xc5000.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. /*
  2. * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
  3. *
  4. * Copyright (c) 2007 Xceive Corporation
  5. * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. *
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/moduleparam.h>
  24. #include <linux/videodev2.h>
  25. #include <linux/delay.h>
  26. #include <linux/dvb/frontend.h>
  27. #include <linux/i2c.h>
  28. #include "dvb_frontend.h"
  29. #include "xc5000.h"
  30. #include "tuner-i2c.h"
  31. static int debug;
  32. module_param(debug, int, 0644);
  33. MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
  34. static int xc5000_load_fw_on_attach;
  35. module_param_named(init_fw, xc5000_load_fw_on_attach, int, 0644);
  36. MODULE_PARM_DESC(init_fw, "Load firmware during driver initialization.");
  37. static DEFINE_MUTEX(xc5000_list_mutex);
  38. static LIST_HEAD(hybrid_tuner_instance_list);
  39. #define dprintk(level,fmt, arg...) if (debug >= level) \
  40. printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
  41. #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
  42. #define XC5000_DEFAULT_FIRMWARE_SIZE 12332
  43. struct xc5000_priv {
  44. struct tuner_i2c_props i2c_props;
  45. struct list_head hybrid_tuner_instance_list;
  46. u32 if_khz;
  47. u32 freq_hz;
  48. u32 bandwidth;
  49. u8 video_standard;
  50. u8 rf_mode;
  51. };
  52. /* Misc Defines */
  53. #define MAX_TV_STANDARD 23
  54. #define XC_MAX_I2C_WRITE_LENGTH 64
  55. /* Signal Types */
  56. #define XC_RF_MODE_AIR 0
  57. #define XC_RF_MODE_CABLE 1
  58. /* Result codes */
  59. #define XC_RESULT_SUCCESS 0
  60. #define XC_RESULT_RESET_FAILURE 1
  61. #define XC_RESULT_I2C_WRITE_FAILURE 2
  62. #define XC_RESULT_I2C_READ_FAILURE 3
  63. #define XC_RESULT_OUT_OF_RANGE 5
  64. /* Product id */
  65. #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
  66. #define XC_PRODUCT_ID_FW_LOADED 0x1388
  67. /* Registers */
  68. #define XREG_INIT 0x00
  69. #define XREG_VIDEO_MODE 0x01
  70. #define XREG_AUDIO_MODE 0x02
  71. #define XREG_RF_FREQ 0x03
  72. #define XREG_D_CODE 0x04
  73. #define XREG_IF_OUT 0x05
  74. #define XREG_SEEK_MODE 0x07
  75. #define XREG_POWER_DOWN 0x0A
  76. #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
  77. #define XREG_SMOOTHEDCVBS 0x0E
  78. #define XREG_XTALFREQ 0x0F
  79. #define XREG_FINERFFREQ 0x10
  80. #define XREG_DDIMODE 0x11
  81. #define XREG_ADC_ENV 0x00
  82. #define XREG_QUALITY 0x01
  83. #define XREG_FRAME_LINES 0x02
  84. #define XREG_HSYNC_FREQ 0x03
  85. #define XREG_LOCK 0x04
  86. #define XREG_FREQ_ERROR 0x05
  87. #define XREG_SNR 0x06
  88. #define XREG_VERSION 0x07
  89. #define XREG_PRODUCT_ID 0x08
  90. #define XREG_BUSY 0x09
  91. /*
  92. Basic firmware description. This will remain with
  93. the driver for documentation purposes.
  94. This represents an I2C firmware file encoded as a
  95. string of unsigned char. Format is as follows:
  96. char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
  97. char[1 ]=len0_LSB -> length of first write transaction
  98. char[2 ]=data0 -> first byte to be sent
  99. char[3 ]=data1
  100. char[4 ]=data2
  101. char[ ]=...
  102. char[M ]=dataN -> last byte to be sent
  103. char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
  104. char[M+2]=len1_LSB -> length of second write transaction
  105. char[M+3]=data0
  106. char[M+4]=data1
  107. ...
  108. etc.
  109. The [len] value should be interpreted as follows:
  110. len= len_MSB _ len_LSB
  111. len=1111_1111_1111_1111 : End of I2C_SEQUENCE
  112. len=0000_0000_0000_0000 : Reset command: Do hardware reset
  113. len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
  114. len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
  115. For the RESET and WAIT commands, the two following bytes will contain
  116. immediately the length of the following transaction.
  117. */
  118. typedef struct {
  119. char *Name;
  120. u16 AudioMode;
  121. u16 VideoMode;
  122. } XC_TV_STANDARD;
  123. /* Tuner standards */
  124. #define MN_NTSC_PAL_BTSC 0
  125. #define MN_NTSC_PAL_A2 1
  126. #define MN_NTSC_PAL_EIAJ 2
  127. #define MN_NTSC_PAL_Mono 3
  128. #define BG_PAL_A2 4
  129. #define BG_PAL_NICAM 5
  130. #define BG_PAL_MONO 6
  131. #define I_PAL_NICAM 7
  132. #define I_PAL_NICAM_MONO 8
  133. #define DK_PAL_A2 9
  134. #define DK_PAL_NICAM 10
  135. #define DK_PAL_MONO 11
  136. #define DK_SECAM_A2DK1 12
  137. #define DK_SECAM_A2LDK3 13
  138. #define DK_SECAM_A2MONO 14
  139. #define L_SECAM_NICAM 15
  140. #define LC_SECAM_NICAM 16
  141. #define DTV6 17
  142. #define DTV8 18
  143. #define DTV7_8 19
  144. #define DTV7 20
  145. #define FM_Radio_INPUT2 21
  146. #define FM_Radio_INPUT1 22
  147. static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
  148. {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
  149. {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
  150. {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
  151. {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
  152. {"B/G-PAL-A2", 0x0A00, 0x8049},
  153. {"B/G-PAL-NICAM", 0x0C04, 0x8049},
  154. {"B/G-PAL-MONO", 0x0878, 0x8059},
  155. {"I-PAL-NICAM", 0x1080, 0x8009},
  156. {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
  157. {"D/K-PAL-A2", 0x1600, 0x8009},
  158. {"D/K-PAL-NICAM", 0x0E80, 0x8009},
  159. {"D/K-PAL-MONO", 0x1478, 0x8009},
  160. {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
  161. {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
  162. {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
  163. {"L-SECAM-NICAM", 0x8E82, 0x0009},
  164. {"L'-SECAM-NICAM", 0x8E82, 0x4009},
  165. {"DTV6", 0x00C0, 0x8002},
  166. {"DTV8", 0x00C0, 0x800B},
  167. {"DTV7/8", 0x00C0, 0x801B},
  168. {"DTV7", 0x00C0, 0x8007},
  169. {"FM Radio-INPUT2", 0x9802, 0x9002},
  170. {"FM Radio-INPUT1", 0x0208, 0x9002}
  171. };
  172. static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
  173. static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
  174. static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
  175. static void xc5000_TunerReset(struct dvb_frontend *fe);
  176. static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
  177. {
  178. return xc5000_writeregs(priv, buf, len)
  179. ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
  180. }
  181. static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
  182. {
  183. return xc5000_readregs(priv, buf, len)
  184. ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
  185. }
  186. static int xc_reset(struct dvb_frontend *fe)
  187. {
  188. xc5000_TunerReset(fe);
  189. return XC_RESULT_SUCCESS;
  190. }
  191. static void xc_wait(int wait_ms)
  192. {
  193. msleep(wait_ms);
  194. }
  195. static void xc5000_TunerReset(struct dvb_frontend *fe)
  196. {
  197. struct xc5000_priv *priv = fe->tuner_priv;
  198. int ret;
  199. dprintk(1, "%s()\n", __func__);
  200. if (fe->callback) {
  201. ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
  202. fe->dvb->priv :
  203. priv->i2c_props.adap->algo_data,
  204. DVB_FRONTEND_COMPONENT_TUNER,
  205. XC5000_TUNER_RESET, 0);
  206. if (ret)
  207. printk(KERN_ERR "xc5000: reset failed\n");
  208. } else
  209. printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
  210. }
  211. static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
  212. {
  213. u8 buf[4];
  214. int WatchDogTimer = 5;
  215. int result;
  216. buf[0] = (regAddr >> 8) & 0xFF;
  217. buf[1] = regAddr & 0xFF;
  218. buf[2] = (i2cData >> 8) & 0xFF;
  219. buf[3] = i2cData & 0xFF;
  220. result = xc_send_i2c_data(priv, buf, 4);
  221. if (result == XC_RESULT_SUCCESS) {
  222. /* wait for busy flag to clear */
  223. while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
  224. buf[0] = 0;
  225. buf[1] = XREG_BUSY;
  226. result = xc_send_i2c_data(priv, buf, 2);
  227. if (result == XC_RESULT_SUCCESS) {
  228. result = xc_read_i2c_data(priv, buf, 2);
  229. if (result == XC_RESULT_SUCCESS) {
  230. if ((buf[0] == 0) && (buf[1] == 0)) {
  231. /* busy flag cleared */
  232. break;
  233. } else {
  234. xc_wait(100); /* wait 5 ms */
  235. WatchDogTimer--;
  236. }
  237. }
  238. }
  239. }
  240. }
  241. if (WatchDogTimer < 0)
  242. result = XC_RESULT_I2C_WRITE_FAILURE;
  243. return result;
  244. }
  245. static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
  246. {
  247. u8 buf[2];
  248. int result;
  249. buf[0] = (regAddr >> 8) & 0xFF;
  250. buf[1] = regAddr & 0xFF;
  251. result = xc_send_i2c_data(priv, buf, 2);
  252. if (result != XC_RESULT_SUCCESS)
  253. return result;
  254. result = xc_read_i2c_data(priv, buf, 2);
  255. if (result != XC_RESULT_SUCCESS)
  256. return result;
  257. *i2cData = buf[0] * 256 + buf[1];
  258. return result;
  259. }
  260. static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
  261. {
  262. struct xc5000_priv *priv = fe->tuner_priv;
  263. int i, nbytes_to_send, result;
  264. unsigned int len, pos, index;
  265. u8 buf[XC_MAX_I2C_WRITE_LENGTH];
  266. index=0;
  267. while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
  268. len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
  269. if (len == 0x0000) {
  270. /* RESET command */
  271. result = xc_reset(fe);
  272. index += 2;
  273. if (result != XC_RESULT_SUCCESS)
  274. return result;
  275. } else if (len & 0x8000) {
  276. /* WAIT command */
  277. xc_wait(len & 0x7FFF);
  278. index += 2;
  279. } else {
  280. /* Send i2c data whilst ensuring individual transactions
  281. * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
  282. */
  283. index += 2;
  284. buf[0] = i2c_sequence[index];
  285. buf[1] = i2c_sequence[index + 1];
  286. pos = 2;
  287. while (pos < len) {
  288. if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
  289. nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
  290. } else {
  291. nbytes_to_send = (len - pos + 2);
  292. }
  293. for (i=2; i<nbytes_to_send; i++) {
  294. buf[i] = i2c_sequence[index + pos + i - 2];
  295. }
  296. result = xc_send_i2c_data(priv, buf, nbytes_to_send);
  297. if (result != XC_RESULT_SUCCESS)
  298. return result;
  299. pos += nbytes_to_send - 2;
  300. }
  301. index += len;
  302. }
  303. }
  304. return XC_RESULT_SUCCESS;
  305. }
  306. static int xc_initialize(struct xc5000_priv *priv)
  307. {
  308. dprintk(1, "%s()\n", __func__);
  309. return xc_write_reg(priv, XREG_INIT, 0);
  310. }
  311. static int xc_SetTVStandard(struct xc5000_priv *priv,
  312. u16 VideoMode, u16 AudioMode)
  313. {
  314. int ret;
  315. dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
  316. dprintk(1, "%s() Standard = %s\n",
  317. __func__,
  318. XC5000_Standard[priv->video_standard].Name);
  319. ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
  320. if (ret == XC_RESULT_SUCCESS)
  321. ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
  322. return ret;
  323. }
  324. static int xc_shutdown(struct xc5000_priv *priv)
  325. {
  326. return XC_RESULT_SUCCESS;
  327. /* Fixme: cannot bring tuner back alive once shutdown
  328. * without reloading the driver modules.
  329. * return xc_write_reg(priv, XREG_POWER_DOWN, 0);
  330. */
  331. }
  332. static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
  333. {
  334. dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
  335. rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
  336. if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
  337. {
  338. rf_mode = XC_RF_MODE_CABLE;
  339. printk(KERN_ERR
  340. "%s(), Invalid mode, defaulting to CABLE",
  341. __func__);
  342. }
  343. return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
  344. }
  345. static const struct dvb_tuner_ops xc5000_tuner_ops;
  346. static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
  347. {
  348. u16 freq_code;
  349. dprintk(1, "%s(%u)\n", __func__, freq_hz);
  350. if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
  351. (freq_hz < xc5000_tuner_ops.info.frequency_min))
  352. return XC_RESULT_OUT_OF_RANGE;
  353. freq_code = (u16)(freq_hz / 15625);
  354. return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
  355. }
  356. static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
  357. {
  358. u32 freq_code = (freq_khz * 1024)/1000;
  359. dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
  360. __func__, freq_khz, freq_code);
  361. return xc_write_reg(priv, XREG_IF_OUT, freq_code);
  362. }
  363. static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
  364. {
  365. return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
  366. }
  367. static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
  368. {
  369. int result;
  370. u16 regData;
  371. u32 tmp;
  372. result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
  373. if (result)
  374. return result;
  375. tmp = (u32)regData;
  376. (*freq_error_hz) = (tmp * 15625) / 1000;
  377. return result;
  378. }
  379. static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
  380. {
  381. return xc_read_reg(priv, XREG_LOCK, lock_status);
  382. }
  383. static int xc_get_version(struct xc5000_priv *priv,
  384. u8 *hw_majorversion, u8 *hw_minorversion,
  385. u8 *fw_majorversion, u8 *fw_minorversion)
  386. {
  387. u16 data;
  388. int result;
  389. result = xc_read_reg(priv, XREG_VERSION, &data);
  390. if (result)
  391. return result;
  392. (*hw_majorversion) = (data >> 12) & 0x0F;
  393. (*hw_minorversion) = (data >> 8) & 0x0F;
  394. (*fw_majorversion) = (data >> 4) & 0x0F;
  395. (*fw_minorversion) = data & 0x0F;
  396. return 0;
  397. }
  398. static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
  399. {
  400. u16 regData;
  401. int result;
  402. result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
  403. if (result)
  404. return result;
  405. (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
  406. return result;
  407. }
  408. static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
  409. {
  410. return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
  411. }
  412. static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
  413. {
  414. return xc_read_reg(priv, XREG_QUALITY, quality);
  415. }
  416. static u16 WaitForLock(struct xc5000_priv *priv)
  417. {
  418. u16 lockState = 0;
  419. int watchDogCount = 40;
  420. while ((lockState == 0) && (watchDogCount > 0)) {
  421. xc_get_lock_status(priv, &lockState);
  422. if (lockState != 1) {
  423. xc_wait(5);
  424. watchDogCount--;
  425. }
  426. }
  427. return lockState;
  428. }
  429. static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
  430. {
  431. int found = 0;
  432. dprintk(1, "%s(%u)\n", __func__, freq_hz);
  433. if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
  434. return 0;
  435. if (WaitForLock(priv) == 1)
  436. found = 1;
  437. return found;
  438. }
  439. static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
  440. {
  441. u8 buf[2] = { reg >> 8, reg & 0xff };
  442. u8 bval[2] = { 0, 0 };
  443. struct i2c_msg msg[2] = {
  444. { .addr = priv->i2c_props.addr,
  445. .flags = 0, .buf = &buf[0], .len = 2 },
  446. { .addr = priv->i2c_props.addr,
  447. .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
  448. };
  449. if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
  450. printk(KERN_WARNING "xc5000: I2C read failed\n");
  451. return -EREMOTEIO;
  452. }
  453. *val = (bval[0] << 8) | bval[1];
  454. return 0;
  455. }
  456. static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
  457. {
  458. struct i2c_msg msg = { .addr = priv->i2c_props.addr,
  459. .flags = 0, .buf = buf, .len = len };
  460. if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
  461. printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
  462. (int)len);
  463. return -EREMOTEIO;
  464. }
  465. return 0;
  466. }
  467. static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
  468. {
  469. struct i2c_msg msg = { .addr = priv->i2c_props.addr,
  470. .flags = I2C_M_RD, .buf = buf, .len = len };
  471. if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
  472. printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
  473. return -EREMOTEIO;
  474. }
  475. return 0;
  476. }
  477. static int xc5000_fwupload(struct dvb_frontend* fe)
  478. {
  479. struct xc5000_priv *priv = fe->tuner_priv;
  480. const struct firmware *fw;
  481. int ret;
  482. /* request the firmware, this will block and timeout */
  483. printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
  484. XC5000_DEFAULT_FIRMWARE);
  485. ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c_props.adap->dev);
  486. if (ret) {
  487. printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
  488. ret = XC_RESULT_RESET_FAILURE;
  489. goto out;
  490. } else {
  491. printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
  492. fw->size);
  493. ret = XC_RESULT_SUCCESS;
  494. }
  495. if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
  496. printk(KERN_ERR "xc5000: firmware incorrect size\n");
  497. ret = XC_RESULT_RESET_FAILURE;
  498. } else {
  499. printk(KERN_INFO "xc5000: firmware upload\n");
  500. ret = xc_load_i2c_sequence(fe, fw->data );
  501. }
  502. out:
  503. release_firmware(fw);
  504. return ret;
  505. }
  506. static void xc_debug_dump(struct xc5000_priv *priv)
  507. {
  508. u16 adc_envelope;
  509. u32 freq_error_hz = 0;
  510. u16 lock_status;
  511. u32 hsync_freq_hz = 0;
  512. u16 frame_lines;
  513. u16 quality;
  514. u8 hw_majorversion = 0, hw_minorversion = 0;
  515. u8 fw_majorversion = 0, fw_minorversion = 0;
  516. /* Wait for stats to stabilize.
  517. * Frame Lines needs two frame times after initial lock
  518. * before it is valid.
  519. */
  520. xc_wait(100);
  521. xc_get_ADC_Envelope(priv, &adc_envelope);
  522. dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
  523. xc_get_frequency_error(priv, &freq_error_hz);
  524. dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
  525. xc_get_lock_status(priv, &lock_status);
  526. dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
  527. lock_status);
  528. xc_get_version(priv, &hw_majorversion, &hw_minorversion,
  529. &fw_majorversion, &fw_minorversion);
  530. dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
  531. hw_majorversion, hw_minorversion,
  532. fw_majorversion, fw_minorversion);
  533. xc_get_hsync_freq(priv, &hsync_freq_hz);
  534. dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
  535. xc_get_frame_lines(priv, &frame_lines);
  536. dprintk(1, "*** Frame lines = %d\n", frame_lines);
  537. xc_get_quality(priv, &quality);
  538. dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
  539. }
  540. static int xc5000_set_params(struct dvb_frontend *fe,
  541. struct dvb_frontend_parameters *params)
  542. {
  543. struct xc5000_priv *priv = fe->tuner_priv;
  544. int ret;
  545. dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
  546. switch(params->u.vsb.modulation) {
  547. case VSB_8:
  548. case VSB_16:
  549. dprintk(1, "%s() VSB modulation\n", __func__);
  550. priv->rf_mode = XC_RF_MODE_AIR;
  551. priv->freq_hz = params->frequency - 1750000;
  552. priv->bandwidth = BANDWIDTH_6_MHZ;
  553. priv->video_standard = DTV6;
  554. break;
  555. case QAM_64:
  556. case QAM_256:
  557. case QAM_AUTO:
  558. dprintk(1, "%s() QAM modulation\n", __func__);
  559. priv->rf_mode = XC_RF_MODE_CABLE;
  560. priv->freq_hz = params->frequency - 1750000;
  561. priv->bandwidth = BANDWIDTH_6_MHZ;
  562. priv->video_standard = DTV6;
  563. break;
  564. default:
  565. return -EINVAL;
  566. }
  567. dprintk(1, "%s() frequency=%d (compensated)\n",
  568. __func__, priv->freq_hz);
  569. ret = xc_SetSignalSource(priv, priv->rf_mode);
  570. if (ret != XC_RESULT_SUCCESS) {
  571. printk(KERN_ERR
  572. "xc5000: xc_SetSignalSource(%d) failed\n",
  573. priv->rf_mode);
  574. return -EREMOTEIO;
  575. }
  576. ret = xc_SetTVStandard(priv,
  577. XC5000_Standard[priv->video_standard].VideoMode,
  578. XC5000_Standard[priv->video_standard].AudioMode);
  579. if (ret != XC_RESULT_SUCCESS) {
  580. printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
  581. return -EREMOTEIO;
  582. }
  583. ret = xc_set_IF_frequency(priv, priv->if_khz);
  584. if (ret != XC_RESULT_SUCCESS) {
  585. printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
  586. priv->if_khz);
  587. return -EIO;
  588. }
  589. xc_tune_channel(priv, priv->freq_hz);
  590. if (debug)
  591. xc_debug_dump(priv);
  592. return 0;
  593. }
  594. static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
  595. {
  596. struct xc5000_priv *priv = fe->tuner_priv;
  597. int ret;
  598. u16 id;
  599. ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
  600. if (ret == XC_RESULT_SUCCESS) {
  601. if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
  602. ret = XC_RESULT_RESET_FAILURE;
  603. else
  604. ret = XC_RESULT_SUCCESS;
  605. }
  606. dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
  607. ret == XC_RESULT_SUCCESS ? "True" : "False", id);
  608. return ret;
  609. }
  610. static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
  611. static int xc5000_set_analog_params(struct dvb_frontend *fe,
  612. struct analog_parameters *params)
  613. {
  614. struct xc5000_priv *priv = fe->tuner_priv;
  615. int ret;
  616. if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
  617. xc_load_fw_and_init_tuner(fe);
  618. dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
  619. __func__, params->frequency);
  620. priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */
  621. /* params->frequency is in units of 62.5khz */
  622. priv->freq_hz = params->frequency * 62500;
  623. /* FIX ME: Some video standards may have several possible audio
  624. standards. We simply default to one of them here.
  625. */
  626. if(params->std & V4L2_STD_MN) {
  627. /* default to BTSC audio standard */
  628. priv->video_standard = MN_NTSC_PAL_BTSC;
  629. goto tune_channel;
  630. }
  631. if(params->std & V4L2_STD_PAL_BG) {
  632. /* default to NICAM audio standard */
  633. priv->video_standard = BG_PAL_NICAM;
  634. goto tune_channel;
  635. }
  636. if(params->std & V4L2_STD_PAL_I) {
  637. /* default to NICAM audio standard */
  638. priv->video_standard = I_PAL_NICAM;
  639. goto tune_channel;
  640. }
  641. if(params->std & V4L2_STD_PAL_DK) {
  642. /* default to NICAM audio standard */
  643. priv->video_standard = DK_PAL_NICAM;
  644. goto tune_channel;
  645. }
  646. if(params->std & V4L2_STD_SECAM_DK) {
  647. /* default to A2 DK1 audio standard */
  648. priv->video_standard = DK_SECAM_A2DK1;
  649. goto tune_channel;
  650. }
  651. if(params->std & V4L2_STD_SECAM_L) {
  652. priv->video_standard = L_SECAM_NICAM;
  653. goto tune_channel;
  654. }
  655. if(params->std & V4L2_STD_SECAM_LC) {
  656. priv->video_standard = LC_SECAM_NICAM;
  657. goto tune_channel;
  658. }
  659. tune_channel:
  660. ret = xc_SetSignalSource(priv, priv->rf_mode);
  661. if (ret != XC_RESULT_SUCCESS) {
  662. printk(KERN_ERR
  663. "xc5000: xc_SetSignalSource(%d) failed\n",
  664. priv->rf_mode);
  665. return -EREMOTEIO;
  666. }
  667. ret = xc_SetTVStandard(priv,
  668. XC5000_Standard[priv->video_standard].VideoMode,
  669. XC5000_Standard[priv->video_standard].AudioMode);
  670. if (ret != XC_RESULT_SUCCESS) {
  671. printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
  672. return -EREMOTEIO;
  673. }
  674. xc_tune_channel(priv, priv->freq_hz);
  675. if (debug)
  676. xc_debug_dump(priv);
  677. return 0;
  678. }
  679. static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
  680. {
  681. struct xc5000_priv *priv = fe->tuner_priv;
  682. dprintk(1, "%s()\n", __func__);
  683. *freq = priv->freq_hz;
  684. return 0;
  685. }
  686. static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
  687. {
  688. struct xc5000_priv *priv = fe->tuner_priv;
  689. dprintk(1, "%s()\n", __func__);
  690. *bw = priv->bandwidth;
  691. return 0;
  692. }
  693. static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
  694. {
  695. struct xc5000_priv *priv = fe->tuner_priv;
  696. u16 lock_status = 0;
  697. xc_get_lock_status(priv, &lock_status);
  698. dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
  699. *status = lock_status;
  700. return 0;
  701. }
  702. static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
  703. {
  704. struct xc5000_priv *priv = fe->tuner_priv;
  705. int ret = 0;
  706. if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
  707. ret = xc5000_fwupload(fe);
  708. if (ret != XC_RESULT_SUCCESS)
  709. return ret;
  710. }
  711. /* Start the tuner self-calibration process */
  712. ret |= xc_initialize(priv);
  713. /* Wait for calibration to complete.
  714. * We could continue but XC5000 will clock stretch subsequent
  715. * I2C transactions until calibration is complete. This way we
  716. * don't have to rely on clock stretching working.
  717. */
  718. xc_wait( 100 );
  719. /* Default to "CABLE" mode */
  720. ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
  721. return ret;
  722. }
  723. static int xc5000_sleep(struct dvb_frontend *fe)
  724. {
  725. struct xc5000_priv *priv = fe->tuner_priv;
  726. int ret;
  727. dprintk(1, "%s()\n", __func__);
  728. /* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
  729. * once shutdown without reloading the driver. Maybe I am not
  730. * doing something right.
  731. *
  732. */
  733. ret = xc_shutdown(priv);
  734. if(ret != XC_RESULT_SUCCESS) {
  735. printk(KERN_ERR
  736. "xc5000: %s() unable to shutdown tuner\n",
  737. __func__);
  738. return -EREMOTEIO;
  739. }
  740. else {
  741. return XC_RESULT_SUCCESS;
  742. }
  743. }
  744. static int xc5000_init(struct dvb_frontend *fe)
  745. {
  746. struct xc5000_priv *priv = fe->tuner_priv;
  747. dprintk(1, "%s()\n", __func__);
  748. if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
  749. printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
  750. return -EREMOTEIO;
  751. }
  752. if (debug)
  753. xc_debug_dump(priv);
  754. return 0;
  755. }
  756. static int xc5000_release(struct dvb_frontend *fe)
  757. {
  758. struct xc5000_priv *priv = fe->tuner_priv;
  759. dprintk(1, "%s()\n", __func__);
  760. mutex_lock(&xc5000_list_mutex);
  761. if (priv)
  762. hybrid_tuner_release_state(priv);
  763. mutex_unlock(&xc5000_list_mutex);
  764. fe->tuner_priv = NULL;
  765. return 0;
  766. }
  767. static const struct dvb_tuner_ops xc5000_tuner_ops = {
  768. .info = {
  769. .name = "Xceive XC5000",
  770. .frequency_min = 1000000,
  771. .frequency_max = 1023000000,
  772. .frequency_step = 50000,
  773. },
  774. .release = xc5000_release,
  775. .init = xc5000_init,
  776. .sleep = xc5000_sleep,
  777. .set_params = xc5000_set_params,
  778. .set_analog_params = xc5000_set_analog_params,
  779. .get_frequency = xc5000_get_frequency,
  780. .get_bandwidth = xc5000_get_bandwidth,
  781. .get_status = xc5000_get_status
  782. };
  783. struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
  784. struct i2c_adapter *i2c,
  785. struct xc5000_config *cfg)
  786. {
  787. struct xc5000_priv *priv = NULL;
  788. int instance;
  789. u16 id = 0;
  790. dprintk(1, "%s(%d-%04x)\n", __func__,
  791. i2c ? i2c_adapter_id(i2c) : -1,
  792. cfg ? cfg->i2c_address : -1);
  793. mutex_lock(&xc5000_list_mutex);
  794. instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
  795. hybrid_tuner_instance_list,
  796. i2c, cfg->i2c_address, "xc5000");
  797. switch (instance) {
  798. case 0:
  799. goto fail;
  800. break;
  801. case 1:
  802. /* new tuner instance */
  803. priv->bandwidth = BANDWIDTH_6_MHZ;
  804. priv->if_khz = cfg->if_khz;
  805. fe->tuner_priv = priv;
  806. break;
  807. default:
  808. /* existing tuner instance */
  809. fe->tuner_priv = priv;
  810. break;
  811. }
  812. /* Check if firmware has been loaded. It is possible that another
  813. instance of the driver has loaded the firmware.
  814. */
  815. if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
  816. goto fail;
  817. switch(id) {
  818. case XC_PRODUCT_ID_FW_LOADED:
  819. printk(KERN_INFO
  820. "xc5000: Successfully identified at address 0x%02x\n",
  821. cfg->i2c_address);
  822. printk(KERN_INFO
  823. "xc5000: Firmware has been loaded previously\n");
  824. break;
  825. case XC_PRODUCT_ID_FW_NOT_LOADED:
  826. printk(KERN_INFO
  827. "xc5000: Successfully identified at address 0x%02x\n",
  828. cfg->i2c_address);
  829. printk(KERN_INFO
  830. "xc5000: Firmware has not been loaded previously\n");
  831. break;
  832. default:
  833. printk(KERN_ERR
  834. "xc5000: Device not found at addr 0x%02x (0x%x)\n",
  835. cfg->i2c_address, id);
  836. goto fail;
  837. }
  838. mutex_unlock(&xc5000_list_mutex);
  839. memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
  840. sizeof(struct dvb_tuner_ops));
  841. if (xc5000_load_fw_on_attach)
  842. xc5000_init(fe);
  843. return fe;
  844. fail:
  845. mutex_unlock(&xc5000_list_mutex);
  846. xc5000_release(fe);
  847. return NULL;
  848. }
  849. EXPORT_SYMBOL(xc5000_attach);
  850. MODULE_AUTHOR("Steven Toth");
  851. MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
  852. MODULE_LICENSE("GPL");