fsi.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <sound/soc.h>
  19. #include <sound/sh_fsi.h>
  20. #define DO_FMT 0x0000
  21. #define DOFF_CTL 0x0004
  22. #define DOFF_ST 0x0008
  23. #define DI_FMT 0x000C
  24. #define DIFF_CTL 0x0010
  25. #define DIFF_ST 0x0014
  26. #define CKG1 0x0018
  27. #define CKG2 0x001C
  28. #define DIDT 0x0020
  29. #define DODT 0x0024
  30. #define MUTE_ST 0x0028
  31. #define REG_END MUTE_ST
  32. #define CPU_INT_ST 0x01F4
  33. #define CPU_IEMSK 0x01F8
  34. #define CPU_IMSK 0x01FC
  35. #define INT_ST 0x0200
  36. #define IEMSK 0x0204
  37. #define IMSK 0x0208
  38. #define MUTE 0x020C
  39. #define CLK_RST 0x0210
  40. #define SOFT_RST 0x0214
  41. #define FIFO_SZ 0x0218
  42. #define MREG_START CPU_INT_ST
  43. #define MREG_END FIFO_SZ
  44. /* DO_FMT */
  45. /* DI_FMT */
  46. #define CR_MONO (0x0 << 4)
  47. #define CR_MONO_D (0x1 << 4)
  48. #define CR_PCM (0x2 << 4)
  49. #define CR_I2S (0x3 << 4)
  50. #define CR_TDM (0x4 << 4)
  51. #define CR_TDM_D (0x5 << 4)
  52. /* DOFF_CTL */
  53. /* DIFF_CTL */
  54. #define IRQ_HALF 0x00100000
  55. #define FIFO_CLR 0x00000001
  56. /* DOFF_ST */
  57. #define ERR_OVER 0x00000010
  58. #define ERR_UNDER 0x00000001
  59. #define ST_ERR (ERR_OVER | ERR_UNDER)
  60. /* CLK_RST */
  61. #define B_CLK 0x00000010
  62. #define A_CLK 0x00000001
  63. /* INT_ST */
  64. #define INT_B_IN (1 << 12)
  65. #define INT_B_OUT (1 << 8)
  66. #define INT_A_IN (1 << 4)
  67. #define INT_A_OUT (1 << 0)
  68. /* SOFT_RST */
  69. #define PBSR (1 << 12) /* Port B Software Reset */
  70. #define PASR (1 << 8) /* Port A Software Reset */
  71. #define IR (1 << 4) /* Interrupt Reset */
  72. #define FSISR (1 << 0) /* Software Reset */
  73. /* FIFO_SZ */
  74. #define OUT_SZ_MASK 0x7
  75. #define BO_SZ_SHIFT 8
  76. #define AO_SZ_SHIFT 0
  77. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  78. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  79. /************************************************************************
  80. struct
  81. ************************************************************************/
  82. struct fsi_priv {
  83. void __iomem *base;
  84. struct snd_pcm_substream *substream;
  85. struct fsi_master *master;
  86. int fifo_max;
  87. int chan;
  88. int byte_offset;
  89. int period_len;
  90. int buffer_len;
  91. int periods;
  92. };
  93. struct fsi_core {
  94. int ver;
  95. u32 int_st;
  96. u32 iemsk;
  97. u32 imsk;
  98. };
  99. struct fsi_master {
  100. void __iomem *base;
  101. int irq;
  102. struct fsi_priv fsia;
  103. struct fsi_priv fsib;
  104. struct fsi_core *core;
  105. struct sh_fsi_platform_info *info;
  106. spinlock_t lock;
  107. };
  108. /************************************************************************
  109. basic read write function
  110. ************************************************************************/
  111. static void __fsi_reg_write(u32 reg, u32 data)
  112. {
  113. /* valid data area is 24bit */
  114. data &= 0x00ffffff;
  115. __raw_writel(data, reg);
  116. }
  117. static u32 __fsi_reg_read(u32 reg)
  118. {
  119. return __raw_readl(reg);
  120. }
  121. static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
  122. {
  123. u32 val = __fsi_reg_read(reg);
  124. val &= ~mask;
  125. val |= data & mask;
  126. __fsi_reg_write(reg, val);
  127. }
  128. static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
  129. {
  130. if (reg > REG_END) {
  131. pr_err("fsi: register access err (%s)\n", __func__);
  132. return;
  133. }
  134. __fsi_reg_write((u32)(fsi->base + reg), data);
  135. }
  136. static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
  137. {
  138. if (reg > REG_END) {
  139. pr_err("fsi: register access err (%s)\n", __func__);
  140. return 0;
  141. }
  142. return __fsi_reg_read((u32)(fsi->base + reg));
  143. }
  144. static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
  145. {
  146. if (reg > REG_END) {
  147. pr_err("fsi: register access err (%s)\n", __func__);
  148. return;
  149. }
  150. __fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
  151. }
  152. static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
  153. {
  154. unsigned long flags;
  155. if ((reg < MREG_START) ||
  156. (reg > MREG_END)) {
  157. pr_err("fsi: register access err (%s)\n", __func__);
  158. return;
  159. }
  160. spin_lock_irqsave(&master->lock, flags);
  161. __fsi_reg_write((u32)(master->base + reg), data);
  162. spin_unlock_irqrestore(&master->lock, flags);
  163. }
  164. static u32 fsi_master_read(struct fsi_master *master, u32 reg)
  165. {
  166. u32 ret;
  167. unsigned long flags;
  168. if ((reg < MREG_START) ||
  169. (reg > MREG_END)) {
  170. pr_err("fsi: register access err (%s)\n", __func__);
  171. return 0;
  172. }
  173. spin_lock_irqsave(&master->lock, flags);
  174. ret = __fsi_reg_read((u32)(master->base + reg));
  175. spin_unlock_irqrestore(&master->lock, flags);
  176. return ret;
  177. }
  178. static void fsi_master_mask_set(struct fsi_master *master,
  179. u32 reg, u32 mask, u32 data)
  180. {
  181. unsigned long flags;
  182. if ((reg < MREG_START) ||
  183. (reg > MREG_END)) {
  184. pr_err("fsi: register access err (%s)\n", __func__);
  185. return;
  186. }
  187. spin_lock_irqsave(&master->lock, flags);
  188. __fsi_reg_mask_set((u32)(master->base + reg), mask, data);
  189. spin_unlock_irqrestore(&master->lock, flags);
  190. }
  191. /************************************************************************
  192. basic function
  193. ************************************************************************/
  194. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  195. {
  196. return fsi->master;
  197. }
  198. static int fsi_is_port_a(struct fsi_priv *fsi)
  199. {
  200. return fsi->master->base == fsi->base;
  201. }
  202. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  203. {
  204. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  205. struct snd_soc_dai_link *machine = rtd->dai;
  206. return machine->cpu_dai;
  207. }
  208. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  209. {
  210. struct snd_soc_dai *dai = fsi_get_dai(substream);
  211. return dai->private_data;
  212. }
  213. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  214. {
  215. int is_porta = fsi_is_port_a(fsi);
  216. struct fsi_master *master = fsi_get_master(fsi);
  217. return is_porta ? master->info->porta_flags :
  218. master->info->portb_flags;
  219. }
  220. static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
  221. {
  222. u32 mode;
  223. u32 flags = fsi_get_info_flags(fsi);
  224. mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;
  225. /* return
  226. * 1 : master mode
  227. * 0 : slave mode
  228. */
  229. return (mode & flags) != mode;
  230. }
  231. static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
  232. {
  233. int is_porta = fsi_is_port_a(fsi);
  234. u32 data;
  235. if (is_porta)
  236. data = is_play ? (1 << 0) : (1 << 4);
  237. else
  238. data = is_play ? (1 << 8) : (1 << 12);
  239. return data;
  240. }
  241. static void fsi_stream_push(struct fsi_priv *fsi,
  242. struct snd_pcm_substream *substream,
  243. u32 buffer_len,
  244. u32 period_len)
  245. {
  246. fsi->substream = substream;
  247. fsi->buffer_len = buffer_len;
  248. fsi->period_len = period_len;
  249. fsi->byte_offset = 0;
  250. fsi->periods = 0;
  251. }
  252. static void fsi_stream_pop(struct fsi_priv *fsi)
  253. {
  254. fsi->substream = NULL;
  255. fsi->buffer_len = 0;
  256. fsi->period_len = 0;
  257. fsi->byte_offset = 0;
  258. fsi->periods = 0;
  259. }
  260. static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
  261. {
  262. u32 status;
  263. u32 reg = is_play ? DOFF_ST : DIFF_ST;
  264. int residue;
  265. status = fsi_reg_read(fsi, reg);
  266. residue = 0x1ff & (status >> 8);
  267. residue *= fsi->chan;
  268. return residue;
  269. }
  270. /************************************************************************
  271. irq function
  272. ************************************************************************/
  273. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  274. {
  275. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  276. struct fsi_master *master = fsi_get_master(fsi);
  277. fsi_master_mask_set(master, master->core->imsk, data, data);
  278. fsi_master_mask_set(master, master->core->iemsk, data, data);
  279. }
  280. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  281. {
  282. u32 data = fsi_port_ab_io_bit(fsi, is_play);
  283. struct fsi_master *master = fsi_get_master(fsi);
  284. fsi_master_mask_set(master, master->core->imsk, data, 0);
  285. fsi_master_mask_set(master, master->core->iemsk, data, 0);
  286. }
  287. static u32 fsi_irq_get_status(struct fsi_master *master)
  288. {
  289. return fsi_master_read(master, master->core->int_st);
  290. }
  291. static void fsi_irq_clear_all_status(struct fsi_master *master)
  292. {
  293. fsi_master_write(master, master->core->int_st, 0);
  294. }
  295. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  296. {
  297. u32 data = 0;
  298. struct fsi_master *master = fsi_get_master(fsi);
  299. data |= fsi_port_ab_io_bit(fsi, 0);
  300. data |= fsi_port_ab_io_bit(fsi, 1);
  301. /* clear interrupt factor */
  302. fsi_master_mask_set(master, master->core->int_st, data, 0);
  303. }
  304. /************************************************************************
  305. ctrl function
  306. ************************************************************************/
  307. static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
  308. {
  309. u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
  310. struct fsi_master *master = fsi_get_master(fsi);
  311. if (enable)
  312. fsi_master_mask_set(master, CLK_RST, val, val);
  313. else
  314. fsi_master_mask_set(master, CLK_RST, val, 0);
  315. }
  316. static void fsi_fifo_init(struct fsi_priv *fsi,
  317. int is_play,
  318. struct snd_soc_dai *dai)
  319. {
  320. struct fsi_master *master = fsi_get_master(fsi);
  321. u32 ctrl, shift, i;
  322. /* get on-chip RAM capacity */
  323. shift = fsi_master_read(master, FIFO_SZ);
  324. shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
  325. shift &= OUT_SZ_MASK;
  326. fsi->fifo_max = 256 << shift;
  327. dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
  328. /*
  329. * The maximum number of sample data varies depending
  330. * on the number of channels selected for the format.
  331. *
  332. * FIFOs are used in 4-channel units in 3-channel mode
  333. * and in 8-channel units in 5- to 7-channel mode
  334. * meaning that more FIFOs than the required size of DPRAM
  335. * are used.
  336. *
  337. * ex) if 256 words of DP-RAM is connected
  338. * 1 channel: 256 (256 x 1 = 256)
  339. * 2 channels: 128 (128 x 2 = 256)
  340. * 3 channels: 64 ( 64 x 3 = 192)
  341. * 4 channels: 64 ( 64 x 4 = 256)
  342. * 5 channels: 32 ( 32 x 5 = 160)
  343. * 6 channels: 32 ( 32 x 6 = 192)
  344. * 7 channels: 32 ( 32 x 7 = 224)
  345. * 8 channels: 32 ( 32 x 8 = 256)
  346. */
  347. for (i = 1; i < fsi->chan; i <<= 1)
  348. fsi->fifo_max >>= 1;
  349. dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
  350. ctrl = is_play ? DOFF_CTL : DIFF_CTL;
  351. /* set interrupt generation factor */
  352. fsi_reg_write(fsi, ctrl, IRQ_HALF);
  353. /* clear FIFO */
  354. fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
  355. }
  356. static void fsi_soft_all_reset(struct fsi_master *master)
  357. {
  358. /* port AB reset */
  359. fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
  360. mdelay(10);
  361. /* soft reset */
  362. fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
  363. fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
  364. mdelay(10);
  365. }
  366. /* playback interrupt */
  367. static int fsi_data_push(struct fsi_priv *fsi, int startup)
  368. {
  369. struct snd_pcm_runtime *runtime;
  370. struct snd_pcm_substream *substream = NULL;
  371. u32 status;
  372. int send;
  373. int fifo_free;
  374. int width;
  375. u8 *start;
  376. int i, over_period;
  377. if (!fsi ||
  378. !fsi->substream ||
  379. !fsi->substream->runtime)
  380. return -EINVAL;
  381. over_period = 0;
  382. substream = fsi->substream;
  383. runtime = substream->runtime;
  384. /* FSI FIFO has limit.
  385. * So, this driver can not send periods data at a time
  386. */
  387. if (fsi->byte_offset >=
  388. fsi->period_len * (fsi->periods + 1)) {
  389. over_period = 1;
  390. fsi->periods = (fsi->periods + 1) % runtime->periods;
  391. if (0 == fsi->periods)
  392. fsi->byte_offset = 0;
  393. }
  394. /* get 1 channel data width */
  395. width = frames_to_bytes(runtime, 1) / fsi->chan;
  396. /* get send size for alsa */
  397. send = (fsi->buffer_len - fsi->byte_offset) / width;
  398. /* get FIFO free size */
  399. fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);
  400. /* size check */
  401. if (fifo_free < send)
  402. send = fifo_free;
  403. start = runtime->dma_area;
  404. start += fsi->byte_offset;
  405. switch (width) {
  406. case 2:
  407. for (i = 0; i < send; i++)
  408. fsi_reg_write(fsi, DODT,
  409. ((u32)*((u16 *)start + i) << 8));
  410. break;
  411. case 4:
  412. for (i = 0; i < send; i++)
  413. fsi_reg_write(fsi, DODT, *((u32 *)start + i));
  414. break;
  415. default:
  416. return -EINVAL;
  417. }
  418. fsi->byte_offset += send * width;
  419. status = fsi_reg_read(fsi, DOFF_ST);
  420. if (!startup) {
  421. struct snd_soc_dai *dai = fsi_get_dai(substream);
  422. if (status & ERR_OVER)
  423. dev_err(dai->dev, "over run\n");
  424. if (status & ERR_UNDER)
  425. dev_err(dai->dev, "under run\n");
  426. }
  427. fsi_reg_write(fsi, DOFF_ST, 0);
  428. fsi_irq_enable(fsi, 1);
  429. if (over_period)
  430. snd_pcm_period_elapsed(substream);
  431. return 0;
  432. }
  433. static int fsi_data_pop(struct fsi_priv *fsi, int startup)
  434. {
  435. struct snd_pcm_runtime *runtime;
  436. struct snd_pcm_substream *substream = NULL;
  437. u32 status;
  438. int free;
  439. int fifo_fill;
  440. int width;
  441. u8 *start;
  442. int i, over_period;
  443. if (!fsi ||
  444. !fsi->substream ||
  445. !fsi->substream->runtime)
  446. return -EINVAL;
  447. over_period = 0;
  448. substream = fsi->substream;
  449. runtime = substream->runtime;
  450. /* FSI FIFO has limit.
  451. * So, this driver can not send periods data at a time
  452. */
  453. if (fsi->byte_offset >=
  454. fsi->period_len * (fsi->periods + 1)) {
  455. over_period = 1;
  456. fsi->periods = (fsi->periods + 1) % runtime->periods;
  457. if (0 == fsi->periods)
  458. fsi->byte_offset = 0;
  459. }
  460. /* get 1 channel data width */
  461. width = frames_to_bytes(runtime, 1) / fsi->chan;
  462. /* get free space for alsa */
  463. free = (fsi->buffer_len - fsi->byte_offset) / width;
  464. /* get recv size */
  465. fifo_fill = fsi_get_fifo_residue(fsi, 0);
  466. if (free < fifo_fill)
  467. fifo_fill = free;
  468. start = runtime->dma_area;
  469. start += fsi->byte_offset;
  470. switch (width) {
  471. case 2:
  472. for (i = 0; i < fifo_fill; i++)
  473. *((u16 *)start + i) =
  474. (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  475. break;
  476. case 4:
  477. for (i = 0; i < fifo_fill; i++)
  478. *((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
  479. break;
  480. default:
  481. return -EINVAL;
  482. }
  483. fsi->byte_offset += fifo_fill * width;
  484. status = fsi_reg_read(fsi, DIFF_ST);
  485. if (!startup) {
  486. struct snd_soc_dai *dai = fsi_get_dai(substream);
  487. if (status & ERR_OVER)
  488. dev_err(dai->dev, "over run\n");
  489. if (status & ERR_UNDER)
  490. dev_err(dai->dev, "under run\n");
  491. }
  492. fsi_reg_write(fsi, DIFF_ST, 0);
  493. fsi_irq_enable(fsi, 0);
  494. if (over_period)
  495. snd_pcm_period_elapsed(substream);
  496. return 0;
  497. }
  498. static irqreturn_t fsi_interrupt(int irq, void *data)
  499. {
  500. struct fsi_master *master = data;
  501. u32 int_st = fsi_irq_get_status(master);
  502. /* clear irq status */
  503. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  504. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  505. if (int_st & INT_A_OUT)
  506. fsi_data_push(&master->fsia, 0);
  507. if (int_st & INT_B_OUT)
  508. fsi_data_push(&master->fsib, 0);
  509. if (int_st & INT_A_IN)
  510. fsi_data_pop(&master->fsia, 0);
  511. if (int_st & INT_B_IN)
  512. fsi_data_pop(&master->fsib, 0);
  513. fsi_irq_clear_all_status(master);
  514. return IRQ_HANDLED;
  515. }
  516. /************************************************************************
  517. dai ops
  518. ************************************************************************/
  519. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  520. struct snd_soc_dai *dai)
  521. {
  522. struct fsi_priv *fsi = fsi_get_priv(substream);
  523. u32 flags = fsi_get_info_flags(fsi);
  524. u32 fmt;
  525. u32 reg;
  526. u32 data;
  527. int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
  528. int is_master;
  529. int ret = 0;
  530. pm_runtime_get_sync(dai->dev);
  531. /* CKG1 */
  532. data = is_play ? (1 << 0) : (1 << 4);
  533. is_master = fsi_is_master_mode(fsi, is_play);
  534. if (is_master)
  535. fsi_reg_mask_set(fsi, CKG1, data, data);
  536. else
  537. fsi_reg_mask_set(fsi, CKG1, data, 0);
  538. /* clock inversion (CKG2) */
  539. data = 0;
  540. if (SH_FSI_LRM_INV & flags)
  541. data |= 1 << 12;
  542. if (SH_FSI_BRM_INV & flags)
  543. data |= 1 << 8;
  544. if (SH_FSI_LRS_INV & flags)
  545. data |= 1 << 4;
  546. if (SH_FSI_BRS_INV & flags)
  547. data |= 1 << 0;
  548. fsi_reg_write(fsi, CKG2, data);
  549. /* do fmt, di fmt */
  550. data = 0;
  551. reg = is_play ? DO_FMT : DI_FMT;
  552. fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
  553. switch (fmt) {
  554. case SH_FSI_FMT_MONO:
  555. data = CR_MONO;
  556. fsi->chan = 1;
  557. break;
  558. case SH_FSI_FMT_MONO_DELAY:
  559. data = CR_MONO_D;
  560. fsi->chan = 1;
  561. break;
  562. case SH_FSI_FMT_PCM:
  563. data = CR_PCM;
  564. fsi->chan = 2;
  565. break;
  566. case SH_FSI_FMT_I2S:
  567. data = CR_I2S;
  568. fsi->chan = 2;
  569. break;
  570. case SH_FSI_FMT_TDM:
  571. fsi->chan = is_play ?
  572. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  573. data = CR_TDM | (fsi->chan - 1);
  574. break;
  575. case SH_FSI_FMT_TDM_DELAY:
  576. fsi->chan = is_play ?
  577. SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
  578. data = CR_TDM_D | (fsi->chan - 1);
  579. break;
  580. default:
  581. dev_err(dai->dev, "unknown format.\n");
  582. return -EINVAL;
  583. }
  584. fsi_reg_write(fsi, reg, data);
  585. /*
  586. * clear clk reset if master mode
  587. */
  588. if (is_master)
  589. fsi_clk_ctrl(fsi, 1);
  590. /* irq clear */
  591. fsi_irq_disable(fsi, is_play);
  592. fsi_irq_clear_status(fsi);
  593. /* fifo init */
  594. fsi_fifo_init(fsi, is_play, dai);
  595. return ret;
  596. }
  597. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  598. struct snd_soc_dai *dai)
  599. {
  600. struct fsi_priv *fsi = fsi_get_priv(substream);
  601. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  602. fsi_irq_disable(fsi, is_play);
  603. fsi_clk_ctrl(fsi, 0);
  604. pm_runtime_put_sync(dai->dev);
  605. }
  606. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  607. struct snd_soc_dai *dai)
  608. {
  609. struct fsi_priv *fsi = fsi_get_priv(substream);
  610. struct snd_pcm_runtime *runtime = substream->runtime;
  611. int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
  612. int ret = 0;
  613. switch (cmd) {
  614. case SNDRV_PCM_TRIGGER_START:
  615. fsi_stream_push(fsi, substream,
  616. frames_to_bytes(runtime, runtime->buffer_size),
  617. frames_to_bytes(runtime, runtime->period_size));
  618. ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
  619. break;
  620. case SNDRV_PCM_TRIGGER_STOP:
  621. fsi_irq_disable(fsi, is_play);
  622. fsi_stream_pop(fsi);
  623. break;
  624. }
  625. return ret;
  626. }
  627. static struct snd_soc_dai_ops fsi_dai_ops = {
  628. .startup = fsi_dai_startup,
  629. .shutdown = fsi_dai_shutdown,
  630. .trigger = fsi_dai_trigger,
  631. };
  632. /************************************************************************
  633. pcm ops
  634. ************************************************************************/
  635. static struct snd_pcm_hardware fsi_pcm_hardware = {
  636. .info = SNDRV_PCM_INFO_INTERLEAVED |
  637. SNDRV_PCM_INFO_MMAP |
  638. SNDRV_PCM_INFO_MMAP_VALID |
  639. SNDRV_PCM_INFO_PAUSE,
  640. .formats = FSI_FMTS,
  641. .rates = FSI_RATES,
  642. .rate_min = 8000,
  643. .rate_max = 192000,
  644. .channels_min = 1,
  645. .channels_max = 2,
  646. .buffer_bytes_max = 64 * 1024,
  647. .period_bytes_min = 32,
  648. .period_bytes_max = 8192,
  649. .periods_min = 1,
  650. .periods_max = 32,
  651. .fifo_size = 256,
  652. };
  653. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  654. {
  655. struct snd_pcm_runtime *runtime = substream->runtime;
  656. int ret = 0;
  657. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  658. ret = snd_pcm_hw_constraint_integer(runtime,
  659. SNDRV_PCM_HW_PARAM_PERIODS);
  660. return ret;
  661. }
  662. static int fsi_hw_params(struct snd_pcm_substream *substream,
  663. struct snd_pcm_hw_params *hw_params)
  664. {
  665. return snd_pcm_lib_malloc_pages(substream,
  666. params_buffer_bytes(hw_params));
  667. }
  668. static int fsi_hw_free(struct snd_pcm_substream *substream)
  669. {
  670. return snd_pcm_lib_free_pages(substream);
  671. }
  672. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  673. {
  674. struct snd_pcm_runtime *runtime = substream->runtime;
  675. struct fsi_priv *fsi = fsi_get_priv(substream);
  676. long location;
  677. location = (fsi->byte_offset - 1);
  678. if (location < 0)
  679. location = 0;
  680. return bytes_to_frames(runtime, location);
  681. }
  682. static struct snd_pcm_ops fsi_pcm_ops = {
  683. .open = fsi_pcm_open,
  684. .ioctl = snd_pcm_lib_ioctl,
  685. .hw_params = fsi_hw_params,
  686. .hw_free = fsi_hw_free,
  687. .pointer = fsi_pointer,
  688. };
  689. /************************************************************************
  690. snd_soc_platform
  691. ************************************************************************/
  692. #define PREALLOC_BUFFER (32 * 1024)
  693. #define PREALLOC_BUFFER_MAX (32 * 1024)
  694. static void fsi_pcm_free(struct snd_pcm *pcm)
  695. {
  696. snd_pcm_lib_preallocate_free_for_all(pcm);
  697. }
  698. static int fsi_pcm_new(struct snd_card *card,
  699. struct snd_soc_dai *dai,
  700. struct snd_pcm *pcm)
  701. {
  702. /*
  703. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  704. * in MMAP mode (i.e. aplay -M)
  705. */
  706. return snd_pcm_lib_preallocate_pages_for_all(
  707. pcm,
  708. SNDRV_DMA_TYPE_CONTINUOUS,
  709. snd_dma_continuous_data(GFP_KERNEL),
  710. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  711. }
  712. /************************************************************************
  713. alsa struct
  714. ************************************************************************/
  715. struct snd_soc_dai fsi_soc_dai[] = {
  716. {
  717. .name = "FSIA",
  718. .id = 0,
  719. .playback = {
  720. .rates = FSI_RATES,
  721. .formats = FSI_FMTS,
  722. .channels_min = 1,
  723. .channels_max = 8,
  724. },
  725. .capture = {
  726. .rates = FSI_RATES,
  727. .formats = FSI_FMTS,
  728. .channels_min = 1,
  729. .channels_max = 8,
  730. },
  731. .ops = &fsi_dai_ops,
  732. },
  733. {
  734. .name = "FSIB",
  735. .id = 1,
  736. .playback = {
  737. .rates = FSI_RATES,
  738. .formats = FSI_FMTS,
  739. .channels_min = 1,
  740. .channels_max = 8,
  741. },
  742. .capture = {
  743. .rates = FSI_RATES,
  744. .formats = FSI_FMTS,
  745. .channels_min = 1,
  746. .channels_max = 8,
  747. },
  748. .ops = &fsi_dai_ops,
  749. },
  750. };
  751. EXPORT_SYMBOL_GPL(fsi_soc_dai);
  752. struct snd_soc_platform fsi_soc_platform = {
  753. .name = "fsi-pcm",
  754. .pcm_ops = &fsi_pcm_ops,
  755. .pcm_new = fsi_pcm_new,
  756. .pcm_free = fsi_pcm_free,
  757. };
  758. EXPORT_SYMBOL_GPL(fsi_soc_platform);
  759. /************************************************************************
  760. platform function
  761. ************************************************************************/
  762. static int fsi_probe(struct platform_device *pdev)
  763. {
  764. struct fsi_master *master;
  765. const struct platform_device_id *id_entry;
  766. struct resource *res;
  767. unsigned int irq;
  768. int ret;
  769. if (0 != pdev->id) {
  770. dev_err(&pdev->dev, "current fsi support id 0 only now\n");
  771. return -ENODEV;
  772. }
  773. id_entry = pdev->id_entry;
  774. if (!id_entry) {
  775. dev_err(&pdev->dev, "unknown fsi device\n");
  776. return -ENODEV;
  777. }
  778. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  779. irq = platform_get_irq(pdev, 0);
  780. if (!res || (int)irq <= 0) {
  781. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  782. ret = -ENODEV;
  783. goto exit;
  784. }
  785. master = kzalloc(sizeof(*master), GFP_KERNEL);
  786. if (!master) {
  787. dev_err(&pdev->dev, "Could not allocate master\n");
  788. ret = -ENOMEM;
  789. goto exit;
  790. }
  791. master->base = ioremap_nocache(res->start, resource_size(res));
  792. if (!master->base) {
  793. ret = -ENXIO;
  794. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  795. goto exit_kfree;
  796. }
  797. master->irq = irq;
  798. master->info = pdev->dev.platform_data;
  799. master->fsia.base = master->base;
  800. master->fsia.master = master;
  801. master->fsib.base = master->base + 0x40;
  802. master->fsib.master = master;
  803. master->core = (struct fsi_core *)id_entry->driver_data;
  804. spin_lock_init(&master->lock);
  805. pm_runtime_enable(&pdev->dev);
  806. pm_runtime_resume(&pdev->dev);
  807. fsi_soc_dai[0].dev = &pdev->dev;
  808. fsi_soc_dai[0].private_data = &master->fsia;
  809. fsi_soc_dai[1].dev = &pdev->dev;
  810. fsi_soc_dai[1].private_data = &master->fsib;
  811. fsi_soft_all_reset(master);
  812. ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
  813. id_entry->name, master);
  814. if (ret) {
  815. dev_err(&pdev->dev, "irq request err\n");
  816. goto exit_iounmap;
  817. }
  818. ret = snd_soc_register_platform(&fsi_soc_platform);
  819. if (ret < 0) {
  820. dev_err(&pdev->dev, "cannot snd soc register\n");
  821. goto exit_free_irq;
  822. }
  823. return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  824. exit_free_irq:
  825. free_irq(irq, master);
  826. exit_iounmap:
  827. iounmap(master->base);
  828. pm_runtime_disable(&pdev->dev);
  829. exit_kfree:
  830. kfree(master);
  831. master = NULL;
  832. exit:
  833. return ret;
  834. }
  835. static int fsi_remove(struct platform_device *pdev)
  836. {
  837. struct fsi_master *master;
  838. master = fsi_get_master(fsi_soc_dai[0].private_data);
  839. snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
  840. snd_soc_unregister_platform(&fsi_soc_platform);
  841. pm_runtime_disable(&pdev->dev);
  842. free_irq(master->irq, master);
  843. iounmap(master->base);
  844. kfree(master);
  845. fsi_soc_dai[0].dev = NULL;
  846. fsi_soc_dai[0].private_data = NULL;
  847. fsi_soc_dai[1].dev = NULL;
  848. fsi_soc_dai[1].private_data = NULL;
  849. return 0;
  850. }
  851. static int fsi_runtime_nop(struct device *dev)
  852. {
  853. /* Runtime PM callback shared between ->runtime_suspend()
  854. * and ->runtime_resume(). Simply returns success.
  855. *
  856. * This driver re-initializes all registers after
  857. * pm_runtime_get_sync() anyway so there is no need
  858. * to save and restore registers here.
  859. */
  860. return 0;
  861. }
  862. static struct dev_pm_ops fsi_pm_ops = {
  863. .runtime_suspend = fsi_runtime_nop,
  864. .runtime_resume = fsi_runtime_nop,
  865. };
  866. static struct fsi_core fsi1_core = {
  867. .ver = 1,
  868. /* Interrupt */
  869. .int_st = INT_ST,
  870. .iemsk = IEMSK,
  871. .imsk = IMSK,
  872. };
  873. static struct fsi_core fsi2_core = {
  874. .ver = 2,
  875. /* Interrupt */
  876. .int_st = CPU_INT_ST,
  877. .iemsk = CPU_IEMSK,
  878. .imsk = CPU_IMSK,
  879. };
  880. static struct platform_device_id fsi_id_table[] = {
  881. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  882. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  883. };
  884. static struct platform_driver fsi_driver = {
  885. .driver = {
  886. .name = "sh_fsi",
  887. .pm = &fsi_pm_ops,
  888. },
  889. .probe = fsi_probe,
  890. .remove = fsi_remove,
  891. .id_table = fsi_id_table,
  892. };
  893. static int __init fsi_mobile_init(void)
  894. {
  895. return platform_driver_register(&fsi_driver);
  896. }
  897. static void __exit fsi_mobile_exit(void)
  898. {
  899. platform_driver_unregister(&fsi_driver);
  900. }
  901. module_init(fsi_mobile_init);
  902. module_exit(fsi_mobile_exit);
  903. MODULE_LICENSE("GPL");
  904. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  905. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");