hfc_pci.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
  1. /* $Id: hfc_pci.c,v 1.48.2.4 2004/02/11 13:21:33 keil Exp $
  2. *
  3. * low level driver for CCD´s hfc-pci based cards
  4. *
  5. * Author Werner Cornelius
  6. * based on existing driver for CCD hfc ISA cards
  7. * Copyright by Werner Cornelius <werner@isdn4linux.de>
  8. * by Karsten Keil <keil@isdn4linux.de>
  9. *
  10. * This software may be used and distributed according to the terms
  11. * of the GNU General Public License, incorporated herein by reference.
  12. *
  13. * For changes and modifications please read
  14. * Documentation/isdn/HiSax.cert
  15. *
  16. */
  17. #include <linux/init.h>
  18. #include <linux/config.h>
  19. #include "hisax.h"
  20. #include "hfc_pci.h"
  21. #include "isdnl1.h"
  22. #include <linux/pci.h>
  23. #include <linux/interrupt.h>
  24. extern const char *CardType[];
  25. static const char *hfcpci_revision = "$Revision: 1.48.2.4 $";
  26. /* table entry in the PCI devices list */
  27. typedef struct {
  28. int vendor_id;
  29. int device_id;
  30. char *vendor_name;
  31. char *card_name;
  32. } PCI_ENTRY;
  33. #define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
  34. #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
  35. #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
  36. static const PCI_ENTRY id_list[] =
  37. {
  38. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"},
  39. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"},
  40. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"},
  41. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"},
  42. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"},
  43. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"},
  44. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"},
  45. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"},
  46. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"},
  47. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"},
  48. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B700, "Primux II S0", "B700"},
  49. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B701, "Primux II S0 NT", "B701"},
  50. {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"},
  51. {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"},
  52. {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"},
  53. {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"},
  54. {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"},
  55. {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"},
  56. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"},
  57. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"},
  58. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"},
  59. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"},
  60. {PCI_VENDOR_ID_SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2, "Sitecom Europe", "DC-105 ISDN PCI"},
  61. {0, 0, NULL, NULL},
  62. };
  63. #ifdef CONFIG_PCI
  64. /******************************************/
  65. /* free hardware resources used by driver */
  66. /******************************************/
  67. static void
  68. release_io_hfcpci(struct IsdnCardState *cs)
  69. {
  70. printk(KERN_INFO "HiSax: release hfcpci at %p\n",
  71. cs->hw.hfcpci.pci_io);
  72. cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
  73. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  74. Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
  75. mdelay(10);
  76. Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
  77. mdelay(10);
  78. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  79. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, 0); /* disable memory mapped ports + busmaster */
  80. del_timer(&cs->hw.hfcpci.timer);
  81. kfree(cs->hw.hfcpci.share_start);
  82. cs->hw.hfcpci.share_start = NULL;
  83. iounmap((void *)cs->hw.hfcpci.pci_io);
  84. }
  85. /********************************************************************************/
  86. /* function called to reset the HFC PCI chip. A complete software reset of chip */
  87. /* and fifos is done. */
  88. /********************************************************************************/
  89. static void
  90. reset_hfcpci(struct IsdnCardState *cs)
  91. {
  92. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
  93. cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
  94. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  95. printk(KERN_INFO "HFC_PCI: resetting card\n");
  96. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER); /* enable memory ports + busmaster */
  97. Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
  98. mdelay(10);
  99. Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
  100. mdelay(10);
  101. if (Read_hfc(cs, HFCPCI_STATUS) & 2)
  102. printk(KERN_WARNING "HFC-PCI init bit busy\n");
  103. cs->hw.hfcpci.fifo_en = 0x30; /* only D fifos enabled */
  104. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  105. cs->hw.hfcpci.trm = 0 + HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
  106. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  107. Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */
  108. cs->hw.hfcpci.sctrl_e = HFCPCI_AUTO_AWAKE;
  109. Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e); /* S/T Auto awake */
  110. cs->hw.hfcpci.bswapped = 0; /* no exchange */
  111. cs->hw.hfcpci.nt_mode = 0; /* we are in TE mode */
  112. cs->hw.hfcpci.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
  113. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  114. cs->hw.hfcpci.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
  115. HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
  116. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  117. /* Clear already pending ints */
  118. if (Read_hfc(cs, HFCPCI_INT_S1));
  119. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 2); /* HFC ST 2 */
  120. udelay(10);
  121. Write_hfc(cs, HFCPCI_STATES, 2); /* HFC ST 2 */
  122. cs->hw.hfcpci.mst_m = HFCPCI_MASTER; /* HFC Master Mode */
  123. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  124. cs->hw.hfcpci.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
  125. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  126. cs->hw.hfcpci.sctrl_r = 0;
  127. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  128. /* Init GCI/IOM2 in master mode */
  129. /* Slots 0 and 1 are set for B-chan 1 and 2 */
  130. /* D- and monitor/CI channel are not enabled */
  131. /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
  132. /* STIO2 is used as data input, B1+B2 from IOM->ST */
  133. /* ST B-channel send disabled -> continous 1s */
  134. /* The IOM slots are always enabled */
  135. cs->hw.hfcpci.conn = 0x36; /* set data flow directions */
  136. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  137. Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
  138. Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
  139. Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
  140. Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
  141. /* Finally enable IRQ output */
  142. cs->hw.hfcpci.int_m2 = HFCPCI_IRQ_ENABLE;
  143. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  144. if (Read_hfc(cs, HFCPCI_INT_S1));
  145. }
  146. /***************************************************/
  147. /* Timer function called when kernel timer expires */
  148. /***************************************************/
  149. static void
  150. hfcpci_Timer(struct IsdnCardState *cs)
  151. {
  152. cs->hw.hfcpci.timer.expires = jiffies + 75;
  153. /* WD RESET */
  154. /* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcpci.ctmt | 0x80);
  155. add_timer(&cs->hw.hfcpci.timer);
  156. */
  157. }
  158. /*********************************/
  159. /* schedule a new D-channel task */
  160. /*********************************/
  161. static void
  162. sched_event_D_pci(struct IsdnCardState *cs, int event)
  163. {
  164. test_and_set_bit(event, &cs->event);
  165. schedule_work(&cs->tqueue);
  166. }
  167. /*********************************/
  168. /* schedule a new b_channel task */
  169. /*********************************/
  170. static void
  171. hfcpci_sched_event(struct BCState *bcs, int event)
  172. {
  173. test_and_set_bit(event, &bcs->event);
  174. schedule_work(&bcs->tqueue);
  175. }
  176. /************************************************/
  177. /* select a b-channel entry matching and active */
  178. /************************************************/
  179. static
  180. struct BCState *
  181. Sel_BCS(struct IsdnCardState *cs, int channel)
  182. {
  183. if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
  184. return (&cs->bcs[0]);
  185. else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
  186. return (&cs->bcs[1]);
  187. else
  188. return (NULL);
  189. }
  190. /***************************************/
  191. /* clear the desired B-channel rx fifo */
  192. /***************************************/
  193. static void hfcpci_clear_fifo_rx(struct IsdnCardState *cs, int fifo)
  194. { u_char fifo_state;
  195. bzfifo_type *bzr;
  196. if (fifo) {
  197. bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  198. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2RX;
  199. } else {
  200. bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
  201. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1RX;
  202. }
  203. if (fifo_state)
  204. cs->hw.hfcpci.fifo_en ^= fifo_state;
  205. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  206. cs->hw.hfcpci.last_bfifo_cnt[fifo] = 0;
  207. bzr->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
  208. bzr->za[MAX_B_FRAMES].z2 = bzr->za[MAX_B_FRAMES].z1;
  209. bzr->f1 = MAX_B_FRAMES;
  210. bzr->f2 = bzr->f1; /* init F pointers to remain constant */
  211. if (fifo_state)
  212. cs->hw.hfcpci.fifo_en |= fifo_state;
  213. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  214. }
  215. /***************************************/
  216. /* clear the desired B-channel tx fifo */
  217. /***************************************/
  218. static void hfcpci_clear_fifo_tx(struct IsdnCardState *cs, int fifo)
  219. { u_char fifo_state;
  220. bzfifo_type *bzt;
  221. if (fifo) {
  222. bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
  223. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2TX;
  224. } else {
  225. bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
  226. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1TX;
  227. }
  228. if (fifo_state)
  229. cs->hw.hfcpci.fifo_en ^= fifo_state;
  230. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  231. bzt->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
  232. bzt->za[MAX_B_FRAMES].z2 = bzt->za[MAX_B_FRAMES].z1;
  233. bzt->f1 = MAX_B_FRAMES;
  234. bzt->f2 = bzt->f1; /* init F pointers to remain constant */
  235. if (fifo_state)
  236. cs->hw.hfcpci.fifo_en |= fifo_state;
  237. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  238. }
  239. /*********************************************/
  240. /* read a complete B-frame out of the buffer */
  241. /*********************************************/
  242. static struct sk_buff
  243. *
  244. hfcpci_empty_fifo(struct BCState *bcs, bzfifo_type * bz, u_char * bdata, int count)
  245. {
  246. u_char *ptr, *ptr1, new_f2;
  247. struct sk_buff *skb;
  248. struct IsdnCardState *cs = bcs->cs;
  249. int total, maxlen, new_z2;
  250. z_type *zp;
  251. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  252. debugl1(cs, "hfcpci_empty_fifo");
  253. zp = &bz->za[bz->f2]; /* point to Z-Regs */
  254. new_z2 = zp->z2 + count; /* new position in fifo */
  255. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  256. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  257. new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
  258. if ((count > HSCX_BUFMAX + 3) || (count < 4) ||
  259. (*(bdata + (zp->z1 - B_SUB_VAL)))) {
  260. if (cs->debug & L1_DEB_WARN)
  261. debugl1(cs, "hfcpci_empty_fifo: incoming packet invalid length %d or crc", count);
  262. #ifdef ERROR_STATISTIC
  263. bcs->err_inv++;
  264. #endif
  265. bz->za[new_f2].z2 = new_z2;
  266. bz->f2 = new_f2; /* next buffer */
  267. skb = NULL;
  268. } else if (!(skb = dev_alloc_skb(count - 3)))
  269. printk(KERN_WARNING "HFCPCI: receive out of memory\n");
  270. else {
  271. total = count;
  272. count -= 3;
  273. ptr = skb_put(skb, count);
  274. if (zp->z2 + count <= B_FIFO_SIZE + B_SUB_VAL)
  275. maxlen = count; /* complete transfer */
  276. else
  277. maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
  278. ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
  279. memcpy(ptr, ptr1, maxlen); /* copy data */
  280. count -= maxlen;
  281. if (count) { /* rest remaining */
  282. ptr += maxlen;
  283. ptr1 = bdata; /* start of buffer */
  284. memcpy(ptr, ptr1, count); /* rest */
  285. }
  286. bz->za[new_f2].z2 = new_z2;
  287. bz->f2 = new_f2; /* next buffer */
  288. }
  289. return (skb);
  290. }
  291. /*******************************/
  292. /* D-channel receive procedure */
  293. /*******************************/
  294. static
  295. int
  296. receive_dmsg(struct IsdnCardState *cs)
  297. {
  298. struct sk_buff *skb;
  299. int maxlen;
  300. int rcnt, total;
  301. int count = 5;
  302. u_char *ptr, *ptr1;
  303. dfifo_type *df;
  304. z_type *zp;
  305. df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_rx;
  306. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  307. debugl1(cs, "rec_dmsg blocked");
  308. return (1);
  309. }
  310. while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
  311. zp = &df->za[df->f2 & D_FREG_MASK];
  312. rcnt = zp->z1 - zp->z2;
  313. if (rcnt < 0)
  314. rcnt += D_FIFO_SIZE;
  315. rcnt++;
  316. if (cs->debug & L1_DEB_ISAC)
  317. debugl1(cs, "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
  318. df->f1, df->f2, zp->z1, zp->z2, rcnt);
  319. if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
  320. (df->data[zp->z1])) {
  321. if (cs->debug & L1_DEB_WARN)
  322. debugl1(cs, "empty_fifo hfcpci paket inv. len %d or crc %d", rcnt, df->data[zp->z1]);
  323. #ifdef ERROR_STATISTIC
  324. cs->err_rx++;
  325. #endif
  326. df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
  327. df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + rcnt) & (D_FIFO_SIZE - 1);
  328. } else if ((skb = dev_alloc_skb(rcnt - 3))) {
  329. total = rcnt;
  330. rcnt -= 3;
  331. ptr = skb_put(skb, rcnt);
  332. if (zp->z2 + rcnt <= D_FIFO_SIZE)
  333. maxlen = rcnt; /* complete transfer */
  334. else
  335. maxlen = D_FIFO_SIZE - zp->z2; /* maximum */
  336. ptr1 = df->data + zp->z2; /* start of data */
  337. memcpy(ptr, ptr1, maxlen); /* copy data */
  338. rcnt -= maxlen;
  339. if (rcnt) { /* rest remaining */
  340. ptr += maxlen;
  341. ptr1 = df->data; /* start of buffer */
  342. memcpy(ptr, ptr1, rcnt); /* rest */
  343. }
  344. df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
  345. df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + total) & (D_FIFO_SIZE - 1);
  346. skb_queue_tail(&cs->rq, skb);
  347. sched_event_D_pci(cs, D_RCVBUFREADY);
  348. } else
  349. printk(KERN_WARNING "HFC-PCI: D receive out of memory\n");
  350. }
  351. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  352. return (1);
  353. }
  354. /*******************************************************************************/
  355. /* check for transparent receive data and read max one threshold size if avail */
  356. /*******************************************************************************/
  357. static int
  358. hfcpci_empty_fifo_trans(struct BCState *bcs, bzfifo_type * bz, u_char * bdata)
  359. {
  360. unsigned short *z1r, *z2r;
  361. int new_z2, fcnt, maxlen;
  362. struct sk_buff *skb;
  363. u_char *ptr, *ptr1;
  364. z1r = &bz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
  365. z2r = z1r + 1;
  366. if (!(fcnt = *z1r - *z2r))
  367. return (0); /* no data avail */
  368. if (fcnt <= 0)
  369. fcnt += B_FIFO_SIZE; /* bytes actually buffered */
  370. if (fcnt > HFCPCI_BTRANS_THRESHOLD)
  371. fcnt = HFCPCI_BTRANS_THRESHOLD; /* limit size */
  372. new_z2 = *z2r + fcnt; /* new position in fifo */
  373. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  374. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  375. if (!(skb = dev_alloc_skb(fcnt)))
  376. printk(KERN_WARNING "HFCPCI: receive out of memory\n");
  377. else {
  378. ptr = skb_put(skb, fcnt);
  379. if (*z2r + fcnt <= B_FIFO_SIZE + B_SUB_VAL)
  380. maxlen = fcnt; /* complete transfer */
  381. else
  382. maxlen = B_FIFO_SIZE + B_SUB_VAL - *z2r; /* maximum */
  383. ptr1 = bdata + (*z2r - B_SUB_VAL); /* start of data */
  384. memcpy(ptr, ptr1, maxlen); /* copy data */
  385. fcnt -= maxlen;
  386. if (fcnt) { /* rest remaining */
  387. ptr += maxlen;
  388. ptr1 = bdata; /* start of buffer */
  389. memcpy(ptr, ptr1, fcnt); /* rest */
  390. }
  391. skb_queue_tail(&bcs->rqueue, skb);
  392. hfcpci_sched_event(bcs, B_RCVBUFREADY);
  393. }
  394. *z2r = new_z2; /* new position */
  395. return (1);
  396. } /* hfcpci_empty_fifo_trans */
  397. /**********************************/
  398. /* B-channel main receive routine */
  399. /**********************************/
  400. static void
  401. main_rec_hfcpci(struct BCState *bcs)
  402. {
  403. struct IsdnCardState *cs = bcs->cs;
  404. int rcnt, real_fifo;
  405. int receive, count = 5;
  406. struct sk_buff *skb;
  407. bzfifo_type *bz;
  408. u_char *bdata;
  409. z_type *zp;
  410. if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
  411. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  412. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
  413. real_fifo = 1;
  414. } else {
  415. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
  416. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b1;
  417. real_fifo = 0;
  418. }
  419. Begin:
  420. count--;
  421. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  422. debugl1(cs, "rec_data %d blocked", bcs->channel);
  423. return;
  424. }
  425. if (bz->f1 != bz->f2) {
  426. if (cs->debug & L1_DEB_HSCX)
  427. debugl1(cs, "hfcpci rec %d f1(%d) f2(%d)",
  428. bcs->channel, bz->f1, bz->f2);
  429. zp = &bz->za[bz->f2];
  430. rcnt = zp->z1 - zp->z2;
  431. if (rcnt < 0)
  432. rcnt += B_FIFO_SIZE;
  433. rcnt++;
  434. if (cs->debug & L1_DEB_HSCX)
  435. debugl1(cs, "hfcpci rec %d z1(%x) z2(%x) cnt(%d)",
  436. bcs->channel, zp->z1, zp->z2, rcnt);
  437. if ((skb = hfcpci_empty_fifo(bcs, bz, bdata, rcnt))) {
  438. skb_queue_tail(&bcs->rqueue, skb);
  439. hfcpci_sched_event(bcs, B_RCVBUFREADY);
  440. }
  441. rcnt = bz->f1 - bz->f2;
  442. if (rcnt < 0)
  443. rcnt += MAX_B_FRAMES + 1;
  444. if (cs->hw.hfcpci.last_bfifo_cnt[real_fifo] > rcnt + 1) {
  445. rcnt = 0;
  446. hfcpci_clear_fifo_rx(cs, real_fifo);
  447. }
  448. cs->hw.hfcpci.last_bfifo_cnt[real_fifo] = rcnt;
  449. if (rcnt > 1)
  450. receive = 1;
  451. else
  452. receive = 0;
  453. } else if (bcs->mode == L1_MODE_TRANS)
  454. receive = hfcpci_empty_fifo_trans(bcs, bz, bdata);
  455. else
  456. receive = 0;
  457. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  458. if (count && receive)
  459. goto Begin;
  460. return;
  461. }
  462. /**************************/
  463. /* D-channel send routine */
  464. /**************************/
  465. static void
  466. hfcpci_fill_dfifo(struct IsdnCardState *cs)
  467. {
  468. int fcnt;
  469. int count, new_z1, maxlen;
  470. dfifo_type *df;
  471. u_char *src, *dst, new_f1;
  472. if (!cs->tx_skb)
  473. return;
  474. if (cs->tx_skb->len <= 0)
  475. return;
  476. df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_tx;
  477. if (cs->debug & L1_DEB_ISAC)
  478. debugl1(cs, "hfcpci_fill_Dfifo f1(%d) f2(%d) z1(f1)(%x)",
  479. df->f1, df->f2,
  480. df->za[df->f1 & D_FREG_MASK].z1);
  481. fcnt = df->f1 - df->f2; /* frame count actually buffered */
  482. if (fcnt < 0)
  483. fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
  484. if (fcnt > (MAX_D_FRAMES - 1)) {
  485. if (cs->debug & L1_DEB_ISAC)
  486. debugl1(cs, "hfcpci_fill_Dfifo more as 14 frames");
  487. #ifdef ERROR_STATISTIC
  488. cs->err_tx++;
  489. #endif
  490. return;
  491. }
  492. /* now determine free bytes in FIFO buffer */
  493. count = df->za[df->f2 & D_FREG_MASK].z2 - df->za[df->f1 & D_FREG_MASK].z1 - 1;
  494. if (count <= 0)
  495. count += D_FIFO_SIZE; /* count now contains available bytes */
  496. if (cs->debug & L1_DEB_ISAC)
  497. debugl1(cs, "hfcpci_fill_Dfifo count(%ld/%d)",
  498. cs->tx_skb->len, count);
  499. if (count < cs->tx_skb->len) {
  500. if (cs->debug & L1_DEB_ISAC)
  501. debugl1(cs, "hfcpci_fill_Dfifo no fifo mem");
  502. return;
  503. }
  504. count = cs->tx_skb->len; /* get frame len */
  505. new_z1 = (df->za[df->f1 & D_FREG_MASK].z1 + count) & (D_FIFO_SIZE - 1);
  506. new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
  507. src = cs->tx_skb->data; /* source pointer */
  508. dst = df->data + df->za[df->f1 & D_FREG_MASK].z1;
  509. maxlen = D_FIFO_SIZE - df->za[df->f1 & D_FREG_MASK].z1; /* end fifo */
  510. if (maxlen > count)
  511. maxlen = count; /* limit size */
  512. memcpy(dst, src, maxlen); /* first copy */
  513. count -= maxlen; /* remaining bytes */
  514. if (count) {
  515. dst = df->data; /* start of buffer */
  516. src += maxlen; /* new position */
  517. memcpy(dst, src, count);
  518. }
  519. df->za[new_f1 & D_FREG_MASK].z1 = new_z1; /* for next buffer */
  520. df->za[df->f1 & D_FREG_MASK].z1 = new_z1; /* new pos actual buffer */
  521. df->f1 = new_f1; /* next frame */
  522. dev_kfree_skb_any(cs->tx_skb);
  523. cs->tx_skb = NULL;
  524. return;
  525. }
  526. /**************************/
  527. /* B-channel send routine */
  528. /**************************/
  529. static void
  530. hfcpci_fill_fifo(struct BCState *bcs)
  531. {
  532. struct IsdnCardState *cs = bcs->cs;
  533. int maxlen, fcnt;
  534. int count, new_z1;
  535. bzfifo_type *bz;
  536. u_char *bdata;
  537. u_char new_f1, *src, *dst;
  538. unsigned short *z1t, *z2t;
  539. if (!bcs->tx_skb)
  540. return;
  541. if (bcs->tx_skb->len <= 0)
  542. return;
  543. if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
  544. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
  545. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b2;
  546. } else {
  547. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
  548. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b1;
  549. }
  550. if (bcs->mode == L1_MODE_TRANS) {
  551. z1t = &bz->za[MAX_B_FRAMES].z1;
  552. z2t = z1t + 1;
  553. if (cs->debug & L1_DEB_HSCX)
  554. debugl1(cs, "hfcpci_fill_fifo_trans %d z1(%x) z2(%x)",
  555. bcs->channel, *z1t, *z2t);
  556. fcnt = *z2t - *z1t;
  557. if (fcnt <= 0)
  558. fcnt += B_FIFO_SIZE; /* fcnt contains available bytes in fifo */
  559. fcnt = B_FIFO_SIZE - fcnt; /* remaining bytes to send */
  560. while ((fcnt < 2 * HFCPCI_BTRANS_THRESHOLD) && (bcs->tx_skb)) {
  561. if (bcs->tx_skb->len < B_FIFO_SIZE - fcnt) {
  562. /* data is suitable for fifo */
  563. count = bcs->tx_skb->len;
  564. new_z1 = *z1t + count; /* new buffer Position */
  565. if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
  566. new_z1 -= B_FIFO_SIZE; /* buffer wrap */
  567. src = bcs->tx_skb->data; /* source pointer */
  568. dst = bdata + (*z1t - B_SUB_VAL);
  569. maxlen = (B_FIFO_SIZE + B_SUB_VAL) - *z1t; /* end of fifo */
  570. if (maxlen > count)
  571. maxlen = count; /* limit size */
  572. memcpy(dst, src, maxlen); /* first copy */
  573. count -= maxlen; /* remaining bytes */
  574. if (count) {
  575. dst = bdata; /* start of buffer */
  576. src += maxlen; /* new position */
  577. memcpy(dst, src, count);
  578. }
  579. bcs->tx_cnt -= bcs->tx_skb->len;
  580. fcnt += bcs->tx_skb->len;
  581. *z1t = new_z1; /* now send data */
  582. } else if (cs->debug & L1_DEB_HSCX)
  583. debugl1(cs, "hfcpci_fill_fifo_trans %d frame length %d discarded",
  584. bcs->channel, bcs->tx_skb->len);
  585. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  586. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  587. u_long flags;
  588. spin_lock_irqsave(&bcs->aclock, flags);
  589. bcs->ackcnt += bcs->tx_skb->len;
  590. spin_unlock_irqrestore(&bcs->aclock, flags);
  591. schedule_event(bcs, B_ACKPENDING);
  592. }
  593. dev_kfree_skb_any(bcs->tx_skb);
  594. bcs->tx_skb = skb_dequeue(&bcs->squeue); /* fetch next data */
  595. }
  596. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  597. return;
  598. }
  599. if (cs->debug & L1_DEB_HSCX)
  600. debugl1(cs, "hfcpci_fill_fifo_hdlc %d f1(%d) f2(%d) z1(f1)(%x)",
  601. bcs->channel, bz->f1, bz->f2,
  602. bz->za[bz->f1].z1);
  603. fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
  604. if (fcnt < 0)
  605. fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
  606. if (fcnt > (MAX_B_FRAMES - 1)) {
  607. if (cs->debug & L1_DEB_HSCX)
  608. debugl1(cs, "hfcpci_fill_Bfifo more as 14 frames");
  609. return;
  610. }
  611. /* now determine free bytes in FIFO buffer */
  612. count = bz->za[bz->f2].z2 - bz->za[bz->f1].z1 - 1;
  613. if (count <= 0)
  614. count += B_FIFO_SIZE; /* count now contains available bytes */
  615. if (cs->debug & L1_DEB_HSCX)
  616. debugl1(cs, "hfcpci_fill_fifo %d count(%ld/%d),%lx",
  617. bcs->channel, bcs->tx_skb->len,
  618. count, current->state);
  619. if (count < bcs->tx_skb->len) {
  620. if (cs->debug & L1_DEB_HSCX)
  621. debugl1(cs, "hfcpci_fill_fifo no fifo mem");
  622. return;
  623. }
  624. count = bcs->tx_skb->len; /* get frame len */
  625. new_z1 = bz->za[bz->f1].z1 + count; /* new buffer Position */
  626. if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
  627. new_z1 -= B_FIFO_SIZE; /* buffer wrap */
  628. new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
  629. src = bcs->tx_skb->data; /* source pointer */
  630. dst = bdata + (bz->za[bz->f1].z1 - B_SUB_VAL);
  631. maxlen = (B_FIFO_SIZE + B_SUB_VAL) - bz->za[bz->f1].z1; /* end fifo */
  632. if (maxlen > count)
  633. maxlen = count; /* limit size */
  634. memcpy(dst, src, maxlen); /* first copy */
  635. count -= maxlen; /* remaining bytes */
  636. if (count) {
  637. dst = bdata; /* start of buffer */
  638. src += maxlen; /* new position */
  639. memcpy(dst, src, count);
  640. }
  641. bcs->tx_cnt -= bcs->tx_skb->len;
  642. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  643. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  644. u_long flags;
  645. spin_lock_irqsave(&bcs->aclock, flags);
  646. bcs->ackcnt += bcs->tx_skb->len;
  647. spin_unlock_irqrestore(&bcs->aclock, flags);
  648. schedule_event(bcs, B_ACKPENDING);
  649. }
  650. bz->za[new_f1].z1 = new_z1; /* for next buffer */
  651. bz->f1 = new_f1; /* next frame */
  652. dev_kfree_skb_any(bcs->tx_skb);
  653. bcs->tx_skb = NULL;
  654. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  655. return;
  656. }
  657. /**********************************************/
  658. /* D-channel l1 state call for leased NT-mode */
  659. /**********************************************/
  660. static void
  661. dch_nt_l2l1(struct PStack *st, int pr, void *arg)
  662. {
  663. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  664. switch (pr) {
  665. case (PH_DATA | REQUEST):
  666. case (PH_PULL | REQUEST):
  667. case (PH_PULL | INDICATION):
  668. st->l1.l1hw(st, pr, arg);
  669. break;
  670. case (PH_ACTIVATE | REQUEST):
  671. st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
  672. break;
  673. case (PH_TESTLOOP | REQUEST):
  674. if (1 & (long) arg)
  675. debugl1(cs, "PH_TEST_LOOP B1");
  676. if (2 & (long) arg)
  677. debugl1(cs, "PH_TEST_LOOP B2");
  678. if (!(3 & (long) arg))
  679. debugl1(cs, "PH_TEST_LOOP DISABLED");
  680. st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
  681. break;
  682. default:
  683. if (cs->debug)
  684. debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
  685. break;
  686. }
  687. }
  688. /***********************/
  689. /* set/reset echo mode */
  690. /***********************/
  691. static int
  692. hfcpci_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
  693. {
  694. u_long flags;
  695. int i = *(unsigned int *) ic->parm.num;
  696. if ((ic->arg == 98) &&
  697. (!(cs->hw.hfcpci.int_m1 & (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC + HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC)))) {
  698. spin_lock_irqsave(&cs->lock, flags);
  699. Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */
  700. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 0); /* HFC ST G0 */
  701. udelay(10);
  702. cs->hw.hfcpci.sctrl |= SCTRL_MODE_NT;
  703. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); /* set NT-mode */
  704. udelay(10);
  705. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 1); /* HFC ST G1 */
  706. udelay(10);
  707. Write_hfc(cs, HFCPCI_STATES, 1 | HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
  708. cs->dc.hfcpci.ph_state = 1;
  709. cs->hw.hfcpci.nt_mode = 1;
  710. cs->hw.hfcpci.nt_timer = 0;
  711. cs->stlist->l2.l2l1 = dch_nt_l2l1;
  712. spin_unlock_irqrestore(&cs->lock, flags);
  713. debugl1(cs, "NT mode activated");
  714. return (0);
  715. }
  716. if ((cs->chanlimit > 1) || (cs->hw.hfcpci.bswapped) ||
  717. (cs->hw.hfcpci.nt_mode) || (ic->arg != 12))
  718. return (-EINVAL);
  719. spin_lock_irqsave(&cs->lock, flags);
  720. if (i) {
  721. cs->logecho = 1;
  722. cs->hw.hfcpci.trm |= 0x20; /* enable echo chan */
  723. cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_B2REC;
  724. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2RX;
  725. } else {
  726. cs->logecho = 0;
  727. cs->hw.hfcpci.trm &= ~0x20; /* disable echo chan */
  728. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_B2REC;
  729. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2RX;
  730. }
  731. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
  732. cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
  733. cs->hw.hfcpci.conn |= 0x10; /* B2-IOM -> B2-ST */
  734. cs->hw.hfcpci.ctmt &= ~2;
  735. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  736. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  737. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  738. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  739. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  740. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  741. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  742. spin_unlock_irqrestore(&cs->lock, flags);
  743. return (0);
  744. } /* hfcpci_auxcmd */
  745. /*****************************/
  746. /* E-channel receive routine */
  747. /*****************************/
  748. static void
  749. receive_emsg(struct IsdnCardState *cs)
  750. {
  751. int rcnt;
  752. int receive, count = 5;
  753. bzfifo_type *bz;
  754. u_char *bdata;
  755. z_type *zp;
  756. u_char *ptr, *ptr1, new_f2;
  757. int total, maxlen, new_z2;
  758. u_char e_buffer[256];
  759. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  760. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
  761. Begin:
  762. count--;
  763. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  764. debugl1(cs, "echo_rec_data blocked");
  765. return;
  766. }
  767. if (bz->f1 != bz->f2) {
  768. if (cs->debug & L1_DEB_ISAC)
  769. debugl1(cs, "hfcpci e_rec f1(%d) f2(%d)",
  770. bz->f1, bz->f2);
  771. zp = &bz->za[bz->f2];
  772. rcnt = zp->z1 - zp->z2;
  773. if (rcnt < 0)
  774. rcnt += B_FIFO_SIZE;
  775. rcnt++;
  776. if (cs->debug & L1_DEB_ISAC)
  777. debugl1(cs, "hfcpci e_rec z1(%x) z2(%x) cnt(%d)",
  778. zp->z1, zp->z2, rcnt);
  779. new_z2 = zp->z2 + rcnt; /* new position in fifo */
  780. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  781. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  782. new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
  783. if ((rcnt > 256 + 3) || (count < 4) ||
  784. (*(bdata + (zp->z1 - B_SUB_VAL)))) {
  785. if (cs->debug & L1_DEB_WARN)
  786. debugl1(cs, "hfcpci_empty_echan: incoming packet invalid length %d or crc", rcnt);
  787. bz->za[new_f2].z2 = new_z2;
  788. bz->f2 = new_f2; /* next buffer */
  789. } else {
  790. total = rcnt;
  791. rcnt -= 3;
  792. ptr = e_buffer;
  793. if (zp->z2 <= B_FIFO_SIZE + B_SUB_VAL)
  794. maxlen = rcnt; /* complete transfer */
  795. else
  796. maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
  797. ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
  798. memcpy(ptr, ptr1, maxlen); /* copy data */
  799. rcnt -= maxlen;
  800. if (rcnt) { /* rest remaining */
  801. ptr += maxlen;
  802. ptr1 = bdata; /* start of buffer */
  803. memcpy(ptr, ptr1, rcnt); /* rest */
  804. }
  805. bz->za[new_f2].z2 = new_z2;
  806. bz->f2 = new_f2; /* next buffer */
  807. if (cs->debug & DEB_DLOG_HEX) {
  808. ptr = cs->dlog;
  809. if ((total - 3) < MAX_DLOG_SPACE / 3 - 10) {
  810. *ptr++ = 'E';
  811. *ptr++ = 'C';
  812. *ptr++ = 'H';
  813. *ptr++ = 'O';
  814. *ptr++ = ':';
  815. ptr += QuickHex(ptr, e_buffer, total - 3);
  816. ptr--;
  817. *ptr++ = '\n';
  818. *ptr = 0;
  819. HiSax_putstatus(cs, NULL, cs->dlog);
  820. } else
  821. HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", total - 3);
  822. }
  823. }
  824. rcnt = bz->f1 - bz->f2;
  825. if (rcnt < 0)
  826. rcnt += MAX_B_FRAMES + 1;
  827. if (rcnt > 1)
  828. receive = 1;
  829. else
  830. receive = 0;
  831. } else
  832. receive = 0;
  833. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  834. if (count && receive)
  835. goto Begin;
  836. return;
  837. } /* receive_emsg */
  838. /*********************/
  839. /* Interrupt handler */
  840. /*********************/
  841. static irqreturn_t
  842. hfcpci_interrupt(int intno, void *dev_id, struct pt_regs *regs)
  843. {
  844. u_long flags;
  845. struct IsdnCardState *cs = dev_id;
  846. u_char exval;
  847. struct BCState *bcs;
  848. int count = 15;
  849. u_char val, stat;
  850. if (!(cs->hw.hfcpci.int_m2 & 0x08)) {
  851. debugl1(cs, "HFC-PCI: int_m2 %x not initialised", cs->hw.hfcpci.int_m2);
  852. return IRQ_NONE; /* not initialised */
  853. }
  854. spin_lock_irqsave(&cs->lock, flags);
  855. if (HFCPCI_ANYINT & (stat = Read_hfc(cs, HFCPCI_STATUS))) {
  856. val = Read_hfc(cs, HFCPCI_INT_S1);
  857. if (cs->debug & L1_DEB_ISAC)
  858. debugl1(cs, "HFC-PCI: stat(%02x) s1(%02x)", stat, val);
  859. } else {
  860. spin_unlock_irqrestore(&cs->lock, flags);
  861. return IRQ_NONE;
  862. }
  863. if (cs->debug & L1_DEB_ISAC)
  864. debugl1(cs, "HFC-PCI irq %x %s", val,
  865. test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
  866. "locked" : "unlocked");
  867. val &= cs->hw.hfcpci.int_m1;
  868. if (val & 0x40) { /* state machine irq */
  869. exval = Read_hfc(cs, HFCPCI_STATES) & 0xf;
  870. if (cs->debug & L1_DEB_ISAC)
  871. debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcpci.ph_state,
  872. exval);
  873. cs->dc.hfcpci.ph_state = exval;
  874. sched_event_D_pci(cs, D_L1STATECHANGE);
  875. val &= ~0x40;
  876. }
  877. if (val & 0x80) { /* timer irq */
  878. if (cs->hw.hfcpci.nt_mode) {
  879. if ((--cs->hw.hfcpci.nt_timer) < 0)
  880. sched_event_D_pci(cs, D_L1STATECHANGE);
  881. }
  882. val &= ~0x80;
  883. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  884. }
  885. while (val) {
  886. if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  887. cs->hw.hfcpci.int_s1 |= val;
  888. spin_unlock_irqrestore(&cs->lock, flags);
  889. return IRQ_HANDLED;
  890. }
  891. if (cs->hw.hfcpci.int_s1 & 0x18) {
  892. exval = val;
  893. val = cs->hw.hfcpci.int_s1;
  894. cs->hw.hfcpci.int_s1 = exval;
  895. }
  896. if (val & 0x08) {
  897. if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
  898. if (cs->debug)
  899. debugl1(cs, "hfcpci spurious 0x08 IRQ");
  900. } else
  901. main_rec_hfcpci(bcs);
  902. }
  903. if (val & 0x10) {
  904. if (cs->logecho)
  905. receive_emsg(cs);
  906. else if (!(bcs = Sel_BCS(cs, 1))) {
  907. if (cs->debug)
  908. debugl1(cs, "hfcpci spurious 0x10 IRQ");
  909. } else
  910. main_rec_hfcpci(bcs);
  911. }
  912. if (val & 0x01) {
  913. if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
  914. if (cs->debug)
  915. debugl1(cs, "hfcpci spurious 0x01 IRQ");
  916. } else {
  917. if (bcs->tx_skb) {
  918. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  919. hfcpci_fill_fifo(bcs);
  920. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  921. } else
  922. debugl1(cs, "fill_data %d blocked", bcs->channel);
  923. } else {
  924. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  925. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  926. hfcpci_fill_fifo(bcs);
  927. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  928. } else
  929. debugl1(cs, "fill_data %d blocked", bcs->channel);
  930. } else {
  931. hfcpci_sched_event(bcs, B_XMTBUFREADY);
  932. }
  933. }
  934. }
  935. }
  936. if (val & 0x02) {
  937. if (!(bcs = Sel_BCS(cs, 1))) {
  938. if (cs->debug)
  939. debugl1(cs, "hfcpci spurious 0x02 IRQ");
  940. } else {
  941. if (bcs->tx_skb) {
  942. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  943. hfcpci_fill_fifo(bcs);
  944. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  945. } else
  946. debugl1(cs, "fill_data %d blocked", bcs->channel);
  947. } else {
  948. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  949. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  950. hfcpci_fill_fifo(bcs);
  951. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  952. } else
  953. debugl1(cs, "fill_data %d blocked", bcs->channel);
  954. } else {
  955. hfcpci_sched_event(bcs, B_XMTBUFREADY);
  956. }
  957. }
  958. }
  959. }
  960. if (val & 0x20) { /* receive dframe */
  961. receive_dmsg(cs);
  962. }
  963. if (val & 0x04) { /* dframe transmitted */
  964. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  965. del_timer(&cs->dbusytimer);
  966. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  967. sched_event_D_pci(cs, D_CLEARBUSY);
  968. if (cs->tx_skb) {
  969. if (cs->tx_skb->len) {
  970. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  971. hfcpci_fill_dfifo(cs);
  972. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  973. } else {
  974. debugl1(cs, "hfcpci_fill_dfifo irq blocked");
  975. }
  976. goto afterXPR;
  977. } else {
  978. dev_kfree_skb_irq(cs->tx_skb);
  979. cs->tx_cnt = 0;
  980. cs->tx_skb = NULL;
  981. }
  982. }
  983. if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
  984. cs->tx_cnt = 0;
  985. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  986. hfcpci_fill_dfifo(cs);
  987. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  988. } else {
  989. debugl1(cs, "hfcpci_fill_dfifo irq blocked");
  990. }
  991. } else
  992. sched_event_D_pci(cs, D_XMTBUFREADY);
  993. }
  994. afterXPR:
  995. if (cs->hw.hfcpci.int_s1 && count--) {
  996. val = cs->hw.hfcpci.int_s1;
  997. cs->hw.hfcpci.int_s1 = 0;
  998. if (cs->debug & L1_DEB_ISAC)
  999. debugl1(cs, "HFC-PCI irq %x loop %d", val, 15 - count);
  1000. } else
  1001. val = 0;
  1002. }
  1003. spin_unlock_irqrestore(&cs->lock, flags);
  1004. return IRQ_HANDLED;
  1005. }
  1006. /********************************************************************/
  1007. /* timer callback for D-chan busy resolution. Currently no function */
  1008. /********************************************************************/
  1009. static void
  1010. hfcpci_dbusy_timer(struct IsdnCardState *cs)
  1011. {
  1012. }
  1013. /*************************************/
  1014. /* Layer 1 D-channel hardware access */
  1015. /*************************************/
  1016. static void
  1017. HFCPCI_l1hw(struct PStack *st, int pr, void *arg)
  1018. {
  1019. u_long flags;
  1020. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  1021. struct sk_buff *skb = arg;
  1022. switch (pr) {
  1023. case (PH_DATA | REQUEST):
  1024. if (cs->debug & DEB_DLOG_HEX)
  1025. LogFrame(cs, skb->data, skb->len);
  1026. if (cs->debug & DEB_DLOG_VERBOSE)
  1027. dlogframe(cs, skb, 0);
  1028. spin_lock_irqsave(&cs->lock, flags);
  1029. if (cs->tx_skb) {
  1030. skb_queue_tail(&cs->sq, skb);
  1031. #ifdef L2FRAME_DEBUG /* psa */
  1032. if (cs->debug & L1_DEB_LAPD)
  1033. Logl2Frame(cs, skb, "PH_DATA Queued", 0);
  1034. #endif
  1035. } else {
  1036. cs->tx_skb = skb;
  1037. cs->tx_cnt = 0;
  1038. #ifdef L2FRAME_DEBUG /* psa */
  1039. if (cs->debug & L1_DEB_LAPD)
  1040. Logl2Frame(cs, skb, "PH_DATA", 0);
  1041. #endif
  1042. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1043. hfcpci_fill_dfifo(cs);
  1044. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1045. } else
  1046. debugl1(cs, "hfcpci_fill_dfifo blocked");
  1047. }
  1048. spin_unlock_irqrestore(&cs->lock, flags);
  1049. break;
  1050. case (PH_PULL | INDICATION):
  1051. spin_lock_irqsave(&cs->lock, flags);
  1052. if (cs->tx_skb) {
  1053. if (cs->debug & L1_DEB_WARN)
  1054. debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
  1055. skb_queue_tail(&cs->sq, skb);
  1056. spin_unlock_irqrestore(&cs->lock, flags);
  1057. break;
  1058. }
  1059. if (cs->debug & DEB_DLOG_HEX)
  1060. LogFrame(cs, skb->data, skb->len);
  1061. if (cs->debug & DEB_DLOG_VERBOSE)
  1062. dlogframe(cs, skb, 0);
  1063. cs->tx_skb = skb;
  1064. cs->tx_cnt = 0;
  1065. #ifdef L2FRAME_DEBUG /* psa */
  1066. if (cs->debug & L1_DEB_LAPD)
  1067. Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
  1068. #endif
  1069. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1070. hfcpci_fill_dfifo(cs);
  1071. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1072. } else
  1073. debugl1(cs, "hfcpci_fill_dfifo blocked");
  1074. spin_unlock_irqrestore(&cs->lock, flags);
  1075. break;
  1076. case (PH_PULL | REQUEST):
  1077. #ifdef L2FRAME_DEBUG /* psa */
  1078. if (cs->debug & L1_DEB_LAPD)
  1079. debugl1(cs, "-> PH_REQUEST_PULL");
  1080. #endif
  1081. if (!cs->tx_skb) {
  1082. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1083. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  1084. } else
  1085. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1086. break;
  1087. case (HW_RESET | REQUEST):
  1088. spin_lock_irqsave(&cs->lock, flags);
  1089. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); /* HFC ST 3 */
  1090. udelay(6);
  1091. Write_hfc(cs, HFCPCI_STATES, 3); /* HFC ST 2 */
  1092. cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
  1093. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1094. Write_hfc(cs, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
  1095. spin_unlock_irqrestore(&cs->lock, flags);
  1096. l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
  1097. break;
  1098. case (HW_ENABLE | REQUEST):
  1099. spin_lock_irqsave(&cs->lock, flags);
  1100. Write_hfc(cs, HFCPCI_STATES, HFCPCI_DO_ACTION);
  1101. spin_unlock_irqrestore(&cs->lock, flags);
  1102. break;
  1103. case (HW_DEACTIVATE | REQUEST):
  1104. spin_lock_irqsave(&cs->lock, flags);
  1105. cs->hw.hfcpci.mst_m &= ~HFCPCI_MASTER;
  1106. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1107. spin_unlock_irqrestore(&cs->lock, flags);
  1108. break;
  1109. case (HW_INFO3 | REQUEST):
  1110. spin_lock_irqsave(&cs->lock, flags);
  1111. cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
  1112. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1113. spin_unlock_irqrestore(&cs->lock, flags);
  1114. break;
  1115. case (HW_TESTLOOP | REQUEST):
  1116. spin_lock_irqsave(&cs->lock, flags);
  1117. switch ((int) arg) {
  1118. case (1):
  1119. Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* tx slot */
  1120. Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* rx slot */
  1121. cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~7) | 1;
  1122. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1123. break;
  1124. case (2):
  1125. Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* tx slot */
  1126. Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* rx slot */
  1127. cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~0x38) | 0x08;
  1128. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1129. break;
  1130. default:
  1131. spin_unlock_irqrestore(&cs->lock, flags);
  1132. if (cs->debug & L1_DEB_WARN)
  1133. debugl1(cs, "hfcpci_l1hw loop invalid %4x", (int) arg);
  1134. return;
  1135. }
  1136. cs->hw.hfcpci.trm |= 0x80; /* enable IOM-loop */
  1137. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  1138. spin_unlock_irqrestore(&cs->lock, flags);
  1139. break;
  1140. default:
  1141. if (cs->debug & L1_DEB_WARN)
  1142. debugl1(cs, "hfcpci_l1hw unknown pr %4x", pr);
  1143. break;
  1144. }
  1145. }
  1146. /***********************************************/
  1147. /* called during init setting l1 stack pointer */
  1148. /***********************************************/
  1149. static void
  1150. setstack_hfcpci(struct PStack *st, struct IsdnCardState *cs)
  1151. {
  1152. st->l1.l1hw = HFCPCI_l1hw;
  1153. }
  1154. /**************************************/
  1155. /* send B-channel data if not blocked */
  1156. /**************************************/
  1157. static void
  1158. hfcpci_send_data(struct BCState *bcs)
  1159. {
  1160. struct IsdnCardState *cs = bcs->cs;
  1161. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1162. hfcpci_fill_fifo(bcs);
  1163. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1164. } else
  1165. debugl1(cs, "send_data %d blocked", bcs->channel);
  1166. }
  1167. /***************************************************************/
  1168. /* activate/deactivate hardware for selected channels and mode */
  1169. /***************************************************************/
  1170. static void
  1171. mode_hfcpci(struct BCState *bcs, int mode, int bc)
  1172. {
  1173. struct IsdnCardState *cs = bcs->cs;
  1174. int fifo2;
  1175. if (cs->debug & L1_DEB_HSCX)
  1176. debugl1(cs, "HFCPCI bchannel mode %d bchan %d/%d",
  1177. mode, bc, bcs->channel);
  1178. bcs->mode = mode;
  1179. bcs->channel = bc;
  1180. fifo2 = bc;
  1181. if (cs->chanlimit > 1) {
  1182. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1183. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1184. } else {
  1185. if (bc) {
  1186. if (mode != L1_MODE_NULL) {
  1187. cs->hw.hfcpci.bswapped = 1; /* B1 and B2 exchanged */
  1188. cs->hw.hfcpci.sctrl_e |= 0x80;
  1189. } else {
  1190. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1191. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1192. }
  1193. fifo2 = 0;
  1194. } else {
  1195. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1196. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1197. }
  1198. }
  1199. switch (mode) {
  1200. case (L1_MODE_NULL):
  1201. if (bc) {
  1202. cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
  1203. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
  1204. } else {
  1205. cs->hw.hfcpci.sctrl &= ~SCTRL_B1_ENA;
  1206. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B1_ENA;
  1207. }
  1208. if (fifo2) {
  1209. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
  1210. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1211. } else {
  1212. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
  1213. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1214. }
  1215. break;
  1216. case (L1_MODE_TRANS):
  1217. hfcpci_clear_fifo_rx(cs, fifo2);
  1218. hfcpci_clear_fifo_tx(cs, fifo2);
  1219. if (bc) {
  1220. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1221. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1222. } else {
  1223. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1224. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1225. }
  1226. if (fifo2) {
  1227. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
  1228. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1229. cs->hw.hfcpci.ctmt |= 2;
  1230. cs->hw.hfcpci.conn &= ~0x18;
  1231. } else {
  1232. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
  1233. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1234. cs->hw.hfcpci.ctmt |= 1;
  1235. cs->hw.hfcpci.conn &= ~0x03;
  1236. }
  1237. break;
  1238. case (L1_MODE_HDLC):
  1239. hfcpci_clear_fifo_rx(cs, fifo2);
  1240. hfcpci_clear_fifo_tx(cs, fifo2);
  1241. if (bc) {
  1242. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1243. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1244. } else {
  1245. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1246. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1247. }
  1248. if (fifo2) {
  1249. cs->hw.hfcpci.last_bfifo_cnt[1] = 0;
  1250. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
  1251. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1252. cs->hw.hfcpci.ctmt &= ~2;
  1253. cs->hw.hfcpci.conn &= ~0x18;
  1254. } else {
  1255. cs->hw.hfcpci.last_bfifo_cnt[0] = 0;
  1256. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
  1257. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1258. cs->hw.hfcpci.ctmt &= ~1;
  1259. cs->hw.hfcpci.conn &= ~0x03;
  1260. }
  1261. break;
  1262. case (L1_MODE_EXTRN):
  1263. if (bc) {
  1264. cs->hw.hfcpci.conn |= 0x10;
  1265. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1266. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1267. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
  1268. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1269. } else {
  1270. cs->hw.hfcpci.conn |= 0x02;
  1271. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1272. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1273. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
  1274. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1275. }
  1276. break;
  1277. }
  1278. Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e);
  1279. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1280. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  1281. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  1282. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  1283. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  1284. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1285. }
  1286. /******************************/
  1287. /* Layer2 -> Layer 1 Transfer */
  1288. /******************************/
  1289. static void
  1290. hfcpci_l2l1(struct PStack *st, int pr, void *arg)
  1291. {
  1292. struct BCState *bcs = st->l1.bcs;
  1293. u_long flags;
  1294. struct sk_buff *skb = arg;
  1295. switch (pr) {
  1296. case (PH_DATA | REQUEST):
  1297. spin_lock_irqsave(&bcs->cs->lock, flags);
  1298. if (bcs->tx_skb) {
  1299. skb_queue_tail(&bcs->squeue, skb);
  1300. } else {
  1301. bcs->tx_skb = skb;
  1302. // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  1303. bcs->cs->BC_Send_Data(bcs);
  1304. }
  1305. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1306. break;
  1307. case (PH_PULL | INDICATION):
  1308. spin_lock_irqsave(&bcs->cs->lock, flags);
  1309. if (bcs->tx_skb) {
  1310. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1311. printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
  1312. break;
  1313. }
  1314. // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  1315. bcs->tx_skb = skb;
  1316. bcs->cs->BC_Send_Data(bcs);
  1317. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1318. break;
  1319. case (PH_PULL | REQUEST):
  1320. if (!bcs->tx_skb) {
  1321. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1322. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  1323. } else
  1324. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1325. break;
  1326. case (PH_ACTIVATE | REQUEST):
  1327. spin_lock_irqsave(&bcs->cs->lock, flags);
  1328. test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
  1329. mode_hfcpci(bcs, st->l1.mode, st->l1.bc);
  1330. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1331. l1_msg_b(st, pr, arg);
  1332. break;
  1333. case (PH_DEACTIVATE | REQUEST):
  1334. l1_msg_b(st, pr, arg);
  1335. break;
  1336. case (PH_DEACTIVATE | CONFIRM):
  1337. spin_lock_irqsave(&bcs->cs->lock, flags);
  1338. test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
  1339. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1340. mode_hfcpci(bcs, 0, st->l1.bc);
  1341. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1342. st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
  1343. break;
  1344. }
  1345. }
  1346. /******************************************/
  1347. /* deactivate B-channel access and queues */
  1348. /******************************************/
  1349. static void
  1350. close_hfcpci(struct BCState *bcs)
  1351. {
  1352. mode_hfcpci(bcs, 0, bcs->channel);
  1353. if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
  1354. skb_queue_purge(&bcs->rqueue);
  1355. skb_queue_purge(&bcs->squeue);
  1356. if (bcs->tx_skb) {
  1357. dev_kfree_skb_any(bcs->tx_skb);
  1358. bcs->tx_skb = NULL;
  1359. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1360. }
  1361. }
  1362. }
  1363. /*************************************/
  1364. /* init B-channel queues and control */
  1365. /*************************************/
  1366. static int
  1367. open_hfcpcistate(struct IsdnCardState *cs, struct BCState *bcs)
  1368. {
  1369. if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
  1370. skb_queue_head_init(&bcs->rqueue);
  1371. skb_queue_head_init(&bcs->squeue);
  1372. }
  1373. bcs->tx_skb = NULL;
  1374. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1375. bcs->event = 0;
  1376. bcs->tx_cnt = 0;
  1377. return (0);
  1378. }
  1379. /*********************************/
  1380. /* inits the stack for B-channel */
  1381. /*********************************/
  1382. static int
  1383. setstack_2b(struct PStack *st, struct BCState *bcs)
  1384. {
  1385. bcs->channel = st->l1.bc;
  1386. if (open_hfcpcistate(st->l1.hardware, bcs))
  1387. return (-1);
  1388. st->l1.bcs = bcs;
  1389. st->l2.l2l1 = hfcpci_l2l1;
  1390. setstack_manager(st);
  1391. bcs->st = st;
  1392. setstack_l1_B(st);
  1393. return (0);
  1394. }
  1395. /***************************/
  1396. /* handle L1 state changes */
  1397. /***************************/
  1398. static void
  1399. hfcpci_bh(struct IsdnCardState *cs)
  1400. {
  1401. u_long flags;
  1402. // struct PStack *stptr;
  1403. if (!cs)
  1404. return;
  1405. if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
  1406. if (!cs->hw.hfcpci.nt_mode)
  1407. switch (cs->dc.hfcpci.ph_state) {
  1408. case (0):
  1409. l1_msg(cs, HW_RESET | INDICATION, NULL);
  1410. break;
  1411. case (3):
  1412. l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
  1413. break;
  1414. case (8):
  1415. l1_msg(cs, HW_RSYNC | INDICATION, NULL);
  1416. break;
  1417. case (6):
  1418. l1_msg(cs, HW_INFO2 | INDICATION, NULL);
  1419. break;
  1420. case (7):
  1421. l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
  1422. break;
  1423. default:
  1424. break;
  1425. } else {
  1426. spin_lock_irqsave(&cs->lock, flags);
  1427. switch (cs->dc.hfcpci.ph_state) {
  1428. case (2):
  1429. if (cs->hw.hfcpci.nt_timer < 0) {
  1430. cs->hw.hfcpci.nt_timer = 0;
  1431. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1432. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1433. /* Clear already pending ints */
  1434. if (Read_hfc(cs, HFCPCI_INT_S1));
  1435. Write_hfc(cs, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
  1436. udelay(10);
  1437. Write_hfc(cs, HFCPCI_STATES, 4);
  1438. cs->dc.hfcpci.ph_state = 4;
  1439. } else {
  1440. cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_TIMER;
  1441. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1442. cs->hw.hfcpci.ctmt &= ~HFCPCI_AUTO_TIMER;
  1443. cs->hw.hfcpci.ctmt |= HFCPCI_TIM3_125;
  1444. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  1445. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  1446. cs->hw.hfcpci.nt_timer = NT_T1_COUNT;
  1447. Write_hfc(cs, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); /* allow G2 -> G3 transition */
  1448. }
  1449. break;
  1450. case (1):
  1451. case (3):
  1452. case (4):
  1453. cs->hw.hfcpci.nt_timer = 0;
  1454. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1455. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1456. break;
  1457. default:
  1458. break;
  1459. }
  1460. spin_unlock_irqrestore(&cs->lock, flags);
  1461. }
  1462. }
  1463. if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
  1464. DChannel_proc_rcv(cs);
  1465. if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
  1466. DChannel_proc_xmt(cs);
  1467. }
  1468. /********************************/
  1469. /* called for card init message */
  1470. /********************************/
  1471. static void __init
  1472. inithfcpci(struct IsdnCardState *cs)
  1473. {
  1474. cs->bcs[0].BC_SetStack = setstack_2b;
  1475. cs->bcs[1].BC_SetStack = setstack_2b;
  1476. cs->bcs[0].BC_Close = close_hfcpci;
  1477. cs->bcs[1].BC_Close = close_hfcpci;
  1478. cs->dbusytimer.function = (void *) hfcpci_dbusy_timer;
  1479. cs->dbusytimer.data = (long) cs;
  1480. init_timer(&cs->dbusytimer);
  1481. mode_hfcpci(cs->bcs, 0, 0);
  1482. mode_hfcpci(cs->bcs + 1, 0, 1);
  1483. }
  1484. /*******************************************/
  1485. /* handle card messages from control layer */
  1486. /*******************************************/
  1487. static int
  1488. hfcpci_card_msg(struct IsdnCardState *cs, int mt, void *arg)
  1489. {
  1490. u_long flags;
  1491. if (cs->debug & L1_DEB_ISAC)
  1492. debugl1(cs, "HFCPCI: card_msg %x", mt);
  1493. switch (mt) {
  1494. case CARD_RESET:
  1495. spin_lock_irqsave(&cs->lock, flags);
  1496. reset_hfcpci(cs);
  1497. spin_unlock_irqrestore(&cs->lock, flags);
  1498. return (0);
  1499. case CARD_RELEASE:
  1500. release_io_hfcpci(cs);
  1501. return (0);
  1502. case CARD_INIT:
  1503. spin_lock_irqsave(&cs->lock, flags);
  1504. inithfcpci(cs);
  1505. reset_hfcpci(cs);
  1506. spin_unlock_irqrestore(&cs->lock, flags);
  1507. msleep(80); /* Timeout 80ms */
  1508. /* now switch timer interrupt off */
  1509. spin_lock_irqsave(&cs->lock, flags);
  1510. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1511. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1512. /* reinit mode reg */
  1513. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1514. spin_unlock_irqrestore(&cs->lock, flags);
  1515. return (0);
  1516. case CARD_TEST:
  1517. return (0);
  1518. }
  1519. return (0);
  1520. }
  1521. /* this variable is used as card index when more than one cards are present */
  1522. static struct pci_dev *dev_hfcpci __initdata = NULL;
  1523. #endif /* CONFIG_PCI */
  1524. int __init
  1525. setup_hfcpci(struct IsdnCard *card)
  1526. {
  1527. u_long flags;
  1528. struct IsdnCardState *cs = card->cs;
  1529. char tmp[64];
  1530. int i;
  1531. struct pci_dev *tmp_hfcpci = NULL;
  1532. #ifdef __BIG_ENDIAN
  1533. #error "not running on big endian machines now"
  1534. #endif
  1535. strcpy(tmp, hfcpci_revision);
  1536. printk(KERN_INFO "HiSax: HFC-PCI driver Rev. %s\n", HiSax_getrev(tmp));
  1537. #ifdef CONFIG_PCI
  1538. cs->hw.hfcpci.int_s1 = 0;
  1539. cs->dc.hfcpci.ph_state = 0;
  1540. cs->hw.hfcpci.fifo = 255;
  1541. if (cs->typ == ISDN_CTYPE_HFC_PCI) {
  1542. i = 0;
  1543. while (id_list[i].vendor_id) {
  1544. tmp_hfcpci = pci_find_device(id_list[i].vendor_id,
  1545. id_list[i].device_id,
  1546. dev_hfcpci);
  1547. i++;
  1548. if (tmp_hfcpci) {
  1549. if (pci_enable_device(tmp_hfcpci))
  1550. continue;
  1551. pci_set_master(tmp_hfcpci);
  1552. if ((card->para[0]) && (card->para[0] != (tmp_hfcpci->resource[ 0].start & PCI_BASE_ADDRESS_IO_MASK)))
  1553. continue;
  1554. else
  1555. break;
  1556. }
  1557. }
  1558. if (tmp_hfcpci) {
  1559. i--;
  1560. dev_hfcpci = tmp_hfcpci; /* old device */
  1561. cs->hw.hfcpci.dev = dev_hfcpci;
  1562. cs->irq = dev_hfcpci->irq;
  1563. if (!cs->irq) {
  1564. printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
  1565. return (0);
  1566. }
  1567. cs->hw.hfcpci.pci_io = (char *) dev_hfcpci->resource[ 1].start;
  1568. printk(KERN_INFO "HiSax: HFC-PCI card manufacturer: %s card name: %s\n", id_list[i].vendor_name, id_list[i].card_name);
  1569. } else {
  1570. printk(KERN_WARNING "HFC-PCI: No PCI card found\n");
  1571. return (0);
  1572. }
  1573. if (!cs->hw.hfcpci.pci_io) {
  1574. printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
  1575. return (0);
  1576. }
  1577. /* Allocate memory for FIFOS */
  1578. /* Because the HFC-PCI needs a 32K physical alignment, we */
  1579. /* need to allocate the double mem and align the address */
  1580. if (!(cs->hw.hfcpci.share_start = kmalloc(65536, GFP_KERNEL))) {
  1581. printk(KERN_WARNING "HFC-PCI: Error allocating memory for FIFO!\n");
  1582. return 0;
  1583. }
  1584. cs->hw.hfcpci.fifos = (void *)
  1585. (((ulong) cs->hw.hfcpci.share_start) & ~0x7FFF) + 0x8000;
  1586. pci_write_config_dword(cs->hw.hfcpci.dev, 0x80, (u_int) virt_to_bus(cs->hw.hfcpci.fifos));
  1587. cs->hw.hfcpci.pci_io = ioremap((ulong) cs->hw.hfcpci.pci_io, 256);
  1588. printk(KERN_INFO
  1589. "HFC-PCI: defined at mem %#x fifo %#x(%#x) IRQ %d HZ %d\n",
  1590. (u_int) cs->hw.hfcpci.pci_io,
  1591. (u_int) cs->hw.hfcpci.fifos,
  1592. (u_int) virt_to_bus(cs->hw.hfcpci.fifos),
  1593. cs->irq, HZ);
  1594. spin_lock_irqsave(&cs->lock, flags);
  1595. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
  1596. cs->hw.hfcpci.int_m2 = 0; /* disable alle interrupts */
  1597. cs->hw.hfcpci.int_m1 = 0;
  1598. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1599. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  1600. /* At this point the needed PCI config is done */
  1601. /* fifos are still not enabled */
  1602. INIT_WORK(&cs->tqueue, (void *)(void *) hfcpci_bh, cs);
  1603. cs->setstack_d = setstack_hfcpci;
  1604. cs->BC_Send_Data = &hfcpci_send_data;
  1605. cs->readisac = NULL;
  1606. cs->writeisac = NULL;
  1607. cs->readisacfifo = NULL;
  1608. cs->writeisacfifo = NULL;
  1609. cs->BC_Read_Reg = NULL;
  1610. cs->BC_Write_Reg = NULL;
  1611. cs->irq_func = &hfcpci_interrupt;
  1612. cs->irq_flags |= SA_SHIRQ;
  1613. cs->hw.hfcpci.timer.function = (void *) hfcpci_Timer;
  1614. cs->hw.hfcpci.timer.data = (long) cs;
  1615. init_timer(&cs->hw.hfcpci.timer);
  1616. cs->cardmsg = &hfcpci_card_msg;
  1617. cs->auxcmd = &hfcpci_auxcmd;
  1618. spin_unlock_irqrestore(&cs->lock, flags);
  1619. return (1);
  1620. } else
  1621. return (0); /* no valid card type */
  1622. #else
  1623. printk(KERN_WARNING "HFC-PCI: NO_PCI_BIOS\n");
  1624. return (0);
  1625. #endif /* CONFIG_PCI */
  1626. }