vmalloc.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <linux/llist.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/shmparam.h>
  33. struct vfree_deferred {
  34. struct llist_head list;
  35. struct work_struct wq;
  36. };
  37. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  38. static void __vunmap(const void *, int);
  39. static void free_work(struct work_struct *w)
  40. {
  41. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  42. struct llist_node *llnode = llist_del_all(&p->list);
  43. while (llnode) {
  44. void *p = llnode;
  45. llnode = llist_next(llnode);
  46. __vunmap(p, 1);
  47. }
  48. }
  49. /*** Page table manipulation functions ***/
  50. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  51. {
  52. pte_t *pte;
  53. pte = pte_offset_kernel(pmd, addr);
  54. do {
  55. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  56. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  57. } while (pte++, addr += PAGE_SIZE, addr != end);
  58. }
  59. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  60. {
  61. pmd_t *pmd;
  62. unsigned long next;
  63. pmd = pmd_offset(pud, addr);
  64. do {
  65. next = pmd_addr_end(addr, end);
  66. if (pmd_none_or_clear_bad(pmd))
  67. continue;
  68. vunmap_pte_range(pmd, addr, next);
  69. } while (pmd++, addr = next, addr != end);
  70. }
  71. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  72. {
  73. pud_t *pud;
  74. unsigned long next;
  75. pud = pud_offset(pgd, addr);
  76. do {
  77. next = pud_addr_end(addr, end);
  78. if (pud_none_or_clear_bad(pud))
  79. continue;
  80. vunmap_pmd_range(pud, addr, next);
  81. } while (pud++, addr = next, addr != end);
  82. }
  83. static void vunmap_page_range(unsigned long addr, unsigned long end)
  84. {
  85. pgd_t *pgd;
  86. unsigned long next;
  87. BUG_ON(addr >= end);
  88. pgd = pgd_offset_k(addr);
  89. do {
  90. next = pgd_addr_end(addr, end);
  91. if (pgd_none_or_clear_bad(pgd))
  92. continue;
  93. vunmap_pud_range(pgd, addr, next);
  94. } while (pgd++, addr = next, addr != end);
  95. }
  96. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  97. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  98. {
  99. pte_t *pte;
  100. /*
  101. * nr is a running index into the array which helps higher level
  102. * callers keep track of where we're up to.
  103. */
  104. pte = pte_alloc_kernel(pmd, addr);
  105. if (!pte)
  106. return -ENOMEM;
  107. do {
  108. struct page *page = pages[*nr];
  109. if (WARN_ON(!pte_none(*pte)))
  110. return -EBUSY;
  111. if (WARN_ON(!page))
  112. return -ENOMEM;
  113. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  114. (*nr)++;
  115. } while (pte++, addr += PAGE_SIZE, addr != end);
  116. return 0;
  117. }
  118. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  119. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  120. {
  121. pmd_t *pmd;
  122. unsigned long next;
  123. pmd = pmd_alloc(&init_mm, pud, addr);
  124. if (!pmd)
  125. return -ENOMEM;
  126. do {
  127. next = pmd_addr_end(addr, end);
  128. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  129. return -ENOMEM;
  130. } while (pmd++, addr = next, addr != end);
  131. return 0;
  132. }
  133. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  134. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  135. {
  136. pud_t *pud;
  137. unsigned long next;
  138. pud = pud_alloc(&init_mm, pgd, addr);
  139. if (!pud)
  140. return -ENOMEM;
  141. do {
  142. next = pud_addr_end(addr, end);
  143. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  144. return -ENOMEM;
  145. } while (pud++, addr = next, addr != end);
  146. return 0;
  147. }
  148. /*
  149. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  150. * will have pfns corresponding to the "pages" array.
  151. *
  152. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  153. */
  154. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  155. pgprot_t prot, struct page **pages)
  156. {
  157. pgd_t *pgd;
  158. unsigned long next;
  159. unsigned long addr = start;
  160. int err = 0;
  161. int nr = 0;
  162. BUG_ON(addr >= end);
  163. pgd = pgd_offset_k(addr);
  164. do {
  165. next = pgd_addr_end(addr, end);
  166. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  167. if (err)
  168. return err;
  169. } while (pgd++, addr = next, addr != end);
  170. return nr;
  171. }
  172. static int vmap_page_range(unsigned long start, unsigned long end,
  173. pgprot_t prot, struct page **pages)
  174. {
  175. int ret;
  176. ret = vmap_page_range_noflush(start, end, prot, pages);
  177. flush_cache_vmap(start, end);
  178. return ret;
  179. }
  180. int is_vmalloc_or_module_addr(const void *x)
  181. {
  182. /*
  183. * ARM, x86-64 and sparc64 put modules in a special place,
  184. * and fall back on vmalloc() if that fails. Others
  185. * just put it in the vmalloc space.
  186. */
  187. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  188. unsigned long addr = (unsigned long)x;
  189. if (addr >= MODULES_VADDR && addr < MODULES_END)
  190. return 1;
  191. #endif
  192. return is_vmalloc_addr(x);
  193. }
  194. /*
  195. * Walk a vmap address to the struct page it maps.
  196. */
  197. struct page *vmalloc_to_page(const void *vmalloc_addr)
  198. {
  199. unsigned long addr = (unsigned long) vmalloc_addr;
  200. struct page *page = NULL;
  201. pgd_t *pgd = pgd_offset_k(addr);
  202. /*
  203. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  204. * architectures that do not vmalloc module space
  205. */
  206. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  207. if (!pgd_none(*pgd)) {
  208. pud_t *pud = pud_offset(pgd, addr);
  209. if (!pud_none(*pud)) {
  210. pmd_t *pmd = pmd_offset(pud, addr);
  211. if (!pmd_none(*pmd)) {
  212. pte_t *ptep, pte;
  213. ptep = pte_offset_map(pmd, addr);
  214. pte = *ptep;
  215. if (pte_present(pte))
  216. page = pte_page(pte);
  217. pte_unmap(ptep);
  218. }
  219. }
  220. }
  221. return page;
  222. }
  223. EXPORT_SYMBOL(vmalloc_to_page);
  224. /*
  225. * Map a vmalloc()-space virtual address to the physical page frame number.
  226. */
  227. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  228. {
  229. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  230. }
  231. EXPORT_SYMBOL(vmalloc_to_pfn);
  232. /*** Global kva allocator ***/
  233. #define VM_LAZY_FREE 0x01
  234. #define VM_LAZY_FREEING 0x02
  235. #define VM_VM_AREA 0x04
  236. static DEFINE_SPINLOCK(vmap_area_lock);
  237. /* Export for kexec only */
  238. LIST_HEAD(vmap_area_list);
  239. static struct rb_root vmap_area_root = RB_ROOT;
  240. /* The vmap cache globals are protected by vmap_area_lock */
  241. static struct rb_node *free_vmap_cache;
  242. static unsigned long cached_hole_size;
  243. static unsigned long cached_vstart;
  244. static unsigned long cached_align;
  245. static unsigned long vmap_area_pcpu_hole;
  246. static struct vmap_area *__find_vmap_area(unsigned long addr)
  247. {
  248. struct rb_node *n = vmap_area_root.rb_node;
  249. while (n) {
  250. struct vmap_area *va;
  251. va = rb_entry(n, struct vmap_area, rb_node);
  252. if (addr < va->va_start)
  253. n = n->rb_left;
  254. else if (addr >= va->va_end)
  255. n = n->rb_right;
  256. else
  257. return va;
  258. }
  259. return NULL;
  260. }
  261. static void __insert_vmap_area(struct vmap_area *va)
  262. {
  263. struct rb_node **p = &vmap_area_root.rb_node;
  264. struct rb_node *parent = NULL;
  265. struct rb_node *tmp;
  266. while (*p) {
  267. struct vmap_area *tmp_va;
  268. parent = *p;
  269. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  270. if (va->va_start < tmp_va->va_end)
  271. p = &(*p)->rb_left;
  272. else if (va->va_end > tmp_va->va_start)
  273. p = &(*p)->rb_right;
  274. else
  275. BUG();
  276. }
  277. rb_link_node(&va->rb_node, parent, p);
  278. rb_insert_color(&va->rb_node, &vmap_area_root);
  279. /* address-sort this list */
  280. tmp = rb_prev(&va->rb_node);
  281. if (tmp) {
  282. struct vmap_area *prev;
  283. prev = rb_entry(tmp, struct vmap_area, rb_node);
  284. list_add_rcu(&va->list, &prev->list);
  285. } else
  286. list_add_rcu(&va->list, &vmap_area_list);
  287. }
  288. static void purge_vmap_area_lazy(void);
  289. /*
  290. * Allocate a region of KVA of the specified size and alignment, within the
  291. * vstart and vend.
  292. */
  293. static struct vmap_area *alloc_vmap_area(unsigned long size,
  294. unsigned long align,
  295. unsigned long vstart, unsigned long vend,
  296. int node, gfp_t gfp_mask)
  297. {
  298. struct vmap_area *va;
  299. struct rb_node *n;
  300. unsigned long addr;
  301. int purged = 0;
  302. struct vmap_area *first;
  303. BUG_ON(!size);
  304. BUG_ON(size & ~PAGE_MASK);
  305. BUG_ON(!is_power_of_2(align));
  306. va = kmalloc_node(sizeof(struct vmap_area),
  307. gfp_mask & GFP_RECLAIM_MASK, node);
  308. if (unlikely(!va))
  309. return ERR_PTR(-ENOMEM);
  310. retry:
  311. spin_lock(&vmap_area_lock);
  312. /*
  313. * Invalidate cache if we have more permissive parameters.
  314. * cached_hole_size notes the largest hole noticed _below_
  315. * the vmap_area cached in free_vmap_cache: if size fits
  316. * into that hole, we want to scan from vstart to reuse
  317. * the hole instead of allocating above free_vmap_cache.
  318. * Note that __free_vmap_area may update free_vmap_cache
  319. * without updating cached_hole_size or cached_align.
  320. */
  321. if (!free_vmap_cache ||
  322. size < cached_hole_size ||
  323. vstart < cached_vstart ||
  324. align < cached_align) {
  325. nocache:
  326. cached_hole_size = 0;
  327. free_vmap_cache = NULL;
  328. }
  329. /* record if we encounter less permissive parameters */
  330. cached_vstart = vstart;
  331. cached_align = align;
  332. /* find starting point for our search */
  333. if (free_vmap_cache) {
  334. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  335. addr = ALIGN(first->va_end, align);
  336. if (addr < vstart)
  337. goto nocache;
  338. if (addr + size - 1 < addr)
  339. goto overflow;
  340. } else {
  341. addr = ALIGN(vstart, align);
  342. if (addr + size - 1 < addr)
  343. goto overflow;
  344. n = vmap_area_root.rb_node;
  345. first = NULL;
  346. while (n) {
  347. struct vmap_area *tmp;
  348. tmp = rb_entry(n, struct vmap_area, rb_node);
  349. if (tmp->va_end >= addr) {
  350. first = tmp;
  351. if (tmp->va_start <= addr)
  352. break;
  353. n = n->rb_left;
  354. } else
  355. n = n->rb_right;
  356. }
  357. if (!first)
  358. goto found;
  359. }
  360. /* from the starting point, walk areas until a suitable hole is found */
  361. while (addr + size > first->va_start && addr + size <= vend) {
  362. if (addr + cached_hole_size < first->va_start)
  363. cached_hole_size = first->va_start - addr;
  364. addr = ALIGN(first->va_end, align);
  365. if (addr + size - 1 < addr)
  366. goto overflow;
  367. if (list_is_last(&first->list, &vmap_area_list))
  368. goto found;
  369. first = list_entry(first->list.next,
  370. struct vmap_area, list);
  371. }
  372. found:
  373. if (addr + size > vend)
  374. goto overflow;
  375. va->va_start = addr;
  376. va->va_end = addr + size;
  377. va->flags = 0;
  378. __insert_vmap_area(va);
  379. free_vmap_cache = &va->rb_node;
  380. spin_unlock(&vmap_area_lock);
  381. BUG_ON(va->va_start & (align-1));
  382. BUG_ON(va->va_start < vstart);
  383. BUG_ON(va->va_end > vend);
  384. return va;
  385. overflow:
  386. spin_unlock(&vmap_area_lock);
  387. if (!purged) {
  388. purge_vmap_area_lazy();
  389. purged = 1;
  390. goto retry;
  391. }
  392. if (printk_ratelimit())
  393. printk(KERN_WARNING
  394. "vmap allocation for size %lu failed: "
  395. "use vmalloc=<size> to increase size.\n", size);
  396. kfree(va);
  397. return ERR_PTR(-EBUSY);
  398. }
  399. static void __free_vmap_area(struct vmap_area *va)
  400. {
  401. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  402. if (free_vmap_cache) {
  403. if (va->va_end < cached_vstart) {
  404. free_vmap_cache = NULL;
  405. } else {
  406. struct vmap_area *cache;
  407. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  408. if (va->va_start <= cache->va_start) {
  409. free_vmap_cache = rb_prev(&va->rb_node);
  410. /*
  411. * We don't try to update cached_hole_size or
  412. * cached_align, but it won't go very wrong.
  413. */
  414. }
  415. }
  416. }
  417. rb_erase(&va->rb_node, &vmap_area_root);
  418. RB_CLEAR_NODE(&va->rb_node);
  419. list_del_rcu(&va->list);
  420. /*
  421. * Track the highest possible candidate for pcpu area
  422. * allocation. Areas outside of vmalloc area can be returned
  423. * here too, consider only end addresses which fall inside
  424. * vmalloc area proper.
  425. */
  426. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  427. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  428. kfree_rcu(va, rcu_head);
  429. }
  430. /*
  431. * Free a region of KVA allocated by alloc_vmap_area
  432. */
  433. static void free_vmap_area(struct vmap_area *va)
  434. {
  435. spin_lock(&vmap_area_lock);
  436. __free_vmap_area(va);
  437. spin_unlock(&vmap_area_lock);
  438. }
  439. /*
  440. * Clear the pagetable entries of a given vmap_area
  441. */
  442. static void unmap_vmap_area(struct vmap_area *va)
  443. {
  444. vunmap_page_range(va->va_start, va->va_end);
  445. }
  446. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  447. {
  448. /*
  449. * Unmap page tables and force a TLB flush immediately if
  450. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  451. * bugs similarly to those in linear kernel virtual address
  452. * space after a page has been freed.
  453. *
  454. * All the lazy freeing logic is still retained, in order to
  455. * minimise intrusiveness of this debugging feature.
  456. *
  457. * This is going to be *slow* (linear kernel virtual address
  458. * debugging doesn't do a broadcast TLB flush so it is a lot
  459. * faster).
  460. */
  461. #ifdef CONFIG_DEBUG_PAGEALLOC
  462. vunmap_page_range(start, end);
  463. flush_tlb_kernel_range(start, end);
  464. #endif
  465. }
  466. /*
  467. * lazy_max_pages is the maximum amount of virtual address space we gather up
  468. * before attempting to purge with a TLB flush.
  469. *
  470. * There is a tradeoff here: a larger number will cover more kernel page tables
  471. * and take slightly longer to purge, but it will linearly reduce the number of
  472. * global TLB flushes that must be performed. It would seem natural to scale
  473. * this number up linearly with the number of CPUs (because vmapping activity
  474. * could also scale linearly with the number of CPUs), however it is likely
  475. * that in practice, workloads might be constrained in other ways that mean
  476. * vmap activity will not scale linearly with CPUs. Also, I want to be
  477. * conservative and not introduce a big latency on huge systems, so go with
  478. * a less aggressive log scale. It will still be an improvement over the old
  479. * code, and it will be simple to change the scale factor if we find that it
  480. * becomes a problem on bigger systems.
  481. */
  482. static unsigned long lazy_max_pages(void)
  483. {
  484. unsigned int log;
  485. log = fls(num_online_cpus());
  486. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  487. }
  488. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  489. /* for per-CPU blocks */
  490. static void purge_fragmented_blocks_allcpus(void);
  491. /*
  492. * called before a call to iounmap() if the caller wants vm_area_struct's
  493. * immediately freed.
  494. */
  495. void set_iounmap_nonlazy(void)
  496. {
  497. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  498. }
  499. /*
  500. * Purges all lazily-freed vmap areas.
  501. *
  502. * If sync is 0 then don't purge if there is already a purge in progress.
  503. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  504. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  505. * their own TLB flushing).
  506. * Returns with *start = min(*start, lowest purged address)
  507. * *end = max(*end, highest purged address)
  508. */
  509. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  510. int sync, int force_flush)
  511. {
  512. static DEFINE_SPINLOCK(purge_lock);
  513. LIST_HEAD(valist);
  514. struct vmap_area *va;
  515. struct vmap_area *n_va;
  516. int nr = 0;
  517. /*
  518. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  519. * should not expect such behaviour. This just simplifies locking for
  520. * the case that isn't actually used at the moment anyway.
  521. */
  522. if (!sync && !force_flush) {
  523. if (!spin_trylock(&purge_lock))
  524. return;
  525. } else
  526. spin_lock(&purge_lock);
  527. if (sync)
  528. purge_fragmented_blocks_allcpus();
  529. rcu_read_lock();
  530. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  531. if (va->flags & VM_LAZY_FREE) {
  532. if (va->va_start < *start)
  533. *start = va->va_start;
  534. if (va->va_end > *end)
  535. *end = va->va_end;
  536. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  537. list_add_tail(&va->purge_list, &valist);
  538. va->flags |= VM_LAZY_FREEING;
  539. va->flags &= ~VM_LAZY_FREE;
  540. }
  541. }
  542. rcu_read_unlock();
  543. if (nr)
  544. atomic_sub(nr, &vmap_lazy_nr);
  545. if (nr || force_flush)
  546. flush_tlb_kernel_range(*start, *end);
  547. if (nr) {
  548. spin_lock(&vmap_area_lock);
  549. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  550. __free_vmap_area(va);
  551. spin_unlock(&vmap_area_lock);
  552. }
  553. spin_unlock(&purge_lock);
  554. }
  555. /*
  556. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  557. * is already purging.
  558. */
  559. static void try_purge_vmap_area_lazy(void)
  560. {
  561. unsigned long start = ULONG_MAX, end = 0;
  562. __purge_vmap_area_lazy(&start, &end, 0, 0);
  563. }
  564. /*
  565. * Kick off a purge of the outstanding lazy areas.
  566. */
  567. static void purge_vmap_area_lazy(void)
  568. {
  569. unsigned long start = ULONG_MAX, end = 0;
  570. __purge_vmap_area_lazy(&start, &end, 1, 0);
  571. }
  572. /*
  573. * Free a vmap area, caller ensuring that the area has been unmapped
  574. * and flush_cache_vunmap had been called for the correct range
  575. * previously.
  576. */
  577. static void free_vmap_area_noflush(struct vmap_area *va)
  578. {
  579. va->flags |= VM_LAZY_FREE;
  580. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  581. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  582. try_purge_vmap_area_lazy();
  583. }
  584. /*
  585. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  586. * called for the correct range previously.
  587. */
  588. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  589. {
  590. unmap_vmap_area(va);
  591. free_vmap_area_noflush(va);
  592. }
  593. /*
  594. * Free and unmap a vmap area
  595. */
  596. static void free_unmap_vmap_area(struct vmap_area *va)
  597. {
  598. flush_cache_vunmap(va->va_start, va->va_end);
  599. free_unmap_vmap_area_noflush(va);
  600. }
  601. static struct vmap_area *find_vmap_area(unsigned long addr)
  602. {
  603. struct vmap_area *va;
  604. spin_lock(&vmap_area_lock);
  605. va = __find_vmap_area(addr);
  606. spin_unlock(&vmap_area_lock);
  607. return va;
  608. }
  609. static void free_unmap_vmap_area_addr(unsigned long addr)
  610. {
  611. struct vmap_area *va;
  612. va = find_vmap_area(addr);
  613. BUG_ON(!va);
  614. free_unmap_vmap_area(va);
  615. }
  616. /*** Per cpu kva allocator ***/
  617. /*
  618. * vmap space is limited especially on 32 bit architectures. Ensure there is
  619. * room for at least 16 percpu vmap blocks per CPU.
  620. */
  621. /*
  622. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  623. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  624. * instead (we just need a rough idea)
  625. */
  626. #if BITS_PER_LONG == 32
  627. #define VMALLOC_SPACE (128UL*1024*1024)
  628. #else
  629. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  630. #endif
  631. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  632. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  633. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  634. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  635. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  636. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  637. #define VMAP_BBMAP_BITS \
  638. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  639. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  640. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  641. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  642. static bool vmap_initialized __read_mostly = false;
  643. struct vmap_block_queue {
  644. spinlock_t lock;
  645. struct list_head free;
  646. };
  647. struct vmap_block {
  648. spinlock_t lock;
  649. struct vmap_area *va;
  650. struct vmap_block_queue *vbq;
  651. unsigned long free, dirty;
  652. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  653. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  654. struct list_head free_list;
  655. struct rcu_head rcu_head;
  656. struct list_head purge;
  657. };
  658. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  659. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  660. /*
  661. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  662. * in the free path. Could get rid of this if we change the API to return a
  663. * "cookie" from alloc, to be passed to free. But no big deal yet.
  664. */
  665. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  666. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  667. /*
  668. * We should probably have a fallback mechanism to allocate virtual memory
  669. * out of partially filled vmap blocks. However vmap block sizing should be
  670. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  671. * big problem.
  672. */
  673. static unsigned long addr_to_vb_idx(unsigned long addr)
  674. {
  675. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  676. addr /= VMAP_BLOCK_SIZE;
  677. return addr;
  678. }
  679. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  680. {
  681. struct vmap_block_queue *vbq;
  682. struct vmap_block *vb;
  683. struct vmap_area *va;
  684. unsigned long vb_idx;
  685. int node, err;
  686. node = numa_node_id();
  687. vb = kmalloc_node(sizeof(struct vmap_block),
  688. gfp_mask & GFP_RECLAIM_MASK, node);
  689. if (unlikely(!vb))
  690. return ERR_PTR(-ENOMEM);
  691. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  692. VMALLOC_START, VMALLOC_END,
  693. node, gfp_mask);
  694. if (IS_ERR(va)) {
  695. kfree(vb);
  696. return ERR_CAST(va);
  697. }
  698. err = radix_tree_preload(gfp_mask);
  699. if (unlikely(err)) {
  700. kfree(vb);
  701. free_vmap_area(va);
  702. return ERR_PTR(err);
  703. }
  704. spin_lock_init(&vb->lock);
  705. vb->va = va;
  706. vb->free = VMAP_BBMAP_BITS;
  707. vb->dirty = 0;
  708. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  709. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  710. INIT_LIST_HEAD(&vb->free_list);
  711. vb_idx = addr_to_vb_idx(va->va_start);
  712. spin_lock(&vmap_block_tree_lock);
  713. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  714. spin_unlock(&vmap_block_tree_lock);
  715. BUG_ON(err);
  716. radix_tree_preload_end();
  717. vbq = &get_cpu_var(vmap_block_queue);
  718. vb->vbq = vbq;
  719. spin_lock(&vbq->lock);
  720. list_add_rcu(&vb->free_list, &vbq->free);
  721. spin_unlock(&vbq->lock);
  722. put_cpu_var(vmap_block_queue);
  723. return vb;
  724. }
  725. static void free_vmap_block(struct vmap_block *vb)
  726. {
  727. struct vmap_block *tmp;
  728. unsigned long vb_idx;
  729. vb_idx = addr_to_vb_idx(vb->va->va_start);
  730. spin_lock(&vmap_block_tree_lock);
  731. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  732. spin_unlock(&vmap_block_tree_lock);
  733. BUG_ON(tmp != vb);
  734. free_vmap_area_noflush(vb->va);
  735. kfree_rcu(vb, rcu_head);
  736. }
  737. static void purge_fragmented_blocks(int cpu)
  738. {
  739. LIST_HEAD(purge);
  740. struct vmap_block *vb;
  741. struct vmap_block *n_vb;
  742. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  743. rcu_read_lock();
  744. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  745. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  746. continue;
  747. spin_lock(&vb->lock);
  748. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  749. vb->free = 0; /* prevent further allocs after releasing lock */
  750. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  751. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  752. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  753. spin_lock(&vbq->lock);
  754. list_del_rcu(&vb->free_list);
  755. spin_unlock(&vbq->lock);
  756. spin_unlock(&vb->lock);
  757. list_add_tail(&vb->purge, &purge);
  758. } else
  759. spin_unlock(&vb->lock);
  760. }
  761. rcu_read_unlock();
  762. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  763. list_del(&vb->purge);
  764. free_vmap_block(vb);
  765. }
  766. }
  767. static void purge_fragmented_blocks_thiscpu(void)
  768. {
  769. purge_fragmented_blocks(smp_processor_id());
  770. }
  771. static void purge_fragmented_blocks_allcpus(void)
  772. {
  773. int cpu;
  774. for_each_possible_cpu(cpu)
  775. purge_fragmented_blocks(cpu);
  776. }
  777. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  778. {
  779. struct vmap_block_queue *vbq;
  780. struct vmap_block *vb;
  781. unsigned long addr = 0;
  782. unsigned int order;
  783. int purge = 0;
  784. BUG_ON(size & ~PAGE_MASK);
  785. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  786. if (WARN_ON(size == 0)) {
  787. /*
  788. * Allocating 0 bytes isn't what caller wants since
  789. * get_order(0) returns funny result. Just warn and terminate
  790. * early.
  791. */
  792. return NULL;
  793. }
  794. order = get_order(size);
  795. again:
  796. rcu_read_lock();
  797. vbq = &get_cpu_var(vmap_block_queue);
  798. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  799. int i;
  800. spin_lock(&vb->lock);
  801. if (vb->free < 1UL << order)
  802. goto next;
  803. i = bitmap_find_free_region(vb->alloc_map,
  804. VMAP_BBMAP_BITS, order);
  805. if (i < 0) {
  806. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  807. /* fragmented and no outstanding allocations */
  808. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  809. purge = 1;
  810. }
  811. goto next;
  812. }
  813. addr = vb->va->va_start + (i << PAGE_SHIFT);
  814. BUG_ON(addr_to_vb_idx(addr) !=
  815. addr_to_vb_idx(vb->va->va_start));
  816. vb->free -= 1UL << order;
  817. if (vb->free == 0) {
  818. spin_lock(&vbq->lock);
  819. list_del_rcu(&vb->free_list);
  820. spin_unlock(&vbq->lock);
  821. }
  822. spin_unlock(&vb->lock);
  823. break;
  824. next:
  825. spin_unlock(&vb->lock);
  826. }
  827. if (purge)
  828. purge_fragmented_blocks_thiscpu();
  829. put_cpu_var(vmap_block_queue);
  830. rcu_read_unlock();
  831. if (!addr) {
  832. vb = new_vmap_block(gfp_mask);
  833. if (IS_ERR(vb))
  834. return vb;
  835. goto again;
  836. }
  837. return (void *)addr;
  838. }
  839. static void vb_free(const void *addr, unsigned long size)
  840. {
  841. unsigned long offset;
  842. unsigned long vb_idx;
  843. unsigned int order;
  844. struct vmap_block *vb;
  845. BUG_ON(size & ~PAGE_MASK);
  846. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  847. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  848. order = get_order(size);
  849. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  850. vb_idx = addr_to_vb_idx((unsigned long)addr);
  851. rcu_read_lock();
  852. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  853. rcu_read_unlock();
  854. BUG_ON(!vb);
  855. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  856. spin_lock(&vb->lock);
  857. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  858. vb->dirty += 1UL << order;
  859. if (vb->dirty == VMAP_BBMAP_BITS) {
  860. BUG_ON(vb->free);
  861. spin_unlock(&vb->lock);
  862. free_vmap_block(vb);
  863. } else
  864. spin_unlock(&vb->lock);
  865. }
  866. /**
  867. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  868. *
  869. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  870. * to amortize TLB flushing overheads. What this means is that any page you
  871. * have now, may, in a former life, have been mapped into kernel virtual
  872. * address by the vmap layer and so there might be some CPUs with TLB entries
  873. * still referencing that page (additional to the regular 1:1 kernel mapping).
  874. *
  875. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  876. * be sure that none of the pages we have control over will have any aliases
  877. * from the vmap layer.
  878. */
  879. void vm_unmap_aliases(void)
  880. {
  881. unsigned long start = ULONG_MAX, end = 0;
  882. int cpu;
  883. int flush = 0;
  884. if (unlikely(!vmap_initialized))
  885. return;
  886. for_each_possible_cpu(cpu) {
  887. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  888. struct vmap_block *vb;
  889. rcu_read_lock();
  890. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  891. int i;
  892. spin_lock(&vb->lock);
  893. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  894. while (i < VMAP_BBMAP_BITS) {
  895. unsigned long s, e;
  896. int j;
  897. j = find_next_zero_bit(vb->dirty_map,
  898. VMAP_BBMAP_BITS, i);
  899. s = vb->va->va_start + (i << PAGE_SHIFT);
  900. e = vb->va->va_start + (j << PAGE_SHIFT);
  901. flush = 1;
  902. if (s < start)
  903. start = s;
  904. if (e > end)
  905. end = e;
  906. i = j;
  907. i = find_next_bit(vb->dirty_map,
  908. VMAP_BBMAP_BITS, i);
  909. }
  910. spin_unlock(&vb->lock);
  911. }
  912. rcu_read_unlock();
  913. }
  914. __purge_vmap_area_lazy(&start, &end, 1, flush);
  915. }
  916. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  917. /**
  918. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  919. * @mem: the pointer returned by vm_map_ram
  920. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  921. */
  922. void vm_unmap_ram(const void *mem, unsigned int count)
  923. {
  924. unsigned long size = count << PAGE_SHIFT;
  925. unsigned long addr = (unsigned long)mem;
  926. BUG_ON(!addr);
  927. BUG_ON(addr < VMALLOC_START);
  928. BUG_ON(addr > VMALLOC_END);
  929. BUG_ON(addr & (PAGE_SIZE-1));
  930. debug_check_no_locks_freed(mem, size);
  931. vmap_debug_free_range(addr, addr+size);
  932. if (likely(count <= VMAP_MAX_ALLOC))
  933. vb_free(mem, size);
  934. else
  935. free_unmap_vmap_area_addr(addr);
  936. }
  937. EXPORT_SYMBOL(vm_unmap_ram);
  938. /**
  939. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  940. * @pages: an array of pointers to the pages to be mapped
  941. * @count: number of pages
  942. * @node: prefer to allocate data structures on this node
  943. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  944. *
  945. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  946. */
  947. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  948. {
  949. unsigned long size = count << PAGE_SHIFT;
  950. unsigned long addr;
  951. void *mem;
  952. if (likely(count <= VMAP_MAX_ALLOC)) {
  953. mem = vb_alloc(size, GFP_KERNEL);
  954. if (IS_ERR(mem))
  955. return NULL;
  956. addr = (unsigned long)mem;
  957. } else {
  958. struct vmap_area *va;
  959. va = alloc_vmap_area(size, PAGE_SIZE,
  960. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  961. if (IS_ERR(va))
  962. return NULL;
  963. addr = va->va_start;
  964. mem = (void *)addr;
  965. }
  966. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  967. vm_unmap_ram(mem, count);
  968. return NULL;
  969. }
  970. return mem;
  971. }
  972. EXPORT_SYMBOL(vm_map_ram);
  973. static struct vm_struct *vmlist __initdata;
  974. /**
  975. * vm_area_add_early - add vmap area early during boot
  976. * @vm: vm_struct to add
  977. *
  978. * This function is used to add fixed kernel vm area to vmlist before
  979. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  980. * should contain proper values and the other fields should be zero.
  981. *
  982. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  983. */
  984. void __init vm_area_add_early(struct vm_struct *vm)
  985. {
  986. struct vm_struct *tmp, **p;
  987. BUG_ON(vmap_initialized);
  988. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  989. if (tmp->addr >= vm->addr) {
  990. BUG_ON(tmp->addr < vm->addr + vm->size);
  991. break;
  992. } else
  993. BUG_ON(tmp->addr + tmp->size > vm->addr);
  994. }
  995. vm->next = *p;
  996. *p = vm;
  997. }
  998. /**
  999. * vm_area_register_early - register vmap area early during boot
  1000. * @vm: vm_struct to register
  1001. * @align: requested alignment
  1002. *
  1003. * This function is used to register kernel vm area before
  1004. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1005. * proper values on entry and other fields should be zero. On return,
  1006. * vm->addr contains the allocated address.
  1007. *
  1008. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1009. */
  1010. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1011. {
  1012. static size_t vm_init_off __initdata;
  1013. unsigned long addr;
  1014. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1015. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1016. vm->addr = (void *)addr;
  1017. vm_area_add_early(vm);
  1018. }
  1019. void __init vmalloc_init(void)
  1020. {
  1021. struct vmap_area *va;
  1022. struct vm_struct *tmp;
  1023. int i;
  1024. for_each_possible_cpu(i) {
  1025. struct vmap_block_queue *vbq;
  1026. struct vfree_deferred *p;
  1027. vbq = &per_cpu(vmap_block_queue, i);
  1028. spin_lock_init(&vbq->lock);
  1029. INIT_LIST_HEAD(&vbq->free);
  1030. p = &per_cpu(vfree_deferred, i);
  1031. init_llist_head(&p->list);
  1032. INIT_WORK(&p->wq, free_work);
  1033. }
  1034. /* Import existing vmlist entries. */
  1035. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1036. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1037. va->flags = VM_VM_AREA;
  1038. va->va_start = (unsigned long)tmp->addr;
  1039. va->va_end = va->va_start + tmp->size;
  1040. va->vm = tmp;
  1041. __insert_vmap_area(va);
  1042. }
  1043. vmap_area_pcpu_hole = VMALLOC_END;
  1044. vmap_initialized = true;
  1045. }
  1046. /**
  1047. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1048. * @addr: start of the VM area to map
  1049. * @size: size of the VM area to map
  1050. * @prot: page protection flags to use
  1051. * @pages: pages to map
  1052. *
  1053. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1054. * specify should have been allocated using get_vm_area() and its
  1055. * friends.
  1056. *
  1057. * NOTE:
  1058. * This function does NOT do any cache flushing. The caller is
  1059. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1060. * before calling this function.
  1061. *
  1062. * RETURNS:
  1063. * The number of pages mapped on success, -errno on failure.
  1064. */
  1065. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1066. pgprot_t prot, struct page **pages)
  1067. {
  1068. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1069. }
  1070. /**
  1071. * unmap_kernel_range_noflush - unmap kernel VM area
  1072. * @addr: start of the VM area to unmap
  1073. * @size: size of the VM area to unmap
  1074. *
  1075. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1076. * specify should have been allocated using get_vm_area() and its
  1077. * friends.
  1078. *
  1079. * NOTE:
  1080. * This function does NOT do any cache flushing. The caller is
  1081. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1082. * before calling this function and flush_tlb_kernel_range() after.
  1083. */
  1084. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1085. {
  1086. vunmap_page_range(addr, addr + size);
  1087. }
  1088. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1089. /**
  1090. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1091. * @addr: start of the VM area to unmap
  1092. * @size: size of the VM area to unmap
  1093. *
  1094. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1095. * the unmapping and tlb after.
  1096. */
  1097. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1098. {
  1099. unsigned long end = addr + size;
  1100. flush_cache_vunmap(addr, end);
  1101. vunmap_page_range(addr, end);
  1102. flush_tlb_kernel_range(addr, end);
  1103. }
  1104. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1105. {
  1106. unsigned long addr = (unsigned long)area->addr;
  1107. unsigned long end = addr + area->size - PAGE_SIZE;
  1108. int err;
  1109. err = vmap_page_range(addr, end, prot, *pages);
  1110. if (err > 0) {
  1111. *pages += err;
  1112. err = 0;
  1113. }
  1114. return err;
  1115. }
  1116. EXPORT_SYMBOL_GPL(map_vm_area);
  1117. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1118. unsigned long flags, const void *caller)
  1119. {
  1120. spin_lock(&vmap_area_lock);
  1121. vm->flags = flags;
  1122. vm->addr = (void *)va->va_start;
  1123. vm->size = va->va_end - va->va_start;
  1124. vm->caller = caller;
  1125. va->vm = vm;
  1126. va->flags |= VM_VM_AREA;
  1127. spin_unlock(&vmap_area_lock);
  1128. }
  1129. static void clear_vm_unlist(struct vm_struct *vm)
  1130. {
  1131. /*
  1132. * Before removing VM_UNLIST,
  1133. * we should make sure that vm has proper values.
  1134. * Pair with smp_rmb() in show_numa_info().
  1135. */
  1136. smp_wmb();
  1137. vm->flags &= ~VM_UNLIST;
  1138. }
  1139. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1140. unsigned long flags, const void *caller)
  1141. {
  1142. setup_vmalloc_vm(vm, va, flags, caller);
  1143. clear_vm_unlist(vm);
  1144. }
  1145. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1146. unsigned long align, unsigned long flags, unsigned long start,
  1147. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1148. {
  1149. struct vmap_area *va;
  1150. struct vm_struct *area;
  1151. BUG_ON(in_interrupt());
  1152. if (flags & VM_IOREMAP) {
  1153. int bit = fls(size);
  1154. if (bit > IOREMAP_MAX_ORDER)
  1155. bit = IOREMAP_MAX_ORDER;
  1156. else if (bit < PAGE_SHIFT)
  1157. bit = PAGE_SHIFT;
  1158. align = 1ul << bit;
  1159. }
  1160. size = PAGE_ALIGN(size);
  1161. if (unlikely(!size))
  1162. return NULL;
  1163. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1164. if (unlikely(!area))
  1165. return NULL;
  1166. /*
  1167. * We always allocate a guard page.
  1168. */
  1169. size += PAGE_SIZE;
  1170. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1171. if (IS_ERR(va)) {
  1172. kfree(area);
  1173. return NULL;
  1174. }
  1175. setup_vmalloc_vm(area, va, flags, caller);
  1176. return area;
  1177. }
  1178. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1179. unsigned long start, unsigned long end)
  1180. {
  1181. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1182. GFP_KERNEL, __builtin_return_address(0));
  1183. }
  1184. EXPORT_SYMBOL_GPL(__get_vm_area);
  1185. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1186. unsigned long start, unsigned long end,
  1187. const void *caller)
  1188. {
  1189. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1190. GFP_KERNEL, caller);
  1191. }
  1192. /**
  1193. * get_vm_area - reserve a contiguous kernel virtual area
  1194. * @size: size of the area
  1195. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1196. *
  1197. * Search an area of @size in the kernel virtual mapping area,
  1198. * and reserved it for out purposes. Returns the area descriptor
  1199. * on success or %NULL on failure.
  1200. */
  1201. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1202. {
  1203. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1204. NUMA_NO_NODE, GFP_KERNEL,
  1205. __builtin_return_address(0));
  1206. }
  1207. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1208. const void *caller)
  1209. {
  1210. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1211. NUMA_NO_NODE, GFP_KERNEL, caller);
  1212. }
  1213. /**
  1214. * find_vm_area - find a continuous kernel virtual area
  1215. * @addr: base address
  1216. *
  1217. * Search for the kernel VM area starting at @addr, and return it.
  1218. * It is up to the caller to do all required locking to keep the returned
  1219. * pointer valid.
  1220. */
  1221. struct vm_struct *find_vm_area(const void *addr)
  1222. {
  1223. struct vmap_area *va;
  1224. va = find_vmap_area((unsigned long)addr);
  1225. if (va && va->flags & VM_VM_AREA)
  1226. return va->vm;
  1227. return NULL;
  1228. }
  1229. /**
  1230. * remove_vm_area - find and remove a continuous kernel virtual area
  1231. * @addr: base address
  1232. *
  1233. * Search for the kernel VM area starting at @addr, and remove it.
  1234. * This function returns the found VM area, but using it is NOT safe
  1235. * on SMP machines, except for its size or flags.
  1236. */
  1237. struct vm_struct *remove_vm_area(const void *addr)
  1238. {
  1239. struct vmap_area *va;
  1240. va = find_vmap_area((unsigned long)addr);
  1241. if (va && va->flags & VM_VM_AREA) {
  1242. struct vm_struct *vm = va->vm;
  1243. spin_lock(&vmap_area_lock);
  1244. va->vm = NULL;
  1245. va->flags &= ~VM_VM_AREA;
  1246. spin_unlock(&vmap_area_lock);
  1247. vmap_debug_free_range(va->va_start, va->va_end);
  1248. free_unmap_vmap_area(va);
  1249. vm->size -= PAGE_SIZE;
  1250. return vm;
  1251. }
  1252. return NULL;
  1253. }
  1254. static void __vunmap(const void *addr, int deallocate_pages)
  1255. {
  1256. struct vm_struct *area;
  1257. if (!addr)
  1258. return;
  1259. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1260. addr));
  1261. return;
  1262. area = remove_vm_area(addr);
  1263. if (unlikely(!area)) {
  1264. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1265. addr);
  1266. return;
  1267. }
  1268. debug_check_no_locks_freed(addr, area->size);
  1269. debug_check_no_obj_freed(addr, area->size);
  1270. if (deallocate_pages) {
  1271. int i;
  1272. for (i = 0; i < area->nr_pages; i++) {
  1273. struct page *page = area->pages[i];
  1274. BUG_ON(!page);
  1275. __free_page(page);
  1276. }
  1277. if (area->flags & VM_VPAGES)
  1278. vfree(area->pages);
  1279. else
  1280. kfree(area->pages);
  1281. }
  1282. kfree(area);
  1283. return;
  1284. }
  1285. /**
  1286. * vfree - release memory allocated by vmalloc()
  1287. * @addr: memory base address
  1288. *
  1289. * Free the virtually continuous memory area starting at @addr, as
  1290. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1291. * NULL, no operation is performed.
  1292. *
  1293. * Must not be called in NMI context (strictly speaking, only if we don't
  1294. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1295. * conventions for vfree() arch-depenedent would be a really bad idea)
  1296. *
  1297. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1298. *
  1299. */
  1300. void vfree(const void *addr)
  1301. {
  1302. BUG_ON(in_nmi());
  1303. kmemleak_free(addr);
  1304. if (!addr)
  1305. return;
  1306. if (unlikely(in_interrupt())) {
  1307. struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
  1308. llist_add((struct llist_node *)addr, &p->list);
  1309. schedule_work(&p->wq);
  1310. } else
  1311. __vunmap(addr, 1);
  1312. }
  1313. EXPORT_SYMBOL(vfree);
  1314. /**
  1315. * vunmap - release virtual mapping obtained by vmap()
  1316. * @addr: memory base address
  1317. *
  1318. * Free the virtually contiguous memory area starting at @addr,
  1319. * which was created from the page array passed to vmap().
  1320. *
  1321. * Must not be called in interrupt context.
  1322. */
  1323. void vunmap(const void *addr)
  1324. {
  1325. BUG_ON(in_interrupt());
  1326. might_sleep();
  1327. if (addr)
  1328. __vunmap(addr, 0);
  1329. }
  1330. EXPORT_SYMBOL(vunmap);
  1331. /**
  1332. * vmap - map an array of pages into virtually contiguous space
  1333. * @pages: array of page pointers
  1334. * @count: number of pages to map
  1335. * @flags: vm_area->flags
  1336. * @prot: page protection for the mapping
  1337. *
  1338. * Maps @count pages from @pages into contiguous kernel virtual
  1339. * space.
  1340. */
  1341. void *vmap(struct page **pages, unsigned int count,
  1342. unsigned long flags, pgprot_t prot)
  1343. {
  1344. struct vm_struct *area;
  1345. might_sleep();
  1346. if (count > totalram_pages)
  1347. return NULL;
  1348. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1349. __builtin_return_address(0));
  1350. if (!area)
  1351. return NULL;
  1352. if (map_vm_area(area, prot, &pages)) {
  1353. vunmap(area->addr);
  1354. return NULL;
  1355. }
  1356. return area->addr;
  1357. }
  1358. EXPORT_SYMBOL(vmap);
  1359. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1360. gfp_t gfp_mask, pgprot_t prot,
  1361. int node, const void *caller);
  1362. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1363. pgprot_t prot, int node, const void *caller)
  1364. {
  1365. const int order = 0;
  1366. struct page **pages;
  1367. unsigned int nr_pages, array_size, i;
  1368. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1369. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1370. array_size = (nr_pages * sizeof(struct page *));
  1371. area->nr_pages = nr_pages;
  1372. /* Please note that the recursion is strictly bounded. */
  1373. if (array_size > PAGE_SIZE) {
  1374. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1375. PAGE_KERNEL, node, caller);
  1376. area->flags |= VM_VPAGES;
  1377. } else {
  1378. pages = kmalloc_node(array_size, nested_gfp, node);
  1379. }
  1380. area->pages = pages;
  1381. area->caller = caller;
  1382. if (!area->pages) {
  1383. remove_vm_area(area->addr);
  1384. kfree(area);
  1385. return NULL;
  1386. }
  1387. for (i = 0; i < area->nr_pages; i++) {
  1388. struct page *page;
  1389. gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
  1390. if (node < 0)
  1391. page = alloc_page(tmp_mask);
  1392. else
  1393. page = alloc_pages_node(node, tmp_mask, order);
  1394. if (unlikely(!page)) {
  1395. /* Successfully allocated i pages, free them in __vunmap() */
  1396. area->nr_pages = i;
  1397. goto fail;
  1398. }
  1399. area->pages[i] = page;
  1400. }
  1401. if (map_vm_area(area, prot, &pages))
  1402. goto fail;
  1403. return area->addr;
  1404. fail:
  1405. warn_alloc_failed(gfp_mask, order,
  1406. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1407. (area->nr_pages*PAGE_SIZE), area->size);
  1408. vfree(area->addr);
  1409. return NULL;
  1410. }
  1411. /**
  1412. * __vmalloc_node_range - allocate virtually contiguous memory
  1413. * @size: allocation size
  1414. * @align: desired alignment
  1415. * @start: vm area range start
  1416. * @end: vm area range end
  1417. * @gfp_mask: flags for the page level allocator
  1418. * @prot: protection mask for the allocated pages
  1419. * @node: node to use for allocation or NUMA_NO_NODE
  1420. * @caller: caller's return address
  1421. *
  1422. * Allocate enough pages to cover @size from the page level
  1423. * allocator with @gfp_mask flags. Map them into contiguous
  1424. * kernel virtual space, using a pagetable protection of @prot.
  1425. */
  1426. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1427. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1428. pgprot_t prot, int node, const void *caller)
  1429. {
  1430. struct vm_struct *area;
  1431. void *addr;
  1432. unsigned long real_size = size;
  1433. size = PAGE_ALIGN(size);
  1434. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1435. goto fail;
  1436. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
  1437. start, end, node, gfp_mask, caller);
  1438. if (!area)
  1439. goto fail;
  1440. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1441. if (!addr)
  1442. return NULL;
  1443. /*
  1444. * In this function, newly allocated vm_struct has VM_UNLIST flag.
  1445. * It means that vm_struct is not fully initialized.
  1446. * Now, it is fully initialized, so remove this flag here.
  1447. */
  1448. clear_vm_unlist(area);
  1449. /*
  1450. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1451. * structures allocated in the __get_vm_area_node() function contain
  1452. * references to the virtual address of the vmalloc'ed block.
  1453. */
  1454. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1455. return addr;
  1456. fail:
  1457. warn_alloc_failed(gfp_mask, 0,
  1458. "vmalloc: allocation failure: %lu bytes\n",
  1459. real_size);
  1460. return NULL;
  1461. }
  1462. /**
  1463. * __vmalloc_node - allocate virtually contiguous memory
  1464. * @size: allocation size
  1465. * @align: desired alignment
  1466. * @gfp_mask: flags for the page level allocator
  1467. * @prot: protection mask for the allocated pages
  1468. * @node: node to use for allocation or NUMA_NO_NODE
  1469. * @caller: caller's return address
  1470. *
  1471. * Allocate enough pages to cover @size from the page level
  1472. * allocator with @gfp_mask flags. Map them into contiguous
  1473. * kernel virtual space, using a pagetable protection of @prot.
  1474. */
  1475. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1476. gfp_t gfp_mask, pgprot_t prot,
  1477. int node, const void *caller)
  1478. {
  1479. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1480. gfp_mask, prot, node, caller);
  1481. }
  1482. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1483. {
  1484. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1485. __builtin_return_address(0));
  1486. }
  1487. EXPORT_SYMBOL(__vmalloc);
  1488. static inline void *__vmalloc_node_flags(unsigned long size,
  1489. int node, gfp_t flags)
  1490. {
  1491. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1492. node, __builtin_return_address(0));
  1493. }
  1494. /**
  1495. * vmalloc - allocate virtually contiguous memory
  1496. * @size: allocation size
  1497. * Allocate enough pages to cover @size from the page level
  1498. * allocator and map them into contiguous kernel virtual space.
  1499. *
  1500. * For tight control over page level allocator and protection flags
  1501. * use __vmalloc() instead.
  1502. */
  1503. void *vmalloc(unsigned long size)
  1504. {
  1505. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1506. GFP_KERNEL | __GFP_HIGHMEM);
  1507. }
  1508. EXPORT_SYMBOL(vmalloc);
  1509. /**
  1510. * vzalloc - allocate virtually contiguous memory with zero fill
  1511. * @size: allocation size
  1512. * Allocate enough pages to cover @size from the page level
  1513. * allocator and map them into contiguous kernel virtual space.
  1514. * The memory allocated is set to zero.
  1515. *
  1516. * For tight control over page level allocator and protection flags
  1517. * use __vmalloc() instead.
  1518. */
  1519. void *vzalloc(unsigned long size)
  1520. {
  1521. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1522. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1523. }
  1524. EXPORT_SYMBOL(vzalloc);
  1525. /**
  1526. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1527. * @size: allocation size
  1528. *
  1529. * The resulting memory area is zeroed so it can be mapped to userspace
  1530. * without leaking data.
  1531. */
  1532. void *vmalloc_user(unsigned long size)
  1533. {
  1534. struct vm_struct *area;
  1535. void *ret;
  1536. ret = __vmalloc_node(size, SHMLBA,
  1537. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1538. PAGE_KERNEL, NUMA_NO_NODE,
  1539. __builtin_return_address(0));
  1540. if (ret) {
  1541. area = find_vm_area(ret);
  1542. area->flags |= VM_USERMAP;
  1543. }
  1544. return ret;
  1545. }
  1546. EXPORT_SYMBOL(vmalloc_user);
  1547. /**
  1548. * vmalloc_node - allocate memory on a specific node
  1549. * @size: allocation size
  1550. * @node: numa node
  1551. *
  1552. * Allocate enough pages to cover @size from the page level
  1553. * allocator and map them into contiguous kernel virtual space.
  1554. *
  1555. * For tight control over page level allocator and protection flags
  1556. * use __vmalloc() instead.
  1557. */
  1558. void *vmalloc_node(unsigned long size, int node)
  1559. {
  1560. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1561. node, __builtin_return_address(0));
  1562. }
  1563. EXPORT_SYMBOL(vmalloc_node);
  1564. /**
  1565. * vzalloc_node - allocate memory on a specific node with zero fill
  1566. * @size: allocation size
  1567. * @node: numa node
  1568. *
  1569. * Allocate enough pages to cover @size from the page level
  1570. * allocator and map them into contiguous kernel virtual space.
  1571. * The memory allocated is set to zero.
  1572. *
  1573. * For tight control over page level allocator and protection flags
  1574. * use __vmalloc_node() instead.
  1575. */
  1576. void *vzalloc_node(unsigned long size, int node)
  1577. {
  1578. return __vmalloc_node_flags(size, node,
  1579. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1580. }
  1581. EXPORT_SYMBOL(vzalloc_node);
  1582. #ifndef PAGE_KERNEL_EXEC
  1583. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1584. #endif
  1585. /**
  1586. * vmalloc_exec - allocate virtually contiguous, executable memory
  1587. * @size: allocation size
  1588. *
  1589. * Kernel-internal function to allocate enough pages to cover @size
  1590. * the page level allocator and map them into contiguous and
  1591. * executable kernel virtual space.
  1592. *
  1593. * For tight control over page level allocator and protection flags
  1594. * use __vmalloc() instead.
  1595. */
  1596. void *vmalloc_exec(unsigned long size)
  1597. {
  1598. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1599. NUMA_NO_NODE, __builtin_return_address(0));
  1600. }
  1601. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1602. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1603. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1604. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1605. #else
  1606. #define GFP_VMALLOC32 GFP_KERNEL
  1607. #endif
  1608. /**
  1609. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1610. * @size: allocation size
  1611. *
  1612. * Allocate enough 32bit PA addressable pages to cover @size from the
  1613. * page level allocator and map them into contiguous kernel virtual space.
  1614. */
  1615. void *vmalloc_32(unsigned long size)
  1616. {
  1617. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1618. NUMA_NO_NODE, __builtin_return_address(0));
  1619. }
  1620. EXPORT_SYMBOL(vmalloc_32);
  1621. /**
  1622. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1623. * @size: allocation size
  1624. *
  1625. * The resulting memory area is 32bit addressable and zeroed so it can be
  1626. * mapped to userspace without leaking data.
  1627. */
  1628. void *vmalloc_32_user(unsigned long size)
  1629. {
  1630. struct vm_struct *area;
  1631. void *ret;
  1632. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1633. NUMA_NO_NODE, __builtin_return_address(0));
  1634. if (ret) {
  1635. area = find_vm_area(ret);
  1636. area->flags |= VM_USERMAP;
  1637. }
  1638. return ret;
  1639. }
  1640. EXPORT_SYMBOL(vmalloc_32_user);
  1641. /*
  1642. * small helper routine , copy contents to buf from addr.
  1643. * If the page is not present, fill zero.
  1644. */
  1645. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1646. {
  1647. struct page *p;
  1648. int copied = 0;
  1649. while (count) {
  1650. unsigned long offset, length;
  1651. offset = (unsigned long)addr & ~PAGE_MASK;
  1652. length = PAGE_SIZE - offset;
  1653. if (length > count)
  1654. length = count;
  1655. p = vmalloc_to_page(addr);
  1656. /*
  1657. * To do safe access to this _mapped_ area, we need
  1658. * lock. But adding lock here means that we need to add
  1659. * overhead of vmalloc()/vfree() calles for this _debug_
  1660. * interface, rarely used. Instead of that, we'll use
  1661. * kmap() and get small overhead in this access function.
  1662. */
  1663. if (p) {
  1664. /*
  1665. * we can expect USER0 is not used (see vread/vwrite's
  1666. * function description)
  1667. */
  1668. void *map = kmap_atomic(p);
  1669. memcpy(buf, map + offset, length);
  1670. kunmap_atomic(map);
  1671. } else
  1672. memset(buf, 0, length);
  1673. addr += length;
  1674. buf += length;
  1675. copied += length;
  1676. count -= length;
  1677. }
  1678. return copied;
  1679. }
  1680. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1681. {
  1682. struct page *p;
  1683. int copied = 0;
  1684. while (count) {
  1685. unsigned long offset, length;
  1686. offset = (unsigned long)addr & ~PAGE_MASK;
  1687. length = PAGE_SIZE - offset;
  1688. if (length > count)
  1689. length = count;
  1690. p = vmalloc_to_page(addr);
  1691. /*
  1692. * To do safe access to this _mapped_ area, we need
  1693. * lock. But adding lock here means that we need to add
  1694. * overhead of vmalloc()/vfree() calles for this _debug_
  1695. * interface, rarely used. Instead of that, we'll use
  1696. * kmap() and get small overhead in this access function.
  1697. */
  1698. if (p) {
  1699. /*
  1700. * we can expect USER0 is not used (see vread/vwrite's
  1701. * function description)
  1702. */
  1703. void *map = kmap_atomic(p);
  1704. memcpy(map + offset, buf, length);
  1705. kunmap_atomic(map);
  1706. }
  1707. addr += length;
  1708. buf += length;
  1709. copied += length;
  1710. count -= length;
  1711. }
  1712. return copied;
  1713. }
  1714. /**
  1715. * vread() - read vmalloc area in a safe way.
  1716. * @buf: buffer for reading data
  1717. * @addr: vm address.
  1718. * @count: number of bytes to be read.
  1719. *
  1720. * Returns # of bytes which addr and buf should be increased.
  1721. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1722. * includes any intersect with alive vmalloc area.
  1723. *
  1724. * This function checks that addr is a valid vmalloc'ed area, and
  1725. * copy data from that area to a given buffer. If the given memory range
  1726. * of [addr...addr+count) includes some valid address, data is copied to
  1727. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1728. * IOREMAP area is treated as memory hole and no copy is done.
  1729. *
  1730. * If [addr...addr+count) doesn't includes any intersects with alive
  1731. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1732. *
  1733. * Note: In usual ops, vread() is never necessary because the caller
  1734. * should know vmalloc() area is valid and can use memcpy().
  1735. * This is for routines which have to access vmalloc area without
  1736. * any informaion, as /dev/kmem.
  1737. *
  1738. */
  1739. long vread(char *buf, char *addr, unsigned long count)
  1740. {
  1741. struct vmap_area *va;
  1742. struct vm_struct *vm;
  1743. char *vaddr, *buf_start = buf;
  1744. unsigned long buflen = count;
  1745. unsigned long n;
  1746. /* Don't allow overflow */
  1747. if ((unsigned long) addr + count < count)
  1748. count = -(unsigned long) addr;
  1749. spin_lock(&vmap_area_lock);
  1750. list_for_each_entry(va, &vmap_area_list, list) {
  1751. if (!count)
  1752. break;
  1753. if (!(va->flags & VM_VM_AREA))
  1754. continue;
  1755. vm = va->vm;
  1756. vaddr = (char *) vm->addr;
  1757. if (addr >= vaddr + vm->size - PAGE_SIZE)
  1758. continue;
  1759. while (addr < vaddr) {
  1760. if (count == 0)
  1761. goto finished;
  1762. *buf = '\0';
  1763. buf++;
  1764. addr++;
  1765. count--;
  1766. }
  1767. n = vaddr + vm->size - PAGE_SIZE - addr;
  1768. if (n > count)
  1769. n = count;
  1770. if (!(vm->flags & VM_IOREMAP))
  1771. aligned_vread(buf, addr, n);
  1772. else /* IOREMAP area is treated as memory hole */
  1773. memset(buf, 0, n);
  1774. buf += n;
  1775. addr += n;
  1776. count -= n;
  1777. }
  1778. finished:
  1779. spin_unlock(&vmap_area_lock);
  1780. if (buf == buf_start)
  1781. return 0;
  1782. /* zero-fill memory holes */
  1783. if (buf != buf_start + buflen)
  1784. memset(buf, 0, buflen - (buf - buf_start));
  1785. return buflen;
  1786. }
  1787. /**
  1788. * vwrite() - write vmalloc area in a safe way.
  1789. * @buf: buffer for source data
  1790. * @addr: vm address.
  1791. * @count: number of bytes to be read.
  1792. *
  1793. * Returns # of bytes which addr and buf should be incresed.
  1794. * (same number to @count).
  1795. * If [addr...addr+count) doesn't includes any intersect with valid
  1796. * vmalloc area, returns 0.
  1797. *
  1798. * This function checks that addr is a valid vmalloc'ed area, and
  1799. * copy data from a buffer to the given addr. If specified range of
  1800. * [addr...addr+count) includes some valid address, data is copied from
  1801. * proper area of @buf. If there are memory holes, no copy to hole.
  1802. * IOREMAP area is treated as memory hole and no copy is done.
  1803. *
  1804. * If [addr...addr+count) doesn't includes any intersects with alive
  1805. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1806. *
  1807. * Note: In usual ops, vwrite() is never necessary because the caller
  1808. * should know vmalloc() area is valid and can use memcpy().
  1809. * This is for routines which have to access vmalloc area without
  1810. * any informaion, as /dev/kmem.
  1811. */
  1812. long vwrite(char *buf, char *addr, unsigned long count)
  1813. {
  1814. struct vmap_area *va;
  1815. struct vm_struct *vm;
  1816. char *vaddr;
  1817. unsigned long n, buflen;
  1818. int copied = 0;
  1819. /* Don't allow overflow */
  1820. if ((unsigned long) addr + count < count)
  1821. count = -(unsigned long) addr;
  1822. buflen = count;
  1823. spin_lock(&vmap_area_lock);
  1824. list_for_each_entry(va, &vmap_area_list, list) {
  1825. if (!count)
  1826. break;
  1827. if (!(va->flags & VM_VM_AREA))
  1828. continue;
  1829. vm = va->vm;
  1830. vaddr = (char *) vm->addr;
  1831. if (addr >= vaddr + vm->size - PAGE_SIZE)
  1832. continue;
  1833. while (addr < vaddr) {
  1834. if (count == 0)
  1835. goto finished;
  1836. buf++;
  1837. addr++;
  1838. count--;
  1839. }
  1840. n = vaddr + vm->size - PAGE_SIZE - addr;
  1841. if (n > count)
  1842. n = count;
  1843. if (!(vm->flags & VM_IOREMAP)) {
  1844. aligned_vwrite(buf, addr, n);
  1845. copied++;
  1846. }
  1847. buf += n;
  1848. addr += n;
  1849. count -= n;
  1850. }
  1851. finished:
  1852. spin_unlock(&vmap_area_lock);
  1853. if (!copied)
  1854. return 0;
  1855. return buflen;
  1856. }
  1857. /**
  1858. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1859. * @vma: vma to cover
  1860. * @uaddr: target user address to start at
  1861. * @kaddr: virtual address of vmalloc kernel memory
  1862. * @size: size of map area
  1863. *
  1864. * Returns: 0 for success, -Exxx on failure
  1865. *
  1866. * This function checks that @kaddr is a valid vmalloc'ed area,
  1867. * and that it is big enough to cover the range starting at
  1868. * @uaddr in @vma. Will return failure if that criteria isn't
  1869. * met.
  1870. *
  1871. * Similar to remap_pfn_range() (see mm/memory.c)
  1872. */
  1873. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1874. void *kaddr, unsigned long size)
  1875. {
  1876. struct vm_struct *area;
  1877. size = PAGE_ALIGN(size);
  1878. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1879. return -EINVAL;
  1880. area = find_vm_area(kaddr);
  1881. if (!area)
  1882. return -EINVAL;
  1883. if (!(area->flags & VM_USERMAP))
  1884. return -EINVAL;
  1885. if (kaddr + size > area->addr + area->size)
  1886. return -EINVAL;
  1887. do {
  1888. struct page *page = vmalloc_to_page(kaddr);
  1889. int ret;
  1890. ret = vm_insert_page(vma, uaddr, page);
  1891. if (ret)
  1892. return ret;
  1893. uaddr += PAGE_SIZE;
  1894. kaddr += PAGE_SIZE;
  1895. size -= PAGE_SIZE;
  1896. } while (size > 0);
  1897. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1898. return 0;
  1899. }
  1900. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1901. /**
  1902. * remap_vmalloc_range - map vmalloc pages to userspace
  1903. * @vma: vma to cover (map full range of vma)
  1904. * @addr: vmalloc memory
  1905. * @pgoff: number of pages into addr before first page to map
  1906. *
  1907. * Returns: 0 for success, -Exxx on failure
  1908. *
  1909. * This function checks that addr is a valid vmalloc'ed area, and
  1910. * that it is big enough to cover the vma. Will return failure if
  1911. * that criteria isn't met.
  1912. *
  1913. * Similar to remap_pfn_range() (see mm/memory.c)
  1914. */
  1915. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1916. unsigned long pgoff)
  1917. {
  1918. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1919. addr + (pgoff << PAGE_SHIFT),
  1920. vma->vm_end - vma->vm_start);
  1921. }
  1922. EXPORT_SYMBOL(remap_vmalloc_range);
  1923. /*
  1924. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1925. * have one.
  1926. */
  1927. void __attribute__((weak)) vmalloc_sync_all(void)
  1928. {
  1929. }
  1930. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1931. {
  1932. pte_t ***p = data;
  1933. if (p) {
  1934. *(*p) = pte;
  1935. (*p)++;
  1936. }
  1937. return 0;
  1938. }
  1939. /**
  1940. * alloc_vm_area - allocate a range of kernel address space
  1941. * @size: size of the area
  1942. * @ptes: returns the PTEs for the address space
  1943. *
  1944. * Returns: NULL on failure, vm_struct on success
  1945. *
  1946. * This function reserves a range of kernel address space, and
  1947. * allocates pagetables to map that range. No actual mappings
  1948. * are created.
  1949. *
  1950. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1951. * allocated for the VM area are returned.
  1952. */
  1953. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1954. {
  1955. struct vm_struct *area;
  1956. area = get_vm_area_caller(size, VM_IOREMAP,
  1957. __builtin_return_address(0));
  1958. if (area == NULL)
  1959. return NULL;
  1960. /*
  1961. * This ensures that page tables are constructed for this region
  1962. * of kernel virtual address space and mapped into init_mm.
  1963. */
  1964. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1965. size, f, ptes ? &ptes : NULL)) {
  1966. free_vm_area(area);
  1967. return NULL;
  1968. }
  1969. return area;
  1970. }
  1971. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1972. void free_vm_area(struct vm_struct *area)
  1973. {
  1974. struct vm_struct *ret;
  1975. ret = remove_vm_area(area->addr);
  1976. BUG_ON(ret != area);
  1977. kfree(area);
  1978. }
  1979. EXPORT_SYMBOL_GPL(free_vm_area);
  1980. #ifdef CONFIG_SMP
  1981. static struct vmap_area *node_to_va(struct rb_node *n)
  1982. {
  1983. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1984. }
  1985. /**
  1986. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1987. * @end: target address
  1988. * @pnext: out arg for the next vmap_area
  1989. * @pprev: out arg for the previous vmap_area
  1990. *
  1991. * Returns: %true if either or both of next and prev are found,
  1992. * %false if no vmap_area exists
  1993. *
  1994. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1995. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1996. */
  1997. static bool pvm_find_next_prev(unsigned long end,
  1998. struct vmap_area **pnext,
  1999. struct vmap_area **pprev)
  2000. {
  2001. struct rb_node *n = vmap_area_root.rb_node;
  2002. struct vmap_area *va = NULL;
  2003. while (n) {
  2004. va = rb_entry(n, struct vmap_area, rb_node);
  2005. if (end < va->va_end)
  2006. n = n->rb_left;
  2007. else if (end > va->va_end)
  2008. n = n->rb_right;
  2009. else
  2010. break;
  2011. }
  2012. if (!va)
  2013. return false;
  2014. if (va->va_end > end) {
  2015. *pnext = va;
  2016. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2017. } else {
  2018. *pprev = va;
  2019. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2020. }
  2021. return true;
  2022. }
  2023. /**
  2024. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2025. * @pnext: in/out arg for the next vmap_area
  2026. * @pprev: in/out arg for the previous vmap_area
  2027. * @align: alignment
  2028. *
  2029. * Returns: determined end address
  2030. *
  2031. * Find the highest aligned address between *@pnext and *@pprev below
  2032. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2033. * down address is between the end addresses of the two vmap_areas.
  2034. *
  2035. * Please note that the address returned by this function may fall
  2036. * inside *@pnext vmap_area. The caller is responsible for checking
  2037. * that.
  2038. */
  2039. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2040. struct vmap_area **pprev,
  2041. unsigned long align)
  2042. {
  2043. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2044. unsigned long addr;
  2045. if (*pnext)
  2046. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2047. else
  2048. addr = vmalloc_end;
  2049. while (*pprev && (*pprev)->va_end > addr) {
  2050. *pnext = *pprev;
  2051. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2052. }
  2053. return addr;
  2054. }
  2055. /**
  2056. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2057. * @offsets: array containing offset of each area
  2058. * @sizes: array containing size of each area
  2059. * @nr_vms: the number of areas to allocate
  2060. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2061. *
  2062. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2063. * vm_structs on success, %NULL on failure
  2064. *
  2065. * Percpu allocator wants to use congruent vm areas so that it can
  2066. * maintain the offsets among percpu areas. This function allocates
  2067. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2068. * be scattered pretty far, distance between two areas easily going up
  2069. * to gigabytes. To avoid interacting with regular vmallocs, these
  2070. * areas are allocated from top.
  2071. *
  2072. * Despite its complicated look, this allocator is rather simple. It
  2073. * does everything top-down and scans areas from the end looking for
  2074. * matching slot. While scanning, if any of the areas overlaps with
  2075. * existing vmap_area, the base address is pulled down to fit the
  2076. * area. Scanning is repeated till all the areas fit and then all
  2077. * necessary data structres are inserted and the result is returned.
  2078. */
  2079. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2080. const size_t *sizes, int nr_vms,
  2081. size_t align)
  2082. {
  2083. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2084. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2085. struct vmap_area **vas, *prev, *next;
  2086. struct vm_struct **vms;
  2087. int area, area2, last_area, term_area;
  2088. unsigned long base, start, end, last_end;
  2089. bool purged = false;
  2090. /* verify parameters and allocate data structures */
  2091. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2092. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2093. start = offsets[area];
  2094. end = start + sizes[area];
  2095. /* is everything aligned properly? */
  2096. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2097. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2098. /* detect the area with the highest address */
  2099. if (start > offsets[last_area])
  2100. last_area = area;
  2101. for (area2 = 0; area2 < nr_vms; area2++) {
  2102. unsigned long start2 = offsets[area2];
  2103. unsigned long end2 = start2 + sizes[area2];
  2104. if (area2 == area)
  2105. continue;
  2106. BUG_ON(start2 >= start && start2 < end);
  2107. BUG_ON(end2 <= end && end2 > start);
  2108. }
  2109. }
  2110. last_end = offsets[last_area] + sizes[last_area];
  2111. if (vmalloc_end - vmalloc_start < last_end) {
  2112. WARN_ON(true);
  2113. return NULL;
  2114. }
  2115. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2116. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2117. if (!vas || !vms)
  2118. goto err_free2;
  2119. for (area = 0; area < nr_vms; area++) {
  2120. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2121. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2122. if (!vas[area] || !vms[area])
  2123. goto err_free;
  2124. }
  2125. retry:
  2126. spin_lock(&vmap_area_lock);
  2127. /* start scanning - we scan from the top, begin with the last area */
  2128. area = term_area = last_area;
  2129. start = offsets[area];
  2130. end = start + sizes[area];
  2131. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2132. base = vmalloc_end - last_end;
  2133. goto found;
  2134. }
  2135. base = pvm_determine_end(&next, &prev, align) - end;
  2136. while (true) {
  2137. BUG_ON(next && next->va_end <= base + end);
  2138. BUG_ON(prev && prev->va_end > base + end);
  2139. /*
  2140. * base might have underflowed, add last_end before
  2141. * comparing.
  2142. */
  2143. if (base + last_end < vmalloc_start + last_end) {
  2144. spin_unlock(&vmap_area_lock);
  2145. if (!purged) {
  2146. purge_vmap_area_lazy();
  2147. purged = true;
  2148. goto retry;
  2149. }
  2150. goto err_free;
  2151. }
  2152. /*
  2153. * If next overlaps, move base downwards so that it's
  2154. * right below next and then recheck.
  2155. */
  2156. if (next && next->va_start < base + end) {
  2157. base = pvm_determine_end(&next, &prev, align) - end;
  2158. term_area = area;
  2159. continue;
  2160. }
  2161. /*
  2162. * If prev overlaps, shift down next and prev and move
  2163. * base so that it's right below new next and then
  2164. * recheck.
  2165. */
  2166. if (prev && prev->va_end > base + start) {
  2167. next = prev;
  2168. prev = node_to_va(rb_prev(&next->rb_node));
  2169. base = pvm_determine_end(&next, &prev, align) - end;
  2170. term_area = area;
  2171. continue;
  2172. }
  2173. /*
  2174. * This area fits, move on to the previous one. If
  2175. * the previous one is the terminal one, we're done.
  2176. */
  2177. area = (area + nr_vms - 1) % nr_vms;
  2178. if (area == term_area)
  2179. break;
  2180. start = offsets[area];
  2181. end = start + sizes[area];
  2182. pvm_find_next_prev(base + end, &next, &prev);
  2183. }
  2184. found:
  2185. /* we've found a fitting base, insert all va's */
  2186. for (area = 0; area < nr_vms; area++) {
  2187. struct vmap_area *va = vas[area];
  2188. va->va_start = base + offsets[area];
  2189. va->va_end = va->va_start + sizes[area];
  2190. __insert_vmap_area(va);
  2191. }
  2192. vmap_area_pcpu_hole = base + offsets[last_area];
  2193. spin_unlock(&vmap_area_lock);
  2194. /* insert all vm's */
  2195. for (area = 0; area < nr_vms; area++)
  2196. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2197. pcpu_get_vm_areas);
  2198. kfree(vas);
  2199. return vms;
  2200. err_free:
  2201. for (area = 0; area < nr_vms; area++) {
  2202. kfree(vas[area]);
  2203. kfree(vms[area]);
  2204. }
  2205. err_free2:
  2206. kfree(vas);
  2207. kfree(vms);
  2208. return NULL;
  2209. }
  2210. /**
  2211. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2212. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2213. * @nr_vms: the number of allocated areas
  2214. *
  2215. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2216. */
  2217. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2218. {
  2219. int i;
  2220. for (i = 0; i < nr_vms; i++)
  2221. free_vm_area(vms[i]);
  2222. kfree(vms);
  2223. }
  2224. #endif /* CONFIG_SMP */
  2225. #ifdef CONFIG_PROC_FS
  2226. static void *s_start(struct seq_file *m, loff_t *pos)
  2227. __acquires(&vmap_area_lock)
  2228. {
  2229. loff_t n = *pos;
  2230. struct vmap_area *va;
  2231. spin_lock(&vmap_area_lock);
  2232. va = list_entry((&vmap_area_list)->next, typeof(*va), list);
  2233. while (n > 0 && &va->list != &vmap_area_list) {
  2234. n--;
  2235. va = list_entry(va->list.next, typeof(*va), list);
  2236. }
  2237. if (!n && &va->list != &vmap_area_list)
  2238. return va;
  2239. return NULL;
  2240. }
  2241. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2242. {
  2243. struct vmap_area *va = p, *next;
  2244. ++*pos;
  2245. next = list_entry(va->list.next, typeof(*va), list);
  2246. if (&next->list != &vmap_area_list)
  2247. return next;
  2248. return NULL;
  2249. }
  2250. static void s_stop(struct seq_file *m, void *p)
  2251. __releases(&vmap_area_lock)
  2252. {
  2253. spin_unlock(&vmap_area_lock);
  2254. }
  2255. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2256. {
  2257. if (IS_ENABLED(CONFIG_NUMA)) {
  2258. unsigned int nr, *counters = m->private;
  2259. if (!counters)
  2260. return;
  2261. /* Pair with smp_wmb() in clear_vm_unlist() */
  2262. smp_rmb();
  2263. if (v->flags & VM_UNLIST)
  2264. return;
  2265. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2266. for (nr = 0; nr < v->nr_pages; nr++)
  2267. counters[page_to_nid(v->pages[nr])]++;
  2268. for_each_node_state(nr, N_HIGH_MEMORY)
  2269. if (counters[nr])
  2270. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2271. }
  2272. }
  2273. static int s_show(struct seq_file *m, void *p)
  2274. {
  2275. struct vmap_area *va = p;
  2276. struct vm_struct *v;
  2277. if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
  2278. return 0;
  2279. if (!(va->flags & VM_VM_AREA)) {
  2280. seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
  2281. (void *)va->va_start, (void *)va->va_end,
  2282. va->va_end - va->va_start);
  2283. return 0;
  2284. }
  2285. v = va->vm;
  2286. seq_printf(m, "0x%pK-0x%pK %7ld",
  2287. v->addr, v->addr + v->size, v->size);
  2288. if (v->caller)
  2289. seq_printf(m, " %pS", v->caller);
  2290. if (v->nr_pages)
  2291. seq_printf(m, " pages=%d", v->nr_pages);
  2292. if (v->phys_addr)
  2293. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2294. if (v->flags & VM_IOREMAP)
  2295. seq_printf(m, " ioremap");
  2296. if (v->flags & VM_ALLOC)
  2297. seq_printf(m, " vmalloc");
  2298. if (v->flags & VM_MAP)
  2299. seq_printf(m, " vmap");
  2300. if (v->flags & VM_USERMAP)
  2301. seq_printf(m, " user");
  2302. if (v->flags & VM_VPAGES)
  2303. seq_printf(m, " vpages");
  2304. show_numa_info(m, v);
  2305. seq_putc(m, '\n');
  2306. return 0;
  2307. }
  2308. static const struct seq_operations vmalloc_op = {
  2309. .start = s_start,
  2310. .next = s_next,
  2311. .stop = s_stop,
  2312. .show = s_show,
  2313. };
  2314. static int vmalloc_open(struct inode *inode, struct file *file)
  2315. {
  2316. unsigned int *ptr = NULL;
  2317. int ret;
  2318. if (IS_ENABLED(CONFIG_NUMA)) {
  2319. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2320. if (ptr == NULL)
  2321. return -ENOMEM;
  2322. }
  2323. ret = seq_open(file, &vmalloc_op);
  2324. if (!ret) {
  2325. struct seq_file *m = file->private_data;
  2326. m->private = ptr;
  2327. } else
  2328. kfree(ptr);
  2329. return ret;
  2330. }
  2331. static const struct file_operations proc_vmalloc_operations = {
  2332. .open = vmalloc_open,
  2333. .read = seq_read,
  2334. .llseek = seq_lseek,
  2335. .release = seq_release_private,
  2336. };
  2337. static int __init proc_vmalloc_init(void)
  2338. {
  2339. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2340. return 0;
  2341. }
  2342. module_init(proc_vmalloc_init);
  2343. void get_vmalloc_info(struct vmalloc_info *vmi)
  2344. {
  2345. struct vmap_area *va;
  2346. unsigned long free_area_size;
  2347. unsigned long prev_end;
  2348. vmi->used = 0;
  2349. vmi->largest_chunk = 0;
  2350. prev_end = VMALLOC_START;
  2351. spin_lock(&vmap_area_lock);
  2352. if (list_empty(&vmap_area_list)) {
  2353. vmi->largest_chunk = VMALLOC_TOTAL;
  2354. goto out;
  2355. }
  2356. list_for_each_entry(va, &vmap_area_list, list) {
  2357. unsigned long addr = va->va_start;
  2358. /*
  2359. * Some archs keep another range for modules in vmalloc space
  2360. */
  2361. if (addr < VMALLOC_START)
  2362. continue;
  2363. if (addr >= VMALLOC_END)
  2364. break;
  2365. if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
  2366. continue;
  2367. vmi->used += (va->va_end - va->va_start);
  2368. free_area_size = addr - prev_end;
  2369. if (vmi->largest_chunk < free_area_size)
  2370. vmi->largest_chunk = free_area_size;
  2371. prev_end = va->va_end;
  2372. }
  2373. if (VMALLOC_END - prev_end > vmi->largest_chunk)
  2374. vmi->largest_chunk = VMALLOC_END - prev_end;
  2375. out:
  2376. spin_unlock(&vmap_area_lock);
  2377. }
  2378. #endif