ste_dma40.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/platform_data/dma-ste-dma40.h>
  22. #include "dmaengine.h"
  23. #include "ste_dma40_ll.h"
  24. #define D40_NAME "dma40"
  25. #define D40_PHY_CHAN -1
  26. /* For masking out/in 2 bit channel positions */
  27. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  28. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  29. /* Maximum iterations taken before giving up suspending a channel */
  30. #define D40_SUSPEND_MAX_IT 500
  31. /* Milliseconds */
  32. #define DMA40_AUTOSUSPEND_DELAY 100
  33. /* Hardware requirement on LCLA alignment */
  34. #define LCLA_ALIGNMENT 0x40000
  35. /* Max number of links per event group */
  36. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  37. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  38. /* Attempts before giving up to trying to get pages that are aligned */
  39. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  40. /* Bit markings for allocation map */
  41. #define D40_ALLOC_FREE (1 << 31)
  42. #define D40_ALLOC_PHY (1 << 30)
  43. #define D40_ALLOC_LOG_FREE 0
  44. #define MAX(a, b) (((a) < (b)) ? (b) : (a))
  45. /**
  46. * enum 40_command - The different commands and/or statuses.
  47. *
  48. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  49. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  50. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  51. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  52. */
  53. enum d40_command {
  54. D40_DMA_STOP = 0,
  55. D40_DMA_RUN = 1,
  56. D40_DMA_SUSPEND_REQ = 2,
  57. D40_DMA_SUSPENDED = 3
  58. };
  59. /*
  60. * enum d40_events - The different Event Enables for the event lines.
  61. *
  62. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  63. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  64. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  65. * @D40_ROUND_EVENTLINE: Status check for event line.
  66. */
  67. enum d40_events {
  68. D40_DEACTIVATE_EVENTLINE = 0,
  69. D40_ACTIVATE_EVENTLINE = 1,
  70. D40_SUSPEND_REQ_EVENTLINE = 2,
  71. D40_ROUND_EVENTLINE = 3
  72. };
  73. /*
  74. * These are the registers that has to be saved and later restored
  75. * when the DMA hw is powered off.
  76. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  77. */
  78. static u32 d40_backup_regs[] = {
  79. D40_DREG_LCPA,
  80. D40_DREG_LCLA,
  81. D40_DREG_PRMSE,
  82. D40_DREG_PRMSO,
  83. D40_DREG_PRMOE,
  84. D40_DREG_PRMOO,
  85. };
  86. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  87. /*
  88. * since 9540 and 8540 has the same HW revision
  89. * use v4a for 9540 or ealier
  90. * use v4b for 8540 or later
  91. * HW revision:
  92. * DB8500ed has revision 0
  93. * DB8500v1 has revision 2
  94. * DB8500v2 has revision 3
  95. * AP9540v1 has revision 4
  96. * DB8540v1 has revision 4
  97. * TODO: Check if all these registers have to be saved/restored on dma40 v4a
  98. */
  99. static u32 d40_backup_regs_v4a[] = {
  100. D40_DREG_PSEG1,
  101. D40_DREG_PSEG2,
  102. D40_DREG_PSEG3,
  103. D40_DREG_PSEG4,
  104. D40_DREG_PCEG1,
  105. D40_DREG_PCEG2,
  106. D40_DREG_PCEG3,
  107. D40_DREG_PCEG4,
  108. D40_DREG_RSEG1,
  109. D40_DREG_RSEG2,
  110. D40_DREG_RSEG3,
  111. D40_DREG_RSEG4,
  112. D40_DREG_RCEG1,
  113. D40_DREG_RCEG2,
  114. D40_DREG_RCEG3,
  115. D40_DREG_RCEG4,
  116. };
  117. #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
  118. static u32 d40_backup_regs_v4b[] = {
  119. D40_DREG_CPSEG1,
  120. D40_DREG_CPSEG2,
  121. D40_DREG_CPSEG3,
  122. D40_DREG_CPSEG4,
  123. D40_DREG_CPSEG5,
  124. D40_DREG_CPCEG1,
  125. D40_DREG_CPCEG2,
  126. D40_DREG_CPCEG3,
  127. D40_DREG_CPCEG4,
  128. D40_DREG_CPCEG5,
  129. D40_DREG_CRSEG1,
  130. D40_DREG_CRSEG2,
  131. D40_DREG_CRSEG3,
  132. D40_DREG_CRSEG4,
  133. D40_DREG_CRSEG5,
  134. D40_DREG_CRCEG1,
  135. D40_DREG_CRCEG2,
  136. D40_DREG_CRCEG3,
  137. D40_DREG_CRCEG4,
  138. D40_DREG_CRCEG5,
  139. };
  140. #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
  141. static u32 d40_backup_regs_chan[] = {
  142. D40_CHAN_REG_SSCFG,
  143. D40_CHAN_REG_SSELT,
  144. D40_CHAN_REG_SSPTR,
  145. D40_CHAN_REG_SSLNK,
  146. D40_CHAN_REG_SDCFG,
  147. D40_CHAN_REG_SDELT,
  148. D40_CHAN_REG_SDPTR,
  149. D40_CHAN_REG_SDLNK,
  150. };
  151. /**
  152. * struct d40_interrupt_lookup - lookup table for interrupt handler
  153. *
  154. * @src: Interrupt mask register.
  155. * @clr: Interrupt clear register.
  156. * @is_error: true if this is an error interrupt.
  157. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  158. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  159. */
  160. struct d40_interrupt_lookup {
  161. u32 src;
  162. u32 clr;
  163. bool is_error;
  164. int offset;
  165. };
  166. static struct d40_interrupt_lookup il_v4a[] = {
  167. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  168. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  169. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  170. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  171. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  172. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  173. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  174. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  175. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  176. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  177. };
  178. static struct d40_interrupt_lookup il_v4b[] = {
  179. {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
  180. {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
  181. {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
  182. {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
  183. {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
  184. {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
  185. {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
  186. {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
  187. {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
  188. {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
  189. {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
  190. {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
  191. };
  192. /**
  193. * struct d40_reg_val - simple lookup struct
  194. *
  195. * @reg: The register.
  196. * @val: The value that belongs to the register in reg.
  197. */
  198. struct d40_reg_val {
  199. unsigned int reg;
  200. unsigned int val;
  201. };
  202. static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
  203. /* Clock every part of the DMA block from start */
  204. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  205. /* Interrupts on all logical channels */
  206. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  207. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  208. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  209. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  210. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  211. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  212. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  213. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  214. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  215. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  216. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  217. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  218. };
  219. static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
  220. /* Clock every part of the DMA block from start */
  221. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  222. /* Interrupts on all logical channels */
  223. { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
  224. { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
  225. { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
  226. { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
  227. { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
  228. { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
  229. { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
  230. { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
  231. { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
  232. { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
  233. { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
  234. { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
  235. { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
  236. { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
  237. { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
  238. };
  239. /**
  240. * struct d40_lli_pool - Structure for keeping LLIs in memory
  241. *
  242. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  243. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  244. * pre_alloc_lli is used.
  245. * @dma_addr: DMA address, if mapped
  246. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  247. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  248. * one buffer to one buffer.
  249. */
  250. struct d40_lli_pool {
  251. void *base;
  252. int size;
  253. dma_addr_t dma_addr;
  254. /* Space for dst and src, plus an extra for padding */
  255. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  256. };
  257. /**
  258. * struct d40_desc - A descriptor is one DMA job.
  259. *
  260. * @lli_phy: LLI settings for physical channel. Both src and dst=
  261. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  262. * lli_len equals one.
  263. * @lli_log: Same as above but for logical channels.
  264. * @lli_pool: The pool with two entries pre-allocated.
  265. * @lli_len: Number of llis of current descriptor.
  266. * @lli_current: Number of transferred llis.
  267. * @lcla_alloc: Number of LCLA entries allocated.
  268. * @txd: DMA engine struct. Used for among other things for communication
  269. * during a transfer.
  270. * @node: List entry.
  271. * @is_in_client_list: true if the client owns this descriptor.
  272. * @cyclic: true if this is a cyclic job
  273. *
  274. * This descriptor is used for both logical and physical transfers.
  275. */
  276. struct d40_desc {
  277. /* LLI physical */
  278. struct d40_phy_lli_bidir lli_phy;
  279. /* LLI logical */
  280. struct d40_log_lli_bidir lli_log;
  281. struct d40_lli_pool lli_pool;
  282. int lli_len;
  283. int lli_current;
  284. int lcla_alloc;
  285. struct dma_async_tx_descriptor txd;
  286. struct list_head node;
  287. bool is_in_client_list;
  288. bool cyclic;
  289. };
  290. /**
  291. * struct d40_lcla_pool - LCLA pool settings and data.
  292. *
  293. * @base: The virtual address of LCLA. 18 bit aligned.
  294. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  295. * This pointer is only there for clean-up on error.
  296. * @pages: The number of pages needed for all physical channels.
  297. * Only used later for clean-up on error
  298. * @lock: Lock to protect the content in this struct.
  299. * @alloc_map: big map over which LCLA entry is own by which job.
  300. */
  301. struct d40_lcla_pool {
  302. void *base;
  303. dma_addr_t dma_addr;
  304. void *base_unaligned;
  305. int pages;
  306. spinlock_t lock;
  307. struct d40_desc **alloc_map;
  308. };
  309. /**
  310. * struct d40_phy_res - struct for handling eventlines mapped to physical
  311. * channels.
  312. *
  313. * @lock: A lock protection this entity.
  314. * @reserved: True if used by secure world or otherwise.
  315. * @num: The physical channel number of this entity.
  316. * @allocated_src: Bit mapped to show which src event line's are mapped to
  317. * this physical channel. Can also be free or physically allocated.
  318. * @allocated_dst: Same as for src but is dst.
  319. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  320. * event line number.
  321. * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
  322. */
  323. struct d40_phy_res {
  324. spinlock_t lock;
  325. bool reserved;
  326. int num;
  327. u32 allocated_src;
  328. u32 allocated_dst;
  329. bool use_soft_lli;
  330. };
  331. struct d40_base;
  332. /**
  333. * struct d40_chan - Struct that describes a channel.
  334. *
  335. * @lock: A spinlock to protect this struct.
  336. * @log_num: The logical number, if any of this channel.
  337. * @pending_tx: The number of pending transfers. Used between interrupt handler
  338. * and tasklet.
  339. * @busy: Set to true when transfer is ongoing on this channel.
  340. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  341. * point is NULL, then the channel is not allocated.
  342. * @chan: DMA engine handle.
  343. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  344. * transfer and call client callback.
  345. * @client: Cliented owned descriptor list.
  346. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  347. * @active: Active descriptor.
  348. * @done: Completed jobs
  349. * @queue: Queued jobs.
  350. * @prepare_queue: Prepared jobs.
  351. * @dma_cfg: The client configuration of this dma channel.
  352. * @configured: whether the dma_cfg configuration is valid
  353. * @base: Pointer to the device instance struct.
  354. * @src_def_cfg: Default cfg register setting for src.
  355. * @dst_def_cfg: Default cfg register setting for dst.
  356. * @log_def: Default logical channel settings.
  357. * @lcpa: Pointer to dst and src lcpa settings.
  358. * @runtime_addr: runtime configured address.
  359. * @runtime_direction: runtime configured direction.
  360. *
  361. * This struct can either "be" a logical or a physical channel.
  362. */
  363. struct d40_chan {
  364. spinlock_t lock;
  365. int log_num;
  366. int pending_tx;
  367. bool busy;
  368. struct d40_phy_res *phy_chan;
  369. struct dma_chan chan;
  370. struct tasklet_struct tasklet;
  371. struct list_head client;
  372. struct list_head pending_queue;
  373. struct list_head active;
  374. struct list_head done;
  375. struct list_head queue;
  376. struct list_head prepare_queue;
  377. struct stedma40_chan_cfg dma_cfg;
  378. bool configured;
  379. struct d40_base *base;
  380. /* Default register configurations */
  381. u32 src_def_cfg;
  382. u32 dst_def_cfg;
  383. struct d40_def_lcsp log_def;
  384. struct d40_log_lli_full *lcpa;
  385. /* Runtime reconfiguration */
  386. dma_addr_t runtime_addr;
  387. enum dma_transfer_direction runtime_direction;
  388. };
  389. /**
  390. * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
  391. * controller
  392. *
  393. * @backup: the pointer to the registers address array for backup
  394. * @backup_size: the size of the registers address array for backup
  395. * @realtime_en: the realtime enable register
  396. * @realtime_clear: the realtime clear register
  397. * @high_prio_en: the high priority enable register
  398. * @high_prio_clear: the high priority clear register
  399. * @interrupt_en: the interrupt enable register
  400. * @interrupt_clear: the interrupt clear register
  401. * @il: the pointer to struct d40_interrupt_lookup
  402. * @il_size: the size of d40_interrupt_lookup array
  403. * @init_reg: the pointer to the struct d40_reg_val
  404. * @init_reg_size: the size of d40_reg_val array
  405. */
  406. struct d40_gen_dmac {
  407. u32 *backup;
  408. u32 backup_size;
  409. u32 realtime_en;
  410. u32 realtime_clear;
  411. u32 high_prio_en;
  412. u32 high_prio_clear;
  413. u32 interrupt_en;
  414. u32 interrupt_clear;
  415. struct d40_interrupt_lookup *il;
  416. u32 il_size;
  417. struct d40_reg_val *init_reg;
  418. u32 init_reg_size;
  419. };
  420. /**
  421. * struct d40_base - The big global struct, one for each probe'd instance.
  422. *
  423. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  424. * @execmd_lock: Lock for execute command usage since several channels share
  425. * the same physical register.
  426. * @dev: The device structure.
  427. * @virtbase: The virtual base address of the DMA's register.
  428. * @rev: silicon revision detected.
  429. * @clk: Pointer to the DMA clock structure.
  430. * @phy_start: Physical memory start of the DMA registers.
  431. * @phy_size: Size of the DMA register map.
  432. * @irq: The IRQ number.
  433. * @num_phy_chans: The number of physical channels. Read from HW. This
  434. * is the number of available channels for this driver, not counting "Secure
  435. * mode" allocated physical channels.
  436. * @num_log_chans: The number of logical channels. Calculated from
  437. * num_phy_chans.
  438. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  439. * @dma_slave: dma_device channels that can do only do slave transfers.
  440. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  441. * @phy_chans: Room for all possible physical channels in system.
  442. * @log_chans: Room for all possible logical channels in system.
  443. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  444. * to log_chans entries.
  445. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  446. * to phy_chans entries.
  447. * @plat_data: Pointer to provided platform_data which is the driver
  448. * configuration.
  449. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  450. * @phy_res: Vector containing all physical channels.
  451. * @lcla_pool: lcla pool settings and data.
  452. * @lcpa_base: The virtual mapped address of LCPA.
  453. * @phy_lcpa: The physical address of the LCPA.
  454. * @lcpa_size: The size of the LCPA area.
  455. * @desc_slab: cache for descriptors.
  456. * @reg_val_backup: Here the values of some hardware registers are stored
  457. * before the DMA is powered off. They are restored when the power is back on.
  458. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
  459. * later
  460. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  461. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  462. * @initialized: true if the dma has been initialized
  463. * @gen_dmac: the struct for generic registers values to represent u8500/8540
  464. * DMA controller
  465. */
  466. struct d40_base {
  467. spinlock_t interrupt_lock;
  468. spinlock_t execmd_lock;
  469. struct device *dev;
  470. void __iomem *virtbase;
  471. u8 rev:4;
  472. struct clk *clk;
  473. phys_addr_t phy_start;
  474. resource_size_t phy_size;
  475. int irq;
  476. int num_phy_chans;
  477. int num_log_chans;
  478. struct device_dma_parameters dma_parms;
  479. struct dma_device dma_both;
  480. struct dma_device dma_slave;
  481. struct dma_device dma_memcpy;
  482. struct d40_chan *phy_chans;
  483. struct d40_chan *log_chans;
  484. struct d40_chan **lookup_log_chans;
  485. struct d40_chan **lookup_phy_chans;
  486. struct stedma40_platform_data *plat_data;
  487. struct regulator *lcpa_regulator;
  488. /* Physical half channels */
  489. struct d40_phy_res *phy_res;
  490. struct d40_lcla_pool lcla_pool;
  491. void *lcpa_base;
  492. dma_addr_t phy_lcpa;
  493. resource_size_t lcpa_size;
  494. struct kmem_cache *desc_slab;
  495. u32 reg_val_backup[BACKUP_REGS_SZ];
  496. u32 reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)];
  497. u32 *reg_val_backup_chan;
  498. u16 gcc_pwr_off_mask;
  499. bool initialized;
  500. struct d40_gen_dmac gen_dmac;
  501. };
  502. static struct device *chan2dev(struct d40_chan *d40c)
  503. {
  504. return &d40c->chan.dev->device;
  505. }
  506. static bool chan_is_physical(struct d40_chan *chan)
  507. {
  508. return chan->log_num == D40_PHY_CHAN;
  509. }
  510. static bool chan_is_logical(struct d40_chan *chan)
  511. {
  512. return !chan_is_physical(chan);
  513. }
  514. static void __iomem *chan_base(struct d40_chan *chan)
  515. {
  516. return chan->base->virtbase + D40_DREG_PCBASE +
  517. chan->phy_chan->num * D40_DREG_PCDELTA;
  518. }
  519. #define d40_err(dev, format, arg...) \
  520. dev_err(dev, "[%s] " format, __func__, ## arg)
  521. #define chan_err(d40c, format, arg...) \
  522. d40_err(chan2dev(d40c), format, ## arg)
  523. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  524. int lli_len)
  525. {
  526. bool is_log = chan_is_logical(d40c);
  527. u32 align;
  528. void *base;
  529. if (is_log)
  530. align = sizeof(struct d40_log_lli);
  531. else
  532. align = sizeof(struct d40_phy_lli);
  533. if (lli_len == 1) {
  534. base = d40d->lli_pool.pre_alloc_lli;
  535. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  536. d40d->lli_pool.base = NULL;
  537. } else {
  538. d40d->lli_pool.size = lli_len * 2 * align;
  539. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  540. d40d->lli_pool.base = base;
  541. if (d40d->lli_pool.base == NULL)
  542. return -ENOMEM;
  543. }
  544. if (is_log) {
  545. d40d->lli_log.src = PTR_ALIGN(base, align);
  546. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  547. d40d->lli_pool.dma_addr = 0;
  548. } else {
  549. d40d->lli_phy.src = PTR_ALIGN(base, align);
  550. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  551. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  552. d40d->lli_phy.src,
  553. d40d->lli_pool.size,
  554. DMA_TO_DEVICE);
  555. if (dma_mapping_error(d40c->base->dev,
  556. d40d->lli_pool.dma_addr)) {
  557. kfree(d40d->lli_pool.base);
  558. d40d->lli_pool.base = NULL;
  559. d40d->lli_pool.dma_addr = 0;
  560. return -ENOMEM;
  561. }
  562. }
  563. return 0;
  564. }
  565. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  566. {
  567. if (d40d->lli_pool.dma_addr)
  568. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  569. d40d->lli_pool.size, DMA_TO_DEVICE);
  570. kfree(d40d->lli_pool.base);
  571. d40d->lli_pool.base = NULL;
  572. d40d->lli_pool.size = 0;
  573. d40d->lli_log.src = NULL;
  574. d40d->lli_log.dst = NULL;
  575. d40d->lli_phy.src = NULL;
  576. d40d->lli_phy.dst = NULL;
  577. }
  578. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  579. struct d40_desc *d40d)
  580. {
  581. unsigned long flags;
  582. int i;
  583. int ret = -EINVAL;
  584. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  585. /*
  586. * Allocate both src and dst at the same time, therefore the half
  587. * start on 1 since 0 can't be used since zero is used as end marker.
  588. */
  589. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  590. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  591. if (!d40c->base->lcla_pool.alloc_map[idx]) {
  592. d40c->base->lcla_pool.alloc_map[idx] = d40d;
  593. d40d->lcla_alloc++;
  594. ret = i;
  595. break;
  596. }
  597. }
  598. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  599. return ret;
  600. }
  601. static int d40_lcla_free_all(struct d40_chan *d40c,
  602. struct d40_desc *d40d)
  603. {
  604. unsigned long flags;
  605. int i;
  606. int ret = -EINVAL;
  607. if (chan_is_physical(d40c))
  608. return 0;
  609. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  610. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  611. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  612. if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
  613. d40c->base->lcla_pool.alloc_map[idx] = NULL;
  614. d40d->lcla_alloc--;
  615. if (d40d->lcla_alloc == 0) {
  616. ret = 0;
  617. break;
  618. }
  619. }
  620. }
  621. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  622. return ret;
  623. }
  624. static void d40_desc_remove(struct d40_desc *d40d)
  625. {
  626. list_del(&d40d->node);
  627. }
  628. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  629. {
  630. struct d40_desc *desc = NULL;
  631. if (!list_empty(&d40c->client)) {
  632. struct d40_desc *d;
  633. struct d40_desc *_d;
  634. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  635. if (async_tx_test_ack(&d->txd)) {
  636. d40_desc_remove(d);
  637. desc = d;
  638. memset(desc, 0, sizeof(*desc));
  639. break;
  640. }
  641. }
  642. }
  643. if (!desc)
  644. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  645. if (desc)
  646. INIT_LIST_HEAD(&desc->node);
  647. return desc;
  648. }
  649. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  650. {
  651. d40_pool_lli_free(d40c, d40d);
  652. d40_lcla_free_all(d40c, d40d);
  653. kmem_cache_free(d40c->base->desc_slab, d40d);
  654. }
  655. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  656. {
  657. list_add_tail(&desc->node, &d40c->active);
  658. }
  659. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  660. {
  661. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  662. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  663. void __iomem *base = chan_base(chan);
  664. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  665. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  666. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  667. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  668. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  669. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  670. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  671. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  672. }
  673. static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
  674. {
  675. list_add_tail(&desc->node, &d40c->done);
  676. }
  677. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  678. {
  679. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  680. struct d40_log_lli_bidir *lli = &desc->lli_log;
  681. int lli_current = desc->lli_current;
  682. int lli_len = desc->lli_len;
  683. bool cyclic = desc->cyclic;
  684. int curr_lcla = -EINVAL;
  685. int first_lcla = 0;
  686. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  687. bool linkback;
  688. /*
  689. * We may have partially running cyclic transfers, in case we did't get
  690. * enough LCLA entries.
  691. */
  692. linkback = cyclic && lli_current == 0;
  693. /*
  694. * For linkback, we need one LCLA even with only one link, because we
  695. * can't link back to the one in LCPA space
  696. */
  697. if (linkback || (lli_len - lli_current > 1)) {
  698. /*
  699. * If the channel is expected to use only soft_lli don't
  700. * allocate a lcla. This is to avoid a HW issue that exists
  701. * in some controller during a peripheral to memory transfer
  702. * that uses linked lists.
  703. */
  704. if (!(chan->phy_chan->use_soft_lli &&
  705. chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
  706. curr_lcla = d40_lcla_alloc_one(chan, desc);
  707. first_lcla = curr_lcla;
  708. }
  709. /*
  710. * For linkback, we normally load the LCPA in the loop since we need to
  711. * link it to the second LCLA and not the first. However, if we
  712. * couldn't even get a first LCLA, then we have to run in LCPA and
  713. * reload manually.
  714. */
  715. if (!linkback || curr_lcla == -EINVAL) {
  716. unsigned int flags = 0;
  717. if (curr_lcla == -EINVAL)
  718. flags |= LLI_TERM_INT;
  719. d40_log_lli_lcpa_write(chan->lcpa,
  720. &lli->dst[lli_current],
  721. &lli->src[lli_current],
  722. curr_lcla,
  723. flags);
  724. lli_current++;
  725. }
  726. if (curr_lcla < 0)
  727. goto out;
  728. for (; lli_current < lli_len; lli_current++) {
  729. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  730. 8 * curr_lcla * 2;
  731. struct d40_log_lli *lcla = pool->base + lcla_offset;
  732. unsigned int flags = 0;
  733. int next_lcla;
  734. if (lli_current + 1 < lli_len)
  735. next_lcla = d40_lcla_alloc_one(chan, desc);
  736. else
  737. next_lcla = linkback ? first_lcla : -EINVAL;
  738. if (cyclic || next_lcla == -EINVAL)
  739. flags |= LLI_TERM_INT;
  740. if (linkback && curr_lcla == first_lcla) {
  741. /* First link goes in both LCPA and LCLA */
  742. d40_log_lli_lcpa_write(chan->lcpa,
  743. &lli->dst[lli_current],
  744. &lli->src[lli_current],
  745. next_lcla, flags);
  746. }
  747. /*
  748. * One unused LCLA in the cyclic case if the very first
  749. * next_lcla fails...
  750. */
  751. d40_log_lli_lcla_write(lcla,
  752. &lli->dst[lli_current],
  753. &lli->src[lli_current],
  754. next_lcla, flags);
  755. /*
  756. * Cache maintenance is not needed if lcla is
  757. * mapped in esram
  758. */
  759. if (!use_esram_lcla) {
  760. dma_sync_single_range_for_device(chan->base->dev,
  761. pool->dma_addr, lcla_offset,
  762. 2 * sizeof(struct d40_log_lli),
  763. DMA_TO_DEVICE);
  764. }
  765. curr_lcla = next_lcla;
  766. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  767. lli_current++;
  768. break;
  769. }
  770. }
  771. out:
  772. desc->lli_current = lli_current;
  773. }
  774. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  775. {
  776. if (chan_is_physical(d40c)) {
  777. d40_phy_lli_load(d40c, d40d);
  778. d40d->lli_current = d40d->lli_len;
  779. } else
  780. d40_log_lli_to_lcxa(d40c, d40d);
  781. }
  782. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  783. {
  784. struct d40_desc *d;
  785. if (list_empty(&d40c->active))
  786. return NULL;
  787. d = list_first_entry(&d40c->active,
  788. struct d40_desc,
  789. node);
  790. return d;
  791. }
  792. /* remove desc from current queue and add it to the pending_queue */
  793. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  794. {
  795. d40_desc_remove(desc);
  796. desc->is_in_client_list = false;
  797. list_add_tail(&desc->node, &d40c->pending_queue);
  798. }
  799. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  800. {
  801. struct d40_desc *d;
  802. if (list_empty(&d40c->pending_queue))
  803. return NULL;
  804. d = list_first_entry(&d40c->pending_queue,
  805. struct d40_desc,
  806. node);
  807. return d;
  808. }
  809. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  810. {
  811. struct d40_desc *d;
  812. if (list_empty(&d40c->queue))
  813. return NULL;
  814. d = list_first_entry(&d40c->queue,
  815. struct d40_desc,
  816. node);
  817. return d;
  818. }
  819. static struct d40_desc *d40_first_done(struct d40_chan *d40c)
  820. {
  821. if (list_empty(&d40c->done))
  822. return NULL;
  823. return list_first_entry(&d40c->done, struct d40_desc, node);
  824. }
  825. static int d40_psize_2_burst_size(bool is_log, int psize)
  826. {
  827. if (is_log) {
  828. if (psize == STEDMA40_PSIZE_LOG_1)
  829. return 1;
  830. } else {
  831. if (psize == STEDMA40_PSIZE_PHY_1)
  832. return 1;
  833. }
  834. return 2 << psize;
  835. }
  836. /*
  837. * The dma only supports transmitting packages up to
  838. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  839. * dma elements required to send the entire sg list
  840. */
  841. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  842. {
  843. int dmalen;
  844. u32 max_w = max(data_width1, data_width2);
  845. u32 min_w = min(data_width1, data_width2);
  846. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  847. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  848. seg_max -= (1 << max_w);
  849. if (!IS_ALIGNED(size, 1 << max_w))
  850. return -EINVAL;
  851. if (size <= seg_max)
  852. dmalen = 1;
  853. else {
  854. dmalen = size / seg_max;
  855. if (dmalen * seg_max < size)
  856. dmalen++;
  857. }
  858. return dmalen;
  859. }
  860. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  861. u32 data_width1, u32 data_width2)
  862. {
  863. struct scatterlist *sg;
  864. int i;
  865. int len = 0;
  866. int ret;
  867. for_each_sg(sgl, sg, sg_len, i) {
  868. ret = d40_size_2_dmalen(sg_dma_len(sg),
  869. data_width1, data_width2);
  870. if (ret < 0)
  871. return ret;
  872. len += ret;
  873. }
  874. return len;
  875. }
  876. #ifdef CONFIG_PM
  877. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  878. u32 *regaddr, int num, bool save)
  879. {
  880. int i;
  881. for (i = 0; i < num; i++) {
  882. void __iomem *addr = baseaddr + regaddr[i];
  883. if (save)
  884. backup[i] = readl_relaxed(addr);
  885. else
  886. writel_relaxed(backup[i], addr);
  887. }
  888. }
  889. static void d40_save_restore_registers(struct d40_base *base, bool save)
  890. {
  891. int i;
  892. /* Save/Restore channel specific registers */
  893. for (i = 0; i < base->num_phy_chans; i++) {
  894. void __iomem *addr;
  895. int idx;
  896. if (base->phy_res[i].reserved)
  897. continue;
  898. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  899. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  900. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  901. d40_backup_regs_chan,
  902. ARRAY_SIZE(d40_backup_regs_chan),
  903. save);
  904. }
  905. /* Save/Restore global registers */
  906. dma40_backup(base->virtbase, base->reg_val_backup,
  907. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  908. save);
  909. /* Save/Restore registers only existing on dma40 v3 and later */
  910. if (base->gen_dmac.backup)
  911. dma40_backup(base->virtbase, base->reg_val_backup_v4,
  912. base->gen_dmac.backup,
  913. base->gen_dmac.backup_size,
  914. save);
  915. }
  916. #else
  917. static void d40_save_restore_registers(struct d40_base *base, bool save)
  918. {
  919. }
  920. #endif
  921. static int __d40_execute_command_phy(struct d40_chan *d40c,
  922. enum d40_command command)
  923. {
  924. u32 status;
  925. int i;
  926. void __iomem *active_reg;
  927. int ret = 0;
  928. unsigned long flags;
  929. u32 wmask;
  930. if (command == D40_DMA_STOP) {
  931. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  932. if (ret)
  933. return ret;
  934. }
  935. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  936. if (d40c->phy_chan->num % 2 == 0)
  937. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  938. else
  939. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  940. if (command == D40_DMA_SUSPEND_REQ) {
  941. status = (readl(active_reg) &
  942. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  943. D40_CHAN_POS(d40c->phy_chan->num);
  944. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  945. goto done;
  946. }
  947. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  948. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  949. active_reg);
  950. if (command == D40_DMA_SUSPEND_REQ) {
  951. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  952. status = (readl(active_reg) &
  953. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  954. D40_CHAN_POS(d40c->phy_chan->num);
  955. cpu_relax();
  956. /*
  957. * Reduce the number of bus accesses while
  958. * waiting for the DMA to suspend.
  959. */
  960. udelay(3);
  961. if (status == D40_DMA_STOP ||
  962. status == D40_DMA_SUSPENDED)
  963. break;
  964. }
  965. if (i == D40_SUSPEND_MAX_IT) {
  966. chan_err(d40c,
  967. "unable to suspend the chl %d (log: %d) status %x\n",
  968. d40c->phy_chan->num, d40c->log_num,
  969. status);
  970. dump_stack();
  971. ret = -EBUSY;
  972. }
  973. }
  974. done:
  975. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  976. return ret;
  977. }
  978. static void d40_term_all(struct d40_chan *d40c)
  979. {
  980. struct d40_desc *d40d;
  981. struct d40_desc *_d;
  982. /* Release completed descriptors */
  983. while ((d40d = d40_first_done(d40c))) {
  984. d40_desc_remove(d40d);
  985. d40_desc_free(d40c, d40d);
  986. }
  987. /* Release active descriptors */
  988. while ((d40d = d40_first_active_get(d40c))) {
  989. d40_desc_remove(d40d);
  990. d40_desc_free(d40c, d40d);
  991. }
  992. /* Release queued descriptors waiting for transfer */
  993. while ((d40d = d40_first_queued(d40c))) {
  994. d40_desc_remove(d40d);
  995. d40_desc_free(d40c, d40d);
  996. }
  997. /* Release pending descriptors */
  998. while ((d40d = d40_first_pending(d40c))) {
  999. d40_desc_remove(d40d);
  1000. d40_desc_free(d40c, d40d);
  1001. }
  1002. /* Release client owned descriptors */
  1003. if (!list_empty(&d40c->client))
  1004. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  1005. d40_desc_remove(d40d);
  1006. d40_desc_free(d40c, d40d);
  1007. }
  1008. /* Release descriptors in prepare queue */
  1009. if (!list_empty(&d40c->prepare_queue))
  1010. list_for_each_entry_safe(d40d, _d,
  1011. &d40c->prepare_queue, node) {
  1012. d40_desc_remove(d40d);
  1013. d40_desc_free(d40c, d40d);
  1014. }
  1015. d40c->pending_tx = 0;
  1016. }
  1017. static void __d40_config_set_event(struct d40_chan *d40c,
  1018. enum d40_events event_type, u32 event,
  1019. int reg)
  1020. {
  1021. void __iomem *addr = chan_base(d40c) + reg;
  1022. int tries;
  1023. u32 status;
  1024. switch (event_type) {
  1025. case D40_DEACTIVATE_EVENTLINE:
  1026. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  1027. | ~D40_EVENTLINE_MASK(event), addr);
  1028. break;
  1029. case D40_SUSPEND_REQ_EVENTLINE:
  1030. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1031. D40_EVENTLINE_POS(event);
  1032. if (status == D40_DEACTIVATE_EVENTLINE ||
  1033. status == D40_SUSPEND_REQ_EVENTLINE)
  1034. break;
  1035. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  1036. | ~D40_EVENTLINE_MASK(event), addr);
  1037. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  1038. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1039. D40_EVENTLINE_POS(event);
  1040. cpu_relax();
  1041. /*
  1042. * Reduce the number of bus accesses while
  1043. * waiting for the DMA to suspend.
  1044. */
  1045. udelay(3);
  1046. if (status == D40_DEACTIVATE_EVENTLINE)
  1047. break;
  1048. }
  1049. if (tries == D40_SUSPEND_MAX_IT) {
  1050. chan_err(d40c,
  1051. "unable to stop the event_line chl %d (log: %d)"
  1052. "status %x\n", d40c->phy_chan->num,
  1053. d40c->log_num, status);
  1054. }
  1055. break;
  1056. case D40_ACTIVATE_EVENTLINE:
  1057. /*
  1058. * The hardware sometimes doesn't register the enable when src and dst
  1059. * event lines are active on the same logical channel. Retry to ensure
  1060. * it does. Usually only one retry is sufficient.
  1061. */
  1062. tries = 100;
  1063. while (--tries) {
  1064. writel((D40_ACTIVATE_EVENTLINE <<
  1065. D40_EVENTLINE_POS(event)) |
  1066. ~D40_EVENTLINE_MASK(event), addr);
  1067. if (readl(addr) & D40_EVENTLINE_MASK(event))
  1068. break;
  1069. }
  1070. if (tries != 99)
  1071. dev_dbg(chan2dev(d40c),
  1072. "[%s] workaround enable S%cLNK (%d tries)\n",
  1073. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  1074. 100 - tries);
  1075. WARN_ON(!tries);
  1076. break;
  1077. case D40_ROUND_EVENTLINE:
  1078. BUG();
  1079. break;
  1080. }
  1081. }
  1082. static void d40_config_set_event(struct d40_chan *d40c,
  1083. enum d40_events event_type)
  1084. {
  1085. /* Enable event line connected to device (or memcpy) */
  1086. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1087. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  1088. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1089. __d40_config_set_event(d40c, event_type, event,
  1090. D40_CHAN_REG_SSLNK);
  1091. }
  1092. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  1093. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1094. __d40_config_set_event(d40c, event_type, event,
  1095. D40_CHAN_REG_SDLNK);
  1096. }
  1097. }
  1098. static u32 d40_chan_has_events(struct d40_chan *d40c)
  1099. {
  1100. void __iomem *chanbase = chan_base(d40c);
  1101. u32 val;
  1102. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  1103. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  1104. return val;
  1105. }
  1106. static int
  1107. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  1108. {
  1109. unsigned long flags;
  1110. int ret = 0;
  1111. u32 active_status;
  1112. void __iomem *active_reg;
  1113. if (d40c->phy_chan->num % 2 == 0)
  1114. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1115. else
  1116. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1117. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  1118. switch (command) {
  1119. case D40_DMA_STOP:
  1120. case D40_DMA_SUSPEND_REQ:
  1121. active_status = (readl(active_reg) &
  1122. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1123. D40_CHAN_POS(d40c->phy_chan->num);
  1124. if (active_status == D40_DMA_RUN)
  1125. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  1126. else
  1127. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  1128. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  1129. ret = __d40_execute_command_phy(d40c, command);
  1130. break;
  1131. case D40_DMA_RUN:
  1132. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  1133. ret = __d40_execute_command_phy(d40c, command);
  1134. break;
  1135. case D40_DMA_SUSPENDED:
  1136. BUG();
  1137. break;
  1138. }
  1139. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  1140. return ret;
  1141. }
  1142. static int d40_channel_execute_command(struct d40_chan *d40c,
  1143. enum d40_command command)
  1144. {
  1145. if (chan_is_logical(d40c))
  1146. return __d40_execute_command_log(d40c, command);
  1147. else
  1148. return __d40_execute_command_phy(d40c, command);
  1149. }
  1150. static u32 d40_get_prmo(struct d40_chan *d40c)
  1151. {
  1152. static const unsigned int phy_map[] = {
  1153. [STEDMA40_PCHAN_BASIC_MODE]
  1154. = D40_DREG_PRMO_PCHAN_BASIC,
  1155. [STEDMA40_PCHAN_MODULO_MODE]
  1156. = D40_DREG_PRMO_PCHAN_MODULO,
  1157. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1158. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1159. };
  1160. static const unsigned int log_map[] = {
  1161. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1162. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1163. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1164. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1165. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1166. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1167. };
  1168. if (chan_is_physical(d40c))
  1169. return phy_map[d40c->dma_cfg.mode_opt];
  1170. else
  1171. return log_map[d40c->dma_cfg.mode_opt];
  1172. }
  1173. static void d40_config_write(struct d40_chan *d40c)
  1174. {
  1175. u32 addr_base;
  1176. u32 var;
  1177. /* Odd addresses are even addresses + 4 */
  1178. addr_base = (d40c->phy_chan->num % 2) * 4;
  1179. /* Setup channel mode to logical or physical */
  1180. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1181. D40_CHAN_POS(d40c->phy_chan->num);
  1182. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1183. /* Setup operational mode option register */
  1184. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1185. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1186. if (chan_is_logical(d40c)) {
  1187. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1188. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1189. void __iomem *chanbase = chan_base(d40c);
  1190. /* Set default config for CFG reg */
  1191. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1192. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1193. /* Set LIDX for lcla */
  1194. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1195. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1196. /* Clear LNK which will be used by d40_chan_has_events() */
  1197. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1198. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1199. }
  1200. }
  1201. static u32 d40_residue(struct d40_chan *d40c)
  1202. {
  1203. u32 num_elt;
  1204. if (chan_is_logical(d40c))
  1205. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1206. >> D40_MEM_LCSP2_ECNT_POS;
  1207. else {
  1208. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1209. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1210. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1211. }
  1212. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1213. }
  1214. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1215. {
  1216. bool is_link;
  1217. if (chan_is_logical(d40c))
  1218. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1219. else
  1220. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1221. & D40_SREG_LNK_PHYS_LNK_MASK;
  1222. return is_link;
  1223. }
  1224. static int d40_pause(struct d40_chan *d40c)
  1225. {
  1226. int res = 0;
  1227. unsigned long flags;
  1228. if (!d40c->busy)
  1229. return 0;
  1230. pm_runtime_get_sync(d40c->base->dev);
  1231. spin_lock_irqsave(&d40c->lock, flags);
  1232. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1233. pm_runtime_mark_last_busy(d40c->base->dev);
  1234. pm_runtime_put_autosuspend(d40c->base->dev);
  1235. spin_unlock_irqrestore(&d40c->lock, flags);
  1236. return res;
  1237. }
  1238. static int d40_resume(struct d40_chan *d40c)
  1239. {
  1240. int res = 0;
  1241. unsigned long flags;
  1242. if (!d40c->busy)
  1243. return 0;
  1244. spin_lock_irqsave(&d40c->lock, flags);
  1245. pm_runtime_get_sync(d40c->base->dev);
  1246. /* If bytes left to transfer or linked tx resume job */
  1247. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1248. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1249. pm_runtime_mark_last_busy(d40c->base->dev);
  1250. pm_runtime_put_autosuspend(d40c->base->dev);
  1251. spin_unlock_irqrestore(&d40c->lock, flags);
  1252. return res;
  1253. }
  1254. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1255. {
  1256. struct d40_chan *d40c = container_of(tx->chan,
  1257. struct d40_chan,
  1258. chan);
  1259. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1260. unsigned long flags;
  1261. dma_cookie_t cookie;
  1262. spin_lock_irqsave(&d40c->lock, flags);
  1263. cookie = dma_cookie_assign(tx);
  1264. d40_desc_queue(d40c, d40d);
  1265. spin_unlock_irqrestore(&d40c->lock, flags);
  1266. return cookie;
  1267. }
  1268. static int d40_start(struct d40_chan *d40c)
  1269. {
  1270. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1271. }
  1272. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1273. {
  1274. struct d40_desc *d40d;
  1275. int err;
  1276. /* Start queued jobs, if any */
  1277. d40d = d40_first_queued(d40c);
  1278. if (d40d != NULL) {
  1279. if (!d40c->busy) {
  1280. d40c->busy = true;
  1281. pm_runtime_get_sync(d40c->base->dev);
  1282. }
  1283. /* Remove from queue */
  1284. d40_desc_remove(d40d);
  1285. /* Add to active queue */
  1286. d40_desc_submit(d40c, d40d);
  1287. /* Initiate DMA job */
  1288. d40_desc_load(d40c, d40d);
  1289. /* Start dma job */
  1290. err = d40_start(d40c);
  1291. if (err)
  1292. return NULL;
  1293. }
  1294. return d40d;
  1295. }
  1296. /* called from interrupt context */
  1297. static void dma_tc_handle(struct d40_chan *d40c)
  1298. {
  1299. struct d40_desc *d40d;
  1300. /* Get first active entry from list */
  1301. d40d = d40_first_active_get(d40c);
  1302. if (d40d == NULL)
  1303. return;
  1304. if (d40d->cyclic) {
  1305. /*
  1306. * If this was a paritially loaded list, we need to reloaded
  1307. * it, and only when the list is completed. We need to check
  1308. * for done because the interrupt will hit for every link, and
  1309. * not just the last one.
  1310. */
  1311. if (d40d->lli_current < d40d->lli_len
  1312. && !d40_tx_is_linked(d40c)
  1313. && !d40_residue(d40c)) {
  1314. d40_lcla_free_all(d40c, d40d);
  1315. d40_desc_load(d40c, d40d);
  1316. (void) d40_start(d40c);
  1317. if (d40d->lli_current == d40d->lli_len)
  1318. d40d->lli_current = 0;
  1319. }
  1320. } else {
  1321. d40_lcla_free_all(d40c, d40d);
  1322. if (d40d->lli_current < d40d->lli_len) {
  1323. d40_desc_load(d40c, d40d);
  1324. /* Start dma job */
  1325. (void) d40_start(d40c);
  1326. return;
  1327. }
  1328. if (d40_queue_start(d40c) == NULL) {
  1329. d40c->busy = false;
  1330. pm_runtime_mark_last_busy(d40c->base->dev);
  1331. pm_runtime_put_autosuspend(d40c->base->dev);
  1332. }
  1333. d40_desc_remove(d40d);
  1334. d40_desc_done(d40c, d40d);
  1335. }
  1336. d40c->pending_tx++;
  1337. tasklet_schedule(&d40c->tasklet);
  1338. }
  1339. static void dma_tasklet(unsigned long data)
  1340. {
  1341. struct d40_chan *d40c = (struct d40_chan *) data;
  1342. struct d40_desc *d40d;
  1343. unsigned long flags;
  1344. dma_async_tx_callback callback;
  1345. void *callback_param;
  1346. spin_lock_irqsave(&d40c->lock, flags);
  1347. /* Get first entry from the done list */
  1348. d40d = d40_first_done(d40c);
  1349. if (d40d == NULL) {
  1350. /* Check if we have reached here for cyclic job */
  1351. d40d = d40_first_active_get(d40c);
  1352. if (d40d == NULL || !d40d->cyclic)
  1353. goto err;
  1354. }
  1355. if (!d40d->cyclic)
  1356. dma_cookie_complete(&d40d->txd);
  1357. /*
  1358. * If terminating a channel pending_tx is set to zero.
  1359. * This prevents any finished active jobs to return to the client.
  1360. */
  1361. if (d40c->pending_tx == 0) {
  1362. spin_unlock_irqrestore(&d40c->lock, flags);
  1363. return;
  1364. }
  1365. /* Callback to client */
  1366. callback = d40d->txd.callback;
  1367. callback_param = d40d->txd.callback_param;
  1368. if (!d40d->cyclic) {
  1369. if (async_tx_test_ack(&d40d->txd)) {
  1370. d40_desc_remove(d40d);
  1371. d40_desc_free(d40c, d40d);
  1372. } else if (!d40d->is_in_client_list) {
  1373. d40_desc_remove(d40d);
  1374. d40_lcla_free_all(d40c, d40d);
  1375. list_add_tail(&d40d->node, &d40c->client);
  1376. d40d->is_in_client_list = true;
  1377. }
  1378. }
  1379. d40c->pending_tx--;
  1380. if (d40c->pending_tx)
  1381. tasklet_schedule(&d40c->tasklet);
  1382. spin_unlock_irqrestore(&d40c->lock, flags);
  1383. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1384. callback(callback_param);
  1385. return;
  1386. err:
  1387. /* Rescue manouver if receiving double interrupts */
  1388. if (d40c->pending_tx > 0)
  1389. d40c->pending_tx--;
  1390. spin_unlock_irqrestore(&d40c->lock, flags);
  1391. }
  1392. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1393. {
  1394. int i;
  1395. u32 idx;
  1396. u32 row;
  1397. long chan = -1;
  1398. struct d40_chan *d40c;
  1399. unsigned long flags;
  1400. struct d40_base *base = data;
  1401. u32 regs[base->gen_dmac.il_size];
  1402. struct d40_interrupt_lookup *il = base->gen_dmac.il;
  1403. u32 il_size = base->gen_dmac.il_size;
  1404. spin_lock_irqsave(&base->interrupt_lock, flags);
  1405. /* Read interrupt status of both logical and physical channels */
  1406. for (i = 0; i < il_size; i++)
  1407. regs[i] = readl(base->virtbase + il[i].src);
  1408. for (;;) {
  1409. chan = find_next_bit((unsigned long *)regs,
  1410. BITS_PER_LONG * il_size, chan + 1);
  1411. /* No more set bits found? */
  1412. if (chan == BITS_PER_LONG * il_size)
  1413. break;
  1414. row = chan / BITS_PER_LONG;
  1415. idx = chan & (BITS_PER_LONG - 1);
  1416. if (il[row].offset == D40_PHY_CHAN)
  1417. d40c = base->lookup_phy_chans[idx];
  1418. else
  1419. d40c = base->lookup_log_chans[il[row].offset + idx];
  1420. if (!d40c) {
  1421. /*
  1422. * No error because this can happen if something else
  1423. * in the system is using the channel.
  1424. */
  1425. continue;
  1426. }
  1427. /* ACK interrupt */
  1428. writel(1 << idx, base->virtbase + il[row].clr);
  1429. spin_lock(&d40c->lock);
  1430. if (!il[row].is_error)
  1431. dma_tc_handle(d40c);
  1432. else
  1433. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1434. chan, il[row].offset, idx);
  1435. spin_unlock(&d40c->lock);
  1436. }
  1437. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1438. return IRQ_HANDLED;
  1439. }
  1440. static int d40_validate_conf(struct d40_chan *d40c,
  1441. struct stedma40_chan_cfg *conf)
  1442. {
  1443. int res = 0;
  1444. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1445. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1446. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1447. if (!conf->dir) {
  1448. chan_err(d40c, "Invalid direction.\n");
  1449. res = -EINVAL;
  1450. }
  1451. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1452. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1453. d40c->runtime_addr == 0) {
  1454. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1455. conf->dst_dev_type);
  1456. res = -EINVAL;
  1457. }
  1458. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1459. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1460. d40c->runtime_addr == 0) {
  1461. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1462. conf->src_dev_type);
  1463. res = -EINVAL;
  1464. }
  1465. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1466. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1467. chan_err(d40c, "Invalid dst\n");
  1468. res = -EINVAL;
  1469. }
  1470. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1471. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1472. chan_err(d40c, "Invalid src\n");
  1473. res = -EINVAL;
  1474. }
  1475. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1476. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1477. chan_err(d40c, "No event line\n");
  1478. res = -EINVAL;
  1479. }
  1480. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1481. (src_event_group != dst_event_group)) {
  1482. chan_err(d40c, "Invalid event group\n");
  1483. res = -EINVAL;
  1484. }
  1485. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1486. /*
  1487. * DMAC HW supports it. Will be added to this driver,
  1488. * in case any dma client requires it.
  1489. */
  1490. chan_err(d40c, "periph to periph not supported\n");
  1491. res = -EINVAL;
  1492. }
  1493. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1494. (1 << conf->src_info.data_width) !=
  1495. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1496. (1 << conf->dst_info.data_width)) {
  1497. /*
  1498. * The DMAC hardware only supports
  1499. * src (burst x width) == dst (burst x width)
  1500. */
  1501. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1502. res = -EINVAL;
  1503. }
  1504. return res;
  1505. }
  1506. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1507. bool is_src, int log_event_line, bool is_log,
  1508. bool *first_user)
  1509. {
  1510. unsigned long flags;
  1511. spin_lock_irqsave(&phy->lock, flags);
  1512. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1513. == D40_ALLOC_FREE);
  1514. if (!is_log) {
  1515. /* Physical interrupts are masked per physical full channel */
  1516. if (phy->allocated_src == D40_ALLOC_FREE &&
  1517. phy->allocated_dst == D40_ALLOC_FREE) {
  1518. phy->allocated_dst = D40_ALLOC_PHY;
  1519. phy->allocated_src = D40_ALLOC_PHY;
  1520. goto found;
  1521. } else
  1522. goto not_found;
  1523. }
  1524. /* Logical channel */
  1525. if (is_src) {
  1526. if (phy->allocated_src == D40_ALLOC_PHY)
  1527. goto not_found;
  1528. if (phy->allocated_src == D40_ALLOC_FREE)
  1529. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1530. if (!(phy->allocated_src & (1 << log_event_line))) {
  1531. phy->allocated_src |= 1 << log_event_line;
  1532. goto found;
  1533. } else
  1534. goto not_found;
  1535. } else {
  1536. if (phy->allocated_dst == D40_ALLOC_PHY)
  1537. goto not_found;
  1538. if (phy->allocated_dst == D40_ALLOC_FREE)
  1539. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1540. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1541. phy->allocated_dst |= 1 << log_event_line;
  1542. goto found;
  1543. } else
  1544. goto not_found;
  1545. }
  1546. not_found:
  1547. spin_unlock_irqrestore(&phy->lock, flags);
  1548. return false;
  1549. found:
  1550. spin_unlock_irqrestore(&phy->lock, flags);
  1551. return true;
  1552. }
  1553. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1554. int log_event_line)
  1555. {
  1556. unsigned long flags;
  1557. bool is_free = false;
  1558. spin_lock_irqsave(&phy->lock, flags);
  1559. if (!log_event_line) {
  1560. phy->allocated_dst = D40_ALLOC_FREE;
  1561. phy->allocated_src = D40_ALLOC_FREE;
  1562. is_free = true;
  1563. goto out;
  1564. }
  1565. /* Logical channel */
  1566. if (is_src) {
  1567. phy->allocated_src &= ~(1 << log_event_line);
  1568. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1569. phy->allocated_src = D40_ALLOC_FREE;
  1570. } else {
  1571. phy->allocated_dst &= ~(1 << log_event_line);
  1572. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1573. phy->allocated_dst = D40_ALLOC_FREE;
  1574. }
  1575. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1576. D40_ALLOC_FREE);
  1577. out:
  1578. spin_unlock_irqrestore(&phy->lock, flags);
  1579. return is_free;
  1580. }
  1581. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1582. {
  1583. int dev_type;
  1584. int event_group;
  1585. int event_line;
  1586. struct d40_phy_res *phys;
  1587. int i;
  1588. int j;
  1589. int log_num;
  1590. int num_phy_chans;
  1591. bool is_src;
  1592. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1593. phys = d40c->base->phy_res;
  1594. num_phy_chans = d40c->base->num_phy_chans;
  1595. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1596. dev_type = d40c->dma_cfg.src_dev_type;
  1597. log_num = 2 * dev_type;
  1598. is_src = true;
  1599. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1600. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1601. /* dst event lines are used for logical memcpy */
  1602. dev_type = d40c->dma_cfg.dst_dev_type;
  1603. log_num = 2 * dev_type + 1;
  1604. is_src = false;
  1605. } else
  1606. return -EINVAL;
  1607. event_group = D40_TYPE_TO_GROUP(dev_type);
  1608. event_line = D40_TYPE_TO_EVENT(dev_type);
  1609. if (!is_log) {
  1610. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1611. /* Find physical half channel */
  1612. if (d40c->dma_cfg.use_fixed_channel) {
  1613. i = d40c->dma_cfg.phy_channel;
  1614. if (d40_alloc_mask_set(&phys[i], is_src,
  1615. 0, is_log,
  1616. first_phy_user))
  1617. goto found_phy;
  1618. } else {
  1619. for (i = 0; i < num_phy_chans; i++) {
  1620. if (d40_alloc_mask_set(&phys[i], is_src,
  1621. 0, is_log,
  1622. first_phy_user))
  1623. goto found_phy;
  1624. }
  1625. }
  1626. } else
  1627. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1628. int phy_num = j + event_group * 2;
  1629. for (i = phy_num; i < phy_num + 2; i++) {
  1630. if (d40_alloc_mask_set(&phys[i],
  1631. is_src,
  1632. 0,
  1633. is_log,
  1634. first_phy_user))
  1635. goto found_phy;
  1636. }
  1637. }
  1638. return -EINVAL;
  1639. found_phy:
  1640. d40c->phy_chan = &phys[i];
  1641. d40c->log_num = D40_PHY_CHAN;
  1642. goto out;
  1643. }
  1644. if (dev_type == -1)
  1645. return -EINVAL;
  1646. /* Find logical channel */
  1647. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1648. int phy_num = j + event_group * 2;
  1649. if (d40c->dma_cfg.use_fixed_channel) {
  1650. i = d40c->dma_cfg.phy_channel;
  1651. if ((i != phy_num) && (i != phy_num + 1)) {
  1652. dev_err(chan2dev(d40c),
  1653. "invalid fixed phy channel %d\n", i);
  1654. return -EINVAL;
  1655. }
  1656. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1657. is_log, first_phy_user))
  1658. goto found_log;
  1659. dev_err(chan2dev(d40c),
  1660. "could not allocate fixed phy channel %d\n", i);
  1661. return -EINVAL;
  1662. }
  1663. /*
  1664. * Spread logical channels across all available physical rather
  1665. * than pack every logical channel at the first available phy
  1666. * channels.
  1667. */
  1668. if (is_src) {
  1669. for (i = phy_num; i < phy_num + 2; i++) {
  1670. if (d40_alloc_mask_set(&phys[i], is_src,
  1671. event_line, is_log,
  1672. first_phy_user))
  1673. goto found_log;
  1674. }
  1675. } else {
  1676. for (i = phy_num + 1; i >= phy_num; i--) {
  1677. if (d40_alloc_mask_set(&phys[i], is_src,
  1678. event_line, is_log,
  1679. first_phy_user))
  1680. goto found_log;
  1681. }
  1682. }
  1683. }
  1684. return -EINVAL;
  1685. found_log:
  1686. d40c->phy_chan = &phys[i];
  1687. d40c->log_num = log_num;
  1688. out:
  1689. if (is_log)
  1690. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1691. else
  1692. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1693. return 0;
  1694. }
  1695. static int d40_config_memcpy(struct d40_chan *d40c)
  1696. {
  1697. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1698. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1699. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1700. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1701. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1702. memcpy[d40c->chan.chan_id];
  1703. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1704. dma_has_cap(DMA_SLAVE, cap)) {
  1705. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1706. } else {
  1707. chan_err(d40c, "No memcpy\n");
  1708. return -EINVAL;
  1709. }
  1710. return 0;
  1711. }
  1712. static int d40_free_dma(struct d40_chan *d40c)
  1713. {
  1714. int res = 0;
  1715. u32 event;
  1716. struct d40_phy_res *phy = d40c->phy_chan;
  1717. bool is_src;
  1718. /* Terminate all queued and active transfers */
  1719. d40_term_all(d40c);
  1720. if (phy == NULL) {
  1721. chan_err(d40c, "phy == null\n");
  1722. return -EINVAL;
  1723. }
  1724. if (phy->allocated_src == D40_ALLOC_FREE &&
  1725. phy->allocated_dst == D40_ALLOC_FREE) {
  1726. chan_err(d40c, "channel already free\n");
  1727. return -EINVAL;
  1728. }
  1729. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1730. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1731. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1732. is_src = false;
  1733. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1734. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1735. is_src = true;
  1736. } else {
  1737. chan_err(d40c, "Unknown direction\n");
  1738. return -EINVAL;
  1739. }
  1740. pm_runtime_get_sync(d40c->base->dev);
  1741. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1742. if (res) {
  1743. chan_err(d40c, "stop failed\n");
  1744. goto out;
  1745. }
  1746. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1747. if (chan_is_logical(d40c))
  1748. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1749. else
  1750. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1751. if (d40c->busy) {
  1752. pm_runtime_mark_last_busy(d40c->base->dev);
  1753. pm_runtime_put_autosuspend(d40c->base->dev);
  1754. }
  1755. d40c->busy = false;
  1756. d40c->phy_chan = NULL;
  1757. d40c->configured = false;
  1758. out:
  1759. pm_runtime_mark_last_busy(d40c->base->dev);
  1760. pm_runtime_put_autosuspend(d40c->base->dev);
  1761. return res;
  1762. }
  1763. static bool d40_is_paused(struct d40_chan *d40c)
  1764. {
  1765. void __iomem *chanbase = chan_base(d40c);
  1766. bool is_paused = false;
  1767. unsigned long flags;
  1768. void __iomem *active_reg;
  1769. u32 status;
  1770. u32 event;
  1771. spin_lock_irqsave(&d40c->lock, flags);
  1772. if (chan_is_physical(d40c)) {
  1773. if (d40c->phy_chan->num % 2 == 0)
  1774. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1775. else
  1776. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1777. status = (readl(active_reg) &
  1778. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1779. D40_CHAN_POS(d40c->phy_chan->num);
  1780. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1781. is_paused = true;
  1782. goto _exit;
  1783. }
  1784. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1785. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1786. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1787. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1788. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1789. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1790. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1791. } else {
  1792. chan_err(d40c, "Unknown direction\n");
  1793. goto _exit;
  1794. }
  1795. status = (status & D40_EVENTLINE_MASK(event)) >>
  1796. D40_EVENTLINE_POS(event);
  1797. if (status != D40_DMA_RUN)
  1798. is_paused = true;
  1799. _exit:
  1800. spin_unlock_irqrestore(&d40c->lock, flags);
  1801. return is_paused;
  1802. }
  1803. static u32 stedma40_residue(struct dma_chan *chan)
  1804. {
  1805. struct d40_chan *d40c =
  1806. container_of(chan, struct d40_chan, chan);
  1807. u32 bytes_left;
  1808. unsigned long flags;
  1809. spin_lock_irqsave(&d40c->lock, flags);
  1810. bytes_left = d40_residue(d40c);
  1811. spin_unlock_irqrestore(&d40c->lock, flags);
  1812. return bytes_left;
  1813. }
  1814. static int
  1815. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1816. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1817. unsigned int sg_len, dma_addr_t src_dev_addr,
  1818. dma_addr_t dst_dev_addr)
  1819. {
  1820. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1821. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1822. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1823. int ret;
  1824. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1825. src_dev_addr,
  1826. desc->lli_log.src,
  1827. chan->log_def.lcsp1,
  1828. src_info->data_width,
  1829. dst_info->data_width);
  1830. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1831. dst_dev_addr,
  1832. desc->lli_log.dst,
  1833. chan->log_def.lcsp3,
  1834. dst_info->data_width,
  1835. src_info->data_width);
  1836. return ret < 0 ? ret : 0;
  1837. }
  1838. static int
  1839. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1840. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1841. unsigned int sg_len, dma_addr_t src_dev_addr,
  1842. dma_addr_t dst_dev_addr)
  1843. {
  1844. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1845. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1846. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1847. unsigned long flags = 0;
  1848. int ret;
  1849. if (desc->cyclic)
  1850. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1851. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1852. desc->lli_phy.src,
  1853. virt_to_phys(desc->lli_phy.src),
  1854. chan->src_def_cfg,
  1855. src_info, dst_info, flags);
  1856. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1857. desc->lli_phy.dst,
  1858. virt_to_phys(desc->lli_phy.dst),
  1859. chan->dst_def_cfg,
  1860. dst_info, src_info, flags);
  1861. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1862. desc->lli_pool.size, DMA_TO_DEVICE);
  1863. return ret < 0 ? ret : 0;
  1864. }
  1865. static struct d40_desc *
  1866. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1867. unsigned int sg_len, unsigned long dma_flags)
  1868. {
  1869. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1870. struct d40_desc *desc;
  1871. int ret;
  1872. desc = d40_desc_get(chan);
  1873. if (!desc)
  1874. return NULL;
  1875. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1876. cfg->dst_info.data_width);
  1877. if (desc->lli_len < 0) {
  1878. chan_err(chan, "Unaligned size\n");
  1879. goto err;
  1880. }
  1881. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1882. if (ret < 0) {
  1883. chan_err(chan, "Could not allocate lli\n");
  1884. goto err;
  1885. }
  1886. desc->lli_current = 0;
  1887. desc->txd.flags = dma_flags;
  1888. desc->txd.tx_submit = d40_tx_submit;
  1889. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1890. return desc;
  1891. err:
  1892. d40_desc_free(chan, desc);
  1893. return NULL;
  1894. }
  1895. static dma_addr_t
  1896. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1897. {
  1898. struct stedma40_platform_data *plat = chan->base->plat_data;
  1899. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1900. dma_addr_t addr = 0;
  1901. if (chan->runtime_addr)
  1902. return chan->runtime_addr;
  1903. if (direction == DMA_DEV_TO_MEM)
  1904. addr = plat->dev_rx[cfg->src_dev_type];
  1905. else if (direction == DMA_MEM_TO_DEV)
  1906. addr = plat->dev_tx[cfg->dst_dev_type];
  1907. return addr;
  1908. }
  1909. static struct dma_async_tx_descriptor *
  1910. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1911. struct scatterlist *sg_dst, unsigned int sg_len,
  1912. enum dma_transfer_direction direction, unsigned long dma_flags)
  1913. {
  1914. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1915. dma_addr_t src_dev_addr = 0;
  1916. dma_addr_t dst_dev_addr = 0;
  1917. struct d40_desc *desc;
  1918. unsigned long flags;
  1919. int ret;
  1920. if (!chan->phy_chan) {
  1921. chan_err(chan, "Cannot prepare unallocated channel\n");
  1922. return NULL;
  1923. }
  1924. spin_lock_irqsave(&chan->lock, flags);
  1925. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1926. if (desc == NULL)
  1927. goto err;
  1928. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1929. desc->cyclic = true;
  1930. if (direction != DMA_TRANS_NONE) {
  1931. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1932. if (direction == DMA_DEV_TO_MEM)
  1933. src_dev_addr = dev_addr;
  1934. else if (direction == DMA_MEM_TO_DEV)
  1935. dst_dev_addr = dev_addr;
  1936. }
  1937. if (chan_is_logical(chan))
  1938. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1939. sg_len, src_dev_addr, dst_dev_addr);
  1940. else
  1941. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1942. sg_len, src_dev_addr, dst_dev_addr);
  1943. if (ret) {
  1944. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1945. chan_is_logical(chan) ? "log" : "phy", ret);
  1946. goto err;
  1947. }
  1948. /*
  1949. * add descriptor to the prepare queue in order to be able
  1950. * to free them later in terminate_all
  1951. */
  1952. list_add_tail(&desc->node, &chan->prepare_queue);
  1953. spin_unlock_irqrestore(&chan->lock, flags);
  1954. return &desc->txd;
  1955. err:
  1956. if (desc)
  1957. d40_desc_free(chan, desc);
  1958. spin_unlock_irqrestore(&chan->lock, flags);
  1959. return NULL;
  1960. }
  1961. bool stedma40_filter(struct dma_chan *chan, void *data)
  1962. {
  1963. struct stedma40_chan_cfg *info = data;
  1964. struct d40_chan *d40c =
  1965. container_of(chan, struct d40_chan, chan);
  1966. int err;
  1967. if (data) {
  1968. err = d40_validate_conf(d40c, info);
  1969. if (!err)
  1970. d40c->dma_cfg = *info;
  1971. } else
  1972. err = d40_config_memcpy(d40c);
  1973. if (!err)
  1974. d40c->configured = true;
  1975. return err == 0;
  1976. }
  1977. EXPORT_SYMBOL(stedma40_filter);
  1978. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1979. {
  1980. bool realtime = d40c->dma_cfg.realtime;
  1981. bool highprio = d40c->dma_cfg.high_priority;
  1982. u32 rtreg;
  1983. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1984. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1985. u32 bit = 1 << event;
  1986. u32 prioreg;
  1987. struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
  1988. rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
  1989. /*
  1990. * Due to a hardware bug, in some cases a logical channel triggered by
  1991. * a high priority destination event line can generate extra packet
  1992. * transactions.
  1993. *
  1994. * The workaround is to not set the high priority level for the
  1995. * destination event lines that trigger logical channels.
  1996. */
  1997. if (!src && chan_is_logical(d40c))
  1998. highprio = false;
  1999. prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
  2000. /* Destination event lines are stored in the upper halfword */
  2001. if (!src)
  2002. bit <<= 16;
  2003. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  2004. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  2005. }
  2006. static void d40_set_prio_realtime(struct d40_chan *d40c)
  2007. {
  2008. if (d40c->base->rev < 3)
  2009. return;
  2010. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  2011. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2012. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  2013. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  2014. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2015. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  2016. }
  2017. /* DMA ENGINE functions */
  2018. static int d40_alloc_chan_resources(struct dma_chan *chan)
  2019. {
  2020. int err;
  2021. unsigned long flags;
  2022. struct d40_chan *d40c =
  2023. container_of(chan, struct d40_chan, chan);
  2024. bool is_free_phy;
  2025. spin_lock_irqsave(&d40c->lock, flags);
  2026. dma_cookie_init(chan);
  2027. /* If no dma configuration is set use default configuration (memcpy) */
  2028. if (!d40c->configured) {
  2029. err = d40_config_memcpy(d40c);
  2030. if (err) {
  2031. chan_err(d40c, "Failed to configure memcpy channel\n");
  2032. goto fail;
  2033. }
  2034. }
  2035. err = d40_allocate_channel(d40c, &is_free_phy);
  2036. if (err) {
  2037. chan_err(d40c, "Failed to allocate channel\n");
  2038. d40c->configured = false;
  2039. goto fail;
  2040. }
  2041. pm_runtime_get_sync(d40c->base->dev);
  2042. /* Fill in basic CFG register values */
  2043. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  2044. &d40c->dst_def_cfg, chan_is_logical(d40c));
  2045. d40_set_prio_realtime(d40c);
  2046. if (chan_is_logical(d40c)) {
  2047. d40_log_cfg(&d40c->dma_cfg,
  2048. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2049. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  2050. d40c->lcpa = d40c->base->lcpa_base +
  2051. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  2052. else
  2053. d40c->lcpa = d40c->base->lcpa_base +
  2054. d40c->dma_cfg.dst_dev_type *
  2055. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  2056. }
  2057. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  2058. chan_is_logical(d40c) ? "logical" : "physical",
  2059. d40c->phy_chan->num,
  2060. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  2061. /*
  2062. * Only write channel configuration to the DMA if the physical
  2063. * resource is free. In case of multiple logical channels
  2064. * on the same physical resource, only the first write is necessary.
  2065. */
  2066. if (is_free_phy)
  2067. d40_config_write(d40c);
  2068. fail:
  2069. pm_runtime_mark_last_busy(d40c->base->dev);
  2070. pm_runtime_put_autosuspend(d40c->base->dev);
  2071. spin_unlock_irqrestore(&d40c->lock, flags);
  2072. return err;
  2073. }
  2074. static void d40_free_chan_resources(struct dma_chan *chan)
  2075. {
  2076. struct d40_chan *d40c =
  2077. container_of(chan, struct d40_chan, chan);
  2078. int err;
  2079. unsigned long flags;
  2080. if (d40c->phy_chan == NULL) {
  2081. chan_err(d40c, "Cannot free unallocated channel\n");
  2082. return;
  2083. }
  2084. spin_lock_irqsave(&d40c->lock, flags);
  2085. err = d40_free_dma(d40c);
  2086. if (err)
  2087. chan_err(d40c, "Failed to free channel\n");
  2088. spin_unlock_irqrestore(&d40c->lock, flags);
  2089. }
  2090. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  2091. dma_addr_t dst,
  2092. dma_addr_t src,
  2093. size_t size,
  2094. unsigned long dma_flags)
  2095. {
  2096. struct scatterlist dst_sg;
  2097. struct scatterlist src_sg;
  2098. sg_init_table(&dst_sg, 1);
  2099. sg_init_table(&src_sg, 1);
  2100. sg_dma_address(&dst_sg) = dst;
  2101. sg_dma_address(&src_sg) = src;
  2102. sg_dma_len(&dst_sg) = size;
  2103. sg_dma_len(&src_sg) = size;
  2104. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  2105. }
  2106. static struct dma_async_tx_descriptor *
  2107. d40_prep_memcpy_sg(struct dma_chan *chan,
  2108. struct scatterlist *dst_sg, unsigned int dst_nents,
  2109. struct scatterlist *src_sg, unsigned int src_nents,
  2110. unsigned long dma_flags)
  2111. {
  2112. if (dst_nents != src_nents)
  2113. return NULL;
  2114. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  2115. }
  2116. static struct dma_async_tx_descriptor *
  2117. d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2118. unsigned int sg_len, enum dma_transfer_direction direction,
  2119. unsigned long dma_flags, void *context)
  2120. {
  2121. if (!is_slave_direction(direction))
  2122. return NULL;
  2123. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  2124. }
  2125. static struct dma_async_tx_descriptor *
  2126. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  2127. size_t buf_len, size_t period_len,
  2128. enum dma_transfer_direction direction, unsigned long flags,
  2129. void *context)
  2130. {
  2131. unsigned int periods = buf_len / period_len;
  2132. struct dma_async_tx_descriptor *txd;
  2133. struct scatterlist *sg;
  2134. int i;
  2135. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  2136. for (i = 0; i < periods; i++) {
  2137. sg_dma_address(&sg[i]) = dma_addr;
  2138. sg_dma_len(&sg[i]) = period_len;
  2139. dma_addr += period_len;
  2140. }
  2141. sg[periods].offset = 0;
  2142. sg_dma_len(&sg[periods]) = 0;
  2143. sg[periods].page_link =
  2144. ((unsigned long)sg | 0x01) & ~0x02;
  2145. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  2146. DMA_PREP_INTERRUPT);
  2147. kfree(sg);
  2148. return txd;
  2149. }
  2150. static enum dma_status d40_tx_status(struct dma_chan *chan,
  2151. dma_cookie_t cookie,
  2152. struct dma_tx_state *txstate)
  2153. {
  2154. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2155. enum dma_status ret;
  2156. if (d40c->phy_chan == NULL) {
  2157. chan_err(d40c, "Cannot read status of unallocated channel\n");
  2158. return -EINVAL;
  2159. }
  2160. ret = dma_cookie_status(chan, cookie, txstate);
  2161. if (ret != DMA_SUCCESS)
  2162. dma_set_residue(txstate, stedma40_residue(chan));
  2163. if (d40_is_paused(d40c))
  2164. ret = DMA_PAUSED;
  2165. return ret;
  2166. }
  2167. static void d40_issue_pending(struct dma_chan *chan)
  2168. {
  2169. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2170. unsigned long flags;
  2171. if (d40c->phy_chan == NULL) {
  2172. chan_err(d40c, "Channel is not allocated!\n");
  2173. return;
  2174. }
  2175. spin_lock_irqsave(&d40c->lock, flags);
  2176. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  2177. /* Busy means that queued jobs are already being processed */
  2178. if (!d40c->busy)
  2179. (void) d40_queue_start(d40c);
  2180. spin_unlock_irqrestore(&d40c->lock, flags);
  2181. }
  2182. static void d40_terminate_all(struct dma_chan *chan)
  2183. {
  2184. unsigned long flags;
  2185. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2186. int ret;
  2187. spin_lock_irqsave(&d40c->lock, flags);
  2188. pm_runtime_get_sync(d40c->base->dev);
  2189. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2190. if (ret)
  2191. chan_err(d40c, "Failed to stop channel\n");
  2192. d40_term_all(d40c);
  2193. pm_runtime_mark_last_busy(d40c->base->dev);
  2194. pm_runtime_put_autosuspend(d40c->base->dev);
  2195. if (d40c->busy) {
  2196. pm_runtime_mark_last_busy(d40c->base->dev);
  2197. pm_runtime_put_autosuspend(d40c->base->dev);
  2198. }
  2199. d40c->busy = false;
  2200. spin_unlock_irqrestore(&d40c->lock, flags);
  2201. }
  2202. static int
  2203. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2204. struct stedma40_half_channel_info *info,
  2205. enum dma_slave_buswidth width,
  2206. u32 maxburst)
  2207. {
  2208. enum stedma40_periph_data_width addr_width;
  2209. int psize;
  2210. switch (width) {
  2211. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2212. addr_width = STEDMA40_BYTE_WIDTH;
  2213. break;
  2214. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2215. addr_width = STEDMA40_HALFWORD_WIDTH;
  2216. break;
  2217. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2218. addr_width = STEDMA40_WORD_WIDTH;
  2219. break;
  2220. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2221. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  2222. break;
  2223. default:
  2224. dev_err(d40c->base->dev,
  2225. "illegal peripheral address width "
  2226. "requested (%d)\n",
  2227. width);
  2228. return -EINVAL;
  2229. }
  2230. if (chan_is_logical(d40c)) {
  2231. if (maxburst >= 16)
  2232. psize = STEDMA40_PSIZE_LOG_16;
  2233. else if (maxburst >= 8)
  2234. psize = STEDMA40_PSIZE_LOG_8;
  2235. else if (maxburst >= 4)
  2236. psize = STEDMA40_PSIZE_LOG_4;
  2237. else
  2238. psize = STEDMA40_PSIZE_LOG_1;
  2239. } else {
  2240. if (maxburst >= 16)
  2241. psize = STEDMA40_PSIZE_PHY_16;
  2242. else if (maxburst >= 8)
  2243. psize = STEDMA40_PSIZE_PHY_8;
  2244. else if (maxburst >= 4)
  2245. psize = STEDMA40_PSIZE_PHY_4;
  2246. else
  2247. psize = STEDMA40_PSIZE_PHY_1;
  2248. }
  2249. info->data_width = addr_width;
  2250. info->psize = psize;
  2251. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2252. return 0;
  2253. }
  2254. /* Runtime reconfiguration extension */
  2255. static int d40_set_runtime_config(struct dma_chan *chan,
  2256. struct dma_slave_config *config)
  2257. {
  2258. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2259. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2260. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2261. dma_addr_t config_addr;
  2262. u32 src_maxburst, dst_maxburst;
  2263. int ret;
  2264. src_addr_width = config->src_addr_width;
  2265. src_maxburst = config->src_maxburst;
  2266. dst_addr_width = config->dst_addr_width;
  2267. dst_maxburst = config->dst_maxburst;
  2268. if (config->direction == DMA_DEV_TO_MEM) {
  2269. dma_addr_t dev_addr_rx =
  2270. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2271. config_addr = config->src_addr;
  2272. if (dev_addr_rx)
  2273. dev_dbg(d40c->base->dev,
  2274. "channel has a pre-wired RX address %08x "
  2275. "overriding with %08x\n",
  2276. dev_addr_rx, config_addr);
  2277. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2278. dev_dbg(d40c->base->dev,
  2279. "channel was not configured for peripheral "
  2280. "to memory transfer (%d) overriding\n",
  2281. cfg->dir);
  2282. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2283. /* Configure the memory side */
  2284. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2285. dst_addr_width = src_addr_width;
  2286. if (dst_maxburst == 0)
  2287. dst_maxburst = src_maxburst;
  2288. } else if (config->direction == DMA_MEM_TO_DEV) {
  2289. dma_addr_t dev_addr_tx =
  2290. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2291. config_addr = config->dst_addr;
  2292. if (dev_addr_tx)
  2293. dev_dbg(d40c->base->dev,
  2294. "channel has a pre-wired TX address %08x "
  2295. "overriding with %08x\n",
  2296. dev_addr_tx, config_addr);
  2297. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2298. dev_dbg(d40c->base->dev,
  2299. "channel was not configured for memory "
  2300. "to peripheral transfer (%d) overriding\n",
  2301. cfg->dir);
  2302. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2303. /* Configure the memory side */
  2304. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2305. src_addr_width = dst_addr_width;
  2306. if (src_maxburst == 0)
  2307. src_maxburst = dst_maxburst;
  2308. } else {
  2309. dev_err(d40c->base->dev,
  2310. "unrecognized channel direction %d\n",
  2311. config->direction);
  2312. return -EINVAL;
  2313. }
  2314. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2315. dev_err(d40c->base->dev,
  2316. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2317. src_maxburst,
  2318. src_addr_width,
  2319. dst_maxburst,
  2320. dst_addr_width);
  2321. return -EINVAL;
  2322. }
  2323. if (src_maxburst > 16) {
  2324. src_maxburst = 16;
  2325. dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
  2326. } else if (dst_maxburst > 16) {
  2327. dst_maxburst = 16;
  2328. src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
  2329. }
  2330. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2331. src_addr_width,
  2332. src_maxburst);
  2333. if (ret)
  2334. return ret;
  2335. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2336. dst_addr_width,
  2337. dst_maxburst);
  2338. if (ret)
  2339. return ret;
  2340. /* Fill in register values */
  2341. if (chan_is_logical(d40c))
  2342. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2343. else
  2344. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2345. &d40c->dst_def_cfg, false);
  2346. /* These settings will take precedence later */
  2347. d40c->runtime_addr = config_addr;
  2348. d40c->runtime_direction = config->direction;
  2349. dev_dbg(d40c->base->dev,
  2350. "configured channel %s for %s, data width %d/%d, "
  2351. "maxburst %d/%d elements, LE, no flow control\n",
  2352. dma_chan_name(chan),
  2353. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2354. src_addr_width, dst_addr_width,
  2355. src_maxburst, dst_maxburst);
  2356. return 0;
  2357. }
  2358. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2359. unsigned long arg)
  2360. {
  2361. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2362. if (d40c->phy_chan == NULL) {
  2363. chan_err(d40c, "Channel is not allocated!\n");
  2364. return -EINVAL;
  2365. }
  2366. switch (cmd) {
  2367. case DMA_TERMINATE_ALL:
  2368. d40_terminate_all(chan);
  2369. return 0;
  2370. case DMA_PAUSE:
  2371. return d40_pause(d40c);
  2372. case DMA_RESUME:
  2373. return d40_resume(d40c);
  2374. case DMA_SLAVE_CONFIG:
  2375. return d40_set_runtime_config(chan,
  2376. (struct dma_slave_config *) arg);
  2377. default:
  2378. break;
  2379. }
  2380. /* Other commands are unimplemented */
  2381. return -ENXIO;
  2382. }
  2383. /* Initialization functions */
  2384. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2385. struct d40_chan *chans, int offset,
  2386. int num_chans)
  2387. {
  2388. int i = 0;
  2389. struct d40_chan *d40c;
  2390. INIT_LIST_HEAD(&dma->channels);
  2391. for (i = offset; i < offset + num_chans; i++) {
  2392. d40c = &chans[i];
  2393. d40c->base = base;
  2394. d40c->chan.device = dma;
  2395. spin_lock_init(&d40c->lock);
  2396. d40c->log_num = D40_PHY_CHAN;
  2397. INIT_LIST_HEAD(&d40c->done);
  2398. INIT_LIST_HEAD(&d40c->active);
  2399. INIT_LIST_HEAD(&d40c->queue);
  2400. INIT_LIST_HEAD(&d40c->pending_queue);
  2401. INIT_LIST_HEAD(&d40c->client);
  2402. INIT_LIST_HEAD(&d40c->prepare_queue);
  2403. tasklet_init(&d40c->tasklet, dma_tasklet,
  2404. (unsigned long) d40c);
  2405. list_add_tail(&d40c->chan.device_node,
  2406. &dma->channels);
  2407. }
  2408. }
  2409. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2410. {
  2411. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2412. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2413. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2414. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2415. /*
  2416. * This controller can only access address at even
  2417. * 32bit boundaries, i.e. 2^2
  2418. */
  2419. dev->copy_align = 2;
  2420. }
  2421. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2422. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2423. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2424. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2425. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2426. dev->device_free_chan_resources = d40_free_chan_resources;
  2427. dev->device_issue_pending = d40_issue_pending;
  2428. dev->device_tx_status = d40_tx_status;
  2429. dev->device_control = d40_control;
  2430. dev->dev = base->dev;
  2431. }
  2432. static int __init d40_dmaengine_init(struct d40_base *base,
  2433. int num_reserved_chans)
  2434. {
  2435. int err ;
  2436. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2437. 0, base->num_log_chans);
  2438. dma_cap_zero(base->dma_slave.cap_mask);
  2439. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2440. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2441. d40_ops_init(base, &base->dma_slave);
  2442. err = dma_async_device_register(&base->dma_slave);
  2443. if (err) {
  2444. d40_err(base->dev, "Failed to register slave channels\n");
  2445. goto failure1;
  2446. }
  2447. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2448. base->num_log_chans, base->plat_data->memcpy_len);
  2449. dma_cap_zero(base->dma_memcpy.cap_mask);
  2450. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2451. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2452. d40_ops_init(base, &base->dma_memcpy);
  2453. err = dma_async_device_register(&base->dma_memcpy);
  2454. if (err) {
  2455. d40_err(base->dev,
  2456. "Failed to regsiter memcpy only channels\n");
  2457. goto failure2;
  2458. }
  2459. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2460. 0, num_reserved_chans);
  2461. dma_cap_zero(base->dma_both.cap_mask);
  2462. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2463. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2464. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2465. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2466. d40_ops_init(base, &base->dma_both);
  2467. err = dma_async_device_register(&base->dma_both);
  2468. if (err) {
  2469. d40_err(base->dev,
  2470. "Failed to register logical and physical capable channels\n");
  2471. goto failure3;
  2472. }
  2473. return 0;
  2474. failure3:
  2475. dma_async_device_unregister(&base->dma_memcpy);
  2476. failure2:
  2477. dma_async_device_unregister(&base->dma_slave);
  2478. failure1:
  2479. return err;
  2480. }
  2481. /* Suspend resume functionality */
  2482. #ifdef CONFIG_PM
  2483. static int dma40_pm_suspend(struct device *dev)
  2484. {
  2485. struct platform_device *pdev = to_platform_device(dev);
  2486. struct d40_base *base = platform_get_drvdata(pdev);
  2487. int ret = 0;
  2488. if (base->lcpa_regulator)
  2489. ret = regulator_disable(base->lcpa_regulator);
  2490. return ret;
  2491. }
  2492. static int dma40_runtime_suspend(struct device *dev)
  2493. {
  2494. struct platform_device *pdev = to_platform_device(dev);
  2495. struct d40_base *base = platform_get_drvdata(pdev);
  2496. d40_save_restore_registers(base, true);
  2497. /* Don't disable/enable clocks for v1 due to HW bugs */
  2498. if (base->rev != 1)
  2499. writel_relaxed(base->gcc_pwr_off_mask,
  2500. base->virtbase + D40_DREG_GCC);
  2501. return 0;
  2502. }
  2503. static int dma40_runtime_resume(struct device *dev)
  2504. {
  2505. struct platform_device *pdev = to_platform_device(dev);
  2506. struct d40_base *base = platform_get_drvdata(pdev);
  2507. if (base->initialized)
  2508. d40_save_restore_registers(base, false);
  2509. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2510. base->virtbase + D40_DREG_GCC);
  2511. return 0;
  2512. }
  2513. static int dma40_resume(struct device *dev)
  2514. {
  2515. struct platform_device *pdev = to_platform_device(dev);
  2516. struct d40_base *base = platform_get_drvdata(pdev);
  2517. int ret = 0;
  2518. if (base->lcpa_regulator)
  2519. ret = regulator_enable(base->lcpa_regulator);
  2520. return ret;
  2521. }
  2522. static const struct dev_pm_ops dma40_pm_ops = {
  2523. .suspend = dma40_pm_suspend,
  2524. .runtime_suspend = dma40_runtime_suspend,
  2525. .runtime_resume = dma40_runtime_resume,
  2526. .resume = dma40_resume,
  2527. };
  2528. #define DMA40_PM_OPS (&dma40_pm_ops)
  2529. #else
  2530. #define DMA40_PM_OPS NULL
  2531. #endif
  2532. /* Initialization functions. */
  2533. static int __init d40_phy_res_init(struct d40_base *base)
  2534. {
  2535. int i;
  2536. int num_phy_chans_avail = 0;
  2537. u32 val[2];
  2538. int odd_even_bit = -2;
  2539. int gcc = D40_DREG_GCC_ENA;
  2540. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2541. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2542. for (i = 0; i < base->num_phy_chans; i++) {
  2543. base->phy_res[i].num = i;
  2544. odd_even_bit += 2 * ((i % 2) == 0);
  2545. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2546. /* Mark security only channels as occupied */
  2547. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2548. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2549. base->phy_res[i].reserved = true;
  2550. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2551. D40_DREG_GCC_SRC);
  2552. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2553. D40_DREG_GCC_DST);
  2554. } else {
  2555. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2556. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2557. base->phy_res[i].reserved = false;
  2558. num_phy_chans_avail++;
  2559. }
  2560. spin_lock_init(&base->phy_res[i].lock);
  2561. }
  2562. /* Mark disabled channels as occupied */
  2563. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2564. int chan = base->plat_data->disabled_channels[i];
  2565. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2566. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2567. base->phy_res[chan].reserved = true;
  2568. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2569. D40_DREG_GCC_SRC);
  2570. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2571. D40_DREG_GCC_DST);
  2572. num_phy_chans_avail--;
  2573. }
  2574. /* Mark soft_lli channels */
  2575. for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
  2576. int chan = base->plat_data->soft_lli_chans[i];
  2577. base->phy_res[chan].use_soft_lli = true;
  2578. }
  2579. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2580. num_phy_chans_avail, base->num_phy_chans);
  2581. /* Verify settings extended vs standard */
  2582. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2583. for (i = 0; i < base->num_phy_chans; i++) {
  2584. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2585. (val[0] & 0x3) != 1)
  2586. dev_info(base->dev,
  2587. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2588. __func__, i, val[0] & 0x3);
  2589. val[0] = val[0] >> 2;
  2590. }
  2591. /*
  2592. * To keep things simple, Enable all clocks initially.
  2593. * The clocks will get managed later post channel allocation.
  2594. * The clocks for the event lines on which reserved channels exists
  2595. * are not managed here.
  2596. */
  2597. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2598. base->gcc_pwr_off_mask = gcc;
  2599. return num_phy_chans_avail;
  2600. }
  2601. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2602. {
  2603. struct stedma40_platform_data *plat_data;
  2604. struct clk *clk = NULL;
  2605. void __iomem *virtbase = NULL;
  2606. struct resource *res = NULL;
  2607. struct d40_base *base = NULL;
  2608. int num_log_chans = 0;
  2609. int num_phy_chans;
  2610. int clk_ret = -EINVAL;
  2611. int i;
  2612. u32 pid;
  2613. u32 cid;
  2614. u8 rev;
  2615. clk = clk_get(&pdev->dev, NULL);
  2616. if (IS_ERR(clk)) {
  2617. d40_err(&pdev->dev, "No matching clock found\n");
  2618. goto failure;
  2619. }
  2620. clk_ret = clk_prepare_enable(clk);
  2621. if (clk_ret) {
  2622. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2623. goto failure;
  2624. }
  2625. /* Get IO for DMAC base address */
  2626. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2627. if (!res)
  2628. goto failure;
  2629. if (request_mem_region(res->start, resource_size(res),
  2630. D40_NAME " I/O base") == NULL)
  2631. goto failure;
  2632. virtbase = ioremap(res->start, resource_size(res));
  2633. if (!virtbase)
  2634. goto failure;
  2635. /* This is just a regular AMBA PrimeCell ID actually */
  2636. for (pid = 0, i = 0; i < 4; i++)
  2637. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2638. & 255) << (i * 8);
  2639. for (cid = 0, i = 0; i < 4; i++)
  2640. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2641. & 255) << (i * 8);
  2642. if (cid != AMBA_CID) {
  2643. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2644. goto failure;
  2645. }
  2646. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2647. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2648. AMBA_MANF_BITS(pid),
  2649. AMBA_VENDOR_ST);
  2650. goto failure;
  2651. }
  2652. /*
  2653. * HW revision:
  2654. * DB8500ed has revision 0
  2655. * ? has revision 1
  2656. * DB8500v1 has revision 2
  2657. * DB8500v2 has revision 3
  2658. * AP9540v1 has revision 4
  2659. * DB8540v1 has revision 4
  2660. */
  2661. rev = AMBA_REV_BITS(pid);
  2662. plat_data = pdev->dev.platform_data;
  2663. /* The number of physical channels on this HW */
  2664. if (plat_data->num_of_phy_chans)
  2665. num_phy_chans = plat_data->num_of_phy_chans;
  2666. else
  2667. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2668. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
  2669. rev, res->start, num_phy_chans);
  2670. if (rev < 2) {
  2671. d40_err(&pdev->dev, "hardware revision: %d is not supported",
  2672. rev);
  2673. goto failure;
  2674. }
  2675. /* Count the number of logical channels in use */
  2676. for (i = 0; i < plat_data->dev_len; i++)
  2677. if (plat_data->dev_rx[i] != 0)
  2678. num_log_chans++;
  2679. for (i = 0; i < plat_data->dev_len; i++)
  2680. if (plat_data->dev_tx[i] != 0)
  2681. num_log_chans++;
  2682. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2683. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2684. sizeof(struct d40_chan), GFP_KERNEL);
  2685. if (base == NULL) {
  2686. d40_err(&pdev->dev, "Out of memory\n");
  2687. goto failure;
  2688. }
  2689. base->rev = rev;
  2690. base->clk = clk;
  2691. base->num_phy_chans = num_phy_chans;
  2692. base->num_log_chans = num_log_chans;
  2693. base->phy_start = res->start;
  2694. base->phy_size = resource_size(res);
  2695. base->virtbase = virtbase;
  2696. base->plat_data = plat_data;
  2697. base->dev = &pdev->dev;
  2698. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2699. base->log_chans = &base->phy_chans[num_phy_chans];
  2700. if (base->plat_data->num_of_phy_chans == 14) {
  2701. base->gen_dmac.backup = d40_backup_regs_v4b;
  2702. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
  2703. base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
  2704. base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
  2705. base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
  2706. base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
  2707. base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
  2708. base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
  2709. base->gen_dmac.il = il_v4b;
  2710. base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
  2711. base->gen_dmac.init_reg = dma_init_reg_v4b;
  2712. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
  2713. } else {
  2714. if (base->rev >= 3) {
  2715. base->gen_dmac.backup = d40_backup_regs_v4a;
  2716. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
  2717. }
  2718. base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
  2719. base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
  2720. base->gen_dmac.realtime_en = D40_DREG_RSEG1;
  2721. base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
  2722. base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
  2723. base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
  2724. base->gen_dmac.il = il_v4a;
  2725. base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
  2726. base->gen_dmac.init_reg = dma_init_reg_v4a;
  2727. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
  2728. }
  2729. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2730. GFP_KERNEL);
  2731. if (!base->phy_res)
  2732. goto failure;
  2733. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2734. sizeof(struct d40_chan *),
  2735. GFP_KERNEL);
  2736. if (!base->lookup_phy_chans)
  2737. goto failure;
  2738. if (num_log_chans + plat_data->memcpy_len) {
  2739. /*
  2740. * The max number of logical channels are event lines for all
  2741. * src devices and dst devices
  2742. */
  2743. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2744. sizeof(struct d40_chan *),
  2745. GFP_KERNEL);
  2746. if (!base->lookup_log_chans)
  2747. goto failure;
  2748. }
  2749. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2750. sizeof(d40_backup_regs_chan),
  2751. GFP_KERNEL);
  2752. if (!base->reg_val_backup_chan)
  2753. goto failure;
  2754. base->lcla_pool.alloc_map =
  2755. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2756. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2757. if (!base->lcla_pool.alloc_map)
  2758. goto failure;
  2759. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2760. 0, SLAB_HWCACHE_ALIGN,
  2761. NULL);
  2762. if (base->desc_slab == NULL)
  2763. goto failure;
  2764. return base;
  2765. failure:
  2766. if (!clk_ret)
  2767. clk_disable_unprepare(clk);
  2768. if (!IS_ERR(clk))
  2769. clk_put(clk);
  2770. if (virtbase)
  2771. iounmap(virtbase);
  2772. if (res)
  2773. release_mem_region(res->start,
  2774. resource_size(res));
  2775. if (virtbase)
  2776. iounmap(virtbase);
  2777. if (base) {
  2778. kfree(base->lcla_pool.alloc_map);
  2779. kfree(base->reg_val_backup_chan);
  2780. kfree(base->lookup_log_chans);
  2781. kfree(base->lookup_phy_chans);
  2782. kfree(base->phy_res);
  2783. kfree(base);
  2784. }
  2785. return NULL;
  2786. }
  2787. static void __init d40_hw_init(struct d40_base *base)
  2788. {
  2789. int i;
  2790. u32 prmseo[2] = {0, 0};
  2791. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2792. u32 pcmis = 0;
  2793. u32 pcicr = 0;
  2794. struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
  2795. u32 reg_size = base->gen_dmac.init_reg_size;
  2796. for (i = 0; i < reg_size; i++)
  2797. writel(dma_init_reg[i].val,
  2798. base->virtbase + dma_init_reg[i].reg);
  2799. /* Configure all our dma channels to default settings */
  2800. for (i = 0; i < base->num_phy_chans; i++) {
  2801. activeo[i % 2] = activeo[i % 2] << 2;
  2802. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2803. == D40_ALLOC_PHY) {
  2804. activeo[i % 2] |= 3;
  2805. continue;
  2806. }
  2807. /* Enable interrupt # */
  2808. pcmis = (pcmis << 1) | 1;
  2809. /* Clear interrupt # */
  2810. pcicr = (pcicr << 1) | 1;
  2811. /* Set channel to physical mode */
  2812. prmseo[i % 2] = prmseo[i % 2] << 2;
  2813. prmseo[i % 2] |= 1;
  2814. }
  2815. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2816. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2817. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2818. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2819. /* Write which interrupt to enable */
  2820. writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
  2821. /* Write which interrupt to clear */
  2822. writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
  2823. /* These are __initdata and cannot be accessed after init */
  2824. base->gen_dmac.init_reg = NULL;
  2825. base->gen_dmac.init_reg_size = 0;
  2826. }
  2827. static int __init d40_lcla_allocate(struct d40_base *base)
  2828. {
  2829. struct d40_lcla_pool *pool = &base->lcla_pool;
  2830. unsigned long *page_list;
  2831. int i, j;
  2832. int ret = 0;
  2833. /*
  2834. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2835. * To full fill this hardware requirement without wasting 256 kb
  2836. * we allocate pages until we get an aligned one.
  2837. */
  2838. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2839. GFP_KERNEL);
  2840. if (!page_list) {
  2841. ret = -ENOMEM;
  2842. goto failure;
  2843. }
  2844. /* Calculating how many pages that are required */
  2845. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2846. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2847. page_list[i] = __get_free_pages(GFP_KERNEL,
  2848. base->lcla_pool.pages);
  2849. if (!page_list[i]) {
  2850. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2851. base->lcla_pool.pages);
  2852. for (j = 0; j < i; j++)
  2853. free_pages(page_list[j], base->lcla_pool.pages);
  2854. goto failure;
  2855. }
  2856. if ((virt_to_phys((void *)page_list[i]) &
  2857. (LCLA_ALIGNMENT - 1)) == 0)
  2858. break;
  2859. }
  2860. for (j = 0; j < i; j++)
  2861. free_pages(page_list[j], base->lcla_pool.pages);
  2862. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2863. base->lcla_pool.base = (void *)page_list[i];
  2864. } else {
  2865. /*
  2866. * After many attempts and no succees with finding the correct
  2867. * alignment, try with allocating a big buffer.
  2868. */
  2869. dev_warn(base->dev,
  2870. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2871. __func__, base->lcla_pool.pages);
  2872. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2873. base->num_phy_chans +
  2874. LCLA_ALIGNMENT,
  2875. GFP_KERNEL);
  2876. if (!base->lcla_pool.base_unaligned) {
  2877. ret = -ENOMEM;
  2878. goto failure;
  2879. }
  2880. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2881. LCLA_ALIGNMENT);
  2882. }
  2883. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2884. SZ_1K * base->num_phy_chans,
  2885. DMA_TO_DEVICE);
  2886. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2887. pool->dma_addr = 0;
  2888. ret = -ENOMEM;
  2889. goto failure;
  2890. }
  2891. writel(virt_to_phys(base->lcla_pool.base),
  2892. base->virtbase + D40_DREG_LCLA);
  2893. failure:
  2894. kfree(page_list);
  2895. return ret;
  2896. }
  2897. static int __init d40_probe(struct platform_device *pdev)
  2898. {
  2899. int err;
  2900. int ret = -ENOENT;
  2901. struct d40_base *base;
  2902. struct resource *res = NULL;
  2903. int num_reserved_chans;
  2904. u32 val;
  2905. base = d40_hw_detect_init(pdev);
  2906. if (!base)
  2907. goto failure;
  2908. num_reserved_chans = d40_phy_res_init(base);
  2909. platform_set_drvdata(pdev, base);
  2910. spin_lock_init(&base->interrupt_lock);
  2911. spin_lock_init(&base->execmd_lock);
  2912. /* Get IO for logical channel parameter address */
  2913. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2914. if (!res) {
  2915. ret = -ENOENT;
  2916. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2917. goto failure;
  2918. }
  2919. base->lcpa_size = resource_size(res);
  2920. base->phy_lcpa = res->start;
  2921. if (request_mem_region(res->start, resource_size(res),
  2922. D40_NAME " I/O lcpa") == NULL) {
  2923. ret = -EBUSY;
  2924. d40_err(&pdev->dev,
  2925. "Failed to request LCPA region 0x%x-0x%x\n",
  2926. res->start, res->end);
  2927. goto failure;
  2928. }
  2929. /* We make use of ESRAM memory for this. */
  2930. val = readl(base->virtbase + D40_DREG_LCPA);
  2931. if (res->start != val && val != 0) {
  2932. dev_warn(&pdev->dev,
  2933. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2934. __func__, val, res->start);
  2935. } else
  2936. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2937. base->lcpa_base = ioremap(res->start, resource_size(res));
  2938. if (!base->lcpa_base) {
  2939. ret = -ENOMEM;
  2940. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2941. goto failure;
  2942. }
  2943. /* If lcla has to be located in ESRAM we don't need to allocate */
  2944. if (base->plat_data->use_esram_lcla) {
  2945. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2946. "lcla_esram");
  2947. if (!res) {
  2948. ret = -ENOENT;
  2949. d40_err(&pdev->dev,
  2950. "No \"lcla_esram\" memory resource\n");
  2951. goto failure;
  2952. }
  2953. base->lcla_pool.base = ioremap(res->start,
  2954. resource_size(res));
  2955. if (!base->lcla_pool.base) {
  2956. ret = -ENOMEM;
  2957. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2958. goto failure;
  2959. }
  2960. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2961. } else {
  2962. ret = d40_lcla_allocate(base);
  2963. if (ret) {
  2964. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2965. goto failure;
  2966. }
  2967. }
  2968. spin_lock_init(&base->lcla_pool.lock);
  2969. base->irq = platform_get_irq(pdev, 0);
  2970. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2971. if (ret) {
  2972. d40_err(&pdev->dev, "No IRQ defined\n");
  2973. goto failure;
  2974. }
  2975. pm_runtime_irq_safe(base->dev);
  2976. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2977. pm_runtime_use_autosuspend(base->dev);
  2978. pm_runtime_enable(base->dev);
  2979. pm_runtime_resume(base->dev);
  2980. if (base->plat_data->use_esram_lcla) {
  2981. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2982. if (IS_ERR(base->lcpa_regulator)) {
  2983. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2984. base->lcpa_regulator = NULL;
  2985. goto failure;
  2986. }
  2987. ret = regulator_enable(base->lcpa_regulator);
  2988. if (ret) {
  2989. d40_err(&pdev->dev,
  2990. "Failed to enable lcpa_regulator\n");
  2991. regulator_put(base->lcpa_regulator);
  2992. base->lcpa_regulator = NULL;
  2993. goto failure;
  2994. }
  2995. }
  2996. base->initialized = true;
  2997. err = d40_dmaengine_init(base, num_reserved_chans);
  2998. if (err)
  2999. goto failure;
  3000. base->dev->dma_parms = &base->dma_parms;
  3001. err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
  3002. if (err) {
  3003. d40_err(&pdev->dev, "Failed to set dma max seg size\n");
  3004. goto failure;
  3005. }
  3006. d40_hw_init(base);
  3007. dev_info(base->dev, "initialized\n");
  3008. return 0;
  3009. failure:
  3010. if (base) {
  3011. if (base->desc_slab)
  3012. kmem_cache_destroy(base->desc_slab);
  3013. if (base->virtbase)
  3014. iounmap(base->virtbase);
  3015. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  3016. iounmap(base->lcla_pool.base);
  3017. base->lcla_pool.base = NULL;
  3018. }
  3019. if (base->lcla_pool.dma_addr)
  3020. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  3021. SZ_1K * base->num_phy_chans,
  3022. DMA_TO_DEVICE);
  3023. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  3024. free_pages((unsigned long)base->lcla_pool.base,
  3025. base->lcla_pool.pages);
  3026. kfree(base->lcla_pool.base_unaligned);
  3027. if (base->phy_lcpa)
  3028. release_mem_region(base->phy_lcpa,
  3029. base->lcpa_size);
  3030. if (base->phy_start)
  3031. release_mem_region(base->phy_start,
  3032. base->phy_size);
  3033. if (base->clk) {
  3034. clk_disable_unprepare(base->clk);
  3035. clk_put(base->clk);
  3036. }
  3037. if (base->lcpa_regulator) {
  3038. regulator_disable(base->lcpa_regulator);
  3039. regulator_put(base->lcpa_regulator);
  3040. }
  3041. kfree(base->lcla_pool.alloc_map);
  3042. kfree(base->lookup_log_chans);
  3043. kfree(base->lookup_phy_chans);
  3044. kfree(base->phy_res);
  3045. kfree(base);
  3046. }
  3047. d40_err(&pdev->dev, "probe failed\n");
  3048. return ret;
  3049. }
  3050. static struct platform_driver d40_driver = {
  3051. .driver = {
  3052. .owner = THIS_MODULE,
  3053. .name = D40_NAME,
  3054. .pm = DMA40_PM_OPS,
  3055. },
  3056. };
  3057. static int __init stedma40_init(void)
  3058. {
  3059. return platform_driver_probe(&d40_driver, d40_probe);
  3060. }
  3061. subsys_initcall(stedma40_init);