futex.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/module.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <asm/futex.h>
  63. #include "rtmutex_common.h"
  64. int __read_mostly futex_cmpxchg_enabled;
  65. #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  66. /*
  67. * Priority Inheritance state:
  68. */
  69. struct futex_pi_state {
  70. /*
  71. * list of 'owned' pi_state instances - these have to be
  72. * cleaned up in do_exit() if the task exits prematurely:
  73. */
  74. struct list_head list;
  75. /*
  76. * The PI object:
  77. */
  78. struct rt_mutex pi_mutex;
  79. struct task_struct *owner;
  80. atomic_t refcount;
  81. union futex_key key;
  82. };
  83. /**
  84. * struct futex_q - The hashed futex queue entry, one per waiting task
  85. * @task: the task waiting on the futex
  86. * @lock_ptr: the hash bucket lock
  87. * @key: the key the futex is hashed on
  88. * @pi_state: optional priority inheritance state
  89. * @rt_waiter: rt_waiter storage for use with requeue_pi
  90. * @requeue_pi_key: the requeue_pi target futex key
  91. * @bitset: bitset for the optional bitmasked wakeup
  92. *
  93. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  94. * we can wake only the relevant ones (hashed queues may be shared).
  95. *
  96. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  97. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  98. * The order of wakup is always to make the first condition true, then
  99. * the second.
  100. *
  101. * PI futexes are typically woken before they are removed from the hash list via
  102. * the rt_mutex code. See unqueue_me_pi().
  103. */
  104. struct futex_q {
  105. struct plist_node list;
  106. struct task_struct *task;
  107. spinlock_t *lock_ptr;
  108. union futex_key key;
  109. struct futex_pi_state *pi_state;
  110. struct rt_mutex_waiter *rt_waiter;
  111. union futex_key *requeue_pi_key;
  112. u32 bitset;
  113. };
  114. /*
  115. * Hash buckets are shared by all the futex_keys that hash to the same
  116. * location. Each key may have multiple futex_q structures, one for each task
  117. * waiting on a futex.
  118. */
  119. struct futex_hash_bucket {
  120. spinlock_t lock;
  121. struct plist_head chain;
  122. };
  123. static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
  124. /*
  125. * We hash on the keys returned from get_futex_key (see below).
  126. */
  127. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  128. {
  129. u32 hash = jhash2((u32*)&key->both.word,
  130. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  131. key->both.offset);
  132. return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
  133. }
  134. /*
  135. * Return 1 if two futex_keys are equal, 0 otherwise.
  136. */
  137. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  138. {
  139. return (key1->both.word == key2->both.word
  140. && key1->both.ptr == key2->both.ptr
  141. && key1->both.offset == key2->both.offset);
  142. }
  143. /*
  144. * Take a reference to the resource addressed by a key.
  145. * Can be called while holding spinlocks.
  146. *
  147. */
  148. static void get_futex_key_refs(union futex_key *key)
  149. {
  150. if (!key->both.ptr)
  151. return;
  152. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  153. case FUT_OFF_INODE:
  154. atomic_inc(&key->shared.inode->i_count);
  155. break;
  156. case FUT_OFF_MMSHARED:
  157. atomic_inc(&key->private.mm->mm_count);
  158. break;
  159. }
  160. }
  161. /*
  162. * Drop a reference to the resource addressed by a key.
  163. * The hash bucket spinlock must not be held.
  164. */
  165. static void drop_futex_key_refs(union futex_key *key)
  166. {
  167. if (!key->both.ptr) {
  168. /* If we're here then we tried to put a key we failed to get */
  169. WARN_ON_ONCE(1);
  170. return;
  171. }
  172. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  173. case FUT_OFF_INODE:
  174. iput(key->shared.inode);
  175. break;
  176. case FUT_OFF_MMSHARED:
  177. mmdrop(key->private.mm);
  178. break;
  179. }
  180. }
  181. /**
  182. * get_futex_key() - Get parameters which are the keys for a futex
  183. * @uaddr: virtual address of the futex
  184. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  185. * @key: address where result is stored.
  186. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  187. * VERIFY_WRITE)
  188. *
  189. * Returns a negative error code or 0
  190. * The key words are stored in *key on success.
  191. *
  192. * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
  193. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  194. * We can usually work out the index without swapping in the page.
  195. *
  196. * lock_page() might sleep, the caller should not hold a spinlock.
  197. */
  198. static int
  199. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  200. {
  201. unsigned long address = (unsigned long)uaddr;
  202. struct mm_struct *mm = current->mm;
  203. struct page *page;
  204. int err;
  205. /*
  206. * The futex address must be "naturally" aligned.
  207. */
  208. key->both.offset = address % PAGE_SIZE;
  209. if (unlikely((address % sizeof(u32)) != 0))
  210. return -EINVAL;
  211. address -= key->both.offset;
  212. /*
  213. * PROCESS_PRIVATE futexes are fast.
  214. * As the mm cannot disappear under us and the 'key' only needs
  215. * virtual address, we dont even have to find the underlying vma.
  216. * Note : We do have to check 'uaddr' is a valid user address,
  217. * but access_ok() should be faster than find_vma()
  218. */
  219. if (!fshared) {
  220. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  221. return -EFAULT;
  222. key->private.mm = mm;
  223. key->private.address = address;
  224. get_futex_key_refs(key);
  225. return 0;
  226. }
  227. again:
  228. err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
  229. if (err < 0)
  230. return err;
  231. page = compound_head(page);
  232. lock_page(page);
  233. if (!page->mapping) {
  234. unlock_page(page);
  235. put_page(page);
  236. goto again;
  237. }
  238. /*
  239. * Private mappings are handled in a simple way.
  240. *
  241. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  242. * it's a read-only handle, it's expected that futexes attach to
  243. * the object not the particular process.
  244. */
  245. if (PageAnon(page)) {
  246. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  247. key->private.mm = mm;
  248. key->private.address = address;
  249. } else {
  250. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  251. key->shared.inode = page->mapping->host;
  252. key->shared.pgoff = page->index;
  253. }
  254. get_futex_key_refs(key);
  255. unlock_page(page);
  256. put_page(page);
  257. return 0;
  258. }
  259. static inline
  260. void put_futex_key(int fshared, union futex_key *key)
  261. {
  262. drop_futex_key_refs(key);
  263. }
  264. /**
  265. * fault_in_user_writeable() - Fault in user address and verify RW access
  266. * @uaddr: pointer to faulting user space address
  267. *
  268. * Slow path to fixup the fault we just took in the atomic write
  269. * access to @uaddr.
  270. *
  271. * We have no generic implementation of a non destructive write to the
  272. * user address. We know that we faulted in the atomic pagefault
  273. * disabled section so we can as well avoid the #PF overhead by
  274. * calling get_user_pages() right away.
  275. */
  276. static int fault_in_user_writeable(u32 __user *uaddr)
  277. {
  278. int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
  279. 1, 1, 0, NULL, NULL);
  280. return ret < 0 ? ret : 0;
  281. }
  282. /**
  283. * futex_top_waiter() - Return the highest priority waiter on a futex
  284. * @hb: the hash bucket the futex_q's reside in
  285. * @key: the futex key (to distinguish it from other futex futex_q's)
  286. *
  287. * Must be called with the hb lock held.
  288. */
  289. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  290. union futex_key *key)
  291. {
  292. struct futex_q *this;
  293. plist_for_each_entry(this, &hb->chain, list) {
  294. if (match_futex(&this->key, key))
  295. return this;
  296. }
  297. return NULL;
  298. }
  299. static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
  300. {
  301. u32 curval;
  302. pagefault_disable();
  303. curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
  304. pagefault_enable();
  305. return curval;
  306. }
  307. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  308. {
  309. int ret;
  310. pagefault_disable();
  311. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  312. pagefault_enable();
  313. return ret ? -EFAULT : 0;
  314. }
  315. /*
  316. * PI code:
  317. */
  318. static int refill_pi_state_cache(void)
  319. {
  320. struct futex_pi_state *pi_state;
  321. if (likely(current->pi_state_cache))
  322. return 0;
  323. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  324. if (!pi_state)
  325. return -ENOMEM;
  326. INIT_LIST_HEAD(&pi_state->list);
  327. /* pi_mutex gets initialized later */
  328. pi_state->owner = NULL;
  329. atomic_set(&pi_state->refcount, 1);
  330. pi_state->key = FUTEX_KEY_INIT;
  331. current->pi_state_cache = pi_state;
  332. return 0;
  333. }
  334. static struct futex_pi_state * alloc_pi_state(void)
  335. {
  336. struct futex_pi_state *pi_state = current->pi_state_cache;
  337. WARN_ON(!pi_state);
  338. current->pi_state_cache = NULL;
  339. return pi_state;
  340. }
  341. static void free_pi_state(struct futex_pi_state *pi_state)
  342. {
  343. if (!atomic_dec_and_test(&pi_state->refcount))
  344. return;
  345. /*
  346. * If pi_state->owner is NULL, the owner is most probably dying
  347. * and has cleaned up the pi_state already
  348. */
  349. if (pi_state->owner) {
  350. spin_lock_irq(&pi_state->owner->pi_lock);
  351. list_del_init(&pi_state->list);
  352. spin_unlock_irq(&pi_state->owner->pi_lock);
  353. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  354. }
  355. if (current->pi_state_cache)
  356. kfree(pi_state);
  357. else {
  358. /*
  359. * pi_state->list is already empty.
  360. * clear pi_state->owner.
  361. * refcount is at 0 - put it back to 1.
  362. */
  363. pi_state->owner = NULL;
  364. atomic_set(&pi_state->refcount, 1);
  365. current->pi_state_cache = pi_state;
  366. }
  367. }
  368. /*
  369. * Look up the task based on what TID userspace gave us.
  370. * We dont trust it.
  371. */
  372. static struct task_struct * futex_find_get_task(pid_t pid)
  373. {
  374. struct task_struct *p;
  375. const struct cred *cred = current_cred(), *pcred;
  376. rcu_read_lock();
  377. p = find_task_by_vpid(pid);
  378. if (!p) {
  379. p = ERR_PTR(-ESRCH);
  380. } else {
  381. pcred = __task_cred(p);
  382. if (cred->euid != pcred->euid &&
  383. cred->euid != pcred->uid)
  384. p = ERR_PTR(-ESRCH);
  385. else
  386. get_task_struct(p);
  387. }
  388. rcu_read_unlock();
  389. return p;
  390. }
  391. /*
  392. * This task is holding PI mutexes at exit time => bad.
  393. * Kernel cleans up PI-state, but userspace is likely hosed.
  394. * (Robust-futex cleanup is separate and might save the day for userspace.)
  395. */
  396. void exit_pi_state_list(struct task_struct *curr)
  397. {
  398. struct list_head *next, *head = &curr->pi_state_list;
  399. struct futex_pi_state *pi_state;
  400. struct futex_hash_bucket *hb;
  401. union futex_key key = FUTEX_KEY_INIT;
  402. if (!futex_cmpxchg_enabled)
  403. return;
  404. /*
  405. * We are a ZOMBIE and nobody can enqueue itself on
  406. * pi_state_list anymore, but we have to be careful
  407. * versus waiters unqueueing themselves:
  408. */
  409. spin_lock_irq(&curr->pi_lock);
  410. while (!list_empty(head)) {
  411. next = head->next;
  412. pi_state = list_entry(next, struct futex_pi_state, list);
  413. key = pi_state->key;
  414. hb = hash_futex(&key);
  415. spin_unlock_irq(&curr->pi_lock);
  416. spin_lock(&hb->lock);
  417. spin_lock_irq(&curr->pi_lock);
  418. /*
  419. * We dropped the pi-lock, so re-check whether this
  420. * task still owns the PI-state:
  421. */
  422. if (head->next != next) {
  423. spin_unlock(&hb->lock);
  424. continue;
  425. }
  426. WARN_ON(pi_state->owner != curr);
  427. WARN_ON(list_empty(&pi_state->list));
  428. list_del_init(&pi_state->list);
  429. pi_state->owner = NULL;
  430. spin_unlock_irq(&curr->pi_lock);
  431. rt_mutex_unlock(&pi_state->pi_mutex);
  432. spin_unlock(&hb->lock);
  433. spin_lock_irq(&curr->pi_lock);
  434. }
  435. spin_unlock_irq(&curr->pi_lock);
  436. }
  437. static int
  438. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  439. union futex_key *key, struct futex_pi_state **ps)
  440. {
  441. struct futex_pi_state *pi_state = NULL;
  442. struct futex_q *this, *next;
  443. struct plist_head *head;
  444. struct task_struct *p;
  445. pid_t pid = uval & FUTEX_TID_MASK;
  446. head = &hb->chain;
  447. plist_for_each_entry_safe(this, next, head, list) {
  448. if (match_futex(&this->key, key)) {
  449. /*
  450. * Another waiter already exists - bump up
  451. * the refcount and return its pi_state:
  452. */
  453. pi_state = this->pi_state;
  454. /*
  455. * Userspace might have messed up non PI and PI futexes
  456. */
  457. if (unlikely(!pi_state))
  458. return -EINVAL;
  459. WARN_ON(!atomic_read(&pi_state->refcount));
  460. WARN_ON(pid && pi_state->owner &&
  461. pi_state->owner->pid != pid);
  462. atomic_inc(&pi_state->refcount);
  463. *ps = pi_state;
  464. return 0;
  465. }
  466. }
  467. /*
  468. * We are the first waiter - try to look up the real owner and attach
  469. * the new pi_state to it, but bail out when TID = 0
  470. */
  471. if (!pid)
  472. return -ESRCH;
  473. p = futex_find_get_task(pid);
  474. if (IS_ERR(p))
  475. return PTR_ERR(p);
  476. /*
  477. * We need to look at the task state flags to figure out,
  478. * whether the task is exiting. To protect against the do_exit
  479. * change of the task flags, we do this protected by
  480. * p->pi_lock:
  481. */
  482. spin_lock_irq(&p->pi_lock);
  483. if (unlikely(p->flags & PF_EXITING)) {
  484. /*
  485. * The task is on the way out. When PF_EXITPIDONE is
  486. * set, we know that the task has finished the
  487. * cleanup:
  488. */
  489. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  490. spin_unlock_irq(&p->pi_lock);
  491. put_task_struct(p);
  492. return ret;
  493. }
  494. pi_state = alloc_pi_state();
  495. /*
  496. * Initialize the pi_mutex in locked state and make 'p'
  497. * the owner of it:
  498. */
  499. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  500. /* Store the key for possible exit cleanups: */
  501. pi_state->key = *key;
  502. WARN_ON(!list_empty(&pi_state->list));
  503. list_add(&pi_state->list, &p->pi_state_list);
  504. pi_state->owner = p;
  505. spin_unlock_irq(&p->pi_lock);
  506. put_task_struct(p);
  507. *ps = pi_state;
  508. return 0;
  509. }
  510. /**
  511. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  512. * @uaddr: the pi futex user address
  513. * @hb: the pi futex hash bucket
  514. * @key: the futex key associated with uaddr and hb
  515. * @ps: the pi_state pointer where we store the result of the
  516. * lookup
  517. * @task: the task to perform the atomic lock work for. This will
  518. * be "current" except in the case of requeue pi.
  519. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  520. *
  521. * Returns:
  522. * 0 - ready to wait
  523. * 1 - acquired the lock
  524. * <0 - error
  525. *
  526. * The hb->lock and futex_key refs shall be held by the caller.
  527. */
  528. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  529. union futex_key *key,
  530. struct futex_pi_state **ps,
  531. struct task_struct *task, int set_waiters)
  532. {
  533. int lock_taken, ret, ownerdied = 0;
  534. u32 uval, newval, curval;
  535. retry:
  536. ret = lock_taken = 0;
  537. /*
  538. * To avoid races, we attempt to take the lock here again
  539. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  540. * the locks. It will most likely not succeed.
  541. */
  542. newval = task_pid_vnr(task);
  543. if (set_waiters)
  544. newval |= FUTEX_WAITERS;
  545. curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
  546. if (unlikely(curval == -EFAULT))
  547. return -EFAULT;
  548. /*
  549. * Detect deadlocks.
  550. */
  551. if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
  552. return -EDEADLK;
  553. /*
  554. * Surprise - we got the lock. Just return to userspace:
  555. */
  556. if (unlikely(!curval))
  557. return 1;
  558. uval = curval;
  559. /*
  560. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  561. * to wake at the next unlock.
  562. */
  563. newval = curval | FUTEX_WAITERS;
  564. /*
  565. * There are two cases, where a futex might have no owner (the
  566. * owner TID is 0): OWNER_DIED. We take over the futex in this
  567. * case. We also do an unconditional take over, when the owner
  568. * of the futex died.
  569. *
  570. * This is safe as we are protected by the hash bucket lock !
  571. */
  572. if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
  573. /* Keep the OWNER_DIED bit */
  574. newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
  575. ownerdied = 0;
  576. lock_taken = 1;
  577. }
  578. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  579. if (unlikely(curval == -EFAULT))
  580. return -EFAULT;
  581. if (unlikely(curval != uval))
  582. goto retry;
  583. /*
  584. * We took the lock due to owner died take over.
  585. */
  586. if (unlikely(lock_taken))
  587. return 1;
  588. /*
  589. * We dont have the lock. Look up the PI state (or create it if
  590. * we are the first waiter):
  591. */
  592. ret = lookup_pi_state(uval, hb, key, ps);
  593. if (unlikely(ret)) {
  594. switch (ret) {
  595. case -ESRCH:
  596. /*
  597. * No owner found for this futex. Check if the
  598. * OWNER_DIED bit is set to figure out whether
  599. * this is a robust futex or not.
  600. */
  601. if (get_futex_value_locked(&curval, uaddr))
  602. return -EFAULT;
  603. /*
  604. * We simply start over in case of a robust
  605. * futex. The code above will take the futex
  606. * and return happy.
  607. */
  608. if (curval & FUTEX_OWNER_DIED) {
  609. ownerdied = 1;
  610. goto retry;
  611. }
  612. default:
  613. break;
  614. }
  615. }
  616. return ret;
  617. }
  618. /*
  619. * The hash bucket lock must be held when this is called.
  620. * Afterwards, the futex_q must not be accessed.
  621. */
  622. static void wake_futex(struct futex_q *q)
  623. {
  624. struct task_struct *p = q->task;
  625. /*
  626. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  627. * a non futex wake up happens on another CPU then the task
  628. * might exit and p would dereference a non existing task
  629. * struct. Prevent this by holding a reference on p across the
  630. * wake up.
  631. */
  632. get_task_struct(p);
  633. plist_del(&q->list, &q->list.plist);
  634. /*
  635. * The waiting task can free the futex_q as soon as
  636. * q->lock_ptr = NULL is written, without taking any locks. A
  637. * memory barrier is required here to prevent the following
  638. * store to lock_ptr from getting ahead of the plist_del.
  639. */
  640. smp_wmb();
  641. q->lock_ptr = NULL;
  642. wake_up_state(p, TASK_NORMAL);
  643. put_task_struct(p);
  644. }
  645. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  646. {
  647. struct task_struct *new_owner;
  648. struct futex_pi_state *pi_state = this->pi_state;
  649. u32 curval, newval;
  650. if (!pi_state)
  651. return -EINVAL;
  652. spin_lock(&pi_state->pi_mutex.wait_lock);
  653. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  654. /*
  655. * This happens when we have stolen the lock and the original
  656. * pending owner did not enqueue itself back on the rt_mutex.
  657. * Thats not a tragedy. We know that way, that a lock waiter
  658. * is on the fly. We make the futex_q waiter the pending owner.
  659. */
  660. if (!new_owner)
  661. new_owner = this->task;
  662. /*
  663. * We pass it to the next owner. (The WAITERS bit is always
  664. * kept enabled while there is PI state around. We must also
  665. * preserve the owner died bit.)
  666. */
  667. if (!(uval & FUTEX_OWNER_DIED)) {
  668. int ret = 0;
  669. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  670. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  671. if (curval == -EFAULT)
  672. ret = -EFAULT;
  673. else if (curval != uval)
  674. ret = -EINVAL;
  675. if (ret) {
  676. spin_unlock(&pi_state->pi_mutex.wait_lock);
  677. return ret;
  678. }
  679. }
  680. spin_lock_irq(&pi_state->owner->pi_lock);
  681. WARN_ON(list_empty(&pi_state->list));
  682. list_del_init(&pi_state->list);
  683. spin_unlock_irq(&pi_state->owner->pi_lock);
  684. spin_lock_irq(&new_owner->pi_lock);
  685. WARN_ON(!list_empty(&pi_state->list));
  686. list_add(&pi_state->list, &new_owner->pi_state_list);
  687. pi_state->owner = new_owner;
  688. spin_unlock_irq(&new_owner->pi_lock);
  689. spin_unlock(&pi_state->pi_mutex.wait_lock);
  690. rt_mutex_unlock(&pi_state->pi_mutex);
  691. return 0;
  692. }
  693. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  694. {
  695. u32 oldval;
  696. /*
  697. * There is no waiter, so we unlock the futex. The owner died
  698. * bit has not to be preserved here. We are the owner:
  699. */
  700. oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
  701. if (oldval == -EFAULT)
  702. return oldval;
  703. if (oldval != uval)
  704. return -EAGAIN;
  705. return 0;
  706. }
  707. /*
  708. * Express the locking dependencies for lockdep:
  709. */
  710. static inline void
  711. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  712. {
  713. if (hb1 <= hb2) {
  714. spin_lock(&hb1->lock);
  715. if (hb1 < hb2)
  716. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  717. } else { /* hb1 > hb2 */
  718. spin_lock(&hb2->lock);
  719. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  720. }
  721. }
  722. static inline void
  723. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  724. {
  725. spin_unlock(&hb1->lock);
  726. if (hb1 != hb2)
  727. spin_unlock(&hb2->lock);
  728. }
  729. /*
  730. * Wake up waiters matching bitset queued on this futex (uaddr).
  731. */
  732. static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
  733. {
  734. struct futex_hash_bucket *hb;
  735. struct futex_q *this, *next;
  736. struct plist_head *head;
  737. union futex_key key = FUTEX_KEY_INIT;
  738. int ret;
  739. if (!bitset)
  740. return -EINVAL;
  741. ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
  742. if (unlikely(ret != 0))
  743. goto out;
  744. hb = hash_futex(&key);
  745. spin_lock(&hb->lock);
  746. head = &hb->chain;
  747. plist_for_each_entry_safe(this, next, head, list) {
  748. if (match_futex (&this->key, &key)) {
  749. if (this->pi_state || this->rt_waiter) {
  750. ret = -EINVAL;
  751. break;
  752. }
  753. /* Check if one of the bits is set in both bitsets */
  754. if (!(this->bitset & bitset))
  755. continue;
  756. wake_futex(this);
  757. if (++ret >= nr_wake)
  758. break;
  759. }
  760. }
  761. spin_unlock(&hb->lock);
  762. put_futex_key(fshared, &key);
  763. out:
  764. return ret;
  765. }
  766. /*
  767. * Wake up all waiters hashed on the physical page that is mapped
  768. * to this virtual address:
  769. */
  770. static int
  771. futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  772. int nr_wake, int nr_wake2, int op)
  773. {
  774. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  775. struct futex_hash_bucket *hb1, *hb2;
  776. struct plist_head *head;
  777. struct futex_q *this, *next;
  778. int ret, op_ret;
  779. retry:
  780. ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
  781. if (unlikely(ret != 0))
  782. goto out;
  783. ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
  784. if (unlikely(ret != 0))
  785. goto out_put_key1;
  786. hb1 = hash_futex(&key1);
  787. hb2 = hash_futex(&key2);
  788. double_lock_hb(hb1, hb2);
  789. retry_private:
  790. op_ret = futex_atomic_op_inuser(op, uaddr2);
  791. if (unlikely(op_ret < 0)) {
  792. double_unlock_hb(hb1, hb2);
  793. #ifndef CONFIG_MMU
  794. /*
  795. * we don't get EFAULT from MMU faults if we don't have an MMU,
  796. * but we might get them from range checking
  797. */
  798. ret = op_ret;
  799. goto out_put_keys;
  800. #endif
  801. if (unlikely(op_ret != -EFAULT)) {
  802. ret = op_ret;
  803. goto out_put_keys;
  804. }
  805. ret = fault_in_user_writeable(uaddr2);
  806. if (ret)
  807. goto out_put_keys;
  808. if (!fshared)
  809. goto retry_private;
  810. put_futex_key(fshared, &key2);
  811. put_futex_key(fshared, &key1);
  812. goto retry;
  813. }
  814. head = &hb1->chain;
  815. plist_for_each_entry_safe(this, next, head, list) {
  816. if (match_futex (&this->key, &key1)) {
  817. wake_futex(this);
  818. if (++ret >= nr_wake)
  819. break;
  820. }
  821. }
  822. if (op_ret > 0) {
  823. head = &hb2->chain;
  824. op_ret = 0;
  825. plist_for_each_entry_safe(this, next, head, list) {
  826. if (match_futex (&this->key, &key2)) {
  827. wake_futex(this);
  828. if (++op_ret >= nr_wake2)
  829. break;
  830. }
  831. }
  832. ret += op_ret;
  833. }
  834. double_unlock_hb(hb1, hb2);
  835. out_put_keys:
  836. put_futex_key(fshared, &key2);
  837. out_put_key1:
  838. put_futex_key(fshared, &key1);
  839. out:
  840. return ret;
  841. }
  842. /**
  843. * requeue_futex() - Requeue a futex_q from one hb to another
  844. * @q: the futex_q to requeue
  845. * @hb1: the source hash_bucket
  846. * @hb2: the target hash_bucket
  847. * @key2: the new key for the requeued futex_q
  848. */
  849. static inline
  850. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  851. struct futex_hash_bucket *hb2, union futex_key *key2)
  852. {
  853. /*
  854. * If key1 and key2 hash to the same bucket, no need to
  855. * requeue.
  856. */
  857. if (likely(&hb1->chain != &hb2->chain)) {
  858. plist_del(&q->list, &hb1->chain);
  859. plist_add(&q->list, &hb2->chain);
  860. q->lock_ptr = &hb2->lock;
  861. #ifdef CONFIG_DEBUG_PI_LIST
  862. q->list.plist.lock = &hb2->lock;
  863. #endif
  864. }
  865. get_futex_key_refs(key2);
  866. q->key = *key2;
  867. }
  868. /**
  869. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  870. * @q: the futex_q
  871. * @key: the key of the requeue target futex
  872. * @hb: the hash_bucket of the requeue target futex
  873. *
  874. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  875. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  876. * to the requeue target futex so the waiter can detect the wakeup on the right
  877. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  878. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  879. * to protect access to the pi_state to fixup the owner later. Must be called
  880. * with both q->lock_ptr and hb->lock held.
  881. */
  882. static inline
  883. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  884. struct futex_hash_bucket *hb)
  885. {
  886. drop_futex_key_refs(&q->key);
  887. get_futex_key_refs(key);
  888. q->key = *key;
  889. WARN_ON(plist_node_empty(&q->list));
  890. plist_del(&q->list, &q->list.plist);
  891. WARN_ON(!q->rt_waiter);
  892. q->rt_waiter = NULL;
  893. q->lock_ptr = &hb->lock;
  894. #ifdef CONFIG_DEBUG_PI_LIST
  895. q->list.plist.lock = &hb->lock;
  896. #endif
  897. wake_up_state(q->task, TASK_NORMAL);
  898. }
  899. /**
  900. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  901. * @pifutex: the user address of the to futex
  902. * @hb1: the from futex hash bucket, must be locked by the caller
  903. * @hb2: the to futex hash bucket, must be locked by the caller
  904. * @key1: the from futex key
  905. * @key2: the to futex key
  906. * @ps: address to store the pi_state pointer
  907. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  908. *
  909. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  910. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  911. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  912. * hb1 and hb2 must be held by the caller.
  913. *
  914. * Returns:
  915. * 0 - failed to acquire the lock atomicly
  916. * 1 - acquired the lock
  917. * <0 - error
  918. */
  919. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  920. struct futex_hash_bucket *hb1,
  921. struct futex_hash_bucket *hb2,
  922. union futex_key *key1, union futex_key *key2,
  923. struct futex_pi_state **ps, int set_waiters)
  924. {
  925. struct futex_q *top_waiter = NULL;
  926. u32 curval;
  927. int ret;
  928. if (get_futex_value_locked(&curval, pifutex))
  929. return -EFAULT;
  930. /*
  931. * Find the top_waiter and determine if there are additional waiters.
  932. * If the caller intends to requeue more than 1 waiter to pifutex,
  933. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  934. * as we have means to handle the possible fault. If not, don't set
  935. * the bit unecessarily as it will force the subsequent unlock to enter
  936. * the kernel.
  937. */
  938. top_waiter = futex_top_waiter(hb1, key1);
  939. /* There are no waiters, nothing for us to do. */
  940. if (!top_waiter)
  941. return 0;
  942. /* Ensure we requeue to the expected futex. */
  943. if (!match_futex(top_waiter->requeue_pi_key, key2))
  944. return -EINVAL;
  945. /*
  946. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  947. * the contended case or if set_waiters is 1. The pi_state is returned
  948. * in ps in contended cases.
  949. */
  950. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  951. set_waiters);
  952. if (ret == 1)
  953. requeue_pi_wake_futex(top_waiter, key2, hb2);
  954. return ret;
  955. }
  956. /**
  957. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  958. * uaddr1: source futex user address
  959. * uaddr2: target futex user address
  960. * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  961. * nr_requeue: number of waiters to requeue (0-INT_MAX)
  962. * requeue_pi: if we are attempting to requeue from a non-pi futex to a
  963. * pi futex (pi to pi requeue is not supported)
  964. *
  965. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  966. * uaddr2 atomically on behalf of the top waiter.
  967. *
  968. * Returns:
  969. * >=0 - on success, the number of tasks requeued or woken
  970. * <0 - on error
  971. */
  972. static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
  973. int nr_wake, int nr_requeue, u32 *cmpval,
  974. int requeue_pi)
  975. {
  976. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  977. int drop_count = 0, task_count = 0, ret;
  978. struct futex_pi_state *pi_state = NULL;
  979. struct futex_hash_bucket *hb1, *hb2;
  980. struct plist_head *head1;
  981. struct futex_q *this, *next;
  982. u32 curval2;
  983. if (requeue_pi) {
  984. /*
  985. * requeue_pi requires a pi_state, try to allocate it now
  986. * without any locks in case it fails.
  987. */
  988. if (refill_pi_state_cache())
  989. return -ENOMEM;
  990. /*
  991. * requeue_pi must wake as many tasks as it can, up to nr_wake
  992. * + nr_requeue, since it acquires the rt_mutex prior to
  993. * returning to userspace, so as to not leave the rt_mutex with
  994. * waiters and no owner. However, second and third wake-ups
  995. * cannot be predicted as they involve race conditions with the
  996. * first wake and a fault while looking up the pi_state. Both
  997. * pthread_cond_signal() and pthread_cond_broadcast() should
  998. * use nr_wake=1.
  999. */
  1000. if (nr_wake != 1)
  1001. return -EINVAL;
  1002. }
  1003. retry:
  1004. if (pi_state != NULL) {
  1005. /*
  1006. * We will have to lookup the pi_state again, so free this one
  1007. * to keep the accounting correct.
  1008. */
  1009. free_pi_state(pi_state);
  1010. pi_state = NULL;
  1011. }
  1012. ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
  1013. if (unlikely(ret != 0))
  1014. goto out;
  1015. ret = get_futex_key(uaddr2, fshared, &key2,
  1016. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1017. if (unlikely(ret != 0))
  1018. goto out_put_key1;
  1019. hb1 = hash_futex(&key1);
  1020. hb2 = hash_futex(&key2);
  1021. retry_private:
  1022. double_lock_hb(hb1, hb2);
  1023. if (likely(cmpval != NULL)) {
  1024. u32 curval;
  1025. ret = get_futex_value_locked(&curval, uaddr1);
  1026. if (unlikely(ret)) {
  1027. double_unlock_hb(hb1, hb2);
  1028. ret = get_user(curval, uaddr1);
  1029. if (ret)
  1030. goto out_put_keys;
  1031. if (!fshared)
  1032. goto retry_private;
  1033. put_futex_key(fshared, &key2);
  1034. put_futex_key(fshared, &key1);
  1035. goto retry;
  1036. }
  1037. if (curval != *cmpval) {
  1038. ret = -EAGAIN;
  1039. goto out_unlock;
  1040. }
  1041. }
  1042. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1043. /*
  1044. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1045. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1046. * bit. We force this here where we are able to easily handle
  1047. * faults rather in the requeue loop below.
  1048. */
  1049. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1050. &key2, &pi_state, nr_requeue);
  1051. /*
  1052. * At this point the top_waiter has either taken uaddr2 or is
  1053. * waiting on it. If the former, then the pi_state will not
  1054. * exist yet, look it up one more time to ensure we have a
  1055. * reference to it.
  1056. */
  1057. if (ret == 1) {
  1058. WARN_ON(pi_state);
  1059. task_count++;
  1060. ret = get_futex_value_locked(&curval2, uaddr2);
  1061. if (!ret)
  1062. ret = lookup_pi_state(curval2, hb2, &key2,
  1063. &pi_state);
  1064. }
  1065. switch (ret) {
  1066. case 0:
  1067. break;
  1068. case -EFAULT:
  1069. double_unlock_hb(hb1, hb2);
  1070. put_futex_key(fshared, &key2);
  1071. put_futex_key(fshared, &key1);
  1072. ret = fault_in_user_writeable(uaddr2);
  1073. if (!ret)
  1074. goto retry;
  1075. goto out;
  1076. case -EAGAIN:
  1077. /* The owner was exiting, try again. */
  1078. double_unlock_hb(hb1, hb2);
  1079. put_futex_key(fshared, &key2);
  1080. put_futex_key(fshared, &key1);
  1081. cond_resched();
  1082. goto retry;
  1083. default:
  1084. goto out_unlock;
  1085. }
  1086. }
  1087. head1 = &hb1->chain;
  1088. plist_for_each_entry_safe(this, next, head1, list) {
  1089. if (task_count - nr_wake >= nr_requeue)
  1090. break;
  1091. if (!match_futex(&this->key, &key1))
  1092. continue;
  1093. /*
  1094. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1095. * be paired with each other and no other futex ops.
  1096. */
  1097. if ((requeue_pi && !this->rt_waiter) ||
  1098. (!requeue_pi && this->rt_waiter)) {
  1099. ret = -EINVAL;
  1100. break;
  1101. }
  1102. /*
  1103. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1104. * lock, we already woke the top_waiter. If not, it will be
  1105. * woken by futex_unlock_pi().
  1106. */
  1107. if (++task_count <= nr_wake && !requeue_pi) {
  1108. wake_futex(this);
  1109. continue;
  1110. }
  1111. /* Ensure we requeue to the expected futex for requeue_pi. */
  1112. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1113. ret = -EINVAL;
  1114. break;
  1115. }
  1116. /*
  1117. * Requeue nr_requeue waiters and possibly one more in the case
  1118. * of requeue_pi if we couldn't acquire the lock atomically.
  1119. */
  1120. if (requeue_pi) {
  1121. /* Prepare the waiter to take the rt_mutex. */
  1122. atomic_inc(&pi_state->refcount);
  1123. this->pi_state = pi_state;
  1124. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1125. this->rt_waiter,
  1126. this->task, 1);
  1127. if (ret == 1) {
  1128. /* We got the lock. */
  1129. requeue_pi_wake_futex(this, &key2, hb2);
  1130. continue;
  1131. } else if (ret) {
  1132. /* -EDEADLK */
  1133. this->pi_state = NULL;
  1134. free_pi_state(pi_state);
  1135. goto out_unlock;
  1136. }
  1137. }
  1138. requeue_futex(this, hb1, hb2, &key2);
  1139. drop_count++;
  1140. }
  1141. out_unlock:
  1142. double_unlock_hb(hb1, hb2);
  1143. /*
  1144. * drop_futex_key_refs() must be called outside the spinlocks. During
  1145. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1146. * one at key2 and updated their key pointer. We no longer need to
  1147. * hold the references to key1.
  1148. */
  1149. while (--drop_count >= 0)
  1150. drop_futex_key_refs(&key1);
  1151. out_put_keys:
  1152. put_futex_key(fshared, &key2);
  1153. out_put_key1:
  1154. put_futex_key(fshared, &key1);
  1155. out:
  1156. if (pi_state != NULL)
  1157. free_pi_state(pi_state);
  1158. return ret ? ret : task_count;
  1159. }
  1160. /* The key must be already stored in q->key. */
  1161. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1162. {
  1163. struct futex_hash_bucket *hb;
  1164. get_futex_key_refs(&q->key);
  1165. hb = hash_futex(&q->key);
  1166. q->lock_ptr = &hb->lock;
  1167. spin_lock(&hb->lock);
  1168. return hb;
  1169. }
  1170. static inline void
  1171. queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
  1172. {
  1173. spin_unlock(&hb->lock);
  1174. drop_futex_key_refs(&q->key);
  1175. }
  1176. /**
  1177. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1178. * @q: The futex_q to enqueue
  1179. * @hb: The destination hash bucket
  1180. *
  1181. * The hb->lock must be held by the caller, and is released here. A call to
  1182. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1183. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1184. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1185. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1186. * an example).
  1187. */
  1188. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1189. {
  1190. int prio;
  1191. /*
  1192. * The priority used to register this element is
  1193. * - either the real thread-priority for the real-time threads
  1194. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1195. * - or MAX_RT_PRIO for non-RT threads.
  1196. * Thus, all RT-threads are woken first in priority order, and
  1197. * the others are woken last, in FIFO order.
  1198. */
  1199. prio = min(current->normal_prio, MAX_RT_PRIO);
  1200. plist_node_init(&q->list, prio);
  1201. #ifdef CONFIG_DEBUG_PI_LIST
  1202. q->list.plist.lock = &hb->lock;
  1203. #endif
  1204. plist_add(&q->list, &hb->chain);
  1205. q->task = current;
  1206. spin_unlock(&hb->lock);
  1207. }
  1208. /**
  1209. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1210. * @q: The futex_q to unqueue
  1211. *
  1212. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1213. * be paired with exactly one earlier call to queue_me().
  1214. *
  1215. * Returns:
  1216. * 1 - if the futex_q was still queued (and we removed unqueued it)
  1217. * 0 - if the futex_q was already removed by the waking thread
  1218. */
  1219. static int unqueue_me(struct futex_q *q)
  1220. {
  1221. spinlock_t *lock_ptr;
  1222. int ret = 0;
  1223. /* In the common case we don't take the spinlock, which is nice. */
  1224. retry:
  1225. lock_ptr = q->lock_ptr;
  1226. barrier();
  1227. if (lock_ptr != NULL) {
  1228. spin_lock(lock_ptr);
  1229. /*
  1230. * q->lock_ptr can change between reading it and
  1231. * spin_lock(), causing us to take the wrong lock. This
  1232. * corrects the race condition.
  1233. *
  1234. * Reasoning goes like this: if we have the wrong lock,
  1235. * q->lock_ptr must have changed (maybe several times)
  1236. * between reading it and the spin_lock(). It can
  1237. * change again after the spin_lock() but only if it was
  1238. * already changed before the spin_lock(). It cannot,
  1239. * however, change back to the original value. Therefore
  1240. * we can detect whether we acquired the correct lock.
  1241. */
  1242. if (unlikely(lock_ptr != q->lock_ptr)) {
  1243. spin_unlock(lock_ptr);
  1244. goto retry;
  1245. }
  1246. WARN_ON(plist_node_empty(&q->list));
  1247. plist_del(&q->list, &q->list.plist);
  1248. BUG_ON(q->pi_state);
  1249. spin_unlock(lock_ptr);
  1250. ret = 1;
  1251. }
  1252. drop_futex_key_refs(&q->key);
  1253. return ret;
  1254. }
  1255. /*
  1256. * PI futexes can not be requeued and must remove themself from the
  1257. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1258. * and dropped here.
  1259. */
  1260. static void unqueue_me_pi(struct futex_q *q)
  1261. {
  1262. WARN_ON(plist_node_empty(&q->list));
  1263. plist_del(&q->list, &q->list.plist);
  1264. BUG_ON(!q->pi_state);
  1265. free_pi_state(q->pi_state);
  1266. q->pi_state = NULL;
  1267. spin_unlock(q->lock_ptr);
  1268. drop_futex_key_refs(&q->key);
  1269. }
  1270. /*
  1271. * Fixup the pi_state owner with the new owner.
  1272. *
  1273. * Must be called with hash bucket lock held and mm->sem held for non
  1274. * private futexes.
  1275. */
  1276. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1277. struct task_struct *newowner, int fshared)
  1278. {
  1279. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1280. struct futex_pi_state *pi_state = q->pi_state;
  1281. struct task_struct *oldowner = pi_state->owner;
  1282. u32 uval, curval, newval;
  1283. int ret;
  1284. /* Owner died? */
  1285. if (!pi_state->owner)
  1286. newtid |= FUTEX_OWNER_DIED;
  1287. /*
  1288. * We are here either because we stole the rtmutex from the
  1289. * pending owner or we are the pending owner which failed to
  1290. * get the rtmutex. We have to replace the pending owner TID
  1291. * in the user space variable. This must be atomic as we have
  1292. * to preserve the owner died bit here.
  1293. *
  1294. * Note: We write the user space value _before_ changing the pi_state
  1295. * because we can fault here. Imagine swapped out pages or a fork
  1296. * that marked all the anonymous memory readonly for cow.
  1297. *
  1298. * Modifying pi_state _before_ the user space value would
  1299. * leave the pi_state in an inconsistent state when we fault
  1300. * here, because we need to drop the hash bucket lock to
  1301. * handle the fault. This might be observed in the PID check
  1302. * in lookup_pi_state.
  1303. */
  1304. retry:
  1305. if (get_futex_value_locked(&uval, uaddr))
  1306. goto handle_fault;
  1307. while (1) {
  1308. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1309. curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
  1310. if (curval == -EFAULT)
  1311. goto handle_fault;
  1312. if (curval == uval)
  1313. break;
  1314. uval = curval;
  1315. }
  1316. /*
  1317. * We fixed up user space. Now we need to fix the pi_state
  1318. * itself.
  1319. */
  1320. if (pi_state->owner != NULL) {
  1321. spin_lock_irq(&pi_state->owner->pi_lock);
  1322. WARN_ON(list_empty(&pi_state->list));
  1323. list_del_init(&pi_state->list);
  1324. spin_unlock_irq(&pi_state->owner->pi_lock);
  1325. }
  1326. pi_state->owner = newowner;
  1327. spin_lock_irq(&newowner->pi_lock);
  1328. WARN_ON(!list_empty(&pi_state->list));
  1329. list_add(&pi_state->list, &newowner->pi_state_list);
  1330. spin_unlock_irq(&newowner->pi_lock);
  1331. return 0;
  1332. /*
  1333. * To handle the page fault we need to drop the hash bucket
  1334. * lock here. That gives the other task (either the pending
  1335. * owner itself or the task which stole the rtmutex) the
  1336. * chance to try the fixup of the pi_state. So once we are
  1337. * back from handling the fault we need to check the pi_state
  1338. * after reacquiring the hash bucket lock and before trying to
  1339. * do another fixup. When the fixup has been done already we
  1340. * simply return.
  1341. */
  1342. handle_fault:
  1343. spin_unlock(q->lock_ptr);
  1344. ret = fault_in_user_writeable(uaddr);
  1345. spin_lock(q->lock_ptr);
  1346. /*
  1347. * Check if someone else fixed it for us:
  1348. */
  1349. if (pi_state->owner != oldowner)
  1350. return 0;
  1351. if (ret)
  1352. return ret;
  1353. goto retry;
  1354. }
  1355. /*
  1356. * In case we must use restart_block to restart a futex_wait,
  1357. * we encode in the 'flags' shared capability
  1358. */
  1359. #define FLAGS_SHARED 0x01
  1360. #define FLAGS_CLOCKRT 0x02
  1361. #define FLAGS_HAS_TIMEOUT 0x04
  1362. static long futex_wait_restart(struct restart_block *restart);
  1363. /**
  1364. * fixup_owner() - Post lock pi_state and corner case management
  1365. * @uaddr: user address of the futex
  1366. * @fshared: whether the futex is shared (1) or not (0)
  1367. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1368. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1369. *
  1370. * After attempting to lock an rt_mutex, this function is called to cleanup
  1371. * the pi_state owner as well as handle race conditions that may allow us to
  1372. * acquire the lock. Must be called with the hb lock held.
  1373. *
  1374. * Returns:
  1375. * 1 - success, lock taken
  1376. * 0 - success, lock not taken
  1377. * <0 - on error (-EFAULT)
  1378. */
  1379. static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
  1380. int locked)
  1381. {
  1382. struct task_struct *owner;
  1383. int ret = 0;
  1384. if (locked) {
  1385. /*
  1386. * Got the lock. We might not be the anticipated owner if we
  1387. * did a lock-steal - fix up the PI-state in that case:
  1388. */
  1389. if (q->pi_state->owner != current)
  1390. ret = fixup_pi_state_owner(uaddr, q, current, fshared);
  1391. goto out;
  1392. }
  1393. /*
  1394. * Catch the rare case, where the lock was released when we were on the
  1395. * way back before we locked the hash bucket.
  1396. */
  1397. if (q->pi_state->owner == current) {
  1398. /*
  1399. * Try to get the rt_mutex now. This might fail as some other
  1400. * task acquired the rt_mutex after we removed ourself from the
  1401. * rt_mutex waiters list.
  1402. */
  1403. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1404. locked = 1;
  1405. goto out;
  1406. }
  1407. /*
  1408. * pi_state is incorrect, some other task did a lock steal and
  1409. * we returned due to timeout or signal without taking the
  1410. * rt_mutex. Too late. We can access the rt_mutex_owner without
  1411. * locking, as the other task is now blocked on the hash bucket
  1412. * lock. Fix the state up.
  1413. */
  1414. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1415. ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
  1416. goto out;
  1417. }
  1418. /*
  1419. * Paranoia check. If we did not take the lock, then we should not be
  1420. * the owner, nor the pending owner, of the rt_mutex.
  1421. */
  1422. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1423. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1424. "pi-state %p\n", ret,
  1425. q->pi_state->pi_mutex.owner,
  1426. q->pi_state->owner);
  1427. out:
  1428. return ret ? ret : locked;
  1429. }
  1430. /**
  1431. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1432. * @hb: the futex hash bucket, must be locked by the caller
  1433. * @q: the futex_q to queue up on
  1434. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1435. */
  1436. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1437. struct hrtimer_sleeper *timeout)
  1438. {
  1439. /*
  1440. * The task state is guaranteed to be set before another task can
  1441. * wake it. set_current_state() is implemented using set_mb() and
  1442. * queue_me() calls spin_unlock() upon completion, both serializing
  1443. * access to the hash list and forcing another memory barrier.
  1444. */
  1445. set_current_state(TASK_INTERRUPTIBLE);
  1446. queue_me(q, hb);
  1447. /* Arm the timer */
  1448. if (timeout) {
  1449. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1450. if (!hrtimer_active(&timeout->timer))
  1451. timeout->task = NULL;
  1452. }
  1453. /*
  1454. * If we have been removed from the hash list, then another task
  1455. * has tried to wake us, and we can skip the call to schedule().
  1456. */
  1457. if (likely(!plist_node_empty(&q->list))) {
  1458. /*
  1459. * If the timer has already expired, current will already be
  1460. * flagged for rescheduling. Only call schedule if there
  1461. * is no timeout, or if it has yet to expire.
  1462. */
  1463. if (!timeout || timeout->task)
  1464. schedule();
  1465. }
  1466. __set_current_state(TASK_RUNNING);
  1467. }
  1468. /**
  1469. * futex_wait_setup() - Prepare to wait on a futex
  1470. * @uaddr: the futex userspace address
  1471. * @val: the expected value
  1472. * @fshared: whether the futex is shared (1) or not (0)
  1473. * @q: the associated futex_q
  1474. * @hb: storage for hash_bucket pointer to be returned to caller
  1475. *
  1476. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1477. * compare it with the expected value. Handle atomic faults internally.
  1478. * Return with the hb lock held and a q.key reference on success, and unlocked
  1479. * with no q.key reference on failure.
  1480. *
  1481. * Returns:
  1482. * 0 - uaddr contains val and hb has been locked
  1483. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
  1484. */
  1485. static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
  1486. struct futex_q *q, struct futex_hash_bucket **hb)
  1487. {
  1488. u32 uval;
  1489. int ret;
  1490. /*
  1491. * Access the page AFTER the hash-bucket is locked.
  1492. * Order is important:
  1493. *
  1494. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1495. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1496. *
  1497. * The basic logical guarantee of a futex is that it blocks ONLY
  1498. * if cond(var) is known to be true at the time of blocking, for
  1499. * any cond. If we queued after testing *uaddr, that would open
  1500. * a race condition where we could block indefinitely with
  1501. * cond(var) false, which would violate the guarantee.
  1502. *
  1503. * A consequence is that futex_wait() can return zero and absorb
  1504. * a wakeup when *uaddr != val on entry to the syscall. This is
  1505. * rare, but normal.
  1506. */
  1507. retry:
  1508. q->key = FUTEX_KEY_INIT;
  1509. ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
  1510. if (unlikely(ret != 0))
  1511. return ret;
  1512. retry_private:
  1513. *hb = queue_lock(q);
  1514. ret = get_futex_value_locked(&uval, uaddr);
  1515. if (ret) {
  1516. queue_unlock(q, *hb);
  1517. ret = get_user(uval, uaddr);
  1518. if (ret)
  1519. goto out;
  1520. if (!fshared)
  1521. goto retry_private;
  1522. put_futex_key(fshared, &q->key);
  1523. goto retry;
  1524. }
  1525. if (uval != val) {
  1526. queue_unlock(q, *hb);
  1527. ret = -EWOULDBLOCK;
  1528. }
  1529. out:
  1530. if (ret)
  1531. put_futex_key(fshared, &q->key);
  1532. return ret;
  1533. }
  1534. static int futex_wait(u32 __user *uaddr, int fshared,
  1535. u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
  1536. {
  1537. struct hrtimer_sleeper timeout, *to = NULL;
  1538. struct restart_block *restart;
  1539. struct futex_hash_bucket *hb;
  1540. struct futex_q q;
  1541. int ret;
  1542. if (!bitset)
  1543. return -EINVAL;
  1544. q.pi_state = NULL;
  1545. q.bitset = bitset;
  1546. q.rt_waiter = NULL;
  1547. q.requeue_pi_key = NULL;
  1548. if (abs_time) {
  1549. to = &timeout;
  1550. hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
  1551. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1552. hrtimer_init_sleeper(to, current);
  1553. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1554. current->timer_slack_ns);
  1555. }
  1556. /* Prepare to wait on uaddr. */
  1557. ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
  1558. if (ret)
  1559. goto out;
  1560. /* queue_me and wait for wakeup, timeout, or a signal. */
  1561. futex_wait_queue_me(hb, &q, to);
  1562. /* If we were woken (and unqueued), we succeeded, whatever. */
  1563. ret = 0;
  1564. if (!unqueue_me(&q))
  1565. goto out_put_key;
  1566. ret = -ETIMEDOUT;
  1567. if (to && !to->task)
  1568. goto out_put_key;
  1569. /*
  1570. * We expect signal_pending(current), but another thread may
  1571. * have handled it for us already.
  1572. */
  1573. ret = -ERESTARTSYS;
  1574. if (!abs_time)
  1575. goto out_put_key;
  1576. restart = &current_thread_info()->restart_block;
  1577. restart->fn = futex_wait_restart;
  1578. restart->futex.uaddr = (u32 *)uaddr;
  1579. restart->futex.val = val;
  1580. restart->futex.time = abs_time->tv64;
  1581. restart->futex.bitset = bitset;
  1582. restart->futex.flags = FLAGS_HAS_TIMEOUT;
  1583. if (fshared)
  1584. restart->futex.flags |= FLAGS_SHARED;
  1585. if (clockrt)
  1586. restart->futex.flags |= FLAGS_CLOCKRT;
  1587. ret = -ERESTART_RESTARTBLOCK;
  1588. out_put_key:
  1589. put_futex_key(fshared, &q.key);
  1590. out:
  1591. if (to) {
  1592. hrtimer_cancel(&to->timer);
  1593. destroy_hrtimer_on_stack(&to->timer);
  1594. }
  1595. return ret;
  1596. }
  1597. static long futex_wait_restart(struct restart_block *restart)
  1598. {
  1599. u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
  1600. int fshared = 0;
  1601. ktime_t t, *tp = NULL;
  1602. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  1603. t.tv64 = restart->futex.time;
  1604. tp = &t;
  1605. }
  1606. restart->fn = do_no_restart_syscall;
  1607. if (restart->futex.flags & FLAGS_SHARED)
  1608. fshared = 1;
  1609. return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
  1610. restart->futex.bitset,
  1611. restart->futex.flags & FLAGS_CLOCKRT);
  1612. }
  1613. /*
  1614. * Userspace tried a 0 -> TID atomic transition of the futex value
  1615. * and failed. The kernel side here does the whole locking operation:
  1616. * if there are waiters then it will block, it does PI, etc. (Due to
  1617. * races the kernel might see a 0 value of the futex too.)
  1618. */
  1619. static int futex_lock_pi(u32 __user *uaddr, int fshared,
  1620. int detect, ktime_t *time, int trylock)
  1621. {
  1622. struct hrtimer_sleeper timeout, *to = NULL;
  1623. struct futex_hash_bucket *hb;
  1624. struct futex_q q;
  1625. int res, ret;
  1626. if (refill_pi_state_cache())
  1627. return -ENOMEM;
  1628. if (time) {
  1629. to = &timeout;
  1630. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  1631. HRTIMER_MODE_ABS);
  1632. hrtimer_init_sleeper(to, current);
  1633. hrtimer_set_expires(&to->timer, *time);
  1634. }
  1635. q.pi_state = NULL;
  1636. q.rt_waiter = NULL;
  1637. q.requeue_pi_key = NULL;
  1638. retry:
  1639. q.key = FUTEX_KEY_INIT;
  1640. ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
  1641. if (unlikely(ret != 0))
  1642. goto out;
  1643. retry_private:
  1644. hb = queue_lock(&q);
  1645. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  1646. if (unlikely(ret)) {
  1647. switch (ret) {
  1648. case 1:
  1649. /* We got the lock. */
  1650. ret = 0;
  1651. goto out_unlock_put_key;
  1652. case -EFAULT:
  1653. goto uaddr_faulted;
  1654. case -EAGAIN:
  1655. /*
  1656. * Task is exiting and we just wait for the
  1657. * exit to complete.
  1658. */
  1659. queue_unlock(&q, hb);
  1660. put_futex_key(fshared, &q.key);
  1661. cond_resched();
  1662. goto retry;
  1663. default:
  1664. goto out_unlock_put_key;
  1665. }
  1666. }
  1667. /*
  1668. * Only actually queue now that the atomic ops are done:
  1669. */
  1670. queue_me(&q, hb);
  1671. WARN_ON(!q.pi_state);
  1672. /*
  1673. * Block on the PI mutex:
  1674. */
  1675. if (!trylock)
  1676. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  1677. else {
  1678. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  1679. /* Fixup the trylock return value: */
  1680. ret = ret ? 0 : -EWOULDBLOCK;
  1681. }
  1682. spin_lock(q.lock_ptr);
  1683. /*
  1684. * Fixup the pi_state owner and possibly acquire the lock if we
  1685. * haven't already.
  1686. */
  1687. res = fixup_owner(uaddr, fshared, &q, !ret);
  1688. /*
  1689. * If fixup_owner() returned an error, proprogate that. If it acquired
  1690. * the lock, clear our -ETIMEDOUT or -EINTR.
  1691. */
  1692. if (res)
  1693. ret = (res < 0) ? res : 0;
  1694. /*
  1695. * If fixup_owner() faulted and was unable to handle the fault, unlock
  1696. * it and return the fault to userspace.
  1697. */
  1698. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  1699. rt_mutex_unlock(&q.pi_state->pi_mutex);
  1700. /* Unqueue and drop the lock */
  1701. unqueue_me_pi(&q);
  1702. goto out;
  1703. out_unlock_put_key:
  1704. queue_unlock(&q, hb);
  1705. out_put_key:
  1706. put_futex_key(fshared, &q.key);
  1707. out:
  1708. if (to)
  1709. destroy_hrtimer_on_stack(&to->timer);
  1710. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  1711. uaddr_faulted:
  1712. queue_unlock(&q, hb);
  1713. ret = fault_in_user_writeable(uaddr);
  1714. if (ret)
  1715. goto out_put_key;
  1716. if (!fshared)
  1717. goto retry_private;
  1718. put_futex_key(fshared, &q.key);
  1719. goto retry;
  1720. }
  1721. /*
  1722. * Userspace attempted a TID -> 0 atomic transition, and failed.
  1723. * This is the in-kernel slowpath: we look up the PI state (if any),
  1724. * and do the rt-mutex unlock.
  1725. */
  1726. static int futex_unlock_pi(u32 __user *uaddr, int fshared)
  1727. {
  1728. struct futex_hash_bucket *hb;
  1729. struct futex_q *this, *next;
  1730. u32 uval;
  1731. struct plist_head *head;
  1732. union futex_key key = FUTEX_KEY_INIT;
  1733. int ret;
  1734. retry:
  1735. if (get_user(uval, uaddr))
  1736. return -EFAULT;
  1737. /*
  1738. * We release only a lock we actually own:
  1739. */
  1740. if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
  1741. return -EPERM;
  1742. ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
  1743. if (unlikely(ret != 0))
  1744. goto out;
  1745. hb = hash_futex(&key);
  1746. spin_lock(&hb->lock);
  1747. /*
  1748. * To avoid races, try to do the TID -> 0 atomic transition
  1749. * again. If it succeeds then we can return without waking
  1750. * anyone else up:
  1751. */
  1752. if (!(uval & FUTEX_OWNER_DIED))
  1753. uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
  1754. if (unlikely(uval == -EFAULT))
  1755. goto pi_faulted;
  1756. /*
  1757. * Rare case: we managed to release the lock atomically,
  1758. * no need to wake anyone else up:
  1759. */
  1760. if (unlikely(uval == task_pid_vnr(current)))
  1761. goto out_unlock;
  1762. /*
  1763. * Ok, other tasks may need to be woken up - check waiters
  1764. * and do the wakeup if necessary:
  1765. */
  1766. head = &hb->chain;
  1767. plist_for_each_entry_safe(this, next, head, list) {
  1768. if (!match_futex (&this->key, &key))
  1769. continue;
  1770. ret = wake_futex_pi(uaddr, uval, this);
  1771. /*
  1772. * The atomic access to the futex value
  1773. * generated a pagefault, so retry the
  1774. * user-access and the wakeup:
  1775. */
  1776. if (ret == -EFAULT)
  1777. goto pi_faulted;
  1778. goto out_unlock;
  1779. }
  1780. /*
  1781. * No waiters - kernel unlocks the futex:
  1782. */
  1783. if (!(uval & FUTEX_OWNER_DIED)) {
  1784. ret = unlock_futex_pi(uaddr, uval);
  1785. if (ret == -EFAULT)
  1786. goto pi_faulted;
  1787. }
  1788. out_unlock:
  1789. spin_unlock(&hb->lock);
  1790. put_futex_key(fshared, &key);
  1791. out:
  1792. return ret;
  1793. pi_faulted:
  1794. spin_unlock(&hb->lock);
  1795. put_futex_key(fshared, &key);
  1796. ret = fault_in_user_writeable(uaddr);
  1797. if (!ret)
  1798. goto retry;
  1799. return ret;
  1800. }
  1801. /**
  1802. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  1803. * @hb: the hash_bucket futex_q was original enqueued on
  1804. * @q: the futex_q woken while waiting to be requeued
  1805. * @key2: the futex_key of the requeue target futex
  1806. * @timeout: the timeout associated with the wait (NULL if none)
  1807. *
  1808. * Detect if the task was woken on the initial futex as opposed to the requeue
  1809. * target futex. If so, determine if it was a timeout or a signal that caused
  1810. * the wakeup and return the appropriate error code to the caller. Must be
  1811. * called with the hb lock held.
  1812. *
  1813. * Returns
  1814. * 0 - no early wakeup detected
  1815. * <0 - -ETIMEDOUT or -ERESTARTNOINTR
  1816. */
  1817. static inline
  1818. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  1819. struct futex_q *q, union futex_key *key2,
  1820. struct hrtimer_sleeper *timeout)
  1821. {
  1822. int ret = 0;
  1823. /*
  1824. * With the hb lock held, we avoid races while we process the wakeup.
  1825. * We only need to hold hb (and not hb2) to ensure atomicity as the
  1826. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  1827. * It can't be requeued from uaddr2 to something else since we don't
  1828. * support a PI aware source futex for requeue.
  1829. */
  1830. if (!match_futex(&q->key, key2)) {
  1831. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  1832. /*
  1833. * We were woken prior to requeue by a timeout or a signal.
  1834. * Unqueue the futex_q and determine which it was.
  1835. */
  1836. plist_del(&q->list, &q->list.plist);
  1837. drop_futex_key_refs(&q->key);
  1838. if (timeout && !timeout->task)
  1839. ret = -ETIMEDOUT;
  1840. else
  1841. ret = -ERESTARTNOINTR;
  1842. }
  1843. return ret;
  1844. }
  1845. /**
  1846. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  1847. * @uaddr: the futex we initially wait on (non-pi)
  1848. * @fshared: whether the futexes are shared (1) or not (0). They must be
  1849. * the same type, no requeueing from private to shared, etc.
  1850. * @val: the expected value of uaddr
  1851. * @abs_time: absolute timeout
  1852. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  1853. * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
  1854. * @uaddr2: the pi futex we will take prior to returning to user-space
  1855. *
  1856. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  1857. * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
  1858. * complete the acquisition of the rt_mutex prior to returning to userspace.
  1859. * This ensures the rt_mutex maintains an owner when it has waiters; without
  1860. * one, the pi logic wouldn't know which task to boost/deboost, if there was a
  1861. * need to.
  1862. *
  1863. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  1864. * via the following:
  1865. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  1866. * 2) wakeup on uaddr2 after a requeue
  1867. * 3) signal
  1868. * 4) timeout
  1869. *
  1870. * If 3, cleanup and return -ERESTARTNOINTR.
  1871. *
  1872. * If 2, we may then block on trying to take the rt_mutex and return via:
  1873. * 5) successful lock
  1874. * 6) signal
  1875. * 7) timeout
  1876. * 8) other lock acquisition failure
  1877. *
  1878. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  1879. *
  1880. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  1881. *
  1882. * Returns:
  1883. * 0 - On success
  1884. * <0 - On error
  1885. */
  1886. static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
  1887. u32 val, ktime_t *abs_time, u32 bitset,
  1888. int clockrt, u32 __user *uaddr2)
  1889. {
  1890. struct hrtimer_sleeper timeout, *to = NULL;
  1891. struct rt_mutex_waiter rt_waiter;
  1892. struct rt_mutex *pi_mutex = NULL;
  1893. struct futex_hash_bucket *hb;
  1894. union futex_key key2;
  1895. struct futex_q q;
  1896. int res, ret;
  1897. if (!bitset)
  1898. return -EINVAL;
  1899. if (abs_time) {
  1900. to = &timeout;
  1901. hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
  1902. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1903. hrtimer_init_sleeper(to, current);
  1904. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1905. current->timer_slack_ns);
  1906. }
  1907. /*
  1908. * The waiter is allocated on our stack, manipulated by the requeue
  1909. * code while we sleep on uaddr.
  1910. */
  1911. debug_rt_mutex_init_waiter(&rt_waiter);
  1912. rt_waiter.task = NULL;
  1913. key2 = FUTEX_KEY_INIT;
  1914. ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
  1915. if (unlikely(ret != 0))
  1916. goto out;
  1917. q.pi_state = NULL;
  1918. q.bitset = bitset;
  1919. q.rt_waiter = &rt_waiter;
  1920. q.requeue_pi_key = &key2;
  1921. /* Prepare to wait on uaddr. */
  1922. ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
  1923. if (ret)
  1924. goto out_key2;
  1925. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  1926. futex_wait_queue_me(hb, &q, to);
  1927. spin_lock(&hb->lock);
  1928. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  1929. spin_unlock(&hb->lock);
  1930. if (ret)
  1931. goto out_put_keys;
  1932. /*
  1933. * In order for us to be here, we know our q.key == key2, and since
  1934. * we took the hb->lock above, we also know that futex_requeue() has
  1935. * completed and we no longer have to concern ourselves with a wakeup
  1936. * race with the atomic proxy lock acquition by the requeue code.
  1937. */
  1938. /* Check if the requeue code acquired the second futex for us. */
  1939. if (!q.rt_waiter) {
  1940. /*
  1941. * Got the lock. We might not be the anticipated owner if we
  1942. * did a lock-steal - fix up the PI-state in that case.
  1943. */
  1944. if (q.pi_state && (q.pi_state->owner != current)) {
  1945. spin_lock(q.lock_ptr);
  1946. ret = fixup_pi_state_owner(uaddr2, &q, current,
  1947. fshared);
  1948. spin_unlock(q.lock_ptr);
  1949. }
  1950. } else {
  1951. /*
  1952. * We have been woken up by futex_unlock_pi(), a timeout, or a
  1953. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  1954. * the pi_state.
  1955. */
  1956. WARN_ON(!&q.pi_state);
  1957. pi_mutex = &q.pi_state->pi_mutex;
  1958. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  1959. debug_rt_mutex_free_waiter(&rt_waiter);
  1960. spin_lock(q.lock_ptr);
  1961. /*
  1962. * Fixup the pi_state owner and possibly acquire the lock if we
  1963. * haven't already.
  1964. */
  1965. res = fixup_owner(uaddr2, fshared, &q, !ret);
  1966. /*
  1967. * If fixup_owner() returned an error, proprogate that. If it
  1968. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  1969. */
  1970. if (res)
  1971. ret = (res < 0) ? res : 0;
  1972. /* Unqueue and drop the lock. */
  1973. unqueue_me_pi(&q);
  1974. }
  1975. /*
  1976. * If fixup_pi_state_owner() faulted and was unable to handle the
  1977. * fault, unlock the rt_mutex and return the fault to userspace.
  1978. */
  1979. if (ret == -EFAULT) {
  1980. if (rt_mutex_owner(pi_mutex) == current)
  1981. rt_mutex_unlock(pi_mutex);
  1982. } else if (ret == -EINTR) {
  1983. /*
  1984. * We've already been requeued, but cannot restart by calling
  1985. * futex_lock_pi() directly. We could restart this syscall, but
  1986. * it would detect that the user space "val" changed and return
  1987. * -EWOULDBLOCK. Save the overhead of the restart and return
  1988. * -EWOULDBLOCK directly.
  1989. */
  1990. ret = -EWOULDBLOCK;
  1991. }
  1992. out_put_keys:
  1993. put_futex_key(fshared, &q.key);
  1994. out_key2:
  1995. put_futex_key(fshared, &key2);
  1996. out:
  1997. if (to) {
  1998. hrtimer_cancel(&to->timer);
  1999. destroy_hrtimer_on_stack(&to->timer);
  2000. }
  2001. return ret;
  2002. }
  2003. /*
  2004. * Support for robust futexes: the kernel cleans up held futexes at
  2005. * thread exit time.
  2006. *
  2007. * Implementation: user-space maintains a per-thread list of locks it
  2008. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2009. * and marks all locks that are owned by this thread with the
  2010. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2011. * always manipulated with the lock held, so the list is private and
  2012. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2013. * field, to allow the kernel to clean up if the thread dies after
  2014. * acquiring the lock, but just before it could have added itself to
  2015. * the list. There can only be one such pending lock.
  2016. */
  2017. /**
  2018. * sys_set_robust_list() - Set the robust-futex list head of a task
  2019. * @head: pointer to the list-head
  2020. * @len: length of the list-head, as userspace expects
  2021. */
  2022. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2023. size_t, len)
  2024. {
  2025. if (!futex_cmpxchg_enabled)
  2026. return -ENOSYS;
  2027. /*
  2028. * The kernel knows only one size for now:
  2029. */
  2030. if (unlikely(len != sizeof(*head)))
  2031. return -EINVAL;
  2032. current->robust_list = head;
  2033. return 0;
  2034. }
  2035. /**
  2036. * sys_get_robust_list() - Get the robust-futex list head of a task
  2037. * @pid: pid of the process [zero for current task]
  2038. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2039. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2040. */
  2041. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2042. struct robust_list_head __user * __user *, head_ptr,
  2043. size_t __user *, len_ptr)
  2044. {
  2045. struct robust_list_head __user *head;
  2046. unsigned long ret;
  2047. const struct cred *cred = current_cred(), *pcred;
  2048. if (!futex_cmpxchg_enabled)
  2049. return -ENOSYS;
  2050. if (!pid)
  2051. head = current->robust_list;
  2052. else {
  2053. struct task_struct *p;
  2054. ret = -ESRCH;
  2055. rcu_read_lock();
  2056. p = find_task_by_vpid(pid);
  2057. if (!p)
  2058. goto err_unlock;
  2059. ret = -EPERM;
  2060. pcred = __task_cred(p);
  2061. if (cred->euid != pcred->euid &&
  2062. cred->euid != pcred->uid &&
  2063. !capable(CAP_SYS_PTRACE))
  2064. goto err_unlock;
  2065. head = p->robust_list;
  2066. rcu_read_unlock();
  2067. }
  2068. if (put_user(sizeof(*head), len_ptr))
  2069. return -EFAULT;
  2070. return put_user(head, head_ptr);
  2071. err_unlock:
  2072. rcu_read_unlock();
  2073. return ret;
  2074. }
  2075. /*
  2076. * Process a futex-list entry, check whether it's owned by the
  2077. * dying task, and do notification if so:
  2078. */
  2079. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2080. {
  2081. u32 uval, nval, mval;
  2082. retry:
  2083. if (get_user(uval, uaddr))
  2084. return -1;
  2085. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2086. /*
  2087. * Ok, this dying thread is truly holding a futex
  2088. * of interest. Set the OWNER_DIED bit atomically
  2089. * via cmpxchg, and if the value had FUTEX_WAITERS
  2090. * set, wake up a waiter (if any). (We have to do a
  2091. * futex_wake() even if OWNER_DIED is already set -
  2092. * to handle the rare but possible case of recursive
  2093. * thread-death.) The rest of the cleanup is done in
  2094. * userspace.
  2095. */
  2096. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2097. nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
  2098. if (nval == -EFAULT)
  2099. return -1;
  2100. if (nval != uval)
  2101. goto retry;
  2102. /*
  2103. * Wake robust non-PI futexes here. The wakeup of
  2104. * PI futexes happens in exit_pi_state():
  2105. */
  2106. if (!pi && (uval & FUTEX_WAITERS))
  2107. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2108. }
  2109. return 0;
  2110. }
  2111. /*
  2112. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2113. */
  2114. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2115. struct robust_list __user * __user *head,
  2116. int *pi)
  2117. {
  2118. unsigned long uentry;
  2119. if (get_user(uentry, (unsigned long __user *)head))
  2120. return -EFAULT;
  2121. *entry = (void __user *)(uentry & ~1UL);
  2122. *pi = uentry & 1;
  2123. return 0;
  2124. }
  2125. /*
  2126. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2127. * and mark any locks found there dead, and notify any waiters.
  2128. *
  2129. * We silently return on any sign of list-walking problem.
  2130. */
  2131. void exit_robust_list(struct task_struct *curr)
  2132. {
  2133. struct robust_list_head __user *head = curr->robust_list;
  2134. struct robust_list __user *entry, *next_entry, *pending;
  2135. unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
  2136. unsigned long futex_offset;
  2137. int rc;
  2138. if (!futex_cmpxchg_enabled)
  2139. return;
  2140. /*
  2141. * Fetch the list head (which was registered earlier, via
  2142. * sys_set_robust_list()):
  2143. */
  2144. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2145. return;
  2146. /*
  2147. * Fetch the relative futex offset:
  2148. */
  2149. if (get_user(futex_offset, &head->futex_offset))
  2150. return;
  2151. /*
  2152. * Fetch any possibly pending lock-add first, and handle it
  2153. * if it exists:
  2154. */
  2155. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2156. return;
  2157. next_entry = NULL; /* avoid warning with gcc */
  2158. while (entry != &head->list) {
  2159. /*
  2160. * Fetch the next entry in the list before calling
  2161. * handle_futex_death:
  2162. */
  2163. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2164. /*
  2165. * A pending lock might already be on the list, so
  2166. * don't process it twice:
  2167. */
  2168. if (entry != pending)
  2169. if (handle_futex_death((void __user *)entry + futex_offset,
  2170. curr, pi))
  2171. return;
  2172. if (rc)
  2173. return;
  2174. entry = next_entry;
  2175. pi = next_pi;
  2176. /*
  2177. * Avoid excessively long or circular lists:
  2178. */
  2179. if (!--limit)
  2180. break;
  2181. cond_resched();
  2182. }
  2183. if (pending)
  2184. handle_futex_death((void __user *)pending + futex_offset,
  2185. curr, pip);
  2186. }
  2187. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2188. u32 __user *uaddr2, u32 val2, u32 val3)
  2189. {
  2190. int clockrt, ret = -ENOSYS;
  2191. int cmd = op & FUTEX_CMD_MASK;
  2192. int fshared = 0;
  2193. if (!(op & FUTEX_PRIVATE_FLAG))
  2194. fshared = 1;
  2195. clockrt = op & FUTEX_CLOCK_REALTIME;
  2196. if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2197. return -ENOSYS;
  2198. switch (cmd) {
  2199. case FUTEX_WAIT:
  2200. val3 = FUTEX_BITSET_MATCH_ANY;
  2201. case FUTEX_WAIT_BITSET:
  2202. ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
  2203. break;
  2204. case FUTEX_WAKE:
  2205. val3 = FUTEX_BITSET_MATCH_ANY;
  2206. case FUTEX_WAKE_BITSET:
  2207. ret = futex_wake(uaddr, fshared, val, val3);
  2208. break;
  2209. case FUTEX_REQUEUE:
  2210. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
  2211. break;
  2212. case FUTEX_CMP_REQUEUE:
  2213. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
  2214. 0);
  2215. break;
  2216. case FUTEX_WAKE_OP:
  2217. ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
  2218. break;
  2219. case FUTEX_LOCK_PI:
  2220. if (futex_cmpxchg_enabled)
  2221. ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
  2222. break;
  2223. case FUTEX_UNLOCK_PI:
  2224. if (futex_cmpxchg_enabled)
  2225. ret = futex_unlock_pi(uaddr, fshared);
  2226. break;
  2227. case FUTEX_TRYLOCK_PI:
  2228. if (futex_cmpxchg_enabled)
  2229. ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
  2230. break;
  2231. case FUTEX_WAIT_REQUEUE_PI:
  2232. val3 = FUTEX_BITSET_MATCH_ANY;
  2233. ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
  2234. clockrt, uaddr2);
  2235. break;
  2236. case FUTEX_CMP_REQUEUE_PI:
  2237. ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
  2238. 1);
  2239. break;
  2240. default:
  2241. ret = -ENOSYS;
  2242. }
  2243. return ret;
  2244. }
  2245. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2246. struct timespec __user *, utime, u32 __user *, uaddr2,
  2247. u32, val3)
  2248. {
  2249. struct timespec ts;
  2250. ktime_t t, *tp = NULL;
  2251. u32 val2 = 0;
  2252. int cmd = op & FUTEX_CMD_MASK;
  2253. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2254. cmd == FUTEX_WAIT_BITSET ||
  2255. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2256. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2257. return -EFAULT;
  2258. if (!timespec_valid(&ts))
  2259. return -EINVAL;
  2260. t = timespec_to_ktime(ts);
  2261. if (cmd == FUTEX_WAIT)
  2262. t = ktime_add_safe(ktime_get(), t);
  2263. tp = &t;
  2264. }
  2265. /*
  2266. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2267. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2268. */
  2269. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2270. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2271. val2 = (u32) (unsigned long) utime;
  2272. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2273. }
  2274. static int __init futex_init(void)
  2275. {
  2276. u32 curval;
  2277. int i;
  2278. /*
  2279. * This will fail and we want it. Some arch implementations do
  2280. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2281. * functionality. We want to know that before we call in any
  2282. * of the complex code paths. Also we want to prevent
  2283. * registration of robust lists in that case. NULL is
  2284. * guaranteed to fault and we get -EFAULT on functional
  2285. * implementation, the non functional ones will return
  2286. * -ENOSYS.
  2287. */
  2288. curval = cmpxchg_futex_value_locked(NULL, 0, 0);
  2289. if (curval == -EFAULT)
  2290. futex_cmpxchg_enabled = 1;
  2291. for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
  2292. plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
  2293. spin_lock_init(&futex_queues[i].lock);
  2294. }
  2295. return 0;
  2296. }
  2297. __initcall(futex_init);