md.c 210 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mutex.h>
  31. #include <linux/buffer_head.h> /* for invalidate_bdev */
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #define DEBUG 0
  48. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  49. #ifndef MODULE
  50. static void autostart_arrays(int part);
  51. #endif
  52. static LIST_HEAD(pers_list);
  53. static DEFINE_SPINLOCK(pers_lock);
  54. static void md_print_devices(void);
  55. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  56. static struct workqueue_struct *md_wq;
  57. static struct workqueue_struct *md_misc_wq;
  58. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  59. /*
  60. * Default number of read corrections we'll attempt on an rdev
  61. * before ejecting it from the array. We divide the read error
  62. * count by 2 for every hour elapsed between read errors.
  63. */
  64. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  65. /*
  66. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  67. * is 1000 KB/sec, so the extra system load does not show up that much.
  68. * Increase it if you want to have more _guaranteed_ speed. Note that
  69. * the RAID driver will use the maximum available bandwidth if the IO
  70. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  71. * speed limit - in case reconstruction slows down your system despite
  72. * idle IO detection.
  73. *
  74. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  75. * or /sys/block/mdX/md/sync_speed_{min,max}
  76. */
  77. static int sysctl_speed_limit_min = 1000;
  78. static int sysctl_speed_limit_max = 200000;
  79. static inline int speed_min(mddev_t *mddev)
  80. {
  81. return mddev->sync_speed_min ?
  82. mddev->sync_speed_min : sysctl_speed_limit_min;
  83. }
  84. static inline int speed_max(mddev_t *mddev)
  85. {
  86. return mddev->sync_speed_max ?
  87. mddev->sync_speed_max : sysctl_speed_limit_max;
  88. }
  89. static struct ctl_table_header *raid_table_header;
  90. static ctl_table raid_table[] = {
  91. {
  92. .procname = "speed_limit_min",
  93. .data = &sysctl_speed_limit_min,
  94. .maxlen = sizeof(int),
  95. .mode = S_IRUGO|S_IWUSR,
  96. .proc_handler = proc_dointvec,
  97. },
  98. {
  99. .procname = "speed_limit_max",
  100. .data = &sysctl_speed_limit_max,
  101. .maxlen = sizeof(int),
  102. .mode = S_IRUGO|S_IWUSR,
  103. .proc_handler = proc_dointvec,
  104. },
  105. { }
  106. };
  107. static ctl_table raid_dir_table[] = {
  108. {
  109. .procname = "raid",
  110. .maxlen = 0,
  111. .mode = S_IRUGO|S_IXUGO,
  112. .child = raid_table,
  113. },
  114. { }
  115. };
  116. static ctl_table raid_root_table[] = {
  117. {
  118. .procname = "dev",
  119. .maxlen = 0,
  120. .mode = 0555,
  121. .child = raid_dir_table,
  122. },
  123. { }
  124. };
  125. static const struct block_device_operations md_fops;
  126. static int start_readonly;
  127. /* bio_clone_mddev
  128. * like bio_clone, but with a local bio set
  129. */
  130. static void mddev_bio_destructor(struct bio *bio)
  131. {
  132. mddev_t *mddev, **mddevp;
  133. mddevp = (void*)bio;
  134. mddev = mddevp[-1];
  135. bio_free(bio, mddev->bio_set);
  136. }
  137. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  138. mddev_t *mddev)
  139. {
  140. struct bio *b;
  141. mddev_t **mddevp;
  142. if (!mddev || !mddev->bio_set)
  143. return bio_alloc(gfp_mask, nr_iovecs);
  144. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  145. mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. mddevp = (void*)b;
  149. mddevp[-1] = mddev;
  150. b->bi_destructor = mddev_bio_destructor;
  151. return b;
  152. }
  153. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  154. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  155. mddev_t *mddev)
  156. {
  157. struct bio *b;
  158. mddev_t **mddevp;
  159. if (!mddev || !mddev->bio_set)
  160. return bio_clone(bio, gfp_mask);
  161. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  162. mddev->bio_set);
  163. if (!b)
  164. return NULL;
  165. mddevp = (void*)b;
  166. mddevp[-1] = mddev;
  167. b->bi_destructor = mddev_bio_destructor;
  168. __bio_clone(b, bio);
  169. if (bio_integrity(bio)) {
  170. int ret;
  171. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  172. if (ret < 0) {
  173. bio_put(b);
  174. return NULL;
  175. }
  176. }
  177. return b;
  178. }
  179. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  180. void md_trim_bio(struct bio *bio, int offset, int size)
  181. {
  182. /* 'bio' is a cloned bio which we need to trim to match
  183. * the given offset and size.
  184. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  185. */
  186. int i;
  187. struct bio_vec *bvec;
  188. int sofar = 0;
  189. size <<= 9;
  190. if (offset == 0 && size == bio->bi_size)
  191. return;
  192. bio->bi_sector += offset;
  193. bio->bi_size = size;
  194. offset <<= 9;
  195. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  196. while (bio->bi_idx < bio->bi_vcnt &&
  197. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  198. /* remove this whole bio_vec */
  199. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  200. bio->bi_idx++;
  201. }
  202. if (bio->bi_idx < bio->bi_vcnt) {
  203. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  204. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  205. }
  206. /* avoid any complications with bi_idx being non-zero*/
  207. if (bio->bi_idx) {
  208. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  209. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  210. bio->bi_vcnt -= bio->bi_idx;
  211. bio->bi_idx = 0;
  212. }
  213. /* Make sure vcnt and last bv are not too big */
  214. bio_for_each_segment(bvec, bio, i) {
  215. if (sofar + bvec->bv_len > size)
  216. bvec->bv_len = size - sofar;
  217. if (bvec->bv_len == 0) {
  218. bio->bi_vcnt = i;
  219. break;
  220. }
  221. sofar += bvec->bv_len;
  222. }
  223. }
  224. EXPORT_SYMBOL_GPL(md_trim_bio);
  225. /*
  226. * We have a system wide 'event count' that is incremented
  227. * on any 'interesting' event, and readers of /proc/mdstat
  228. * can use 'poll' or 'select' to find out when the event
  229. * count increases.
  230. *
  231. * Events are:
  232. * start array, stop array, error, add device, remove device,
  233. * start build, activate spare
  234. */
  235. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  236. static atomic_t md_event_count;
  237. void md_new_event(mddev_t *mddev)
  238. {
  239. atomic_inc(&md_event_count);
  240. wake_up(&md_event_waiters);
  241. }
  242. EXPORT_SYMBOL_GPL(md_new_event);
  243. /* Alternate version that can be called from interrupts
  244. * when calling sysfs_notify isn't needed.
  245. */
  246. static void md_new_event_inintr(mddev_t *mddev)
  247. {
  248. atomic_inc(&md_event_count);
  249. wake_up(&md_event_waiters);
  250. }
  251. /*
  252. * Enables to iterate over all existing md arrays
  253. * all_mddevs_lock protects this list.
  254. */
  255. static LIST_HEAD(all_mddevs);
  256. static DEFINE_SPINLOCK(all_mddevs_lock);
  257. /*
  258. * iterates through all used mddevs in the system.
  259. * We take care to grab the all_mddevs_lock whenever navigating
  260. * the list, and to always hold a refcount when unlocked.
  261. * Any code which breaks out of this loop while own
  262. * a reference to the current mddev and must mddev_put it.
  263. */
  264. #define for_each_mddev(mddev,tmp) \
  265. \
  266. for (({ spin_lock(&all_mddevs_lock); \
  267. tmp = all_mddevs.next; \
  268. mddev = NULL;}); \
  269. ({ if (tmp != &all_mddevs) \
  270. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  271. spin_unlock(&all_mddevs_lock); \
  272. if (mddev) mddev_put(mddev); \
  273. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  274. tmp != &all_mddevs;}); \
  275. ({ spin_lock(&all_mddevs_lock); \
  276. tmp = tmp->next;}) \
  277. )
  278. /* Rather than calling directly into the personality make_request function,
  279. * IO requests come here first so that we can check if the device is
  280. * being suspended pending a reconfiguration.
  281. * We hold a refcount over the call to ->make_request. By the time that
  282. * call has finished, the bio has been linked into some internal structure
  283. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  284. */
  285. static int md_make_request(struct request_queue *q, struct bio *bio)
  286. {
  287. const int rw = bio_data_dir(bio);
  288. mddev_t *mddev = q->queuedata;
  289. int rv;
  290. int cpu;
  291. unsigned int sectors;
  292. if (mddev == NULL || mddev->pers == NULL
  293. || !mddev->ready) {
  294. bio_io_error(bio);
  295. return 0;
  296. }
  297. smp_rmb(); /* Ensure implications of 'active' are visible */
  298. rcu_read_lock();
  299. if (mddev->suspended) {
  300. DEFINE_WAIT(__wait);
  301. for (;;) {
  302. prepare_to_wait(&mddev->sb_wait, &__wait,
  303. TASK_UNINTERRUPTIBLE);
  304. if (!mddev->suspended)
  305. break;
  306. rcu_read_unlock();
  307. schedule();
  308. rcu_read_lock();
  309. }
  310. finish_wait(&mddev->sb_wait, &__wait);
  311. }
  312. atomic_inc(&mddev->active_io);
  313. rcu_read_unlock();
  314. /*
  315. * save the sectors now since our bio can
  316. * go away inside make_request
  317. */
  318. sectors = bio_sectors(bio);
  319. rv = mddev->pers->make_request(mddev, bio);
  320. cpu = part_stat_lock();
  321. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  322. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  323. part_stat_unlock();
  324. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  325. wake_up(&mddev->sb_wait);
  326. return rv;
  327. }
  328. /* mddev_suspend makes sure no new requests are submitted
  329. * to the device, and that any requests that have been submitted
  330. * are completely handled.
  331. * Once ->stop is called and completes, the module will be completely
  332. * unused.
  333. */
  334. void mddev_suspend(mddev_t *mddev)
  335. {
  336. BUG_ON(mddev->suspended);
  337. mddev->suspended = 1;
  338. synchronize_rcu();
  339. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  340. mddev->pers->quiesce(mddev, 1);
  341. }
  342. EXPORT_SYMBOL_GPL(mddev_suspend);
  343. void mddev_resume(mddev_t *mddev)
  344. {
  345. mddev->suspended = 0;
  346. wake_up(&mddev->sb_wait);
  347. mddev->pers->quiesce(mddev, 0);
  348. md_wakeup_thread(mddev->thread);
  349. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  350. }
  351. EXPORT_SYMBOL_GPL(mddev_resume);
  352. int mddev_congested(mddev_t *mddev, int bits)
  353. {
  354. return mddev->suspended;
  355. }
  356. EXPORT_SYMBOL(mddev_congested);
  357. /*
  358. * Generic flush handling for md
  359. */
  360. static void md_end_flush(struct bio *bio, int err)
  361. {
  362. mdk_rdev_t *rdev = bio->bi_private;
  363. mddev_t *mddev = rdev->mddev;
  364. rdev_dec_pending(rdev, mddev);
  365. if (atomic_dec_and_test(&mddev->flush_pending)) {
  366. /* The pre-request flush has finished */
  367. queue_work(md_wq, &mddev->flush_work);
  368. }
  369. bio_put(bio);
  370. }
  371. static void md_submit_flush_data(struct work_struct *ws);
  372. static void submit_flushes(struct work_struct *ws)
  373. {
  374. mddev_t *mddev = container_of(ws, mddev_t, flush_work);
  375. mdk_rdev_t *rdev;
  376. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  377. atomic_set(&mddev->flush_pending, 1);
  378. rcu_read_lock();
  379. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  380. if (rdev->raid_disk >= 0 &&
  381. !test_bit(Faulty, &rdev->flags)) {
  382. /* Take two references, one is dropped
  383. * when request finishes, one after
  384. * we reclaim rcu_read_lock
  385. */
  386. struct bio *bi;
  387. atomic_inc(&rdev->nr_pending);
  388. atomic_inc(&rdev->nr_pending);
  389. rcu_read_unlock();
  390. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  391. bi->bi_end_io = md_end_flush;
  392. bi->bi_private = rdev;
  393. bi->bi_bdev = rdev->bdev;
  394. atomic_inc(&mddev->flush_pending);
  395. submit_bio(WRITE_FLUSH, bi);
  396. rcu_read_lock();
  397. rdev_dec_pending(rdev, mddev);
  398. }
  399. rcu_read_unlock();
  400. if (atomic_dec_and_test(&mddev->flush_pending))
  401. queue_work(md_wq, &mddev->flush_work);
  402. }
  403. static void md_submit_flush_data(struct work_struct *ws)
  404. {
  405. mddev_t *mddev = container_of(ws, mddev_t, flush_work);
  406. struct bio *bio = mddev->flush_bio;
  407. if (bio->bi_size == 0)
  408. /* an empty barrier - all done */
  409. bio_endio(bio, 0);
  410. else {
  411. bio->bi_rw &= ~REQ_FLUSH;
  412. if (mddev->pers->make_request(mddev, bio))
  413. generic_make_request(bio);
  414. }
  415. mddev->flush_bio = NULL;
  416. wake_up(&mddev->sb_wait);
  417. }
  418. void md_flush_request(mddev_t *mddev, struct bio *bio)
  419. {
  420. spin_lock_irq(&mddev->write_lock);
  421. wait_event_lock_irq(mddev->sb_wait,
  422. !mddev->flush_bio,
  423. mddev->write_lock, /*nothing*/);
  424. mddev->flush_bio = bio;
  425. spin_unlock_irq(&mddev->write_lock);
  426. INIT_WORK(&mddev->flush_work, submit_flushes);
  427. queue_work(md_wq, &mddev->flush_work);
  428. }
  429. EXPORT_SYMBOL(md_flush_request);
  430. /* Support for plugging.
  431. * This mirrors the plugging support in request_queue, but does not
  432. * require having a whole queue or request structures.
  433. * We allocate an md_plug_cb for each md device and each thread it gets
  434. * plugged on. This links tot the private plug_handle structure in the
  435. * personality data where we keep a count of the number of outstanding
  436. * plugs so other code can see if a plug is active.
  437. */
  438. struct md_plug_cb {
  439. struct blk_plug_cb cb;
  440. mddev_t *mddev;
  441. };
  442. static void plugger_unplug(struct blk_plug_cb *cb)
  443. {
  444. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  445. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  446. md_wakeup_thread(mdcb->mddev->thread);
  447. kfree(mdcb);
  448. }
  449. /* Check that an unplug wakeup will come shortly.
  450. * If not, wakeup the md thread immediately
  451. */
  452. int mddev_check_plugged(mddev_t *mddev)
  453. {
  454. struct blk_plug *plug = current->plug;
  455. struct md_plug_cb *mdcb;
  456. if (!plug)
  457. return 0;
  458. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  459. if (mdcb->cb.callback == plugger_unplug &&
  460. mdcb->mddev == mddev) {
  461. /* Already on the list, move to top */
  462. if (mdcb != list_first_entry(&plug->cb_list,
  463. struct md_plug_cb,
  464. cb.list))
  465. list_move(&mdcb->cb.list, &plug->cb_list);
  466. return 1;
  467. }
  468. }
  469. /* Not currently on the callback list */
  470. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  471. if (!mdcb)
  472. return 0;
  473. mdcb->mddev = mddev;
  474. mdcb->cb.callback = plugger_unplug;
  475. atomic_inc(&mddev->plug_cnt);
  476. list_add(&mdcb->cb.list, &plug->cb_list);
  477. return 1;
  478. }
  479. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  480. static inline mddev_t *mddev_get(mddev_t *mddev)
  481. {
  482. atomic_inc(&mddev->active);
  483. return mddev;
  484. }
  485. static void mddev_delayed_delete(struct work_struct *ws);
  486. static void mddev_put(mddev_t *mddev)
  487. {
  488. struct bio_set *bs = NULL;
  489. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  490. return;
  491. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  492. mddev->ctime == 0 && !mddev->hold_active) {
  493. /* Array is not configured at all, and not held active,
  494. * so destroy it */
  495. list_del(&mddev->all_mddevs);
  496. bs = mddev->bio_set;
  497. mddev->bio_set = NULL;
  498. if (mddev->gendisk) {
  499. /* We did a probe so need to clean up. Call
  500. * queue_work inside the spinlock so that
  501. * flush_workqueue() after mddev_find will
  502. * succeed in waiting for the work to be done.
  503. */
  504. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  505. queue_work(md_misc_wq, &mddev->del_work);
  506. } else
  507. kfree(mddev);
  508. }
  509. spin_unlock(&all_mddevs_lock);
  510. if (bs)
  511. bioset_free(bs);
  512. }
  513. void mddev_init(mddev_t *mddev)
  514. {
  515. mutex_init(&mddev->open_mutex);
  516. mutex_init(&mddev->reconfig_mutex);
  517. mutex_init(&mddev->bitmap_info.mutex);
  518. INIT_LIST_HEAD(&mddev->disks);
  519. INIT_LIST_HEAD(&mddev->all_mddevs);
  520. init_timer(&mddev->safemode_timer);
  521. atomic_set(&mddev->active, 1);
  522. atomic_set(&mddev->openers, 0);
  523. atomic_set(&mddev->active_io, 0);
  524. atomic_set(&mddev->plug_cnt, 0);
  525. spin_lock_init(&mddev->write_lock);
  526. atomic_set(&mddev->flush_pending, 0);
  527. init_waitqueue_head(&mddev->sb_wait);
  528. init_waitqueue_head(&mddev->recovery_wait);
  529. mddev->reshape_position = MaxSector;
  530. mddev->resync_min = 0;
  531. mddev->resync_max = MaxSector;
  532. mddev->level = LEVEL_NONE;
  533. }
  534. EXPORT_SYMBOL_GPL(mddev_init);
  535. static mddev_t * mddev_find(dev_t unit)
  536. {
  537. mddev_t *mddev, *new = NULL;
  538. if (unit && MAJOR(unit) != MD_MAJOR)
  539. unit &= ~((1<<MdpMinorShift)-1);
  540. retry:
  541. spin_lock(&all_mddevs_lock);
  542. if (unit) {
  543. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  544. if (mddev->unit == unit) {
  545. mddev_get(mddev);
  546. spin_unlock(&all_mddevs_lock);
  547. kfree(new);
  548. return mddev;
  549. }
  550. if (new) {
  551. list_add(&new->all_mddevs, &all_mddevs);
  552. spin_unlock(&all_mddevs_lock);
  553. new->hold_active = UNTIL_IOCTL;
  554. return new;
  555. }
  556. } else if (new) {
  557. /* find an unused unit number */
  558. static int next_minor = 512;
  559. int start = next_minor;
  560. int is_free = 0;
  561. int dev = 0;
  562. while (!is_free) {
  563. dev = MKDEV(MD_MAJOR, next_minor);
  564. next_minor++;
  565. if (next_minor > MINORMASK)
  566. next_minor = 0;
  567. if (next_minor == start) {
  568. /* Oh dear, all in use. */
  569. spin_unlock(&all_mddevs_lock);
  570. kfree(new);
  571. return NULL;
  572. }
  573. is_free = 1;
  574. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  575. if (mddev->unit == dev) {
  576. is_free = 0;
  577. break;
  578. }
  579. }
  580. new->unit = dev;
  581. new->md_minor = MINOR(dev);
  582. new->hold_active = UNTIL_STOP;
  583. list_add(&new->all_mddevs, &all_mddevs);
  584. spin_unlock(&all_mddevs_lock);
  585. return new;
  586. }
  587. spin_unlock(&all_mddevs_lock);
  588. new = kzalloc(sizeof(*new), GFP_KERNEL);
  589. if (!new)
  590. return NULL;
  591. new->unit = unit;
  592. if (MAJOR(unit) == MD_MAJOR)
  593. new->md_minor = MINOR(unit);
  594. else
  595. new->md_minor = MINOR(unit) >> MdpMinorShift;
  596. mddev_init(new);
  597. goto retry;
  598. }
  599. static inline int mddev_lock(mddev_t * mddev)
  600. {
  601. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  602. }
  603. static inline int mddev_is_locked(mddev_t *mddev)
  604. {
  605. return mutex_is_locked(&mddev->reconfig_mutex);
  606. }
  607. static inline int mddev_trylock(mddev_t * mddev)
  608. {
  609. return mutex_trylock(&mddev->reconfig_mutex);
  610. }
  611. static struct attribute_group md_redundancy_group;
  612. static void mddev_unlock(mddev_t * mddev)
  613. {
  614. if (mddev->to_remove) {
  615. /* These cannot be removed under reconfig_mutex as
  616. * an access to the files will try to take reconfig_mutex
  617. * while holding the file unremovable, which leads to
  618. * a deadlock.
  619. * So hold set sysfs_active while the remove in happeing,
  620. * and anything else which might set ->to_remove or my
  621. * otherwise change the sysfs namespace will fail with
  622. * -EBUSY if sysfs_active is still set.
  623. * We set sysfs_active under reconfig_mutex and elsewhere
  624. * test it under the same mutex to ensure its correct value
  625. * is seen.
  626. */
  627. struct attribute_group *to_remove = mddev->to_remove;
  628. mddev->to_remove = NULL;
  629. mddev->sysfs_active = 1;
  630. mutex_unlock(&mddev->reconfig_mutex);
  631. if (mddev->kobj.sd) {
  632. if (to_remove != &md_redundancy_group)
  633. sysfs_remove_group(&mddev->kobj, to_remove);
  634. if (mddev->pers == NULL ||
  635. mddev->pers->sync_request == NULL) {
  636. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  637. if (mddev->sysfs_action)
  638. sysfs_put(mddev->sysfs_action);
  639. mddev->sysfs_action = NULL;
  640. }
  641. }
  642. mddev->sysfs_active = 0;
  643. } else
  644. mutex_unlock(&mddev->reconfig_mutex);
  645. md_wakeup_thread(mddev->thread);
  646. }
  647. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  648. {
  649. mdk_rdev_t *rdev;
  650. list_for_each_entry(rdev, &mddev->disks, same_set)
  651. if (rdev->desc_nr == nr)
  652. return rdev;
  653. return NULL;
  654. }
  655. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  656. {
  657. mdk_rdev_t *rdev;
  658. list_for_each_entry(rdev, &mddev->disks, same_set)
  659. if (rdev->bdev->bd_dev == dev)
  660. return rdev;
  661. return NULL;
  662. }
  663. static struct mdk_personality *find_pers(int level, char *clevel)
  664. {
  665. struct mdk_personality *pers;
  666. list_for_each_entry(pers, &pers_list, list) {
  667. if (level != LEVEL_NONE && pers->level == level)
  668. return pers;
  669. if (strcmp(pers->name, clevel)==0)
  670. return pers;
  671. }
  672. return NULL;
  673. }
  674. /* return the offset of the super block in 512byte sectors */
  675. static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
  676. {
  677. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  678. return MD_NEW_SIZE_SECTORS(num_sectors);
  679. }
  680. static int alloc_disk_sb(mdk_rdev_t * rdev)
  681. {
  682. if (rdev->sb_page)
  683. MD_BUG();
  684. rdev->sb_page = alloc_page(GFP_KERNEL);
  685. if (!rdev->sb_page) {
  686. printk(KERN_ALERT "md: out of memory.\n");
  687. return -ENOMEM;
  688. }
  689. return 0;
  690. }
  691. static void free_disk_sb(mdk_rdev_t * rdev)
  692. {
  693. if (rdev->sb_page) {
  694. put_page(rdev->sb_page);
  695. rdev->sb_loaded = 0;
  696. rdev->sb_page = NULL;
  697. rdev->sb_start = 0;
  698. rdev->sectors = 0;
  699. }
  700. if (rdev->bb_page) {
  701. put_page(rdev->bb_page);
  702. rdev->bb_page = NULL;
  703. }
  704. }
  705. static void super_written(struct bio *bio, int error)
  706. {
  707. mdk_rdev_t *rdev = bio->bi_private;
  708. mddev_t *mddev = rdev->mddev;
  709. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  710. printk("md: super_written gets error=%d, uptodate=%d\n",
  711. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  712. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  713. md_error(mddev, rdev);
  714. }
  715. if (atomic_dec_and_test(&mddev->pending_writes))
  716. wake_up(&mddev->sb_wait);
  717. bio_put(bio);
  718. }
  719. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  720. sector_t sector, int size, struct page *page)
  721. {
  722. /* write first size bytes of page to sector of rdev
  723. * Increment mddev->pending_writes before returning
  724. * and decrement it on completion, waking up sb_wait
  725. * if zero is reached.
  726. * If an error occurred, call md_error
  727. */
  728. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  729. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  730. bio->bi_sector = sector;
  731. bio_add_page(bio, page, size, 0);
  732. bio->bi_private = rdev;
  733. bio->bi_end_io = super_written;
  734. atomic_inc(&mddev->pending_writes);
  735. submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
  736. }
  737. void md_super_wait(mddev_t *mddev)
  738. {
  739. /* wait for all superblock writes that were scheduled to complete */
  740. DEFINE_WAIT(wq);
  741. for(;;) {
  742. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  743. if (atomic_read(&mddev->pending_writes)==0)
  744. break;
  745. schedule();
  746. }
  747. finish_wait(&mddev->sb_wait, &wq);
  748. }
  749. static void bi_complete(struct bio *bio, int error)
  750. {
  751. complete((struct completion*)bio->bi_private);
  752. }
  753. int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
  754. struct page *page, int rw, bool metadata_op)
  755. {
  756. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  757. struct completion event;
  758. int ret;
  759. rw |= REQ_SYNC;
  760. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  761. rdev->meta_bdev : rdev->bdev;
  762. if (metadata_op)
  763. bio->bi_sector = sector + rdev->sb_start;
  764. else
  765. bio->bi_sector = sector + rdev->data_offset;
  766. bio_add_page(bio, page, size, 0);
  767. init_completion(&event);
  768. bio->bi_private = &event;
  769. bio->bi_end_io = bi_complete;
  770. submit_bio(rw, bio);
  771. wait_for_completion(&event);
  772. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  773. bio_put(bio);
  774. return ret;
  775. }
  776. EXPORT_SYMBOL_GPL(sync_page_io);
  777. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  778. {
  779. char b[BDEVNAME_SIZE];
  780. if (!rdev->sb_page) {
  781. MD_BUG();
  782. return -EINVAL;
  783. }
  784. if (rdev->sb_loaded)
  785. return 0;
  786. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  787. goto fail;
  788. rdev->sb_loaded = 1;
  789. return 0;
  790. fail:
  791. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  792. bdevname(rdev->bdev,b));
  793. return -EINVAL;
  794. }
  795. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  796. {
  797. return sb1->set_uuid0 == sb2->set_uuid0 &&
  798. sb1->set_uuid1 == sb2->set_uuid1 &&
  799. sb1->set_uuid2 == sb2->set_uuid2 &&
  800. sb1->set_uuid3 == sb2->set_uuid3;
  801. }
  802. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  803. {
  804. int ret;
  805. mdp_super_t *tmp1, *tmp2;
  806. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  807. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  808. if (!tmp1 || !tmp2) {
  809. ret = 0;
  810. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  811. goto abort;
  812. }
  813. *tmp1 = *sb1;
  814. *tmp2 = *sb2;
  815. /*
  816. * nr_disks is not constant
  817. */
  818. tmp1->nr_disks = 0;
  819. tmp2->nr_disks = 0;
  820. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  821. abort:
  822. kfree(tmp1);
  823. kfree(tmp2);
  824. return ret;
  825. }
  826. static u32 md_csum_fold(u32 csum)
  827. {
  828. csum = (csum & 0xffff) + (csum >> 16);
  829. return (csum & 0xffff) + (csum >> 16);
  830. }
  831. static unsigned int calc_sb_csum(mdp_super_t * sb)
  832. {
  833. u64 newcsum = 0;
  834. u32 *sb32 = (u32*)sb;
  835. int i;
  836. unsigned int disk_csum, csum;
  837. disk_csum = sb->sb_csum;
  838. sb->sb_csum = 0;
  839. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  840. newcsum += sb32[i];
  841. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  842. #ifdef CONFIG_ALPHA
  843. /* This used to use csum_partial, which was wrong for several
  844. * reasons including that different results are returned on
  845. * different architectures. It isn't critical that we get exactly
  846. * the same return value as before (we always csum_fold before
  847. * testing, and that removes any differences). However as we
  848. * know that csum_partial always returned a 16bit value on
  849. * alphas, do a fold to maximise conformity to previous behaviour.
  850. */
  851. sb->sb_csum = md_csum_fold(disk_csum);
  852. #else
  853. sb->sb_csum = disk_csum;
  854. #endif
  855. return csum;
  856. }
  857. /*
  858. * Handle superblock details.
  859. * We want to be able to handle multiple superblock formats
  860. * so we have a common interface to them all, and an array of
  861. * different handlers.
  862. * We rely on user-space to write the initial superblock, and support
  863. * reading and updating of superblocks.
  864. * Interface methods are:
  865. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  866. * loads and validates a superblock on dev.
  867. * if refdev != NULL, compare superblocks on both devices
  868. * Return:
  869. * 0 - dev has a superblock that is compatible with refdev
  870. * 1 - dev has a superblock that is compatible and newer than refdev
  871. * so dev should be used as the refdev in future
  872. * -EINVAL superblock incompatible or invalid
  873. * -othererror e.g. -EIO
  874. *
  875. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  876. * Verify that dev is acceptable into mddev.
  877. * The first time, mddev->raid_disks will be 0, and data from
  878. * dev should be merged in. Subsequent calls check that dev
  879. * is new enough. Return 0 or -EINVAL
  880. *
  881. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  882. * Update the superblock for rdev with data in mddev
  883. * This does not write to disc.
  884. *
  885. */
  886. struct super_type {
  887. char *name;
  888. struct module *owner;
  889. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  890. int minor_version);
  891. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  892. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  893. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  894. sector_t num_sectors);
  895. };
  896. /*
  897. * Check that the given mddev has no bitmap.
  898. *
  899. * This function is called from the run method of all personalities that do not
  900. * support bitmaps. It prints an error message and returns non-zero if mddev
  901. * has a bitmap. Otherwise, it returns 0.
  902. *
  903. */
  904. int md_check_no_bitmap(mddev_t *mddev)
  905. {
  906. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  907. return 0;
  908. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  909. mdname(mddev), mddev->pers->name);
  910. return 1;
  911. }
  912. EXPORT_SYMBOL(md_check_no_bitmap);
  913. /*
  914. * load_super for 0.90.0
  915. */
  916. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  917. {
  918. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  919. mdp_super_t *sb;
  920. int ret;
  921. /*
  922. * Calculate the position of the superblock (512byte sectors),
  923. * it's at the end of the disk.
  924. *
  925. * It also happens to be a multiple of 4Kb.
  926. */
  927. rdev->sb_start = calc_dev_sboffset(rdev);
  928. ret = read_disk_sb(rdev, MD_SB_BYTES);
  929. if (ret) return ret;
  930. ret = -EINVAL;
  931. bdevname(rdev->bdev, b);
  932. sb = page_address(rdev->sb_page);
  933. if (sb->md_magic != MD_SB_MAGIC) {
  934. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  935. b);
  936. goto abort;
  937. }
  938. if (sb->major_version != 0 ||
  939. sb->minor_version < 90 ||
  940. sb->minor_version > 91) {
  941. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  942. sb->major_version, sb->minor_version,
  943. b);
  944. goto abort;
  945. }
  946. if (sb->raid_disks <= 0)
  947. goto abort;
  948. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  949. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  950. b);
  951. goto abort;
  952. }
  953. rdev->preferred_minor = sb->md_minor;
  954. rdev->data_offset = 0;
  955. rdev->sb_size = MD_SB_BYTES;
  956. rdev->badblocks.shift = -1;
  957. if (sb->level == LEVEL_MULTIPATH)
  958. rdev->desc_nr = -1;
  959. else
  960. rdev->desc_nr = sb->this_disk.number;
  961. if (!refdev) {
  962. ret = 1;
  963. } else {
  964. __u64 ev1, ev2;
  965. mdp_super_t *refsb = page_address(refdev->sb_page);
  966. if (!uuid_equal(refsb, sb)) {
  967. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  968. b, bdevname(refdev->bdev,b2));
  969. goto abort;
  970. }
  971. if (!sb_equal(refsb, sb)) {
  972. printk(KERN_WARNING "md: %s has same UUID"
  973. " but different superblock to %s\n",
  974. b, bdevname(refdev->bdev, b2));
  975. goto abort;
  976. }
  977. ev1 = md_event(sb);
  978. ev2 = md_event(refsb);
  979. if (ev1 > ev2)
  980. ret = 1;
  981. else
  982. ret = 0;
  983. }
  984. rdev->sectors = rdev->sb_start;
  985. if (rdev->sectors < sb->size * 2 && sb->level > 1)
  986. /* "this cannot possibly happen" ... */
  987. ret = -EINVAL;
  988. abort:
  989. return ret;
  990. }
  991. /*
  992. * validate_super for 0.90.0
  993. */
  994. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  995. {
  996. mdp_disk_t *desc;
  997. mdp_super_t *sb = page_address(rdev->sb_page);
  998. __u64 ev1 = md_event(sb);
  999. rdev->raid_disk = -1;
  1000. clear_bit(Faulty, &rdev->flags);
  1001. clear_bit(In_sync, &rdev->flags);
  1002. clear_bit(WriteMostly, &rdev->flags);
  1003. if (mddev->raid_disks == 0) {
  1004. mddev->major_version = 0;
  1005. mddev->minor_version = sb->minor_version;
  1006. mddev->patch_version = sb->patch_version;
  1007. mddev->external = 0;
  1008. mddev->chunk_sectors = sb->chunk_size >> 9;
  1009. mddev->ctime = sb->ctime;
  1010. mddev->utime = sb->utime;
  1011. mddev->level = sb->level;
  1012. mddev->clevel[0] = 0;
  1013. mddev->layout = sb->layout;
  1014. mddev->raid_disks = sb->raid_disks;
  1015. mddev->dev_sectors = sb->size * 2;
  1016. mddev->events = ev1;
  1017. mddev->bitmap_info.offset = 0;
  1018. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1019. if (mddev->minor_version >= 91) {
  1020. mddev->reshape_position = sb->reshape_position;
  1021. mddev->delta_disks = sb->delta_disks;
  1022. mddev->new_level = sb->new_level;
  1023. mddev->new_layout = sb->new_layout;
  1024. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1025. } else {
  1026. mddev->reshape_position = MaxSector;
  1027. mddev->delta_disks = 0;
  1028. mddev->new_level = mddev->level;
  1029. mddev->new_layout = mddev->layout;
  1030. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1031. }
  1032. if (sb->state & (1<<MD_SB_CLEAN))
  1033. mddev->recovery_cp = MaxSector;
  1034. else {
  1035. if (sb->events_hi == sb->cp_events_hi &&
  1036. sb->events_lo == sb->cp_events_lo) {
  1037. mddev->recovery_cp = sb->recovery_cp;
  1038. } else
  1039. mddev->recovery_cp = 0;
  1040. }
  1041. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1042. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1043. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1044. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1045. mddev->max_disks = MD_SB_DISKS;
  1046. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1047. mddev->bitmap_info.file == NULL)
  1048. mddev->bitmap_info.offset =
  1049. mddev->bitmap_info.default_offset;
  1050. } else if (mddev->pers == NULL) {
  1051. /* Insist on good event counter while assembling, except
  1052. * for spares (which don't need an event count) */
  1053. ++ev1;
  1054. if (sb->disks[rdev->desc_nr].state & (
  1055. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1056. if (ev1 < mddev->events)
  1057. return -EINVAL;
  1058. } else if (mddev->bitmap) {
  1059. /* if adding to array with a bitmap, then we can accept an
  1060. * older device ... but not too old.
  1061. */
  1062. if (ev1 < mddev->bitmap->events_cleared)
  1063. return 0;
  1064. } else {
  1065. if (ev1 < mddev->events)
  1066. /* just a hot-add of a new device, leave raid_disk at -1 */
  1067. return 0;
  1068. }
  1069. if (mddev->level != LEVEL_MULTIPATH) {
  1070. desc = sb->disks + rdev->desc_nr;
  1071. if (desc->state & (1<<MD_DISK_FAULTY))
  1072. set_bit(Faulty, &rdev->flags);
  1073. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1074. desc->raid_disk < mddev->raid_disks */) {
  1075. set_bit(In_sync, &rdev->flags);
  1076. rdev->raid_disk = desc->raid_disk;
  1077. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1078. /* active but not in sync implies recovery up to
  1079. * reshape position. We don't know exactly where
  1080. * that is, so set to zero for now */
  1081. if (mddev->minor_version >= 91) {
  1082. rdev->recovery_offset = 0;
  1083. rdev->raid_disk = desc->raid_disk;
  1084. }
  1085. }
  1086. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1087. set_bit(WriteMostly, &rdev->flags);
  1088. } else /* MULTIPATH are always insync */
  1089. set_bit(In_sync, &rdev->flags);
  1090. return 0;
  1091. }
  1092. /*
  1093. * sync_super for 0.90.0
  1094. */
  1095. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1096. {
  1097. mdp_super_t *sb;
  1098. mdk_rdev_t *rdev2;
  1099. int next_spare = mddev->raid_disks;
  1100. /* make rdev->sb match mddev data..
  1101. *
  1102. * 1/ zero out disks
  1103. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1104. * 3/ any empty disks < next_spare become removed
  1105. *
  1106. * disks[0] gets initialised to REMOVED because
  1107. * we cannot be sure from other fields if it has
  1108. * been initialised or not.
  1109. */
  1110. int i;
  1111. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1112. rdev->sb_size = MD_SB_BYTES;
  1113. sb = page_address(rdev->sb_page);
  1114. memset(sb, 0, sizeof(*sb));
  1115. sb->md_magic = MD_SB_MAGIC;
  1116. sb->major_version = mddev->major_version;
  1117. sb->patch_version = mddev->patch_version;
  1118. sb->gvalid_words = 0; /* ignored */
  1119. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1120. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1121. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1122. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1123. sb->ctime = mddev->ctime;
  1124. sb->level = mddev->level;
  1125. sb->size = mddev->dev_sectors / 2;
  1126. sb->raid_disks = mddev->raid_disks;
  1127. sb->md_minor = mddev->md_minor;
  1128. sb->not_persistent = 0;
  1129. sb->utime = mddev->utime;
  1130. sb->state = 0;
  1131. sb->events_hi = (mddev->events>>32);
  1132. sb->events_lo = (u32)mddev->events;
  1133. if (mddev->reshape_position == MaxSector)
  1134. sb->minor_version = 90;
  1135. else {
  1136. sb->minor_version = 91;
  1137. sb->reshape_position = mddev->reshape_position;
  1138. sb->new_level = mddev->new_level;
  1139. sb->delta_disks = mddev->delta_disks;
  1140. sb->new_layout = mddev->new_layout;
  1141. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1142. }
  1143. mddev->minor_version = sb->minor_version;
  1144. if (mddev->in_sync)
  1145. {
  1146. sb->recovery_cp = mddev->recovery_cp;
  1147. sb->cp_events_hi = (mddev->events>>32);
  1148. sb->cp_events_lo = (u32)mddev->events;
  1149. if (mddev->recovery_cp == MaxSector)
  1150. sb->state = (1<< MD_SB_CLEAN);
  1151. } else
  1152. sb->recovery_cp = 0;
  1153. sb->layout = mddev->layout;
  1154. sb->chunk_size = mddev->chunk_sectors << 9;
  1155. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1156. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1157. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1158. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1159. mdp_disk_t *d;
  1160. int desc_nr;
  1161. int is_active = test_bit(In_sync, &rdev2->flags);
  1162. if (rdev2->raid_disk >= 0 &&
  1163. sb->minor_version >= 91)
  1164. /* we have nowhere to store the recovery_offset,
  1165. * but if it is not below the reshape_position,
  1166. * we can piggy-back on that.
  1167. */
  1168. is_active = 1;
  1169. if (rdev2->raid_disk < 0 ||
  1170. test_bit(Faulty, &rdev2->flags))
  1171. is_active = 0;
  1172. if (is_active)
  1173. desc_nr = rdev2->raid_disk;
  1174. else
  1175. desc_nr = next_spare++;
  1176. rdev2->desc_nr = desc_nr;
  1177. d = &sb->disks[rdev2->desc_nr];
  1178. nr_disks++;
  1179. d->number = rdev2->desc_nr;
  1180. d->major = MAJOR(rdev2->bdev->bd_dev);
  1181. d->minor = MINOR(rdev2->bdev->bd_dev);
  1182. if (is_active)
  1183. d->raid_disk = rdev2->raid_disk;
  1184. else
  1185. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1186. if (test_bit(Faulty, &rdev2->flags))
  1187. d->state = (1<<MD_DISK_FAULTY);
  1188. else if (is_active) {
  1189. d->state = (1<<MD_DISK_ACTIVE);
  1190. if (test_bit(In_sync, &rdev2->flags))
  1191. d->state |= (1<<MD_DISK_SYNC);
  1192. active++;
  1193. working++;
  1194. } else {
  1195. d->state = 0;
  1196. spare++;
  1197. working++;
  1198. }
  1199. if (test_bit(WriteMostly, &rdev2->flags))
  1200. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1201. }
  1202. /* now set the "removed" and "faulty" bits on any missing devices */
  1203. for (i=0 ; i < mddev->raid_disks ; i++) {
  1204. mdp_disk_t *d = &sb->disks[i];
  1205. if (d->state == 0 && d->number == 0) {
  1206. d->number = i;
  1207. d->raid_disk = i;
  1208. d->state = (1<<MD_DISK_REMOVED);
  1209. d->state |= (1<<MD_DISK_FAULTY);
  1210. failed++;
  1211. }
  1212. }
  1213. sb->nr_disks = nr_disks;
  1214. sb->active_disks = active;
  1215. sb->working_disks = working;
  1216. sb->failed_disks = failed;
  1217. sb->spare_disks = spare;
  1218. sb->this_disk = sb->disks[rdev->desc_nr];
  1219. sb->sb_csum = calc_sb_csum(sb);
  1220. }
  1221. /*
  1222. * rdev_size_change for 0.90.0
  1223. */
  1224. static unsigned long long
  1225. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1226. {
  1227. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1228. return 0; /* component must fit device */
  1229. if (rdev->mddev->bitmap_info.offset)
  1230. return 0; /* can't move bitmap */
  1231. rdev->sb_start = calc_dev_sboffset(rdev);
  1232. if (!num_sectors || num_sectors > rdev->sb_start)
  1233. num_sectors = rdev->sb_start;
  1234. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1235. rdev->sb_page);
  1236. md_super_wait(rdev->mddev);
  1237. return num_sectors;
  1238. }
  1239. /*
  1240. * version 1 superblock
  1241. */
  1242. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1243. {
  1244. __le32 disk_csum;
  1245. u32 csum;
  1246. unsigned long long newcsum;
  1247. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1248. __le32 *isuper = (__le32*)sb;
  1249. int i;
  1250. disk_csum = sb->sb_csum;
  1251. sb->sb_csum = 0;
  1252. newcsum = 0;
  1253. for (i=0; size>=4; size -= 4 )
  1254. newcsum += le32_to_cpu(*isuper++);
  1255. if (size == 2)
  1256. newcsum += le16_to_cpu(*(__le16*) isuper);
  1257. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1258. sb->sb_csum = disk_csum;
  1259. return cpu_to_le32(csum);
  1260. }
  1261. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1262. int acknowledged);
  1263. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  1264. {
  1265. struct mdp_superblock_1 *sb;
  1266. int ret;
  1267. sector_t sb_start;
  1268. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1269. int bmask;
  1270. /*
  1271. * Calculate the position of the superblock in 512byte sectors.
  1272. * It is always aligned to a 4K boundary and
  1273. * depeding on minor_version, it can be:
  1274. * 0: At least 8K, but less than 12K, from end of device
  1275. * 1: At start of device
  1276. * 2: 4K from start of device.
  1277. */
  1278. switch(minor_version) {
  1279. case 0:
  1280. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1281. sb_start -= 8*2;
  1282. sb_start &= ~(sector_t)(4*2-1);
  1283. break;
  1284. case 1:
  1285. sb_start = 0;
  1286. break;
  1287. case 2:
  1288. sb_start = 8;
  1289. break;
  1290. default:
  1291. return -EINVAL;
  1292. }
  1293. rdev->sb_start = sb_start;
  1294. /* superblock is rarely larger than 1K, but it can be larger,
  1295. * and it is safe to read 4k, so we do that
  1296. */
  1297. ret = read_disk_sb(rdev, 4096);
  1298. if (ret) return ret;
  1299. sb = page_address(rdev->sb_page);
  1300. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1301. sb->major_version != cpu_to_le32(1) ||
  1302. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1303. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1304. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1305. return -EINVAL;
  1306. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1307. printk("md: invalid superblock checksum on %s\n",
  1308. bdevname(rdev->bdev,b));
  1309. return -EINVAL;
  1310. }
  1311. if (le64_to_cpu(sb->data_size) < 10) {
  1312. printk("md: data_size too small on %s\n",
  1313. bdevname(rdev->bdev,b));
  1314. return -EINVAL;
  1315. }
  1316. rdev->preferred_minor = 0xffff;
  1317. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1318. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1319. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1320. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1321. if (rdev->sb_size & bmask)
  1322. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1323. if (minor_version
  1324. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1325. return -EINVAL;
  1326. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1327. rdev->desc_nr = -1;
  1328. else
  1329. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1330. if (!rdev->bb_page) {
  1331. rdev->bb_page = alloc_page(GFP_KERNEL);
  1332. if (!rdev->bb_page)
  1333. return -ENOMEM;
  1334. }
  1335. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1336. rdev->badblocks.count == 0) {
  1337. /* need to load the bad block list.
  1338. * Currently we limit it to one page.
  1339. */
  1340. s32 offset;
  1341. sector_t bb_sector;
  1342. u64 *bbp;
  1343. int i;
  1344. int sectors = le16_to_cpu(sb->bblog_size);
  1345. if (sectors > (PAGE_SIZE / 512))
  1346. return -EINVAL;
  1347. offset = le32_to_cpu(sb->bblog_offset);
  1348. if (offset == 0)
  1349. return -EINVAL;
  1350. bb_sector = (long long)offset;
  1351. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1352. rdev->bb_page, READ, true))
  1353. return -EIO;
  1354. bbp = (u64 *)page_address(rdev->bb_page);
  1355. rdev->badblocks.shift = sb->bblog_shift;
  1356. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1357. u64 bb = le64_to_cpu(*bbp);
  1358. int count = bb & (0x3ff);
  1359. u64 sector = bb >> 10;
  1360. sector <<= sb->bblog_shift;
  1361. count <<= sb->bblog_shift;
  1362. if (bb + 1 == 0)
  1363. break;
  1364. if (md_set_badblocks(&rdev->badblocks,
  1365. sector, count, 1) == 0)
  1366. return -EINVAL;
  1367. }
  1368. } else if (sb->bblog_offset == 0)
  1369. rdev->badblocks.shift = -1;
  1370. if (!refdev) {
  1371. ret = 1;
  1372. } else {
  1373. __u64 ev1, ev2;
  1374. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1375. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1376. sb->level != refsb->level ||
  1377. sb->layout != refsb->layout ||
  1378. sb->chunksize != refsb->chunksize) {
  1379. printk(KERN_WARNING "md: %s has strangely different"
  1380. " superblock to %s\n",
  1381. bdevname(rdev->bdev,b),
  1382. bdevname(refdev->bdev,b2));
  1383. return -EINVAL;
  1384. }
  1385. ev1 = le64_to_cpu(sb->events);
  1386. ev2 = le64_to_cpu(refsb->events);
  1387. if (ev1 > ev2)
  1388. ret = 1;
  1389. else
  1390. ret = 0;
  1391. }
  1392. if (minor_version)
  1393. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1394. le64_to_cpu(sb->data_offset);
  1395. else
  1396. rdev->sectors = rdev->sb_start;
  1397. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1398. return -EINVAL;
  1399. rdev->sectors = le64_to_cpu(sb->data_size);
  1400. if (le64_to_cpu(sb->size) > rdev->sectors)
  1401. return -EINVAL;
  1402. return ret;
  1403. }
  1404. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1405. {
  1406. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1407. __u64 ev1 = le64_to_cpu(sb->events);
  1408. rdev->raid_disk = -1;
  1409. clear_bit(Faulty, &rdev->flags);
  1410. clear_bit(In_sync, &rdev->flags);
  1411. clear_bit(WriteMostly, &rdev->flags);
  1412. if (mddev->raid_disks == 0) {
  1413. mddev->major_version = 1;
  1414. mddev->patch_version = 0;
  1415. mddev->external = 0;
  1416. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1417. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1418. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1419. mddev->level = le32_to_cpu(sb->level);
  1420. mddev->clevel[0] = 0;
  1421. mddev->layout = le32_to_cpu(sb->layout);
  1422. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1423. mddev->dev_sectors = le64_to_cpu(sb->size);
  1424. mddev->events = ev1;
  1425. mddev->bitmap_info.offset = 0;
  1426. mddev->bitmap_info.default_offset = 1024 >> 9;
  1427. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1428. memcpy(mddev->uuid, sb->set_uuid, 16);
  1429. mddev->max_disks = (4096-256)/2;
  1430. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1431. mddev->bitmap_info.file == NULL )
  1432. mddev->bitmap_info.offset =
  1433. (__s32)le32_to_cpu(sb->bitmap_offset);
  1434. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1435. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1436. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1437. mddev->new_level = le32_to_cpu(sb->new_level);
  1438. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1439. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1440. } else {
  1441. mddev->reshape_position = MaxSector;
  1442. mddev->delta_disks = 0;
  1443. mddev->new_level = mddev->level;
  1444. mddev->new_layout = mddev->layout;
  1445. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1446. }
  1447. } else if (mddev->pers == NULL) {
  1448. /* Insist of good event counter while assembling, except for
  1449. * spares (which don't need an event count) */
  1450. ++ev1;
  1451. if (rdev->desc_nr >= 0 &&
  1452. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1453. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1454. if (ev1 < mddev->events)
  1455. return -EINVAL;
  1456. } else if (mddev->bitmap) {
  1457. /* If adding to array with a bitmap, then we can accept an
  1458. * older device, but not too old.
  1459. */
  1460. if (ev1 < mddev->bitmap->events_cleared)
  1461. return 0;
  1462. } else {
  1463. if (ev1 < mddev->events)
  1464. /* just a hot-add of a new device, leave raid_disk at -1 */
  1465. return 0;
  1466. }
  1467. if (mddev->level != LEVEL_MULTIPATH) {
  1468. int role;
  1469. if (rdev->desc_nr < 0 ||
  1470. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1471. role = 0xffff;
  1472. rdev->desc_nr = -1;
  1473. } else
  1474. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1475. switch(role) {
  1476. case 0xffff: /* spare */
  1477. break;
  1478. case 0xfffe: /* faulty */
  1479. set_bit(Faulty, &rdev->flags);
  1480. break;
  1481. default:
  1482. if ((le32_to_cpu(sb->feature_map) &
  1483. MD_FEATURE_RECOVERY_OFFSET))
  1484. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1485. else
  1486. set_bit(In_sync, &rdev->flags);
  1487. rdev->raid_disk = role;
  1488. break;
  1489. }
  1490. if (sb->devflags & WriteMostly1)
  1491. set_bit(WriteMostly, &rdev->flags);
  1492. } else /* MULTIPATH are always insync */
  1493. set_bit(In_sync, &rdev->flags);
  1494. return 0;
  1495. }
  1496. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1497. {
  1498. struct mdp_superblock_1 *sb;
  1499. mdk_rdev_t *rdev2;
  1500. int max_dev, i;
  1501. /* make rdev->sb match mddev and rdev data. */
  1502. sb = page_address(rdev->sb_page);
  1503. sb->feature_map = 0;
  1504. sb->pad0 = 0;
  1505. sb->recovery_offset = cpu_to_le64(0);
  1506. memset(sb->pad1, 0, sizeof(sb->pad1));
  1507. memset(sb->pad3, 0, sizeof(sb->pad3));
  1508. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1509. sb->events = cpu_to_le64(mddev->events);
  1510. if (mddev->in_sync)
  1511. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1512. else
  1513. sb->resync_offset = cpu_to_le64(0);
  1514. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1515. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1516. sb->size = cpu_to_le64(mddev->dev_sectors);
  1517. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1518. sb->level = cpu_to_le32(mddev->level);
  1519. sb->layout = cpu_to_le32(mddev->layout);
  1520. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1521. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1522. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1523. }
  1524. if (rdev->raid_disk >= 0 &&
  1525. !test_bit(In_sync, &rdev->flags)) {
  1526. sb->feature_map |=
  1527. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1528. sb->recovery_offset =
  1529. cpu_to_le64(rdev->recovery_offset);
  1530. }
  1531. if (mddev->reshape_position != MaxSector) {
  1532. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1533. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1534. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1535. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1536. sb->new_level = cpu_to_le32(mddev->new_level);
  1537. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1538. }
  1539. if (rdev->badblocks.count == 0)
  1540. /* Nothing to do for bad blocks*/ ;
  1541. else if (sb->bblog_offset == 0)
  1542. /* Cannot record bad blocks on this device */
  1543. md_error(mddev, rdev);
  1544. else {
  1545. struct badblocks *bb = &rdev->badblocks;
  1546. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1547. u64 *p = bb->page;
  1548. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1549. if (bb->changed) {
  1550. unsigned seq;
  1551. retry:
  1552. seq = read_seqbegin(&bb->lock);
  1553. memset(bbp, 0xff, PAGE_SIZE);
  1554. for (i = 0 ; i < bb->count ; i++) {
  1555. u64 internal_bb = *p++;
  1556. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1557. | BB_LEN(internal_bb));
  1558. *bbp++ = cpu_to_le64(store_bb);
  1559. }
  1560. if (read_seqretry(&bb->lock, seq))
  1561. goto retry;
  1562. bb->sector = (rdev->sb_start +
  1563. (int)le32_to_cpu(sb->bblog_offset));
  1564. bb->size = le16_to_cpu(sb->bblog_size);
  1565. bb->changed = 0;
  1566. }
  1567. }
  1568. max_dev = 0;
  1569. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1570. if (rdev2->desc_nr+1 > max_dev)
  1571. max_dev = rdev2->desc_nr+1;
  1572. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1573. int bmask;
  1574. sb->max_dev = cpu_to_le32(max_dev);
  1575. rdev->sb_size = max_dev * 2 + 256;
  1576. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1577. if (rdev->sb_size & bmask)
  1578. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1579. } else
  1580. max_dev = le32_to_cpu(sb->max_dev);
  1581. for (i=0; i<max_dev;i++)
  1582. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1583. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1584. i = rdev2->desc_nr;
  1585. if (test_bit(Faulty, &rdev2->flags))
  1586. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1587. else if (test_bit(In_sync, &rdev2->flags))
  1588. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1589. else if (rdev2->raid_disk >= 0)
  1590. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1591. else
  1592. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1593. }
  1594. sb->sb_csum = calc_sb_1_csum(sb);
  1595. }
  1596. static unsigned long long
  1597. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1598. {
  1599. struct mdp_superblock_1 *sb;
  1600. sector_t max_sectors;
  1601. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1602. return 0; /* component must fit device */
  1603. if (rdev->sb_start < rdev->data_offset) {
  1604. /* minor versions 1 and 2; superblock before data */
  1605. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1606. max_sectors -= rdev->data_offset;
  1607. if (!num_sectors || num_sectors > max_sectors)
  1608. num_sectors = max_sectors;
  1609. } else if (rdev->mddev->bitmap_info.offset) {
  1610. /* minor version 0 with bitmap we can't move */
  1611. return 0;
  1612. } else {
  1613. /* minor version 0; superblock after data */
  1614. sector_t sb_start;
  1615. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1616. sb_start &= ~(sector_t)(4*2 - 1);
  1617. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1618. if (!num_sectors || num_sectors > max_sectors)
  1619. num_sectors = max_sectors;
  1620. rdev->sb_start = sb_start;
  1621. }
  1622. sb = page_address(rdev->sb_page);
  1623. sb->data_size = cpu_to_le64(num_sectors);
  1624. sb->super_offset = rdev->sb_start;
  1625. sb->sb_csum = calc_sb_1_csum(sb);
  1626. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1627. rdev->sb_page);
  1628. md_super_wait(rdev->mddev);
  1629. return num_sectors;
  1630. }
  1631. static struct super_type super_types[] = {
  1632. [0] = {
  1633. .name = "0.90.0",
  1634. .owner = THIS_MODULE,
  1635. .load_super = super_90_load,
  1636. .validate_super = super_90_validate,
  1637. .sync_super = super_90_sync,
  1638. .rdev_size_change = super_90_rdev_size_change,
  1639. },
  1640. [1] = {
  1641. .name = "md-1",
  1642. .owner = THIS_MODULE,
  1643. .load_super = super_1_load,
  1644. .validate_super = super_1_validate,
  1645. .sync_super = super_1_sync,
  1646. .rdev_size_change = super_1_rdev_size_change,
  1647. },
  1648. };
  1649. static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
  1650. {
  1651. if (mddev->sync_super) {
  1652. mddev->sync_super(mddev, rdev);
  1653. return;
  1654. }
  1655. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1656. super_types[mddev->major_version].sync_super(mddev, rdev);
  1657. }
  1658. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1659. {
  1660. mdk_rdev_t *rdev, *rdev2;
  1661. rcu_read_lock();
  1662. rdev_for_each_rcu(rdev, mddev1)
  1663. rdev_for_each_rcu(rdev2, mddev2)
  1664. if (rdev->bdev->bd_contains ==
  1665. rdev2->bdev->bd_contains) {
  1666. rcu_read_unlock();
  1667. return 1;
  1668. }
  1669. rcu_read_unlock();
  1670. return 0;
  1671. }
  1672. static LIST_HEAD(pending_raid_disks);
  1673. /*
  1674. * Try to register data integrity profile for an mddev
  1675. *
  1676. * This is called when an array is started and after a disk has been kicked
  1677. * from the array. It only succeeds if all working and active component devices
  1678. * are integrity capable with matching profiles.
  1679. */
  1680. int md_integrity_register(mddev_t *mddev)
  1681. {
  1682. mdk_rdev_t *rdev, *reference = NULL;
  1683. if (list_empty(&mddev->disks))
  1684. return 0; /* nothing to do */
  1685. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1686. return 0; /* shouldn't register, or already is */
  1687. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1688. /* skip spares and non-functional disks */
  1689. if (test_bit(Faulty, &rdev->flags))
  1690. continue;
  1691. if (rdev->raid_disk < 0)
  1692. continue;
  1693. if (!reference) {
  1694. /* Use the first rdev as the reference */
  1695. reference = rdev;
  1696. continue;
  1697. }
  1698. /* does this rdev's profile match the reference profile? */
  1699. if (blk_integrity_compare(reference->bdev->bd_disk,
  1700. rdev->bdev->bd_disk) < 0)
  1701. return -EINVAL;
  1702. }
  1703. if (!reference || !bdev_get_integrity(reference->bdev))
  1704. return 0;
  1705. /*
  1706. * All component devices are integrity capable and have matching
  1707. * profiles, register the common profile for the md device.
  1708. */
  1709. if (blk_integrity_register(mddev->gendisk,
  1710. bdev_get_integrity(reference->bdev)) != 0) {
  1711. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1712. mdname(mddev));
  1713. return -EINVAL;
  1714. }
  1715. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1716. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1717. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1718. mdname(mddev));
  1719. return -EINVAL;
  1720. }
  1721. return 0;
  1722. }
  1723. EXPORT_SYMBOL(md_integrity_register);
  1724. /* Disable data integrity if non-capable/non-matching disk is being added */
  1725. void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  1726. {
  1727. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1728. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1729. if (!bi_mddev) /* nothing to do */
  1730. return;
  1731. if (rdev->raid_disk < 0) /* skip spares */
  1732. return;
  1733. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1734. rdev->bdev->bd_disk) >= 0)
  1735. return;
  1736. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1737. blk_integrity_unregister(mddev->gendisk);
  1738. }
  1739. EXPORT_SYMBOL(md_integrity_add_rdev);
  1740. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1741. {
  1742. char b[BDEVNAME_SIZE];
  1743. struct kobject *ko;
  1744. char *s;
  1745. int err;
  1746. if (rdev->mddev) {
  1747. MD_BUG();
  1748. return -EINVAL;
  1749. }
  1750. /* prevent duplicates */
  1751. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1752. return -EEXIST;
  1753. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1754. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1755. rdev->sectors < mddev->dev_sectors)) {
  1756. if (mddev->pers) {
  1757. /* Cannot change size, so fail
  1758. * If mddev->level <= 0, then we don't care
  1759. * about aligning sizes (e.g. linear)
  1760. */
  1761. if (mddev->level > 0)
  1762. return -ENOSPC;
  1763. } else
  1764. mddev->dev_sectors = rdev->sectors;
  1765. }
  1766. /* Verify rdev->desc_nr is unique.
  1767. * If it is -1, assign a free number, else
  1768. * check number is not in use
  1769. */
  1770. if (rdev->desc_nr < 0) {
  1771. int choice = 0;
  1772. if (mddev->pers) choice = mddev->raid_disks;
  1773. while (find_rdev_nr(mddev, choice))
  1774. choice++;
  1775. rdev->desc_nr = choice;
  1776. } else {
  1777. if (find_rdev_nr(mddev, rdev->desc_nr))
  1778. return -EBUSY;
  1779. }
  1780. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1781. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1782. mdname(mddev), mddev->max_disks);
  1783. return -EBUSY;
  1784. }
  1785. bdevname(rdev->bdev,b);
  1786. while ( (s=strchr(b, '/')) != NULL)
  1787. *s = '!';
  1788. rdev->mddev = mddev;
  1789. printk(KERN_INFO "md: bind<%s>\n", b);
  1790. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1791. goto fail;
  1792. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1793. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1794. /* failure here is OK */;
  1795. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1796. list_add_rcu(&rdev->same_set, &mddev->disks);
  1797. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1798. /* May as well allow recovery to be retried once */
  1799. mddev->recovery_disabled++;
  1800. return 0;
  1801. fail:
  1802. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1803. b, mdname(mddev));
  1804. return err;
  1805. }
  1806. static void md_delayed_delete(struct work_struct *ws)
  1807. {
  1808. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1809. kobject_del(&rdev->kobj);
  1810. kobject_put(&rdev->kobj);
  1811. }
  1812. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1813. {
  1814. char b[BDEVNAME_SIZE];
  1815. if (!rdev->mddev) {
  1816. MD_BUG();
  1817. return;
  1818. }
  1819. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1820. list_del_rcu(&rdev->same_set);
  1821. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1822. rdev->mddev = NULL;
  1823. sysfs_remove_link(&rdev->kobj, "block");
  1824. sysfs_put(rdev->sysfs_state);
  1825. rdev->sysfs_state = NULL;
  1826. kfree(rdev->badblocks.page);
  1827. rdev->badblocks.count = 0;
  1828. rdev->badblocks.page = NULL;
  1829. /* We need to delay this, otherwise we can deadlock when
  1830. * writing to 'remove' to "dev/state". We also need
  1831. * to delay it due to rcu usage.
  1832. */
  1833. synchronize_rcu();
  1834. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1835. kobject_get(&rdev->kobj);
  1836. queue_work(md_misc_wq, &rdev->del_work);
  1837. }
  1838. /*
  1839. * prevent the device from being mounted, repartitioned or
  1840. * otherwise reused by a RAID array (or any other kernel
  1841. * subsystem), by bd_claiming the device.
  1842. */
  1843. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1844. {
  1845. int err = 0;
  1846. struct block_device *bdev;
  1847. char b[BDEVNAME_SIZE];
  1848. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1849. shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1850. if (IS_ERR(bdev)) {
  1851. printk(KERN_ERR "md: could not open %s.\n",
  1852. __bdevname(dev, b));
  1853. return PTR_ERR(bdev);
  1854. }
  1855. rdev->bdev = bdev;
  1856. return err;
  1857. }
  1858. static void unlock_rdev(mdk_rdev_t *rdev)
  1859. {
  1860. struct block_device *bdev = rdev->bdev;
  1861. rdev->bdev = NULL;
  1862. if (!bdev)
  1863. MD_BUG();
  1864. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1865. }
  1866. void md_autodetect_dev(dev_t dev);
  1867. static void export_rdev(mdk_rdev_t * rdev)
  1868. {
  1869. char b[BDEVNAME_SIZE];
  1870. printk(KERN_INFO "md: export_rdev(%s)\n",
  1871. bdevname(rdev->bdev,b));
  1872. if (rdev->mddev)
  1873. MD_BUG();
  1874. free_disk_sb(rdev);
  1875. #ifndef MODULE
  1876. if (test_bit(AutoDetected, &rdev->flags))
  1877. md_autodetect_dev(rdev->bdev->bd_dev);
  1878. #endif
  1879. unlock_rdev(rdev);
  1880. kobject_put(&rdev->kobj);
  1881. }
  1882. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1883. {
  1884. unbind_rdev_from_array(rdev);
  1885. export_rdev(rdev);
  1886. }
  1887. static void export_array(mddev_t *mddev)
  1888. {
  1889. mdk_rdev_t *rdev, *tmp;
  1890. rdev_for_each(rdev, tmp, mddev) {
  1891. if (!rdev->mddev) {
  1892. MD_BUG();
  1893. continue;
  1894. }
  1895. kick_rdev_from_array(rdev);
  1896. }
  1897. if (!list_empty(&mddev->disks))
  1898. MD_BUG();
  1899. mddev->raid_disks = 0;
  1900. mddev->major_version = 0;
  1901. }
  1902. static void print_desc(mdp_disk_t *desc)
  1903. {
  1904. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1905. desc->major,desc->minor,desc->raid_disk,desc->state);
  1906. }
  1907. static void print_sb_90(mdp_super_t *sb)
  1908. {
  1909. int i;
  1910. printk(KERN_INFO
  1911. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1912. sb->major_version, sb->minor_version, sb->patch_version,
  1913. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1914. sb->ctime);
  1915. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1916. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1917. sb->md_minor, sb->layout, sb->chunk_size);
  1918. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1919. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1920. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1921. sb->failed_disks, sb->spare_disks,
  1922. sb->sb_csum, (unsigned long)sb->events_lo);
  1923. printk(KERN_INFO);
  1924. for (i = 0; i < MD_SB_DISKS; i++) {
  1925. mdp_disk_t *desc;
  1926. desc = sb->disks + i;
  1927. if (desc->number || desc->major || desc->minor ||
  1928. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1929. printk(" D %2d: ", i);
  1930. print_desc(desc);
  1931. }
  1932. }
  1933. printk(KERN_INFO "md: THIS: ");
  1934. print_desc(&sb->this_disk);
  1935. }
  1936. static void print_sb_1(struct mdp_superblock_1 *sb)
  1937. {
  1938. __u8 *uuid;
  1939. uuid = sb->set_uuid;
  1940. printk(KERN_INFO
  1941. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1942. "md: Name: \"%s\" CT:%llu\n",
  1943. le32_to_cpu(sb->major_version),
  1944. le32_to_cpu(sb->feature_map),
  1945. uuid,
  1946. sb->set_name,
  1947. (unsigned long long)le64_to_cpu(sb->ctime)
  1948. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1949. uuid = sb->device_uuid;
  1950. printk(KERN_INFO
  1951. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1952. " RO:%llu\n"
  1953. "md: Dev:%08x UUID: %pU\n"
  1954. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1955. "md: (MaxDev:%u) \n",
  1956. le32_to_cpu(sb->level),
  1957. (unsigned long long)le64_to_cpu(sb->size),
  1958. le32_to_cpu(sb->raid_disks),
  1959. le32_to_cpu(sb->layout),
  1960. le32_to_cpu(sb->chunksize),
  1961. (unsigned long long)le64_to_cpu(sb->data_offset),
  1962. (unsigned long long)le64_to_cpu(sb->data_size),
  1963. (unsigned long long)le64_to_cpu(sb->super_offset),
  1964. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1965. le32_to_cpu(sb->dev_number),
  1966. uuid,
  1967. sb->devflags,
  1968. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1969. (unsigned long long)le64_to_cpu(sb->events),
  1970. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1971. le32_to_cpu(sb->sb_csum),
  1972. le32_to_cpu(sb->max_dev)
  1973. );
  1974. }
  1975. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1976. {
  1977. char b[BDEVNAME_SIZE];
  1978. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1979. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1980. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1981. rdev->desc_nr);
  1982. if (rdev->sb_loaded) {
  1983. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1984. switch (major_version) {
  1985. case 0:
  1986. print_sb_90(page_address(rdev->sb_page));
  1987. break;
  1988. case 1:
  1989. print_sb_1(page_address(rdev->sb_page));
  1990. break;
  1991. }
  1992. } else
  1993. printk(KERN_INFO "md: no rdev superblock!\n");
  1994. }
  1995. static void md_print_devices(void)
  1996. {
  1997. struct list_head *tmp;
  1998. mdk_rdev_t *rdev;
  1999. mddev_t *mddev;
  2000. char b[BDEVNAME_SIZE];
  2001. printk("\n");
  2002. printk("md: **********************************\n");
  2003. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2004. printk("md: **********************************\n");
  2005. for_each_mddev(mddev, tmp) {
  2006. if (mddev->bitmap)
  2007. bitmap_print_sb(mddev->bitmap);
  2008. else
  2009. printk("%s: ", mdname(mddev));
  2010. list_for_each_entry(rdev, &mddev->disks, same_set)
  2011. printk("<%s>", bdevname(rdev->bdev,b));
  2012. printk("\n");
  2013. list_for_each_entry(rdev, &mddev->disks, same_set)
  2014. print_rdev(rdev, mddev->major_version);
  2015. }
  2016. printk("md: **********************************\n");
  2017. printk("\n");
  2018. }
  2019. static void sync_sbs(mddev_t * mddev, int nospares)
  2020. {
  2021. /* Update each superblock (in-memory image), but
  2022. * if we are allowed to, skip spares which already
  2023. * have the right event counter, or have one earlier
  2024. * (which would mean they aren't being marked as dirty
  2025. * with the rest of the array)
  2026. */
  2027. mdk_rdev_t *rdev;
  2028. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2029. if (rdev->sb_events == mddev->events ||
  2030. (nospares &&
  2031. rdev->raid_disk < 0 &&
  2032. rdev->sb_events+1 == mddev->events)) {
  2033. /* Don't update this superblock */
  2034. rdev->sb_loaded = 2;
  2035. } else {
  2036. sync_super(mddev, rdev);
  2037. rdev->sb_loaded = 1;
  2038. }
  2039. }
  2040. }
  2041. static void md_update_sb(mddev_t * mddev, int force_change)
  2042. {
  2043. mdk_rdev_t *rdev;
  2044. int sync_req;
  2045. int nospares = 0;
  2046. int any_badblocks_changed = 0;
  2047. repeat:
  2048. /* First make sure individual recovery_offsets are correct */
  2049. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2050. if (rdev->raid_disk >= 0 &&
  2051. mddev->delta_disks >= 0 &&
  2052. !test_bit(In_sync, &rdev->flags) &&
  2053. mddev->curr_resync_completed > rdev->recovery_offset)
  2054. rdev->recovery_offset = mddev->curr_resync_completed;
  2055. }
  2056. if (!mddev->persistent) {
  2057. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2058. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2059. if (!mddev->external)
  2060. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2061. wake_up(&mddev->sb_wait);
  2062. return;
  2063. }
  2064. spin_lock_irq(&mddev->write_lock);
  2065. mddev->utime = get_seconds();
  2066. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2067. force_change = 1;
  2068. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2069. /* just a clean<-> dirty transition, possibly leave spares alone,
  2070. * though if events isn't the right even/odd, we will have to do
  2071. * spares after all
  2072. */
  2073. nospares = 1;
  2074. if (force_change)
  2075. nospares = 0;
  2076. if (mddev->degraded)
  2077. /* If the array is degraded, then skipping spares is both
  2078. * dangerous and fairly pointless.
  2079. * Dangerous because a device that was removed from the array
  2080. * might have a event_count that still looks up-to-date,
  2081. * so it can be re-added without a resync.
  2082. * Pointless because if there are any spares to skip,
  2083. * then a recovery will happen and soon that array won't
  2084. * be degraded any more and the spare can go back to sleep then.
  2085. */
  2086. nospares = 0;
  2087. sync_req = mddev->in_sync;
  2088. /* If this is just a dirty<->clean transition, and the array is clean
  2089. * and 'events' is odd, we can roll back to the previous clean state */
  2090. if (nospares
  2091. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2092. && mddev->can_decrease_events
  2093. && mddev->events != 1) {
  2094. mddev->events--;
  2095. mddev->can_decrease_events = 0;
  2096. } else {
  2097. /* otherwise we have to go forward and ... */
  2098. mddev->events ++;
  2099. mddev->can_decrease_events = nospares;
  2100. }
  2101. if (!mddev->events) {
  2102. /*
  2103. * oops, this 64-bit counter should never wrap.
  2104. * Either we are in around ~1 trillion A.C., assuming
  2105. * 1 reboot per second, or we have a bug:
  2106. */
  2107. MD_BUG();
  2108. mddev->events --;
  2109. }
  2110. list_for_each_entry(rdev, &mddev->disks, same_set)
  2111. if (rdev->badblocks.changed)
  2112. any_badblocks_changed++;
  2113. sync_sbs(mddev, nospares);
  2114. spin_unlock_irq(&mddev->write_lock);
  2115. dprintk(KERN_INFO
  2116. "md: updating %s RAID superblock on device (in sync %d)\n",
  2117. mdname(mddev),mddev->in_sync);
  2118. bitmap_update_sb(mddev->bitmap);
  2119. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2120. char b[BDEVNAME_SIZE];
  2121. dprintk(KERN_INFO "md: ");
  2122. if (rdev->sb_loaded != 1)
  2123. continue; /* no noise on spare devices */
  2124. if (test_bit(Faulty, &rdev->flags))
  2125. dprintk("(skipping faulty ");
  2126. dprintk("%s ", bdevname(rdev->bdev,b));
  2127. if (!test_bit(Faulty, &rdev->flags)) {
  2128. md_super_write(mddev,rdev,
  2129. rdev->sb_start, rdev->sb_size,
  2130. rdev->sb_page);
  2131. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  2132. bdevname(rdev->bdev,b),
  2133. (unsigned long long)rdev->sb_start);
  2134. rdev->sb_events = mddev->events;
  2135. if (rdev->badblocks.size) {
  2136. md_super_write(mddev, rdev,
  2137. rdev->badblocks.sector,
  2138. rdev->badblocks.size << 9,
  2139. rdev->bb_page);
  2140. rdev->badblocks.size = 0;
  2141. }
  2142. } else
  2143. dprintk(")\n");
  2144. if (mddev->level == LEVEL_MULTIPATH)
  2145. /* only need to write one superblock... */
  2146. break;
  2147. }
  2148. md_super_wait(mddev);
  2149. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2150. spin_lock_irq(&mddev->write_lock);
  2151. if (mddev->in_sync != sync_req ||
  2152. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2153. /* have to write it out again */
  2154. spin_unlock_irq(&mddev->write_lock);
  2155. goto repeat;
  2156. }
  2157. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2158. spin_unlock_irq(&mddev->write_lock);
  2159. wake_up(&mddev->sb_wait);
  2160. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2161. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2162. if (any_badblocks_changed)
  2163. list_for_each_entry(rdev, &mddev->disks, same_set)
  2164. md_ack_all_badblocks(&rdev->badblocks);
  2165. }
  2166. /* words written to sysfs files may, or may not, be \n terminated.
  2167. * We want to accept with case. For this we use cmd_match.
  2168. */
  2169. static int cmd_match(const char *cmd, const char *str)
  2170. {
  2171. /* See if cmd, written into a sysfs file, matches
  2172. * str. They must either be the same, or cmd can
  2173. * have a trailing newline
  2174. */
  2175. while (*cmd && *str && *cmd == *str) {
  2176. cmd++;
  2177. str++;
  2178. }
  2179. if (*cmd == '\n')
  2180. cmd++;
  2181. if (*str || *cmd)
  2182. return 0;
  2183. return 1;
  2184. }
  2185. struct rdev_sysfs_entry {
  2186. struct attribute attr;
  2187. ssize_t (*show)(mdk_rdev_t *, char *);
  2188. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  2189. };
  2190. static ssize_t
  2191. state_show(mdk_rdev_t *rdev, char *page)
  2192. {
  2193. char *sep = "";
  2194. size_t len = 0;
  2195. if (test_bit(Faulty, &rdev->flags)) {
  2196. len+= sprintf(page+len, "%sfaulty",sep);
  2197. sep = ",";
  2198. }
  2199. if (test_bit(In_sync, &rdev->flags)) {
  2200. len += sprintf(page+len, "%sin_sync",sep);
  2201. sep = ",";
  2202. }
  2203. if (test_bit(WriteMostly, &rdev->flags)) {
  2204. len += sprintf(page+len, "%swrite_mostly",sep);
  2205. sep = ",";
  2206. }
  2207. if (test_bit(Blocked, &rdev->flags)) {
  2208. len += sprintf(page+len, "%sblocked", sep);
  2209. sep = ",";
  2210. }
  2211. if (!test_bit(Faulty, &rdev->flags) &&
  2212. !test_bit(In_sync, &rdev->flags)) {
  2213. len += sprintf(page+len, "%sspare", sep);
  2214. sep = ",";
  2215. }
  2216. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2217. len += sprintf(page+len, "%swrite_error", sep);
  2218. sep = ",";
  2219. }
  2220. return len+sprintf(page+len, "\n");
  2221. }
  2222. static ssize_t
  2223. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2224. {
  2225. /* can write
  2226. * faulty - simulates and error
  2227. * remove - disconnects the device
  2228. * writemostly - sets write_mostly
  2229. * -writemostly - clears write_mostly
  2230. * blocked - sets the Blocked flag
  2231. * -blocked - clears the Blocked flag
  2232. * insync - sets Insync providing device isn't active
  2233. * write_error - sets WriteErrorSeen
  2234. * -write_error - clears WriteErrorSeen
  2235. */
  2236. int err = -EINVAL;
  2237. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2238. md_error(rdev->mddev, rdev);
  2239. err = 0;
  2240. } else if (cmd_match(buf, "remove")) {
  2241. if (rdev->raid_disk >= 0)
  2242. err = -EBUSY;
  2243. else {
  2244. mddev_t *mddev = rdev->mddev;
  2245. kick_rdev_from_array(rdev);
  2246. if (mddev->pers)
  2247. md_update_sb(mddev, 1);
  2248. md_new_event(mddev);
  2249. err = 0;
  2250. }
  2251. } else if (cmd_match(buf, "writemostly")) {
  2252. set_bit(WriteMostly, &rdev->flags);
  2253. err = 0;
  2254. } else if (cmd_match(buf, "-writemostly")) {
  2255. clear_bit(WriteMostly, &rdev->flags);
  2256. err = 0;
  2257. } else if (cmd_match(buf, "blocked")) {
  2258. set_bit(Blocked, &rdev->flags);
  2259. err = 0;
  2260. } else if (cmd_match(buf, "-blocked")) {
  2261. clear_bit(Blocked, &rdev->flags);
  2262. wake_up(&rdev->blocked_wait);
  2263. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2264. md_wakeup_thread(rdev->mddev->thread);
  2265. err = 0;
  2266. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2267. set_bit(In_sync, &rdev->flags);
  2268. err = 0;
  2269. } else if (cmd_match(buf, "write_error")) {
  2270. set_bit(WriteErrorSeen, &rdev->flags);
  2271. err = 0;
  2272. } else if (cmd_match(buf, "-write_error")) {
  2273. clear_bit(WriteErrorSeen, &rdev->flags);
  2274. err = 0;
  2275. }
  2276. if (!err)
  2277. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2278. return err ? err : len;
  2279. }
  2280. static struct rdev_sysfs_entry rdev_state =
  2281. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2282. static ssize_t
  2283. errors_show(mdk_rdev_t *rdev, char *page)
  2284. {
  2285. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2286. }
  2287. static ssize_t
  2288. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2289. {
  2290. char *e;
  2291. unsigned long n = simple_strtoul(buf, &e, 10);
  2292. if (*buf && (*e == 0 || *e == '\n')) {
  2293. atomic_set(&rdev->corrected_errors, n);
  2294. return len;
  2295. }
  2296. return -EINVAL;
  2297. }
  2298. static struct rdev_sysfs_entry rdev_errors =
  2299. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2300. static ssize_t
  2301. slot_show(mdk_rdev_t *rdev, char *page)
  2302. {
  2303. if (rdev->raid_disk < 0)
  2304. return sprintf(page, "none\n");
  2305. else
  2306. return sprintf(page, "%d\n", rdev->raid_disk);
  2307. }
  2308. static ssize_t
  2309. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2310. {
  2311. char *e;
  2312. int err;
  2313. int slot = simple_strtoul(buf, &e, 10);
  2314. if (strncmp(buf, "none", 4)==0)
  2315. slot = -1;
  2316. else if (e==buf || (*e && *e!= '\n'))
  2317. return -EINVAL;
  2318. if (rdev->mddev->pers && slot == -1) {
  2319. /* Setting 'slot' on an active array requires also
  2320. * updating the 'rd%d' link, and communicating
  2321. * with the personality with ->hot_*_disk.
  2322. * For now we only support removing
  2323. * failed/spare devices. This normally happens automatically,
  2324. * but not when the metadata is externally managed.
  2325. */
  2326. if (rdev->raid_disk == -1)
  2327. return -EEXIST;
  2328. /* personality does all needed checks */
  2329. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2330. return -EINVAL;
  2331. err = rdev->mddev->pers->
  2332. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2333. if (err)
  2334. return err;
  2335. sysfs_unlink_rdev(rdev->mddev, rdev);
  2336. rdev->raid_disk = -1;
  2337. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2338. md_wakeup_thread(rdev->mddev->thread);
  2339. } else if (rdev->mddev->pers) {
  2340. mdk_rdev_t *rdev2;
  2341. /* Activating a spare .. or possibly reactivating
  2342. * if we ever get bitmaps working here.
  2343. */
  2344. if (rdev->raid_disk != -1)
  2345. return -EBUSY;
  2346. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2347. return -EBUSY;
  2348. if (rdev->mddev->pers->hot_add_disk == NULL)
  2349. return -EINVAL;
  2350. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2351. if (rdev2->raid_disk == slot)
  2352. return -EEXIST;
  2353. if (slot >= rdev->mddev->raid_disks &&
  2354. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2355. return -ENOSPC;
  2356. rdev->raid_disk = slot;
  2357. if (test_bit(In_sync, &rdev->flags))
  2358. rdev->saved_raid_disk = slot;
  2359. else
  2360. rdev->saved_raid_disk = -1;
  2361. err = rdev->mddev->pers->
  2362. hot_add_disk(rdev->mddev, rdev);
  2363. if (err) {
  2364. rdev->raid_disk = -1;
  2365. return err;
  2366. } else
  2367. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2368. if (sysfs_link_rdev(rdev->mddev, rdev))
  2369. /* failure here is OK */;
  2370. /* don't wakeup anyone, leave that to userspace. */
  2371. } else {
  2372. if (slot >= rdev->mddev->raid_disks &&
  2373. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2374. return -ENOSPC;
  2375. rdev->raid_disk = slot;
  2376. /* assume it is working */
  2377. clear_bit(Faulty, &rdev->flags);
  2378. clear_bit(WriteMostly, &rdev->flags);
  2379. set_bit(In_sync, &rdev->flags);
  2380. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2381. }
  2382. return len;
  2383. }
  2384. static struct rdev_sysfs_entry rdev_slot =
  2385. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2386. static ssize_t
  2387. offset_show(mdk_rdev_t *rdev, char *page)
  2388. {
  2389. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2390. }
  2391. static ssize_t
  2392. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2393. {
  2394. char *e;
  2395. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2396. if (e==buf || (*e && *e != '\n'))
  2397. return -EINVAL;
  2398. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2399. return -EBUSY;
  2400. if (rdev->sectors && rdev->mddev->external)
  2401. /* Must set offset before size, so overlap checks
  2402. * can be sane */
  2403. return -EBUSY;
  2404. rdev->data_offset = offset;
  2405. return len;
  2406. }
  2407. static struct rdev_sysfs_entry rdev_offset =
  2408. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2409. static ssize_t
  2410. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2411. {
  2412. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2413. }
  2414. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2415. {
  2416. /* check if two start/length pairs overlap */
  2417. if (s1+l1 <= s2)
  2418. return 0;
  2419. if (s2+l2 <= s1)
  2420. return 0;
  2421. return 1;
  2422. }
  2423. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2424. {
  2425. unsigned long long blocks;
  2426. sector_t new;
  2427. if (strict_strtoull(buf, 10, &blocks) < 0)
  2428. return -EINVAL;
  2429. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2430. return -EINVAL; /* sector conversion overflow */
  2431. new = blocks * 2;
  2432. if (new != blocks * 2)
  2433. return -EINVAL; /* unsigned long long to sector_t overflow */
  2434. *sectors = new;
  2435. return 0;
  2436. }
  2437. static ssize_t
  2438. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2439. {
  2440. mddev_t *my_mddev = rdev->mddev;
  2441. sector_t oldsectors = rdev->sectors;
  2442. sector_t sectors;
  2443. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2444. return -EINVAL;
  2445. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2446. if (my_mddev->persistent) {
  2447. sectors = super_types[my_mddev->major_version].
  2448. rdev_size_change(rdev, sectors);
  2449. if (!sectors)
  2450. return -EBUSY;
  2451. } else if (!sectors)
  2452. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2453. rdev->data_offset;
  2454. }
  2455. if (sectors < my_mddev->dev_sectors)
  2456. return -EINVAL; /* component must fit device */
  2457. rdev->sectors = sectors;
  2458. if (sectors > oldsectors && my_mddev->external) {
  2459. /* need to check that all other rdevs with the same ->bdev
  2460. * do not overlap. We need to unlock the mddev to avoid
  2461. * a deadlock. We have already changed rdev->sectors, and if
  2462. * we have to change it back, we will have the lock again.
  2463. */
  2464. mddev_t *mddev;
  2465. int overlap = 0;
  2466. struct list_head *tmp;
  2467. mddev_unlock(my_mddev);
  2468. for_each_mddev(mddev, tmp) {
  2469. mdk_rdev_t *rdev2;
  2470. mddev_lock(mddev);
  2471. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2472. if (rdev->bdev == rdev2->bdev &&
  2473. rdev != rdev2 &&
  2474. overlaps(rdev->data_offset, rdev->sectors,
  2475. rdev2->data_offset,
  2476. rdev2->sectors)) {
  2477. overlap = 1;
  2478. break;
  2479. }
  2480. mddev_unlock(mddev);
  2481. if (overlap) {
  2482. mddev_put(mddev);
  2483. break;
  2484. }
  2485. }
  2486. mddev_lock(my_mddev);
  2487. if (overlap) {
  2488. /* Someone else could have slipped in a size
  2489. * change here, but doing so is just silly.
  2490. * We put oldsectors back because we *know* it is
  2491. * safe, and trust userspace not to race with
  2492. * itself
  2493. */
  2494. rdev->sectors = oldsectors;
  2495. return -EBUSY;
  2496. }
  2497. }
  2498. return len;
  2499. }
  2500. static struct rdev_sysfs_entry rdev_size =
  2501. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2502. static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
  2503. {
  2504. unsigned long long recovery_start = rdev->recovery_offset;
  2505. if (test_bit(In_sync, &rdev->flags) ||
  2506. recovery_start == MaxSector)
  2507. return sprintf(page, "none\n");
  2508. return sprintf(page, "%llu\n", recovery_start);
  2509. }
  2510. static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2511. {
  2512. unsigned long long recovery_start;
  2513. if (cmd_match(buf, "none"))
  2514. recovery_start = MaxSector;
  2515. else if (strict_strtoull(buf, 10, &recovery_start))
  2516. return -EINVAL;
  2517. if (rdev->mddev->pers &&
  2518. rdev->raid_disk >= 0)
  2519. return -EBUSY;
  2520. rdev->recovery_offset = recovery_start;
  2521. if (recovery_start == MaxSector)
  2522. set_bit(In_sync, &rdev->flags);
  2523. else
  2524. clear_bit(In_sync, &rdev->flags);
  2525. return len;
  2526. }
  2527. static struct rdev_sysfs_entry rdev_recovery_start =
  2528. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2529. static ssize_t
  2530. badblocks_show(struct badblocks *bb, char *page, int unack);
  2531. static ssize_t
  2532. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2533. static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
  2534. {
  2535. return badblocks_show(&rdev->badblocks, page, 0);
  2536. }
  2537. static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
  2538. {
  2539. return badblocks_store(&rdev->badblocks, page, len, 0);
  2540. }
  2541. static struct rdev_sysfs_entry rdev_bad_blocks =
  2542. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2543. static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
  2544. {
  2545. return badblocks_show(&rdev->badblocks, page, 1);
  2546. }
  2547. static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
  2548. {
  2549. return badblocks_store(&rdev->badblocks, page, len, 1);
  2550. }
  2551. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2552. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2553. static struct attribute *rdev_default_attrs[] = {
  2554. &rdev_state.attr,
  2555. &rdev_errors.attr,
  2556. &rdev_slot.attr,
  2557. &rdev_offset.attr,
  2558. &rdev_size.attr,
  2559. &rdev_recovery_start.attr,
  2560. &rdev_bad_blocks.attr,
  2561. &rdev_unack_bad_blocks.attr,
  2562. NULL,
  2563. };
  2564. static ssize_t
  2565. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2566. {
  2567. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2568. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2569. mddev_t *mddev = rdev->mddev;
  2570. ssize_t rv;
  2571. if (!entry->show)
  2572. return -EIO;
  2573. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2574. if (!rv) {
  2575. if (rdev->mddev == NULL)
  2576. rv = -EBUSY;
  2577. else
  2578. rv = entry->show(rdev, page);
  2579. mddev_unlock(mddev);
  2580. }
  2581. return rv;
  2582. }
  2583. static ssize_t
  2584. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2585. const char *page, size_t length)
  2586. {
  2587. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2588. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2589. ssize_t rv;
  2590. mddev_t *mddev = rdev->mddev;
  2591. if (!entry->store)
  2592. return -EIO;
  2593. if (!capable(CAP_SYS_ADMIN))
  2594. return -EACCES;
  2595. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2596. if (!rv) {
  2597. if (rdev->mddev == NULL)
  2598. rv = -EBUSY;
  2599. else
  2600. rv = entry->store(rdev, page, length);
  2601. mddev_unlock(mddev);
  2602. }
  2603. return rv;
  2604. }
  2605. static void rdev_free(struct kobject *ko)
  2606. {
  2607. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2608. kfree(rdev);
  2609. }
  2610. static const struct sysfs_ops rdev_sysfs_ops = {
  2611. .show = rdev_attr_show,
  2612. .store = rdev_attr_store,
  2613. };
  2614. static struct kobj_type rdev_ktype = {
  2615. .release = rdev_free,
  2616. .sysfs_ops = &rdev_sysfs_ops,
  2617. .default_attrs = rdev_default_attrs,
  2618. };
  2619. int md_rdev_init(mdk_rdev_t *rdev)
  2620. {
  2621. rdev->desc_nr = -1;
  2622. rdev->saved_raid_disk = -1;
  2623. rdev->raid_disk = -1;
  2624. rdev->flags = 0;
  2625. rdev->data_offset = 0;
  2626. rdev->sb_events = 0;
  2627. rdev->last_read_error.tv_sec = 0;
  2628. rdev->last_read_error.tv_nsec = 0;
  2629. rdev->sb_loaded = 0;
  2630. rdev->bb_page = NULL;
  2631. atomic_set(&rdev->nr_pending, 0);
  2632. atomic_set(&rdev->read_errors, 0);
  2633. atomic_set(&rdev->corrected_errors, 0);
  2634. INIT_LIST_HEAD(&rdev->same_set);
  2635. init_waitqueue_head(&rdev->blocked_wait);
  2636. /* Add space to store bad block list.
  2637. * This reserves the space even on arrays where it cannot
  2638. * be used - I wonder if that matters
  2639. */
  2640. rdev->badblocks.count = 0;
  2641. rdev->badblocks.shift = 0;
  2642. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2643. seqlock_init(&rdev->badblocks.lock);
  2644. if (rdev->badblocks.page == NULL)
  2645. return -ENOMEM;
  2646. return 0;
  2647. }
  2648. EXPORT_SYMBOL_GPL(md_rdev_init);
  2649. /*
  2650. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2651. *
  2652. * mark the device faulty if:
  2653. *
  2654. * - the device is nonexistent (zero size)
  2655. * - the device has no valid superblock
  2656. *
  2657. * a faulty rdev _never_ has rdev->sb set.
  2658. */
  2659. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2660. {
  2661. char b[BDEVNAME_SIZE];
  2662. int err;
  2663. mdk_rdev_t *rdev;
  2664. sector_t size;
  2665. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2666. if (!rdev) {
  2667. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2668. return ERR_PTR(-ENOMEM);
  2669. }
  2670. err = md_rdev_init(rdev);
  2671. if (err)
  2672. goto abort_free;
  2673. err = alloc_disk_sb(rdev);
  2674. if (err)
  2675. goto abort_free;
  2676. err = lock_rdev(rdev, newdev, super_format == -2);
  2677. if (err)
  2678. goto abort_free;
  2679. kobject_init(&rdev->kobj, &rdev_ktype);
  2680. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2681. if (!size) {
  2682. printk(KERN_WARNING
  2683. "md: %s has zero or unknown size, marking faulty!\n",
  2684. bdevname(rdev->bdev,b));
  2685. err = -EINVAL;
  2686. goto abort_free;
  2687. }
  2688. if (super_format >= 0) {
  2689. err = super_types[super_format].
  2690. load_super(rdev, NULL, super_minor);
  2691. if (err == -EINVAL) {
  2692. printk(KERN_WARNING
  2693. "md: %s does not have a valid v%d.%d "
  2694. "superblock, not importing!\n",
  2695. bdevname(rdev->bdev,b),
  2696. super_format, super_minor);
  2697. goto abort_free;
  2698. }
  2699. if (err < 0) {
  2700. printk(KERN_WARNING
  2701. "md: could not read %s's sb, not importing!\n",
  2702. bdevname(rdev->bdev,b));
  2703. goto abort_free;
  2704. }
  2705. }
  2706. if (super_format == -1)
  2707. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2708. rdev->badblocks.shift = -1;
  2709. return rdev;
  2710. abort_free:
  2711. if (rdev->bdev)
  2712. unlock_rdev(rdev);
  2713. free_disk_sb(rdev);
  2714. kfree(rdev->badblocks.page);
  2715. kfree(rdev);
  2716. return ERR_PTR(err);
  2717. }
  2718. /*
  2719. * Check a full RAID array for plausibility
  2720. */
  2721. static void analyze_sbs(mddev_t * mddev)
  2722. {
  2723. int i;
  2724. mdk_rdev_t *rdev, *freshest, *tmp;
  2725. char b[BDEVNAME_SIZE];
  2726. freshest = NULL;
  2727. rdev_for_each(rdev, tmp, mddev)
  2728. switch (super_types[mddev->major_version].
  2729. load_super(rdev, freshest, mddev->minor_version)) {
  2730. case 1:
  2731. freshest = rdev;
  2732. break;
  2733. case 0:
  2734. break;
  2735. default:
  2736. printk( KERN_ERR \
  2737. "md: fatal superblock inconsistency in %s"
  2738. " -- removing from array\n",
  2739. bdevname(rdev->bdev,b));
  2740. kick_rdev_from_array(rdev);
  2741. }
  2742. super_types[mddev->major_version].
  2743. validate_super(mddev, freshest);
  2744. i = 0;
  2745. rdev_for_each(rdev, tmp, mddev) {
  2746. if (mddev->max_disks &&
  2747. (rdev->desc_nr >= mddev->max_disks ||
  2748. i > mddev->max_disks)) {
  2749. printk(KERN_WARNING
  2750. "md: %s: %s: only %d devices permitted\n",
  2751. mdname(mddev), bdevname(rdev->bdev, b),
  2752. mddev->max_disks);
  2753. kick_rdev_from_array(rdev);
  2754. continue;
  2755. }
  2756. if (rdev != freshest)
  2757. if (super_types[mddev->major_version].
  2758. validate_super(mddev, rdev)) {
  2759. printk(KERN_WARNING "md: kicking non-fresh %s"
  2760. " from array!\n",
  2761. bdevname(rdev->bdev,b));
  2762. kick_rdev_from_array(rdev);
  2763. continue;
  2764. }
  2765. if (mddev->level == LEVEL_MULTIPATH) {
  2766. rdev->desc_nr = i++;
  2767. rdev->raid_disk = rdev->desc_nr;
  2768. set_bit(In_sync, &rdev->flags);
  2769. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2770. rdev->raid_disk = -1;
  2771. clear_bit(In_sync, &rdev->flags);
  2772. }
  2773. }
  2774. }
  2775. /* Read a fixed-point number.
  2776. * Numbers in sysfs attributes should be in "standard" units where
  2777. * possible, so time should be in seconds.
  2778. * However we internally use a a much smaller unit such as
  2779. * milliseconds or jiffies.
  2780. * This function takes a decimal number with a possible fractional
  2781. * component, and produces an integer which is the result of
  2782. * multiplying that number by 10^'scale'.
  2783. * all without any floating-point arithmetic.
  2784. */
  2785. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2786. {
  2787. unsigned long result = 0;
  2788. long decimals = -1;
  2789. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2790. if (*cp == '.')
  2791. decimals = 0;
  2792. else if (decimals < scale) {
  2793. unsigned int value;
  2794. value = *cp - '0';
  2795. result = result * 10 + value;
  2796. if (decimals >= 0)
  2797. decimals++;
  2798. }
  2799. cp++;
  2800. }
  2801. if (*cp == '\n')
  2802. cp++;
  2803. if (*cp)
  2804. return -EINVAL;
  2805. if (decimals < 0)
  2806. decimals = 0;
  2807. while (decimals < scale) {
  2808. result *= 10;
  2809. decimals ++;
  2810. }
  2811. *res = result;
  2812. return 0;
  2813. }
  2814. static void md_safemode_timeout(unsigned long data);
  2815. static ssize_t
  2816. safe_delay_show(mddev_t *mddev, char *page)
  2817. {
  2818. int msec = (mddev->safemode_delay*1000)/HZ;
  2819. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2820. }
  2821. static ssize_t
  2822. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2823. {
  2824. unsigned long msec;
  2825. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2826. return -EINVAL;
  2827. if (msec == 0)
  2828. mddev->safemode_delay = 0;
  2829. else {
  2830. unsigned long old_delay = mddev->safemode_delay;
  2831. mddev->safemode_delay = (msec*HZ)/1000;
  2832. if (mddev->safemode_delay == 0)
  2833. mddev->safemode_delay = 1;
  2834. if (mddev->safemode_delay < old_delay)
  2835. md_safemode_timeout((unsigned long)mddev);
  2836. }
  2837. return len;
  2838. }
  2839. static struct md_sysfs_entry md_safe_delay =
  2840. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2841. static ssize_t
  2842. level_show(mddev_t *mddev, char *page)
  2843. {
  2844. struct mdk_personality *p = mddev->pers;
  2845. if (p)
  2846. return sprintf(page, "%s\n", p->name);
  2847. else if (mddev->clevel[0])
  2848. return sprintf(page, "%s\n", mddev->clevel);
  2849. else if (mddev->level != LEVEL_NONE)
  2850. return sprintf(page, "%d\n", mddev->level);
  2851. else
  2852. return 0;
  2853. }
  2854. static ssize_t
  2855. level_store(mddev_t *mddev, const char *buf, size_t len)
  2856. {
  2857. char clevel[16];
  2858. ssize_t rv = len;
  2859. struct mdk_personality *pers;
  2860. long level;
  2861. void *priv;
  2862. mdk_rdev_t *rdev;
  2863. if (mddev->pers == NULL) {
  2864. if (len == 0)
  2865. return 0;
  2866. if (len >= sizeof(mddev->clevel))
  2867. return -ENOSPC;
  2868. strncpy(mddev->clevel, buf, len);
  2869. if (mddev->clevel[len-1] == '\n')
  2870. len--;
  2871. mddev->clevel[len] = 0;
  2872. mddev->level = LEVEL_NONE;
  2873. return rv;
  2874. }
  2875. /* request to change the personality. Need to ensure:
  2876. * - array is not engaged in resync/recovery/reshape
  2877. * - old personality can be suspended
  2878. * - new personality will access other array.
  2879. */
  2880. if (mddev->sync_thread ||
  2881. mddev->reshape_position != MaxSector ||
  2882. mddev->sysfs_active)
  2883. return -EBUSY;
  2884. if (!mddev->pers->quiesce) {
  2885. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2886. mdname(mddev), mddev->pers->name);
  2887. return -EINVAL;
  2888. }
  2889. /* Now find the new personality */
  2890. if (len == 0 || len >= sizeof(clevel))
  2891. return -EINVAL;
  2892. strncpy(clevel, buf, len);
  2893. if (clevel[len-1] == '\n')
  2894. len--;
  2895. clevel[len] = 0;
  2896. if (strict_strtol(clevel, 10, &level))
  2897. level = LEVEL_NONE;
  2898. if (request_module("md-%s", clevel) != 0)
  2899. request_module("md-level-%s", clevel);
  2900. spin_lock(&pers_lock);
  2901. pers = find_pers(level, clevel);
  2902. if (!pers || !try_module_get(pers->owner)) {
  2903. spin_unlock(&pers_lock);
  2904. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2905. return -EINVAL;
  2906. }
  2907. spin_unlock(&pers_lock);
  2908. if (pers == mddev->pers) {
  2909. /* Nothing to do! */
  2910. module_put(pers->owner);
  2911. return rv;
  2912. }
  2913. if (!pers->takeover) {
  2914. module_put(pers->owner);
  2915. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2916. mdname(mddev), clevel);
  2917. return -EINVAL;
  2918. }
  2919. list_for_each_entry(rdev, &mddev->disks, same_set)
  2920. rdev->new_raid_disk = rdev->raid_disk;
  2921. /* ->takeover must set new_* and/or delta_disks
  2922. * if it succeeds, and may set them when it fails.
  2923. */
  2924. priv = pers->takeover(mddev);
  2925. if (IS_ERR(priv)) {
  2926. mddev->new_level = mddev->level;
  2927. mddev->new_layout = mddev->layout;
  2928. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2929. mddev->raid_disks -= mddev->delta_disks;
  2930. mddev->delta_disks = 0;
  2931. module_put(pers->owner);
  2932. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2933. mdname(mddev), clevel);
  2934. return PTR_ERR(priv);
  2935. }
  2936. /* Looks like we have a winner */
  2937. mddev_suspend(mddev);
  2938. mddev->pers->stop(mddev);
  2939. if (mddev->pers->sync_request == NULL &&
  2940. pers->sync_request != NULL) {
  2941. /* need to add the md_redundancy_group */
  2942. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2943. printk(KERN_WARNING
  2944. "md: cannot register extra attributes for %s\n",
  2945. mdname(mddev));
  2946. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  2947. }
  2948. if (mddev->pers->sync_request != NULL &&
  2949. pers->sync_request == NULL) {
  2950. /* need to remove the md_redundancy_group */
  2951. if (mddev->to_remove == NULL)
  2952. mddev->to_remove = &md_redundancy_group;
  2953. }
  2954. if (mddev->pers->sync_request == NULL &&
  2955. mddev->external) {
  2956. /* We are converting from a no-redundancy array
  2957. * to a redundancy array and metadata is managed
  2958. * externally so we need to be sure that writes
  2959. * won't block due to a need to transition
  2960. * clean->dirty
  2961. * until external management is started.
  2962. */
  2963. mddev->in_sync = 0;
  2964. mddev->safemode_delay = 0;
  2965. mddev->safemode = 0;
  2966. }
  2967. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2968. if (rdev->raid_disk < 0)
  2969. continue;
  2970. if (rdev->new_raid_disk >= mddev->raid_disks)
  2971. rdev->new_raid_disk = -1;
  2972. if (rdev->new_raid_disk == rdev->raid_disk)
  2973. continue;
  2974. sysfs_unlink_rdev(mddev, rdev);
  2975. }
  2976. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2977. if (rdev->raid_disk < 0)
  2978. continue;
  2979. if (rdev->new_raid_disk == rdev->raid_disk)
  2980. continue;
  2981. rdev->raid_disk = rdev->new_raid_disk;
  2982. if (rdev->raid_disk < 0)
  2983. clear_bit(In_sync, &rdev->flags);
  2984. else {
  2985. if (sysfs_link_rdev(mddev, rdev))
  2986. printk(KERN_WARNING "md: cannot register rd%d"
  2987. " for %s after level change\n",
  2988. rdev->raid_disk, mdname(mddev));
  2989. }
  2990. }
  2991. module_put(mddev->pers->owner);
  2992. mddev->pers = pers;
  2993. mddev->private = priv;
  2994. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2995. mddev->level = mddev->new_level;
  2996. mddev->layout = mddev->new_layout;
  2997. mddev->chunk_sectors = mddev->new_chunk_sectors;
  2998. mddev->delta_disks = 0;
  2999. mddev->degraded = 0;
  3000. if (mddev->pers->sync_request == NULL) {
  3001. /* this is now an array without redundancy, so
  3002. * it must always be in_sync
  3003. */
  3004. mddev->in_sync = 1;
  3005. del_timer_sync(&mddev->safemode_timer);
  3006. }
  3007. pers->run(mddev);
  3008. mddev_resume(mddev);
  3009. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3010. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3011. md_wakeup_thread(mddev->thread);
  3012. sysfs_notify(&mddev->kobj, NULL, "level");
  3013. md_new_event(mddev);
  3014. return rv;
  3015. }
  3016. static struct md_sysfs_entry md_level =
  3017. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3018. static ssize_t
  3019. layout_show(mddev_t *mddev, char *page)
  3020. {
  3021. /* just a number, not meaningful for all levels */
  3022. if (mddev->reshape_position != MaxSector &&
  3023. mddev->layout != mddev->new_layout)
  3024. return sprintf(page, "%d (%d)\n",
  3025. mddev->new_layout, mddev->layout);
  3026. return sprintf(page, "%d\n", mddev->layout);
  3027. }
  3028. static ssize_t
  3029. layout_store(mddev_t *mddev, const char *buf, size_t len)
  3030. {
  3031. char *e;
  3032. unsigned long n = simple_strtoul(buf, &e, 10);
  3033. if (!*buf || (*e && *e != '\n'))
  3034. return -EINVAL;
  3035. if (mddev->pers) {
  3036. int err;
  3037. if (mddev->pers->check_reshape == NULL)
  3038. return -EBUSY;
  3039. mddev->new_layout = n;
  3040. err = mddev->pers->check_reshape(mddev);
  3041. if (err) {
  3042. mddev->new_layout = mddev->layout;
  3043. return err;
  3044. }
  3045. } else {
  3046. mddev->new_layout = n;
  3047. if (mddev->reshape_position == MaxSector)
  3048. mddev->layout = n;
  3049. }
  3050. return len;
  3051. }
  3052. static struct md_sysfs_entry md_layout =
  3053. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3054. static ssize_t
  3055. raid_disks_show(mddev_t *mddev, char *page)
  3056. {
  3057. if (mddev->raid_disks == 0)
  3058. return 0;
  3059. if (mddev->reshape_position != MaxSector &&
  3060. mddev->delta_disks != 0)
  3061. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3062. mddev->raid_disks - mddev->delta_disks);
  3063. return sprintf(page, "%d\n", mddev->raid_disks);
  3064. }
  3065. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  3066. static ssize_t
  3067. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  3068. {
  3069. char *e;
  3070. int rv = 0;
  3071. unsigned long n = simple_strtoul(buf, &e, 10);
  3072. if (!*buf || (*e && *e != '\n'))
  3073. return -EINVAL;
  3074. if (mddev->pers)
  3075. rv = update_raid_disks(mddev, n);
  3076. else if (mddev->reshape_position != MaxSector) {
  3077. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3078. mddev->delta_disks = n - olddisks;
  3079. mddev->raid_disks = n;
  3080. } else
  3081. mddev->raid_disks = n;
  3082. return rv ? rv : len;
  3083. }
  3084. static struct md_sysfs_entry md_raid_disks =
  3085. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3086. static ssize_t
  3087. chunk_size_show(mddev_t *mddev, char *page)
  3088. {
  3089. if (mddev->reshape_position != MaxSector &&
  3090. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3091. return sprintf(page, "%d (%d)\n",
  3092. mddev->new_chunk_sectors << 9,
  3093. mddev->chunk_sectors << 9);
  3094. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3095. }
  3096. static ssize_t
  3097. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  3098. {
  3099. char *e;
  3100. unsigned long n = simple_strtoul(buf, &e, 10);
  3101. if (!*buf || (*e && *e != '\n'))
  3102. return -EINVAL;
  3103. if (mddev->pers) {
  3104. int err;
  3105. if (mddev->pers->check_reshape == NULL)
  3106. return -EBUSY;
  3107. mddev->new_chunk_sectors = n >> 9;
  3108. err = mddev->pers->check_reshape(mddev);
  3109. if (err) {
  3110. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3111. return err;
  3112. }
  3113. } else {
  3114. mddev->new_chunk_sectors = n >> 9;
  3115. if (mddev->reshape_position == MaxSector)
  3116. mddev->chunk_sectors = n >> 9;
  3117. }
  3118. return len;
  3119. }
  3120. static struct md_sysfs_entry md_chunk_size =
  3121. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3122. static ssize_t
  3123. resync_start_show(mddev_t *mddev, char *page)
  3124. {
  3125. if (mddev->recovery_cp == MaxSector)
  3126. return sprintf(page, "none\n");
  3127. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3128. }
  3129. static ssize_t
  3130. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  3131. {
  3132. char *e;
  3133. unsigned long long n = simple_strtoull(buf, &e, 10);
  3134. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3135. return -EBUSY;
  3136. if (cmd_match(buf, "none"))
  3137. n = MaxSector;
  3138. else if (!*buf || (*e && *e != '\n'))
  3139. return -EINVAL;
  3140. mddev->recovery_cp = n;
  3141. return len;
  3142. }
  3143. static struct md_sysfs_entry md_resync_start =
  3144. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3145. /*
  3146. * The array state can be:
  3147. *
  3148. * clear
  3149. * No devices, no size, no level
  3150. * Equivalent to STOP_ARRAY ioctl
  3151. * inactive
  3152. * May have some settings, but array is not active
  3153. * all IO results in error
  3154. * When written, doesn't tear down array, but just stops it
  3155. * suspended (not supported yet)
  3156. * All IO requests will block. The array can be reconfigured.
  3157. * Writing this, if accepted, will block until array is quiescent
  3158. * readonly
  3159. * no resync can happen. no superblocks get written.
  3160. * write requests fail
  3161. * read-auto
  3162. * like readonly, but behaves like 'clean' on a write request.
  3163. *
  3164. * clean - no pending writes, but otherwise active.
  3165. * When written to inactive array, starts without resync
  3166. * If a write request arrives then
  3167. * if metadata is known, mark 'dirty' and switch to 'active'.
  3168. * if not known, block and switch to write-pending
  3169. * If written to an active array that has pending writes, then fails.
  3170. * active
  3171. * fully active: IO and resync can be happening.
  3172. * When written to inactive array, starts with resync
  3173. *
  3174. * write-pending
  3175. * clean, but writes are blocked waiting for 'active' to be written.
  3176. *
  3177. * active-idle
  3178. * like active, but no writes have been seen for a while (100msec).
  3179. *
  3180. */
  3181. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3182. write_pending, active_idle, bad_word};
  3183. static char *array_states[] = {
  3184. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3185. "write-pending", "active-idle", NULL };
  3186. static int match_word(const char *word, char **list)
  3187. {
  3188. int n;
  3189. for (n=0; list[n]; n++)
  3190. if (cmd_match(word, list[n]))
  3191. break;
  3192. return n;
  3193. }
  3194. static ssize_t
  3195. array_state_show(mddev_t *mddev, char *page)
  3196. {
  3197. enum array_state st = inactive;
  3198. if (mddev->pers)
  3199. switch(mddev->ro) {
  3200. case 1:
  3201. st = readonly;
  3202. break;
  3203. case 2:
  3204. st = read_auto;
  3205. break;
  3206. case 0:
  3207. if (mddev->in_sync)
  3208. st = clean;
  3209. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3210. st = write_pending;
  3211. else if (mddev->safemode)
  3212. st = active_idle;
  3213. else
  3214. st = active;
  3215. }
  3216. else {
  3217. if (list_empty(&mddev->disks) &&
  3218. mddev->raid_disks == 0 &&
  3219. mddev->dev_sectors == 0)
  3220. st = clear;
  3221. else
  3222. st = inactive;
  3223. }
  3224. return sprintf(page, "%s\n", array_states[st]);
  3225. }
  3226. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  3227. static int md_set_readonly(mddev_t * mddev, int is_open);
  3228. static int do_md_run(mddev_t * mddev);
  3229. static int restart_array(mddev_t *mddev);
  3230. static ssize_t
  3231. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  3232. {
  3233. int err = -EINVAL;
  3234. enum array_state st = match_word(buf, array_states);
  3235. switch(st) {
  3236. case bad_word:
  3237. break;
  3238. case clear:
  3239. /* stopping an active array */
  3240. if (atomic_read(&mddev->openers) > 0)
  3241. return -EBUSY;
  3242. err = do_md_stop(mddev, 0, 0);
  3243. break;
  3244. case inactive:
  3245. /* stopping an active array */
  3246. if (mddev->pers) {
  3247. if (atomic_read(&mddev->openers) > 0)
  3248. return -EBUSY;
  3249. err = do_md_stop(mddev, 2, 0);
  3250. } else
  3251. err = 0; /* already inactive */
  3252. break;
  3253. case suspended:
  3254. break; /* not supported yet */
  3255. case readonly:
  3256. if (mddev->pers)
  3257. err = md_set_readonly(mddev, 0);
  3258. else {
  3259. mddev->ro = 1;
  3260. set_disk_ro(mddev->gendisk, 1);
  3261. err = do_md_run(mddev);
  3262. }
  3263. break;
  3264. case read_auto:
  3265. if (mddev->pers) {
  3266. if (mddev->ro == 0)
  3267. err = md_set_readonly(mddev, 0);
  3268. else if (mddev->ro == 1)
  3269. err = restart_array(mddev);
  3270. if (err == 0) {
  3271. mddev->ro = 2;
  3272. set_disk_ro(mddev->gendisk, 0);
  3273. }
  3274. } else {
  3275. mddev->ro = 2;
  3276. err = do_md_run(mddev);
  3277. }
  3278. break;
  3279. case clean:
  3280. if (mddev->pers) {
  3281. restart_array(mddev);
  3282. spin_lock_irq(&mddev->write_lock);
  3283. if (atomic_read(&mddev->writes_pending) == 0) {
  3284. if (mddev->in_sync == 0) {
  3285. mddev->in_sync = 1;
  3286. if (mddev->safemode == 1)
  3287. mddev->safemode = 0;
  3288. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3289. }
  3290. err = 0;
  3291. } else
  3292. err = -EBUSY;
  3293. spin_unlock_irq(&mddev->write_lock);
  3294. } else
  3295. err = -EINVAL;
  3296. break;
  3297. case active:
  3298. if (mddev->pers) {
  3299. restart_array(mddev);
  3300. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3301. wake_up(&mddev->sb_wait);
  3302. err = 0;
  3303. } else {
  3304. mddev->ro = 0;
  3305. set_disk_ro(mddev->gendisk, 0);
  3306. err = do_md_run(mddev);
  3307. }
  3308. break;
  3309. case write_pending:
  3310. case active_idle:
  3311. /* these cannot be set */
  3312. break;
  3313. }
  3314. if (err)
  3315. return err;
  3316. else {
  3317. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3318. return len;
  3319. }
  3320. }
  3321. static struct md_sysfs_entry md_array_state =
  3322. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3323. static ssize_t
  3324. max_corrected_read_errors_show(mddev_t *mddev, char *page) {
  3325. return sprintf(page, "%d\n",
  3326. atomic_read(&mddev->max_corr_read_errors));
  3327. }
  3328. static ssize_t
  3329. max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
  3330. {
  3331. char *e;
  3332. unsigned long n = simple_strtoul(buf, &e, 10);
  3333. if (*buf && (*e == 0 || *e == '\n')) {
  3334. atomic_set(&mddev->max_corr_read_errors, n);
  3335. return len;
  3336. }
  3337. return -EINVAL;
  3338. }
  3339. static struct md_sysfs_entry max_corr_read_errors =
  3340. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3341. max_corrected_read_errors_store);
  3342. static ssize_t
  3343. null_show(mddev_t *mddev, char *page)
  3344. {
  3345. return -EINVAL;
  3346. }
  3347. static ssize_t
  3348. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  3349. {
  3350. /* buf must be %d:%d\n? giving major and minor numbers */
  3351. /* The new device is added to the array.
  3352. * If the array has a persistent superblock, we read the
  3353. * superblock to initialise info and check validity.
  3354. * Otherwise, only checking done is that in bind_rdev_to_array,
  3355. * which mainly checks size.
  3356. */
  3357. char *e;
  3358. int major = simple_strtoul(buf, &e, 10);
  3359. int minor;
  3360. dev_t dev;
  3361. mdk_rdev_t *rdev;
  3362. int err;
  3363. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3364. return -EINVAL;
  3365. minor = simple_strtoul(e+1, &e, 10);
  3366. if (*e && *e != '\n')
  3367. return -EINVAL;
  3368. dev = MKDEV(major, minor);
  3369. if (major != MAJOR(dev) ||
  3370. minor != MINOR(dev))
  3371. return -EOVERFLOW;
  3372. if (mddev->persistent) {
  3373. rdev = md_import_device(dev, mddev->major_version,
  3374. mddev->minor_version);
  3375. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3376. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3377. mdk_rdev_t, same_set);
  3378. err = super_types[mddev->major_version]
  3379. .load_super(rdev, rdev0, mddev->minor_version);
  3380. if (err < 0)
  3381. goto out;
  3382. }
  3383. } else if (mddev->external)
  3384. rdev = md_import_device(dev, -2, -1);
  3385. else
  3386. rdev = md_import_device(dev, -1, -1);
  3387. if (IS_ERR(rdev))
  3388. return PTR_ERR(rdev);
  3389. err = bind_rdev_to_array(rdev, mddev);
  3390. out:
  3391. if (err)
  3392. export_rdev(rdev);
  3393. return err ? err : len;
  3394. }
  3395. static struct md_sysfs_entry md_new_device =
  3396. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3397. static ssize_t
  3398. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  3399. {
  3400. char *end;
  3401. unsigned long chunk, end_chunk;
  3402. if (!mddev->bitmap)
  3403. goto out;
  3404. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3405. while (*buf) {
  3406. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3407. if (buf == end) break;
  3408. if (*end == '-') { /* range */
  3409. buf = end + 1;
  3410. end_chunk = simple_strtoul(buf, &end, 0);
  3411. if (buf == end) break;
  3412. }
  3413. if (*end && !isspace(*end)) break;
  3414. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3415. buf = skip_spaces(end);
  3416. }
  3417. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3418. out:
  3419. return len;
  3420. }
  3421. static struct md_sysfs_entry md_bitmap =
  3422. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3423. static ssize_t
  3424. size_show(mddev_t *mddev, char *page)
  3425. {
  3426. return sprintf(page, "%llu\n",
  3427. (unsigned long long)mddev->dev_sectors / 2);
  3428. }
  3429. static int update_size(mddev_t *mddev, sector_t num_sectors);
  3430. static ssize_t
  3431. size_store(mddev_t *mddev, const char *buf, size_t len)
  3432. {
  3433. /* If array is inactive, we can reduce the component size, but
  3434. * not increase it (except from 0).
  3435. * If array is active, we can try an on-line resize
  3436. */
  3437. sector_t sectors;
  3438. int err = strict_blocks_to_sectors(buf, &sectors);
  3439. if (err < 0)
  3440. return err;
  3441. if (mddev->pers) {
  3442. err = update_size(mddev, sectors);
  3443. md_update_sb(mddev, 1);
  3444. } else {
  3445. if (mddev->dev_sectors == 0 ||
  3446. mddev->dev_sectors > sectors)
  3447. mddev->dev_sectors = sectors;
  3448. else
  3449. err = -ENOSPC;
  3450. }
  3451. return err ? err : len;
  3452. }
  3453. static struct md_sysfs_entry md_size =
  3454. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3455. /* Metdata version.
  3456. * This is one of
  3457. * 'none' for arrays with no metadata (good luck...)
  3458. * 'external' for arrays with externally managed metadata,
  3459. * or N.M for internally known formats
  3460. */
  3461. static ssize_t
  3462. metadata_show(mddev_t *mddev, char *page)
  3463. {
  3464. if (mddev->persistent)
  3465. return sprintf(page, "%d.%d\n",
  3466. mddev->major_version, mddev->minor_version);
  3467. else if (mddev->external)
  3468. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3469. else
  3470. return sprintf(page, "none\n");
  3471. }
  3472. static ssize_t
  3473. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  3474. {
  3475. int major, minor;
  3476. char *e;
  3477. /* Changing the details of 'external' metadata is
  3478. * always permitted. Otherwise there must be
  3479. * no devices attached to the array.
  3480. */
  3481. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3482. ;
  3483. else if (!list_empty(&mddev->disks))
  3484. return -EBUSY;
  3485. if (cmd_match(buf, "none")) {
  3486. mddev->persistent = 0;
  3487. mddev->external = 0;
  3488. mddev->major_version = 0;
  3489. mddev->minor_version = 90;
  3490. return len;
  3491. }
  3492. if (strncmp(buf, "external:", 9) == 0) {
  3493. size_t namelen = len-9;
  3494. if (namelen >= sizeof(mddev->metadata_type))
  3495. namelen = sizeof(mddev->metadata_type)-1;
  3496. strncpy(mddev->metadata_type, buf+9, namelen);
  3497. mddev->metadata_type[namelen] = 0;
  3498. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3499. mddev->metadata_type[--namelen] = 0;
  3500. mddev->persistent = 0;
  3501. mddev->external = 1;
  3502. mddev->major_version = 0;
  3503. mddev->minor_version = 90;
  3504. return len;
  3505. }
  3506. major = simple_strtoul(buf, &e, 10);
  3507. if (e==buf || *e != '.')
  3508. return -EINVAL;
  3509. buf = e+1;
  3510. minor = simple_strtoul(buf, &e, 10);
  3511. if (e==buf || (*e && *e != '\n') )
  3512. return -EINVAL;
  3513. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3514. return -ENOENT;
  3515. mddev->major_version = major;
  3516. mddev->minor_version = minor;
  3517. mddev->persistent = 1;
  3518. mddev->external = 0;
  3519. return len;
  3520. }
  3521. static struct md_sysfs_entry md_metadata =
  3522. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3523. static ssize_t
  3524. action_show(mddev_t *mddev, char *page)
  3525. {
  3526. char *type = "idle";
  3527. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3528. type = "frozen";
  3529. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3530. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3531. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3532. type = "reshape";
  3533. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3534. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3535. type = "resync";
  3536. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3537. type = "check";
  3538. else
  3539. type = "repair";
  3540. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3541. type = "recover";
  3542. }
  3543. return sprintf(page, "%s\n", type);
  3544. }
  3545. static void reap_sync_thread(mddev_t *mddev);
  3546. static ssize_t
  3547. action_store(mddev_t *mddev, const char *page, size_t len)
  3548. {
  3549. if (!mddev->pers || !mddev->pers->sync_request)
  3550. return -EINVAL;
  3551. if (cmd_match(page, "frozen"))
  3552. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3553. else
  3554. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3555. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3556. if (mddev->sync_thread) {
  3557. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3558. reap_sync_thread(mddev);
  3559. }
  3560. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3561. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3562. return -EBUSY;
  3563. else if (cmd_match(page, "resync"))
  3564. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3565. else if (cmd_match(page, "recover")) {
  3566. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3567. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3568. } else if (cmd_match(page, "reshape")) {
  3569. int err;
  3570. if (mddev->pers->start_reshape == NULL)
  3571. return -EINVAL;
  3572. err = mddev->pers->start_reshape(mddev);
  3573. if (err)
  3574. return err;
  3575. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3576. } else {
  3577. if (cmd_match(page, "check"))
  3578. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3579. else if (!cmd_match(page, "repair"))
  3580. return -EINVAL;
  3581. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3582. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3583. }
  3584. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3585. md_wakeup_thread(mddev->thread);
  3586. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3587. return len;
  3588. }
  3589. static ssize_t
  3590. mismatch_cnt_show(mddev_t *mddev, char *page)
  3591. {
  3592. return sprintf(page, "%llu\n",
  3593. (unsigned long long) mddev->resync_mismatches);
  3594. }
  3595. static struct md_sysfs_entry md_scan_mode =
  3596. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3597. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3598. static ssize_t
  3599. sync_min_show(mddev_t *mddev, char *page)
  3600. {
  3601. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3602. mddev->sync_speed_min ? "local": "system");
  3603. }
  3604. static ssize_t
  3605. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3606. {
  3607. int min;
  3608. char *e;
  3609. if (strncmp(buf, "system", 6)==0) {
  3610. mddev->sync_speed_min = 0;
  3611. return len;
  3612. }
  3613. min = simple_strtoul(buf, &e, 10);
  3614. if (buf == e || (*e && *e != '\n') || min <= 0)
  3615. return -EINVAL;
  3616. mddev->sync_speed_min = min;
  3617. return len;
  3618. }
  3619. static struct md_sysfs_entry md_sync_min =
  3620. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3621. static ssize_t
  3622. sync_max_show(mddev_t *mddev, char *page)
  3623. {
  3624. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3625. mddev->sync_speed_max ? "local": "system");
  3626. }
  3627. static ssize_t
  3628. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3629. {
  3630. int max;
  3631. char *e;
  3632. if (strncmp(buf, "system", 6)==0) {
  3633. mddev->sync_speed_max = 0;
  3634. return len;
  3635. }
  3636. max = simple_strtoul(buf, &e, 10);
  3637. if (buf == e || (*e && *e != '\n') || max <= 0)
  3638. return -EINVAL;
  3639. mddev->sync_speed_max = max;
  3640. return len;
  3641. }
  3642. static struct md_sysfs_entry md_sync_max =
  3643. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3644. static ssize_t
  3645. degraded_show(mddev_t *mddev, char *page)
  3646. {
  3647. return sprintf(page, "%d\n", mddev->degraded);
  3648. }
  3649. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3650. static ssize_t
  3651. sync_force_parallel_show(mddev_t *mddev, char *page)
  3652. {
  3653. return sprintf(page, "%d\n", mddev->parallel_resync);
  3654. }
  3655. static ssize_t
  3656. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3657. {
  3658. long n;
  3659. if (strict_strtol(buf, 10, &n))
  3660. return -EINVAL;
  3661. if (n != 0 && n != 1)
  3662. return -EINVAL;
  3663. mddev->parallel_resync = n;
  3664. if (mddev->sync_thread)
  3665. wake_up(&resync_wait);
  3666. return len;
  3667. }
  3668. /* force parallel resync, even with shared block devices */
  3669. static struct md_sysfs_entry md_sync_force_parallel =
  3670. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3671. sync_force_parallel_show, sync_force_parallel_store);
  3672. static ssize_t
  3673. sync_speed_show(mddev_t *mddev, char *page)
  3674. {
  3675. unsigned long resync, dt, db;
  3676. if (mddev->curr_resync == 0)
  3677. return sprintf(page, "none\n");
  3678. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3679. dt = (jiffies - mddev->resync_mark) / HZ;
  3680. if (!dt) dt++;
  3681. db = resync - mddev->resync_mark_cnt;
  3682. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3683. }
  3684. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3685. static ssize_t
  3686. sync_completed_show(mddev_t *mddev, char *page)
  3687. {
  3688. unsigned long long max_sectors, resync;
  3689. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3690. return sprintf(page, "none\n");
  3691. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3692. max_sectors = mddev->resync_max_sectors;
  3693. else
  3694. max_sectors = mddev->dev_sectors;
  3695. resync = mddev->curr_resync_completed;
  3696. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3697. }
  3698. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3699. static ssize_t
  3700. min_sync_show(mddev_t *mddev, char *page)
  3701. {
  3702. return sprintf(page, "%llu\n",
  3703. (unsigned long long)mddev->resync_min);
  3704. }
  3705. static ssize_t
  3706. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3707. {
  3708. unsigned long long min;
  3709. if (strict_strtoull(buf, 10, &min))
  3710. return -EINVAL;
  3711. if (min > mddev->resync_max)
  3712. return -EINVAL;
  3713. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3714. return -EBUSY;
  3715. /* Must be a multiple of chunk_size */
  3716. if (mddev->chunk_sectors) {
  3717. sector_t temp = min;
  3718. if (sector_div(temp, mddev->chunk_sectors))
  3719. return -EINVAL;
  3720. }
  3721. mddev->resync_min = min;
  3722. return len;
  3723. }
  3724. static struct md_sysfs_entry md_min_sync =
  3725. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3726. static ssize_t
  3727. max_sync_show(mddev_t *mddev, char *page)
  3728. {
  3729. if (mddev->resync_max == MaxSector)
  3730. return sprintf(page, "max\n");
  3731. else
  3732. return sprintf(page, "%llu\n",
  3733. (unsigned long long)mddev->resync_max);
  3734. }
  3735. static ssize_t
  3736. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3737. {
  3738. if (strncmp(buf, "max", 3) == 0)
  3739. mddev->resync_max = MaxSector;
  3740. else {
  3741. unsigned long long max;
  3742. if (strict_strtoull(buf, 10, &max))
  3743. return -EINVAL;
  3744. if (max < mddev->resync_min)
  3745. return -EINVAL;
  3746. if (max < mddev->resync_max &&
  3747. mddev->ro == 0 &&
  3748. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3749. return -EBUSY;
  3750. /* Must be a multiple of chunk_size */
  3751. if (mddev->chunk_sectors) {
  3752. sector_t temp = max;
  3753. if (sector_div(temp, mddev->chunk_sectors))
  3754. return -EINVAL;
  3755. }
  3756. mddev->resync_max = max;
  3757. }
  3758. wake_up(&mddev->recovery_wait);
  3759. return len;
  3760. }
  3761. static struct md_sysfs_entry md_max_sync =
  3762. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3763. static ssize_t
  3764. suspend_lo_show(mddev_t *mddev, char *page)
  3765. {
  3766. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3767. }
  3768. static ssize_t
  3769. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3770. {
  3771. char *e;
  3772. unsigned long long new = simple_strtoull(buf, &e, 10);
  3773. unsigned long long old = mddev->suspend_lo;
  3774. if (mddev->pers == NULL ||
  3775. mddev->pers->quiesce == NULL)
  3776. return -EINVAL;
  3777. if (buf == e || (*e && *e != '\n'))
  3778. return -EINVAL;
  3779. mddev->suspend_lo = new;
  3780. if (new >= old)
  3781. /* Shrinking suspended region */
  3782. mddev->pers->quiesce(mddev, 2);
  3783. else {
  3784. /* Expanding suspended region - need to wait */
  3785. mddev->pers->quiesce(mddev, 1);
  3786. mddev->pers->quiesce(mddev, 0);
  3787. }
  3788. return len;
  3789. }
  3790. static struct md_sysfs_entry md_suspend_lo =
  3791. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3792. static ssize_t
  3793. suspend_hi_show(mddev_t *mddev, char *page)
  3794. {
  3795. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3796. }
  3797. static ssize_t
  3798. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3799. {
  3800. char *e;
  3801. unsigned long long new = simple_strtoull(buf, &e, 10);
  3802. unsigned long long old = mddev->suspend_hi;
  3803. if (mddev->pers == NULL ||
  3804. mddev->pers->quiesce == NULL)
  3805. return -EINVAL;
  3806. if (buf == e || (*e && *e != '\n'))
  3807. return -EINVAL;
  3808. mddev->suspend_hi = new;
  3809. if (new <= old)
  3810. /* Shrinking suspended region */
  3811. mddev->pers->quiesce(mddev, 2);
  3812. else {
  3813. /* Expanding suspended region - need to wait */
  3814. mddev->pers->quiesce(mddev, 1);
  3815. mddev->pers->quiesce(mddev, 0);
  3816. }
  3817. return len;
  3818. }
  3819. static struct md_sysfs_entry md_suspend_hi =
  3820. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3821. static ssize_t
  3822. reshape_position_show(mddev_t *mddev, char *page)
  3823. {
  3824. if (mddev->reshape_position != MaxSector)
  3825. return sprintf(page, "%llu\n",
  3826. (unsigned long long)mddev->reshape_position);
  3827. strcpy(page, "none\n");
  3828. return 5;
  3829. }
  3830. static ssize_t
  3831. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3832. {
  3833. char *e;
  3834. unsigned long long new = simple_strtoull(buf, &e, 10);
  3835. if (mddev->pers)
  3836. return -EBUSY;
  3837. if (buf == e || (*e && *e != '\n'))
  3838. return -EINVAL;
  3839. mddev->reshape_position = new;
  3840. mddev->delta_disks = 0;
  3841. mddev->new_level = mddev->level;
  3842. mddev->new_layout = mddev->layout;
  3843. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3844. return len;
  3845. }
  3846. static struct md_sysfs_entry md_reshape_position =
  3847. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3848. reshape_position_store);
  3849. static ssize_t
  3850. array_size_show(mddev_t *mddev, char *page)
  3851. {
  3852. if (mddev->external_size)
  3853. return sprintf(page, "%llu\n",
  3854. (unsigned long long)mddev->array_sectors/2);
  3855. else
  3856. return sprintf(page, "default\n");
  3857. }
  3858. static ssize_t
  3859. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3860. {
  3861. sector_t sectors;
  3862. if (strncmp(buf, "default", 7) == 0) {
  3863. if (mddev->pers)
  3864. sectors = mddev->pers->size(mddev, 0, 0);
  3865. else
  3866. sectors = mddev->array_sectors;
  3867. mddev->external_size = 0;
  3868. } else {
  3869. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3870. return -EINVAL;
  3871. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3872. return -E2BIG;
  3873. mddev->external_size = 1;
  3874. }
  3875. mddev->array_sectors = sectors;
  3876. if (mddev->pers) {
  3877. set_capacity(mddev->gendisk, mddev->array_sectors);
  3878. revalidate_disk(mddev->gendisk);
  3879. }
  3880. return len;
  3881. }
  3882. static struct md_sysfs_entry md_array_size =
  3883. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3884. array_size_store);
  3885. static struct attribute *md_default_attrs[] = {
  3886. &md_level.attr,
  3887. &md_layout.attr,
  3888. &md_raid_disks.attr,
  3889. &md_chunk_size.attr,
  3890. &md_size.attr,
  3891. &md_resync_start.attr,
  3892. &md_metadata.attr,
  3893. &md_new_device.attr,
  3894. &md_safe_delay.attr,
  3895. &md_array_state.attr,
  3896. &md_reshape_position.attr,
  3897. &md_array_size.attr,
  3898. &max_corr_read_errors.attr,
  3899. NULL,
  3900. };
  3901. static struct attribute *md_redundancy_attrs[] = {
  3902. &md_scan_mode.attr,
  3903. &md_mismatches.attr,
  3904. &md_sync_min.attr,
  3905. &md_sync_max.attr,
  3906. &md_sync_speed.attr,
  3907. &md_sync_force_parallel.attr,
  3908. &md_sync_completed.attr,
  3909. &md_min_sync.attr,
  3910. &md_max_sync.attr,
  3911. &md_suspend_lo.attr,
  3912. &md_suspend_hi.attr,
  3913. &md_bitmap.attr,
  3914. &md_degraded.attr,
  3915. NULL,
  3916. };
  3917. static struct attribute_group md_redundancy_group = {
  3918. .name = NULL,
  3919. .attrs = md_redundancy_attrs,
  3920. };
  3921. static ssize_t
  3922. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3923. {
  3924. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3925. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3926. ssize_t rv;
  3927. if (!entry->show)
  3928. return -EIO;
  3929. rv = mddev_lock(mddev);
  3930. if (!rv) {
  3931. rv = entry->show(mddev, page);
  3932. mddev_unlock(mddev);
  3933. }
  3934. return rv;
  3935. }
  3936. static ssize_t
  3937. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3938. const char *page, size_t length)
  3939. {
  3940. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3941. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3942. ssize_t rv;
  3943. if (!entry->store)
  3944. return -EIO;
  3945. if (!capable(CAP_SYS_ADMIN))
  3946. return -EACCES;
  3947. rv = mddev_lock(mddev);
  3948. if (mddev->hold_active == UNTIL_IOCTL)
  3949. mddev->hold_active = 0;
  3950. if (!rv) {
  3951. rv = entry->store(mddev, page, length);
  3952. mddev_unlock(mddev);
  3953. }
  3954. return rv;
  3955. }
  3956. static void md_free(struct kobject *ko)
  3957. {
  3958. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3959. if (mddev->sysfs_state)
  3960. sysfs_put(mddev->sysfs_state);
  3961. if (mddev->gendisk) {
  3962. del_gendisk(mddev->gendisk);
  3963. put_disk(mddev->gendisk);
  3964. }
  3965. if (mddev->queue)
  3966. blk_cleanup_queue(mddev->queue);
  3967. kfree(mddev);
  3968. }
  3969. static const struct sysfs_ops md_sysfs_ops = {
  3970. .show = md_attr_show,
  3971. .store = md_attr_store,
  3972. };
  3973. static struct kobj_type md_ktype = {
  3974. .release = md_free,
  3975. .sysfs_ops = &md_sysfs_ops,
  3976. .default_attrs = md_default_attrs,
  3977. };
  3978. int mdp_major = 0;
  3979. static void mddev_delayed_delete(struct work_struct *ws)
  3980. {
  3981. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  3982. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  3983. kobject_del(&mddev->kobj);
  3984. kobject_put(&mddev->kobj);
  3985. }
  3986. static int md_alloc(dev_t dev, char *name)
  3987. {
  3988. static DEFINE_MUTEX(disks_mutex);
  3989. mddev_t *mddev = mddev_find(dev);
  3990. struct gendisk *disk;
  3991. int partitioned;
  3992. int shift;
  3993. int unit;
  3994. int error;
  3995. if (!mddev)
  3996. return -ENODEV;
  3997. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  3998. shift = partitioned ? MdpMinorShift : 0;
  3999. unit = MINOR(mddev->unit) >> shift;
  4000. /* wait for any previous instance of this device to be
  4001. * completely removed (mddev_delayed_delete).
  4002. */
  4003. flush_workqueue(md_misc_wq);
  4004. mutex_lock(&disks_mutex);
  4005. error = -EEXIST;
  4006. if (mddev->gendisk)
  4007. goto abort;
  4008. if (name) {
  4009. /* Need to ensure that 'name' is not a duplicate.
  4010. */
  4011. mddev_t *mddev2;
  4012. spin_lock(&all_mddevs_lock);
  4013. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4014. if (mddev2->gendisk &&
  4015. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4016. spin_unlock(&all_mddevs_lock);
  4017. goto abort;
  4018. }
  4019. spin_unlock(&all_mddevs_lock);
  4020. }
  4021. error = -ENOMEM;
  4022. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4023. if (!mddev->queue)
  4024. goto abort;
  4025. mddev->queue->queuedata = mddev;
  4026. blk_queue_make_request(mddev->queue, md_make_request);
  4027. disk = alloc_disk(1 << shift);
  4028. if (!disk) {
  4029. blk_cleanup_queue(mddev->queue);
  4030. mddev->queue = NULL;
  4031. goto abort;
  4032. }
  4033. disk->major = MAJOR(mddev->unit);
  4034. disk->first_minor = unit << shift;
  4035. if (name)
  4036. strcpy(disk->disk_name, name);
  4037. else if (partitioned)
  4038. sprintf(disk->disk_name, "md_d%d", unit);
  4039. else
  4040. sprintf(disk->disk_name, "md%d", unit);
  4041. disk->fops = &md_fops;
  4042. disk->private_data = mddev;
  4043. disk->queue = mddev->queue;
  4044. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4045. /* Allow extended partitions. This makes the
  4046. * 'mdp' device redundant, but we can't really
  4047. * remove it now.
  4048. */
  4049. disk->flags |= GENHD_FL_EXT_DEVT;
  4050. mddev->gendisk = disk;
  4051. /* As soon as we call add_disk(), another thread could get
  4052. * through to md_open, so make sure it doesn't get too far
  4053. */
  4054. mutex_lock(&mddev->open_mutex);
  4055. add_disk(disk);
  4056. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4057. &disk_to_dev(disk)->kobj, "%s", "md");
  4058. if (error) {
  4059. /* This isn't possible, but as kobject_init_and_add is marked
  4060. * __must_check, we must do something with the result
  4061. */
  4062. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4063. disk->disk_name);
  4064. error = 0;
  4065. }
  4066. if (mddev->kobj.sd &&
  4067. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4068. printk(KERN_DEBUG "pointless warning\n");
  4069. mutex_unlock(&mddev->open_mutex);
  4070. abort:
  4071. mutex_unlock(&disks_mutex);
  4072. if (!error && mddev->kobj.sd) {
  4073. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4074. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4075. }
  4076. mddev_put(mddev);
  4077. return error;
  4078. }
  4079. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4080. {
  4081. md_alloc(dev, NULL);
  4082. return NULL;
  4083. }
  4084. static int add_named_array(const char *val, struct kernel_param *kp)
  4085. {
  4086. /* val must be "md_*" where * is not all digits.
  4087. * We allocate an array with a large free minor number, and
  4088. * set the name to val. val must not already be an active name.
  4089. */
  4090. int len = strlen(val);
  4091. char buf[DISK_NAME_LEN];
  4092. while (len && val[len-1] == '\n')
  4093. len--;
  4094. if (len >= DISK_NAME_LEN)
  4095. return -E2BIG;
  4096. strlcpy(buf, val, len+1);
  4097. if (strncmp(buf, "md_", 3) != 0)
  4098. return -EINVAL;
  4099. return md_alloc(0, buf);
  4100. }
  4101. static void md_safemode_timeout(unsigned long data)
  4102. {
  4103. mddev_t *mddev = (mddev_t *) data;
  4104. if (!atomic_read(&mddev->writes_pending)) {
  4105. mddev->safemode = 1;
  4106. if (mddev->external)
  4107. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4108. }
  4109. md_wakeup_thread(mddev->thread);
  4110. }
  4111. static int start_dirty_degraded;
  4112. int md_run(mddev_t *mddev)
  4113. {
  4114. int err;
  4115. mdk_rdev_t *rdev;
  4116. struct mdk_personality *pers;
  4117. if (list_empty(&mddev->disks))
  4118. /* cannot run an array with no devices.. */
  4119. return -EINVAL;
  4120. if (mddev->pers)
  4121. return -EBUSY;
  4122. /* Cannot run until previous stop completes properly */
  4123. if (mddev->sysfs_active)
  4124. return -EBUSY;
  4125. /*
  4126. * Analyze all RAID superblock(s)
  4127. */
  4128. if (!mddev->raid_disks) {
  4129. if (!mddev->persistent)
  4130. return -EINVAL;
  4131. analyze_sbs(mddev);
  4132. }
  4133. if (mddev->level != LEVEL_NONE)
  4134. request_module("md-level-%d", mddev->level);
  4135. else if (mddev->clevel[0])
  4136. request_module("md-%s", mddev->clevel);
  4137. /*
  4138. * Drop all container device buffers, from now on
  4139. * the only valid external interface is through the md
  4140. * device.
  4141. */
  4142. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4143. if (test_bit(Faulty, &rdev->flags))
  4144. continue;
  4145. sync_blockdev(rdev->bdev);
  4146. invalidate_bdev(rdev->bdev);
  4147. /* perform some consistency tests on the device.
  4148. * We don't want the data to overlap the metadata,
  4149. * Internal Bitmap issues have been handled elsewhere.
  4150. */
  4151. if (rdev->meta_bdev) {
  4152. /* Nothing to check */;
  4153. } else if (rdev->data_offset < rdev->sb_start) {
  4154. if (mddev->dev_sectors &&
  4155. rdev->data_offset + mddev->dev_sectors
  4156. > rdev->sb_start) {
  4157. printk("md: %s: data overlaps metadata\n",
  4158. mdname(mddev));
  4159. return -EINVAL;
  4160. }
  4161. } else {
  4162. if (rdev->sb_start + rdev->sb_size/512
  4163. > rdev->data_offset) {
  4164. printk("md: %s: metadata overlaps data\n",
  4165. mdname(mddev));
  4166. return -EINVAL;
  4167. }
  4168. }
  4169. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4170. }
  4171. if (mddev->bio_set == NULL)
  4172. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4173. sizeof(mddev_t *));
  4174. spin_lock(&pers_lock);
  4175. pers = find_pers(mddev->level, mddev->clevel);
  4176. if (!pers || !try_module_get(pers->owner)) {
  4177. spin_unlock(&pers_lock);
  4178. if (mddev->level != LEVEL_NONE)
  4179. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4180. mddev->level);
  4181. else
  4182. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4183. mddev->clevel);
  4184. return -EINVAL;
  4185. }
  4186. mddev->pers = pers;
  4187. spin_unlock(&pers_lock);
  4188. if (mddev->level != pers->level) {
  4189. mddev->level = pers->level;
  4190. mddev->new_level = pers->level;
  4191. }
  4192. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4193. if (mddev->reshape_position != MaxSector &&
  4194. pers->start_reshape == NULL) {
  4195. /* This personality cannot handle reshaping... */
  4196. mddev->pers = NULL;
  4197. module_put(pers->owner);
  4198. return -EINVAL;
  4199. }
  4200. if (pers->sync_request) {
  4201. /* Warn if this is a potentially silly
  4202. * configuration.
  4203. */
  4204. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4205. mdk_rdev_t *rdev2;
  4206. int warned = 0;
  4207. list_for_each_entry(rdev, &mddev->disks, same_set)
  4208. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4209. if (rdev < rdev2 &&
  4210. rdev->bdev->bd_contains ==
  4211. rdev2->bdev->bd_contains) {
  4212. printk(KERN_WARNING
  4213. "%s: WARNING: %s appears to be"
  4214. " on the same physical disk as"
  4215. " %s.\n",
  4216. mdname(mddev),
  4217. bdevname(rdev->bdev,b),
  4218. bdevname(rdev2->bdev,b2));
  4219. warned = 1;
  4220. }
  4221. }
  4222. if (warned)
  4223. printk(KERN_WARNING
  4224. "True protection against single-disk"
  4225. " failure might be compromised.\n");
  4226. }
  4227. mddev->recovery = 0;
  4228. /* may be over-ridden by personality */
  4229. mddev->resync_max_sectors = mddev->dev_sectors;
  4230. mddev->ok_start_degraded = start_dirty_degraded;
  4231. if (start_readonly && mddev->ro == 0)
  4232. mddev->ro = 2; /* read-only, but switch on first write */
  4233. err = mddev->pers->run(mddev);
  4234. if (err)
  4235. printk(KERN_ERR "md: pers->run() failed ...\n");
  4236. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4237. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4238. " but 'external_size' not in effect?\n", __func__);
  4239. printk(KERN_ERR
  4240. "md: invalid array_size %llu > default size %llu\n",
  4241. (unsigned long long)mddev->array_sectors / 2,
  4242. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4243. err = -EINVAL;
  4244. mddev->pers->stop(mddev);
  4245. }
  4246. if (err == 0 && mddev->pers->sync_request) {
  4247. err = bitmap_create(mddev);
  4248. if (err) {
  4249. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4250. mdname(mddev), err);
  4251. mddev->pers->stop(mddev);
  4252. }
  4253. }
  4254. if (err) {
  4255. module_put(mddev->pers->owner);
  4256. mddev->pers = NULL;
  4257. bitmap_destroy(mddev);
  4258. return err;
  4259. }
  4260. if (mddev->pers->sync_request) {
  4261. if (mddev->kobj.sd &&
  4262. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4263. printk(KERN_WARNING
  4264. "md: cannot register extra attributes for %s\n",
  4265. mdname(mddev));
  4266. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4267. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4268. mddev->ro = 0;
  4269. atomic_set(&mddev->writes_pending,0);
  4270. atomic_set(&mddev->max_corr_read_errors,
  4271. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4272. mddev->safemode = 0;
  4273. mddev->safemode_timer.function = md_safemode_timeout;
  4274. mddev->safemode_timer.data = (unsigned long) mddev;
  4275. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4276. mddev->in_sync = 1;
  4277. smp_wmb();
  4278. mddev->ready = 1;
  4279. list_for_each_entry(rdev, &mddev->disks, same_set)
  4280. if (rdev->raid_disk >= 0)
  4281. if (sysfs_link_rdev(mddev, rdev))
  4282. /* failure here is OK */;
  4283. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4284. if (mddev->flags)
  4285. md_update_sb(mddev, 0);
  4286. md_new_event(mddev);
  4287. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4288. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4289. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4290. return 0;
  4291. }
  4292. EXPORT_SYMBOL_GPL(md_run);
  4293. static int do_md_run(mddev_t *mddev)
  4294. {
  4295. int err;
  4296. err = md_run(mddev);
  4297. if (err)
  4298. goto out;
  4299. err = bitmap_load(mddev);
  4300. if (err) {
  4301. bitmap_destroy(mddev);
  4302. goto out;
  4303. }
  4304. md_wakeup_thread(mddev->thread);
  4305. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4306. set_capacity(mddev->gendisk, mddev->array_sectors);
  4307. revalidate_disk(mddev->gendisk);
  4308. mddev->changed = 1;
  4309. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4310. out:
  4311. return err;
  4312. }
  4313. static int restart_array(mddev_t *mddev)
  4314. {
  4315. struct gendisk *disk = mddev->gendisk;
  4316. /* Complain if it has no devices */
  4317. if (list_empty(&mddev->disks))
  4318. return -ENXIO;
  4319. if (!mddev->pers)
  4320. return -EINVAL;
  4321. if (!mddev->ro)
  4322. return -EBUSY;
  4323. mddev->safemode = 0;
  4324. mddev->ro = 0;
  4325. set_disk_ro(disk, 0);
  4326. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4327. mdname(mddev));
  4328. /* Kick recovery or resync if necessary */
  4329. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4330. md_wakeup_thread(mddev->thread);
  4331. md_wakeup_thread(mddev->sync_thread);
  4332. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4333. return 0;
  4334. }
  4335. /* similar to deny_write_access, but accounts for our holding a reference
  4336. * to the file ourselves */
  4337. static int deny_bitmap_write_access(struct file * file)
  4338. {
  4339. struct inode *inode = file->f_mapping->host;
  4340. spin_lock(&inode->i_lock);
  4341. if (atomic_read(&inode->i_writecount) > 1) {
  4342. spin_unlock(&inode->i_lock);
  4343. return -ETXTBSY;
  4344. }
  4345. atomic_set(&inode->i_writecount, -1);
  4346. spin_unlock(&inode->i_lock);
  4347. return 0;
  4348. }
  4349. void restore_bitmap_write_access(struct file *file)
  4350. {
  4351. struct inode *inode = file->f_mapping->host;
  4352. spin_lock(&inode->i_lock);
  4353. atomic_set(&inode->i_writecount, 1);
  4354. spin_unlock(&inode->i_lock);
  4355. }
  4356. static void md_clean(mddev_t *mddev)
  4357. {
  4358. mddev->array_sectors = 0;
  4359. mddev->external_size = 0;
  4360. mddev->dev_sectors = 0;
  4361. mddev->raid_disks = 0;
  4362. mddev->recovery_cp = 0;
  4363. mddev->resync_min = 0;
  4364. mddev->resync_max = MaxSector;
  4365. mddev->reshape_position = MaxSector;
  4366. mddev->external = 0;
  4367. mddev->persistent = 0;
  4368. mddev->level = LEVEL_NONE;
  4369. mddev->clevel[0] = 0;
  4370. mddev->flags = 0;
  4371. mddev->ro = 0;
  4372. mddev->metadata_type[0] = 0;
  4373. mddev->chunk_sectors = 0;
  4374. mddev->ctime = mddev->utime = 0;
  4375. mddev->layout = 0;
  4376. mddev->max_disks = 0;
  4377. mddev->events = 0;
  4378. mddev->can_decrease_events = 0;
  4379. mddev->delta_disks = 0;
  4380. mddev->new_level = LEVEL_NONE;
  4381. mddev->new_layout = 0;
  4382. mddev->new_chunk_sectors = 0;
  4383. mddev->curr_resync = 0;
  4384. mddev->resync_mismatches = 0;
  4385. mddev->suspend_lo = mddev->suspend_hi = 0;
  4386. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4387. mddev->recovery = 0;
  4388. mddev->in_sync = 0;
  4389. mddev->changed = 0;
  4390. mddev->degraded = 0;
  4391. mddev->safemode = 0;
  4392. mddev->bitmap_info.offset = 0;
  4393. mddev->bitmap_info.default_offset = 0;
  4394. mddev->bitmap_info.chunksize = 0;
  4395. mddev->bitmap_info.daemon_sleep = 0;
  4396. mddev->bitmap_info.max_write_behind = 0;
  4397. }
  4398. static void __md_stop_writes(mddev_t *mddev)
  4399. {
  4400. if (mddev->sync_thread) {
  4401. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4402. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4403. reap_sync_thread(mddev);
  4404. }
  4405. del_timer_sync(&mddev->safemode_timer);
  4406. bitmap_flush(mddev);
  4407. md_super_wait(mddev);
  4408. if (!mddev->in_sync || mddev->flags) {
  4409. /* mark array as shutdown cleanly */
  4410. mddev->in_sync = 1;
  4411. md_update_sb(mddev, 1);
  4412. }
  4413. }
  4414. void md_stop_writes(mddev_t *mddev)
  4415. {
  4416. mddev_lock(mddev);
  4417. __md_stop_writes(mddev);
  4418. mddev_unlock(mddev);
  4419. }
  4420. EXPORT_SYMBOL_GPL(md_stop_writes);
  4421. void md_stop(mddev_t *mddev)
  4422. {
  4423. mddev->ready = 0;
  4424. mddev->pers->stop(mddev);
  4425. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4426. mddev->to_remove = &md_redundancy_group;
  4427. module_put(mddev->pers->owner);
  4428. mddev->pers = NULL;
  4429. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4430. }
  4431. EXPORT_SYMBOL_GPL(md_stop);
  4432. static int md_set_readonly(mddev_t *mddev, int is_open)
  4433. {
  4434. int err = 0;
  4435. mutex_lock(&mddev->open_mutex);
  4436. if (atomic_read(&mddev->openers) > is_open) {
  4437. printk("md: %s still in use.\n",mdname(mddev));
  4438. err = -EBUSY;
  4439. goto out;
  4440. }
  4441. if (mddev->pers) {
  4442. __md_stop_writes(mddev);
  4443. err = -ENXIO;
  4444. if (mddev->ro==1)
  4445. goto out;
  4446. mddev->ro = 1;
  4447. set_disk_ro(mddev->gendisk, 1);
  4448. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4449. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4450. err = 0;
  4451. }
  4452. out:
  4453. mutex_unlock(&mddev->open_mutex);
  4454. return err;
  4455. }
  4456. /* mode:
  4457. * 0 - completely stop and dis-assemble array
  4458. * 2 - stop but do not disassemble array
  4459. */
  4460. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  4461. {
  4462. struct gendisk *disk = mddev->gendisk;
  4463. mdk_rdev_t *rdev;
  4464. mutex_lock(&mddev->open_mutex);
  4465. if (atomic_read(&mddev->openers) > is_open ||
  4466. mddev->sysfs_active) {
  4467. printk("md: %s still in use.\n",mdname(mddev));
  4468. mutex_unlock(&mddev->open_mutex);
  4469. return -EBUSY;
  4470. }
  4471. if (mddev->pers) {
  4472. if (mddev->ro)
  4473. set_disk_ro(disk, 0);
  4474. __md_stop_writes(mddev);
  4475. md_stop(mddev);
  4476. mddev->queue->merge_bvec_fn = NULL;
  4477. mddev->queue->backing_dev_info.congested_fn = NULL;
  4478. /* tell userspace to handle 'inactive' */
  4479. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4480. list_for_each_entry(rdev, &mddev->disks, same_set)
  4481. if (rdev->raid_disk >= 0)
  4482. sysfs_unlink_rdev(mddev, rdev);
  4483. set_capacity(disk, 0);
  4484. mutex_unlock(&mddev->open_mutex);
  4485. mddev->changed = 1;
  4486. revalidate_disk(disk);
  4487. if (mddev->ro)
  4488. mddev->ro = 0;
  4489. } else
  4490. mutex_unlock(&mddev->open_mutex);
  4491. /*
  4492. * Free resources if final stop
  4493. */
  4494. if (mode == 0) {
  4495. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4496. bitmap_destroy(mddev);
  4497. if (mddev->bitmap_info.file) {
  4498. restore_bitmap_write_access(mddev->bitmap_info.file);
  4499. fput(mddev->bitmap_info.file);
  4500. mddev->bitmap_info.file = NULL;
  4501. }
  4502. mddev->bitmap_info.offset = 0;
  4503. export_array(mddev);
  4504. md_clean(mddev);
  4505. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4506. if (mddev->hold_active == UNTIL_STOP)
  4507. mddev->hold_active = 0;
  4508. }
  4509. blk_integrity_unregister(disk);
  4510. md_new_event(mddev);
  4511. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4512. return 0;
  4513. }
  4514. #ifndef MODULE
  4515. static void autorun_array(mddev_t *mddev)
  4516. {
  4517. mdk_rdev_t *rdev;
  4518. int err;
  4519. if (list_empty(&mddev->disks))
  4520. return;
  4521. printk(KERN_INFO "md: running: ");
  4522. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4523. char b[BDEVNAME_SIZE];
  4524. printk("<%s>", bdevname(rdev->bdev,b));
  4525. }
  4526. printk("\n");
  4527. err = do_md_run(mddev);
  4528. if (err) {
  4529. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4530. do_md_stop(mddev, 0, 0);
  4531. }
  4532. }
  4533. /*
  4534. * lets try to run arrays based on all disks that have arrived
  4535. * until now. (those are in pending_raid_disks)
  4536. *
  4537. * the method: pick the first pending disk, collect all disks with
  4538. * the same UUID, remove all from the pending list and put them into
  4539. * the 'same_array' list. Then order this list based on superblock
  4540. * update time (freshest comes first), kick out 'old' disks and
  4541. * compare superblocks. If everything's fine then run it.
  4542. *
  4543. * If "unit" is allocated, then bump its reference count
  4544. */
  4545. static void autorun_devices(int part)
  4546. {
  4547. mdk_rdev_t *rdev0, *rdev, *tmp;
  4548. mddev_t *mddev;
  4549. char b[BDEVNAME_SIZE];
  4550. printk(KERN_INFO "md: autorun ...\n");
  4551. while (!list_empty(&pending_raid_disks)) {
  4552. int unit;
  4553. dev_t dev;
  4554. LIST_HEAD(candidates);
  4555. rdev0 = list_entry(pending_raid_disks.next,
  4556. mdk_rdev_t, same_set);
  4557. printk(KERN_INFO "md: considering %s ...\n",
  4558. bdevname(rdev0->bdev,b));
  4559. INIT_LIST_HEAD(&candidates);
  4560. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4561. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4562. printk(KERN_INFO "md: adding %s ...\n",
  4563. bdevname(rdev->bdev,b));
  4564. list_move(&rdev->same_set, &candidates);
  4565. }
  4566. /*
  4567. * now we have a set of devices, with all of them having
  4568. * mostly sane superblocks. It's time to allocate the
  4569. * mddev.
  4570. */
  4571. if (part) {
  4572. dev = MKDEV(mdp_major,
  4573. rdev0->preferred_minor << MdpMinorShift);
  4574. unit = MINOR(dev) >> MdpMinorShift;
  4575. } else {
  4576. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4577. unit = MINOR(dev);
  4578. }
  4579. if (rdev0->preferred_minor != unit) {
  4580. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4581. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4582. break;
  4583. }
  4584. md_probe(dev, NULL, NULL);
  4585. mddev = mddev_find(dev);
  4586. if (!mddev || !mddev->gendisk) {
  4587. if (mddev)
  4588. mddev_put(mddev);
  4589. printk(KERN_ERR
  4590. "md: cannot allocate memory for md drive.\n");
  4591. break;
  4592. }
  4593. if (mddev_lock(mddev))
  4594. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4595. mdname(mddev));
  4596. else if (mddev->raid_disks || mddev->major_version
  4597. || !list_empty(&mddev->disks)) {
  4598. printk(KERN_WARNING
  4599. "md: %s already running, cannot run %s\n",
  4600. mdname(mddev), bdevname(rdev0->bdev,b));
  4601. mddev_unlock(mddev);
  4602. } else {
  4603. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4604. mddev->persistent = 1;
  4605. rdev_for_each_list(rdev, tmp, &candidates) {
  4606. list_del_init(&rdev->same_set);
  4607. if (bind_rdev_to_array(rdev, mddev))
  4608. export_rdev(rdev);
  4609. }
  4610. autorun_array(mddev);
  4611. mddev_unlock(mddev);
  4612. }
  4613. /* on success, candidates will be empty, on error
  4614. * it won't...
  4615. */
  4616. rdev_for_each_list(rdev, tmp, &candidates) {
  4617. list_del_init(&rdev->same_set);
  4618. export_rdev(rdev);
  4619. }
  4620. mddev_put(mddev);
  4621. }
  4622. printk(KERN_INFO "md: ... autorun DONE.\n");
  4623. }
  4624. #endif /* !MODULE */
  4625. static int get_version(void __user * arg)
  4626. {
  4627. mdu_version_t ver;
  4628. ver.major = MD_MAJOR_VERSION;
  4629. ver.minor = MD_MINOR_VERSION;
  4630. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4631. if (copy_to_user(arg, &ver, sizeof(ver)))
  4632. return -EFAULT;
  4633. return 0;
  4634. }
  4635. static int get_array_info(mddev_t * mddev, void __user * arg)
  4636. {
  4637. mdu_array_info_t info;
  4638. int nr,working,insync,failed,spare;
  4639. mdk_rdev_t *rdev;
  4640. nr=working=insync=failed=spare=0;
  4641. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4642. nr++;
  4643. if (test_bit(Faulty, &rdev->flags))
  4644. failed++;
  4645. else {
  4646. working++;
  4647. if (test_bit(In_sync, &rdev->flags))
  4648. insync++;
  4649. else
  4650. spare++;
  4651. }
  4652. }
  4653. info.major_version = mddev->major_version;
  4654. info.minor_version = mddev->minor_version;
  4655. info.patch_version = MD_PATCHLEVEL_VERSION;
  4656. info.ctime = mddev->ctime;
  4657. info.level = mddev->level;
  4658. info.size = mddev->dev_sectors / 2;
  4659. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4660. info.size = -1;
  4661. info.nr_disks = nr;
  4662. info.raid_disks = mddev->raid_disks;
  4663. info.md_minor = mddev->md_minor;
  4664. info.not_persistent= !mddev->persistent;
  4665. info.utime = mddev->utime;
  4666. info.state = 0;
  4667. if (mddev->in_sync)
  4668. info.state = (1<<MD_SB_CLEAN);
  4669. if (mddev->bitmap && mddev->bitmap_info.offset)
  4670. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4671. info.active_disks = insync;
  4672. info.working_disks = working;
  4673. info.failed_disks = failed;
  4674. info.spare_disks = spare;
  4675. info.layout = mddev->layout;
  4676. info.chunk_size = mddev->chunk_sectors << 9;
  4677. if (copy_to_user(arg, &info, sizeof(info)))
  4678. return -EFAULT;
  4679. return 0;
  4680. }
  4681. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4682. {
  4683. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4684. char *ptr, *buf = NULL;
  4685. int err = -ENOMEM;
  4686. if (md_allow_write(mddev))
  4687. file = kmalloc(sizeof(*file), GFP_NOIO);
  4688. else
  4689. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4690. if (!file)
  4691. goto out;
  4692. /* bitmap disabled, zero the first byte and copy out */
  4693. if (!mddev->bitmap || !mddev->bitmap->file) {
  4694. file->pathname[0] = '\0';
  4695. goto copy_out;
  4696. }
  4697. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4698. if (!buf)
  4699. goto out;
  4700. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4701. if (IS_ERR(ptr))
  4702. goto out;
  4703. strcpy(file->pathname, ptr);
  4704. copy_out:
  4705. err = 0;
  4706. if (copy_to_user(arg, file, sizeof(*file)))
  4707. err = -EFAULT;
  4708. out:
  4709. kfree(buf);
  4710. kfree(file);
  4711. return err;
  4712. }
  4713. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4714. {
  4715. mdu_disk_info_t info;
  4716. mdk_rdev_t *rdev;
  4717. if (copy_from_user(&info, arg, sizeof(info)))
  4718. return -EFAULT;
  4719. rdev = find_rdev_nr(mddev, info.number);
  4720. if (rdev) {
  4721. info.major = MAJOR(rdev->bdev->bd_dev);
  4722. info.minor = MINOR(rdev->bdev->bd_dev);
  4723. info.raid_disk = rdev->raid_disk;
  4724. info.state = 0;
  4725. if (test_bit(Faulty, &rdev->flags))
  4726. info.state |= (1<<MD_DISK_FAULTY);
  4727. else if (test_bit(In_sync, &rdev->flags)) {
  4728. info.state |= (1<<MD_DISK_ACTIVE);
  4729. info.state |= (1<<MD_DISK_SYNC);
  4730. }
  4731. if (test_bit(WriteMostly, &rdev->flags))
  4732. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4733. } else {
  4734. info.major = info.minor = 0;
  4735. info.raid_disk = -1;
  4736. info.state = (1<<MD_DISK_REMOVED);
  4737. }
  4738. if (copy_to_user(arg, &info, sizeof(info)))
  4739. return -EFAULT;
  4740. return 0;
  4741. }
  4742. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4743. {
  4744. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4745. mdk_rdev_t *rdev;
  4746. dev_t dev = MKDEV(info->major,info->minor);
  4747. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4748. return -EOVERFLOW;
  4749. if (!mddev->raid_disks) {
  4750. int err;
  4751. /* expecting a device which has a superblock */
  4752. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4753. if (IS_ERR(rdev)) {
  4754. printk(KERN_WARNING
  4755. "md: md_import_device returned %ld\n",
  4756. PTR_ERR(rdev));
  4757. return PTR_ERR(rdev);
  4758. }
  4759. if (!list_empty(&mddev->disks)) {
  4760. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4761. mdk_rdev_t, same_set);
  4762. err = super_types[mddev->major_version]
  4763. .load_super(rdev, rdev0, mddev->minor_version);
  4764. if (err < 0) {
  4765. printk(KERN_WARNING
  4766. "md: %s has different UUID to %s\n",
  4767. bdevname(rdev->bdev,b),
  4768. bdevname(rdev0->bdev,b2));
  4769. export_rdev(rdev);
  4770. return -EINVAL;
  4771. }
  4772. }
  4773. err = bind_rdev_to_array(rdev, mddev);
  4774. if (err)
  4775. export_rdev(rdev);
  4776. return err;
  4777. }
  4778. /*
  4779. * add_new_disk can be used once the array is assembled
  4780. * to add "hot spares". They must already have a superblock
  4781. * written
  4782. */
  4783. if (mddev->pers) {
  4784. int err;
  4785. if (!mddev->pers->hot_add_disk) {
  4786. printk(KERN_WARNING
  4787. "%s: personality does not support diskops!\n",
  4788. mdname(mddev));
  4789. return -EINVAL;
  4790. }
  4791. if (mddev->persistent)
  4792. rdev = md_import_device(dev, mddev->major_version,
  4793. mddev->minor_version);
  4794. else
  4795. rdev = md_import_device(dev, -1, -1);
  4796. if (IS_ERR(rdev)) {
  4797. printk(KERN_WARNING
  4798. "md: md_import_device returned %ld\n",
  4799. PTR_ERR(rdev));
  4800. return PTR_ERR(rdev);
  4801. }
  4802. /* set saved_raid_disk if appropriate */
  4803. if (!mddev->persistent) {
  4804. if (info->state & (1<<MD_DISK_SYNC) &&
  4805. info->raid_disk < mddev->raid_disks) {
  4806. rdev->raid_disk = info->raid_disk;
  4807. set_bit(In_sync, &rdev->flags);
  4808. } else
  4809. rdev->raid_disk = -1;
  4810. } else
  4811. super_types[mddev->major_version].
  4812. validate_super(mddev, rdev);
  4813. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4814. (!test_bit(In_sync, &rdev->flags) ||
  4815. rdev->raid_disk != info->raid_disk)) {
  4816. /* This was a hot-add request, but events doesn't
  4817. * match, so reject it.
  4818. */
  4819. export_rdev(rdev);
  4820. return -EINVAL;
  4821. }
  4822. if (test_bit(In_sync, &rdev->flags))
  4823. rdev->saved_raid_disk = rdev->raid_disk;
  4824. else
  4825. rdev->saved_raid_disk = -1;
  4826. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4827. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4828. set_bit(WriteMostly, &rdev->flags);
  4829. else
  4830. clear_bit(WriteMostly, &rdev->flags);
  4831. rdev->raid_disk = -1;
  4832. err = bind_rdev_to_array(rdev, mddev);
  4833. if (!err && !mddev->pers->hot_remove_disk) {
  4834. /* If there is hot_add_disk but no hot_remove_disk
  4835. * then added disks for geometry changes,
  4836. * and should be added immediately.
  4837. */
  4838. super_types[mddev->major_version].
  4839. validate_super(mddev, rdev);
  4840. err = mddev->pers->hot_add_disk(mddev, rdev);
  4841. if (err)
  4842. unbind_rdev_from_array(rdev);
  4843. }
  4844. if (err)
  4845. export_rdev(rdev);
  4846. else
  4847. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4848. md_update_sb(mddev, 1);
  4849. if (mddev->degraded)
  4850. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4851. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4852. if (!err)
  4853. md_new_event(mddev);
  4854. md_wakeup_thread(mddev->thread);
  4855. return err;
  4856. }
  4857. /* otherwise, add_new_disk is only allowed
  4858. * for major_version==0 superblocks
  4859. */
  4860. if (mddev->major_version != 0) {
  4861. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4862. mdname(mddev));
  4863. return -EINVAL;
  4864. }
  4865. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4866. int err;
  4867. rdev = md_import_device(dev, -1, 0);
  4868. if (IS_ERR(rdev)) {
  4869. printk(KERN_WARNING
  4870. "md: error, md_import_device() returned %ld\n",
  4871. PTR_ERR(rdev));
  4872. return PTR_ERR(rdev);
  4873. }
  4874. rdev->desc_nr = info->number;
  4875. if (info->raid_disk < mddev->raid_disks)
  4876. rdev->raid_disk = info->raid_disk;
  4877. else
  4878. rdev->raid_disk = -1;
  4879. if (rdev->raid_disk < mddev->raid_disks)
  4880. if (info->state & (1<<MD_DISK_SYNC))
  4881. set_bit(In_sync, &rdev->flags);
  4882. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4883. set_bit(WriteMostly, &rdev->flags);
  4884. if (!mddev->persistent) {
  4885. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4886. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4887. } else
  4888. rdev->sb_start = calc_dev_sboffset(rdev);
  4889. rdev->sectors = rdev->sb_start;
  4890. err = bind_rdev_to_array(rdev, mddev);
  4891. if (err) {
  4892. export_rdev(rdev);
  4893. return err;
  4894. }
  4895. }
  4896. return 0;
  4897. }
  4898. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4899. {
  4900. char b[BDEVNAME_SIZE];
  4901. mdk_rdev_t *rdev;
  4902. rdev = find_rdev(mddev, dev);
  4903. if (!rdev)
  4904. return -ENXIO;
  4905. if (rdev->raid_disk >= 0)
  4906. goto busy;
  4907. kick_rdev_from_array(rdev);
  4908. md_update_sb(mddev, 1);
  4909. md_new_event(mddev);
  4910. return 0;
  4911. busy:
  4912. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4913. bdevname(rdev->bdev,b), mdname(mddev));
  4914. return -EBUSY;
  4915. }
  4916. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4917. {
  4918. char b[BDEVNAME_SIZE];
  4919. int err;
  4920. mdk_rdev_t *rdev;
  4921. if (!mddev->pers)
  4922. return -ENODEV;
  4923. if (mddev->major_version != 0) {
  4924. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4925. " version-0 superblocks.\n",
  4926. mdname(mddev));
  4927. return -EINVAL;
  4928. }
  4929. if (!mddev->pers->hot_add_disk) {
  4930. printk(KERN_WARNING
  4931. "%s: personality does not support diskops!\n",
  4932. mdname(mddev));
  4933. return -EINVAL;
  4934. }
  4935. rdev = md_import_device(dev, -1, 0);
  4936. if (IS_ERR(rdev)) {
  4937. printk(KERN_WARNING
  4938. "md: error, md_import_device() returned %ld\n",
  4939. PTR_ERR(rdev));
  4940. return -EINVAL;
  4941. }
  4942. if (mddev->persistent)
  4943. rdev->sb_start = calc_dev_sboffset(rdev);
  4944. else
  4945. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4946. rdev->sectors = rdev->sb_start;
  4947. if (test_bit(Faulty, &rdev->flags)) {
  4948. printk(KERN_WARNING
  4949. "md: can not hot-add faulty %s disk to %s!\n",
  4950. bdevname(rdev->bdev,b), mdname(mddev));
  4951. err = -EINVAL;
  4952. goto abort_export;
  4953. }
  4954. clear_bit(In_sync, &rdev->flags);
  4955. rdev->desc_nr = -1;
  4956. rdev->saved_raid_disk = -1;
  4957. err = bind_rdev_to_array(rdev, mddev);
  4958. if (err)
  4959. goto abort_export;
  4960. /*
  4961. * The rest should better be atomic, we can have disk failures
  4962. * noticed in interrupt contexts ...
  4963. */
  4964. rdev->raid_disk = -1;
  4965. md_update_sb(mddev, 1);
  4966. /*
  4967. * Kick recovery, maybe this spare has to be added to the
  4968. * array immediately.
  4969. */
  4970. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4971. md_wakeup_thread(mddev->thread);
  4972. md_new_event(mddev);
  4973. return 0;
  4974. abort_export:
  4975. export_rdev(rdev);
  4976. return err;
  4977. }
  4978. static int set_bitmap_file(mddev_t *mddev, int fd)
  4979. {
  4980. int err;
  4981. if (mddev->pers) {
  4982. if (!mddev->pers->quiesce)
  4983. return -EBUSY;
  4984. if (mddev->recovery || mddev->sync_thread)
  4985. return -EBUSY;
  4986. /* we should be able to change the bitmap.. */
  4987. }
  4988. if (fd >= 0) {
  4989. if (mddev->bitmap)
  4990. return -EEXIST; /* cannot add when bitmap is present */
  4991. mddev->bitmap_info.file = fget(fd);
  4992. if (mddev->bitmap_info.file == NULL) {
  4993. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  4994. mdname(mddev));
  4995. return -EBADF;
  4996. }
  4997. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  4998. if (err) {
  4999. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5000. mdname(mddev));
  5001. fput(mddev->bitmap_info.file);
  5002. mddev->bitmap_info.file = NULL;
  5003. return err;
  5004. }
  5005. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5006. } else if (mddev->bitmap == NULL)
  5007. return -ENOENT; /* cannot remove what isn't there */
  5008. err = 0;
  5009. if (mddev->pers) {
  5010. mddev->pers->quiesce(mddev, 1);
  5011. if (fd >= 0) {
  5012. err = bitmap_create(mddev);
  5013. if (!err)
  5014. err = bitmap_load(mddev);
  5015. }
  5016. if (fd < 0 || err) {
  5017. bitmap_destroy(mddev);
  5018. fd = -1; /* make sure to put the file */
  5019. }
  5020. mddev->pers->quiesce(mddev, 0);
  5021. }
  5022. if (fd < 0) {
  5023. if (mddev->bitmap_info.file) {
  5024. restore_bitmap_write_access(mddev->bitmap_info.file);
  5025. fput(mddev->bitmap_info.file);
  5026. }
  5027. mddev->bitmap_info.file = NULL;
  5028. }
  5029. return err;
  5030. }
  5031. /*
  5032. * set_array_info is used two different ways
  5033. * The original usage is when creating a new array.
  5034. * In this usage, raid_disks is > 0 and it together with
  5035. * level, size, not_persistent,layout,chunksize determine the
  5036. * shape of the array.
  5037. * This will always create an array with a type-0.90.0 superblock.
  5038. * The newer usage is when assembling an array.
  5039. * In this case raid_disks will be 0, and the major_version field is
  5040. * use to determine which style super-blocks are to be found on the devices.
  5041. * The minor and patch _version numbers are also kept incase the
  5042. * super_block handler wishes to interpret them.
  5043. */
  5044. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  5045. {
  5046. if (info->raid_disks == 0) {
  5047. /* just setting version number for superblock loading */
  5048. if (info->major_version < 0 ||
  5049. info->major_version >= ARRAY_SIZE(super_types) ||
  5050. super_types[info->major_version].name == NULL) {
  5051. /* maybe try to auto-load a module? */
  5052. printk(KERN_INFO
  5053. "md: superblock version %d not known\n",
  5054. info->major_version);
  5055. return -EINVAL;
  5056. }
  5057. mddev->major_version = info->major_version;
  5058. mddev->minor_version = info->minor_version;
  5059. mddev->patch_version = info->patch_version;
  5060. mddev->persistent = !info->not_persistent;
  5061. /* ensure mddev_put doesn't delete this now that there
  5062. * is some minimal configuration.
  5063. */
  5064. mddev->ctime = get_seconds();
  5065. return 0;
  5066. }
  5067. mddev->major_version = MD_MAJOR_VERSION;
  5068. mddev->minor_version = MD_MINOR_VERSION;
  5069. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5070. mddev->ctime = get_seconds();
  5071. mddev->level = info->level;
  5072. mddev->clevel[0] = 0;
  5073. mddev->dev_sectors = 2 * (sector_t)info->size;
  5074. mddev->raid_disks = info->raid_disks;
  5075. /* don't set md_minor, it is determined by which /dev/md* was
  5076. * openned
  5077. */
  5078. if (info->state & (1<<MD_SB_CLEAN))
  5079. mddev->recovery_cp = MaxSector;
  5080. else
  5081. mddev->recovery_cp = 0;
  5082. mddev->persistent = ! info->not_persistent;
  5083. mddev->external = 0;
  5084. mddev->layout = info->layout;
  5085. mddev->chunk_sectors = info->chunk_size >> 9;
  5086. mddev->max_disks = MD_SB_DISKS;
  5087. if (mddev->persistent)
  5088. mddev->flags = 0;
  5089. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5090. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5091. mddev->bitmap_info.offset = 0;
  5092. mddev->reshape_position = MaxSector;
  5093. /*
  5094. * Generate a 128 bit UUID
  5095. */
  5096. get_random_bytes(mddev->uuid, 16);
  5097. mddev->new_level = mddev->level;
  5098. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5099. mddev->new_layout = mddev->layout;
  5100. mddev->delta_disks = 0;
  5101. return 0;
  5102. }
  5103. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  5104. {
  5105. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5106. if (mddev->external_size)
  5107. return;
  5108. mddev->array_sectors = array_sectors;
  5109. }
  5110. EXPORT_SYMBOL(md_set_array_sectors);
  5111. static int update_size(mddev_t *mddev, sector_t num_sectors)
  5112. {
  5113. mdk_rdev_t *rdev;
  5114. int rv;
  5115. int fit = (num_sectors == 0);
  5116. if (mddev->pers->resize == NULL)
  5117. return -EINVAL;
  5118. /* The "num_sectors" is the number of sectors of each device that
  5119. * is used. This can only make sense for arrays with redundancy.
  5120. * linear and raid0 always use whatever space is available. We can only
  5121. * consider changing this number if no resync or reconstruction is
  5122. * happening, and if the new size is acceptable. It must fit before the
  5123. * sb_start or, if that is <data_offset, it must fit before the size
  5124. * of each device. If num_sectors is zero, we find the largest size
  5125. * that fits.
  5126. */
  5127. if (mddev->sync_thread)
  5128. return -EBUSY;
  5129. if (mddev->bitmap)
  5130. /* Sorry, cannot grow a bitmap yet, just remove it,
  5131. * grow, and re-add.
  5132. */
  5133. return -EBUSY;
  5134. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5135. sector_t avail = rdev->sectors;
  5136. if (fit && (num_sectors == 0 || num_sectors > avail))
  5137. num_sectors = avail;
  5138. if (avail < num_sectors)
  5139. return -ENOSPC;
  5140. }
  5141. rv = mddev->pers->resize(mddev, num_sectors);
  5142. if (!rv)
  5143. revalidate_disk(mddev->gendisk);
  5144. return rv;
  5145. }
  5146. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  5147. {
  5148. int rv;
  5149. /* change the number of raid disks */
  5150. if (mddev->pers->check_reshape == NULL)
  5151. return -EINVAL;
  5152. if (raid_disks <= 0 ||
  5153. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5154. return -EINVAL;
  5155. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5156. return -EBUSY;
  5157. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5158. rv = mddev->pers->check_reshape(mddev);
  5159. if (rv < 0)
  5160. mddev->delta_disks = 0;
  5161. return rv;
  5162. }
  5163. /*
  5164. * update_array_info is used to change the configuration of an
  5165. * on-line array.
  5166. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5167. * fields in the info are checked against the array.
  5168. * Any differences that cannot be handled will cause an error.
  5169. * Normally, only one change can be managed at a time.
  5170. */
  5171. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  5172. {
  5173. int rv = 0;
  5174. int cnt = 0;
  5175. int state = 0;
  5176. /* calculate expected state,ignoring low bits */
  5177. if (mddev->bitmap && mddev->bitmap_info.offset)
  5178. state |= (1 << MD_SB_BITMAP_PRESENT);
  5179. if (mddev->major_version != info->major_version ||
  5180. mddev->minor_version != info->minor_version ||
  5181. /* mddev->patch_version != info->patch_version || */
  5182. mddev->ctime != info->ctime ||
  5183. mddev->level != info->level ||
  5184. /* mddev->layout != info->layout || */
  5185. !mddev->persistent != info->not_persistent||
  5186. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5187. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5188. ((state^info->state) & 0xfffffe00)
  5189. )
  5190. return -EINVAL;
  5191. /* Check there is only one change */
  5192. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5193. cnt++;
  5194. if (mddev->raid_disks != info->raid_disks)
  5195. cnt++;
  5196. if (mddev->layout != info->layout)
  5197. cnt++;
  5198. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5199. cnt++;
  5200. if (cnt == 0)
  5201. return 0;
  5202. if (cnt > 1)
  5203. return -EINVAL;
  5204. if (mddev->layout != info->layout) {
  5205. /* Change layout
  5206. * we don't need to do anything at the md level, the
  5207. * personality will take care of it all.
  5208. */
  5209. if (mddev->pers->check_reshape == NULL)
  5210. return -EINVAL;
  5211. else {
  5212. mddev->new_layout = info->layout;
  5213. rv = mddev->pers->check_reshape(mddev);
  5214. if (rv)
  5215. mddev->new_layout = mddev->layout;
  5216. return rv;
  5217. }
  5218. }
  5219. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5220. rv = update_size(mddev, (sector_t)info->size * 2);
  5221. if (mddev->raid_disks != info->raid_disks)
  5222. rv = update_raid_disks(mddev, info->raid_disks);
  5223. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5224. if (mddev->pers->quiesce == NULL)
  5225. return -EINVAL;
  5226. if (mddev->recovery || mddev->sync_thread)
  5227. return -EBUSY;
  5228. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5229. /* add the bitmap */
  5230. if (mddev->bitmap)
  5231. return -EEXIST;
  5232. if (mddev->bitmap_info.default_offset == 0)
  5233. return -EINVAL;
  5234. mddev->bitmap_info.offset =
  5235. mddev->bitmap_info.default_offset;
  5236. mddev->pers->quiesce(mddev, 1);
  5237. rv = bitmap_create(mddev);
  5238. if (!rv)
  5239. rv = bitmap_load(mddev);
  5240. if (rv)
  5241. bitmap_destroy(mddev);
  5242. mddev->pers->quiesce(mddev, 0);
  5243. } else {
  5244. /* remove the bitmap */
  5245. if (!mddev->bitmap)
  5246. return -ENOENT;
  5247. if (mddev->bitmap->file)
  5248. return -EINVAL;
  5249. mddev->pers->quiesce(mddev, 1);
  5250. bitmap_destroy(mddev);
  5251. mddev->pers->quiesce(mddev, 0);
  5252. mddev->bitmap_info.offset = 0;
  5253. }
  5254. }
  5255. md_update_sb(mddev, 1);
  5256. return rv;
  5257. }
  5258. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  5259. {
  5260. mdk_rdev_t *rdev;
  5261. if (mddev->pers == NULL)
  5262. return -ENODEV;
  5263. rdev = find_rdev(mddev, dev);
  5264. if (!rdev)
  5265. return -ENODEV;
  5266. md_error(mddev, rdev);
  5267. return 0;
  5268. }
  5269. /*
  5270. * We have a problem here : there is no easy way to give a CHS
  5271. * virtual geometry. We currently pretend that we have a 2 heads
  5272. * 4 sectors (with a BIG number of cylinders...). This drives
  5273. * dosfs just mad... ;-)
  5274. */
  5275. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5276. {
  5277. mddev_t *mddev = bdev->bd_disk->private_data;
  5278. geo->heads = 2;
  5279. geo->sectors = 4;
  5280. geo->cylinders = mddev->array_sectors / 8;
  5281. return 0;
  5282. }
  5283. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5284. unsigned int cmd, unsigned long arg)
  5285. {
  5286. int err = 0;
  5287. void __user *argp = (void __user *)arg;
  5288. mddev_t *mddev = NULL;
  5289. int ro;
  5290. if (!capable(CAP_SYS_ADMIN))
  5291. return -EACCES;
  5292. /*
  5293. * Commands dealing with the RAID driver but not any
  5294. * particular array:
  5295. */
  5296. switch (cmd)
  5297. {
  5298. case RAID_VERSION:
  5299. err = get_version(argp);
  5300. goto done;
  5301. case PRINT_RAID_DEBUG:
  5302. err = 0;
  5303. md_print_devices();
  5304. goto done;
  5305. #ifndef MODULE
  5306. case RAID_AUTORUN:
  5307. err = 0;
  5308. autostart_arrays(arg);
  5309. goto done;
  5310. #endif
  5311. default:;
  5312. }
  5313. /*
  5314. * Commands creating/starting a new array:
  5315. */
  5316. mddev = bdev->bd_disk->private_data;
  5317. if (!mddev) {
  5318. BUG();
  5319. goto abort;
  5320. }
  5321. err = mddev_lock(mddev);
  5322. if (err) {
  5323. printk(KERN_INFO
  5324. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5325. err, cmd);
  5326. goto abort;
  5327. }
  5328. switch (cmd)
  5329. {
  5330. case SET_ARRAY_INFO:
  5331. {
  5332. mdu_array_info_t info;
  5333. if (!arg)
  5334. memset(&info, 0, sizeof(info));
  5335. else if (copy_from_user(&info, argp, sizeof(info))) {
  5336. err = -EFAULT;
  5337. goto abort_unlock;
  5338. }
  5339. if (mddev->pers) {
  5340. err = update_array_info(mddev, &info);
  5341. if (err) {
  5342. printk(KERN_WARNING "md: couldn't update"
  5343. " array info. %d\n", err);
  5344. goto abort_unlock;
  5345. }
  5346. goto done_unlock;
  5347. }
  5348. if (!list_empty(&mddev->disks)) {
  5349. printk(KERN_WARNING
  5350. "md: array %s already has disks!\n",
  5351. mdname(mddev));
  5352. err = -EBUSY;
  5353. goto abort_unlock;
  5354. }
  5355. if (mddev->raid_disks) {
  5356. printk(KERN_WARNING
  5357. "md: array %s already initialised!\n",
  5358. mdname(mddev));
  5359. err = -EBUSY;
  5360. goto abort_unlock;
  5361. }
  5362. err = set_array_info(mddev, &info);
  5363. if (err) {
  5364. printk(KERN_WARNING "md: couldn't set"
  5365. " array info. %d\n", err);
  5366. goto abort_unlock;
  5367. }
  5368. }
  5369. goto done_unlock;
  5370. default:;
  5371. }
  5372. /*
  5373. * Commands querying/configuring an existing array:
  5374. */
  5375. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5376. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5377. if ((!mddev->raid_disks && !mddev->external)
  5378. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5379. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5380. && cmd != GET_BITMAP_FILE) {
  5381. err = -ENODEV;
  5382. goto abort_unlock;
  5383. }
  5384. /*
  5385. * Commands even a read-only array can execute:
  5386. */
  5387. switch (cmd)
  5388. {
  5389. case GET_ARRAY_INFO:
  5390. err = get_array_info(mddev, argp);
  5391. goto done_unlock;
  5392. case GET_BITMAP_FILE:
  5393. err = get_bitmap_file(mddev, argp);
  5394. goto done_unlock;
  5395. case GET_DISK_INFO:
  5396. err = get_disk_info(mddev, argp);
  5397. goto done_unlock;
  5398. case RESTART_ARRAY_RW:
  5399. err = restart_array(mddev);
  5400. goto done_unlock;
  5401. case STOP_ARRAY:
  5402. err = do_md_stop(mddev, 0, 1);
  5403. goto done_unlock;
  5404. case STOP_ARRAY_RO:
  5405. err = md_set_readonly(mddev, 1);
  5406. goto done_unlock;
  5407. case BLKROSET:
  5408. if (get_user(ro, (int __user *)(arg))) {
  5409. err = -EFAULT;
  5410. goto done_unlock;
  5411. }
  5412. err = -EINVAL;
  5413. /* if the bdev is going readonly the value of mddev->ro
  5414. * does not matter, no writes are coming
  5415. */
  5416. if (ro)
  5417. goto done_unlock;
  5418. /* are we are already prepared for writes? */
  5419. if (mddev->ro != 1)
  5420. goto done_unlock;
  5421. /* transitioning to readauto need only happen for
  5422. * arrays that call md_write_start
  5423. */
  5424. if (mddev->pers) {
  5425. err = restart_array(mddev);
  5426. if (err == 0) {
  5427. mddev->ro = 2;
  5428. set_disk_ro(mddev->gendisk, 0);
  5429. }
  5430. }
  5431. goto done_unlock;
  5432. }
  5433. /*
  5434. * The remaining ioctls are changing the state of the
  5435. * superblock, so we do not allow them on read-only arrays.
  5436. * However non-MD ioctls (e.g. get-size) will still come through
  5437. * here and hit the 'default' below, so only disallow
  5438. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5439. */
  5440. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5441. if (mddev->ro == 2) {
  5442. mddev->ro = 0;
  5443. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5444. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5445. md_wakeup_thread(mddev->thread);
  5446. } else {
  5447. err = -EROFS;
  5448. goto abort_unlock;
  5449. }
  5450. }
  5451. switch (cmd)
  5452. {
  5453. case ADD_NEW_DISK:
  5454. {
  5455. mdu_disk_info_t info;
  5456. if (copy_from_user(&info, argp, sizeof(info)))
  5457. err = -EFAULT;
  5458. else
  5459. err = add_new_disk(mddev, &info);
  5460. goto done_unlock;
  5461. }
  5462. case HOT_REMOVE_DISK:
  5463. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5464. goto done_unlock;
  5465. case HOT_ADD_DISK:
  5466. err = hot_add_disk(mddev, new_decode_dev(arg));
  5467. goto done_unlock;
  5468. case SET_DISK_FAULTY:
  5469. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5470. goto done_unlock;
  5471. case RUN_ARRAY:
  5472. err = do_md_run(mddev);
  5473. goto done_unlock;
  5474. case SET_BITMAP_FILE:
  5475. err = set_bitmap_file(mddev, (int)arg);
  5476. goto done_unlock;
  5477. default:
  5478. err = -EINVAL;
  5479. goto abort_unlock;
  5480. }
  5481. done_unlock:
  5482. abort_unlock:
  5483. if (mddev->hold_active == UNTIL_IOCTL &&
  5484. err != -EINVAL)
  5485. mddev->hold_active = 0;
  5486. mddev_unlock(mddev);
  5487. return err;
  5488. done:
  5489. if (err)
  5490. MD_BUG();
  5491. abort:
  5492. return err;
  5493. }
  5494. #ifdef CONFIG_COMPAT
  5495. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5496. unsigned int cmd, unsigned long arg)
  5497. {
  5498. switch (cmd) {
  5499. case HOT_REMOVE_DISK:
  5500. case HOT_ADD_DISK:
  5501. case SET_DISK_FAULTY:
  5502. case SET_BITMAP_FILE:
  5503. /* These take in integer arg, do not convert */
  5504. break;
  5505. default:
  5506. arg = (unsigned long)compat_ptr(arg);
  5507. break;
  5508. }
  5509. return md_ioctl(bdev, mode, cmd, arg);
  5510. }
  5511. #endif /* CONFIG_COMPAT */
  5512. static int md_open(struct block_device *bdev, fmode_t mode)
  5513. {
  5514. /*
  5515. * Succeed if we can lock the mddev, which confirms that
  5516. * it isn't being stopped right now.
  5517. */
  5518. mddev_t *mddev = mddev_find(bdev->bd_dev);
  5519. int err;
  5520. if (mddev->gendisk != bdev->bd_disk) {
  5521. /* we are racing with mddev_put which is discarding this
  5522. * bd_disk.
  5523. */
  5524. mddev_put(mddev);
  5525. /* Wait until bdev->bd_disk is definitely gone */
  5526. flush_workqueue(md_misc_wq);
  5527. /* Then retry the open from the top */
  5528. return -ERESTARTSYS;
  5529. }
  5530. BUG_ON(mddev != bdev->bd_disk->private_data);
  5531. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5532. goto out;
  5533. err = 0;
  5534. atomic_inc(&mddev->openers);
  5535. mutex_unlock(&mddev->open_mutex);
  5536. check_disk_change(bdev);
  5537. out:
  5538. return err;
  5539. }
  5540. static int md_release(struct gendisk *disk, fmode_t mode)
  5541. {
  5542. mddev_t *mddev = disk->private_data;
  5543. BUG_ON(!mddev);
  5544. atomic_dec(&mddev->openers);
  5545. mddev_put(mddev);
  5546. return 0;
  5547. }
  5548. static int md_media_changed(struct gendisk *disk)
  5549. {
  5550. mddev_t *mddev = disk->private_data;
  5551. return mddev->changed;
  5552. }
  5553. static int md_revalidate(struct gendisk *disk)
  5554. {
  5555. mddev_t *mddev = disk->private_data;
  5556. mddev->changed = 0;
  5557. return 0;
  5558. }
  5559. static const struct block_device_operations md_fops =
  5560. {
  5561. .owner = THIS_MODULE,
  5562. .open = md_open,
  5563. .release = md_release,
  5564. .ioctl = md_ioctl,
  5565. #ifdef CONFIG_COMPAT
  5566. .compat_ioctl = md_compat_ioctl,
  5567. #endif
  5568. .getgeo = md_getgeo,
  5569. .media_changed = md_media_changed,
  5570. .revalidate_disk= md_revalidate,
  5571. };
  5572. static int md_thread(void * arg)
  5573. {
  5574. mdk_thread_t *thread = arg;
  5575. /*
  5576. * md_thread is a 'system-thread', it's priority should be very
  5577. * high. We avoid resource deadlocks individually in each
  5578. * raid personality. (RAID5 does preallocation) We also use RR and
  5579. * the very same RT priority as kswapd, thus we will never get
  5580. * into a priority inversion deadlock.
  5581. *
  5582. * we definitely have to have equal or higher priority than
  5583. * bdflush, otherwise bdflush will deadlock if there are too
  5584. * many dirty RAID5 blocks.
  5585. */
  5586. allow_signal(SIGKILL);
  5587. while (!kthread_should_stop()) {
  5588. /* We need to wait INTERRUPTIBLE so that
  5589. * we don't add to the load-average.
  5590. * That means we need to be sure no signals are
  5591. * pending
  5592. */
  5593. if (signal_pending(current))
  5594. flush_signals(current);
  5595. wait_event_interruptible_timeout
  5596. (thread->wqueue,
  5597. test_bit(THREAD_WAKEUP, &thread->flags)
  5598. || kthread_should_stop(),
  5599. thread->timeout);
  5600. clear_bit(THREAD_WAKEUP, &thread->flags);
  5601. if (!kthread_should_stop())
  5602. thread->run(thread->mddev);
  5603. }
  5604. return 0;
  5605. }
  5606. void md_wakeup_thread(mdk_thread_t *thread)
  5607. {
  5608. if (thread) {
  5609. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  5610. set_bit(THREAD_WAKEUP, &thread->flags);
  5611. wake_up(&thread->wqueue);
  5612. }
  5613. }
  5614. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  5615. const char *name)
  5616. {
  5617. mdk_thread_t *thread;
  5618. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  5619. if (!thread)
  5620. return NULL;
  5621. init_waitqueue_head(&thread->wqueue);
  5622. thread->run = run;
  5623. thread->mddev = mddev;
  5624. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5625. thread->tsk = kthread_run(md_thread, thread,
  5626. "%s_%s",
  5627. mdname(thread->mddev),
  5628. name ?: mddev->pers->name);
  5629. if (IS_ERR(thread->tsk)) {
  5630. kfree(thread);
  5631. return NULL;
  5632. }
  5633. return thread;
  5634. }
  5635. void md_unregister_thread(mdk_thread_t *thread)
  5636. {
  5637. if (!thread)
  5638. return;
  5639. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5640. kthread_stop(thread->tsk);
  5641. kfree(thread);
  5642. }
  5643. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  5644. {
  5645. if (!mddev) {
  5646. MD_BUG();
  5647. return;
  5648. }
  5649. if (!rdev || test_bit(Faulty, &rdev->flags))
  5650. return;
  5651. if (mddev->external)
  5652. set_bit(Blocked, &rdev->flags);
  5653. /*
  5654. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  5655. mdname(mddev),
  5656. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  5657. __builtin_return_address(0),__builtin_return_address(1),
  5658. __builtin_return_address(2),__builtin_return_address(3));
  5659. */
  5660. if (!mddev->pers)
  5661. return;
  5662. if (!mddev->pers->error_handler)
  5663. return;
  5664. mddev->pers->error_handler(mddev,rdev);
  5665. if (mddev->degraded)
  5666. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5667. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5668. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5669. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5670. md_wakeup_thread(mddev->thread);
  5671. if (mddev->event_work.func)
  5672. queue_work(md_misc_wq, &mddev->event_work);
  5673. md_new_event_inintr(mddev);
  5674. }
  5675. /* seq_file implementation /proc/mdstat */
  5676. static void status_unused(struct seq_file *seq)
  5677. {
  5678. int i = 0;
  5679. mdk_rdev_t *rdev;
  5680. seq_printf(seq, "unused devices: ");
  5681. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5682. char b[BDEVNAME_SIZE];
  5683. i++;
  5684. seq_printf(seq, "%s ",
  5685. bdevname(rdev->bdev,b));
  5686. }
  5687. if (!i)
  5688. seq_printf(seq, "<none>");
  5689. seq_printf(seq, "\n");
  5690. }
  5691. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5692. {
  5693. sector_t max_sectors, resync, res;
  5694. unsigned long dt, db;
  5695. sector_t rt;
  5696. int scale;
  5697. unsigned int per_milli;
  5698. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5699. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5700. max_sectors = mddev->resync_max_sectors;
  5701. else
  5702. max_sectors = mddev->dev_sectors;
  5703. /*
  5704. * Should not happen.
  5705. */
  5706. if (!max_sectors) {
  5707. MD_BUG();
  5708. return;
  5709. }
  5710. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5711. * in a sector_t, and (max_sectors>>scale) will fit in a
  5712. * u32, as those are the requirements for sector_div.
  5713. * Thus 'scale' must be at least 10
  5714. */
  5715. scale = 10;
  5716. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5717. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5718. scale++;
  5719. }
  5720. res = (resync>>scale)*1000;
  5721. sector_div(res, (u32)((max_sectors>>scale)+1));
  5722. per_milli = res;
  5723. {
  5724. int i, x = per_milli/50, y = 20-x;
  5725. seq_printf(seq, "[");
  5726. for (i = 0; i < x; i++)
  5727. seq_printf(seq, "=");
  5728. seq_printf(seq, ">");
  5729. for (i = 0; i < y; i++)
  5730. seq_printf(seq, ".");
  5731. seq_printf(seq, "] ");
  5732. }
  5733. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5734. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5735. "reshape" :
  5736. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5737. "check" :
  5738. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5739. "resync" : "recovery"))),
  5740. per_milli/10, per_milli % 10,
  5741. (unsigned long long) resync/2,
  5742. (unsigned long long) max_sectors/2);
  5743. /*
  5744. * dt: time from mark until now
  5745. * db: blocks written from mark until now
  5746. * rt: remaining time
  5747. *
  5748. * rt is a sector_t, so could be 32bit or 64bit.
  5749. * So we divide before multiply in case it is 32bit and close
  5750. * to the limit.
  5751. * We scale the divisor (db) by 32 to avoid losing precision
  5752. * near the end of resync when the number of remaining sectors
  5753. * is close to 'db'.
  5754. * We then divide rt by 32 after multiplying by db to compensate.
  5755. * The '+1' avoids division by zero if db is very small.
  5756. */
  5757. dt = ((jiffies - mddev->resync_mark) / HZ);
  5758. if (!dt) dt++;
  5759. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5760. - mddev->resync_mark_cnt;
  5761. rt = max_sectors - resync; /* number of remaining sectors */
  5762. sector_div(rt, db/32+1);
  5763. rt *= dt;
  5764. rt >>= 5;
  5765. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5766. ((unsigned long)rt % 60)/6);
  5767. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5768. }
  5769. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5770. {
  5771. struct list_head *tmp;
  5772. loff_t l = *pos;
  5773. mddev_t *mddev;
  5774. if (l >= 0x10000)
  5775. return NULL;
  5776. if (!l--)
  5777. /* header */
  5778. return (void*)1;
  5779. spin_lock(&all_mddevs_lock);
  5780. list_for_each(tmp,&all_mddevs)
  5781. if (!l--) {
  5782. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5783. mddev_get(mddev);
  5784. spin_unlock(&all_mddevs_lock);
  5785. return mddev;
  5786. }
  5787. spin_unlock(&all_mddevs_lock);
  5788. if (!l--)
  5789. return (void*)2;/* tail */
  5790. return NULL;
  5791. }
  5792. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5793. {
  5794. struct list_head *tmp;
  5795. mddev_t *next_mddev, *mddev = v;
  5796. ++*pos;
  5797. if (v == (void*)2)
  5798. return NULL;
  5799. spin_lock(&all_mddevs_lock);
  5800. if (v == (void*)1)
  5801. tmp = all_mddevs.next;
  5802. else
  5803. tmp = mddev->all_mddevs.next;
  5804. if (tmp != &all_mddevs)
  5805. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5806. else {
  5807. next_mddev = (void*)2;
  5808. *pos = 0x10000;
  5809. }
  5810. spin_unlock(&all_mddevs_lock);
  5811. if (v != (void*)1)
  5812. mddev_put(mddev);
  5813. return next_mddev;
  5814. }
  5815. static void md_seq_stop(struct seq_file *seq, void *v)
  5816. {
  5817. mddev_t *mddev = v;
  5818. if (mddev && v != (void*)1 && v != (void*)2)
  5819. mddev_put(mddev);
  5820. }
  5821. struct mdstat_info {
  5822. int event;
  5823. };
  5824. static int md_seq_show(struct seq_file *seq, void *v)
  5825. {
  5826. mddev_t *mddev = v;
  5827. sector_t sectors;
  5828. mdk_rdev_t *rdev;
  5829. struct mdstat_info *mi = seq->private;
  5830. struct bitmap *bitmap;
  5831. if (v == (void*)1) {
  5832. struct mdk_personality *pers;
  5833. seq_printf(seq, "Personalities : ");
  5834. spin_lock(&pers_lock);
  5835. list_for_each_entry(pers, &pers_list, list)
  5836. seq_printf(seq, "[%s] ", pers->name);
  5837. spin_unlock(&pers_lock);
  5838. seq_printf(seq, "\n");
  5839. mi->event = atomic_read(&md_event_count);
  5840. return 0;
  5841. }
  5842. if (v == (void*)2) {
  5843. status_unused(seq);
  5844. return 0;
  5845. }
  5846. if (mddev_lock(mddev) < 0)
  5847. return -EINTR;
  5848. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5849. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5850. mddev->pers ? "" : "in");
  5851. if (mddev->pers) {
  5852. if (mddev->ro==1)
  5853. seq_printf(seq, " (read-only)");
  5854. if (mddev->ro==2)
  5855. seq_printf(seq, " (auto-read-only)");
  5856. seq_printf(seq, " %s", mddev->pers->name);
  5857. }
  5858. sectors = 0;
  5859. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5860. char b[BDEVNAME_SIZE];
  5861. seq_printf(seq, " %s[%d]",
  5862. bdevname(rdev->bdev,b), rdev->desc_nr);
  5863. if (test_bit(WriteMostly, &rdev->flags))
  5864. seq_printf(seq, "(W)");
  5865. if (test_bit(Faulty, &rdev->flags)) {
  5866. seq_printf(seq, "(F)");
  5867. continue;
  5868. } else if (rdev->raid_disk < 0)
  5869. seq_printf(seq, "(S)"); /* spare */
  5870. sectors += rdev->sectors;
  5871. }
  5872. if (!list_empty(&mddev->disks)) {
  5873. if (mddev->pers)
  5874. seq_printf(seq, "\n %llu blocks",
  5875. (unsigned long long)
  5876. mddev->array_sectors / 2);
  5877. else
  5878. seq_printf(seq, "\n %llu blocks",
  5879. (unsigned long long)sectors / 2);
  5880. }
  5881. if (mddev->persistent) {
  5882. if (mddev->major_version != 0 ||
  5883. mddev->minor_version != 90) {
  5884. seq_printf(seq," super %d.%d",
  5885. mddev->major_version,
  5886. mddev->minor_version);
  5887. }
  5888. } else if (mddev->external)
  5889. seq_printf(seq, " super external:%s",
  5890. mddev->metadata_type);
  5891. else
  5892. seq_printf(seq, " super non-persistent");
  5893. if (mddev->pers) {
  5894. mddev->pers->status(seq, mddev);
  5895. seq_printf(seq, "\n ");
  5896. if (mddev->pers->sync_request) {
  5897. if (mddev->curr_resync > 2) {
  5898. status_resync(seq, mddev);
  5899. seq_printf(seq, "\n ");
  5900. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5901. seq_printf(seq, "\tresync=DELAYED\n ");
  5902. else if (mddev->recovery_cp < MaxSector)
  5903. seq_printf(seq, "\tresync=PENDING\n ");
  5904. }
  5905. } else
  5906. seq_printf(seq, "\n ");
  5907. if ((bitmap = mddev->bitmap)) {
  5908. unsigned long chunk_kb;
  5909. unsigned long flags;
  5910. spin_lock_irqsave(&bitmap->lock, flags);
  5911. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5912. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5913. "%lu%s chunk",
  5914. bitmap->pages - bitmap->missing_pages,
  5915. bitmap->pages,
  5916. (bitmap->pages - bitmap->missing_pages)
  5917. << (PAGE_SHIFT - 10),
  5918. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5919. chunk_kb ? "KB" : "B");
  5920. if (bitmap->file) {
  5921. seq_printf(seq, ", file: ");
  5922. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5923. }
  5924. seq_printf(seq, "\n");
  5925. spin_unlock_irqrestore(&bitmap->lock, flags);
  5926. }
  5927. seq_printf(seq, "\n");
  5928. }
  5929. mddev_unlock(mddev);
  5930. return 0;
  5931. }
  5932. static const struct seq_operations md_seq_ops = {
  5933. .start = md_seq_start,
  5934. .next = md_seq_next,
  5935. .stop = md_seq_stop,
  5936. .show = md_seq_show,
  5937. };
  5938. static int md_seq_open(struct inode *inode, struct file *file)
  5939. {
  5940. int error;
  5941. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  5942. if (mi == NULL)
  5943. return -ENOMEM;
  5944. error = seq_open(file, &md_seq_ops);
  5945. if (error)
  5946. kfree(mi);
  5947. else {
  5948. struct seq_file *p = file->private_data;
  5949. p->private = mi;
  5950. mi->event = atomic_read(&md_event_count);
  5951. }
  5952. return error;
  5953. }
  5954. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5955. {
  5956. struct seq_file *m = filp->private_data;
  5957. struct mdstat_info *mi = m->private;
  5958. int mask;
  5959. poll_wait(filp, &md_event_waiters, wait);
  5960. /* always allow read */
  5961. mask = POLLIN | POLLRDNORM;
  5962. if (mi->event != atomic_read(&md_event_count))
  5963. mask |= POLLERR | POLLPRI;
  5964. return mask;
  5965. }
  5966. static const struct file_operations md_seq_fops = {
  5967. .owner = THIS_MODULE,
  5968. .open = md_seq_open,
  5969. .read = seq_read,
  5970. .llseek = seq_lseek,
  5971. .release = seq_release_private,
  5972. .poll = mdstat_poll,
  5973. };
  5974. int register_md_personality(struct mdk_personality *p)
  5975. {
  5976. spin_lock(&pers_lock);
  5977. list_add_tail(&p->list, &pers_list);
  5978. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5979. spin_unlock(&pers_lock);
  5980. return 0;
  5981. }
  5982. int unregister_md_personality(struct mdk_personality *p)
  5983. {
  5984. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5985. spin_lock(&pers_lock);
  5986. list_del_init(&p->list);
  5987. spin_unlock(&pers_lock);
  5988. return 0;
  5989. }
  5990. static int is_mddev_idle(mddev_t *mddev, int init)
  5991. {
  5992. mdk_rdev_t * rdev;
  5993. int idle;
  5994. int curr_events;
  5995. idle = 1;
  5996. rcu_read_lock();
  5997. rdev_for_each_rcu(rdev, mddev) {
  5998. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  5999. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6000. (int)part_stat_read(&disk->part0, sectors[1]) -
  6001. atomic_read(&disk->sync_io);
  6002. /* sync IO will cause sync_io to increase before the disk_stats
  6003. * as sync_io is counted when a request starts, and
  6004. * disk_stats is counted when it completes.
  6005. * So resync activity will cause curr_events to be smaller than
  6006. * when there was no such activity.
  6007. * non-sync IO will cause disk_stat to increase without
  6008. * increasing sync_io so curr_events will (eventually)
  6009. * be larger than it was before. Once it becomes
  6010. * substantially larger, the test below will cause
  6011. * the array to appear non-idle, and resync will slow
  6012. * down.
  6013. * If there is a lot of outstanding resync activity when
  6014. * we set last_event to curr_events, then all that activity
  6015. * completing might cause the array to appear non-idle
  6016. * and resync will be slowed down even though there might
  6017. * not have been non-resync activity. This will only
  6018. * happen once though. 'last_events' will soon reflect
  6019. * the state where there is little or no outstanding
  6020. * resync requests, and further resync activity will
  6021. * always make curr_events less than last_events.
  6022. *
  6023. */
  6024. if (init || curr_events - rdev->last_events > 64) {
  6025. rdev->last_events = curr_events;
  6026. idle = 0;
  6027. }
  6028. }
  6029. rcu_read_unlock();
  6030. return idle;
  6031. }
  6032. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  6033. {
  6034. /* another "blocks" (512byte) blocks have been synced */
  6035. atomic_sub(blocks, &mddev->recovery_active);
  6036. wake_up(&mddev->recovery_wait);
  6037. if (!ok) {
  6038. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6039. md_wakeup_thread(mddev->thread);
  6040. // stop recovery, signal do_sync ....
  6041. }
  6042. }
  6043. /* md_write_start(mddev, bi)
  6044. * If we need to update some array metadata (e.g. 'active' flag
  6045. * in superblock) before writing, schedule a superblock update
  6046. * and wait for it to complete.
  6047. */
  6048. void md_write_start(mddev_t *mddev, struct bio *bi)
  6049. {
  6050. int did_change = 0;
  6051. if (bio_data_dir(bi) != WRITE)
  6052. return;
  6053. BUG_ON(mddev->ro == 1);
  6054. if (mddev->ro == 2) {
  6055. /* need to switch to read/write */
  6056. mddev->ro = 0;
  6057. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6058. md_wakeup_thread(mddev->thread);
  6059. md_wakeup_thread(mddev->sync_thread);
  6060. did_change = 1;
  6061. }
  6062. atomic_inc(&mddev->writes_pending);
  6063. if (mddev->safemode == 1)
  6064. mddev->safemode = 0;
  6065. if (mddev->in_sync) {
  6066. spin_lock_irq(&mddev->write_lock);
  6067. if (mddev->in_sync) {
  6068. mddev->in_sync = 0;
  6069. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6070. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6071. md_wakeup_thread(mddev->thread);
  6072. did_change = 1;
  6073. }
  6074. spin_unlock_irq(&mddev->write_lock);
  6075. }
  6076. if (did_change)
  6077. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6078. wait_event(mddev->sb_wait,
  6079. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6080. }
  6081. void md_write_end(mddev_t *mddev)
  6082. {
  6083. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6084. if (mddev->safemode == 2)
  6085. md_wakeup_thread(mddev->thread);
  6086. else if (mddev->safemode_delay)
  6087. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6088. }
  6089. }
  6090. /* md_allow_write(mddev)
  6091. * Calling this ensures that the array is marked 'active' so that writes
  6092. * may proceed without blocking. It is important to call this before
  6093. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6094. * Must be called with mddev_lock held.
  6095. *
  6096. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6097. * is dropped, so return -EAGAIN after notifying userspace.
  6098. */
  6099. int md_allow_write(mddev_t *mddev)
  6100. {
  6101. if (!mddev->pers)
  6102. return 0;
  6103. if (mddev->ro)
  6104. return 0;
  6105. if (!mddev->pers->sync_request)
  6106. return 0;
  6107. spin_lock_irq(&mddev->write_lock);
  6108. if (mddev->in_sync) {
  6109. mddev->in_sync = 0;
  6110. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6111. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6112. if (mddev->safemode_delay &&
  6113. mddev->safemode == 0)
  6114. mddev->safemode = 1;
  6115. spin_unlock_irq(&mddev->write_lock);
  6116. md_update_sb(mddev, 0);
  6117. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6118. } else
  6119. spin_unlock_irq(&mddev->write_lock);
  6120. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6121. return -EAGAIN;
  6122. else
  6123. return 0;
  6124. }
  6125. EXPORT_SYMBOL_GPL(md_allow_write);
  6126. #define SYNC_MARKS 10
  6127. #define SYNC_MARK_STEP (3*HZ)
  6128. void md_do_sync(mddev_t *mddev)
  6129. {
  6130. mddev_t *mddev2;
  6131. unsigned int currspeed = 0,
  6132. window;
  6133. sector_t max_sectors,j, io_sectors;
  6134. unsigned long mark[SYNC_MARKS];
  6135. sector_t mark_cnt[SYNC_MARKS];
  6136. int last_mark,m;
  6137. struct list_head *tmp;
  6138. sector_t last_check;
  6139. int skipped = 0;
  6140. mdk_rdev_t *rdev;
  6141. char *desc;
  6142. /* just incase thread restarts... */
  6143. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6144. return;
  6145. if (mddev->ro) /* never try to sync a read-only array */
  6146. return;
  6147. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6148. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6149. desc = "data-check";
  6150. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6151. desc = "requested-resync";
  6152. else
  6153. desc = "resync";
  6154. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6155. desc = "reshape";
  6156. else
  6157. desc = "recovery";
  6158. /* we overload curr_resync somewhat here.
  6159. * 0 == not engaged in resync at all
  6160. * 2 == checking that there is no conflict with another sync
  6161. * 1 == like 2, but have yielded to allow conflicting resync to
  6162. * commense
  6163. * other == active in resync - this many blocks
  6164. *
  6165. * Before starting a resync we must have set curr_resync to
  6166. * 2, and then checked that every "conflicting" array has curr_resync
  6167. * less than ours. When we find one that is the same or higher
  6168. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6169. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6170. * This will mean we have to start checking from the beginning again.
  6171. *
  6172. */
  6173. do {
  6174. mddev->curr_resync = 2;
  6175. try_again:
  6176. if (kthread_should_stop())
  6177. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6178. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6179. goto skip;
  6180. for_each_mddev(mddev2, tmp) {
  6181. if (mddev2 == mddev)
  6182. continue;
  6183. if (!mddev->parallel_resync
  6184. && mddev2->curr_resync
  6185. && match_mddev_units(mddev, mddev2)) {
  6186. DEFINE_WAIT(wq);
  6187. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6188. /* arbitrarily yield */
  6189. mddev->curr_resync = 1;
  6190. wake_up(&resync_wait);
  6191. }
  6192. if (mddev > mddev2 && mddev->curr_resync == 1)
  6193. /* no need to wait here, we can wait the next
  6194. * time 'round when curr_resync == 2
  6195. */
  6196. continue;
  6197. /* We need to wait 'interruptible' so as not to
  6198. * contribute to the load average, and not to
  6199. * be caught by 'softlockup'
  6200. */
  6201. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6202. if (!kthread_should_stop() &&
  6203. mddev2->curr_resync >= mddev->curr_resync) {
  6204. printk(KERN_INFO "md: delaying %s of %s"
  6205. " until %s has finished (they"
  6206. " share one or more physical units)\n",
  6207. desc, mdname(mddev), mdname(mddev2));
  6208. mddev_put(mddev2);
  6209. if (signal_pending(current))
  6210. flush_signals(current);
  6211. schedule();
  6212. finish_wait(&resync_wait, &wq);
  6213. goto try_again;
  6214. }
  6215. finish_wait(&resync_wait, &wq);
  6216. }
  6217. }
  6218. } while (mddev->curr_resync < 2);
  6219. j = 0;
  6220. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6221. /* resync follows the size requested by the personality,
  6222. * which defaults to physical size, but can be virtual size
  6223. */
  6224. max_sectors = mddev->resync_max_sectors;
  6225. mddev->resync_mismatches = 0;
  6226. /* we don't use the checkpoint if there's a bitmap */
  6227. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6228. j = mddev->resync_min;
  6229. else if (!mddev->bitmap)
  6230. j = mddev->recovery_cp;
  6231. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6232. max_sectors = mddev->dev_sectors;
  6233. else {
  6234. /* recovery follows the physical size of devices */
  6235. max_sectors = mddev->dev_sectors;
  6236. j = MaxSector;
  6237. rcu_read_lock();
  6238. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6239. if (rdev->raid_disk >= 0 &&
  6240. !test_bit(Faulty, &rdev->flags) &&
  6241. !test_bit(In_sync, &rdev->flags) &&
  6242. rdev->recovery_offset < j)
  6243. j = rdev->recovery_offset;
  6244. rcu_read_unlock();
  6245. }
  6246. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6247. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6248. " %d KB/sec/disk.\n", speed_min(mddev));
  6249. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6250. "(but not more than %d KB/sec) for %s.\n",
  6251. speed_max(mddev), desc);
  6252. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6253. io_sectors = 0;
  6254. for (m = 0; m < SYNC_MARKS; m++) {
  6255. mark[m] = jiffies;
  6256. mark_cnt[m] = io_sectors;
  6257. }
  6258. last_mark = 0;
  6259. mddev->resync_mark = mark[last_mark];
  6260. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6261. /*
  6262. * Tune reconstruction:
  6263. */
  6264. window = 32*(PAGE_SIZE/512);
  6265. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6266. window/2, (unsigned long long)max_sectors/2);
  6267. atomic_set(&mddev->recovery_active, 0);
  6268. last_check = 0;
  6269. if (j>2) {
  6270. printk(KERN_INFO
  6271. "md: resuming %s of %s from checkpoint.\n",
  6272. desc, mdname(mddev));
  6273. mddev->curr_resync = j;
  6274. }
  6275. mddev->curr_resync_completed = j;
  6276. while (j < max_sectors) {
  6277. sector_t sectors;
  6278. skipped = 0;
  6279. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6280. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6281. (mddev->curr_resync - mddev->curr_resync_completed)
  6282. > (max_sectors >> 4)) ||
  6283. (j - mddev->curr_resync_completed)*2
  6284. >= mddev->resync_max - mddev->curr_resync_completed
  6285. )) {
  6286. /* time to update curr_resync_completed */
  6287. wait_event(mddev->recovery_wait,
  6288. atomic_read(&mddev->recovery_active) == 0);
  6289. mddev->curr_resync_completed = j;
  6290. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6291. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6292. }
  6293. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6294. /* As this condition is controlled by user-space,
  6295. * we can block indefinitely, so use '_interruptible'
  6296. * to avoid triggering warnings.
  6297. */
  6298. flush_signals(current); /* just in case */
  6299. wait_event_interruptible(mddev->recovery_wait,
  6300. mddev->resync_max > j
  6301. || kthread_should_stop());
  6302. }
  6303. if (kthread_should_stop())
  6304. goto interrupted;
  6305. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6306. currspeed < speed_min(mddev));
  6307. if (sectors == 0) {
  6308. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6309. goto out;
  6310. }
  6311. if (!skipped) { /* actual IO requested */
  6312. io_sectors += sectors;
  6313. atomic_add(sectors, &mddev->recovery_active);
  6314. }
  6315. j += sectors;
  6316. if (j>1) mddev->curr_resync = j;
  6317. mddev->curr_mark_cnt = io_sectors;
  6318. if (last_check == 0)
  6319. /* this is the earliers that rebuilt will be
  6320. * visible in /proc/mdstat
  6321. */
  6322. md_new_event(mddev);
  6323. if (last_check + window > io_sectors || j == max_sectors)
  6324. continue;
  6325. last_check = io_sectors;
  6326. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6327. break;
  6328. repeat:
  6329. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6330. /* step marks */
  6331. int next = (last_mark+1) % SYNC_MARKS;
  6332. mddev->resync_mark = mark[next];
  6333. mddev->resync_mark_cnt = mark_cnt[next];
  6334. mark[next] = jiffies;
  6335. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6336. last_mark = next;
  6337. }
  6338. if (kthread_should_stop())
  6339. goto interrupted;
  6340. /*
  6341. * this loop exits only if either when we are slower than
  6342. * the 'hard' speed limit, or the system was IO-idle for
  6343. * a jiffy.
  6344. * the system might be non-idle CPU-wise, but we only care
  6345. * about not overloading the IO subsystem. (things like an
  6346. * e2fsck being done on the RAID array should execute fast)
  6347. */
  6348. cond_resched();
  6349. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6350. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6351. if (currspeed > speed_min(mddev)) {
  6352. if ((currspeed > speed_max(mddev)) ||
  6353. !is_mddev_idle(mddev, 0)) {
  6354. msleep(500);
  6355. goto repeat;
  6356. }
  6357. }
  6358. }
  6359. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6360. /*
  6361. * this also signals 'finished resyncing' to md_stop
  6362. */
  6363. out:
  6364. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6365. /* tell personality that we are finished */
  6366. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6367. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6368. mddev->curr_resync > 2) {
  6369. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6370. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6371. if (mddev->curr_resync >= mddev->recovery_cp) {
  6372. printk(KERN_INFO
  6373. "md: checkpointing %s of %s.\n",
  6374. desc, mdname(mddev));
  6375. mddev->recovery_cp = mddev->curr_resync;
  6376. }
  6377. } else
  6378. mddev->recovery_cp = MaxSector;
  6379. } else {
  6380. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6381. mddev->curr_resync = MaxSector;
  6382. rcu_read_lock();
  6383. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6384. if (rdev->raid_disk >= 0 &&
  6385. mddev->delta_disks >= 0 &&
  6386. !test_bit(Faulty, &rdev->flags) &&
  6387. !test_bit(In_sync, &rdev->flags) &&
  6388. rdev->recovery_offset < mddev->curr_resync)
  6389. rdev->recovery_offset = mddev->curr_resync;
  6390. rcu_read_unlock();
  6391. }
  6392. }
  6393. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6394. skip:
  6395. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6396. /* We completed so min/max setting can be forgotten if used. */
  6397. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6398. mddev->resync_min = 0;
  6399. mddev->resync_max = MaxSector;
  6400. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6401. mddev->resync_min = mddev->curr_resync_completed;
  6402. mddev->curr_resync = 0;
  6403. wake_up(&resync_wait);
  6404. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6405. md_wakeup_thread(mddev->thread);
  6406. return;
  6407. interrupted:
  6408. /*
  6409. * got a signal, exit.
  6410. */
  6411. printk(KERN_INFO
  6412. "md: md_do_sync() got signal ... exiting\n");
  6413. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6414. goto out;
  6415. }
  6416. EXPORT_SYMBOL_GPL(md_do_sync);
  6417. static int remove_and_add_spares(mddev_t *mddev)
  6418. {
  6419. mdk_rdev_t *rdev;
  6420. int spares = 0;
  6421. mddev->curr_resync_completed = 0;
  6422. list_for_each_entry(rdev, &mddev->disks, same_set)
  6423. if (rdev->raid_disk >= 0 &&
  6424. !test_bit(Blocked, &rdev->flags) &&
  6425. (test_bit(Faulty, &rdev->flags) ||
  6426. ! test_bit(In_sync, &rdev->flags)) &&
  6427. atomic_read(&rdev->nr_pending)==0) {
  6428. if (mddev->pers->hot_remove_disk(
  6429. mddev, rdev->raid_disk)==0) {
  6430. sysfs_unlink_rdev(mddev, rdev);
  6431. rdev->raid_disk = -1;
  6432. }
  6433. }
  6434. if (mddev->degraded) {
  6435. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6436. if (rdev->raid_disk >= 0 &&
  6437. !test_bit(In_sync, &rdev->flags) &&
  6438. !test_bit(Faulty, &rdev->flags) &&
  6439. !test_bit(Blocked, &rdev->flags))
  6440. spares++;
  6441. if (rdev->raid_disk < 0
  6442. && !test_bit(Faulty, &rdev->flags)) {
  6443. rdev->recovery_offset = 0;
  6444. if (mddev->pers->
  6445. hot_add_disk(mddev, rdev) == 0) {
  6446. if (sysfs_link_rdev(mddev, rdev))
  6447. /* failure here is OK */;
  6448. spares++;
  6449. md_new_event(mddev);
  6450. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6451. } else
  6452. break;
  6453. }
  6454. }
  6455. }
  6456. return spares;
  6457. }
  6458. static void reap_sync_thread(mddev_t *mddev)
  6459. {
  6460. mdk_rdev_t *rdev;
  6461. /* resync has finished, collect result */
  6462. md_unregister_thread(mddev->sync_thread);
  6463. mddev->sync_thread = NULL;
  6464. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6465. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6466. /* success...*/
  6467. /* activate any spares */
  6468. if (mddev->pers->spare_active(mddev))
  6469. sysfs_notify(&mddev->kobj, NULL,
  6470. "degraded");
  6471. }
  6472. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6473. mddev->pers->finish_reshape)
  6474. mddev->pers->finish_reshape(mddev);
  6475. md_update_sb(mddev, 1);
  6476. /* if array is no-longer degraded, then any saved_raid_disk
  6477. * information must be scrapped
  6478. */
  6479. if (!mddev->degraded)
  6480. list_for_each_entry(rdev, &mddev->disks, same_set)
  6481. rdev->saved_raid_disk = -1;
  6482. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6483. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6484. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6485. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6486. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6487. /* flag recovery needed just to double check */
  6488. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6489. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6490. md_new_event(mddev);
  6491. if (mddev->event_work.func)
  6492. queue_work(md_misc_wq, &mddev->event_work);
  6493. }
  6494. /*
  6495. * This routine is regularly called by all per-raid-array threads to
  6496. * deal with generic issues like resync and super-block update.
  6497. * Raid personalities that don't have a thread (linear/raid0) do not
  6498. * need this as they never do any recovery or update the superblock.
  6499. *
  6500. * It does not do any resync itself, but rather "forks" off other threads
  6501. * to do that as needed.
  6502. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6503. * "->recovery" and create a thread at ->sync_thread.
  6504. * When the thread finishes it sets MD_RECOVERY_DONE
  6505. * and wakeups up this thread which will reap the thread and finish up.
  6506. * This thread also removes any faulty devices (with nr_pending == 0).
  6507. *
  6508. * The overall approach is:
  6509. * 1/ if the superblock needs updating, update it.
  6510. * 2/ If a recovery thread is running, don't do anything else.
  6511. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6512. * 4/ If there are any faulty devices, remove them.
  6513. * 5/ If array is degraded, try to add spares devices
  6514. * 6/ If array has spares or is not in-sync, start a resync thread.
  6515. */
  6516. void md_check_recovery(mddev_t *mddev)
  6517. {
  6518. if (mddev->suspended)
  6519. return;
  6520. if (mddev->bitmap)
  6521. bitmap_daemon_work(mddev);
  6522. if (signal_pending(current)) {
  6523. if (mddev->pers->sync_request && !mddev->external) {
  6524. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6525. mdname(mddev));
  6526. mddev->safemode = 2;
  6527. }
  6528. flush_signals(current);
  6529. }
  6530. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6531. return;
  6532. if ( ! (
  6533. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6534. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6535. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6536. (mddev->external == 0 && mddev->safemode == 1) ||
  6537. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6538. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6539. ))
  6540. return;
  6541. if (mddev_trylock(mddev)) {
  6542. int spares = 0;
  6543. if (mddev->ro) {
  6544. /* Only thing we do on a ro array is remove
  6545. * failed devices.
  6546. */
  6547. mdk_rdev_t *rdev;
  6548. list_for_each_entry(rdev, &mddev->disks, same_set)
  6549. if (rdev->raid_disk >= 0 &&
  6550. !test_bit(Blocked, &rdev->flags) &&
  6551. test_bit(Faulty, &rdev->flags) &&
  6552. atomic_read(&rdev->nr_pending)==0) {
  6553. if (mddev->pers->hot_remove_disk(
  6554. mddev, rdev->raid_disk)==0) {
  6555. sysfs_unlink_rdev(mddev, rdev);
  6556. rdev->raid_disk = -1;
  6557. }
  6558. }
  6559. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6560. goto unlock;
  6561. }
  6562. if (!mddev->external) {
  6563. int did_change = 0;
  6564. spin_lock_irq(&mddev->write_lock);
  6565. if (mddev->safemode &&
  6566. !atomic_read(&mddev->writes_pending) &&
  6567. !mddev->in_sync &&
  6568. mddev->recovery_cp == MaxSector) {
  6569. mddev->in_sync = 1;
  6570. did_change = 1;
  6571. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6572. }
  6573. if (mddev->safemode == 1)
  6574. mddev->safemode = 0;
  6575. spin_unlock_irq(&mddev->write_lock);
  6576. if (did_change)
  6577. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6578. }
  6579. if (mddev->flags)
  6580. md_update_sb(mddev, 0);
  6581. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6582. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6583. /* resync/recovery still happening */
  6584. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6585. goto unlock;
  6586. }
  6587. if (mddev->sync_thread) {
  6588. reap_sync_thread(mddev);
  6589. goto unlock;
  6590. }
  6591. /* Set RUNNING before clearing NEEDED to avoid
  6592. * any transients in the value of "sync_action".
  6593. */
  6594. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6595. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6596. /* Clear some bits that don't mean anything, but
  6597. * might be left set
  6598. */
  6599. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6600. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6601. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6602. goto unlock;
  6603. /* no recovery is running.
  6604. * remove any failed drives, then
  6605. * add spares if possible.
  6606. * Spare are also removed and re-added, to allow
  6607. * the personality to fail the re-add.
  6608. */
  6609. if (mddev->reshape_position != MaxSector) {
  6610. if (mddev->pers->check_reshape == NULL ||
  6611. mddev->pers->check_reshape(mddev) != 0)
  6612. /* Cannot proceed */
  6613. goto unlock;
  6614. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6615. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6616. } else if ((spares = remove_and_add_spares(mddev))) {
  6617. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6618. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6619. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6620. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6621. } else if (mddev->recovery_cp < MaxSector) {
  6622. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6623. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6624. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6625. /* nothing to be done ... */
  6626. goto unlock;
  6627. if (mddev->pers->sync_request) {
  6628. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6629. /* We are adding a device or devices to an array
  6630. * which has the bitmap stored on all devices.
  6631. * So make sure all bitmap pages get written
  6632. */
  6633. bitmap_write_all(mddev->bitmap);
  6634. }
  6635. mddev->sync_thread = md_register_thread(md_do_sync,
  6636. mddev,
  6637. "resync");
  6638. if (!mddev->sync_thread) {
  6639. printk(KERN_ERR "%s: could not start resync"
  6640. " thread...\n",
  6641. mdname(mddev));
  6642. /* leave the spares where they are, it shouldn't hurt */
  6643. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6644. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6645. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6646. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6647. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6648. } else
  6649. md_wakeup_thread(mddev->sync_thread);
  6650. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6651. md_new_event(mddev);
  6652. }
  6653. unlock:
  6654. if (!mddev->sync_thread) {
  6655. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6656. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6657. &mddev->recovery))
  6658. if (mddev->sysfs_action)
  6659. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6660. }
  6661. mddev_unlock(mddev);
  6662. }
  6663. }
  6664. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  6665. {
  6666. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6667. wait_event_timeout(rdev->blocked_wait,
  6668. !test_bit(Blocked, &rdev->flags),
  6669. msecs_to_jiffies(5000));
  6670. rdev_dec_pending(rdev, mddev);
  6671. }
  6672. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6673. /* Bad block management.
  6674. * We can record which blocks on each device are 'bad' and so just
  6675. * fail those blocks, or that stripe, rather than the whole device.
  6676. * Entries in the bad-block table are 64bits wide. This comprises:
  6677. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6678. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6679. * A 'shift' can be set so that larger blocks are tracked and
  6680. * consequently larger devices can be covered.
  6681. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6682. *
  6683. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6684. * might need to retry if it is very unlucky.
  6685. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6686. * so we use the write_seqlock_irq variant.
  6687. *
  6688. * When looking for a bad block we specify a range and want to
  6689. * know if any block in the range is bad. So we binary-search
  6690. * to the last range that starts at-or-before the given endpoint,
  6691. * (or "before the sector after the target range")
  6692. * then see if it ends after the given start.
  6693. * We return
  6694. * 0 if there are no known bad blocks in the range
  6695. * 1 if there are known bad block which are all acknowledged
  6696. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6697. * plus the start/length of the first bad section we overlap.
  6698. */
  6699. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6700. sector_t *first_bad, int *bad_sectors)
  6701. {
  6702. int hi;
  6703. int lo = 0;
  6704. u64 *p = bb->page;
  6705. int rv = 0;
  6706. sector_t target = s + sectors;
  6707. unsigned seq;
  6708. if (bb->shift > 0) {
  6709. /* round the start down, and the end up */
  6710. s >>= bb->shift;
  6711. target += (1<<bb->shift) - 1;
  6712. target >>= bb->shift;
  6713. sectors = target - s;
  6714. }
  6715. /* 'target' is now the first block after the bad range */
  6716. retry:
  6717. seq = read_seqbegin(&bb->lock);
  6718. hi = bb->count;
  6719. /* Binary search between lo and hi for 'target'
  6720. * i.e. for the last range that starts before 'target'
  6721. */
  6722. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6723. * are known not to be the last range before target.
  6724. * VARIANT: hi-lo is the number of possible
  6725. * ranges, and decreases until it reaches 1
  6726. */
  6727. while (hi - lo > 1) {
  6728. int mid = (lo + hi) / 2;
  6729. sector_t a = BB_OFFSET(p[mid]);
  6730. if (a < target)
  6731. /* This could still be the one, earlier ranges
  6732. * could not. */
  6733. lo = mid;
  6734. else
  6735. /* This and later ranges are definitely out. */
  6736. hi = mid;
  6737. }
  6738. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6739. if (hi > lo) {
  6740. /* need to check all range that end after 's' to see if
  6741. * any are unacknowledged.
  6742. */
  6743. while (lo >= 0 &&
  6744. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6745. if (BB_OFFSET(p[lo]) < target) {
  6746. /* starts before the end, and finishes after
  6747. * the start, so they must overlap
  6748. */
  6749. if (rv != -1 && BB_ACK(p[lo]))
  6750. rv = 1;
  6751. else
  6752. rv = -1;
  6753. *first_bad = BB_OFFSET(p[lo]);
  6754. *bad_sectors = BB_LEN(p[lo]);
  6755. }
  6756. lo--;
  6757. }
  6758. }
  6759. if (read_seqretry(&bb->lock, seq))
  6760. goto retry;
  6761. return rv;
  6762. }
  6763. EXPORT_SYMBOL_GPL(md_is_badblock);
  6764. /*
  6765. * Add a range of bad blocks to the table.
  6766. * This might extend the table, or might contract it
  6767. * if two adjacent ranges can be merged.
  6768. * We binary-search to find the 'insertion' point, then
  6769. * decide how best to handle it.
  6770. */
  6771. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6772. int acknowledged)
  6773. {
  6774. u64 *p;
  6775. int lo, hi;
  6776. int rv = 1;
  6777. if (bb->shift < 0)
  6778. /* badblocks are disabled */
  6779. return 0;
  6780. if (bb->shift) {
  6781. /* round the start down, and the end up */
  6782. sector_t next = s + sectors;
  6783. s >>= bb->shift;
  6784. next += (1<<bb->shift) - 1;
  6785. next >>= bb->shift;
  6786. sectors = next - s;
  6787. }
  6788. write_seqlock_irq(&bb->lock);
  6789. p = bb->page;
  6790. lo = 0;
  6791. hi = bb->count;
  6792. /* Find the last range that starts at-or-before 's' */
  6793. while (hi - lo > 1) {
  6794. int mid = (lo + hi) / 2;
  6795. sector_t a = BB_OFFSET(p[mid]);
  6796. if (a <= s)
  6797. lo = mid;
  6798. else
  6799. hi = mid;
  6800. }
  6801. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6802. hi = lo;
  6803. if (hi > lo) {
  6804. /* we found a range that might merge with the start
  6805. * of our new range
  6806. */
  6807. sector_t a = BB_OFFSET(p[lo]);
  6808. sector_t e = a + BB_LEN(p[lo]);
  6809. int ack = BB_ACK(p[lo]);
  6810. if (e >= s) {
  6811. /* Yes, we can merge with a previous range */
  6812. if (s == a && s + sectors >= e)
  6813. /* new range covers old */
  6814. ack = acknowledged;
  6815. else
  6816. ack = ack && acknowledged;
  6817. if (e < s + sectors)
  6818. e = s + sectors;
  6819. if (e - a <= BB_MAX_LEN) {
  6820. p[lo] = BB_MAKE(a, e-a, ack);
  6821. s = e;
  6822. } else {
  6823. /* does not all fit in one range,
  6824. * make p[lo] maximal
  6825. */
  6826. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6827. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6828. s = a + BB_MAX_LEN;
  6829. }
  6830. sectors = e - s;
  6831. }
  6832. }
  6833. if (sectors && hi < bb->count) {
  6834. /* 'hi' points to the first range that starts after 's'.
  6835. * Maybe we can merge with the start of that range */
  6836. sector_t a = BB_OFFSET(p[hi]);
  6837. sector_t e = a + BB_LEN(p[hi]);
  6838. int ack = BB_ACK(p[hi]);
  6839. if (a <= s + sectors) {
  6840. /* merging is possible */
  6841. if (e <= s + sectors) {
  6842. /* full overlap */
  6843. e = s + sectors;
  6844. ack = acknowledged;
  6845. } else
  6846. ack = ack && acknowledged;
  6847. a = s;
  6848. if (e - a <= BB_MAX_LEN) {
  6849. p[hi] = BB_MAKE(a, e-a, ack);
  6850. s = e;
  6851. } else {
  6852. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6853. s = a + BB_MAX_LEN;
  6854. }
  6855. sectors = e - s;
  6856. lo = hi;
  6857. hi++;
  6858. }
  6859. }
  6860. if (sectors == 0 && hi < bb->count) {
  6861. /* we might be able to combine lo and hi */
  6862. /* Note: 's' is at the end of 'lo' */
  6863. sector_t a = BB_OFFSET(p[hi]);
  6864. int lolen = BB_LEN(p[lo]);
  6865. int hilen = BB_LEN(p[hi]);
  6866. int newlen = lolen + hilen - (s - a);
  6867. if (s >= a && newlen < BB_MAX_LEN) {
  6868. /* yes, we can combine them */
  6869. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6870. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6871. memmove(p + hi, p + hi + 1,
  6872. (bb->count - hi - 1) * 8);
  6873. bb->count--;
  6874. }
  6875. }
  6876. while (sectors) {
  6877. /* didn't merge (it all).
  6878. * Need to add a range just before 'hi' */
  6879. if (bb->count >= MD_MAX_BADBLOCKS) {
  6880. /* No room for more */
  6881. rv = 0;
  6882. break;
  6883. } else {
  6884. int this_sectors = sectors;
  6885. memmove(p + hi + 1, p + hi,
  6886. (bb->count - hi) * 8);
  6887. bb->count++;
  6888. if (this_sectors > BB_MAX_LEN)
  6889. this_sectors = BB_MAX_LEN;
  6890. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  6891. sectors -= this_sectors;
  6892. s += this_sectors;
  6893. }
  6894. }
  6895. bb->changed = 1;
  6896. write_sequnlock_irq(&bb->lock);
  6897. return rv;
  6898. }
  6899. int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
  6900. int acknowledged)
  6901. {
  6902. int rv = md_set_badblocks(&rdev->badblocks,
  6903. s + rdev->data_offset, sectors, acknowledged);
  6904. if (rv) {
  6905. /* Make sure they get written out promptly */
  6906. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  6907. md_wakeup_thread(rdev->mddev->thread);
  6908. }
  6909. return rv;
  6910. }
  6911. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  6912. /*
  6913. * Remove a range of bad blocks from the table.
  6914. * This may involve extending the table if we spilt a region,
  6915. * but it must not fail. So if the table becomes full, we just
  6916. * drop the remove request.
  6917. */
  6918. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  6919. {
  6920. u64 *p;
  6921. int lo, hi;
  6922. sector_t target = s + sectors;
  6923. int rv = 0;
  6924. if (bb->shift > 0) {
  6925. /* When clearing we round the start up and the end down.
  6926. * This should not matter as the shift should align with
  6927. * the block size and no rounding should ever be needed.
  6928. * However it is better the think a block is bad when it
  6929. * isn't than to think a block is not bad when it is.
  6930. */
  6931. s += (1<<bb->shift) - 1;
  6932. s >>= bb->shift;
  6933. target >>= bb->shift;
  6934. sectors = target - s;
  6935. }
  6936. write_seqlock_irq(&bb->lock);
  6937. p = bb->page;
  6938. lo = 0;
  6939. hi = bb->count;
  6940. /* Find the last range that starts before 'target' */
  6941. while (hi - lo > 1) {
  6942. int mid = (lo + hi) / 2;
  6943. sector_t a = BB_OFFSET(p[mid]);
  6944. if (a < target)
  6945. lo = mid;
  6946. else
  6947. hi = mid;
  6948. }
  6949. if (hi > lo) {
  6950. /* p[lo] is the last range that could overlap the
  6951. * current range. Earlier ranges could also overlap,
  6952. * but only this one can overlap the end of the range.
  6953. */
  6954. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  6955. /* Partial overlap, leave the tail of this range */
  6956. int ack = BB_ACK(p[lo]);
  6957. sector_t a = BB_OFFSET(p[lo]);
  6958. sector_t end = a + BB_LEN(p[lo]);
  6959. if (a < s) {
  6960. /* we need to split this range */
  6961. if (bb->count >= MD_MAX_BADBLOCKS) {
  6962. rv = 0;
  6963. goto out;
  6964. }
  6965. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  6966. bb->count++;
  6967. p[lo] = BB_MAKE(a, s-a, ack);
  6968. lo++;
  6969. }
  6970. p[lo] = BB_MAKE(target, end - target, ack);
  6971. /* there is no longer an overlap */
  6972. hi = lo;
  6973. lo--;
  6974. }
  6975. while (lo >= 0 &&
  6976. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6977. /* This range does overlap */
  6978. if (BB_OFFSET(p[lo]) < s) {
  6979. /* Keep the early parts of this range. */
  6980. int ack = BB_ACK(p[lo]);
  6981. sector_t start = BB_OFFSET(p[lo]);
  6982. p[lo] = BB_MAKE(start, s - start, ack);
  6983. /* now low doesn't overlap, so.. */
  6984. break;
  6985. }
  6986. lo--;
  6987. }
  6988. /* 'lo' is strictly before, 'hi' is strictly after,
  6989. * anything between needs to be discarded
  6990. */
  6991. if (hi - lo > 1) {
  6992. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  6993. bb->count -= (hi - lo - 1);
  6994. }
  6995. }
  6996. bb->changed = 1;
  6997. out:
  6998. write_sequnlock_irq(&bb->lock);
  6999. return rv;
  7000. }
  7001. int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
  7002. {
  7003. return md_clear_badblocks(&rdev->badblocks,
  7004. s + rdev->data_offset,
  7005. sectors);
  7006. }
  7007. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7008. /*
  7009. * Acknowledge all bad blocks in a list.
  7010. * This only succeeds if ->changed is clear. It is used by
  7011. * in-kernel metadata updates
  7012. */
  7013. void md_ack_all_badblocks(struct badblocks *bb)
  7014. {
  7015. if (bb->page == NULL || bb->changed)
  7016. /* no point even trying */
  7017. return;
  7018. write_seqlock_irq(&bb->lock);
  7019. if (bb->changed == 0) {
  7020. u64 *p = bb->page;
  7021. int i;
  7022. for (i = 0; i < bb->count ; i++) {
  7023. if (!BB_ACK(p[i])) {
  7024. sector_t start = BB_OFFSET(p[i]);
  7025. int len = BB_LEN(p[i]);
  7026. p[i] = BB_MAKE(start, len, 1);
  7027. }
  7028. }
  7029. }
  7030. write_sequnlock_irq(&bb->lock);
  7031. }
  7032. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7033. /* sysfs access to bad-blocks list.
  7034. * We present two files.
  7035. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7036. * are recorded as bad. The list is truncated to fit within
  7037. * the one-page limit of sysfs.
  7038. * Writing "sector length" to this file adds an acknowledged
  7039. * bad block list.
  7040. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7041. * been acknowledged. Writing to this file adds bad blocks
  7042. * without acknowledging them. This is largely for testing.
  7043. */
  7044. static ssize_t
  7045. badblocks_show(struct badblocks *bb, char *page, int unack)
  7046. {
  7047. size_t len;
  7048. int i;
  7049. u64 *p = bb->page;
  7050. unsigned seq;
  7051. if (bb->shift < 0)
  7052. return 0;
  7053. retry:
  7054. seq = read_seqbegin(&bb->lock);
  7055. len = 0;
  7056. i = 0;
  7057. while (len < PAGE_SIZE && i < bb->count) {
  7058. sector_t s = BB_OFFSET(p[i]);
  7059. unsigned int length = BB_LEN(p[i]);
  7060. int ack = BB_ACK(p[i]);
  7061. i++;
  7062. if (unack && ack)
  7063. continue;
  7064. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7065. (unsigned long long)s << bb->shift,
  7066. length << bb->shift);
  7067. }
  7068. if (read_seqretry(&bb->lock, seq))
  7069. goto retry;
  7070. return len;
  7071. }
  7072. #define DO_DEBUG 1
  7073. static ssize_t
  7074. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7075. {
  7076. unsigned long long sector;
  7077. int length;
  7078. char newline;
  7079. #ifdef DO_DEBUG
  7080. /* Allow clearing via sysfs *only* for testing/debugging.
  7081. * Normally only a successful write may clear a badblock
  7082. */
  7083. int clear = 0;
  7084. if (page[0] == '-') {
  7085. clear = 1;
  7086. page++;
  7087. }
  7088. #endif /* DO_DEBUG */
  7089. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7090. case 3:
  7091. if (newline != '\n')
  7092. return -EINVAL;
  7093. case 2:
  7094. if (length <= 0)
  7095. return -EINVAL;
  7096. break;
  7097. default:
  7098. return -EINVAL;
  7099. }
  7100. #ifdef DO_DEBUG
  7101. if (clear) {
  7102. md_clear_badblocks(bb, sector, length);
  7103. return len;
  7104. }
  7105. #endif /* DO_DEBUG */
  7106. if (md_set_badblocks(bb, sector, length, !unack))
  7107. return len;
  7108. else
  7109. return -ENOSPC;
  7110. }
  7111. static int md_notify_reboot(struct notifier_block *this,
  7112. unsigned long code, void *x)
  7113. {
  7114. struct list_head *tmp;
  7115. mddev_t *mddev;
  7116. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  7117. printk(KERN_INFO "md: stopping all md devices.\n");
  7118. for_each_mddev(mddev, tmp)
  7119. if (mddev_trylock(mddev)) {
  7120. /* Force a switch to readonly even array
  7121. * appears to still be in use. Hence
  7122. * the '100'.
  7123. */
  7124. md_set_readonly(mddev, 100);
  7125. mddev_unlock(mddev);
  7126. }
  7127. /*
  7128. * certain more exotic SCSI devices are known to be
  7129. * volatile wrt too early system reboots. While the
  7130. * right place to handle this issue is the given
  7131. * driver, we do want to have a safe RAID driver ...
  7132. */
  7133. mdelay(1000*1);
  7134. }
  7135. return NOTIFY_DONE;
  7136. }
  7137. static struct notifier_block md_notifier = {
  7138. .notifier_call = md_notify_reboot,
  7139. .next = NULL,
  7140. .priority = INT_MAX, /* before any real devices */
  7141. };
  7142. static void md_geninit(void)
  7143. {
  7144. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7145. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7146. }
  7147. static int __init md_init(void)
  7148. {
  7149. int ret = -ENOMEM;
  7150. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7151. if (!md_wq)
  7152. goto err_wq;
  7153. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7154. if (!md_misc_wq)
  7155. goto err_misc_wq;
  7156. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7157. goto err_md;
  7158. if ((ret = register_blkdev(0, "mdp")) < 0)
  7159. goto err_mdp;
  7160. mdp_major = ret;
  7161. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7162. md_probe, NULL, NULL);
  7163. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7164. md_probe, NULL, NULL);
  7165. register_reboot_notifier(&md_notifier);
  7166. raid_table_header = register_sysctl_table(raid_root_table);
  7167. md_geninit();
  7168. return 0;
  7169. err_mdp:
  7170. unregister_blkdev(MD_MAJOR, "md");
  7171. err_md:
  7172. destroy_workqueue(md_misc_wq);
  7173. err_misc_wq:
  7174. destroy_workqueue(md_wq);
  7175. err_wq:
  7176. return ret;
  7177. }
  7178. #ifndef MODULE
  7179. /*
  7180. * Searches all registered partitions for autorun RAID arrays
  7181. * at boot time.
  7182. */
  7183. static LIST_HEAD(all_detected_devices);
  7184. struct detected_devices_node {
  7185. struct list_head list;
  7186. dev_t dev;
  7187. };
  7188. void md_autodetect_dev(dev_t dev)
  7189. {
  7190. struct detected_devices_node *node_detected_dev;
  7191. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7192. if (node_detected_dev) {
  7193. node_detected_dev->dev = dev;
  7194. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7195. } else {
  7196. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7197. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7198. }
  7199. }
  7200. static void autostart_arrays(int part)
  7201. {
  7202. mdk_rdev_t *rdev;
  7203. struct detected_devices_node *node_detected_dev;
  7204. dev_t dev;
  7205. int i_scanned, i_passed;
  7206. i_scanned = 0;
  7207. i_passed = 0;
  7208. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7209. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7210. i_scanned++;
  7211. node_detected_dev = list_entry(all_detected_devices.next,
  7212. struct detected_devices_node, list);
  7213. list_del(&node_detected_dev->list);
  7214. dev = node_detected_dev->dev;
  7215. kfree(node_detected_dev);
  7216. rdev = md_import_device(dev,0, 90);
  7217. if (IS_ERR(rdev))
  7218. continue;
  7219. if (test_bit(Faulty, &rdev->flags)) {
  7220. MD_BUG();
  7221. continue;
  7222. }
  7223. set_bit(AutoDetected, &rdev->flags);
  7224. list_add(&rdev->same_set, &pending_raid_disks);
  7225. i_passed++;
  7226. }
  7227. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7228. i_scanned, i_passed);
  7229. autorun_devices(part);
  7230. }
  7231. #endif /* !MODULE */
  7232. static __exit void md_exit(void)
  7233. {
  7234. mddev_t *mddev;
  7235. struct list_head *tmp;
  7236. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7237. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7238. unregister_blkdev(MD_MAJOR,"md");
  7239. unregister_blkdev(mdp_major, "mdp");
  7240. unregister_reboot_notifier(&md_notifier);
  7241. unregister_sysctl_table(raid_table_header);
  7242. remove_proc_entry("mdstat", NULL);
  7243. for_each_mddev(mddev, tmp) {
  7244. export_array(mddev);
  7245. mddev->hold_active = 0;
  7246. }
  7247. destroy_workqueue(md_misc_wq);
  7248. destroy_workqueue(md_wq);
  7249. }
  7250. subsys_initcall(md_init);
  7251. module_exit(md_exit)
  7252. static int get_ro(char *buffer, struct kernel_param *kp)
  7253. {
  7254. return sprintf(buffer, "%d", start_readonly);
  7255. }
  7256. static int set_ro(const char *val, struct kernel_param *kp)
  7257. {
  7258. char *e;
  7259. int num = simple_strtoul(val, &e, 10);
  7260. if (*val && (*e == '\0' || *e == '\n')) {
  7261. start_readonly = num;
  7262. return 0;
  7263. }
  7264. return -EINVAL;
  7265. }
  7266. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7267. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7268. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7269. EXPORT_SYMBOL(register_md_personality);
  7270. EXPORT_SYMBOL(unregister_md_personality);
  7271. EXPORT_SYMBOL(md_error);
  7272. EXPORT_SYMBOL(md_done_sync);
  7273. EXPORT_SYMBOL(md_write_start);
  7274. EXPORT_SYMBOL(md_write_end);
  7275. EXPORT_SYMBOL(md_register_thread);
  7276. EXPORT_SYMBOL(md_unregister_thread);
  7277. EXPORT_SYMBOL(md_wakeup_thread);
  7278. EXPORT_SYMBOL(md_check_recovery);
  7279. MODULE_LICENSE("GPL");
  7280. MODULE_DESCRIPTION("MD RAID framework");
  7281. MODULE_ALIAS("md");
  7282. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);