x86.c 103 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/msr.h>
  39. #include <asm/desc.h>
  40. #include <asm/mtrr.h>
  41. #define MAX_IO_MSRS 256
  42. #define CR0_RESERVED_BITS \
  43. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  44. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  45. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  46. #define CR4_RESERVED_BITS \
  47. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  48. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  49. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  50. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  51. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  52. /* EFER defaults:
  53. * - enable syscall per default because its emulated by KVM
  54. * - enable LME and LMA per default on 64 bit KVM
  55. */
  56. #ifdef CONFIG_X86_64
  57. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  58. #else
  59. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  60. #endif
  61. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  62. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  63. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  64. struct kvm_cpuid_entry2 __user *entries);
  65. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  66. u32 function, u32 index);
  67. struct kvm_x86_ops *kvm_x86_ops;
  68. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  69. struct kvm_stats_debugfs_item debugfs_entries[] = {
  70. { "pf_fixed", VCPU_STAT(pf_fixed) },
  71. { "pf_guest", VCPU_STAT(pf_guest) },
  72. { "tlb_flush", VCPU_STAT(tlb_flush) },
  73. { "invlpg", VCPU_STAT(invlpg) },
  74. { "exits", VCPU_STAT(exits) },
  75. { "io_exits", VCPU_STAT(io_exits) },
  76. { "mmio_exits", VCPU_STAT(mmio_exits) },
  77. { "signal_exits", VCPU_STAT(signal_exits) },
  78. { "irq_window", VCPU_STAT(irq_window_exits) },
  79. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  80. { "halt_exits", VCPU_STAT(halt_exits) },
  81. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  82. { "hypercalls", VCPU_STAT(hypercalls) },
  83. { "request_irq", VCPU_STAT(request_irq_exits) },
  84. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  85. { "irq_exits", VCPU_STAT(irq_exits) },
  86. { "host_state_reload", VCPU_STAT(host_state_reload) },
  87. { "efer_reload", VCPU_STAT(efer_reload) },
  88. { "fpu_reload", VCPU_STAT(fpu_reload) },
  89. { "insn_emulation", VCPU_STAT(insn_emulation) },
  90. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  91. { "irq_injections", VCPU_STAT(irq_injections) },
  92. { "nmi_injections", VCPU_STAT(nmi_injections) },
  93. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  94. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  95. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  96. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  97. { "mmu_flooded", VM_STAT(mmu_flooded) },
  98. { "mmu_recycled", VM_STAT(mmu_recycled) },
  99. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  100. { "mmu_unsync", VM_STAT(mmu_unsync) },
  101. { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
  102. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  103. { "largepages", VM_STAT(lpages) },
  104. { NULL }
  105. };
  106. unsigned long segment_base(u16 selector)
  107. {
  108. struct descriptor_table gdt;
  109. struct desc_struct *d;
  110. unsigned long table_base;
  111. unsigned long v;
  112. if (selector == 0)
  113. return 0;
  114. asm("sgdt %0" : "=m"(gdt));
  115. table_base = gdt.base;
  116. if (selector & 4) { /* from ldt */
  117. u16 ldt_selector;
  118. asm("sldt %0" : "=g"(ldt_selector));
  119. table_base = segment_base(ldt_selector);
  120. }
  121. d = (struct desc_struct *)(table_base + (selector & ~7));
  122. v = d->base0 | ((unsigned long)d->base1 << 16) |
  123. ((unsigned long)d->base2 << 24);
  124. #ifdef CONFIG_X86_64
  125. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  126. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  127. #endif
  128. return v;
  129. }
  130. EXPORT_SYMBOL_GPL(segment_base);
  131. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  132. {
  133. if (irqchip_in_kernel(vcpu->kvm))
  134. return vcpu->arch.apic_base;
  135. else
  136. return vcpu->arch.apic_base;
  137. }
  138. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  139. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  140. {
  141. /* TODO: reserve bits check */
  142. if (irqchip_in_kernel(vcpu->kvm))
  143. kvm_lapic_set_base(vcpu, data);
  144. else
  145. vcpu->arch.apic_base = data;
  146. }
  147. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  148. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  149. {
  150. WARN_ON(vcpu->arch.exception.pending);
  151. vcpu->arch.exception.pending = true;
  152. vcpu->arch.exception.has_error_code = false;
  153. vcpu->arch.exception.nr = nr;
  154. }
  155. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  156. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  157. u32 error_code)
  158. {
  159. ++vcpu->stat.pf_guest;
  160. if (vcpu->arch.exception.pending) {
  161. if (vcpu->arch.exception.nr == PF_VECTOR) {
  162. printk(KERN_DEBUG "kvm: inject_page_fault:"
  163. " double fault 0x%lx\n", addr);
  164. vcpu->arch.exception.nr = DF_VECTOR;
  165. vcpu->arch.exception.error_code = 0;
  166. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  167. /* triple fault -> shutdown */
  168. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  169. }
  170. return;
  171. }
  172. vcpu->arch.cr2 = addr;
  173. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  174. }
  175. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  176. {
  177. vcpu->arch.nmi_pending = 1;
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  180. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  181. {
  182. WARN_ON(vcpu->arch.exception.pending);
  183. vcpu->arch.exception.pending = true;
  184. vcpu->arch.exception.has_error_code = true;
  185. vcpu->arch.exception.nr = nr;
  186. vcpu->arch.exception.error_code = error_code;
  187. }
  188. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  189. static void __queue_exception(struct kvm_vcpu *vcpu)
  190. {
  191. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  192. vcpu->arch.exception.has_error_code,
  193. vcpu->arch.exception.error_code);
  194. }
  195. /*
  196. * Load the pae pdptrs. Return true is they are all valid.
  197. */
  198. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  199. {
  200. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  201. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  202. int i;
  203. int ret;
  204. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  205. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  206. offset * sizeof(u64), sizeof(pdpte));
  207. if (ret < 0) {
  208. ret = 0;
  209. goto out;
  210. }
  211. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  212. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  213. ret = 0;
  214. goto out;
  215. }
  216. }
  217. ret = 1;
  218. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  219. out:
  220. return ret;
  221. }
  222. EXPORT_SYMBOL_GPL(load_pdptrs);
  223. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  224. {
  225. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  226. bool changed = true;
  227. int r;
  228. if (is_long_mode(vcpu) || !is_pae(vcpu))
  229. return false;
  230. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  231. if (r < 0)
  232. goto out;
  233. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  234. out:
  235. return changed;
  236. }
  237. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  238. {
  239. if (cr0 & CR0_RESERVED_BITS) {
  240. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  241. cr0, vcpu->arch.cr0);
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  246. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  247. kvm_inject_gp(vcpu, 0);
  248. return;
  249. }
  250. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  251. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  252. "and a clear PE flag\n");
  253. kvm_inject_gp(vcpu, 0);
  254. return;
  255. }
  256. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  257. #ifdef CONFIG_X86_64
  258. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  259. int cs_db, cs_l;
  260. if (!is_pae(vcpu)) {
  261. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  262. "in long mode while PAE is disabled\n");
  263. kvm_inject_gp(vcpu, 0);
  264. return;
  265. }
  266. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  267. if (cs_l) {
  268. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  269. "in long mode while CS.L == 1\n");
  270. kvm_inject_gp(vcpu, 0);
  271. return;
  272. }
  273. } else
  274. #endif
  275. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  277. "reserved bits\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. }
  282. kvm_x86_ops->set_cr0(vcpu, cr0);
  283. vcpu->arch.cr0 = cr0;
  284. kvm_mmu_sync_global(vcpu);
  285. kvm_mmu_reset_context(vcpu);
  286. return;
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  289. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  290. {
  291. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  292. KVMTRACE_1D(LMSW, vcpu,
  293. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  294. handler);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_lmsw);
  297. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  298. {
  299. if (cr4 & CR4_RESERVED_BITS) {
  300. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  301. kvm_inject_gp(vcpu, 0);
  302. return;
  303. }
  304. if (is_long_mode(vcpu)) {
  305. if (!(cr4 & X86_CR4_PAE)) {
  306. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  307. "in long mode\n");
  308. kvm_inject_gp(vcpu, 0);
  309. return;
  310. }
  311. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  312. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  313. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  314. kvm_inject_gp(vcpu, 0);
  315. return;
  316. }
  317. if (cr4 & X86_CR4_VMXE) {
  318. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. kvm_x86_ops->set_cr4(vcpu, cr4);
  323. vcpu->arch.cr4 = cr4;
  324. kvm_mmu_sync_global(vcpu);
  325. kvm_mmu_reset_context(vcpu);
  326. }
  327. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  328. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  329. {
  330. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  331. kvm_mmu_sync_roots(vcpu);
  332. kvm_mmu_flush_tlb(vcpu);
  333. return;
  334. }
  335. if (is_long_mode(vcpu)) {
  336. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  337. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. } else {
  342. if (is_pae(vcpu)) {
  343. if (cr3 & CR3_PAE_RESERVED_BITS) {
  344. printk(KERN_DEBUG
  345. "set_cr3: #GP, reserved bits\n");
  346. kvm_inject_gp(vcpu, 0);
  347. return;
  348. }
  349. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  350. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  351. "reserved bits\n");
  352. kvm_inject_gp(vcpu, 0);
  353. return;
  354. }
  355. }
  356. /*
  357. * We don't check reserved bits in nonpae mode, because
  358. * this isn't enforced, and VMware depends on this.
  359. */
  360. }
  361. /*
  362. * Does the new cr3 value map to physical memory? (Note, we
  363. * catch an invalid cr3 even in real-mode, because it would
  364. * cause trouble later on when we turn on paging anyway.)
  365. *
  366. * A real CPU would silently accept an invalid cr3 and would
  367. * attempt to use it - with largely undefined (and often hard
  368. * to debug) behavior on the guest side.
  369. */
  370. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  371. kvm_inject_gp(vcpu, 0);
  372. else {
  373. vcpu->arch.cr3 = cr3;
  374. vcpu->arch.mmu.new_cr3(vcpu);
  375. }
  376. }
  377. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  378. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  379. {
  380. if (cr8 & CR8_RESERVED_BITS) {
  381. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  382. kvm_inject_gp(vcpu, 0);
  383. return;
  384. }
  385. if (irqchip_in_kernel(vcpu->kvm))
  386. kvm_lapic_set_tpr(vcpu, cr8);
  387. else
  388. vcpu->arch.cr8 = cr8;
  389. }
  390. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  391. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  392. {
  393. if (irqchip_in_kernel(vcpu->kvm))
  394. return kvm_lapic_get_cr8(vcpu);
  395. else
  396. return vcpu->arch.cr8;
  397. }
  398. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  399. static inline u32 bit(int bitno)
  400. {
  401. return 1 << (bitno & 31);
  402. }
  403. /*
  404. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  405. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  406. *
  407. * This list is modified at module load time to reflect the
  408. * capabilities of the host cpu.
  409. */
  410. static u32 msrs_to_save[] = {
  411. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  412. MSR_K6_STAR,
  413. #ifdef CONFIG_X86_64
  414. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  415. #endif
  416. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  417. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  418. };
  419. static unsigned num_msrs_to_save;
  420. static u32 emulated_msrs[] = {
  421. MSR_IA32_MISC_ENABLE,
  422. };
  423. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  424. {
  425. if (efer & efer_reserved_bits) {
  426. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  427. efer);
  428. kvm_inject_gp(vcpu, 0);
  429. return;
  430. }
  431. if (is_paging(vcpu)
  432. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  433. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  434. kvm_inject_gp(vcpu, 0);
  435. return;
  436. }
  437. if (efer & EFER_SVME) {
  438. struct kvm_cpuid_entry2 *feat;
  439. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  440. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  441. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  442. kvm_inject_gp(vcpu, 0);
  443. return;
  444. }
  445. }
  446. kvm_x86_ops->set_efer(vcpu, efer);
  447. efer &= ~EFER_LMA;
  448. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  449. vcpu->arch.shadow_efer = efer;
  450. }
  451. void kvm_enable_efer_bits(u64 mask)
  452. {
  453. efer_reserved_bits &= ~mask;
  454. }
  455. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  456. /*
  457. * Writes msr value into into the appropriate "register".
  458. * Returns 0 on success, non-0 otherwise.
  459. * Assumes vcpu_load() was already called.
  460. */
  461. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  462. {
  463. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  464. }
  465. /*
  466. * Adapt set_msr() to msr_io()'s calling convention
  467. */
  468. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  469. {
  470. return kvm_set_msr(vcpu, index, *data);
  471. }
  472. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  473. {
  474. static int version;
  475. struct pvclock_wall_clock wc;
  476. struct timespec now, sys, boot;
  477. if (!wall_clock)
  478. return;
  479. version++;
  480. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  481. /*
  482. * The guest calculates current wall clock time by adding
  483. * system time (updated by kvm_write_guest_time below) to the
  484. * wall clock specified here. guest system time equals host
  485. * system time for us, thus we must fill in host boot time here.
  486. */
  487. now = current_kernel_time();
  488. ktime_get_ts(&sys);
  489. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  490. wc.sec = boot.tv_sec;
  491. wc.nsec = boot.tv_nsec;
  492. wc.version = version;
  493. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  494. version++;
  495. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  496. }
  497. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  498. {
  499. uint32_t quotient, remainder;
  500. /* Don't try to replace with do_div(), this one calculates
  501. * "(dividend << 32) / divisor" */
  502. __asm__ ( "divl %4"
  503. : "=a" (quotient), "=d" (remainder)
  504. : "0" (0), "1" (dividend), "r" (divisor) );
  505. return quotient;
  506. }
  507. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  508. {
  509. uint64_t nsecs = 1000000000LL;
  510. int32_t shift = 0;
  511. uint64_t tps64;
  512. uint32_t tps32;
  513. tps64 = tsc_khz * 1000LL;
  514. while (tps64 > nsecs*2) {
  515. tps64 >>= 1;
  516. shift--;
  517. }
  518. tps32 = (uint32_t)tps64;
  519. while (tps32 <= (uint32_t)nsecs) {
  520. tps32 <<= 1;
  521. shift++;
  522. }
  523. hv_clock->tsc_shift = shift;
  524. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  525. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  526. __func__, tsc_khz, hv_clock->tsc_shift,
  527. hv_clock->tsc_to_system_mul);
  528. }
  529. static void kvm_write_guest_time(struct kvm_vcpu *v)
  530. {
  531. struct timespec ts;
  532. unsigned long flags;
  533. struct kvm_vcpu_arch *vcpu = &v->arch;
  534. void *shared_kaddr;
  535. if ((!vcpu->time_page))
  536. return;
  537. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  538. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  539. vcpu->hv_clock_tsc_khz = tsc_khz;
  540. }
  541. /* Keep irq disabled to prevent changes to the clock */
  542. local_irq_save(flags);
  543. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  544. &vcpu->hv_clock.tsc_timestamp);
  545. ktime_get_ts(&ts);
  546. local_irq_restore(flags);
  547. /* With all the info we got, fill in the values */
  548. vcpu->hv_clock.system_time = ts.tv_nsec +
  549. (NSEC_PER_SEC * (u64)ts.tv_sec);
  550. /*
  551. * The interface expects us to write an even number signaling that the
  552. * update is finished. Since the guest won't see the intermediate
  553. * state, we just increase by 2 at the end.
  554. */
  555. vcpu->hv_clock.version += 2;
  556. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  557. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  558. sizeof(vcpu->hv_clock));
  559. kunmap_atomic(shared_kaddr, KM_USER0);
  560. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  561. }
  562. static bool msr_mtrr_valid(unsigned msr)
  563. {
  564. switch (msr) {
  565. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  566. case MSR_MTRRfix64K_00000:
  567. case MSR_MTRRfix16K_80000:
  568. case MSR_MTRRfix16K_A0000:
  569. case MSR_MTRRfix4K_C0000:
  570. case MSR_MTRRfix4K_C8000:
  571. case MSR_MTRRfix4K_D0000:
  572. case MSR_MTRRfix4K_D8000:
  573. case MSR_MTRRfix4K_E0000:
  574. case MSR_MTRRfix4K_E8000:
  575. case MSR_MTRRfix4K_F0000:
  576. case MSR_MTRRfix4K_F8000:
  577. case MSR_MTRRdefType:
  578. case MSR_IA32_CR_PAT:
  579. return true;
  580. case 0x2f8:
  581. return true;
  582. }
  583. return false;
  584. }
  585. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  586. {
  587. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  588. if (!msr_mtrr_valid(msr))
  589. return 1;
  590. if (msr == MSR_MTRRdefType) {
  591. vcpu->arch.mtrr_state.def_type = data;
  592. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  593. } else if (msr == MSR_MTRRfix64K_00000)
  594. p[0] = data;
  595. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  596. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  597. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  598. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  599. else if (msr == MSR_IA32_CR_PAT)
  600. vcpu->arch.pat = data;
  601. else { /* Variable MTRRs */
  602. int idx, is_mtrr_mask;
  603. u64 *pt;
  604. idx = (msr - 0x200) / 2;
  605. is_mtrr_mask = msr - 0x200 - 2 * idx;
  606. if (!is_mtrr_mask)
  607. pt =
  608. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  609. else
  610. pt =
  611. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  612. *pt = data;
  613. }
  614. kvm_mmu_reset_context(vcpu);
  615. return 0;
  616. }
  617. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  618. {
  619. switch (msr) {
  620. case MSR_EFER:
  621. set_efer(vcpu, data);
  622. break;
  623. case MSR_IA32_MC0_STATUS:
  624. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  625. __func__, data);
  626. break;
  627. case MSR_IA32_MCG_STATUS:
  628. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  629. __func__, data);
  630. break;
  631. case MSR_IA32_MCG_CTL:
  632. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  633. __func__, data);
  634. break;
  635. case MSR_IA32_DEBUGCTLMSR:
  636. if (!data) {
  637. /* We support the non-activated case already */
  638. break;
  639. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  640. /* Values other than LBR and BTF are vendor-specific,
  641. thus reserved and should throw a #GP */
  642. return 1;
  643. }
  644. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  645. __func__, data);
  646. break;
  647. case MSR_IA32_UCODE_REV:
  648. case MSR_IA32_UCODE_WRITE:
  649. break;
  650. case 0x200 ... 0x2ff:
  651. return set_msr_mtrr(vcpu, msr, data);
  652. case MSR_IA32_APICBASE:
  653. kvm_set_apic_base(vcpu, data);
  654. break;
  655. case MSR_IA32_MISC_ENABLE:
  656. vcpu->arch.ia32_misc_enable_msr = data;
  657. break;
  658. case MSR_KVM_WALL_CLOCK:
  659. vcpu->kvm->arch.wall_clock = data;
  660. kvm_write_wall_clock(vcpu->kvm, data);
  661. break;
  662. case MSR_KVM_SYSTEM_TIME: {
  663. if (vcpu->arch.time_page) {
  664. kvm_release_page_dirty(vcpu->arch.time_page);
  665. vcpu->arch.time_page = NULL;
  666. }
  667. vcpu->arch.time = data;
  668. /* we verify if the enable bit is set... */
  669. if (!(data & 1))
  670. break;
  671. /* ...but clean it before doing the actual write */
  672. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  673. vcpu->arch.time_page =
  674. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  675. if (is_error_page(vcpu->arch.time_page)) {
  676. kvm_release_page_clean(vcpu->arch.time_page);
  677. vcpu->arch.time_page = NULL;
  678. }
  679. kvm_write_guest_time(vcpu);
  680. break;
  681. }
  682. default:
  683. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  684. return 1;
  685. }
  686. return 0;
  687. }
  688. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  689. /*
  690. * Reads an msr value (of 'msr_index') into 'pdata'.
  691. * Returns 0 on success, non-0 otherwise.
  692. * Assumes vcpu_load() was already called.
  693. */
  694. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  695. {
  696. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  697. }
  698. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  699. {
  700. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  701. if (!msr_mtrr_valid(msr))
  702. return 1;
  703. if (msr == MSR_MTRRdefType)
  704. *pdata = vcpu->arch.mtrr_state.def_type +
  705. (vcpu->arch.mtrr_state.enabled << 10);
  706. else if (msr == MSR_MTRRfix64K_00000)
  707. *pdata = p[0];
  708. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  709. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  710. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  711. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  712. else if (msr == MSR_IA32_CR_PAT)
  713. *pdata = vcpu->arch.pat;
  714. else { /* Variable MTRRs */
  715. int idx, is_mtrr_mask;
  716. u64 *pt;
  717. idx = (msr - 0x200) / 2;
  718. is_mtrr_mask = msr - 0x200 - 2 * idx;
  719. if (!is_mtrr_mask)
  720. pt =
  721. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  722. else
  723. pt =
  724. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  725. *pdata = *pt;
  726. }
  727. return 0;
  728. }
  729. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  730. {
  731. u64 data;
  732. switch (msr) {
  733. case 0xc0010010: /* SYSCFG */
  734. case 0xc0010015: /* HWCR */
  735. case MSR_IA32_PLATFORM_ID:
  736. case MSR_IA32_P5_MC_ADDR:
  737. case MSR_IA32_P5_MC_TYPE:
  738. case MSR_IA32_MC0_CTL:
  739. case MSR_IA32_MCG_STATUS:
  740. case MSR_IA32_MCG_CAP:
  741. case MSR_IA32_MCG_CTL:
  742. case MSR_IA32_MC0_MISC:
  743. case MSR_IA32_MC0_MISC+4:
  744. case MSR_IA32_MC0_MISC+8:
  745. case MSR_IA32_MC0_MISC+12:
  746. case MSR_IA32_MC0_MISC+16:
  747. case MSR_IA32_MC0_MISC+20:
  748. case MSR_IA32_UCODE_REV:
  749. case MSR_IA32_EBL_CR_POWERON:
  750. case MSR_IA32_DEBUGCTLMSR:
  751. case MSR_IA32_LASTBRANCHFROMIP:
  752. case MSR_IA32_LASTBRANCHTOIP:
  753. case MSR_IA32_LASTINTFROMIP:
  754. case MSR_IA32_LASTINTTOIP:
  755. data = 0;
  756. break;
  757. case MSR_MTRRcap:
  758. data = 0x500 | KVM_NR_VAR_MTRR;
  759. break;
  760. case 0x200 ... 0x2ff:
  761. return get_msr_mtrr(vcpu, msr, pdata);
  762. case 0xcd: /* fsb frequency */
  763. data = 3;
  764. break;
  765. case MSR_IA32_APICBASE:
  766. data = kvm_get_apic_base(vcpu);
  767. break;
  768. case MSR_IA32_MISC_ENABLE:
  769. data = vcpu->arch.ia32_misc_enable_msr;
  770. break;
  771. case MSR_IA32_PERF_STATUS:
  772. /* TSC increment by tick */
  773. data = 1000ULL;
  774. /* CPU multiplier */
  775. data |= (((uint64_t)4ULL) << 40);
  776. break;
  777. case MSR_EFER:
  778. data = vcpu->arch.shadow_efer;
  779. break;
  780. case MSR_KVM_WALL_CLOCK:
  781. data = vcpu->kvm->arch.wall_clock;
  782. break;
  783. case MSR_KVM_SYSTEM_TIME:
  784. data = vcpu->arch.time;
  785. break;
  786. default:
  787. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  788. return 1;
  789. }
  790. *pdata = data;
  791. return 0;
  792. }
  793. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  794. /*
  795. * Read or write a bunch of msrs. All parameters are kernel addresses.
  796. *
  797. * @return number of msrs set successfully.
  798. */
  799. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  800. struct kvm_msr_entry *entries,
  801. int (*do_msr)(struct kvm_vcpu *vcpu,
  802. unsigned index, u64 *data))
  803. {
  804. int i;
  805. vcpu_load(vcpu);
  806. down_read(&vcpu->kvm->slots_lock);
  807. for (i = 0; i < msrs->nmsrs; ++i)
  808. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  809. break;
  810. up_read(&vcpu->kvm->slots_lock);
  811. vcpu_put(vcpu);
  812. return i;
  813. }
  814. /*
  815. * Read or write a bunch of msrs. Parameters are user addresses.
  816. *
  817. * @return number of msrs set successfully.
  818. */
  819. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  820. int (*do_msr)(struct kvm_vcpu *vcpu,
  821. unsigned index, u64 *data),
  822. int writeback)
  823. {
  824. struct kvm_msrs msrs;
  825. struct kvm_msr_entry *entries;
  826. int r, n;
  827. unsigned size;
  828. r = -EFAULT;
  829. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  830. goto out;
  831. r = -E2BIG;
  832. if (msrs.nmsrs >= MAX_IO_MSRS)
  833. goto out;
  834. r = -ENOMEM;
  835. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  836. entries = vmalloc(size);
  837. if (!entries)
  838. goto out;
  839. r = -EFAULT;
  840. if (copy_from_user(entries, user_msrs->entries, size))
  841. goto out_free;
  842. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  843. if (r < 0)
  844. goto out_free;
  845. r = -EFAULT;
  846. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  847. goto out_free;
  848. r = n;
  849. out_free:
  850. vfree(entries);
  851. out:
  852. return r;
  853. }
  854. int kvm_dev_ioctl_check_extension(long ext)
  855. {
  856. int r;
  857. switch (ext) {
  858. case KVM_CAP_IRQCHIP:
  859. case KVM_CAP_HLT:
  860. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  861. case KVM_CAP_SET_TSS_ADDR:
  862. case KVM_CAP_EXT_CPUID:
  863. case KVM_CAP_PIT:
  864. case KVM_CAP_NOP_IO_DELAY:
  865. case KVM_CAP_MP_STATE:
  866. case KVM_CAP_SYNC_MMU:
  867. r = 1;
  868. break;
  869. case KVM_CAP_COALESCED_MMIO:
  870. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  871. break;
  872. case KVM_CAP_VAPIC:
  873. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  874. break;
  875. case KVM_CAP_NR_VCPUS:
  876. r = KVM_MAX_VCPUS;
  877. break;
  878. case KVM_CAP_NR_MEMSLOTS:
  879. r = KVM_MEMORY_SLOTS;
  880. break;
  881. case KVM_CAP_PV_MMU:
  882. r = !tdp_enabled;
  883. break;
  884. case KVM_CAP_IOMMU:
  885. r = iommu_found();
  886. break;
  887. case KVM_CAP_CLOCKSOURCE:
  888. r = boot_cpu_has(X86_FEATURE_CONSTANT_TSC);
  889. break;
  890. default:
  891. r = 0;
  892. break;
  893. }
  894. return r;
  895. }
  896. long kvm_arch_dev_ioctl(struct file *filp,
  897. unsigned int ioctl, unsigned long arg)
  898. {
  899. void __user *argp = (void __user *)arg;
  900. long r;
  901. switch (ioctl) {
  902. case KVM_GET_MSR_INDEX_LIST: {
  903. struct kvm_msr_list __user *user_msr_list = argp;
  904. struct kvm_msr_list msr_list;
  905. unsigned n;
  906. r = -EFAULT;
  907. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  908. goto out;
  909. n = msr_list.nmsrs;
  910. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  911. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  912. goto out;
  913. r = -E2BIG;
  914. if (n < num_msrs_to_save)
  915. goto out;
  916. r = -EFAULT;
  917. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  918. num_msrs_to_save * sizeof(u32)))
  919. goto out;
  920. if (copy_to_user(user_msr_list->indices
  921. + num_msrs_to_save * sizeof(u32),
  922. &emulated_msrs,
  923. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  924. goto out;
  925. r = 0;
  926. break;
  927. }
  928. case KVM_GET_SUPPORTED_CPUID: {
  929. struct kvm_cpuid2 __user *cpuid_arg = argp;
  930. struct kvm_cpuid2 cpuid;
  931. r = -EFAULT;
  932. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  933. goto out;
  934. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  935. cpuid_arg->entries);
  936. if (r)
  937. goto out;
  938. r = -EFAULT;
  939. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  940. goto out;
  941. r = 0;
  942. break;
  943. }
  944. default:
  945. r = -EINVAL;
  946. }
  947. out:
  948. return r;
  949. }
  950. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  951. {
  952. kvm_x86_ops->vcpu_load(vcpu, cpu);
  953. kvm_write_guest_time(vcpu);
  954. }
  955. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  956. {
  957. kvm_x86_ops->vcpu_put(vcpu);
  958. kvm_put_guest_fpu(vcpu);
  959. }
  960. static int is_efer_nx(void)
  961. {
  962. u64 efer;
  963. rdmsrl(MSR_EFER, efer);
  964. return efer & EFER_NX;
  965. }
  966. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  967. {
  968. int i;
  969. struct kvm_cpuid_entry2 *e, *entry;
  970. entry = NULL;
  971. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  972. e = &vcpu->arch.cpuid_entries[i];
  973. if (e->function == 0x80000001) {
  974. entry = e;
  975. break;
  976. }
  977. }
  978. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  979. entry->edx &= ~(1 << 20);
  980. printk(KERN_INFO "kvm: guest NX capability removed\n");
  981. }
  982. }
  983. /* when an old userspace process fills a new kernel module */
  984. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  985. struct kvm_cpuid *cpuid,
  986. struct kvm_cpuid_entry __user *entries)
  987. {
  988. int r, i;
  989. struct kvm_cpuid_entry *cpuid_entries;
  990. r = -E2BIG;
  991. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  992. goto out;
  993. r = -ENOMEM;
  994. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  995. if (!cpuid_entries)
  996. goto out;
  997. r = -EFAULT;
  998. if (copy_from_user(cpuid_entries, entries,
  999. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1000. goto out_free;
  1001. for (i = 0; i < cpuid->nent; i++) {
  1002. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1003. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1004. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1005. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1006. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1007. vcpu->arch.cpuid_entries[i].index = 0;
  1008. vcpu->arch.cpuid_entries[i].flags = 0;
  1009. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1010. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1011. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1012. }
  1013. vcpu->arch.cpuid_nent = cpuid->nent;
  1014. cpuid_fix_nx_cap(vcpu);
  1015. r = 0;
  1016. out_free:
  1017. vfree(cpuid_entries);
  1018. out:
  1019. return r;
  1020. }
  1021. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1022. struct kvm_cpuid2 *cpuid,
  1023. struct kvm_cpuid_entry2 __user *entries)
  1024. {
  1025. int r;
  1026. r = -E2BIG;
  1027. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1028. goto out;
  1029. r = -EFAULT;
  1030. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1031. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1032. goto out;
  1033. vcpu->arch.cpuid_nent = cpuid->nent;
  1034. return 0;
  1035. out:
  1036. return r;
  1037. }
  1038. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1039. struct kvm_cpuid2 *cpuid,
  1040. struct kvm_cpuid_entry2 __user *entries)
  1041. {
  1042. int r;
  1043. r = -E2BIG;
  1044. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1045. goto out;
  1046. r = -EFAULT;
  1047. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1048. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1049. goto out;
  1050. return 0;
  1051. out:
  1052. cpuid->nent = vcpu->arch.cpuid_nent;
  1053. return r;
  1054. }
  1055. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1056. u32 index)
  1057. {
  1058. entry->function = function;
  1059. entry->index = index;
  1060. cpuid_count(entry->function, entry->index,
  1061. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1062. entry->flags = 0;
  1063. }
  1064. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1065. u32 index, int *nent, int maxnent)
  1066. {
  1067. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1068. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1069. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1070. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1071. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1072. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1073. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1074. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1075. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1076. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1077. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1078. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1079. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1080. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1081. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1082. bit(X86_FEATURE_PGE) |
  1083. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1084. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1085. bit(X86_FEATURE_SYSCALL) |
  1086. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  1087. #ifdef CONFIG_X86_64
  1088. bit(X86_FEATURE_LM) |
  1089. #endif
  1090. bit(X86_FEATURE_MMXEXT) |
  1091. bit(X86_FEATURE_3DNOWEXT) |
  1092. bit(X86_FEATURE_3DNOW);
  1093. const u32 kvm_supported_word3_x86_features =
  1094. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1095. const u32 kvm_supported_word6_x86_features =
  1096. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
  1097. bit(X86_FEATURE_SVM);
  1098. /* all func 2 cpuid_count() should be called on the same cpu */
  1099. get_cpu();
  1100. do_cpuid_1_ent(entry, function, index);
  1101. ++*nent;
  1102. switch (function) {
  1103. case 0:
  1104. entry->eax = min(entry->eax, (u32)0xb);
  1105. break;
  1106. case 1:
  1107. entry->edx &= kvm_supported_word0_x86_features;
  1108. entry->ecx &= kvm_supported_word3_x86_features;
  1109. break;
  1110. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1111. * may return different values. This forces us to get_cpu() before
  1112. * issuing the first command, and also to emulate this annoying behavior
  1113. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1114. case 2: {
  1115. int t, times = entry->eax & 0xff;
  1116. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1117. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1118. for (t = 1; t < times && *nent < maxnent; ++t) {
  1119. do_cpuid_1_ent(&entry[t], function, 0);
  1120. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1121. ++*nent;
  1122. }
  1123. break;
  1124. }
  1125. /* function 4 and 0xb have additional index. */
  1126. case 4: {
  1127. int i, cache_type;
  1128. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1129. /* read more entries until cache_type is zero */
  1130. for (i = 1; *nent < maxnent; ++i) {
  1131. cache_type = entry[i - 1].eax & 0x1f;
  1132. if (!cache_type)
  1133. break;
  1134. do_cpuid_1_ent(&entry[i], function, i);
  1135. entry[i].flags |=
  1136. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1137. ++*nent;
  1138. }
  1139. break;
  1140. }
  1141. case 0xb: {
  1142. int i, level_type;
  1143. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1144. /* read more entries until level_type is zero */
  1145. for (i = 1; *nent < maxnent; ++i) {
  1146. level_type = entry[i - 1].ecx & 0xff00;
  1147. if (!level_type)
  1148. break;
  1149. do_cpuid_1_ent(&entry[i], function, i);
  1150. entry[i].flags |=
  1151. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1152. ++*nent;
  1153. }
  1154. break;
  1155. }
  1156. case 0x80000000:
  1157. entry->eax = min(entry->eax, 0x8000001a);
  1158. break;
  1159. case 0x80000001:
  1160. entry->edx &= kvm_supported_word1_x86_features;
  1161. entry->ecx &= kvm_supported_word6_x86_features;
  1162. break;
  1163. }
  1164. put_cpu();
  1165. }
  1166. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1167. struct kvm_cpuid_entry2 __user *entries)
  1168. {
  1169. struct kvm_cpuid_entry2 *cpuid_entries;
  1170. int limit, nent = 0, r = -E2BIG;
  1171. u32 func;
  1172. if (cpuid->nent < 1)
  1173. goto out;
  1174. r = -ENOMEM;
  1175. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1176. if (!cpuid_entries)
  1177. goto out;
  1178. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1179. limit = cpuid_entries[0].eax;
  1180. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1181. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1182. &nent, cpuid->nent);
  1183. r = -E2BIG;
  1184. if (nent >= cpuid->nent)
  1185. goto out_free;
  1186. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1187. limit = cpuid_entries[nent - 1].eax;
  1188. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1189. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1190. &nent, cpuid->nent);
  1191. r = -EFAULT;
  1192. if (copy_to_user(entries, cpuid_entries,
  1193. nent * sizeof(struct kvm_cpuid_entry2)))
  1194. goto out_free;
  1195. cpuid->nent = nent;
  1196. r = 0;
  1197. out_free:
  1198. vfree(cpuid_entries);
  1199. out:
  1200. return r;
  1201. }
  1202. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1203. struct kvm_lapic_state *s)
  1204. {
  1205. vcpu_load(vcpu);
  1206. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1207. vcpu_put(vcpu);
  1208. return 0;
  1209. }
  1210. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1211. struct kvm_lapic_state *s)
  1212. {
  1213. vcpu_load(vcpu);
  1214. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1215. kvm_apic_post_state_restore(vcpu);
  1216. vcpu_put(vcpu);
  1217. return 0;
  1218. }
  1219. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1220. struct kvm_interrupt *irq)
  1221. {
  1222. if (irq->irq < 0 || irq->irq >= 256)
  1223. return -EINVAL;
  1224. if (irqchip_in_kernel(vcpu->kvm))
  1225. return -ENXIO;
  1226. vcpu_load(vcpu);
  1227. set_bit(irq->irq, vcpu->arch.irq_pending);
  1228. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1229. vcpu_put(vcpu);
  1230. return 0;
  1231. }
  1232. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1233. {
  1234. vcpu_load(vcpu);
  1235. kvm_inject_nmi(vcpu);
  1236. vcpu_put(vcpu);
  1237. return 0;
  1238. }
  1239. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1240. struct kvm_tpr_access_ctl *tac)
  1241. {
  1242. if (tac->flags)
  1243. return -EINVAL;
  1244. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1245. return 0;
  1246. }
  1247. long kvm_arch_vcpu_ioctl(struct file *filp,
  1248. unsigned int ioctl, unsigned long arg)
  1249. {
  1250. struct kvm_vcpu *vcpu = filp->private_data;
  1251. void __user *argp = (void __user *)arg;
  1252. int r;
  1253. struct kvm_lapic_state *lapic = NULL;
  1254. switch (ioctl) {
  1255. case KVM_GET_LAPIC: {
  1256. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1257. r = -ENOMEM;
  1258. if (!lapic)
  1259. goto out;
  1260. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1261. if (r)
  1262. goto out;
  1263. r = -EFAULT;
  1264. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1265. goto out;
  1266. r = 0;
  1267. break;
  1268. }
  1269. case KVM_SET_LAPIC: {
  1270. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1271. r = -ENOMEM;
  1272. if (!lapic)
  1273. goto out;
  1274. r = -EFAULT;
  1275. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1276. goto out;
  1277. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1278. if (r)
  1279. goto out;
  1280. r = 0;
  1281. break;
  1282. }
  1283. case KVM_INTERRUPT: {
  1284. struct kvm_interrupt irq;
  1285. r = -EFAULT;
  1286. if (copy_from_user(&irq, argp, sizeof irq))
  1287. goto out;
  1288. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1289. if (r)
  1290. goto out;
  1291. r = 0;
  1292. break;
  1293. }
  1294. case KVM_NMI: {
  1295. r = kvm_vcpu_ioctl_nmi(vcpu);
  1296. if (r)
  1297. goto out;
  1298. r = 0;
  1299. break;
  1300. }
  1301. case KVM_SET_CPUID: {
  1302. struct kvm_cpuid __user *cpuid_arg = argp;
  1303. struct kvm_cpuid cpuid;
  1304. r = -EFAULT;
  1305. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1306. goto out;
  1307. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1308. if (r)
  1309. goto out;
  1310. break;
  1311. }
  1312. case KVM_SET_CPUID2: {
  1313. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1314. struct kvm_cpuid2 cpuid;
  1315. r = -EFAULT;
  1316. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1317. goto out;
  1318. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1319. cpuid_arg->entries);
  1320. if (r)
  1321. goto out;
  1322. break;
  1323. }
  1324. case KVM_GET_CPUID2: {
  1325. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1326. struct kvm_cpuid2 cpuid;
  1327. r = -EFAULT;
  1328. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1329. goto out;
  1330. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1331. cpuid_arg->entries);
  1332. if (r)
  1333. goto out;
  1334. r = -EFAULT;
  1335. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1336. goto out;
  1337. r = 0;
  1338. break;
  1339. }
  1340. case KVM_GET_MSRS:
  1341. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1342. break;
  1343. case KVM_SET_MSRS:
  1344. r = msr_io(vcpu, argp, do_set_msr, 0);
  1345. break;
  1346. case KVM_TPR_ACCESS_REPORTING: {
  1347. struct kvm_tpr_access_ctl tac;
  1348. r = -EFAULT;
  1349. if (copy_from_user(&tac, argp, sizeof tac))
  1350. goto out;
  1351. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1352. if (r)
  1353. goto out;
  1354. r = -EFAULT;
  1355. if (copy_to_user(argp, &tac, sizeof tac))
  1356. goto out;
  1357. r = 0;
  1358. break;
  1359. };
  1360. case KVM_SET_VAPIC_ADDR: {
  1361. struct kvm_vapic_addr va;
  1362. r = -EINVAL;
  1363. if (!irqchip_in_kernel(vcpu->kvm))
  1364. goto out;
  1365. r = -EFAULT;
  1366. if (copy_from_user(&va, argp, sizeof va))
  1367. goto out;
  1368. r = 0;
  1369. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1370. break;
  1371. }
  1372. default:
  1373. r = -EINVAL;
  1374. }
  1375. out:
  1376. if (lapic)
  1377. kfree(lapic);
  1378. return r;
  1379. }
  1380. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1381. {
  1382. int ret;
  1383. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1384. return -1;
  1385. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1386. return ret;
  1387. }
  1388. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1389. u32 kvm_nr_mmu_pages)
  1390. {
  1391. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1392. return -EINVAL;
  1393. down_write(&kvm->slots_lock);
  1394. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1395. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1396. up_write(&kvm->slots_lock);
  1397. return 0;
  1398. }
  1399. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1400. {
  1401. return kvm->arch.n_alloc_mmu_pages;
  1402. }
  1403. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1404. {
  1405. int i;
  1406. struct kvm_mem_alias *alias;
  1407. for (i = 0; i < kvm->arch.naliases; ++i) {
  1408. alias = &kvm->arch.aliases[i];
  1409. if (gfn >= alias->base_gfn
  1410. && gfn < alias->base_gfn + alias->npages)
  1411. return alias->target_gfn + gfn - alias->base_gfn;
  1412. }
  1413. return gfn;
  1414. }
  1415. /*
  1416. * Set a new alias region. Aliases map a portion of physical memory into
  1417. * another portion. This is useful for memory windows, for example the PC
  1418. * VGA region.
  1419. */
  1420. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1421. struct kvm_memory_alias *alias)
  1422. {
  1423. int r, n;
  1424. struct kvm_mem_alias *p;
  1425. r = -EINVAL;
  1426. /* General sanity checks */
  1427. if (alias->memory_size & (PAGE_SIZE - 1))
  1428. goto out;
  1429. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1430. goto out;
  1431. if (alias->slot >= KVM_ALIAS_SLOTS)
  1432. goto out;
  1433. if (alias->guest_phys_addr + alias->memory_size
  1434. < alias->guest_phys_addr)
  1435. goto out;
  1436. if (alias->target_phys_addr + alias->memory_size
  1437. < alias->target_phys_addr)
  1438. goto out;
  1439. down_write(&kvm->slots_lock);
  1440. spin_lock(&kvm->mmu_lock);
  1441. p = &kvm->arch.aliases[alias->slot];
  1442. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1443. p->npages = alias->memory_size >> PAGE_SHIFT;
  1444. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1445. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1446. if (kvm->arch.aliases[n - 1].npages)
  1447. break;
  1448. kvm->arch.naliases = n;
  1449. spin_unlock(&kvm->mmu_lock);
  1450. kvm_mmu_zap_all(kvm);
  1451. up_write(&kvm->slots_lock);
  1452. return 0;
  1453. out:
  1454. return r;
  1455. }
  1456. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1457. {
  1458. int r;
  1459. r = 0;
  1460. switch (chip->chip_id) {
  1461. case KVM_IRQCHIP_PIC_MASTER:
  1462. memcpy(&chip->chip.pic,
  1463. &pic_irqchip(kvm)->pics[0],
  1464. sizeof(struct kvm_pic_state));
  1465. break;
  1466. case KVM_IRQCHIP_PIC_SLAVE:
  1467. memcpy(&chip->chip.pic,
  1468. &pic_irqchip(kvm)->pics[1],
  1469. sizeof(struct kvm_pic_state));
  1470. break;
  1471. case KVM_IRQCHIP_IOAPIC:
  1472. memcpy(&chip->chip.ioapic,
  1473. ioapic_irqchip(kvm),
  1474. sizeof(struct kvm_ioapic_state));
  1475. break;
  1476. default:
  1477. r = -EINVAL;
  1478. break;
  1479. }
  1480. return r;
  1481. }
  1482. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1483. {
  1484. int r;
  1485. r = 0;
  1486. switch (chip->chip_id) {
  1487. case KVM_IRQCHIP_PIC_MASTER:
  1488. memcpy(&pic_irqchip(kvm)->pics[0],
  1489. &chip->chip.pic,
  1490. sizeof(struct kvm_pic_state));
  1491. break;
  1492. case KVM_IRQCHIP_PIC_SLAVE:
  1493. memcpy(&pic_irqchip(kvm)->pics[1],
  1494. &chip->chip.pic,
  1495. sizeof(struct kvm_pic_state));
  1496. break;
  1497. case KVM_IRQCHIP_IOAPIC:
  1498. memcpy(ioapic_irqchip(kvm),
  1499. &chip->chip.ioapic,
  1500. sizeof(struct kvm_ioapic_state));
  1501. break;
  1502. default:
  1503. r = -EINVAL;
  1504. break;
  1505. }
  1506. kvm_pic_update_irq(pic_irqchip(kvm));
  1507. return r;
  1508. }
  1509. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1510. {
  1511. int r = 0;
  1512. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1513. return r;
  1514. }
  1515. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1516. {
  1517. int r = 0;
  1518. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1519. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1520. return r;
  1521. }
  1522. /*
  1523. * Get (and clear) the dirty memory log for a memory slot.
  1524. */
  1525. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1526. struct kvm_dirty_log *log)
  1527. {
  1528. int r;
  1529. int n;
  1530. struct kvm_memory_slot *memslot;
  1531. int is_dirty = 0;
  1532. down_write(&kvm->slots_lock);
  1533. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1534. if (r)
  1535. goto out;
  1536. /* If nothing is dirty, don't bother messing with page tables. */
  1537. if (is_dirty) {
  1538. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1539. kvm_flush_remote_tlbs(kvm);
  1540. memslot = &kvm->memslots[log->slot];
  1541. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1542. memset(memslot->dirty_bitmap, 0, n);
  1543. }
  1544. r = 0;
  1545. out:
  1546. up_write(&kvm->slots_lock);
  1547. return r;
  1548. }
  1549. long kvm_arch_vm_ioctl(struct file *filp,
  1550. unsigned int ioctl, unsigned long arg)
  1551. {
  1552. struct kvm *kvm = filp->private_data;
  1553. void __user *argp = (void __user *)arg;
  1554. int r = -EINVAL;
  1555. /*
  1556. * This union makes it completely explicit to gcc-3.x
  1557. * that these two variables' stack usage should be
  1558. * combined, not added together.
  1559. */
  1560. union {
  1561. struct kvm_pit_state ps;
  1562. struct kvm_memory_alias alias;
  1563. } u;
  1564. switch (ioctl) {
  1565. case KVM_SET_TSS_ADDR:
  1566. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1567. if (r < 0)
  1568. goto out;
  1569. break;
  1570. case KVM_SET_MEMORY_REGION: {
  1571. struct kvm_memory_region kvm_mem;
  1572. struct kvm_userspace_memory_region kvm_userspace_mem;
  1573. r = -EFAULT;
  1574. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1575. goto out;
  1576. kvm_userspace_mem.slot = kvm_mem.slot;
  1577. kvm_userspace_mem.flags = kvm_mem.flags;
  1578. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1579. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1580. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1581. if (r)
  1582. goto out;
  1583. break;
  1584. }
  1585. case KVM_SET_NR_MMU_PAGES:
  1586. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1587. if (r)
  1588. goto out;
  1589. break;
  1590. case KVM_GET_NR_MMU_PAGES:
  1591. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1592. break;
  1593. case KVM_SET_MEMORY_ALIAS:
  1594. r = -EFAULT;
  1595. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1596. goto out;
  1597. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1598. if (r)
  1599. goto out;
  1600. break;
  1601. case KVM_CREATE_IRQCHIP:
  1602. r = -ENOMEM;
  1603. kvm->arch.vpic = kvm_create_pic(kvm);
  1604. if (kvm->arch.vpic) {
  1605. r = kvm_ioapic_init(kvm);
  1606. if (r) {
  1607. kfree(kvm->arch.vpic);
  1608. kvm->arch.vpic = NULL;
  1609. goto out;
  1610. }
  1611. } else
  1612. goto out;
  1613. break;
  1614. case KVM_CREATE_PIT:
  1615. r = -ENOMEM;
  1616. kvm->arch.vpit = kvm_create_pit(kvm);
  1617. if (kvm->arch.vpit)
  1618. r = 0;
  1619. break;
  1620. case KVM_IRQ_LINE: {
  1621. struct kvm_irq_level irq_event;
  1622. r = -EFAULT;
  1623. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1624. goto out;
  1625. if (irqchip_in_kernel(kvm)) {
  1626. mutex_lock(&kvm->lock);
  1627. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1628. irq_event.irq, irq_event.level);
  1629. mutex_unlock(&kvm->lock);
  1630. r = 0;
  1631. }
  1632. break;
  1633. }
  1634. case KVM_GET_IRQCHIP: {
  1635. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1636. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1637. r = -ENOMEM;
  1638. if (!chip)
  1639. goto out;
  1640. r = -EFAULT;
  1641. if (copy_from_user(chip, argp, sizeof *chip))
  1642. goto get_irqchip_out;
  1643. r = -ENXIO;
  1644. if (!irqchip_in_kernel(kvm))
  1645. goto get_irqchip_out;
  1646. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1647. if (r)
  1648. goto get_irqchip_out;
  1649. r = -EFAULT;
  1650. if (copy_to_user(argp, chip, sizeof *chip))
  1651. goto get_irqchip_out;
  1652. r = 0;
  1653. get_irqchip_out:
  1654. kfree(chip);
  1655. if (r)
  1656. goto out;
  1657. break;
  1658. }
  1659. case KVM_SET_IRQCHIP: {
  1660. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1661. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1662. r = -ENOMEM;
  1663. if (!chip)
  1664. goto out;
  1665. r = -EFAULT;
  1666. if (copy_from_user(chip, argp, sizeof *chip))
  1667. goto set_irqchip_out;
  1668. r = -ENXIO;
  1669. if (!irqchip_in_kernel(kvm))
  1670. goto set_irqchip_out;
  1671. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1672. if (r)
  1673. goto set_irqchip_out;
  1674. r = 0;
  1675. set_irqchip_out:
  1676. kfree(chip);
  1677. if (r)
  1678. goto out;
  1679. break;
  1680. }
  1681. case KVM_GET_PIT: {
  1682. r = -EFAULT;
  1683. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1684. goto out;
  1685. r = -ENXIO;
  1686. if (!kvm->arch.vpit)
  1687. goto out;
  1688. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1689. if (r)
  1690. goto out;
  1691. r = -EFAULT;
  1692. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1693. goto out;
  1694. r = 0;
  1695. break;
  1696. }
  1697. case KVM_SET_PIT: {
  1698. r = -EFAULT;
  1699. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1700. goto out;
  1701. r = -ENXIO;
  1702. if (!kvm->arch.vpit)
  1703. goto out;
  1704. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1705. if (r)
  1706. goto out;
  1707. r = 0;
  1708. break;
  1709. }
  1710. default:
  1711. ;
  1712. }
  1713. out:
  1714. return r;
  1715. }
  1716. static void kvm_init_msr_list(void)
  1717. {
  1718. u32 dummy[2];
  1719. unsigned i, j;
  1720. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1721. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1722. continue;
  1723. if (j < i)
  1724. msrs_to_save[j] = msrs_to_save[i];
  1725. j++;
  1726. }
  1727. num_msrs_to_save = j;
  1728. }
  1729. /*
  1730. * Only apic need an MMIO device hook, so shortcut now..
  1731. */
  1732. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1733. gpa_t addr, int len,
  1734. int is_write)
  1735. {
  1736. struct kvm_io_device *dev;
  1737. if (vcpu->arch.apic) {
  1738. dev = &vcpu->arch.apic->dev;
  1739. if (dev->in_range(dev, addr, len, is_write))
  1740. return dev;
  1741. }
  1742. return NULL;
  1743. }
  1744. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1745. gpa_t addr, int len,
  1746. int is_write)
  1747. {
  1748. struct kvm_io_device *dev;
  1749. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1750. if (dev == NULL)
  1751. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1752. is_write);
  1753. return dev;
  1754. }
  1755. int emulator_read_std(unsigned long addr,
  1756. void *val,
  1757. unsigned int bytes,
  1758. struct kvm_vcpu *vcpu)
  1759. {
  1760. void *data = val;
  1761. int r = X86EMUL_CONTINUE;
  1762. while (bytes) {
  1763. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1764. unsigned offset = addr & (PAGE_SIZE-1);
  1765. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1766. int ret;
  1767. if (gpa == UNMAPPED_GVA) {
  1768. r = X86EMUL_PROPAGATE_FAULT;
  1769. goto out;
  1770. }
  1771. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1772. if (ret < 0) {
  1773. r = X86EMUL_UNHANDLEABLE;
  1774. goto out;
  1775. }
  1776. bytes -= tocopy;
  1777. data += tocopy;
  1778. addr += tocopy;
  1779. }
  1780. out:
  1781. return r;
  1782. }
  1783. EXPORT_SYMBOL_GPL(emulator_read_std);
  1784. static int emulator_read_emulated(unsigned long addr,
  1785. void *val,
  1786. unsigned int bytes,
  1787. struct kvm_vcpu *vcpu)
  1788. {
  1789. struct kvm_io_device *mmio_dev;
  1790. gpa_t gpa;
  1791. if (vcpu->mmio_read_completed) {
  1792. memcpy(val, vcpu->mmio_data, bytes);
  1793. vcpu->mmio_read_completed = 0;
  1794. return X86EMUL_CONTINUE;
  1795. }
  1796. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1797. /* For APIC access vmexit */
  1798. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1799. goto mmio;
  1800. if (emulator_read_std(addr, val, bytes, vcpu)
  1801. == X86EMUL_CONTINUE)
  1802. return X86EMUL_CONTINUE;
  1803. if (gpa == UNMAPPED_GVA)
  1804. return X86EMUL_PROPAGATE_FAULT;
  1805. mmio:
  1806. /*
  1807. * Is this MMIO handled locally?
  1808. */
  1809. mutex_lock(&vcpu->kvm->lock);
  1810. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1811. if (mmio_dev) {
  1812. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1813. mutex_unlock(&vcpu->kvm->lock);
  1814. return X86EMUL_CONTINUE;
  1815. }
  1816. mutex_unlock(&vcpu->kvm->lock);
  1817. vcpu->mmio_needed = 1;
  1818. vcpu->mmio_phys_addr = gpa;
  1819. vcpu->mmio_size = bytes;
  1820. vcpu->mmio_is_write = 0;
  1821. return X86EMUL_UNHANDLEABLE;
  1822. }
  1823. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1824. const void *val, int bytes)
  1825. {
  1826. int ret;
  1827. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1828. if (ret < 0)
  1829. return 0;
  1830. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1831. return 1;
  1832. }
  1833. static int emulator_write_emulated_onepage(unsigned long addr,
  1834. const void *val,
  1835. unsigned int bytes,
  1836. struct kvm_vcpu *vcpu)
  1837. {
  1838. struct kvm_io_device *mmio_dev;
  1839. gpa_t gpa;
  1840. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1841. if (gpa == UNMAPPED_GVA) {
  1842. kvm_inject_page_fault(vcpu, addr, 2);
  1843. return X86EMUL_PROPAGATE_FAULT;
  1844. }
  1845. /* For APIC access vmexit */
  1846. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1847. goto mmio;
  1848. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1849. return X86EMUL_CONTINUE;
  1850. mmio:
  1851. /*
  1852. * Is this MMIO handled locally?
  1853. */
  1854. mutex_lock(&vcpu->kvm->lock);
  1855. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1856. if (mmio_dev) {
  1857. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1858. mutex_unlock(&vcpu->kvm->lock);
  1859. return X86EMUL_CONTINUE;
  1860. }
  1861. mutex_unlock(&vcpu->kvm->lock);
  1862. vcpu->mmio_needed = 1;
  1863. vcpu->mmio_phys_addr = gpa;
  1864. vcpu->mmio_size = bytes;
  1865. vcpu->mmio_is_write = 1;
  1866. memcpy(vcpu->mmio_data, val, bytes);
  1867. return X86EMUL_CONTINUE;
  1868. }
  1869. int emulator_write_emulated(unsigned long addr,
  1870. const void *val,
  1871. unsigned int bytes,
  1872. struct kvm_vcpu *vcpu)
  1873. {
  1874. /* Crossing a page boundary? */
  1875. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1876. int rc, now;
  1877. now = -addr & ~PAGE_MASK;
  1878. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1879. if (rc != X86EMUL_CONTINUE)
  1880. return rc;
  1881. addr += now;
  1882. val += now;
  1883. bytes -= now;
  1884. }
  1885. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1886. }
  1887. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1888. static int emulator_cmpxchg_emulated(unsigned long addr,
  1889. const void *old,
  1890. const void *new,
  1891. unsigned int bytes,
  1892. struct kvm_vcpu *vcpu)
  1893. {
  1894. static int reported;
  1895. if (!reported) {
  1896. reported = 1;
  1897. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1898. }
  1899. #ifndef CONFIG_X86_64
  1900. /* guests cmpxchg8b have to be emulated atomically */
  1901. if (bytes == 8) {
  1902. gpa_t gpa;
  1903. struct page *page;
  1904. char *kaddr;
  1905. u64 val;
  1906. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1907. if (gpa == UNMAPPED_GVA ||
  1908. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1909. goto emul_write;
  1910. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1911. goto emul_write;
  1912. val = *(u64 *)new;
  1913. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1914. kaddr = kmap_atomic(page, KM_USER0);
  1915. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1916. kunmap_atomic(kaddr, KM_USER0);
  1917. kvm_release_page_dirty(page);
  1918. }
  1919. emul_write:
  1920. #endif
  1921. return emulator_write_emulated(addr, new, bytes, vcpu);
  1922. }
  1923. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1924. {
  1925. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1926. }
  1927. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1928. {
  1929. kvm_mmu_invlpg(vcpu, address);
  1930. return X86EMUL_CONTINUE;
  1931. }
  1932. int emulate_clts(struct kvm_vcpu *vcpu)
  1933. {
  1934. KVMTRACE_0D(CLTS, vcpu, handler);
  1935. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1936. return X86EMUL_CONTINUE;
  1937. }
  1938. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1939. {
  1940. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1941. switch (dr) {
  1942. case 0 ... 3:
  1943. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1944. return X86EMUL_CONTINUE;
  1945. default:
  1946. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1947. return X86EMUL_UNHANDLEABLE;
  1948. }
  1949. }
  1950. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1951. {
  1952. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1953. int exception;
  1954. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1955. if (exception) {
  1956. /* FIXME: better handling */
  1957. return X86EMUL_UNHANDLEABLE;
  1958. }
  1959. return X86EMUL_CONTINUE;
  1960. }
  1961. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1962. {
  1963. u8 opcodes[4];
  1964. unsigned long rip = kvm_rip_read(vcpu);
  1965. unsigned long rip_linear;
  1966. if (!printk_ratelimit())
  1967. return;
  1968. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1969. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1970. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1971. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1972. }
  1973. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1974. static struct x86_emulate_ops emulate_ops = {
  1975. .read_std = emulator_read_std,
  1976. .read_emulated = emulator_read_emulated,
  1977. .write_emulated = emulator_write_emulated,
  1978. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1979. };
  1980. static void cache_all_regs(struct kvm_vcpu *vcpu)
  1981. {
  1982. kvm_register_read(vcpu, VCPU_REGS_RAX);
  1983. kvm_register_read(vcpu, VCPU_REGS_RSP);
  1984. kvm_register_read(vcpu, VCPU_REGS_RIP);
  1985. vcpu->arch.regs_dirty = ~0;
  1986. }
  1987. int emulate_instruction(struct kvm_vcpu *vcpu,
  1988. struct kvm_run *run,
  1989. unsigned long cr2,
  1990. u16 error_code,
  1991. int emulation_type)
  1992. {
  1993. int r;
  1994. struct decode_cache *c;
  1995. kvm_clear_exception_queue(vcpu);
  1996. vcpu->arch.mmio_fault_cr2 = cr2;
  1997. /*
  1998. * TODO: fix x86_emulate.c to use guest_read/write_register
  1999. * instead of direct ->regs accesses, can save hundred cycles
  2000. * on Intel for instructions that don't read/change RSP, for
  2001. * for example.
  2002. */
  2003. cache_all_regs(vcpu);
  2004. vcpu->mmio_is_write = 0;
  2005. vcpu->arch.pio.string = 0;
  2006. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2007. int cs_db, cs_l;
  2008. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2009. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2010. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2011. vcpu->arch.emulate_ctxt.mode =
  2012. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2013. ? X86EMUL_MODE_REAL : cs_l
  2014. ? X86EMUL_MODE_PROT64 : cs_db
  2015. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2016. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2017. /* Reject the instructions other than VMCALL/VMMCALL when
  2018. * try to emulate invalid opcode */
  2019. c = &vcpu->arch.emulate_ctxt.decode;
  2020. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2021. (!(c->twobyte && c->b == 0x01 &&
  2022. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2023. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2024. return EMULATE_FAIL;
  2025. ++vcpu->stat.insn_emulation;
  2026. if (r) {
  2027. ++vcpu->stat.insn_emulation_fail;
  2028. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2029. return EMULATE_DONE;
  2030. return EMULATE_FAIL;
  2031. }
  2032. }
  2033. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2034. if (vcpu->arch.pio.string)
  2035. return EMULATE_DO_MMIO;
  2036. if ((r || vcpu->mmio_is_write) && run) {
  2037. run->exit_reason = KVM_EXIT_MMIO;
  2038. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2039. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2040. run->mmio.len = vcpu->mmio_size;
  2041. run->mmio.is_write = vcpu->mmio_is_write;
  2042. }
  2043. if (r) {
  2044. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2045. return EMULATE_DONE;
  2046. if (!vcpu->mmio_needed) {
  2047. kvm_report_emulation_failure(vcpu, "mmio");
  2048. return EMULATE_FAIL;
  2049. }
  2050. return EMULATE_DO_MMIO;
  2051. }
  2052. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2053. if (vcpu->mmio_is_write) {
  2054. vcpu->mmio_needed = 0;
  2055. return EMULATE_DO_MMIO;
  2056. }
  2057. return EMULATE_DONE;
  2058. }
  2059. EXPORT_SYMBOL_GPL(emulate_instruction);
  2060. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  2061. {
  2062. int i;
  2063. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  2064. if (vcpu->arch.pio.guest_pages[i]) {
  2065. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  2066. vcpu->arch.pio.guest_pages[i] = NULL;
  2067. }
  2068. }
  2069. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2070. {
  2071. void *p = vcpu->arch.pio_data;
  2072. void *q;
  2073. unsigned bytes;
  2074. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  2075. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  2076. PAGE_KERNEL);
  2077. if (!q) {
  2078. free_pio_guest_pages(vcpu);
  2079. return -ENOMEM;
  2080. }
  2081. q += vcpu->arch.pio.guest_page_offset;
  2082. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2083. if (vcpu->arch.pio.in)
  2084. memcpy(q, p, bytes);
  2085. else
  2086. memcpy(p, q, bytes);
  2087. q -= vcpu->arch.pio.guest_page_offset;
  2088. vunmap(q);
  2089. free_pio_guest_pages(vcpu);
  2090. return 0;
  2091. }
  2092. int complete_pio(struct kvm_vcpu *vcpu)
  2093. {
  2094. struct kvm_pio_request *io = &vcpu->arch.pio;
  2095. long delta;
  2096. int r;
  2097. unsigned long val;
  2098. if (!io->string) {
  2099. if (io->in) {
  2100. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2101. memcpy(&val, vcpu->arch.pio_data, io->size);
  2102. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2103. }
  2104. } else {
  2105. if (io->in) {
  2106. r = pio_copy_data(vcpu);
  2107. if (r)
  2108. return r;
  2109. }
  2110. delta = 1;
  2111. if (io->rep) {
  2112. delta *= io->cur_count;
  2113. /*
  2114. * The size of the register should really depend on
  2115. * current address size.
  2116. */
  2117. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2118. val -= delta;
  2119. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2120. }
  2121. if (io->down)
  2122. delta = -delta;
  2123. delta *= io->size;
  2124. if (io->in) {
  2125. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2126. val += delta;
  2127. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2128. } else {
  2129. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2130. val += delta;
  2131. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2132. }
  2133. }
  2134. io->count -= io->cur_count;
  2135. io->cur_count = 0;
  2136. return 0;
  2137. }
  2138. static void kernel_pio(struct kvm_io_device *pio_dev,
  2139. struct kvm_vcpu *vcpu,
  2140. void *pd)
  2141. {
  2142. /* TODO: String I/O for in kernel device */
  2143. mutex_lock(&vcpu->kvm->lock);
  2144. if (vcpu->arch.pio.in)
  2145. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2146. vcpu->arch.pio.size,
  2147. pd);
  2148. else
  2149. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2150. vcpu->arch.pio.size,
  2151. pd);
  2152. mutex_unlock(&vcpu->kvm->lock);
  2153. }
  2154. static void pio_string_write(struct kvm_io_device *pio_dev,
  2155. struct kvm_vcpu *vcpu)
  2156. {
  2157. struct kvm_pio_request *io = &vcpu->arch.pio;
  2158. void *pd = vcpu->arch.pio_data;
  2159. int i;
  2160. mutex_lock(&vcpu->kvm->lock);
  2161. for (i = 0; i < io->cur_count; i++) {
  2162. kvm_iodevice_write(pio_dev, io->port,
  2163. io->size,
  2164. pd);
  2165. pd += io->size;
  2166. }
  2167. mutex_unlock(&vcpu->kvm->lock);
  2168. }
  2169. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2170. gpa_t addr, int len,
  2171. int is_write)
  2172. {
  2173. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2174. }
  2175. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2176. int size, unsigned port)
  2177. {
  2178. struct kvm_io_device *pio_dev;
  2179. unsigned long val;
  2180. vcpu->run->exit_reason = KVM_EXIT_IO;
  2181. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2182. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2183. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2184. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2185. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2186. vcpu->arch.pio.in = in;
  2187. vcpu->arch.pio.string = 0;
  2188. vcpu->arch.pio.down = 0;
  2189. vcpu->arch.pio.guest_page_offset = 0;
  2190. vcpu->arch.pio.rep = 0;
  2191. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2192. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2193. handler);
  2194. else
  2195. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2196. handler);
  2197. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2198. memcpy(vcpu->arch.pio_data, &val, 4);
  2199. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2200. if (pio_dev) {
  2201. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2202. complete_pio(vcpu);
  2203. return 1;
  2204. }
  2205. return 0;
  2206. }
  2207. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2208. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2209. int size, unsigned long count, int down,
  2210. gva_t address, int rep, unsigned port)
  2211. {
  2212. unsigned now, in_page;
  2213. int i, ret = 0;
  2214. int nr_pages = 1;
  2215. struct page *page;
  2216. struct kvm_io_device *pio_dev;
  2217. vcpu->run->exit_reason = KVM_EXIT_IO;
  2218. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2219. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2220. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2221. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2222. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2223. vcpu->arch.pio.in = in;
  2224. vcpu->arch.pio.string = 1;
  2225. vcpu->arch.pio.down = down;
  2226. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2227. vcpu->arch.pio.rep = rep;
  2228. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2229. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2230. handler);
  2231. else
  2232. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2233. handler);
  2234. if (!count) {
  2235. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2236. return 1;
  2237. }
  2238. if (!down)
  2239. in_page = PAGE_SIZE - offset_in_page(address);
  2240. else
  2241. in_page = offset_in_page(address) + size;
  2242. now = min(count, (unsigned long)in_page / size);
  2243. if (!now) {
  2244. /*
  2245. * String I/O straddles page boundary. Pin two guest pages
  2246. * so that we satisfy atomicity constraints. Do just one
  2247. * transaction to avoid complexity.
  2248. */
  2249. nr_pages = 2;
  2250. now = 1;
  2251. }
  2252. if (down) {
  2253. /*
  2254. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2255. */
  2256. pr_unimpl(vcpu, "guest string pio down\n");
  2257. kvm_inject_gp(vcpu, 0);
  2258. return 1;
  2259. }
  2260. vcpu->run->io.count = now;
  2261. vcpu->arch.pio.cur_count = now;
  2262. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2263. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2264. for (i = 0; i < nr_pages; ++i) {
  2265. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2266. vcpu->arch.pio.guest_pages[i] = page;
  2267. if (!page) {
  2268. kvm_inject_gp(vcpu, 0);
  2269. free_pio_guest_pages(vcpu);
  2270. return 1;
  2271. }
  2272. }
  2273. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2274. vcpu->arch.pio.cur_count,
  2275. !vcpu->arch.pio.in);
  2276. if (!vcpu->arch.pio.in) {
  2277. /* string PIO write */
  2278. ret = pio_copy_data(vcpu);
  2279. if (ret >= 0 && pio_dev) {
  2280. pio_string_write(pio_dev, vcpu);
  2281. complete_pio(vcpu);
  2282. if (vcpu->arch.pio.count == 0)
  2283. ret = 1;
  2284. }
  2285. } else if (pio_dev)
  2286. pr_unimpl(vcpu, "no string pio read support yet, "
  2287. "port %x size %d count %ld\n",
  2288. port, size, count);
  2289. return ret;
  2290. }
  2291. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2292. int kvm_arch_init(void *opaque)
  2293. {
  2294. int r;
  2295. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2296. if (kvm_x86_ops) {
  2297. printk(KERN_ERR "kvm: already loaded the other module\n");
  2298. r = -EEXIST;
  2299. goto out;
  2300. }
  2301. if (!ops->cpu_has_kvm_support()) {
  2302. printk(KERN_ERR "kvm: no hardware support\n");
  2303. r = -EOPNOTSUPP;
  2304. goto out;
  2305. }
  2306. if (ops->disabled_by_bios()) {
  2307. printk(KERN_ERR "kvm: disabled by bios\n");
  2308. r = -EOPNOTSUPP;
  2309. goto out;
  2310. }
  2311. r = kvm_mmu_module_init();
  2312. if (r)
  2313. goto out;
  2314. kvm_init_msr_list();
  2315. kvm_x86_ops = ops;
  2316. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2317. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2318. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2319. PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
  2320. return 0;
  2321. out:
  2322. return r;
  2323. }
  2324. void kvm_arch_exit(void)
  2325. {
  2326. kvm_x86_ops = NULL;
  2327. kvm_mmu_module_exit();
  2328. }
  2329. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2330. {
  2331. ++vcpu->stat.halt_exits;
  2332. KVMTRACE_0D(HLT, vcpu, handler);
  2333. if (irqchip_in_kernel(vcpu->kvm)) {
  2334. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2335. return 1;
  2336. } else {
  2337. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2338. return 0;
  2339. }
  2340. }
  2341. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2342. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2343. unsigned long a1)
  2344. {
  2345. if (is_long_mode(vcpu))
  2346. return a0;
  2347. else
  2348. return a0 | ((gpa_t)a1 << 32);
  2349. }
  2350. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2351. {
  2352. unsigned long nr, a0, a1, a2, a3, ret;
  2353. int r = 1;
  2354. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2355. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2356. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2357. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2358. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2359. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2360. if (!is_long_mode(vcpu)) {
  2361. nr &= 0xFFFFFFFF;
  2362. a0 &= 0xFFFFFFFF;
  2363. a1 &= 0xFFFFFFFF;
  2364. a2 &= 0xFFFFFFFF;
  2365. a3 &= 0xFFFFFFFF;
  2366. }
  2367. switch (nr) {
  2368. case KVM_HC_VAPIC_POLL_IRQ:
  2369. ret = 0;
  2370. break;
  2371. case KVM_HC_MMU_OP:
  2372. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2373. break;
  2374. default:
  2375. ret = -KVM_ENOSYS;
  2376. break;
  2377. }
  2378. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2379. ++vcpu->stat.hypercalls;
  2380. return r;
  2381. }
  2382. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2383. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2384. {
  2385. char instruction[3];
  2386. int ret = 0;
  2387. unsigned long rip = kvm_rip_read(vcpu);
  2388. /*
  2389. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2390. * to ensure that the updated hypercall appears atomically across all
  2391. * VCPUs.
  2392. */
  2393. kvm_mmu_zap_all(vcpu->kvm);
  2394. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2395. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2396. != X86EMUL_CONTINUE)
  2397. ret = -EFAULT;
  2398. return ret;
  2399. }
  2400. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2401. {
  2402. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2403. }
  2404. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2405. {
  2406. struct descriptor_table dt = { limit, base };
  2407. kvm_x86_ops->set_gdt(vcpu, &dt);
  2408. }
  2409. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2410. {
  2411. struct descriptor_table dt = { limit, base };
  2412. kvm_x86_ops->set_idt(vcpu, &dt);
  2413. }
  2414. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2415. unsigned long *rflags)
  2416. {
  2417. kvm_lmsw(vcpu, msw);
  2418. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2419. }
  2420. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2421. {
  2422. unsigned long value;
  2423. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2424. switch (cr) {
  2425. case 0:
  2426. value = vcpu->arch.cr0;
  2427. break;
  2428. case 2:
  2429. value = vcpu->arch.cr2;
  2430. break;
  2431. case 3:
  2432. value = vcpu->arch.cr3;
  2433. break;
  2434. case 4:
  2435. value = vcpu->arch.cr4;
  2436. break;
  2437. case 8:
  2438. value = kvm_get_cr8(vcpu);
  2439. break;
  2440. default:
  2441. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2442. return 0;
  2443. }
  2444. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2445. (u32)((u64)value >> 32), handler);
  2446. return value;
  2447. }
  2448. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2449. unsigned long *rflags)
  2450. {
  2451. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2452. (u32)((u64)val >> 32), handler);
  2453. switch (cr) {
  2454. case 0:
  2455. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2456. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2457. break;
  2458. case 2:
  2459. vcpu->arch.cr2 = val;
  2460. break;
  2461. case 3:
  2462. kvm_set_cr3(vcpu, val);
  2463. break;
  2464. case 4:
  2465. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2466. break;
  2467. case 8:
  2468. kvm_set_cr8(vcpu, val & 0xfUL);
  2469. break;
  2470. default:
  2471. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2472. }
  2473. }
  2474. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2475. {
  2476. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2477. int j, nent = vcpu->arch.cpuid_nent;
  2478. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2479. /* when no next entry is found, the current entry[i] is reselected */
  2480. for (j = i + 1; ; j = (j + 1) % nent) {
  2481. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2482. if (ej->function == e->function) {
  2483. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2484. return j;
  2485. }
  2486. }
  2487. return 0; /* silence gcc, even though control never reaches here */
  2488. }
  2489. /* find an entry with matching function, matching index (if needed), and that
  2490. * should be read next (if it's stateful) */
  2491. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2492. u32 function, u32 index)
  2493. {
  2494. if (e->function != function)
  2495. return 0;
  2496. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2497. return 0;
  2498. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2499. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2500. return 0;
  2501. return 1;
  2502. }
  2503. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2504. u32 function, u32 index)
  2505. {
  2506. int i;
  2507. struct kvm_cpuid_entry2 *best = NULL;
  2508. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2509. struct kvm_cpuid_entry2 *e;
  2510. e = &vcpu->arch.cpuid_entries[i];
  2511. if (is_matching_cpuid_entry(e, function, index)) {
  2512. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2513. move_to_next_stateful_cpuid_entry(vcpu, i);
  2514. best = e;
  2515. break;
  2516. }
  2517. /*
  2518. * Both basic or both extended?
  2519. */
  2520. if (((e->function ^ function) & 0x80000000) == 0)
  2521. if (!best || e->function > best->function)
  2522. best = e;
  2523. }
  2524. return best;
  2525. }
  2526. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2527. {
  2528. u32 function, index;
  2529. struct kvm_cpuid_entry2 *best;
  2530. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2531. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2532. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2533. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2534. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2535. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2536. best = kvm_find_cpuid_entry(vcpu, function, index);
  2537. if (best) {
  2538. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2539. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2540. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2541. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2542. }
  2543. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2544. KVMTRACE_5D(CPUID, vcpu, function,
  2545. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2546. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2547. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2548. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2549. }
  2550. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2551. /*
  2552. * Check if userspace requested an interrupt window, and that the
  2553. * interrupt window is open.
  2554. *
  2555. * No need to exit to userspace if we already have an interrupt queued.
  2556. */
  2557. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2558. struct kvm_run *kvm_run)
  2559. {
  2560. return (!vcpu->arch.irq_summary &&
  2561. kvm_run->request_interrupt_window &&
  2562. vcpu->arch.interrupt_window_open &&
  2563. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2564. }
  2565. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2566. struct kvm_run *kvm_run)
  2567. {
  2568. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2569. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2570. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2571. if (irqchip_in_kernel(vcpu->kvm))
  2572. kvm_run->ready_for_interrupt_injection = 1;
  2573. else
  2574. kvm_run->ready_for_interrupt_injection =
  2575. (vcpu->arch.interrupt_window_open &&
  2576. vcpu->arch.irq_summary == 0);
  2577. }
  2578. static void vapic_enter(struct kvm_vcpu *vcpu)
  2579. {
  2580. struct kvm_lapic *apic = vcpu->arch.apic;
  2581. struct page *page;
  2582. if (!apic || !apic->vapic_addr)
  2583. return;
  2584. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2585. vcpu->arch.apic->vapic_page = page;
  2586. }
  2587. static void vapic_exit(struct kvm_vcpu *vcpu)
  2588. {
  2589. struct kvm_lapic *apic = vcpu->arch.apic;
  2590. if (!apic || !apic->vapic_addr)
  2591. return;
  2592. down_read(&vcpu->kvm->slots_lock);
  2593. kvm_release_page_dirty(apic->vapic_page);
  2594. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2595. up_read(&vcpu->kvm->slots_lock);
  2596. }
  2597. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2598. {
  2599. int r;
  2600. if (vcpu->requests)
  2601. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2602. kvm_mmu_unload(vcpu);
  2603. r = kvm_mmu_reload(vcpu);
  2604. if (unlikely(r))
  2605. goto out;
  2606. if (vcpu->requests) {
  2607. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2608. __kvm_migrate_timers(vcpu);
  2609. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2610. kvm_mmu_sync_roots(vcpu);
  2611. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2612. kvm_x86_ops->tlb_flush(vcpu);
  2613. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2614. &vcpu->requests)) {
  2615. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2616. r = 0;
  2617. goto out;
  2618. }
  2619. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2620. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2621. r = 0;
  2622. goto out;
  2623. }
  2624. }
  2625. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2626. kvm_inject_pending_timer_irqs(vcpu);
  2627. preempt_disable();
  2628. kvm_x86_ops->prepare_guest_switch(vcpu);
  2629. kvm_load_guest_fpu(vcpu);
  2630. local_irq_disable();
  2631. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2632. local_irq_enable();
  2633. preempt_enable();
  2634. r = 1;
  2635. goto out;
  2636. }
  2637. if (vcpu->guest_debug.enabled)
  2638. kvm_x86_ops->guest_debug_pre(vcpu);
  2639. vcpu->guest_mode = 1;
  2640. /*
  2641. * Make sure that guest_mode assignment won't happen after
  2642. * testing the pending IRQ vector bitmap.
  2643. */
  2644. smp_wmb();
  2645. if (vcpu->arch.exception.pending)
  2646. __queue_exception(vcpu);
  2647. else if (irqchip_in_kernel(vcpu->kvm))
  2648. kvm_x86_ops->inject_pending_irq(vcpu);
  2649. else
  2650. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2651. kvm_lapic_sync_to_vapic(vcpu);
  2652. up_read(&vcpu->kvm->slots_lock);
  2653. kvm_guest_enter();
  2654. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2655. kvm_x86_ops->run(vcpu, kvm_run);
  2656. vcpu->guest_mode = 0;
  2657. local_irq_enable();
  2658. ++vcpu->stat.exits;
  2659. /*
  2660. * We must have an instruction between local_irq_enable() and
  2661. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2662. * the interrupt shadow. The stat.exits increment will do nicely.
  2663. * But we need to prevent reordering, hence this barrier():
  2664. */
  2665. barrier();
  2666. kvm_guest_exit();
  2667. preempt_enable();
  2668. down_read(&vcpu->kvm->slots_lock);
  2669. /*
  2670. * Profile KVM exit RIPs:
  2671. */
  2672. if (unlikely(prof_on == KVM_PROFILING)) {
  2673. unsigned long rip = kvm_rip_read(vcpu);
  2674. profile_hit(KVM_PROFILING, (void *)rip);
  2675. }
  2676. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2677. vcpu->arch.exception.pending = false;
  2678. kvm_lapic_sync_from_vapic(vcpu);
  2679. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2680. out:
  2681. return r;
  2682. }
  2683. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2684. {
  2685. int r;
  2686. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2687. pr_debug("vcpu %d received sipi with vector # %x\n",
  2688. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2689. kvm_lapic_reset(vcpu);
  2690. r = kvm_arch_vcpu_reset(vcpu);
  2691. if (r)
  2692. return r;
  2693. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2694. }
  2695. down_read(&vcpu->kvm->slots_lock);
  2696. vapic_enter(vcpu);
  2697. r = 1;
  2698. while (r > 0) {
  2699. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2700. r = vcpu_enter_guest(vcpu, kvm_run);
  2701. else {
  2702. up_read(&vcpu->kvm->slots_lock);
  2703. kvm_vcpu_block(vcpu);
  2704. down_read(&vcpu->kvm->slots_lock);
  2705. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2706. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  2707. vcpu->arch.mp_state =
  2708. KVM_MP_STATE_RUNNABLE;
  2709. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2710. r = -EINTR;
  2711. }
  2712. if (r > 0) {
  2713. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2714. r = -EINTR;
  2715. kvm_run->exit_reason = KVM_EXIT_INTR;
  2716. ++vcpu->stat.request_irq_exits;
  2717. }
  2718. if (signal_pending(current)) {
  2719. r = -EINTR;
  2720. kvm_run->exit_reason = KVM_EXIT_INTR;
  2721. ++vcpu->stat.signal_exits;
  2722. }
  2723. if (need_resched()) {
  2724. up_read(&vcpu->kvm->slots_lock);
  2725. kvm_resched(vcpu);
  2726. down_read(&vcpu->kvm->slots_lock);
  2727. }
  2728. }
  2729. }
  2730. up_read(&vcpu->kvm->slots_lock);
  2731. post_kvm_run_save(vcpu, kvm_run);
  2732. vapic_exit(vcpu);
  2733. return r;
  2734. }
  2735. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2736. {
  2737. int r;
  2738. sigset_t sigsaved;
  2739. vcpu_load(vcpu);
  2740. if (vcpu->sigset_active)
  2741. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2742. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2743. kvm_vcpu_block(vcpu);
  2744. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2745. r = -EAGAIN;
  2746. goto out;
  2747. }
  2748. /* re-sync apic's tpr */
  2749. if (!irqchip_in_kernel(vcpu->kvm))
  2750. kvm_set_cr8(vcpu, kvm_run->cr8);
  2751. if (vcpu->arch.pio.cur_count) {
  2752. r = complete_pio(vcpu);
  2753. if (r)
  2754. goto out;
  2755. }
  2756. #if CONFIG_HAS_IOMEM
  2757. if (vcpu->mmio_needed) {
  2758. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2759. vcpu->mmio_read_completed = 1;
  2760. vcpu->mmio_needed = 0;
  2761. down_read(&vcpu->kvm->slots_lock);
  2762. r = emulate_instruction(vcpu, kvm_run,
  2763. vcpu->arch.mmio_fault_cr2, 0,
  2764. EMULTYPE_NO_DECODE);
  2765. up_read(&vcpu->kvm->slots_lock);
  2766. if (r == EMULATE_DO_MMIO) {
  2767. /*
  2768. * Read-modify-write. Back to userspace.
  2769. */
  2770. r = 0;
  2771. goto out;
  2772. }
  2773. }
  2774. #endif
  2775. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2776. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2777. kvm_run->hypercall.ret);
  2778. r = __vcpu_run(vcpu, kvm_run);
  2779. out:
  2780. if (vcpu->sigset_active)
  2781. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2782. vcpu_put(vcpu);
  2783. return r;
  2784. }
  2785. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2786. {
  2787. vcpu_load(vcpu);
  2788. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2789. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2790. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2791. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2792. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2793. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2794. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2795. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2796. #ifdef CONFIG_X86_64
  2797. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2798. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2799. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2800. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2801. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2802. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2803. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2804. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2805. #endif
  2806. regs->rip = kvm_rip_read(vcpu);
  2807. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2808. /*
  2809. * Don't leak debug flags in case they were set for guest debugging
  2810. */
  2811. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2812. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2813. vcpu_put(vcpu);
  2814. return 0;
  2815. }
  2816. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2817. {
  2818. vcpu_load(vcpu);
  2819. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2820. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2821. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2822. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2823. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2824. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2825. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2826. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2827. #ifdef CONFIG_X86_64
  2828. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2829. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2830. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2831. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2832. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2833. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2834. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  2835. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  2836. #endif
  2837. kvm_rip_write(vcpu, regs->rip);
  2838. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2839. vcpu->arch.exception.pending = false;
  2840. vcpu_put(vcpu);
  2841. return 0;
  2842. }
  2843. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2844. struct kvm_segment *var, int seg)
  2845. {
  2846. kvm_x86_ops->get_segment(vcpu, var, seg);
  2847. }
  2848. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2849. {
  2850. struct kvm_segment cs;
  2851. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2852. *db = cs.db;
  2853. *l = cs.l;
  2854. }
  2855. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2856. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2857. struct kvm_sregs *sregs)
  2858. {
  2859. struct descriptor_table dt;
  2860. int pending_vec;
  2861. vcpu_load(vcpu);
  2862. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2863. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2864. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2865. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2866. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2867. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2868. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2869. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2870. kvm_x86_ops->get_idt(vcpu, &dt);
  2871. sregs->idt.limit = dt.limit;
  2872. sregs->idt.base = dt.base;
  2873. kvm_x86_ops->get_gdt(vcpu, &dt);
  2874. sregs->gdt.limit = dt.limit;
  2875. sregs->gdt.base = dt.base;
  2876. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2877. sregs->cr0 = vcpu->arch.cr0;
  2878. sregs->cr2 = vcpu->arch.cr2;
  2879. sregs->cr3 = vcpu->arch.cr3;
  2880. sregs->cr4 = vcpu->arch.cr4;
  2881. sregs->cr8 = kvm_get_cr8(vcpu);
  2882. sregs->efer = vcpu->arch.shadow_efer;
  2883. sregs->apic_base = kvm_get_apic_base(vcpu);
  2884. if (irqchip_in_kernel(vcpu->kvm)) {
  2885. memset(sregs->interrupt_bitmap, 0,
  2886. sizeof sregs->interrupt_bitmap);
  2887. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2888. if (pending_vec >= 0)
  2889. set_bit(pending_vec,
  2890. (unsigned long *)sregs->interrupt_bitmap);
  2891. } else
  2892. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2893. sizeof sregs->interrupt_bitmap);
  2894. vcpu_put(vcpu);
  2895. return 0;
  2896. }
  2897. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2898. struct kvm_mp_state *mp_state)
  2899. {
  2900. vcpu_load(vcpu);
  2901. mp_state->mp_state = vcpu->arch.mp_state;
  2902. vcpu_put(vcpu);
  2903. return 0;
  2904. }
  2905. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2906. struct kvm_mp_state *mp_state)
  2907. {
  2908. vcpu_load(vcpu);
  2909. vcpu->arch.mp_state = mp_state->mp_state;
  2910. vcpu_put(vcpu);
  2911. return 0;
  2912. }
  2913. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2914. struct kvm_segment *var, int seg)
  2915. {
  2916. kvm_x86_ops->set_segment(vcpu, var, seg);
  2917. }
  2918. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2919. struct kvm_segment *kvm_desct)
  2920. {
  2921. kvm_desct->base = seg_desc->base0;
  2922. kvm_desct->base |= seg_desc->base1 << 16;
  2923. kvm_desct->base |= seg_desc->base2 << 24;
  2924. kvm_desct->limit = seg_desc->limit0;
  2925. kvm_desct->limit |= seg_desc->limit << 16;
  2926. if (seg_desc->g) {
  2927. kvm_desct->limit <<= 12;
  2928. kvm_desct->limit |= 0xfff;
  2929. }
  2930. kvm_desct->selector = selector;
  2931. kvm_desct->type = seg_desc->type;
  2932. kvm_desct->present = seg_desc->p;
  2933. kvm_desct->dpl = seg_desc->dpl;
  2934. kvm_desct->db = seg_desc->d;
  2935. kvm_desct->s = seg_desc->s;
  2936. kvm_desct->l = seg_desc->l;
  2937. kvm_desct->g = seg_desc->g;
  2938. kvm_desct->avl = seg_desc->avl;
  2939. if (!selector)
  2940. kvm_desct->unusable = 1;
  2941. else
  2942. kvm_desct->unusable = 0;
  2943. kvm_desct->padding = 0;
  2944. }
  2945. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  2946. u16 selector,
  2947. struct descriptor_table *dtable)
  2948. {
  2949. if (selector & 1 << 2) {
  2950. struct kvm_segment kvm_seg;
  2951. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2952. if (kvm_seg.unusable)
  2953. dtable->limit = 0;
  2954. else
  2955. dtable->limit = kvm_seg.limit;
  2956. dtable->base = kvm_seg.base;
  2957. }
  2958. else
  2959. kvm_x86_ops->get_gdt(vcpu, dtable);
  2960. }
  2961. /* allowed just for 8 bytes segments */
  2962. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2963. struct desc_struct *seg_desc)
  2964. {
  2965. gpa_t gpa;
  2966. struct descriptor_table dtable;
  2967. u16 index = selector >> 3;
  2968. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  2969. if (dtable.limit < index * 8 + 7) {
  2970. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2971. return 1;
  2972. }
  2973. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2974. gpa += index * 8;
  2975. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  2976. }
  2977. /* allowed just for 8 bytes segments */
  2978. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2979. struct desc_struct *seg_desc)
  2980. {
  2981. gpa_t gpa;
  2982. struct descriptor_table dtable;
  2983. u16 index = selector >> 3;
  2984. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  2985. if (dtable.limit < index * 8 + 7)
  2986. return 1;
  2987. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2988. gpa += index * 8;
  2989. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  2990. }
  2991. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2992. struct desc_struct *seg_desc)
  2993. {
  2994. u32 base_addr;
  2995. base_addr = seg_desc->base0;
  2996. base_addr |= (seg_desc->base1 << 16);
  2997. base_addr |= (seg_desc->base2 << 24);
  2998. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  2999. }
  3000. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3001. {
  3002. struct kvm_segment kvm_seg;
  3003. kvm_get_segment(vcpu, &kvm_seg, seg);
  3004. return kvm_seg.selector;
  3005. }
  3006. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3007. u16 selector,
  3008. struct kvm_segment *kvm_seg)
  3009. {
  3010. struct desc_struct seg_desc;
  3011. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3012. return 1;
  3013. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3014. return 0;
  3015. }
  3016. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3017. {
  3018. struct kvm_segment segvar = {
  3019. .base = selector << 4,
  3020. .limit = 0xffff,
  3021. .selector = selector,
  3022. .type = 3,
  3023. .present = 1,
  3024. .dpl = 3,
  3025. .db = 0,
  3026. .s = 1,
  3027. .l = 0,
  3028. .g = 0,
  3029. .avl = 0,
  3030. .unusable = 0,
  3031. };
  3032. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3033. return 0;
  3034. }
  3035. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3036. int type_bits, int seg)
  3037. {
  3038. struct kvm_segment kvm_seg;
  3039. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3040. return kvm_load_realmode_segment(vcpu, selector, seg);
  3041. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3042. return 1;
  3043. kvm_seg.type |= type_bits;
  3044. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3045. seg != VCPU_SREG_LDTR)
  3046. if (!kvm_seg.s)
  3047. kvm_seg.unusable = 1;
  3048. kvm_set_segment(vcpu, &kvm_seg, seg);
  3049. return 0;
  3050. }
  3051. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3052. struct tss_segment_32 *tss)
  3053. {
  3054. tss->cr3 = vcpu->arch.cr3;
  3055. tss->eip = kvm_rip_read(vcpu);
  3056. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3057. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3058. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3059. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3060. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3061. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3062. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3063. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3064. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3065. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3066. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3067. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3068. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3069. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3070. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3071. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3072. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3073. }
  3074. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3075. struct tss_segment_32 *tss)
  3076. {
  3077. kvm_set_cr3(vcpu, tss->cr3);
  3078. kvm_rip_write(vcpu, tss->eip);
  3079. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3080. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3081. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3082. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3083. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3084. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3085. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3086. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3087. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3088. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3089. return 1;
  3090. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3091. return 1;
  3092. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3093. return 1;
  3094. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3095. return 1;
  3096. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3097. return 1;
  3098. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3099. return 1;
  3100. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3101. return 1;
  3102. return 0;
  3103. }
  3104. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3105. struct tss_segment_16 *tss)
  3106. {
  3107. tss->ip = kvm_rip_read(vcpu);
  3108. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3109. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3110. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3111. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3112. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3113. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3114. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3115. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3116. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3117. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3118. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3119. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3120. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3121. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3122. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3123. }
  3124. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3125. struct tss_segment_16 *tss)
  3126. {
  3127. kvm_rip_write(vcpu, tss->ip);
  3128. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3129. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3130. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3131. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3132. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3133. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3134. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3135. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3136. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3137. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3138. return 1;
  3139. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3140. return 1;
  3141. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3142. return 1;
  3143. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3144. return 1;
  3145. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3146. return 1;
  3147. return 0;
  3148. }
  3149. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3150. u32 old_tss_base,
  3151. struct desc_struct *nseg_desc)
  3152. {
  3153. struct tss_segment_16 tss_segment_16;
  3154. int ret = 0;
  3155. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3156. sizeof tss_segment_16))
  3157. goto out;
  3158. save_state_to_tss16(vcpu, &tss_segment_16);
  3159. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3160. sizeof tss_segment_16))
  3161. goto out;
  3162. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3163. &tss_segment_16, sizeof tss_segment_16))
  3164. goto out;
  3165. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3166. goto out;
  3167. ret = 1;
  3168. out:
  3169. return ret;
  3170. }
  3171. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3172. u32 old_tss_base,
  3173. struct desc_struct *nseg_desc)
  3174. {
  3175. struct tss_segment_32 tss_segment_32;
  3176. int ret = 0;
  3177. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3178. sizeof tss_segment_32))
  3179. goto out;
  3180. save_state_to_tss32(vcpu, &tss_segment_32);
  3181. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3182. sizeof tss_segment_32))
  3183. goto out;
  3184. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3185. &tss_segment_32, sizeof tss_segment_32))
  3186. goto out;
  3187. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3188. goto out;
  3189. ret = 1;
  3190. out:
  3191. return ret;
  3192. }
  3193. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3194. {
  3195. struct kvm_segment tr_seg;
  3196. struct desc_struct cseg_desc;
  3197. struct desc_struct nseg_desc;
  3198. int ret = 0;
  3199. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3200. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3201. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3202. /* FIXME: Handle errors. Failure to read either TSS or their
  3203. * descriptors should generate a pagefault.
  3204. */
  3205. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3206. goto out;
  3207. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3208. goto out;
  3209. if (reason != TASK_SWITCH_IRET) {
  3210. int cpl;
  3211. cpl = kvm_x86_ops->get_cpl(vcpu);
  3212. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3213. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3214. return 1;
  3215. }
  3216. }
  3217. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3218. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3219. return 1;
  3220. }
  3221. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3222. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3223. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3224. }
  3225. if (reason == TASK_SWITCH_IRET) {
  3226. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3227. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3228. }
  3229. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3230. if (nseg_desc.type & 8)
  3231. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3232. &nseg_desc);
  3233. else
  3234. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3235. &nseg_desc);
  3236. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3237. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3238. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3239. }
  3240. if (reason != TASK_SWITCH_IRET) {
  3241. nseg_desc.type |= (1 << 1);
  3242. save_guest_segment_descriptor(vcpu, tss_selector,
  3243. &nseg_desc);
  3244. }
  3245. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3246. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3247. tr_seg.type = 11;
  3248. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3249. out:
  3250. return ret;
  3251. }
  3252. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3253. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3254. struct kvm_sregs *sregs)
  3255. {
  3256. int mmu_reset_needed = 0;
  3257. int i, pending_vec, max_bits;
  3258. struct descriptor_table dt;
  3259. vcpu_load(vcpu);
  3260. dt.limit = sregs->idt.limit;
  3261. dt.base = sregs->idt.base;
  3262. kvm_x86_ops->set_idt(vcpu, &dt);
  3263. dt.limit = sregs->gdt.limit;
  3264. dt.base = sregs->gdt.base;
  3265. kvm_x86_ops->set_gdt(vcpu, &dt);
  3266. vcpu->arch.cr2 = sregs->cr2;
  3267. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3268. vcpu->arch.cr3 = sregs->cr3;
  3269. kvm_set_cr8(vcpu, sregs->cr8);
  3270. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3271. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3272. kvm_set_apic_base(vcpu, sregs->apic_base);
  3273. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3274. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3275. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3276. vcpu->arch.cr0 = sregs->cr0;
  3277. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3278. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3279. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3280. load_pdptrs(vcpu, vcpu->arch.cr3);
  3281. if (mmu_reset_needed)
  3282. kvm_mmu_reset_context(vcpu);
  3283. if (!irqchip_in_kernel(vcpu->kvm)) {
  3284. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3285. sizeof vcpu->arch.irq_pending);
  3286. vcpu->arch.irq_summary = 0;
  3287. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3288. if (vcpu->arch.irq_pending[i])
  3289. __set_bit(i, &vcpu->arch.irq_summary);
  3290. } else {
  3291. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3292. pending_vec = find_first_bit(
  3293. (const unsigned long *)sregs->interrupt_bitmap,
  3294. max_bits);
  3295. /* Only pending external irq is handled here */
  3296. if (pending_vec < max_bits) {
  3297. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3298. pr_debug("Set back pending irq %d\n",
  3299. pending_vec);
  3300. }
  3301. kvm_pic_clear_isr_ack(vcpu->kvm);
  3302. }
  3303. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3304. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3305. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3306. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3307. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3308. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3309. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3310. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3311. /* Older userspace won't unhalt the vcpu on reset. */
  3312. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3313. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3314. !(vcpu->arch.cr0 & X86_CR0_PE))
  3315. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3316. vcpu_put(vcpu);
  3317. return 0;
  3318. }
  3319. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3320. struct kvm_debug_guest *dbg)
  3321. {
  3322. int r;
  3323. vcpu_load(vcpu);
  3324. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3325. vcpu_put(vcpu);
  3326. return r;
  3327. }
  3328. /*
  3329. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3330. * we have asm/x86/processor.h
  3331. */
  3332. struct fxsave {
  3333. u16 cwd;
  3334. u16 swd;
  3335. u16 twd;
  3336. u16 fop;
  3337. u64 rip;
  3338. u64 rdp;
  3339. u32 mxcsr;
  3340. u32 mxcsr_mask;
  3341. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3342. #ifdef CONFIG_X86_64
  3343. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3344. #else
  3345. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3346. #endif
  3347. };
  3348. /*
  3349. * Translate a guest virtual address to a guest physical address.
  3350. */
  3351. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3352. struct kvm_translation *tr)
  3353. {
  3354. unsigned long vaddr = tr->linear_address;
  3355. gpa_t gpa;
  3356. vcpu_load(vcpu);
  3357. down_read(&vcpu->kvm->slots_lock);
  3358. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3359. up_read(&vcpu->kvm->slots_lock);
  3360. tr->physical_address = gpa;
  3361. tr->valid = gpa != UNMAPPED_GVA;
  3362. tr->writeable = 1;
  3363. tr->usermode = 0;
  3364. vcpu_put(vcpu);
  3365. return 0;
  3366. }
  3367. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3368. {
  3369. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3370. vcpu_load(vcpu);
  3371. memcpy(fpu->fpr, fxsave->st_space, 128);
  3372. fpu->fcw = fxsave->cwd;
  3373. fpu->fsw = fxsave->swd;
  3374. fpu->ftwx = fxsave->twd;
  3375. fpu->last_opcode = fxsave->fop;
  3376. fpu->last_ip = fxsave->rip;
  3377. fpu->last_dp = fxsave->rdp;
  3378. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3379. vcpu_put(vcpu);
  3380. return 0;
  3381. }
  3382. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3383. {
  3384. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3385. vcpu_load(vcpu);
  3386. memcpy(fxsave->st_space, fpu->fpr, 128);
  3387. fxsave->cwd = fpu->fcw;
  3388. fxsave->swd = fpu->fsw;
  3389. fxsave->twd = fpu->ftwx;
  3390. fxsave->fop = fpu->last_opcode;
  3391. fxsave->rip = fpu->last_ip;
  3392. fxsave->rdp = fpu->last_dp;
  3393. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3394. vcpu_put(vcpu);
  3395. return 0;
  3396. }
  3397. void fx_init(struct kvm_vcpu *vcpu)
  3398. {
  3399. unsigned after_mxcsr_mask;
  3400. /*
  3401. * Touch the fpu the first time in non atomic context as if
  3402. * this is the first fpu instruction the exception handler
  3403. * will fire before the instruction returns and it'll have to
  3404. * allocate ram with GFP_KERNEL.
  3405. */
  3406. if (!used_math())
  3407. kvm_fx_save(&vcpu->arch.host_fx_image);
  3408. /* Initialize guest FPU by resetting ours and saving into guest's */
  3409. preempt_disable();
  3410. kvm_fx_save(&vcpu->arch.host_fx_image);
  3411. kvm_fx_finit();
  3412. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3413. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3414. preempt_enable();
  3415. vcpu->arch.cr0 |= X86_CR0_ET;
  3416. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3417. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3418. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3419. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3420. }
  3421. EXPORT_SYMBOL_GPL(fx_init);
  3422. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3423. {
  3424. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3425. return;
  3426. vcpu->guest_fpu_loaded = 1;
  3427. kvm_fx_save(&vcpu->arch.host_fx_image);
  3428. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3429. }
  3430. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3431. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3432. {
  3433. if (!vcpu->guest_fpu_loaded)
  3434. return;
  3435. vcpu->guest_fpu_loaded = 0;
  3436. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3437. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3438. ++vcpu->stat.fpu_reload;
  3439. }
  3440. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3441. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3442. {
  3443. kvm_x86_ops->vcpu_free(vcpu);
  3444. }
  3445. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3446. unsigned int id)
  3447. {
  3448. return kvm_x86_ops->vcpu_create(kvm, id);
  3449. }
  3450. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3451. {
  3452. int r;
  3453. /* We do fxsave: this must be aligned. */
  3454. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3455. vcpu->arch.mtrr_state.have_fixed = 1;
  3456. vcpu_load(vcpu);
  3457. r = kvm_arch_vcpu_reset(vcpu);
  3458. if (r == 0)
  3459. r = kvm_mmu_setup(vcpu);
  3460. vcpu_put(vcpu);
  3461. if (r < 0)
  3462. goto free_vcpu;
  3463. return 0;
  3464. free_vcpu:
  3465. kvm_x86_ops->vcpu_free(vcpu);
  3466. return r;
  3467. }
  3468. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3469. {
  3470. vcpu_load(vcpu);
  3471. kvm_mmu_unload(vcpu);
  3472. vcpu_put(vcpu);
  3473. kvm_x86_ops->vcpu_free(vcpu);
  3474. }
  3475. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3476. {
  3477. vcpu->arch.nmi_pending = false;
  3478. vcpu->arch.nmi_injected = false;
  3479. return kvm_x86_ops->vcpu_reset(vcpu);
  3480. }
  3481. void kvm_arch_hardware_enable(void *garbage)
  3482. {
  3483. kvm_x86_ops->hardware_enable(garbage);
  3484. }
  3485. void kvm_arch_hardware_disable(void *garbage)
  3486. {
  3487. kvm_x86_ops->hardware_disable(garbage);
  3488. }
  3489. int kvm_arch_hardware_setup(void)
  3490. {
  3491. return kvm_x86_ops->hardware_setup();
  3492. }
  3493. void kvm_arch_hardware_unsetup(void)
  3494. {
  3495. kvm_x86_ops->hardware_unsetup();
  3496. }
  3497. void kvm_arch_check_processor_compat(void *rtn)
  3498. {
  3499. kvm_x86_ops->check_processor_compatibility(rtn);
  3500. }
  3501. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3502. {
  3503. struct page *page;
  3504. struct kvm *kvm;
  3505. int r;
  3506. BUG_ON(vcpu->kvm == NULL);
  3507. kvm = vcpu->kvm;
  3508. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3509. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3510. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3511. else
  3512. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3513. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3514. if (!page) {
  3515. r = -ENOMEM;
  3516. goto fail;
  3517. }
  3518. vcpu->arch.pio_data = page_address(page);
  3519. r = kvm_mmu_create(vcpu);
  3520. if (r < 0)
  3521. goto fail_free_pio_data;
  3522. if (irqchip_in_kernel(kvm)) {
  3523. r = kvm_create_lapic(vcpu);
  3524. if (r < 0)
  3525. goto fail_mmu_destroy;
  3526. }
  3527. return 0;
  3528. fail_mmu_destroy:
  3529. kvm_mmu_destroy(vcpu);
  3530. fail_free_pio_data:
  3531. free_page((unsigned long)vcpu->arch.pio_data);
  3532. fail:
  3533. return r;
  3534. }
  3535. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3536. {
  3537. kvm_free_lapic(vcpu);
  3538. down_read(&vcpu->kvm->slots_lock);
  3539. kvm_mmu_destroy(vcpu);
  3540. up_read(&vcpu->kvm->slots_lock);
  3541. free_page((unsigned long)vcpu->arch.pio_data);
  3542. }
  3543. struct kvm *kvm_arch_create_vm(void)
  3544. {
  3545. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3546. if (!kvm)
  3547. return ERR_PTR(-ENOMEM);
  3548. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3549. INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
  3550. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3551. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3552. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3553. return kvm;
  3554. }
  3555. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3556. {
  3557. vcpu_load(vcpu);
  3558. kvm_mmu_unload(vcpu);
  3559. vcpu_put(vcpu);
  3560. }
  3561. static void kvm_free_vcpus(struct kvm *kvm)
  3562. {
  3563. unsigned int i;
  3564. /*
  3565. * Unpin any mmu pages first.
  3566. */
  3567. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3568. if (kvm->vcpus[i])
  3569. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3570. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3571. if (kvm->vcpus[i]) {
  3572. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3573. kvm->vcpus[i] = NULL;
  3574. }
  3575. }
  3576. }
  3577. void kvm_arch_sync_events(struct kvm *kvm)
  3578. {
  3579. kvm_free_all_assigned_devices(kvm);
  3580. }
  3581. void kvm_arch_destroy_vm(struct kvm *kvm)
  3582. {
  3583. kvm_iommu_unmap_guest(kvm);
  3584. kvm_free_pit(kvm);
  3585. kfree(kvm->arch.vpic);
  3586. kfree(kvm->arch.vioapic);
  3587. kvm_free_vcpus(kvm);
  3588. kvm_free_physmem(kvm);
  3589. if (kvm->arch.apic_access_page)
  3590. put_page(kvm->arch.apic_access_page);
  3591. if (kvm->arch.ept_identity_pagetable)
  3592. put_page(kvm->arch.ept_identity_pagetable);
  3593. kfree(kvm);
  3594. }
  3595. int kvm_arch_set_memory_region(struct kvm *kvm,
  3596. struct kvm_userspace_memory_region *mem,
  3597. struct kvm_memory_slot old,
  3598. int user_alloc)
  3599. {
  3600. int npages = mem->memory_size >> PAGE_SHIFT;
  3601. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3602. /*To keep backward compatibility with older userspace,
  3603. *x86 needs to hanlde !user_alloc case.
  3604. */
  3605. if (!user_alloc) {
  3606. if (npages && !old.rmap) {
  3607. unsigned long userspace_addr;
  3608. down_write(&current->mm->mmap_sem);
  3609. userspace_addr = do_mmap(NULL, 0,
  3610. npages * PAGE_SIZE,
  3611. PROT_READ | PROT_WRITE,
  3612. MAP_PRIVATE | MAP_ANONYMOUS,
  3613. 0);
  3614. up_write(&current->mm->mmap_sem);
  3615. if (IS_ERR((void *)userspace_addr))
  3616. return PTR_ERR((void *)userspace_addr);
  3617. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3618. spin_lock(&kvm->mmu_lock);
  3619. memslot->userspace_addr = userspace_addr;
  3620. spin_unlock(&kvm->mmu_lock);
  3621. } else {
  3622. if (!old.user_alloc && old.rmap) {
  3623. int ret;
  3624. down_write(&current->mm->mmap_sem);
  3625. ret = do_munmap(current->mm, old.userspace_addr,
  3626. old.npages * PAGE_SIZE);
  3627. up_write(&current->mm->mmap_sem);
  3628. if (ret < 0)
  3629. printk(KERN_WARNING
  3630. "kvm_vm_ioctl_set_memory_region: "
  3631. "failed to munmap memory\n");
  3632. }
  3633. }
  3634. }
  3635. if (!kvm->arch.n_requested_mmu_pages) {
  3636. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3637. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3638. }
  3639. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3640. kvm_flush_remote_tlbs(kvm);
  3641. return 0;
  3642. }
  3643. void kvm_arch_flush_shadow(struct kvm *kvm)
  3644. {
  3645. kvm_mmu_zap_all(kvm);
  3646. }
  3647. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3648. {
  3649. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3650. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3651. || vcpu->arch.nmi_pending;
  3652. }
  3653. static void vcpu_kick_intr(void *info)
  3654. {
  3655. #ifdef DEBUG
  3656. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3657. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3658. #endif
  3659. }
  3660. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3661. {
  3662. int ipi_pcpu = vcpu->cpu;
  3663. int cpu = get_cpu();
  3664. if (waitqueue_active(&vcpu->wq)) {
  3665. wake_up_interruptible(&vcpu->wq);
  3666. ++vcpu->stat.halt_wakeup;
  3667. }
  3668. /*
  3669. * We may be called synchronously with irqs disabled in guest mode,
  3670. * So need not to call smp_call_function_single() in that case.
  3671. */
  3672. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3673. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3674. put_cpu();
  3675. }