time.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <asm/io.h>
  55. #include <asm/processor.h>
  56. #include <asm/nvram.h>
  57. #include <asm/cache.h>
  58. #include <asm/machdep.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/time.h>
  61. #include <asm/prom.h>
  62. #include <asm/irq.h>
  63. #include <asm/div64.h>
  64. #include <asm/smp.h>
  65. #include <asm/vdso_datapage.h>
  66. #include <asm/firmware.h>
  67. #ifdef CONFIG_PPC_ISERIES
  68. #include <asm/iseries/it_lp_queue.h>
  69. #include <asm/iseries/hv_call_xm.h>
  70. #endif
  71. /* powerpc clocksource/clockevent code */
  72. #include <linux/clockchips.h>
  73. #include <linux/clocksource.h>
  74. static cycle_t rtc_read(void);
  75. static struct clocksource clocksource_rtc = {
  76. .name = "rtc",
  77. .rating = 400,
  78. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  79. .mask = CLOCKSOURCE_MASK(64),
  80. .shift = 22,
  81. .mult = 0, /* To be filled in */
  82. .read = rtc_read,
  83. };
  84. static cycle_t timebase_read(void);
  85. static struct clocksource clocksource_timebase = {
  86. .name = "timebase",
  87. .rating = 400,
  88. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  89. .mask = CLOCKSOURCE_MASK(64),
  90. .shift = 22,
  91. .mult = 0, /* To be filled in */
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_MAX 0x7fffffff
  95. static int decrementer_set_next_event(unsigned long evt,
  96. struct clock_event_device *dev);
  97. static void decrementer_set_mode(enum clock_event_mode mode,
  98. struct clock_event_device *dev);
  99. static struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .shift = 32,
  103. .mult = 0, /* To be filled in */
  104. .irq = 0,
  105. .set_next_event = decrementer_set_next_event,
  106. .set_mode = decrementer_set_mode,
  107. .features = CLOCK_EVT_FEAT_ONESHOT,
  108. };
  109. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  110. void init_decrementer_clockevent(void);
  111. #ifdef CONFIG_PPC_ISERIES
  112. static unsigned long __initdata iSeries_recal_titan;
  113. static signed long __initdata iSeries_recal_tb;
  114. /* Forward declaration is only needed for iSereis compiles */
  115. void __init clocksource_init(void);
  116. #endif
  117. #define XSEC_PER_SEC (1024*1024)
  118. #ifdef CONFIG_PPC64
  119. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  120. #else
  121. /* compute ((xsec << 12) * max) >> 32 */
  122. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  123. #endif
  124. unsigned long tb_ticks_per_jiffy;
  125. unsigned long tb_ticks_per_usec = 100; /* sane default */
  126. EXPORT_SYMBOL(tb_ticks_per_usec);
  127. unsigned long tb_ticks_per_sec;
  128. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  129. u64 tb_to_xs;
  130. unsigned tb_to_us;
  131. #define TICKLEN_SCALE TICK_LENGTH_SHIFT
  132. u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  133. u64 ticklen_to_xs; /* 0.64 fraction */
  134. /* If last_tick_len corresponds to about 1/HZ seconds, then
  135. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  136. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  137. DEFINE_SPINLOCK(rtc_lock);
  138. EXPORT_SYMBOL_GPL(rtc_lock);
  139. static u64 tb_to_ns_scale __read_mostly;
  140. static unsigned tb_to_ns_shift __read_mostly;
  141. static unsigned long boot_tb __read_mostly;
  142. struct gettimeofday_struct do_gtod;
  143. extern struct timezone sys_tz;
  144. static long timezone_offset;
  145. unsigned long ppc_proc_freq;
  146. EXPORT_SYMBOL(ppc_proc_freq);
  147. unsigned long ppc_tb_freq;
  148. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  149. static DEFINE_PER_CPU(u64, last_jiffy);
  150. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  151. /*
  152. * Factors for converting from cputime_t (timebase ticks) to
  153. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  154. * These are all stored as 0.64 fixed-point binary fractions.
  155. */
  156. u64 __cputime_jiffies_factor;
  157. EXPORT_SYMBOL(__cputime_jiffies_factor);
  158. u64 __cputime_msec_factor;
  159. EXPORT_SYMBOL(__cputime_msec_factor);
  160. u64 __cputime_sec_factor;
  161. EXPORT_SYMBOL(__cputime_sec_factor);
  162. u64 __cputime_clockt_factor;
  163. EXPORT_SYMBOL(__cputime_clockt_factor);
  164. static void calc_cputime_factors(void)
  165. {
  166. struct div_result res;
  167. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  168. __cputime_jiffies_factor = res.result_low;
  169. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  170. __cputime_msec_factor = res.result_low;
  171. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  172. __cputime_sec_factor = res.result_low;
  173. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  174. __cputime_clockt_factor = res.result_low;
  175. }
  176. /*
  177. * Read the PURR on systems that have it, otherwise the timebase.
  178. */
  179. static u64 read_purr(void)
  180. {
  181. if (cpu_has_feature(CPU_FTR_PURR))
  182. return mfspr(SPRN_PURR);
  183. return mftb();
  184. }
  185. /*
  186. * Account time for a transition between system, hard irq
  187. * or soft irq state.
  188. */
  189. void account_system_vtime(struct task_struct *tsk)
  190. {
  191. u64 now, delta;
  192. unsigned long flags;
  193. local_irq_save(flags);
  194. now = read_purr();
  195. delta = now - get_paca()->startpurr;
  196. get_paca()->startpurr = now;
  197. if (!in_interrupt()) {
  198. delta += get_paca()->system_time;
  199. get_paca()->system_time = 0;
  200. }
  201. account_system_time(tsk, 0, delta);
  202. local_irq_restore(flags);
  203. }
  204. /*
  205. * Transfer the user and system times accumulated in the paca
  206. * by the exception entry and exit code to the generic process
  207. * user and system time records.
  208. * Must be called with interrupts disabled.
  209. */
  210. void account_process_vtime(struct task_struct *tsk)
  211. {
  212. cputime_t utime;
  213. utime = get_paca()->user_time;
  214. get_paca()->user_time = 0;
  215. account_user_time(tsk, utime);
  216. }
  217. static void account_process_time(struct pt_regs *regs)
  218. {
  219. int cpu = smp_processor_id();
  220. account_process_vtime(current);
  221. run_local_timers();
  222. if (rcu_pending(cpu))
  223. rcu_check_callbacks(cpu, user_mode(regs));
  224. scheduler_tick();
  225. run_posix_cpu_timers(current);
  226. }
  227. /*
  228. * Stuff for accounting stolen time.
  229. */
  230. struct cpu_purr_data {
  231. int initialized; /* thread is running */
  232. u64 tb; /* last TB value read */
  233. u64 purr; /* last PURR value read */
  234. };
  235. /*
  236. * Each entry in the cpu_purr_data array is manipulated only by its
  237. * "owner" cpu -- usually in the timer interrupt but also occasionally
  238. * in process context for cpu online. As long as cpus do not touch
  239. * each others' cpu_purr_data, disabling local interrupts is
  240. * sufficient to serialize accesses.
  241. */
  242. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  243. static void snapshot_tb_and_purr(void *data)
  244. {
  245. unsigned long flags;
  246. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  247. local_irq_save(flags);
  248. p->tb = get_tb_or_rtc();
  249. p->purr = mfspr(SPRN_PURR);
  250. wmb();
  251. p->initialized = 1;
  252. local_irq_restore(flags);
  253. }
  254. /*
  255. * Called during boot when all cpus have come up.
  256. */
  257. void snapshot_timebases(void)
  258. {
  259. if (!cpu_has_feature(CPU_FTR_PURR))
  260. return;
  261. on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
  262. }
  263. /*
  264. * Must be called with interrupts disabled.
  265. */
  266. void calculate_steal_time(void)
  267. {
  268. u64 tb, purr;
  269. s64 stolen;
  270. struct cpu_purr_data *pme;
  271. if (!cpu_has_feature(CPU_FTR_PURR))
  272. return;
  273. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  274. if (!pme->initialized)
  275. return; /* this can happen in early boot */
  276. tb = mftb();
  277. purr = mfspr(SPRN_PURR);
  278. stolen = (tb - pme->tb) - (purr - pme->purr);
  279. if (stolen > 0)
  280. account_steal_time(current, stolen);
  281. pme->tb = tb;
  282. pme->purr = purr;
  283. }
  284. #ifdef CONFIG_PPC_SPLPAR
  285. /*
  286. * Must be called before the cpu is added to the online map when
  287. * a cpu is being brought up at runtime.
  288. */
  289. static void snapshot_purr(void)
  290. {
  291. struct cpu_purr_data *pme;
  292. unsigned long flags;
  293. if (!cpu_has_feature(CPU_FTR_PURR))
  294. return;
  295. local_irq_save(flags);
  296. pme = &per_cpu(cpu_purr_data, smp_processor_id());
  297. pme->tb = mftb();
  298. pme->purr = mfspr(SPRN_PURR);
  299. pme->initialized = 1;
  300. local_irq_restore(flags);
  301. }
  302. #endif /* CONFIG_PPC_SPLPAR */
  303. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  304. #define calc_cputime_factors()
  305. #define account_process_time(regs) update_process_times(user_mode(regs))
  306. #define calculate_steal_time() do { } while (0)
  307. #endif
  308. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  309. #define snapshot_purr() do { } while (0)
  310. #endif
  311. /*
  312. * Called when a cpu comes up after the system has finished booting,
  313. * i.e. as a result of a hotplug cpu action.
  314. */
  315. void snapshot_timebase(void)
  316. {
  317. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  318. snapshot_purr();
  319. }
  320. void __delay(unsigned long loops)
  321. {
  322. unsigned long start;
  323. int diff;
  324. if (__USE_RTC()) {
  325. start = get_rtcl();
  326. do {
  327. /* the RTCL register wraps at 1000000000 */
  328. diff = get_rtcl() - start;
  329. if (diff < 0)
  330. diff += 1000000000;
  331. } while (diff < loops);
  332. } else {
  333. start = get_tbl();
  334. while (get_tbl() - start < loops)
  335. HMT_low();
  336. HMT_medium();
  337. }
  338. }
  339. EXPORT_SYMBOL(__delay);
  340. void udelay(unsigned long usecs)
  341. {
  342. __delay(tb_ticks_per_usec * usecs);
  343. }
  344. EXPORT_SYMBOL(udelay);
  345. /*
  346. * There are two copies of tb_to_xs and stamp_xsec so that no
  347. * lock is needed to access and use these values in
  348. * do_gettimeofday. We alternate the copies and as long as a
  349. * reasonable time elapses between changes, there will never
  350. * be inconsistent values. ntpd has a minimum of one minute
  351. * between updates.
  352. */
  353. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  354. u64 new_tb_to_xs)
  355. {
  356. unsigned temp_idx;
  357. struct gettimeofday_vars *temp_varp;
  358. temp_idx = (do_gtod.var_idx == 0);
  359. temp_varp = &do_gtod.vars[temp_idx];
  360. temp_varp->tb_to_xs = new_tb_to_xs;
  361. temp_varp->tb_orig_stamp = new_tb_stamp;
  362. temp_varp->stamp_xsec = new_stamp_xsec;
  363. smp_mb();
  364. do_gtod.varp = temp_varp;
  365. do_gtod.var_idx = temp_idx;
  366. /*
  367. * tb_update_count is used to allow the userspace gettimeofday code
  368. * to assure itself that it sees a consistent view of the tb_to_xs and
  369. * stamp_xsec variables. It reads the tb_update_count, then reads
  370. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  371. * the two values of tb_update_count match and are even then the
  372. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  373. * loops back and reads them again until this criteria is met.
  374. * We expect the caller to have done the first increment of
  375. * vdso_data->tb_update_count already.
  376. */
  377. vdso_data->tb_orig_stamp = new_tb_stamp;
  378. vdso_data->stamp_xsec = new_stamp_xsec;
  379. vdso_data->tb_to_xs = new_tb_to_xs;
  380. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  381. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  382. smp_wmb();
  383. ++(vdso_data->tb_update_count);
  384. }
  385. #ifdef CONFIG_SMP
  386. unsigned long profile_pc(struct pt_regs *regs)
  387. {
  388. unsigned long pc = instruction_pointer(regs);
  389. if (in_lock_functions(pc))
  390. return regs->link;
  391. return pc;
  392. }
  393. EXPORT_SYMBOL(profile_pc);
  394. #endif
  395. #ifdef CONFIG_PPC_ISERIES
  396. /*
  397. * This function recalibrates the timebase based on the 49-bit time-of-day
  398. * value in the Titan chip. The Titan is much more accurate than the value
  399. * returned by the service processor for the timebase frequency.
  400. */
  401. static int __init iSeries_tb_recal(void)
  402. {
  403. struct div_result divres;
  404. unsigned long titan, tb;
  405. /* Make sure we only run on iSeries */
  406. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  407. return -ENODEV;
  408. tb = get_tb();
  409. titan = HvCallXm_loadTod();
  410. if ( iSeries_recal_titan ) {
  411. unsigned long tb_ticks = tb - iSeries_recal_tb;
  412. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  413. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  414. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  415. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  416. char sign = '+';
  417. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  418. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  419. if ( tick_diff < 0 ) {
  420. tick_diff = -tick_diff;
  421. sign = '-';
  422. }
  423. if ( tick_diff ) {
  424. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  425. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  426. new_tb_ticks_per_jiffy, sign, tick_diff );
  427. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  428. tb_ticks_per_sec = new_tb_ticks_per_sec;
  429. calc_cputime_factors();
  430. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  431. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  432. tb_to_xs = divres.result_low;
  433. do_gtod.varp->tb_to_xs = tb_to_xs;
  434. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  435. vdso_data->tb_to_xs = tb_to_xs;
  436. }
  437. else {
  438. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  439. " new tb_ticks_per_jiffy = %lu\n"
  440. " old tb_ticks_per_jiffy = %lu\n",
  441. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  442. }
  443. }
  444. }
  445. iSeries_recal_titan = titan;
  446. iSeries_recal_tb = tb;
  447. /* Called here as now we know accurate values for the timebase */
  448. clocksource_init();
  449. return 0;
  450. }
  451. late_initcall(iSeries_tb_recal);
  452. /* Called from platform early init */
  453. void __init iSeries_time_init_early(void)
  454. {
  455. iSeries_recal_tb = get_tb();
  456. iSeries_recal_titan = HvCallXm_loadTod();
  457. }
  458. #endif /* CONFIG_PPC_ISERIES */
  459. /*
  460. * For iSeries shared processors, we have to let the hypervisor
  461. * set the hardware decrementer. We set a virtual decrementer
  462. * in the lppaca and call the hypervisor if the virtual
  463. * decrementer is less than the current value in the hardware
  464. * decrementer. (almost always the new decrementer value will
  465. * be greater than the current hardware decementer so the hypervisor
  466. * call will not be needed)
  467. */
  468. /*
  469. * timer_interrupt - gets called when the decrementer overflows,
  470. * with interrupts disabled.
  471. */
  472. void timer_interrupt(struct pt_regs * regs)
  473. {
  474. struct pt_regs *old_regs;
  475. int cpu = smp_processor_id();
  476. struct clock_event_device *evt = &per_cpu(decrementers, cpu);
  477. /* Ensure a positive value is written to the decrementer, or else
  478. * some CPUs will continuue to take decrementer exceptions */
  479. set_dec(DECREMENTER_MAX);
  480. #ifdef CONFIG_PPC32
  481. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  482. do_IRQ(regs);
  483. #endif
  484. old_regs = set_irq_regs(regs);
  485. irq_enter();
  486. calculate_steal_time();
  487. #ifdef CONFIG_PPC_ISERIES
  488. if (firmware_has_feature(FW_FEATURE_ISERIES))
  489. get_lppaca()->int_dword.fields.decr_int = 0;
  490. #endif
  491. /*
  492. * We cannot disable the decrementer, so in the period
  493. * between this cpu's being marked offline in cpu_online_map
  494. * and calling stop-self, it is taking timer interrupts.
  495. * Avoid calling into the scheduler rebalancing code if this
  496. * is the case.
  497. */
  498. if (!cpu_is_offline(cpu))
  499. account_process_time(regs);
  500. if (evt->event_handler)
  501. evt->event_handler(evt);
  502. else
  503. evt->set_next_event(DECREMENTER_MAX, evt);
  504. #ifdef CONFIG_PPC_ISERIES
  505. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  506. process_hvlpevents();
  507. #endif
  508. #ifdef CONFIG_PPC64
  509. /* collect purr register values often, for accurate calculations */
  510. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  511. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  512. cu->current_tb = mfspr(SPRN_PURR);
  513. }
  514. #endif
  515. irq_exit();
  516. set_irq_regs(old_regs);
  517. }
  518. void wakeup_decrementer(void)
  519. {
  520. unsigned long ticks;
  521. /*
  522. * The timebase gets saved on sleep and restored on wakeup,
  523. * so all we need to do is to reset the decrementer.
  524. */
  525. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  526. if (ticks < tb_ticks_per_jiffy)
  527. ticks = tb_ticks_per_jiffy - ticks;
  528. else
  529. ticks = 1;
  530. set_dec(ticks);
  531. }
  532. #ifdef CONFIG_SMP
  533. void __init smp_space_timers(unsigned int max_cpus)
  534. {
  535. int i;
  536. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  537. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  538. previous_tb -= tb_ticks_per_jiffy;
  539. for_each_possible_cpu(i) {
  540. if (i == boot_cpuid)
  541. continue;
  542. per_cpu(last_jiffy, i) = previous_tb;
  543. }
  544. }
  545. #endif
  546. /*
  547. * Scheduler clock - returns current time in nanosec units.
  548. *
  549. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  550. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  551. * are 64-bit unsigned numbers.
  552. */
  553. unsigned long long sched_clock(void)
  554. {
  555. if (__USE_RTC())
  556. return get_rtc();
  557. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  558. }
  559. static int __init get_freq(char *name, int cells, unsigned long *val)
  560. {
  561. struct device_node *cpu;
  562. const unsigned int *fp;
  563. int found = 0;
  564. /* The cpu node should have timebase and clock frequency properties */
  565. cpu = of_find_node_by_type(NULL, "cpu");
  566. if (cpu) {
  567. fp = of_get_property(cpu, name, NULL);
  568. if (fp) {
  569. found = 1;
  570. *val = of_read_ulong(fp, cells);
  571. }
  572. of_node_put(cpu);
  573. }
  574. return found;
  575. }
  576. void __init generic_calibrate_decr(void)
  577. {
  578. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  579. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  580. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  581. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  582. "(not found)\n");
  583. }
  584. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  585. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  586. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  587. printk(KERN_ERR "WARNING: Estimating processor frequency "
  588. "(not found)\n");
  589. }
  590. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  591. /* Set the time base to zero */
  592. mtspr(SPRN_TBWL, 0);
  593. mtspr(SPRN_TBWU, 0);
  594. /* Clear any pending timer interrupts */
  595. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  596. /* Enable decrementer interrupt */
  597. mtspr(SPRN_TCR, TCR_DIE);
  598. #endif
  599. }
  600. int update_persistent_clock(struct timespec now)
  601. {
  602. struct rtc_time tm;
  603. if (!ppc_md.set_rtc_time)
  604. return 0;
  605. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  606. tm.tm_year -= 1900;
  607. tm.tm_mon -= 1;
  608. return ppc_md.set_rtc_time(&tm);
  609. }
  610. unsigned long read_persistent_clock(void)
  611. {
  612. struct rtc_time tm;
  613. static int first = 1;
  614. /* XXX this is a litle fragile but will work okay in the short term */
  615. if (first) {
  616. first = 0;
  617. if (ppc_md.time_init)
  618. timezone_offset = ppc_md.time_init();
  619. /* get_boot_time() isn't guaranteed to be safe to call late */
  620. if (ppc_md.get_boot_time)
  621. return ppc_md.get_boot_time() -timezone_offset;
  622. }
  623. if (!ppc_md.get_rtc_time)
  624. return 0;
  625. ppc_md.get_rtc_time(&tm);
  626. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  627. tm.tm_hour, tm.tm_min, tm.tm_sec);
  628. }
  629. /* clocksource code */
  630. static cycle_t rtc_read(void)
  631. {
  632. return (cycle_t)get_rtc();
  633. }
  634. static cycle_t timebase_read(void)
  635. {
  636. return (cycle_t)get_tb();
  637. }
  638. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  639. {
  640. u64 t2x, stamp_xsec;
  641. if (clock != &clocksource_timebase)
  642. return;
  643. /* Make userspace gettimeofday spin until we're done. */
  644. ++vdso_data->tb_update_count;
  645. smp_mb();
  646. /* XXX this assumes clock->shift == 22 */
  647. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  648. t2x = (u64) clock->mult * 4611686018ULL;
  649. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  650. do_div(stamp_xsec, 1000000000);
  651. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  652. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  653. }
  654. void update_vsyscall_tz(void)
  655. {
  656. /* Make userspace gettimeofday spin until we're done. */
  657. ++vdso_data->tb_update_count;
  658. smp_mb();
  659. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  660. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  661. smp_mb();
  662. ++vdso_data->tb_update_count;
  663. }
  664. void __init clocksource_init(void)
  665. {
  666. struct clocksource *clock;
  667. if (__USE_RTC())
  668. clock = &clocksource_rtc;
  669. else
  670. clock = &clocksource_timebase;
  671. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  672. if (clocksource_register(clock)) {
  673. printk(KERN_ERR "clocksource: %s is already registered\n",
  674. clock->name);
  675. return;
  676. }
  677. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  678. clock->name, clock->mult, clock->shift);
  679. }
  680. static int decrementer_set_next_event(unsigned long evt,
  681. struct clock_event_device *dev)
  682. {
  683. set_dec(evt);
  684. return 0;
  685. }
  686. static void decrementer_set_mode(enum clock_event_mode mode,
  687. struct clock_event_device *dev)
  688. {
  689. if (mode != CLOCK_EVT_MODE_ONESHOT)
  690. decrementer_set_next_event(DECREMENTER_MAX, dev);
  691. }
  692. static void register_decrementer_clockevent(int cpu)
  693. {
  694. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  695. *dec = decrementer_clockevent;
  696. dec->cpumask = cpumask_of_cpu(cpu);
  697. printk(KERN_ERR "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  698. dec->name, dec->mult, dec->shift, cpu);
  699. clockevents_register_device(dec);
  700. }
  701. void init_decrementer_clockevent(void)
  702. {
  703. int cpu = smp_processor_id();
  704. decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
  705. decrementer_clockevent.shift);
  706. decrementer_clockevent.max_delta_ns =
  707. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  708. decrementer_clockevent.min_delta_ns = 1000;
  709. register_decrementer_clockevent(cpu);
  710. }
  711. void secondary_cpu_time_init(void)
  712. {
  713. /* FIME: Should make unrelatred change to move snapshot_timebase
  714. * call here ! */
  715. register_decrementer_clockevent(smp_processor_id());
  716. }
  717. /* This function is only called on the boot processor */
  718. void __init time_init(void)
  719. {
  720. unsigned long flags;
  721. struct div_result res;
  722. u64 scale, x;
  723. unsigned shift;
  724. if (__USE_RTC()) {
  725. /* 601 processor: dec counts down by 128 every 128ns */
  726. ppc_tb_freq = 1000000000;
  727. tb_last_jiffy = get_rtcl();
  728. } else {
  729. /* Normal PowerPC with timebase register */
  730. ppc_md.calibrate_decr();
  731. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  732. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  733. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  734. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  735. tb_last_jiffy = get_tb();
  736. }
  737. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  738. tb_ticks_per_sec = ppc_tb_freq;
  739. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  740. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  741. calc_cputime_factors();
  742. /*
  743. * Calculate the length of each tick in ns. It will not be
  744. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  745. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  746. * rounded up.
  747. */
  748. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  749. do_div(x, ppc_tb_freq);
  750. tick_nsec = x;
  751. last_tick_len = x << TICKLEN_SCALE;
  752. /*
  753. * Compute ticklen_to_xs, which is a factor which gets multiplied
  754. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  755. * It is computed as:
  756. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  757. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  758. * which turns out to be N = 51 - SHIFT_HZ.
  759. * This gives the result as a 0.64 fixed-point fraction.
  760. * That value is reduced by an offset amounting to 1 xsec per
  761. * 2^31 timebase ticks to avoid problems with time going backwards
  762. * by 1 xsec when we do timer_recalc_offset due to losing the
  763. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  764. * since there are 2^20 xsec in a second.
  765. */
  766. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  767. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  768. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  769. ticklen_to_xs = res.result_low;
  770. /* Compute tb_to_xs from tick_nsec */
  771. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  772. /*
  773. * Compute scale factor for sched_clock.
  774. * The calibrate_decr() function has set tb_ticks_per_sec,
  775. * which is the timebase frequency.
  776. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  777. * the 128-bit result as a 64.64 fixed-point number.
  778. * We then shift that number right until it is less than 1.0,
  779. * giving us the scale factor and shift count to use in
  780. * sched_clock().
  781. */
  782. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  783. scale = res.result_low;
  784. for (shift = 0; res.result_high != 0; ++shift) {
  785. scale = (scale >> 1) | (res.result_high << 63);
  786. res.result_high >>= 1;
  787. }
  788. tb_to_ns_scale = scale;
  789. tb_to_ns_shift = shift;
  790. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  791. boot_tb = get_tb_or_rtc();
  792. write_seqlock_irqsave(&xtime_lock, flags);
  793. /* If platform provided a timezone (pmac), we correct the time */
  794. if (timezone_offset) {
  795. sys_tz.tz_minuteswest = -timezone_offset / 60;
  796. sys_tz.tz_dsttime = 0;
  797. }
  798. do_gtod.varp = &do_gtod.vars[0];
  799. do_gtod.var_idx = 0;
  800. do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
  801. __get_cpu_var(last_jiffy) = tb_last_jiffy;
  802. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  803. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  804. do_gtod.varp->tb_to_xs = tb_to_xs;
  805. do_gtod.tb_to_us = tb_to_us;
  806. vdso_data->tb_orig_stamp = tb_last_jiffy;
  807. vdso_data->tb_update_count = 0;
  808. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  809. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  810. vdso_data->tb_to_xs = tb_to_xs;
  811. time_freq = 0;
  812. write_sequnlock_irqrestore(&xtime_lock, flags);
  813. /* Register the clocksource, if we're not running on iSeries */
  814. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  815. clocksource_init();
  816. init_decrementer_clockevent();
  817. }
  818. #define FEBRUARY 2
  819. #define STARTOFTIME 1970
  820. #define SECDAY 86400L
  821. #define SECYR (SECDAY * 365)
  822. #define leapyear(year) ((year) % 4 == 0 && \
  823. ((year) % 100 != 0 || (year) % 400 == 0))
  824. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  825. #define days_in_month(a) (month_days[(a) - 1])
  826. static int month_days[12] = {
  827. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  828. };
  829. /*
  830. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  831. */
  832. void GregorianDay(struct rtc_time * tm)
  833. {
  834. int leapsToDate;
  835. int lastYear;
  836. int day;
  837. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  838. lastYear = tm->tm_year - 1;
  839. /*
  840. * Number of leap corrections to apply up to end of last year
  841. */
  842. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  843. /*
  844. * This year is a leap year if it is divisible by 4 except when it is
  845. * divisible by 100 unless it is divisible by 400
  846. *
  847. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  848. */
  849. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  850. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  851. tm->tm_mday;
  852. tm->tm_wday = day % 7;
  853. }
  854. void to_tm(int tim, struct rtc_time * tm)
  855. {
  856. register int i;
  857. register long hms, day;
  858. day = tim / SECDAY;
  859. hms = tim % SECDAY;
  860. /* Hours, minutes, seconds are easy */
  861. tm->tm_hour = hms / 3600;
  862. tm->tm_min = (hms % 3600) / 60;
  863. tm->tm_sec = (hms % 3600) % 60;
  864. /* Number of years in days */
  865. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  866. day -= days_in_year(i);
  867. tm->tm_year = i;
  868. /* Number of months in days left */
  869. if (leapyear(tm->tm_year))
  870. days_in_month(FEBRUARY) = 29;
  871. for (i = 1; day >= days_in_month(i); i++)
  872. day -= days_in_month(i);
  873. days_in_month(FEBRUARY) = 28;
  874. tm->tm_mon = i;
  875. /* Days are what is left over (+1) from all that. */
  876. tm->tm_mday = day + 1;
  877. /*
  878. * Determine the day of week
  879. */
  880. GregorianDay(tm);
  881. }
  882. /* Auxiliary function to compute scaling factors */
  883. /* Actually the choice of a timebase running at 1/4 the of the bus
  884. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  885. * It makes this computation very precise (27-28 bits typically) which
  886. * is optimistic considering the stability of most processor clock
  887. * oscillators and the precision with which the timebase frequency
  888. * is measured but does not harm.
  889. */
  890. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  891. {
  892. unsigned mlt=0, tmp, err;
  893. /* No concern for performance, it's done once: use a stupid
  894. * but safe and compact method to find the multiplier.
  895. */
  896. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  897. if (mulhwu(inscale, mlt|tmp) < outscale)
  898. mlt |= tmp;
  899. }
  900. /* We might still be off by 1 for the best approximation.
  901. * A side effect of this is that if outscale is too large
  902. * the returned value will be zero.
  903. * Many corner cases have been checked and seem to work,
  904. * some might have been forgotten in the test however.
  905. */
  906. err = inscale * (mlt+1);
  907. if (err <= inscale/2)
  908. mlt++;
  909. return mlt;
  910. }
  911. /*
  912. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  913. * result.
  914. */
  915. void div128_by_32(u64 dividend_high, u64 dividend_low,
  916. unsigned divisor, struct div_result *dr)
  917. {
  918. unsigned long a, b, c, d;
  919. unsigned long w, x, y, z;
  920. u64 ra, rb, rc;
  921. a = dividend_high >> 32;
  922. b = dividend_high & 0xffffffff;
  923. c = dividend_low >> 32;
  924. d = dividend_low & 0xffffffff;
  925. w = a / divisor;
  926. ra = ((u64)(a - (w * divisor)) << 32) + b;
  927. rb = ((u64) do_div(ra, divisor) << 32) + c;
  928. x = ra;
  929. rc = ((u64) do_div(rb, divisor) << 32) + d;
  930. y = rb;
  931. do_div(rc, divisor);
  932. z = rc;
  933. dr->result_high = ((u64)w << 32) + x;
  934. dr->result_low = ((u64)y << 32) + z;
  935. }