sigset_active)
  1848. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1849. vcpu_put(vcpu);
  1850. return r;
  1851. }
  1852. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1853. {
  1854. vcpu_load(vcpu);
  1855. kvm_x86_ops->cache_regs(vcpu);
  1856. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1857. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1858. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1859. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1860. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1861. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1862. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1863. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1864. #ifdef CONFIG_X86_64
  1865. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1866. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1867. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1868. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1869. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1870. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1871. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1872. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1873. #endif
  1874. regs->rip = vcpu->rip;
  1875. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1876. /*
  1877. * Don't leak debug flags in case they were set for guest debugging
  1878. */
  1879. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1880. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1881. vcpu_put(vcpu);
  1882. return 0;
  1883. }
  1884. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1885. {
  1886. vcpu_load(vcpu);
  1887. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1888. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1889. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1890. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1891. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1892. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1893. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1894. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1895. #ifdef CONFIG_X86_64
  1896. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1897. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1898. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1899. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1900. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1901. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1902. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1903. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1904. #endif
  1905. vcpu->rip = regs->rip;
  1906. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1907. kvm_x86_ops->decache_regs(vcpu);
  1908. vcpu_put(vcpu);
  1909. return 0;
  1910. }
  1911. static void get_segment(struct kvm_vcpu *vcpu,
  1912. struct kvm_segment *var, int seg)
  1913. {
  1914. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1915. }
  1916. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1917. {
  1918. struct kvm_segment cs;
  1919. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1920. *db = cs.db;
  1921. *l = cs.l;
  1922. }
  1923. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1924. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1925. struct kvm_sregs *sregs)
  1926. {
  1927. struct descriptor_table dt;
  1928. int pending_vec;
  1929. vcpu_load(vcpu);
  1930. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1931. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1932. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1933. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1934. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1935. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1936. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1937. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1938. kvm_x86_ops->get_idt(vcpu, &dt);
  1939. sregs->idt.limit = dt.limit;
  1940. sregs->idt.base = dt.base;
  1941. kvm_x86_ops->get_gdt(vcpu, &dt);
  1942. sregs->gdt.limit = dt.limit;
  1943. sregs->gdt.base = dt.base;
  1944. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1945. sregs->cr0 = vcpu->cr0;
  1946. sregs->cr2 = vcpu->cr2;
  1947. sregs->cr3 = vcpu->cr3;
  1948. sregs->cr4 = vcpu->cr4;
  1949. sregs->cr8 = get_cr8(vcpu);
  1950. sregs->efer = vcpu->shadow_efer;
  1951. sregs->apic_base = kvm_get_apic_base(vcpu);
  1952. if (irqchip_in_kernel(vcpu->kvm)) {
  1953. memset(sregs->interrupt_bitmap, 0,
  1954. sizeof sregs->interrupt_bitmap);
  1955. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1956. if (pending_vec >= 0)
  1957. set_bit(pending_vec,
  1958. (unsigned long *)sregs->interrupt_bitmap);
  1959. } else
  1960. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1961. sizeof sregs->interrupt_bitmap);
  1962. vcpu_put(vcpu);
  1963. return 0;
  1964. }
  1965. static void set_segment(struct kvm_vcpu *vcpu,
  1966. struct kvm_segment *var, int seg)
  1967. {
  1968. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1969. }
  1970. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1971. struct kvm_sregs *sregs)
  1972. {
  1973. int mmu_reset_needed = 0;
  1974. int i, pending_vec, max_bits;
  1975. struct descriptor_table dt;
  1976. vcpu_load(vcpu);
  1977. dt.limit = sregs->idt.limit;
  1978. dt.base = sregs->idt.base;
  1979. kvm_x86_ops->set_idt(vcpu, &dt);
  1980. dt.limit = sregs->gdt.limit;
  1981. dt.base = sregs->gdt.base;
  1982. kvm_x86_ops->set_gdt(vcpu, &dt);
  1983. vcpu->cr2 = sregs->cr2;
  1984. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1985. vcpu->cr3 = sregs->cr3;
  1986. set_cr8(vcpu, sregs->cr8);
  1987. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1988. #ifdef CONFIG_X86_64
  1989. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1990. #endif
  1991. kvm_set_apic_base(vcpu, sregs->apic_base);
  1992. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1993. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1994. vcpu->cr0 = sregs->cr0;
  1995. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1996. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1997. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1998. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1999. load_pdptrs(vcpu, vcpu->cr3);
  2000. if (mmu_reset_needed)
  2001. kvm_mmu_reset_context(vcpu);
  2002. if (!irqchip_in_kernel(vcpu->kvm)) {
  2003. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2004. sizeof vcpu->irq_pending);
  2005. vcpu->irq_summary = 0;
  2006. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2007. if (vcpu->irq_pending[i])
  2008. __set_bit(i, &vcpu->irq_summary);
  2009. } else {
  2010. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2011. pending_vec = find_first_bit(
  2012. (const unsigned long *)sregs->interrupt_bitmap,
  2013. max_bits);
  2014. /* Only pending external irq is handled here */
  2015. if (pending_vec < max_bits) {
  2016. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2017. pr_debug("Set back pending irq %d\n",
  2018. pending_vec);
  2019. }
  2020. }
  2021. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2022. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2023. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2024. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2025. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2026. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2027. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2028. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2029. vcpu_put(vcpu);
  2030. return 0;
  2031. }
  2032. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2033. struct kvm_debug_guest *dbg)
  2034. {
  2035. int r;
  2036. vcpu_load(vcpu);
  2037. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2038. vcpu_put(vcpu);
  2039. return r;
  2040. }
  2041. /*
  2042. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2043. * we have asm/x86/processor.h
  2044. */
  2045. struct fxsave {
  2046. u16 cwd;
  2047. u16 swd;
  2048. u16 twd;
  2049. u16 fop;
  2050. u64 rip;
  2051. u64 rdp;
  2052. u32 mxcsr;
  2053. u32 mxcsr_mask;
  2054. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2055. #ifdef CONFIG_X86_64
  2056. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2057. #else
  2058. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2059. #endif
  2060. };
  2061. /*
  2062. * Translate a guest virtual address to a guest physical address.
  2063. */
  2064. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2065. struct kvm_translation *tr)
  2066. {
  2067. unsigned long vaddr = tr->linear_address;
  2068. gpa_t gpa;
  2069. vcpu_load(vcpu);
  2070. mutex_lock(&vcpu->kvm->lock);
  2071. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2072. tr->physical_address = gpa;
  2073. tr->valid = gpa != UNMAPPED_GVA;
  2074. tr->writeable = 1;
  2075. tr->usermode = 0;
  2076. mutex_unlock(&vcpu->kvm->lock);
  2077. vcpu_put(vcpu);
  2078. return 0;
  2079. }
  2080. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2081. {
  2082. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2083. vcpu_load(vcpu);
  2084. memcpy(fpu->fpr, fxsave->st_space, 128);
  2085. fpu->fcw = fxsave->cwd;
  2086. fpu->fsw = fxsave->swd;
  2087. fpu->ftwx = fxsave->twd;
  2088. fpu->last_opcode = fxsave->fop;
  2089. fpu->last_ip = fxsave->rip;
  2090. fpu->last_dp = fxsave->rdp;
  2091. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2092. vcpu_put(vcpu);
  2093. return 0;
  2094. }
  2095. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2096. {
  2097. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2098. vcpu_load(vcpu);
  2099. memcpy(fxsave->st_space, fpu->fpr, 128);
  2100. fxsave->cwd = fpu->fcw;
  2101. fxsave->swd = fpu->fsw;
  2102. fxsave->twd = fpu->ftwx;
  2103. fxsave->fop = fpu->last_opcode;
  2104. fxsave->rip = fpu->last_ip;
  2105. fxsave->rdp = fpu->last_dp;
  2106. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2107. vcpu_put(vcpu);
  2108. return 0;
  2109. }
  2110. void fx_init(struct kvm_vcpu *vcpu)
  2111. {
  2112. unsigned after_mxcsr_mask;
  2113. /* Initialize guest FPU by resetting ours and saving into guest's */
  2114. preempt_disable();
  2115. fx_save(&vcpu->host_fx_image);
  2116. fpu_init();
  2117. fx_save(&vcpu->guest_fx_image);
  2118. fx_restore(&vcpu->host_fx_image);
  2119. preempt_enable();
  2120. vcpu->cr0 |= X86_CR0_ET;
  2121. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2122. vcpu->guest_fx_image.mxcsr = 0x1f80;
  2123. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  2124. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2125. }
  2126. EXPORT_SYMBOL_GPL(fx_init);
  2127. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2128. {
  2129. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2130. return;
  2131. vcpu->guest_fpu_loaded = 1;
  2132. fx_save(&vcpu->host_fx_image);
  2133. fx_restore(&vcpu->guest_fx_image);
  2134. }
  2135. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2136. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2137. {
  2138. if (!vcpu->guest_fpu_loaded)
  2139. return;
  2140. vcpu->guest_fpu_loaded = 0;
  2141. fx_save(&vcpu->guest_fx_image);
  2142. fx_restore(&vcpu->host_fx_image);
  2143. ++vcpu->stat.fpu_reload;
  2144. }
  2145. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2146. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2147. {
  2148. kvm_x86_ops->vcpu_free(vcpu);
  2149. }
  2150. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2151. unsigned int id)
  2152. {
  2153. return kvm_x86_ops->vcpu_create(kvm, id);
  2154. }
  2155. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  2156. {
  2157. int r;
  2158. /* We do fxsave: this must be aligned. */
  2159. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2160. vcpu_load(vcpu);
  2161. r = kvm_arch_vcpu_reset(vcpu);
  2162. if (r == 0)
  2163. r = kvm_mmu_setup(vcpu);
  2164. vcpu_put(vcpu);
  2165. if (r < 0)
  2166. goto free_vcpu;
  2167. return 0;
  2168. free_vcpu:
  2169. kvm_x86_ops->vcpu_free(vcpu);
  2170. return r;
  2171. }
  2172. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2173. {
  2174. vcpu_load(vcpu);
  2175. kvm_mmu_unload(vcpu);
  2176. vcpu_put(vcpu);
  2177. kvm_x86_ops->vcpu_free(vcpu);
  2178. }
  2179. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2180. {
  2181. return kvm_x86_ops->vcpu_reset(vcpu);
  2182. }
  2183. void kvm_arch_hardware_enable(void *garbage)
  2184. {
  2185. kvm_x86_ops->hardware_enable(garbage);
  2186. }
  2187. void kvm_arch_hardware_disable(void *garbage)
  2188. {
  2189. kvm_x86_ops->hardware_disable(garbage);
  2190. }
  2191. int kvm_arch_hardware_setup(void)
  2192. {
  2193. return kvm_x86_ops->hardware_setup();
  2194. }
  2195. void kvm_arch_hardware_unsetup(void)
  2196. {
  2197. kvm_x86_ops->hardware_unsetup();
  2198. }
  2199. void kvm_arch_check_processor_compat(void *rtn)
  2200. {
  2201. kvm_x86_ops->check_processor_compatibility(rtn);
  2202. }
  2203. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2204. {
  2205. struct page *page;
  2206. struct kvm *kvm;
  2207. int r;
  2208. BUG_ON(vcpu->kvm == NULL);
  2209. kvm = vcpu->kvm;
  2210. vcpu->mmu.root_hpa = INVALID_PAGE;
  2211. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2212. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  2213. else
  2214. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2215. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2216. if (!page) {
  2217. r = -ENOMEM;
  2218. goto fail;
  2219. }
  2220. vcpu->pio_data = page_address(page);
  2221. r = kvm_mmu_create(vcpu);
  2222. if (r < 0)
  2223. goto fail_free_pio_data;
  2224. if (irqchip_in_kernel(kvm)) {
  2225. r = kvm_create_lapic(vcpu);
  2226. if (r < 0)
  2227. goto fail_mmu_destroy;
  2228. }
  2229. return 0;
  2230. fail_mmu_destroy:
  2231. kvm_mmu_destroy(vcpu);
  2232. fail_free_pio_data:
  2233. free_page((unsigned long)vcpu->pio_data);
  2234. fail:
  2235. return r;
  2236. }
  2237. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2238. {
  2239. kvm_free_lapic(vcpu);
  2240. kvm_mmu_destroy(vcpu);
  2241. free_page((unsigned long)vcpu->pio_data);
  2242. }
  2243. struct kvm *kvm_arch_create_vm(void)
  2244. {
  2245. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2246. if (!kvm)
  2247. return ERR_PTR(-ENOMEM);
  2248. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  2249. return kvm;
  2250. }
  2251. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2252. {
  2253. vcpu_load(vcpu);
  2254. kvm_mmu_unload(vcpu);
  2255. vcpu_put(vcpu);
  2256. }
  2257. static void kvm_free_vcpus(struct kvm *kvm)
  2258. {
  2259. unsigned int i;
  2260. /*
  2261. * Unpin any mmu pages first.
  2262. */
  2263. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2264. if (kvm->vcpus[i])
  2265. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2266. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2267. if (kvm->vcpus[i]) {
  2268. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2269. kvm->vcpus[i] = NULL;
  2270. }
  2271. }
  2272. }
  2273. void kvm_arch_destroy_vm(struct kvm *kvm)
  2274. {
  2275. kfree(kvm->vpic);
  2276. kfree(kvm->vioapic);
  2277. kvm_free_vcpus(kvm);
  2278. kvm_free_physmem(kvm);
  2279. kfree(kvm);
  2280. }
  2281. int kvm_arch_set_memory_region(struct kvm *kvm,
  2282. struct kvm_userspace_memory_region *mem,
  2283. struct kvm_memory_slot old,
  2284. int user_alloc)
  2285. {
  2286. int npages = mem->memory_size >> PAGE_SHIFT;
  2287. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  2288. /*To keep backward compatibility with older userspace,
  2289. *x86 needs to hanlde !user_alloc case.
  2290. */
  2291. if (!user_alloc) {
  2292. if (npages && !old.rmap) {
  2293. down_write(&current->mm->mmap_sem);
  2294. memslot->userspace_addr = do_mmap(NULL, 0,
  2295. npages * PAGE_SIZE,
  2296. PROT_READ | PROT_WRITE,
  2297. MAP_SHARED | MAP_ANONYMOUS,
  2298. 0);
  2299. up_write(&current->mm->mmap_sem);
  2300. if (IS_ERR((void *)memslot->userspace_addr))
  2301. return PTR_ERR((void *)memslot->userspace_addr);
  2302. } else {
  2303. if (!old.user_alloc && old.rmap) {
  2304. int ret;
  2305. down_write(&current->mm->mmap_sem);
  2306. ret = do_munmap(current->mm, old.userspace_addr,
  2307. old.npages * PAGE_SIZE);
  2308. up_write(&current->mm->mmap_sem);
  2309. if (ret < 0)
  2310. printk(KERN_WARNING
  2311. "kvm_vm_ioctl_set_memory_region: "
  2312. "failed to munmap memory\n");
  2313. }
  2314. }
  2315. }
  2316. if (!kvm->n_requested_mmu_pages) {
  2317. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  2318. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  2319. }
  2320. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  2321. kvm_flush_remote_tlbs(kvm);
  2322. return 0;
  2323. }