skbuff.h 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. /* Don't change this without changing skb_csum_unnecessary! */
  33. #define CHECKSUM_NONE 0
  34. #define CHECKSUM_UNNECESSARY 1
  35. #define CHECKSUM_COMPLETE 2
  36. #define CHECKSUM_PARTIAL 3
  37. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  38. ~(SMP_CACHE_BYTES - 1))
  39. #define SKB_WITH_OVERHEAD(X) \
  40. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  41. #define SKB_MAX_ORDER(X, ORDER) \
  42. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  43. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  44. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  45. /* return minimum truesize of one skb containing X bytes of data */
  46. #define SKB_TRUESIZE(X) ((X) + \
  47. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  48. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  49. /* A. Checksumming of received packets by device.
  50. *
  51. * NONE: device failed to checksum this packet.
  52. * skb->csum is undefined.
  53. *
  54. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  55. * skb->csum is undefined.
  56. * It is bad option, but, unfortunately, many of vendors do this.
  57. * Apparently with secret goal to sell you new device, when you
  58. * will add new protocol to your host. F.e. IPv6. 8)
  59. *
  60. * COMPLETE: the most generic way. Device supplied checksum of _all_
  61. * the packet as seen by netif_rx in skb->csum.
  62. * NOTE: Even if device supports only some protocols, but
  63. * is able to produce some skb->csum, it MUST use COMPLETE,
  64. * not UNNECESSARY.
  65. *
  66. * PARTIAL: identical to the case for output below. This may occur
  67. * on a packet received directly from another Linux OS, e.g.,
  68. * a virtualised Linux kernel on the same host. The packet can
  69. * be treated in the same way as UNNECESSARY except that on
  70. * output (i.e., forwarding) the checksum must be filled in
  71. * by the OS or the hardware.
  72. *
  73. * B. Checksumming on output.
  74. *
  75. * NONE: skb is checksummed by protocol or csum is not required.
  76. *
  77. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  78. * from skb->csum_start to the end and to record the checksum
  79. * at skb->csum_start + skb->csum_offset.
  80. *
  81. * Device must show its capabilities in dev->features, set
  82. * at device setup time.
  83. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  84. * everything.
  85. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  86. * TCP/UDP over IPv4. Sigh. Vendors like this
  87. * way by an unknown reason. Though, see comment above
  88. * about CHECKSUM_UNNECESSARY. 8)
  89. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  90. *
  91. * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
  92. * that do not want net to perform the checksum calculation should use
  93. * this flag in their outgoing skbs.
  94. * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
  95. * offload. Correspondingly, the FCoE protocol driver
  96. * stack should use CHECKSUM_UNNECESSARY.
  97. *
  98. * Any questions? No questions, good. --ANK
  99. */
  100. struct net_device;
  101. struct scatterlist;
  102. struct pipe_inode_info;
  103. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  104. struct nf_conntrack {
  105. atomic_t use;
  106. };
  107. #endif
  108. #ifdef CONFIG_BRIDGE_NETFILTER
  109. struct nf_bridge_info {
  110. atomic_t use;
  111. unsigned int mask;
  112. struct net_device *physindev;
  113. struct net_device *physoutdev;
  114. unsigned long data[32 / sizeof(unsigned long)];
  115. };
  116. #endif
  117. struct sk_buff_head {
  118. /* These two members must be first. */
  119. struct sk_buff *next;
  120. struct sk_buff *prev;
  121. __u32 qlen;
  122. spinlock_t lock;
  123. };
  124. struct sk_buff;
  125. /* To allow 64K frame to be packed as single skb without frag_list we
  126. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  127. * buffers which do not start on a page boundary.
  128. *
  129. * Since GRO uses frags we allocate at least 16 regardless of page
  130. * size.
  131. */
  132. #if (65536/PAGE_SIZE + 1) < 16
  133. #define MAX_SKB_FRAGS 16UL
  134. #else
  135. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  136. #endif
  137. typedef struct skb_frag_struct skb_frag_t;
  138. struct skb_frag_struct {
  139. struct {
  140. struct page *p;
  141. } page;
  142. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  143. __u32 page_offset;
  144. __u32 size;
  145. #else
  146. __u16 page_offset;
  147. __u16 size;
  148. #endif
  149. };
  150. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  151. {
  152. return frag->size;
  153. }
  154. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  155. {
  156. frag->size = size;
  157. }
  158. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  159. {
  160. frag->size += delta;
  161. }
  162. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  163. {
  164. frag->size -= delta;
  165. }
  166. #define HAVE_HW_TIME_STAMP
  167. /**
  168. * struct skb_shared_hwtstamps - hardware time stamps
  169. * @hwtstamp: hardware time stamp transformed into duration
  170. * since arbitrary point in time
  171. * @syststamp: hwtstamp transformed to system time base
  172. *
  173. * Software time stamps generated by ktime_get_real() are stored in
  174. * skb->tstamp. The relation between the different kinds of time
  175. * stamps is as follows:
  176. *
  177. * syststamp and tstamp can be compared against each other in
  178. * arbitrary combinations. The accuracy of a
  179. * syststamp/tstamp/"syststamp from other device" comparison is
  180. * limited by the accuracy of the transformation into system time
  181. * base. This depends on the device driver and its underlying
  182. * hardware.
  183. *
  184. * hwtstamps can only be compared against other hwtstamps from
  185. * the same device.
  186. *
  187. * This structure is attached to packets as part of the
  188. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  189. */
  190. struct skb_shared_hwtstamps {
  191. ktime_t hwtstamp;
  192. ktime_t syststamp;
  193. };
  194. /* Definitions for tx_flags in struct skb_shared_info */
  195. enum {
  196. /* generate hardware time stamp */
  197. SKBTX_HW_TSTAMP = 1 << 0,
  198. /* generate software time stamp */
  199. SKBTX_SW_TSTAMP = 1 << 1,
  200. /* device driver is going to provide hardware time stamp */
  201. SKBTX_IN_PROGRESS = 1 << 2,
  202. /* ensure the originating sk reference is available on driver level */
  203. SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
  204. /* device driver supports TX zero-copy buffers */
  205. SKBTX_DEV_ZEROCOPY = 1 << 4,
  206. /* generate wifi status information (where possible) */
  207. SKBTX_WIFI_STATUS = 1 << 5,
  208. };
  209. /*
  210. * The callback notifies userspace to release buffers when skb DMA is done in
  211. * lower device, the skb last reference should be 0 when calling this.
  212. * The ctx field is used to track device context.
  213. * The desc field is used to track userspace buffer index.
  214. */
  215. struct ubuf_info {
  216. void (*callback)(struct ubuf_info *);
  217. void *ctx;
  218. unsigned long desc;
  219. };
  220. /* This data is invariant across clones and lives at
  221. * the end of the header data, ie. at skb->end.
  222. */
  223. struct skb_shared_info {
  224. unsigned char nr_frags;
  225. __u8 tx_flags;
  226. unsigned short gso_size;
  227. /* Warning: this field is not always filled in (UFO)! */
  228. unsigned short gso_segs;
  229. unsigned short gso_type;
  230. struct sk_buff *frag_list;
  231. struct skb_shared_hwtstamps hwtstamps;
  232. __be32 ip6_frag_id;
  233. /*
  234. * Warning : all fields before dataref are cleared in __alloc_skb()
  235. */
  236. atomic_t dataref;
  237. /* Intermediate layers must ensure that destructor_arg
  238. * remains valid until skb destructor */
  239. void * destructor_arg;
  240. /* must be last field, see pskb_expand_head() */
  241. skb_frag_t frags[MAX_SKB_FRAGS];
  242. };
  243. /* We divide dataref into two halves. The higher 16 bits hold references
  244. * to the payload part of skb->data. The lower 16 bits hold references to
  245. * the entire skb->data. A clone of a headerless skb holds the length of
  246. * the header in skb->hdr_len.
  247. *
  248. * All users must obey the rule that the skb->data reference count must be
  249. * greater than or equal to the payload reference count.
  250. *
  251. * Holding a reference to the payload part means that the user does not
  252. * care about modifications to the header part of skb->data.
  253. */
  254. #define SKB_DATAREF_SHIFT 16
  255. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  256. enum {
  257. SKB_FCLONE_UNAVAILABLE,
  258. SKB_FCLONE_ORIG,
  259. SKB_FCLONE_CLONE,
  260. };
  261. enum {
  262. SKB_GSO_TCPV4 = 1 << 0,
  263. SKB_GSO_UDP = 1 << 1,
  264. /* This indicates the skb is from an untrusted source. */
  265. SKB_GSO_DODGY = 1 << 2,
  266. /* This indicates the tcp segment has CWR set. */
  267. SKB_GSO_TCP_ECN = 1 << 3,
  268. SKB_GSO_TCPV6 = 1 << 4,
  269. SKB_GSO_FCOE = 1 << 5,
  270. };
  271. #if BITS_PER_LONG > 32
  272. #define NET_SKBUFF_DATA_USES_OFFSET 1
  273. #endif
  274. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  275. typedef unsigned int sk_buff_data_t;
  276. #else
  277. typedef unsigned char *sk_buff_data_t;
  278. #endif
  279. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  280. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  281. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  282. #endif
  283. /**
  284. * struct sk_buff - socket buffer
  285. * @next: Next buffer in list
  286. * @prev: Previous buffer in list
  287. * @tstamp: Time we arrived
  288. * @sk: Socket we are owned by
  289. * @dev: Device we arrived on/are leaving by
  290. * @cb: Control buffer. Free for use by every layer. Put private vars here
  291. * @_skb_refdst: destination entry (with norefcount bit)
  292. * @sp: the security path, used for xfrm
  293. * @len: Length of actual data
  294. * @data_len: Data length
  295. * @mac_len: Length of link layer header
  296. * @hdr_len: writable header length of cloned skb
  297. * @csum: Checksum (must include start/offset pair)
  298. * @csum_start: Offset from skb->head where checksumming should start
  299. * @csum_offset: Offset from csum_start where checksum should be stored
  300. * @priority: Packet queueing priority
  301. * @local_df: allow local fragmentation
  302. * @cloned: Head may be cloned (check refcnt to be sure)
  303. * @ip_summed: Driver fed us an IP checksum
  304. * @nohdr: Payload reference only, must not modify header
  305. * @nfctinfo: Relationship of this skb to the connection
  306. * @pkt_type: Packet class
  307. * @fclone: skbuff clone status
  308. * @ipvs_property: skbuff is owned by ipvs
  309. * @peeked: this packet has been seen already, so stats have been
  310. * done for it, don't do them again
  311. * @nf_trace: netfilter packet trace flag
  312. * @protocol: Packet protocol from driver
  313. * @destructor: Destruct function
  314. * @nfct: Associated connection, if any
  315. * @nfct_reasm: netfilter conntrack re-assembly pointer
  316. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  317. * @skb_iif: ifindex of device we arrived on
  318. * @tc_index: Traffic control index
  319. * @tc_verd: traffic control verdict
  320. * @rxhash: the packet hash computed on receive
  321. * @queue_mapping: Queue mapping for multiqueue devices
  322. * @ndisc_nodetype: router type (from link layer)
  323. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  324. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  325. * ports.
  326. * @wifi_acked_valid: wifi_acked was set
  327. * @wifi_acked: whether frame was acked on wifi or not
  328. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  329. * @dma_cookie: a cookie to one of several possible DMA operations
  330. * done by skb DMA functions
  331. * @secmark: security marking
  332. * @mark: Generic packet mark
  333. * @dropcount: total number of sk_receive_queue overflows
  334. * @vlan_tci: vlan tag control information
  335. * @transport_header: Transport layer header
  336. * @network_header: Network layer header
  337. * @mac_header: Link layer header
  338. * @tail: Tail pointer
  339. * @end: End pointer
  340. * @head: Head of buffer
  341. * @data: Data head pointer
  342. * @truesize: Buffer size
  343. * @users: User count - see {datagram,tcp}.c
  344. */
  345. struct sk_buff {
  346. /* These two members must be first. */
  347. struct sk_buff *next;
  348. struct sk_buff *prev;
  349. ktime_t tstamp;
  350. struct sock *sk;
  351. struct net_device *dev;
  352. /*
  353. * This is the control buffer. It is free to use for every
  354. * layer. Please put your private variables there. If you
  355. * want to keep them across layers you have to do a skb_clone()
  356. * first. This is owned by whoever has the skb queued ATM.
  357. */
  358. char cb[48] __aligned(8);
  359. unsigned long _skb_refdst;
  360. #ifdef CONFIG_XFRM
  361. struct sec_path *sp;
  362. #endif
  363. unsigned int len,
  364. data_len;
  365. __u16 mac_len,
  366. hdr_len;
  367. union {
  368. __wsum csum;
  369. struct {
  370. __u16 csum_start;
  371. __u16 csum_offset;
  372. };
  373. };
  374. __u32 priority;
  375. kmemcheck_bitfield_begin(flags1);
  376. __u8 local_df:1,
  377. cloned:1,
  378. ip_summed:2,
  379. nohdr:1,
  380. nfctinfo:3;
  381. __u8 pkt_type:3,
  382. fclone:2,
  383. ipvs_property:1,
  384. peeked:1,
  385. nf_trace:1;
  386. kmemcheck_bitfield_end(flags1);
  387. __be16 protocol;
  388. void (*destructor)(struct sk_buff *skb);
  389. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  390. struct nf_conntrack *nfct;
  391. #endif
  392. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  393. struct sk_buff *nfct_reasm;
  394. #endif
  395. #ifdef CONFIG_BRIDGE_NETFILTER
  396. struct nf_bridge_info *nf_bridge;
  397. #endif
  398. int skb_iif;
  399. __u32 rxhash;
  400. __u16 vlan_tci;
  401. #ifdef CONFIG_NET_SCHED
  402. __u16 tc_index; /* traffic control index */
  403. #ifdef CONFIG_NET_CLS_ACT
  404. __u16 tc_verd; /* traffic control verdict */
  405. #endif
  406. #endif
  407. __u16 queue_mapping;
  408. kmemcheck_bitfield_begin(flags2);
  409. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  410. __u8 ndisc_nodetype:2;
  411. #endif
  412. __u8 ooo_okay:1;
  413. __u8 l4_rxhash:1;
  414. __u8 wifi_acked_valid:1;
  415. __u8 wifi_acked:1;
  416. __u8 no_fcs:1;
  417. __u8 head_frag:1;
  418. /* 8/10 bit hole (depending on ndisc_nodetype presence) */
  419. kmemcheck_bitfield_end(flags2);
  420. #ifdef CONFIG_NET_DMA
  421. dma_cookie_t dma_cookie;
  422. #endif
  423. #ifdef CONFIG_NETWORK_SECMARK
  424. __u32 secmark;
  425. #endif
  426. union {
  427. __u32 mark;
  428. __u32 dropcount;
  429. __u32 avail_size;
  430. };
  431. sk_buff_data_t transport_header;
  432. sk_buff_data_t network_header;
  433. sk_buff_data_t mac_header;
  434. /* These elements must be at the end, see alloc_skb() for details. */
  435. sk_buff_data_t tail;
  436. sk_buff_data_t end;
  437. unsigned char *head,
  438. *data;
  439. unsigned int truesize;
  440. atomic_t users;
  441. };
  442. #ifdef __KERNEL__
  443. /*
  444. * Handling routines are only of interest to the kernel
  445. */
  446. #include <linux/slab.h>
  447. /*
  448. * skb might have a dst pointer attached, refcounted or not.
  449. * _skb_refdst low order bit is set if refcount was _not_ taken
  450. */
  451. #define SKB_DST_NOREF 1UL
  452. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  453. /**
  454. * skb_dst - returns skb dst_entry
  455. * @skb: buffer
  456. *
  457. * Returns skb dst_entry, regardless of reference taken or not.
  458. */
  459. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  460. {
  461. /* If refdst was not refcounted, check we still are in a
  462. * rcu_read_lock section
  463. */
  464. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  465. !rcu_read_lock_held() &&
  466. !rcu_read_lock_bh_held());
  467. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  468. }
  469. /**
  470. * skb_dst_set - sets skb dst
  471. * @skb: buffer
  472. * @dst: dst entry
  473. *
  474. * Sets skb dst, assuming a reference was taken on dst and should
  475. * be released by skb_dst_drop()
  476. */
  477. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  478. {
  479. skb->_skb_refdst = (unsigned long)dst;
  480. }
  481. extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
  482. /**
  483. * skb_dst_is_noref - Test if skb dst isn't refcounted
  484. * @skb: buffer
  485. */
  486. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  487. {
  488. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  489. }
  490. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  491. {
  492. return (struct rtable *)skb_dst(skb);
  493. }
  494. extern void kfree_skb(struct sk_buff *skb);
  495. extern void consume_skb(struct sk_buff *skb);
  496. extern void __kfree_skb(struct sk_buff *skb);
  497. extern struct kmem_cache *skbuff_head_cache;
  498. extern struct sk_buff *__alloc_skb(unsigned int size,
  499. gfp_t priority, int fclone, int node);
  500. extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
  501. static inline struct sk_buff *alloc_skb(unsigned int size,
  502. gfp_t priority)
  503. {
  504. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  505. }
  506. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  507. gfp_t priority)
  508. {
  509. return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
  510. }
  511. extern void skb_recycle(struct sk_buff *skb);
  512. extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
  513. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  514. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  515. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  516. gfp_t priority);
  517. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  518. gfp_t priority);
  519. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  520. int headroom, gfp_t gfp_mask);
  521. extern int pskb_expand_head(struct sk_buff *skb,
  522. int nhead, int ntail,
  523. gfp_t gfp_mask);
  524. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  525. unsigned int headroom);
  526. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  527. int newheadroom, int newtailroom,
  528. gfp_t priority);
  529. extern int skb_to_sgvec(struct sk_buff *skb,
  530. struct scatterlist *sg, int offset,
  531. int len);
  532. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  533. struct sk_buff **trailer);
  534. extern int skb_pad(struct sk_buff *skb, int pad);
  535. #define dev_kfree_skb(a) consume_skb(a)
  536. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  537. int getfrag(void *from, char *to, int offset,
  538. int len,int odd, struct sk_buff *skb),
  539. void *from, int length);
  540. struct skb_seq_state {
  541. __u32 lower_offset;
  542. __u32 upper_offset;
  543. __u32 frag_idx;
  544. __u32 stepped_offset;
  545. struct sk_buff *root_skb;
  546. struct sk_buff *cur_skb;
  547. __u8 *frag_data;
  548. };
  549. extern void skb_prepare_seq_read(struct sk_buff *skb,
  550. unsigned int from, unsigned int to,
  551. struct skb_seq_state *st);
  552. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  553. struct skb_seq_state *st);
  554. extern void skb_abort_seq_read(struct skb_seq_state *st);
  555. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  556. unsigned int to, struct ts_config *config,
  557. struct ts_state *state);
  558. extern void __skb_get_rxhash(struct sk_buff *skb);
  559. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  560. {
  561. if (!skb->rxhash)
  562. __skb_get_rxhash(skb);
  563. return skb->rxhash;
  564. }
  565. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  566. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  567. {
  568. return skb->head + skb->end;
  569. }
  570. #else
  571. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  572. {
  573. return skb->end;
  574. }
  575. #endif
  576. /* Internal */
  577. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  578. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  579. {
  580. return &skb_shinfo(skb)->hwtstamps;
  581. }
  582. /**
  583. * skb_queue_empty - check if a queue is empty
  584. * @list: queue head
  585. *
  586. * Returns true if the queue is empty, false otherwise.
  587. */
  588. static inline int skb_queue_empty(const struct sk_buff_head *list)
  589. {
  590. return list->next == (struct sk_buff *)list;
  591. }
  592. /**
  593. * skb_queue_is_last - check if skb is the last entry in the queue
  594. * @list: queue head
  595. * @skb: buffer
  596. *
  597. * Returns true if @skb is the last buffer on the list.
  598. */
  599. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  600. const struct sk_buff *skb)
  601. {
  602. return skb->next == (struct sk_buff *)list;
  603. }
  604. /**
  605. * skb_queue_is_first - check if skb is the first entry in the queue
  606. * @list: queue head
  607. * @skb: buffer
  608. *
  609. * Returns true if @skb is the first buffer on the list.
  610. */
  611. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  612. const struct sk_buff *skb)
  613. {
  614. return skb->prev == (struct sk_buff *)list;
  615. }
  616. /**
  617. * skb_queue_next - return the next packet in the queue
  618. * @list: queue head
  619. * @skb: current buffer
  620. *
  621. * Return the next packet in @list after @skb. It is only valid to
  622. * call this if skb_queue_is_last() evaluates to false.
  623. */
  624. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  625. const struct sk_buff *skb)
  626. {
  627. /* This BUG_ON may seem severe, but if we just return then we
  628. * are going to dereference garbage.
  629. */
  630. BUG_ON(skb_queue_is_last(list, skb));
  631. return skb->next;
  632. }
  633. /**
  634. * skb_queue_prev - return the prev packet in the queue
  635. * @list: queue head
  636. * @skb: current buffer
  637. *
  638. * Return the prev packet in @list before @skb. It is only valid to
  639. * call this if skb_queue_is_first() evaluates to false.
  640. */
  641. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  642. const struct sk_buff *skb)
  643. {
  644. /* This BUG_ON may seem severe, but if we just return then we
  645. * are going to dereference garbage.
  646. */
  647. BUG_ON(skb_queue_is_first(list, skb));
  648. return skb->prev;
  649. }
  650. /**
  651. * skb_get - reference buffer
  652. * @skb: buffer to reference
  653. *
  654. * Makes another reference to a socket buffer and returns a pointer
  655. * to the buffer.
  656. */
  657. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  658. {
  659. atomic_inc(&skb->users);
  660. return skb;
  661. }
  662. /*
  663. * If users == 1, we are the only owner and are can avoid redundant
  664. * atomic change.
  665. */
  666. /**
  667. * skb_cloned - is the buffer a clone
  668. * @skb: buffer to check
  669. *
  670. * Returns true if the buffer was generated with skb_clone() and is
  671. * one of multiple shared copies of the buffer. Cloned buffers are
  672. * shared data so must not be written to under normal circumstances.
  673. */
  674. static inline int skb_cloned(const struct sk_buff *skb)
  675. {
  676. return skb->cloned &&
  677. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  678. }
  679. /**
  680. * skb_header_cloned - is the header a clone
  681. * @skb: buffer to check
  682. *
  683. * Returns true if modifying the header part of the buffer requires
  684. * the data to be copied.
  685. */
  686. static inline int skb_header_cloned(const struct sk_buff *skb)
  687. {
  688. int dataref;
  689. if (!skb->cloned)
  690. return 0;
  691. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  692. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  693. return dataref != 1;
  694. }
  695. /**
  696. * skb_header_release - release reference to header
  697. * @skb: buffer to operate on
  698. *
  699. * Drop a reference to the header part of the buffer. This is done
  700. * by acquiring a payload reference. You must not read from the header
  701. * part of skb->data after this.
  702. */
  703. static inline void skb_header_release(struct sk_buff *skb)
  704. {
  705. BUG_ON(skb->nohdr);
  706. skb->nohdr = 1;
  707. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  708. }
  709. /**
  710. * skb_shared - is the buffer shared
  711. * @skb: buffer to check
  712. *
  713. * Returns true if more than one person has a reference to this
  714. * buffer.
  715. */
  716. static inline int skb_shared(const struct sk_buff *skb)
  717. {
  718. return atomic_read(&skb->users) != 1;
  719. }
  720. /**
  721. * skb_share_check - check if buffer is shared and if so clone it
  722. * @skb: buffer to check
  723. * @pri: priority for memory allocation
  724. *
  725. * If the buffer is shared the buffer is cloned and the old copy
  726. * drops a reference. A new clone with a single reference is returned.
  727. * If the buffer is not shared the original buffer is returned. When
  728. * being called from interrupt status or with spinlocks held pri must
  729. * be GFP_ATOMIC.
  730. *
  731. * NULL is returned on a memory allocation failure.
  732. */
  733. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  734. gfp_t pri)
  735. {
  736. might_sleep_if(pri & __GFP_WAIT);
  737. if (skb_shared(skb)) {
  738. struct sk_buff *nskb = skb_clone(skb, pri);
  739. kfree_skb(skb);
  740. skb = nskb;
  741. }
  742. return skb;
  743. }
  744. /*
  745. * Copy shared buffers into a new sk_buff. We effectively do COW on
  746. * packets to handle cases where we have a local reader and forward
  747. * and a couple of other messy ones. The normal one is tcpdumping
  748. * a packet thats being forwarded.
  749. */
  750. /**
  751. * skb_unshare - make a copy of a shared buffer
  752. * @skb: buffer to check
  753. * @pri: priority for memory allocation
  754. *
  755. * If the socket buffer is a clone then this function creates a new
  756. * copy of the data, drops a reference count on the old copy and returns
  757. * the new copy with the reference count at 1. If the buffer is not a clone
  758. * the original buffer is returned. When called with a spinlock held or
  759. * from interrupt state @pri must be %GFP_ATOMIC
  760. *
  761. * %NULL is returned on a memory allocation failure.
  762. */
  763. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  764. gfp_t pri)
  765. {
  766. might_sleep_if(pri & __GFP_WAIT);
  767. if (skb_cloned(skb)) {
  768. struct sk_buff *nskb = skb_copy(skb, pri);
  769. kfree_skb(skb); /* Free our shared copy */
  770. skb = nskb;
  771. }
  772. return skb;
  773. }
  774. /**
  775. * skb_peek - peek at the head of an &sk_buff_head
  776. * @list_: list to peek at
  777. *
  778. * Peek an &sk_buff. Unlike most other operations you _MUST_
  779. * be careful with this one. A peek leaves the buffer on the
  780. * list and someone else may run off with it. You must hold
  781. * the appropriate locks or have a private queue to do this.
  782. *
  783. * Returns %NULL for an empty list or a pointer to the head element.
  784. * The reference count is not incremented and the reference is therefore
  785. * volatile. Use with caution.
  786. */
  787. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  788. {
  789. struct sk_buff *list = ((const struct sk_buff *)list_)->next;
  790. if (list == (struct sk_buff *)list_)
  791. list = NULL;
  792. return list;
  793. }
  794. /**
  795. * skb_peek_next - peek skb following the given one from a queue
  796. * @skb: skb to start from
  797. * @list_: list to peek at
  798. *
  799. * Returns %NULL when the end of the list is met or a pointer to the
  800. * next element. The reference count is not incremented and the
  801. * reference is therefore volatile. Use with caution.
  802. */
  803. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  804. const struct sk_buff_head *list_)
  805. {
  806. struct sk_buff *next = skb->next;
  807. if (next == (struct sk_buff *)list_)
  808. next = NULL;
  809. return next;
  810. }
  811. /**
  812. * skb_peek_tail - peek at the tail of an &sk_buff_head
  813. * @list_: list to peek at
  814. *
  815. * Peek an &sk_buff. Unlike most other operations you _MUST_
  816. * be careful with this one. A peek leaves the buffer on the
  817. * list and someone else may run off with it. You must hold
  818. * the appropriate locks or have a private queue to do this.
  819. *
  820. * Returns %NULL for an empty list or a pointer to the tail element.
  821. * The reference count is not incremented and the reference is therefore
  822. * volatile. Use with caution.
  823. */
  824. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  825. {
  826. struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
  827. if (list == (struct sk_buff *)list_)
  828. list = NULL;
  829. return list;
  830. }
  831. /**
  832. * skb_queue_len - get queue length
  833. * @list_: list to measure
  834. *
  835. * Return the length of an &sk_buff queue.
  836. */
  837. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  838. {
  839. return list_->qlen;
  840. }
  841. /**
  842. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  843. * @list: queue to initialize
  844. *
  845. * This initializes only the list and queue length aspects of
  846. * an sk_buff_head object. This allows to initialize the list
  847. * aspects of an sk_buff_head without reinitializing things like
  848. * the spinlock. It can also be used for on-stack sk_buff_head
  849. * objects where the spinlock is known to not be used.
  850. */
  851. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  852. {
  853. list->prev = list->next = (struct sk_buff *)list;
  854. list->qlen = 0;
  855. }
  856. /*
  857. * This function creates a split out lock class for each invocation;
  858. * this is needed for now since a whole lot of users of the skb-queue
  859. * infrastructure in drivers have different locking usage (in hardirq)
  860. * than the networking core (in softirq only). In the long run either the
  861. * network layer or drivers should need annotation to consolidate the
  862. * main types of usage into 3 classes.
  863. */
  864. static inline void skb_queue_head_init(struct sk_buff_head *list)
  865. {
  866. spin_lock_init(&list->lock);
  867. __skb_queue_head_init(list);
  868. }
  869. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  870. struct lock_class_key *class)
  871. {
  872. skb_queue_head_init(list);
  873. lockdep_set_class(&list->lock, class);
  874. }
  875. /*
  876. * Insert an sk_buff on a list.
  877. *
  878. * The "__skb_xxxx()" functions are the non-atomic ones that
  879. * can only be called with interrupts disabled.
  880. */
  881. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  882. static inline void __skb_insert(struct sk_buff *newsk,
  883. struct sk_buff *prev, struct sk_buff *next,
  884. struct sk_buff_head *list)
  885. {
  886. newsk->next = next;
  887. newsk->prev = prev;
  888. next->prev = prev->next = newsk;
  889. list->qlen++;
  890. }
  891. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  892. struct sk_buff *prev,
  893. struct sk_buff *next)
  894. {
  895. struct sk_buff *first = list->next;
  896. struct sk_buff *last = list->prev;
  897. first->prev = prev;
  898. prev->next = first;
  899. last->next = next;
  900. next->prev = last;
  901. }
  902. /**
  903. * skb_queue_splice - join two skb lists, this is designed for stacks
  904. * @list: the new list to add
  905. * @head: the place to add it in the first list
  906. */
  907. static inline void skb_queue_splice(const struct sk_buff_head *list,
  908. struct sk_buff_head *head)
  909. {
  910. if (!skb_queue_empty(list)) {
  911. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  912. head->qlen += list->qlen;
  913. }
  914. }
  915. /**
  916. * skb_queue_splice - join two skb lists and reinitialise the emptied list
  917. * @list: the new list to add
  918. * @head: the place to add it in the first list
  919. *
  920. * The list at @list is reinitialised
  921. */
  922. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  923. struct sk_buff_head *head)
  924. {
  925. if (!skb_queue_empty(list)) {
  926. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  927. head->qlen += list->qlen;
  928. __skb_queue_head_init(list);
  929. }
  930. }
  931. /**
  932. * skb_queue_splice_tail - join two skb lists, each list being a queue
  933. * @list: the new list to add
  934. * @head: the place to add it in the first list
  935. */
  936. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  937. struct sk_buff_head *head)
  938. {
  939. if (!skb_queue_empty(list)) {
  940. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  941. head->qlen += list->qlen;
  942. }
  943. }
  944. /**
  945. * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
  946. * @list: the new list to add
  947. * @head: the place to add it in the first list
  948. *
  949. * Each of the lists is a queue.
  950. * The list at @list is reinitialised
  951. */
  952. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  953. struct sk_buff_head *head)
  954. {
  955. if (!skb_queue_empty(list)) {
  956. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  957. head->qlen += list->qlen;
  958. __skb_queue_head_init(list);
  959. }
  960. }
  961. /**
  962. * __skb_queue_after - queue a buffer at the list head
  963. * @list: list to use
  964. * @prev: place after this buffer
  965. * @newsk: buffer to queue
  966. *
  967. * Queue a buffer int the middle of a list. This function takes no locks
  968. * and you must therefore hold required locks before calling it.
  969. *
  970. * A buffer cannot be placed on two lists at the same time.
  971. */
  972. static inline void __skb_queue_after(struct sk_buff_head *list,
  973. struct sk_buff *prev,
  974. struct sk_buff *newsk)
  975. {
  976. __skb_insert(newsk, prev, prev->next, list);
  977. }
  978. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  979. struct sk_buff_head *list);
  980. static inline void __skb_queue_before(struct sk_buff_head *list,
  981. struct sk_buff *next,
  982. struct sk_buff *newsk)
  983. {
  984. __skb_insert(newsk, next->prev, next, list);
  985. }
  986. /**
  987. * __skb_queue_head - queue a buffer at the list head
  988. * @list: list to use
  989. * @newsk: buffer to queue
  990. *
  991. * Queue a buffer at the start of a list. This function takes no locks
  992. * and you must therefore hold required locks before calling it.
  993. *
  994. * A buffer cannot be placed on two lists at the same time.
  995. */
  996. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  997. static inline void __skb_queue_head(struct sk_buff_head *list,
  998. struct sk_buff *newsk)
  999. {
  1000. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1001. }
  1002. /**
  1003. * __skb_queue_tail - queue a buffer at the list tail
  1004. * @list: list to use
  1005. * @newsk: buffer to queue
  1006. *
  1007. * Queue a buffer at the end of a list. This function takes no locks
  1008. * and you must therefore hold required locks before calling it.
  1009. *
  1010. * A buffer cannot be placed on two lists at the same time.
  1011. */
  1012. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1013. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1014. struct sk_buff *newsk)
  1015. {
  1016. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1017. }
  1018. /*
  1019. * remove sk_buff from list. _Must_ be called atomically, and with
  1020. * the list known..
  1021. */
  1022. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1023. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1024. {
  1025. struct sk_buff *next, *prev;
  1026. list->qlen--;
  1027. next = skb->next;
  1028. prev = skb->prev;
  1029. skb->next = skb->prev = NULL;
  1030. next->prev = prev;
  1031. prev->next = next;
  1032. }
  1033. /**
  1034. * __skb_dequeue - remove from the head of the queue
  1035. * @list: list to dequeue from
  1036. *
  1037. * Remove the head of the list. This function does not take any locks
  1038. * so must be used with appropriate locks held only. The head item is
  1039. * returned or %NULL if the list is empty.
  1040. */
  1041. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1042. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1043. {
  1044. struct sk_buff *skb = skb_peek(list);
  1045. if (skb)
  1046. __skb_unlink(skb, list);
  1047. return skb;
  1048. }
  1049. /**
  1050. * __skb_dequeue_tail - remove from the tail of the queue
  1051. * @list: list to dequeue from
  1052. *
  1053. * Remove the tail of the list. This function does not take any locks
  1054. * so must be used with appropriate locks held only. The tail item is
  1055. * returned or %NULL if the list is empty.
  1056. */
  1057. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1058. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1059. {
  1060. struct sk_buff *skb = skb_peek_tail(list);
  1061. if (skb)
  1062. __skb_unlink(skb, list);
  1063. return skb;
  1064. }
  1065. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1066. {
  1067. return skb->data_len;
  1068. }
  1069. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1070. {
  1071. return skb->len - skb->data_len;
  1072. }
  1073. static inline int skb_pagelen(const struct sk_buff *skb)
  1074. {
  1075. int i, len = 0;
  1076. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1077. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1078. return len + skb_headlen(skb);
  1079. }
  1080. /**
  1081. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1082. * @skb: buffer containing fragment to be initialised
  1083. * @i: paged fragment index to initialise
  1084. * @page: the page to use for this fragment
  1085. * @off: the offset to the data with @page
  1086. * @size: the length of the data
  1087. *
  1088. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1089. * offset @off within @page.
  1090. *
  1091. * Does not take any additional reference on the fragment.
  1092. */
  1093. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1094. struct page *page, int off, int size)
  1095. {
  1096. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1097. frag->page.p = page;
  1098. frag->page_offset = off;
  1099. skb_frag_size_set(frag, size);
  1100. }
  1101. /**
  1102. * skb_fill_page_desc - initialise a paged fragment in an skb
  1103. * @skb: buffer containing fragment to be initialised
  1104. * @i: paged fragment index to initialise
  1105. * @page: the page to use for this fragment
  1106. * @off: the offset to the data with @page
  1107. * @size: the length of the data
  1108. *
  1109. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1110. * @skb to point to &size bytes at offset @off within @page. In
  1111. * addition updates @skb such that @i is the last fragment.
  1112. *
  1113. * Does not take any additional reference on the fragment.
  1114. */
  1115. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1116. struct page *page, int off, int size)
  1117. {
  1118. __skb_fill_page_desc(skb, i, page, off, size);
  1119. skb_shinfo(skb)->nr_frags = i + 1;
  1120. }
  1121. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1122. int off, int size, unsigned int truesize);
  1123. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1124. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1125. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1126. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1127. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1128. {
  1129. return skb->head + skb->tail;
  1130. }
  1131. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1132. {
  1133. skb->tail = skb->data - skb->head;
  1134. }
  1135. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1136. {
  1137. skb_reset_tail_pointer(skb);
  1138. skb->tail += offset;
  1139. }
  1140. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1141. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1142. {
  1143. return skb->tail;
  1144. }
  1145. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1146. {
  1147. skb->tail = skb->data;
  1148. }
  1149. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1150. {
  1151. skb->tail = skb->data + offset;
  1152. }
  1153. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1154. /*
  1155. * Add data to an sk_buff
  1156. */
  1157. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1158. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1159. {
  1160. unsigned char *tmp = skb_tail_pointer(skb);
  1161. SKB_LINEAR_ASSERT(skb);
  1162. skb->tail += len;
  1163. skb->len += len;
  1164. return tmp;
  1165. }
  1166. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1167. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1168. {
  1169. skb->data -= len;
  1170. skb->len += len;
  1171. return skb->data;
  1172. }
  1173. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1174. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1175. {
  1176. skb->len -= len;
  1177. BUG_ON(skb->len < skb->data_len);
  1178. return skb->data += len;
  1179. }
  1180. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1181. {
  1182. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1183. }
  1184. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1185. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1186. {
  1187. if (len > skb_headlen(skb) &&
  1188. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1189. return NULL;
  1190. skb->len -= len;
  1191. return skb->data += len;
  1192. }
  1193. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1194. {
  1195. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1196. }
  1197. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1198. {
  1199. if (likely(len <= skb_headlen(skb)))
  1200. return 1;
  1201. if (unlikely(len > skb->len))
  1202. return 0;
  1203. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1204. }
  1205. /**
  1206. * skb_headroom - bytes at buffer head
  1207. * @skb: buffer to check
  1208. *
  1209. * Return the number of bytes of free space at the head of an &sk_buff.
  1210. */
  1211. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1212. {
  1213. return skb->data - skb->head;
  1214. }
  1215. /**
  1216. * skb_tailroom - bytes at buffer end
  1217. * @skb: buffer to check
  1218. *
  1219. * Return the number of bytes of free space at the tail of an sk_buff
  1220. */
  1221. static inline int skb_tailroom(const struct sk_buff *skb)
  1222. {
  1223. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1224. }
  1225. /**
  1226. * skb_availroom - bytes at buffer end
  1227. * @skb: buffer to check
  1228. *
  1229. * Return the number of bytes of free space at the tail of an sk_buff
  1230. * allocated by sk_stream_alloc()
  1231. */
  1232. static inline int skb_availroom(const struct sk_buff *skb)
  1233. {
  1234. return skb_is_nonlinear(skb) ? 0 : skb->avail_size - skb->len;
  1235. }
  1236. /**
  1237. * skb_reserve - adjust headroom
  1238. * @skb: buffer to alter
  1239. * @len: bytes to move
  1240. *
  1241. * Increase the headroom of an empty &sk_buff by reducing the tail
  1242. * room. This is only allowed for an empty buffer.
  1243. */
  1244. static inline void skb_reserve(struct sk_buff *skb, int len)
  1245. {
  1246. skb->data += len;
  1247. skb->tail += len;
  1248. }
  1249. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1250. {
  1251. skb->mac_len = skb->network_header - skb->mac_header;
  1252. }
  1253. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1254. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1255. {
  1256. return skb->head + skb->transport_header;
  1257. }
  1258. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1259. {
  1260. skb->transport_header = skb->data - skb->head;
  1261. }
  1262. static inline void skb_set_transport_header(struct sk_buff *skb,
  1263. const int offset)
  1264. {
  1265. skb_reset_transport_header(skb);
  1266. skb->transport_header += offset;
  1267. }
  1268. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1269. {
  1270. return skb->head + skb->network_header;
  1271. }
  1272. static inline void skb_reset_network_header(struct sk_buff *skb)
  1273. {
  1274. skb->network_header = skb->data - skb->head;
  1275. }
  1276. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1277. {
  1278. skb_reset_network_header(skb);
  1279. skb->network_header += offset;
  1280. }
  1281. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1282. {
  1283. return skb->head + skb->mac_header;
  1284. }
  1285. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1286. {
  1287. return skb->mac_header != ~0U;
  1288. }
  1289. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1290. {
  1291. skb->mac_header = skb->data - skb->head;
  1292. }
  1293. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1294. {
  1295. skb_reset_mac_header(skb);
  1296. skb->mac_header += offset;
  1297. }
  1298. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1299. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1300. {
  1301. return skb->transport_header;
  1302. }
  1303. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1304. {
  1305. skb->transport_header = skb->data;
  1306. }
  1307. static inline void skb_set_transport_header(struct sk_buff *skb,
  1308. const int offset)
  1309. {
  1310. skb->transport_header = skb->data + offset;
  1311. }
  1312. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1313. {
  1314. return skb->network_header;
  1315. }
  1316. static inline void skb_reset_network_header(struct sk_buff *skb)
  1317. {
  1318. skb->network_header = skb->data;
  1319. }
  1320. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1321. {
  1322. skb->network_header = skb->data + offset;
  1323. }
  1324. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1325. {
  1326. return skb->mac_header;
  1327. }
  1328. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1329. {
  1330. return skb->mac_header != NULL;
  1331. }
  1332. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1333. {
  1334. skb->mac_header = skb->data;
  1335. }
  1336. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1337. {
  1338. skb->mac_header = skb->data + offset;
  1339. }
  1340. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1341. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1342. {
  1343. if (skb_mac_header_was_set(skb)) {
  1344. const unsigned char *old_mac = skb_mac_header(skb);
  1345. skb_set_mac_header(skb, -skb->mac_len);
  1346. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1347. }
  1348. }
  1349. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1350. {
  1351. return skb->csum_start - skb_headroom(skb);
  1352. }
  1353. static inline int skb_transport_offset(const struct sk_buff *skb)
  1354. {
  1355. return skb_transport_header(skb) - skb->data;
  1356. }
  1357. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1358. {
  1359. return skb->transport_header - skb->network_header;
  1360. }
  1361. static inline int skb_network_offset(const struct sk_buff *skb)
  1362. {
  1363. return skb_network_header(skb) - skb->data;
  1364. }
  1365. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1366. {
  1367. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1368. }
  1369. /*
  1370. * CPUs often take a performance hit when accessing unaligned memory
  1371. * locations. The actual performance hit varies, it can be small if the
  1372. * hardware handles it or large if we have to take an exception and fix it
  1373. * in software.
  1374. *
  1375. * Since an ethernet header is 14 bytes network drivers often end up with
  1376. * the IP header at an unaligned offset. The IP header can be aligned by
  1377. * shifting the start of the packet by 2 bytes. Drivers should do this
  1378. * with:
  1379. *
  1380. * skb_reserve(skb, NET_IP_ALIGN);
  1381. *
  1382. * The downside to this alignment of the IP header is that the DMA is now
  1383. * unaligned. On some architectures the cost of an unaligned DMA is high
  1384. * and this cost outweighs the gains made by aligning the IP header.
  1385. *
  1386. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1387. * to be overridden.
  1388. */
  1389. #ifndef NET_IP_ALIGN
  1390. #define NET_IP_ALIGN 2
  1391. #endif
  1392. /*
  1393. * The networking layer reserves some headroom in skb data (via
  1394. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1395. * the header has to grow. In the default case, if the header has to grow
  1396. * 32 bytes or less we avoid the reallocation.
  1397. *
  1398. * Unfortunately this headroom changes the DMA alignment of the resulting
  1399. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1400. * on some architectures. An architecture can override this value,
  1401. * perhaps setting it to a cacheline in size (since that will maintain
  1402. * cacheline alignment of the DMA). It must be a power of 2.
  1403. *
  1404. * Various parts of the networking layer expect at least 32 bytes of
  1405. * headroom, you should not reduce this.
  1406. *
  1407. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1408. * to reduce average number of cache lines per packet.
  1409. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1410. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1411. */
  1412. #ifndef NET_SKB_PAD
  1413. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1414. #endif
  1415. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1416. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1417. {
  1418. if (unlikely(skb_is_nonlinear(skb))) {
  1419. WARN_ON(1);
  1420. return;
  1421. }
  1422. skb->len = len;
  1423. skb_set_tail_pointer(skb, len);
  1424. }
  1425. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1426. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1427. {
  1428. if (skb->data_len)
  1429. return ___pskb_trim(skb, len);
  1430. __skb_trim(skb, len);
  1431. return 0;
  1432. }
  1433. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1434. {
  1435. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1436. }
  1437. /**
  1438. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1439. * @skb: buffer to alter
  1440. * @len: new length
  1441. *
  1442. * This is identical to pskb_trim except that the caller knows that
  1443. * the skb is not cloned so we should never get an error due to out-
  1444. * of-memory.
  1445. */
  1446. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1447. {
  1448. int err = pskb_trim(skb, len);
  1449. BUG_ON(err);
  1450. }
  1451. /**
  1452. * skb_orphan - orphan a buffer
  1453. * @skb: buffer to orphan
  1454. *
  1455. * If a buffer currently has an owner then we call the owner's
  1456. * destructor function and make the @skb unowned. The buffer continues
  1457. * to exist but is no longer charged to its former owner.
  1458. */
  1459. static inline void skb_orphan(struct sk_buff *skb)
  1460. {
  1461. if (skb->destructor)
  1462. skb->destructor(skb);
  1463. skb->destructor = NULL;
  1464. skb->sk = NULL;
  1465. }
  1466. /**
  1467. * __skb_queue_purge - empty a list
  1468. * @list: list to empty
  1469. *
  1470. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1471. * the list and one reference dropped. This function does not take the
  1472. * list lock and the caller must hold the relevant locks to use it.
  1473. */
  1474. extern void skb_queue_purge(struct sk_buff_head *list);
  1475. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1476. {
  1477. struct sk_buff *skb;
  1478. while ((skb = __skb_dequeue(list)) != NULL)
  1479. kfree_skb(skb);
  1480. }
  1481. /**
  1482. * __dev_alloc_skb - allocate an skbuff for receiving
  1483. * @length: length to allocate
  1484. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1485. *
  1486. * Allocate a new &sk_buff and assign it a usage count of one. The
  1487. * buffer has unspecified headroom built in. Users should allocate
  1488. * the headroom they think they need without accounting for the
  1489. * built in space. The built in space is used for optimisations.
  1490. *
  1491. * %NULL is returned if there is no free memory.
  1492. */
  1493. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1494. gfp_t gfp_mask)
  1495. {
  1496. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1497. if (likely(skb))
  1498. skb_reserve(skb, NET_SKB_PAD);
  1499. return skb;
  1500. }
  1501. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1502. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1503. unsigned int length, gfp_t gfp_mask);
  1504. /**
  1505. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1506. * @dev: network device to receive on
  1507. * @length: length to allocate
  1508. *
  1509. * Allocate a new &sk_buff and assign it a usage count of one. The
  1510. * buffer has unspecified headroom built in. Users should allocate
  1511. * the headroom they think they need without accounting for the
  1512. * built in space. The built in space is used for optimisations.
  1513. *
  1514. * %NULL is returned if there is no free memory. Although this function
  1515. * allocates memory it can be called from an interrupt.
  1516. */
  1517. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1518. unsigned int length)
  1519. {
  1520. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1521. }
  1522. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1523. unsigned int length, gfp_t gfp)
  1524. {
  1525. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1526. if (NET_IP_ALIGN && skb)
  1527. skb_reserve(skb, NET_IP_ALIGN);
  1528. return skb;
  1529. }
  1530. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1531. unsigned int length)
  1532. {
  1533. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1534. }
  1535. /**
  1536. * skb_frag_page - retrieve the page refered to by a paged fragment
  1537. * @frag: the paged fragment
  1538. *
  1539. * Returns the &struct page associated with @frag.
  1540. */
  1541. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1542. {
  1543. return frag->page.p;
  1544. }
  1545. /**
  1546. * __skb_frag_ref - take an addition reference on a paged fragment.
  1547. * @frag: the paged fragment
  1548. *
  1549. * Takes an additional reference on the paged fragment @frag.
  1550. */
  1551. static inline void __skb_frag_ref(skb_frag_t *frag)
  1552. {
  1553. get_page(skb_frag_page(frag));
  1554. }
  1555. /**
  1556. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1557. * @skb: the buffer
  1558. * @f: the fragment offset.
  1559. *
  1560. * Takes an additional reference on the @f'th paged fragment of @skb.
  1561. */
  1562. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1563. {
  1564. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1565. }
  1566. /**
  1567. * __skb_frag_unref - release a reference on a paged fragment.
  1568. * @frag: the paged fragment
  1569. *
  1570. * Releases a reference on the paged fragment @frag.
  1571. */
  1572. static inline void __skb_frag_unref(skb_frag_t *frag)
  1573. {
  1574. put_page(skb_frag_page(frag));
  1575. }
  1576. /**
  1577. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1578. * @skb: the buffer
  1579. * @f: the fragment offset
  1580. *
  1581. * Releases a reference on the @f'th paged fragment of @skb.
  1582. */
  1583. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1584. {
  1585. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1586. }
  1587. /**
  1588. * skb_frag_address - gets the address of the data contained in a paged fragment
  1589. * @frag: the paged fragment buffer
  1590. *
  1591. * Returns the address of the data within @frag. The page must already
  1592. * be mapped.
  1593. */
  1594. static inline void *skb_frag_address(const skb_frag_t *frag)
  1595. {
  1596. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1597. }
  1598. /**
  1599. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1600. * @frag: the paged fragment buffer
  1601. *
  1602. * Returns the address of the data within @frag. Checks that the page
  1603. * is mapped and returns %NULL otherwise.
  1604. */
  1605. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1606. {
  1607. void *ptr = page_address(skb_frag_page(frag));
  1608. if (unlikely(!ptr))
  1609. return NULL;
  1610. return ptr + frag->page_offset;
  1611. }
  1612. /**
  1613. * __skb_frag_set_page - sets the page contained in a paged fragment
  1614. * @frag: the paged fragment
  1615. * @page: the page to set
  1616. *
  1617. * Sets the fragment @frag to contain @page.
  1618. */
  1619. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1620. {
  1621. frag->page.p = page;
  1622. }
  1623. /**
  1624. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1625. * @skb: the buffer
  1626. * @f: the fragment offset
  1627. * @page: the page to set
  1628. *
  1629. * Sets the @f'th fragment of @skb to contain @page.
  1630. */
  1631. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1632. struct page *page)
  1633. {
  1634. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1635. }
  1636. /**
  1637. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1638. * @dev: the device to map the fragment to
  1639. * @frag: the paged fragment to map
  1640. * @offset: the offset within the fragment (starting at the
  1641. * fragment's own offset)
  1642. * @size: the number of bytes to map
  1643. * @dir: the direction of the mapping (%PCI_DMA_*)
  1644. *
  1645. * Maps the page associated with @frag to @device.
  1646. */
  1647. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1648. const skb_frag_t *frag,
  1649. size_t offset, size_t size,
  1650. enum dma_data_direction dir)
  1651. {
  1652. return dma_map_page(dev, skb_frag_page(frag),
  1653. frag->page_offset + offset, size, dir);
  1654. }
  1655. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1656. gfp_t gfp_mask)
  1657. {
  1658. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1659. }
  1660. /**
  1661. * skb_clone_writable - is the header of a clone writable
  1662. * @skb: buffer to check
  1663. * @len: length up to which to write
  1664. *
  1665. * Returns true if modifying the header part of the cloned buffer
  1666. * does not requires the data to be copied.
  1667. */
  1668. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1669. {
  1670. return !skb_header_cloned(skb) &&
  1671. skb_headroom(skb) + len <= skb->hdr_len;
  1672. }
  1673. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1674. int cloned)
  1675. {
  1676. int delta = 0;
  1677. if (headroom < NET_SKB_PAD)
  1678. headroom = NET_SKB_PAD;
  1679. if (headroom > skb_headroom(skb))
  1680. delta = headroom - skb_headroom(skb);
  1681. if (delta || cloned)
  1682. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1683. GFP_ATOMIC);
  1684. return 0;
  1685. }
  1686. /**
  1687. * skb_cow - copy header of skb when it is required
  1688. * @skb: buffer to cow
  1689. * @headroom: needed headroom
  1690. *
  1691. * If the skb passed lacks sufficient headroom or its data part
  1692. * is shared, data is reallocated. If reallocation fails, an error
  1693. * is returned and original skb is not changed.
  1694. *
  1695. * The result is skb with writable area skb->head...skb->tail
  1696. * and at least @headroom of space at head.
  1697. */
  1698. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1699. {
  1700. return __skb_cow(skb, headroom, skb_cloned(skb));
  1701. }
  1702. /**
  1703. * skb_cow_head - skb_cow but only making the head writable
  1704. * @skb: buffer to cow
  1705. * @headroom: needed headroom
  1706. *
  1707. * This function is identical to skb_cow except that we replace the
  1708. * skb_cloned check by skb_header_cloned. It should be used when
  1709. * you only need to push on some header and do not need to modify
  1710. * the data.
  1711. */
  1712. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1713. {
  1714. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1715. }
  1716. /**
  1717. * skb_padto - pad an skbuff up to a minimal size
  1718. * @skb: buffer to pad
  1719. * @len: minimal length
  1720. *
  1721. * Pads up a buffer to ensure the trailing bytes exist and are
  1722. * blanked. If the buffer already contains sufficient data it
  1723. * is untouched. Otherwise it is extended. Returns zero on
  1724. * success. The skb is freed on error.
  1725. */
  1726. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1727. {
  1728. unsigned int size = skb->len;
  1729. if (likely(size >= len))
  1730. return 0;
  1731. return skb_pad(skb, len - size);
  1732. }
  1733. static inline int skb_add_data(struct sk_buff *skb,
  1734. char __user *from, int copy)
  1735. {
  1736. const int off = skb->len;
  1737. if (skb->ip_summed == CHECKSUM_NONE) {
  1738. int err = 0;
  1739. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1740. copy, 0, &err);
  1741. if (!err) {
  1742. skb->csum = csum_block_add(skb->csum, csum, off);
  1743. return 0;
  1744. }
  1745. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1746. return 0;
  1747. __skb_trim(skb, off);
  1748. return -EFAULT;
  1749. }
  1750. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  1751. const struct page *page, int off)
  1752. {
  1753. if (i) {
  1754. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1755. return page == skb_frag_page(frag) &&
  1756. off == frag->page_offset + skb_frag_size(frag);
  1757. }
  1758. return false;
  1759. }
  1760. static inline int __skb_linearize(struct sk_buff *skb)
  1761. {
  1762. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1763. }
  1764. /**
  1765. * skb_linearize - convert paged skb to linear one
  1766. * @skb: buffer to linarize
  1767. *
  1768. * If there is no free memory -ENOMEM is returned, otherwise zero
  1769. * is returned and the old skb data released.
  1770. */
  1771. static inline int skb_linearize(struct sk_buff *skb)
  1772. {
  1773. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1774. }
  1775. /**
  1776. * skb_linearize_cow - make sure skb is linear and writable
  1777. * @skb: buffer to process
  1778. *
  1779. * If there is no free memory -ENOMEM is returned, otherwise zero
  1780. * is returned and the old skb data released.
  1781. */
  1782. static inline int skb_linearize_cow(struct sk_buff *skb)
  1783. {
  1784. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1785. __skb_linearize(skb) : 0;
  1786. }
  1787. /**
  1788. * skb_postpull_rcsum - update checksum for received skb after pull
  1789. * @skb: buffer to update
  1790. * @start: start of data before pull
  1791. * @len: length of data pulled
  1792. *
  1793. * After doing a pull on a received packet, you need to call this to
  1794. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1795. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1796. */
  1797. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1798. const void *start, unsigned int len)
  1799. {
  1800. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1801. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1802. }
  1803. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1804. /**
  1805. * pskb_trim_rcsum - trim received skb and update checksum
  1806. * @skb: buffer to trim
  1807. * @len: new length
  1808. *
  1809. * This is exactly the same as pskb_trim except that it ensures the
  1810. * checksum of received packets are still valid after the operation.
  1811. */
  1812. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1813. {
  1814. if (likely(len >= skb->len))
  1815. return 0;
  1816. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1817. skb->ip_summed = CHECKSUM_NONE;
  1818. return __pskb_trim(skb, len);
  1819. }
  1820. #define skb_queue_walk(queue, skb) \
  1821. for (skb = (queue)->next; \
  1822. skb != (struct sk_buff *)(queue); \
  1823. skb = skb->next)
  1824. #define skb_queue_walk_safe(queue, skb, tmp) \
  1825. for (skb = (queue)->next, tmp = skb->next; \
  1826. skb != (struct sk_buff *)(queue); \
  1827. skb = tmp, tmp = skb->next)
  1828. #define skb_queue_walk_from(queue, skb) \
  1829. for (; skb != (struct sk_buff *)(queue); \
  1830. skb = skb->next)
  1831. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  1832. for (tmp = skb->next; \
  1833. skb != (struct sk_buff *)(queue); \
  1834. skb = tmp, tmp = skb->next)
  1835. #define skb_queue_reverse_walk(queue, skb) \
  1836. for (skb = (queue)->prev; \
  1837. skb != (struct sk_buff *)(queue); \
  1838. skb = skb->prev)
  1839. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  1840. for (skb = (queue)->prev, tmp = skb->prev; \
  1841. skb != (struct sk_buff *)(queue); \
  1842. skb = tmp, tmp = skb->prev)
  1843. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  1844. for (tmp = skb->prev; \
  1845. skb != (struct sk_buff *)(queue); \
  1846. skb = tmp, tmp = skb->prev)
  1847. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  1848. {
  1849. return skb_shinfo(skb)->frag_list != NULL;
  1850. }
  1851. static inline void skb_frag_list_init(struct sk_buff *skb)
  1852. {
  1853. skb_shinfo(skb)->frag_list = NULL;
  1854. }
  1855. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  1856. {
  1857. frag->next = skb_shinfo(skb)->frag_list;
  1858. skb_shinfo(skb)->frag_list = frag;
  1859. }
  1860. #define skb_walk_frags(skb, iter) \
  1861. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  1862. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1863. int *peeked, int *off, int *err);
  1864. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1865. int noblock, int *err);
  1866. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1867. struct poll_table_struct *wait);
  1868. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1869. int offset, struct iovec *to,
  1870. int size);
  1871. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1872. int hlen,
  1873. struct iovec *iov);
  1874. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  1875. int offset,
  1876. const struct iovec *from,
  1877. int from_offset,
  1878. int len);
  1879. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  1880. int offset,
  1881. const struct iovec *to,
  1882. int to_offset,
  1883. int size);
  1884. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1885. extern void skb_free_datagram_locked(struct sock *sk,
  1886. struct sk_buff *skb);
  1887. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1888. unsigned int flags);
  1889. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1890. int len, __wsum csum);
  1891. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1892. void *to, int len);
  1893. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1894. const void *from, int len);
  1895. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1896. int offset, u8 *to, int len,
  1897. __wsum csum);
  1898. extern int skb_splice_bits(struct sk_buff *skb,
  1899. unsigned int offset,
  1900. struct pipe_inode_info *pipe,
  1901. unsigned int len,
  1902. unsigned int flags);
  1903. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1904. extern void skb_split(struct sk_buff *skb,
  1905. struct sk_buff *skb1, const u32 len);
  1906. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  1907. int shiftlen);
  1908. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  1909. netdev_features_t features);
  1910. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1911. int len, void *buffer)
  1912. {
  1913. int hlen = skb_headlen(skb);
  1914. if (hlen - offset >= len)
  1915. return skb->data + offset;
  1916. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1917. return NULL;
  1918. return buffer;
  1919. }
  1920. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1921. void *to,
  1922. const unsigned int len)
  1923. {
  1924. memcpy(to, skb->data, len);
  1925. }
  1926. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1927. const int offset, void *to,
  1928. const unsigned int len)
  1929. {
  1930. memcpy(to, skb->data + offset, len);
  1931. }
  1932. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1933. const void *from,
  1934. const unsigned int len)
  1935. {
  1936. memcpy(skb->data, from, len);
  1937. }
  1938. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1939. const int offset,
  1940. const void *from,
  1941. const unsigned int len)
  1942. {
  1943. memcpy(skb->data + offset, from, len);
  1944. }
  1945. extern void skb_init(void);
  1946. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  1947. {
  1948. return skb->tstamp;
  1949. }
  1950. /**
  1951. * skb_get_timestamp - get timestamp from a skb
  1952. * @skb: skb to get stamp from
  1953. * @stamp: pointer to struct timeval to store stamp in
  1954. *
  1955. * Timestamps are stored in the skb as offsets to a base timestamp.
  1956. * This function converts the offset back to a struct timeval and stores
  1957. * it in stamp.
  1958. */
  1959. static inline void skb_get_timestamp(const struct sk_buff *skb,
  1960. struct timeval *stamp)
  1961. {
  1962. *stamp = ktime_to_timeval(skb->tstamp);
  1963. }
  1964. static inline void skb_get_timestampns(const struct sk_buff *skb,
  1965. struct timespec *stamp)
  1966. {
  1967. *stamp = ktime_to_timespec(skb->tstamp);
  1968. }
  1969. static inline void __net_timestamp(struct sk_buff *skb)
  1970. {
  1971. skb->tstamp = ktime_get_real();
  1972. }
  1973. static inline ktime_t net_timedelta(ktime_t t)
  1974. {
  1975. return ktime_sub(ktime_get_real(), t);
  1976. }
  1977. static inline ktime_t net_invalid_timestamp(void)
  1978. {
  1979. return ktime_set(0, 0);
  1980. }
  1981. extern void skb_timestamping_init(void);
  1982. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  1983. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  1984. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  1985. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  1986. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  1987. {
  1988. }
  1989. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  1990. {
  1991. return false;
  1992. }
  1993. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  1994. /**
  1995. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  1996. *
  1997. * PHY drivers may accept clones of transmitted packets for
  1998. * timestamping via their phy_driver.txtstamp method. These drivers
  1999. * must call this function to return the skb back to the stack, with
  2000. * or without a timestamp.
  2001. *
  2002. * @skb: clone of the the original outgoing packet
  2003. * @hwtstamps: hardware time stamps, may be NULL if not available
  2004. *
  2005. */
  2006. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2007. struct skb_shared_hwtstamps *hwtstamps);
  2008. /**
  2009. * skb_tstamp_tx - queue clone of skb with send time stamps
  2010. * @orig_skb: the original outgoing packet
  2011. * @hwtstamps: hardware time stamps, may be NULL if not available
  2012. *
  2013. * If the skb has a socket associated, then this function clones the
  2014. * skb (thus sharing the actual data and optional structures), stores
  2015. * the optional hardware time stamping information (if non NULL) or
  2016. * generates a software time stamp (otherwise), then queues the clone
  2017. * to the error queue of the socket. Errors are silently ignored.
  2018. */
  2019. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  2020. struct skb_shared_hwtstamps *hwtstamps);
  2021. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2022. {
  2023. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2024. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2025. skb_tstamp_tx(skb, NULL);
  2026. }
  2027. /**
  2028. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2029. *
  2030. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2031. * function immediately before giving the sk_buff to the MAC hardware.
  2032. *
  2033. * @skb: A socket buffer.
  2034. */
  2035. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2036. {
  2037. skb_clone_tx_timestamp(skb);
  2038. sw_tx_timestamp(skb);
  2039. }
  2040. /**
  2041. * skb_complete_wifi_ack - deliver skb with wifi status
  2042. *
  2043. * @skb: the original outgoing packet
  2044. * @acked: ack status
  2045. *
  2046. */
  2047. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2048. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2049. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2050. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2051. {
  2052. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2053. }
  2054. /**
  2055. * skb_checksum_complete - Calculate checksum of an entire packet
  2056. * @skb: packet to process
  2057. *
  2058. * This function calculates the checksum over the entire packet plus
  2059. * the value of skb->csum. The latter can be used to supply the
  2060. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2061. * checksum.
  2062. *
  2063. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2064. * this function can be used to verify that checksum on received
  2065. * packets. In that case the function should return zero if the
  2066. * checksum is correct. In particular, this function will return zero
  2067. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2068. * hardware has already verified the correctness of the checksum.
  2069. */
  2070. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2071. {
  2072. return skb_csum_unnecessary(skb) ?
  2073. 0 : __skb_checksum_complete(skb);
  2074. }
  2075. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2076. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2077. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2078. {
  2079. if (nfct && atomic_dec_and_test(&nfct->use))
  2080. nf_conntrack_destroy(nfct);
  2081. }
  2082. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2083. {
  2084. if (nfct)
  2085. atomic_inc(&nfct->use);
  2086. }
  2087. #endif
  2088. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2089. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2090. {
  2091. if (skb)
  2092. atomic_inc(&skb->users);
  2093. }
  2094. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2095. {
  2096. if (skb)
  2097. kfree_skb(skb);
  2098. }
  2099. #endif
  2100. #ifdef CONFIG_BRIDGE_NETFILTER
  2101. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2102. {
  2103. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2104. kfree(nf_bridge);
  2105. }
  2106. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2107. {
  2108. if (nf_bridge)
  2109. atomic_inc(&nf_bridge->use);
  2110. }
  2111. #endif /* CONFIG_BRIDGE_NETFILTER */
  2112. static inline void nf_reset(struct sk_buff *skb)
  2113. {
  2114. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2115. nf_conntrack_put(skb->nfct);
  2116. skb->nfct = NULL;
  2117. #endif
  2118. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2119. nf_conntrack_put_reasm(skb->nfct_reasm);
  2120. skb->nfct_reasm = NULL;
  2121. #endif
  2122. #ifdef CONFIG_BRIDGE_NETFILTER
  2123. nf_bridge_put(skb->nf_bridge);
  2124. skb->nf_bridge = NULL;
  2125. #endif
  2126. }
  2127. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2128. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2129. {
  2130. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2131. dst->nfct = src->nfct;
  2132. nf_conntrack_get(src->nfct);
  2133. dst->nfctinfo = src->nfctinfo;
  2134. #endif
  2135. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2136. dst->nfct_reasm = src->nfct_reasm;
  2137. nf_conntrack_get_reasm(src->nfct_reasm);
  2138. #endif
  2139. #ifdef CONFIG_BRIDGE_NETFILTER
  2140. dst->nf_bridge = src->nf_bridge;
  2141. nf_bridge_get(src->nf_bridge);
  2142. #endif
  2143. }
  2144. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2145. {
  2146. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2147. nf_conntrack_put(dst->nfct);
  2148. #endif
  2149. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2150. nf_conntrack_put_reasm(dst->nfct_reasm);
  2151. #endif
  2152. #ifdef CONFIG_BRIDGE_NETFILTER
  2153. nf_bridge_put(dst->nf_bridge);
  2154. #endif
  2155. __nf_copy(dst, src);
  2156. }
  2157. #ifdef CONFIG_NETWORK_SECMARK
  2158. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2159. {
  2160. to->secmark = from->secmark;
  2161. }
  2162. static inline void skb_init_secmark(struct sk_buff *skb)
  2163. {
  2164. skb->secmark = 0;
  2165. }
  2166. #else
  2167. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2168. { }
  2169. static inline void skb_init_secmark(struct sk_buff *skb)
  2170. { }
  2171. #endif
  2172. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2173. {
  2174. skb->queue_mapping = queue_mapping;
  2175. }
  2176. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2177. {
  2178. return skb->queue_mapping;
  2179. }
  2180. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2181. {
  2182. to->queue_mapping = from->queue_mapping;
  2183. }
  2184. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2185. {
  2186. skb->queue_mapping = rx_queue + 1;
  2187. }
  2188. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2189. {
  2190. return skb->queue_mapping - 1;
  2191. }
  2192. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2193. {
  2194. return skb->queue_mapping != 0;
  2195. }
  2196. extern u16 __skb_tx_hash(const struct net_device *dev,
  2197. const struct sk_buff *skb,
  2198. unsigned int num_tx_queues);
  2199. #ifdef CONFIG_XFRM
  2200. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2201. {
  2202. return skb->sp;
  2203. }
  2204. #else
  2205. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2206. {
  2207. return NULL;
  2208. }
  2209. #endif
  2210. static inline bool skb_is_gso(const struct sk_buff *skb)
  2211. {
  2212. return skb_shinfo(skb)->gso_size;
  2213. }
  2214. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2215. {
  2216. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2217. }
  2218. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2219. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2220. {
  2221. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2222. * wanted then gso_type will be set. */
  2223. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2224. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2225. unlikely(shinfo->gso_type == 0)) {
  2226. __skb_warn_lro_forwarding(skb);
  2227. return true;
  2228. }
  2229. return false;
  2230. }
  2231. static inline void skb_forward_csum(struct sk_buff *skb)
  2232. {
  2233. /* Unfortunately we don't support this one. Any brave souls? */
  2234. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2235. skb->ip_summed = CHECKSUM_NONE;
  2236. }
  2237. /**
  2238. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2239. * @skb: skb to check
  2240. *
  2241. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2242. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2243. * use this helper, to document places where we make this assertion.
  2244. */
  2245. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2246. {
  2247. #ifdef DEBUG
  2248. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2249. #endif
  2250. }
  2251. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2252. static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
  2253. {
  2254. if (irqs_disabled())
  2255. return false;
  2256. if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
  2257. return false;
  2258. if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
  2259. return false;
  2260. skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
  2261. if (skb_end_pointer(skb) - skb->head < skb_size)
  2262. return false;
  2263. if (skb_shared(skb) || skb_cloned(skb))
  2264. return false;
  2265. return true;
  2266. }
  2267. #endif /* __KERNEL__ */
  2268. #endif /* _LINUX_SKBUFF_H */