svm.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include "kvm_svm.h"
  17. #include "x86_emulate.h"
  18. #include "irq.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/highmem.h>
  23. #include <linux/sched.h>
  24. #include <asm/desc.h>
  25. MODULE_AUTHOR("Qumranet");
  26. MODULE_LICENSE("GPL");
  27. #define IOPM_ALLOC_ORDER 2
  28. #define MSRPM_ALLOC_ORDER 1
  29. #define DB_VECTOR 1
  30. #define UD_VECTOR 6
  31. #define GP_VECTOR 13
  32. #define DR7_GD_MASK (1 << 13)
  33. #define DR6_BD_MASK (1 << 13)
  34. #define SEG_TYPE_LDT 2
  35. #define SEG_TYPE_BUSY_TSS16 3
  36. #define KVM_EFER_LMA (1 << 10)
  37. #define KVM_EFER_LME (1 << 8)
  38. #define SVM_FEATURE_NPT (1 << 0)
  39. #define SVM_FEATURE_LBRV (1 << 1)
  40. #define SVM_DEATURE_SVML (1 << 2)
  41. static void kvm_reput_irq(struct vcpu_svm *svm);
  42. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  43. {
  44. return container_of(vcpu, struct vcpu_svm, vcpu);
  45. }
  46. unsigned long iopm_base;
  47. unsigned long msrpm_base;
  48. struct kvm_ldttss_desc {
  49. u16 limit0;
  50. u16 base0;
  51. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  52. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  53. u32 base3;
  54. u32 zero1;
  55. } __attribute__((packed));
  56. struct svm_cpu_data {
  57. int cpu;
  58. u64 asid_generation;
  59. u32 max_asid;
  60. u32 next_asid;
  61. struct kvm_ldttss_desc *tss_desc;
  62. struct page *save_area;
  63. };
  64. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  65. static uint32_t svm_features;
  66. struct svm_init_data {
  67. int cpu;
  68. int r;
  69. };
  70. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  71. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  72. #define MSRS_RANGE_SIZE 2048
  73. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  74. #define MAX_INST_SIZE 15
  75. static inline u32 svm_has(u32 feat)
  76. {
  77. return svm_features & feat;
  78. }
  79. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  80. {
  81. int word_index = __ffs(vcpu->irq_summary);
  82. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  83. int irq = word_index * BITS_PER_LONG + bit_index;
  84. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  85. if (!vcpu->irq_pending[word_index])
  86. clear_bit(word_index, &vcpu->irq_summary);
  87. return irq;
  88. }
  89. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  90. {
  91. set_bit(irq, vcpu->irq_pending);
  92. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  93. }
  94. static inline void clgi(void)
  95. {
  96. asm volatile (SVM_CLGI);
  97. }
  98. static inline void stgi(void)
  99. {
  100. asm volatile (SVM_STGI);
  101. }
  102. static inline void invlpga(unsigned long addr, u32 asid)
  103. {
  104. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  105. }
  106. static inline unsigned long kvm_read_cr2(void)
  107. {
  108. unsigned long cr2;
  109. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  110. return cr2;
  111. }
  112. static inline void kvm_write_cr2(unsigned long val)
  113. {
  114. asm volatile ("mov %0, %%cr2" :: "r" (val));
  115. }
  116. static inline unsigned long read_dr6(void)
  117. {
  118. unsigned long dr6;
  119. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  120. return dr6;
  121. }
  122. static inline void write_dr6(unsigned long val)
  123. {
  124. asm volatile ("mov %0, %%dr6" :: "r" (val));
  125. }
  126. static inline unsigned long read_dr7(void)
  127. {
  128. unsigned long dr7;
  129. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  130. return dr7;
  131. }
  132. static inline void write_dr7(unsigned long val)
  133. {
  134. asm volatile ("mov %0, %%dr7" :: "r" (val));
  135. }
  136. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  137. {
  138. to_svm(vcpu)->asid_generation--;
  139. }
  140. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  141. {
  142. force_new_asid(vcpu);
  143. }
  144. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  145. {
  146. if (!(efer & KVM_EFER_LMA))
  147. efer &= ~KVM_EFER_LME;
  148. to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  149. vcpu->shadow_efer = efer;
  150. }
  151. static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  152. {
  153. struct vcpu_svm *svm = to_svm(vcpu);
  154. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  155. SVM_EVTINJ_VALID_ERR |
  156. SVM_EVTINJ_TYPE_EXEPT |
  157. GP_VECTOR;
  158. svm->vmcb->control.event_inj_err = error_code;
  159. }
  160. static void inject_ud(struct kvm_vcpu *vcpu)
  161. {
  162. to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  163. SVM_EVTINJ_TYPE_EXEPT |
  164. UD_VECTOR;
  165. }
  166. static int is_page_fault(uint32_t info)
  167. {
  168. info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  169. return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
  170. }
  171. static int is_external_interrupt(u32 info)
  172. {
  173. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  174. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  175. }
  176. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  177. {
  178. struct vcpu_svm *svm = to_svm(vcpu);
  179. if (!svm->next_rip) {
  180. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  181. return;
  182. }
  183. if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
  184. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  185. __FUNCTION__,
  186. svm->vmcb->save.rip,
  187. svm->next_rip);
  188. vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
  189. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  190. vcpu->interrupt_window_open = 1;
  191. }
  192. static int has_svm(void)
  193. {
  194. uint32_t eax, ebx, ecx, edx;
  195. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  196. printk(KERN_INFO "has_svm: not amd\n");
  197. return 0;
  198. }
  199. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  200. if (eax < SVM_CPUID_FUNC) {
  201. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  202. return 0;
  203. }
  204. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  205. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  206. printk(KERN_DEBUG "has_svm: svm not available\n");
  207. return 0;
  208. }
  209. return 1;
  210. }
  211. static void svm_hardware_disable(void *garbage)
  212. {
  213. struct svm_cpu_data *svm_data
  214. = per_cpu(svm_data, raw_smp_processor_id());
  215. if (svm_data) {
  216. uint64_t efer;
  217. wrmsrl(MSR_VM_HSAVE_PA, 0);
  218. rdmsrl(MSR_EFER, efer);
  219. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  220. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  221. __free_page(svm_data->save_area);
  222. kfree(svm_data);
  223. }
  224. }
  225. static void svm_hardware_enable(void *garbage)
  226. {
  227. struct svm_cpu_data *svm_data;
  228. uint64_t efer;
  229. #ifdef CONFIG_X86_64
  230. struct desc_ptr gdt_descr;
  231. #else
  232. struct desc_ptr gdt_descr;
  233. #endif
  234. struct desc_struct *gdt;
  235. int me = raw_smp_processor_id();
  236. if (!has_svm()) {
  237. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  238. return;
  239. }
  240. svm_data = per_cpu(svm_data, me);
  241. if (!svm_data) {
  242. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  243. me);
  244. return;
  245. }
  246. svm_data->asid_generation = 1;
  247. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  248. svm_data->next_asid = svm_data->max_asid + 1;
  249. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  250. asm volatile ("sgdt %0" : "=m"(gdt_descr));
  251. gdt = (struct desc_struct *)gdt_descr.address;
  252. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  253. rdmsrl(MSR_EFER, efer);
  254. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  255. wrmsrl(MSR_VM_HSAVE_PA,
  256. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  257. }
  258. static int svm_cpu_init(int cpu)
  259. {
  260. struct svm_cpu_data *svm_data;
  261. int r;
  262. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  263. if (!svm_data)
  264. return -ENOMEM;
  265. svm_data->cpu = cpu;
  266. svm_data->save_area = alloc_page(GFP_KERNEL);
  267. r = -ENOMEM;
  268. if (!svm_data->save_area)
  269. goto err_1;
  270. per_cpu(svm_data, cpu) = svm_data;
  271. return 0;
  272. err_1:
  273. kfree(svm_data);
  274. return r;
  275. }
  276. static void set_msr_interception(u32 *msrpm, unsigned msr,
  277. int read, int write)
  278. {
  279. int i;
  280. for (i = 0; i < NUM_MSR_MAPS; i++) {
  281. if (msr >= msrpm_ranges[i] &&
  282. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  283. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  284. msrpm_ranges[i]) * 2;
  285. u32 *base = msrpm + (msr_offset / 32);
  286. u32 msr_shift = msr_offset % 32;
  287. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  288. *base = (*base & ~(0x3 << msr_shift)) |
  289. (mask << msr_shift);
  290. return;
  291. }
  292. }
  293. BUG();
  294. }
  295. static __init int svm_hardware_setup(void)
  296. {
  297. int cpu;
  298. struct page *iopm_pages;
  299. struct page *msrpm_pages;
  300. void *iopm_va, *msrpm_va;
  301. int r;
  302. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  303. if (!iopm_pages)
  304. return -ENOMEM;
  305. iopm_va = page_address(iopm_pages);
  306. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  307. clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
  308. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  309. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  310. r = -ENOMEM;
  311. if (!msrpm_pages)
  312. goto err_1;
  313. msrpm_va = page_address(msrpm_pages);
  314. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  315. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  316. #ifdef CONFIG_X86_64
  317. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  318. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  319. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  320. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  321. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  322. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  323. #endif
  324. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  325. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  326. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  327. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  328. for_each_online_cpu(cpu) {
  329. r = svm_cpu_init(cpu);
  330. if (r)
  331. goto err_2;
  332. }
  333. return 0;
  334. err_2:
  335. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  336. msrpm_base = 0;
  337. err_1:
  338. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  339. iopm_base = 0;
  340. return r;
  341. }
  342. static __exit void svm_hardware_unsetup(void)
  343. {
  344. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  345. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  346. iopm_base = msrpm_base = 0;
  347. }
  348. static void init_seg(struct vmcb_seg *seg)
  349. {
  350. seg->selector = 0;
  351. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  352. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  353. seg->limit = 0xffff;
  354. seg->base = 0;
  355. }
  356. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  357. {
  358. seg->selector = 0;
  359. seg->attrib = SVM_SELECTOR_P_MASK | type;
  360. seg->limit = 0xffff;
  361. seg->base = 0;
  362. }
  363. static void init_vmcb(struct vmcb *vmcb)
  364. {
  365. struct vmcb_control_area *control = &vmcb->control;
  366. struct vmcb_save_area *save = &vmcb->save;
  367. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  368. INTERCEPT_CR3_MASK |
  369. INTERCEPT_CR4_MASK;
  370. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  371. INTERCEPT_CR3_MASK |
  372. INTERCEPT_CR4_MASK;
  373. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  374. INTERCEPT_DR1_MASK |
  375. INTERCEPT_DR2_MASK |
  376. INTERCEPT_DR3_MASK;
  377. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  378. INTERCEPT_DR1_MASK |
  379. INTERCEPT_DR2_MASK |
  380. INTERCEPT_DR3_MASK |
  381. INTERCEPT_DR5_MASK |
  382. INTERCEPT_DR7_MASK;
  383. control->intercept_exceptions = (1 << PF_VECTOR) |
  384. (1 << UD_VECTOR);
  385. control->intercept = (1ULL << INTERCEPT_INTR) |
  386. (1ULL << INTERCEPT_NMI) |
  387. (1ULL << INTERCEPT_SMI) |
  388. /*
  389. * selective cr0 intercept bug?
  390. * 0: 0f 22 d8 mov %eax,%cr3
  391. * 3: 0f 20 c0 mov %cr0,%eax
  392. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  393. * b: 0f 22 c0 mov %eax,%cr0
  394. * set cr3 ->interception
  395. * get cr0 ->interception
  396. * set cr0 -> no interception
  397. */
  398. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  399. (1ULL << INTERCEPT_CPUID) |
  400. (1ULL << INTERCEPT_INVD) |
  401. (1ULL << INTERCEPT_HLT) |
  402. (1ULL << INTERCEPT_INVLPGA) |
  403. (1ULL << INTERCEPT_IOIO_PROT) |
  404. (1ULL << INTERCEPT_MSR_PROT) |
  405. (1ULL << INTERCEPT_TASK_SWITCH) |
  406. (1ULL << INTERCEPT_SHUTDOWN) |
  407. (1ULL << INTERCEPT_VMRUN) |
  408. (1ULL << INTERCEPT_VMMCALL) |
  409. (1ULL << INTERCEPT_VMLOAD) |
  410. (1ULL << INTERCEPT_VMSAVE) |
  411. (1ULL << INTERCEPT_STGI) |
  412. (1ULL << INTERCEPT_CLGI) |
  413. (1ULL << INTERCEPT_SKINIT) |
  414. (1ULL << INTERCEPT_WBINVD) |
  415. (1ULL << INTERCEPT_MONITOR) |
  416. (1ULL << INTERCEPT_MWAIT);
  417. control->iopm_base_pa = iopm_base;
  418. control->msrpm_base_pa = msrpm_base;
  419. control->tsc_offset = 0;
  420. control->int_ctl = V_INTR_MASKING_MASK;
  421. init_seg(&save->es);
  422. init_seg(&save->ss);
  423. init_seg(&save->ds);
  424. init_seg(&save->fs);
  425. init_seg(&save->gs);
  426. save->cs.selector = 0xf000;
  427. /* Executable/Readable Code Segment */
  428. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  429. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  430. save->cs.limit = 0xffff;
  431. /*
  432. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  433. * be consistent with it.
  434. *
  435. * Replace when we have real mode working for vmx.
  436. */
  437. save->cs.base = 0xf0000;
  438. save->gdtr.limit = 0xffff;
  439. save->idtr.limit = 0xffff;
  440. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  441. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  442. save->efer = MSR_EFER_SVME_MASK;
  443. save->dr6 = 0xffff0ff0;
  444. save->dr7 = 0x400;
  445. save->rflags = 2;
  446. save->rip = 0x0000fff0;
  447. /*
  448. * cr0 val on cpu init should be 0x60000010, we enable cpu
  449. * cache by default. the orderly way is to enable cache in bios.
  450. */
  451. save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
  452. save->cr4 = X86_CR4_PAE;
  453. /* rdx = ?? */
  454. }
  455. static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
  456. {
  457. struct vcpu_svm *svm = to_svm(vcpu);
  458. init_vmcb(svm->vmcb);
  459. if (vcpu->vcpu_id != 0) {
  460. svm->vmcb->save.rip = 0;
  461. svm->vmcb->save.cs.base = svm->vcpu.sipi_vector << 12;
  462. svm->vmcb->save.cs.selector = svm->vcpu.sipi_vector << 8;
  463. }
  464. }
  465. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  466. {
  467. struct vcpu_svm *svm;
  468. struct page *page;
  469. int err;
  470. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  471. if (!svm) {
  472. err = -ENOMEM;
  473. goto out;
  474. }
  475. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  476. if (err)
  477. goto free_svm;
  478. page = alloc_page(GFP_KERNEL);
  479. if (!page) {
  480. err = -ENOMEM;
  481. goto uninit;
  482. }
  483. svm->vmcb = page_address(page);
  484. clear_page(svm->vmcb);
  485. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  486. svm->asid_generation = 0;
  487. memset(svm->db_regs, 0, sizeof(svm->db_regs));
  488. init_vmcb(svm->vmcb);
  489. fx_init(&svm->vcpu);
  490. svm->vcpu.fpu_active = 1;
  491. svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  492. if (svm->vcpu.vcpu_id == 0)
  493. svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
  494. return &svm->vcpu;
  495. uninit:
  496. kvm_vcpu_uninit(&svm->vcpu);
  497. free_svm:
  498. kmem_cache_free(kvm_vcpu_cache, svm);
  499. out:
  500. return ERR_PTR(err);
  501. }
  502. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  503. {
  504. struct vcpu_svm *svm = to_svm(vcpu);
  505. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  506. kvm_vcpu_uninit(vcpu);
  507. kmem_cache_free(kvm_vcpu_cache, svm);
  508. }
  509. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  510. {
  511. struct vcpu_svm *svm = to_svm(vcpu);
  512. int i;
  513. if (unlikely(cpu != vcpu->cpu)) {
  514. u64 tsc_this, delta;
  515. /*
  516. * Make sure that the guest sees a monotonically
  517. * increasing TSC.
  518. */
  519. rdtscll(tsc_this);
  520. delta = vcpu->host_tsc - tsc_this;
  521. svm->vmcb->control.tsc_offset += delta;
  522. vcpu->cpu = cpu;
  523. kvm_migrate_apic_timer(vcpu);
  524. }
  525. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  526. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  527. }
  528. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  529. {
  530. struct vcpu_svm *svm = to_svm(vcpu);
  531. int i;
  532. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  533. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  534. rdtscll(vcpu->host_tsc);
  535. kvm_put_guest_fpu(vcpu);
  536. }
  537. static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
  538. {
  539. }
  540. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  541. {
  542. struct vcpu_svm *svm = to_svm(vcpu);
  543. vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  544. vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  545. vcpu->rip = svm->vmcb->save.rip;
  546. }
  547. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  548. {
  549. struct vcpu_svm *svm = to_svm(vcpu);
  550. svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  551. svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  552. svm->vmcb->save.rip = vcpu->rip;
  553. }
  554. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  555. {
  556. return to_svm(vcpu)->vmcb->save.rflags;
  557. }
  558. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  559. {
  560. to_svm(vcpu)->vmcb->save.rflags = rflags;
  561. }
  562. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  563. {
  564. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  565. switch (seg) {
  566. case VCPU_SREG_CS: return &save->cs;
  567. case VCPU_SREG_DS: return &save->ds;
  568. case VCPU_SREG_ES: return &save->es;
  569. case VCPU_SREG_FS: return &save->fs;
  570. case VCPU_SREG_GS: return &save->gs;
  571. case VCPU_SREG_SS: return &save->ss;
  572. case VCPU_SREG_TR: return &save->tr;
  573. case VCPU_SREG_LDTR: return &save->ldtr;
  574. }
  575. BUG();
  576. return NULL;
  577. }
  578. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  579. {
  580. struct vmcb_seg *s = svm_seg(vcpu, seg);
  581. return s->base;
  582. }
  583. static void svm_get_segment(struct kvm_vcpu *vcpu,
  584. struct kvm_segment *var, int seg)
  585. {
  586. struct vmcb_seg *s = svm_seg(vcpu, seg);
  587. var->base = s->base;
  588. var->limit = s->limit;
  589. var->selector = s->selector;
  590. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  591. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  592. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  593. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  594. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  595. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  596. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  597. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  598. var->unusable = !var->present;
  599. }
  600. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  601. {
  602. struct vcpu_svm *svm = to_svm(vcpu);
  603. dt->limit = svm->vmcb->save.idtr.limit;
  604. dt->base = svm->vmcb->save.idtr.base;
  605. }
  606. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  607. {
  608. struct vcpu_svm *svm = to_svm(vcpu);
  609. svm->vmcb->save.idtr.limit = dt->limit;
  610. svm->vmcb->save.idtr.base = dt->base ;
  611. }
  612. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  613. {
  614. struct vcpu_svm *svm = to_svm(vcpu);
  615. dt->limit = svm->vmcb->save.gdtr.limit;
  616. dt->base = svm->vmcb->save.gdtr.base;
  617. }
  618. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  619. {
  620. struct vcpu_svm *svm = to_svm(vcpu);
  621. svm->vmcb->save.gdtr.limit = dt->limit;
  622. svm->vmcb->save.gdtr.base = dt->base ;
  623. }
  624. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  625. {
  626. }
  627. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  628. {
  629. struct vcpu_svm *svm = to_svm(vcpu);
  630. #ifdef CONFIG_X86_64
  631. if (vcpu->shadow_efer & KVM_EFER_LME) {
  632. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  633. vcpu->shadow_efer |= KVM_EFER_LMA;
  634. svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
  635. }
  636. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  637. vcpu->shadow_efer &= ~KVM_EFER_LMA;
  638. svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
  639. }
  640. }
  641. #endif
  642. if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
  643. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  644. vcpu->fpu_active = 1;
  645. }
  646. vcpu->cr0 = cr0;
  647. cr0 |= X86_CR0_PG | X86_CR0_WP;
  648. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  649. svm->vmcb->save.cr0 = cr0;
  650. }
  651. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  652. {
  653. vcpu->cr4 = cr4;
  654. to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
  655. }
  656. static void svm_set_segment(struct kvm_vcpu *vcpu,
  657. struct kvm_segment *var, int seg)
  658. {
  659. struct vcpu_svm *svm = to_svm(vcpu);
  660. struct vmcb_seg *s = svm_seg(vcpu, seg);
  661. s->base = var->base;
  662. s->limit = var->limit;
  663. s->selector = var->selector;
  664. if (var->unusable)
  665. s->attrib = 0;
  666. else {
  667. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  668. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  669. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  670. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  671. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  672. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  673. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  674. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  675. }
  676. if (seg == VCPU_SREG_CS)
  677. svm->vmcb->save.cpl
  678. = (svm->vmcb->save.cs.attrib
  679. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  680. }
  681. /* FIXME:
  682. svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
  683. svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  684. */
  685. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  686. {
  687. return -EOPNOTSUPP;
  688. }
  689. static int svm_get_irq(struct kvm_vcpu *vcpu)
  690. {
  691. struct vcpu_svm *svm = to_svm(vcpu);
  692. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  693. if (is_external_interrupt(exit_int_info))
  694. return exit_int_info & SVM_EVTINJ_VEC_MASK;
  695. return -1;
  696. }
  697. static void load_host_msrs(struct kvm_vcpu *vcpu)
  698. {
  699. #ifdef CONFIG_X86_64
  700. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  701. #endif
  702. }
  703. static void save_host_msrs(struct kvm_vcpu *vcpu)
  704. {
  705. #ifdef CONFIG_X86_64
  706. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  707. #endif
  708. }
  709. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
  710. {
  711. if (svm_data->next_asid > svm_data->max_asid) {
  712. ++svm_data->asid_generation;
  713. svm_data->next_asid = 1;
  714. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  715. }
  716. svm->vcpu.cpu = svm_data->cpu;
  717. svm->asid_generation = svm_data->asid_generation;
  718. svm->vmcb->control.asid = svm_data->next_asid++;
  719. }
  720. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  721. {
  722. return to_svm(vcpu)->db_regs[dr];
  723. }
  724. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  725. int *exception)
  726. {
  727. struct vcpu_svm *svm = to_svm(vcpu);
  728. *exception = 0;
  729. if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
  730. svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  731. svm->vmcb->save.dr6 |= DR6_BD_MASK;
  732. *exception = DB_VECTOR;
  733. return;
  734. }
  735. switch (dr) {
  736. case 0 ... 3:
  737. svm->db_regs[dr] = value;
  738. return;
  739. case 4 ... 5:
  740. if (vcpu->cr4 & X86_CR4_DE) {
  741. *exception = UD_VECTOR;
  742. return;
  743. }
  744. case 7: {
  745. if (value & ~((1ULL << 32) - 1)) {
  746. *exception = GP_VECTOR;
  747. return;
  748. }
  749. svm->vmcb->save.dr7 = value;
  750. return;
  751. }
  752. default:
  753. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  754. __FUNCTION__, dr);
  755. *exception = UD_VECTOR;
  756. return;
  757. }
  758. }
  759. static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  760. {
  761. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  762. struct kvm *kvm = svm->vcpu.kvm;
  763. u64 fault_address;
  764. u32 error_code;
  765. enum emulation_result er;
  766. int r;
  767. if (!irqchip_in_kernel(kvm) &&
  768. is_external_interrupt(exit_int_info))
  769. push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  770. mutex_lock(&kvm->lock);
  771. fault_address = svm->vmcb->control.exit_info_2;
  772. error_code = svm->vmcb->control.exit_info_1;
  773. r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  774. if (r < 0) {
  775. mutex_unlock(&kvm->lock);
  776. return r;
  777. }
  778. if (!r) {
  779. mutex_unlock(&kvm->lock);
  780. return 1;
  781. }
  782. er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
  783. error_code, 0);
  784. mutex_unlock(&kvm->lock);
  785. switch (er) {
  786. case EMULATE_DONE:
  787. return 1;
  788. case EMULATE_DO_MMIO:
  789. ++svm->vcpu.stat.mmio_exits;
  790. return 0;
  791. case EMULATE_FAIL:
  792. kvm_report_emulation_failure(&svm->vcpu, "pagetable");
  793. break;
  794. default:
  795. BUG();
  796. }
  797. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  798. return 0;
  799. }
  800. static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  801. {
  802. int er;
  803. er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0);
  804. if (er != EMULATE_DONE)
  805. inject_ud(&svm->vcpu);
  806. return 1;
  807. }
  808. static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  809. {
  810. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  811. if (!(svm->vcpu.cr0 & X86_CR0_TS))
  812. svm->vmcb->save.cr0 &= ~X86_CR0_TS;
  813. svm->vcpu.fpu_active = 1;
  814. return 1;
  815. }
  816. static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  817. {
  818. /*
  819. * VMCB is undefined after a SHUTDOWN intercept
  820. * so reinitialize it.
  821. */
  822. clear_page(svm->vmcb);
  823. init_vmcb(svm->vmcb);
  824. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  825. return 0;
  826. }
  827. static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  828. {
  829. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  830. int size, down, in, string, rep;
  831. unsigned port;
  832. ++svm->vcpu.stat.io_exits;
  833. svm->next_rip = svm->vmcb->control.exit_info_2;
  834. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  835. if (string) {
  836. if (emulate_instruction(&svm->vcpu,
  837. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  838. return 0;
  839. return 1;
  840. }
  841. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  842. port = io_info >> 16;
  843. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  844. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  845. down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  846. return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
  847. }
  848. static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  849. {
  850. return 1;
  851. }
  852. static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  853. {
  854. svm->next_rip = svm->vmcb->save.rip + 1;
  855. skip_emulated_instruction(&svm->vcpu);
  856. return kvm_emulate_halt(&svm->vcpu);
  857. }
  858. static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  859. {
  860. svm->next_rip = svm->vmcb->save.rip + 3;
  861. skip_emulated_instruction(&svm->vcpu);
  862. kvm_emulate_hypercall(&svm->vcpu);
  863. return 1;
  864. }
  865. static int invalid_op_interception(struct vcpu_svm *svm,
  866. struct kvm_run *kvm_run)
  867. {
  868. inject_ud(&svm->vcpu);
  869. return 1;
  870. }
  871. static int task_switch_interception(struct vcpu_svm *svm,
  872. struct kvm_run *kvm_run)
  873. {
  874. pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
  875. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  876. return 0;
  877. }
  878. static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  879. {
  880. svm->next_rip = svm->vmcb->save.rip + 2;
  881. kvm_emulate_cpuid(&svm->vcpu);
  882. return 1;
  883. }
  884. static int emulate_on_interception(struct vcpu_svm *svm,
  885. struct kvm_run *kvm_run)
  886. {
  887. if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
  888. pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
  889. return 1;
  890. }
  891. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  892. {
  893. struct vcpu_svm *svm = to_svm(vcpu);
  894. switch (ecx) {
  895. case MSR_IA32_TIME_STAMP_COUNTER: {
  896. u64 tsc;
  897. rdtscll(tsc);
  898. *data = svm->vmcb->control.tsc_offset + tsc;
  899. break;
  900. }
  901. case MSR_K6_STAR:
  902. *data = svm->vmcb->save.star;
  903. break;
  904. #ifdef CONFIG_X86_64
  905. case MSR_LSTAR:
  906. *data = svm->vmcb->save.lstar;
  907. break;
  908. case MSR_CSTAR:
  909. *data = svm->vmcb->save.cstar;
  910. break;
  911. case MSR_KERNEL_GS_BASE:
  912. *data = svm->vmcb->save.kernel_gs_base;
  913. break;
  914. case MSR_SYSCALL_MASK:
  915. *data = svm->vmcb->save.sfmask;
  916. break;
  917. #endif
  918. case MSR_IA32_SYSENTER_CS:
  919. *data = svm->vmcb->save.sysenter_cs;
  920. break;
  921. case MSR_IA32_SYSENTER_EIP:
  922. *data = svm->vmcb->save.sysenter_eip;
  923. break;
  924. case MSR_IA32_SYSENTER_ESP:
  925. *data = svm->vmcb->save.sysenter_esp;
  926. break;
  927. default:
  928. return kvm_get_msr_common(vcpu, ecx, data);
  929. }
  930. return 0;
  931. }
  932. static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  933. {
  934. u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
  935. u64 data;
  936. if (svm_get_msr(&svm->vcpu, ecx, &data))
  937. svm_inject_gp(&svm->vcpu, 0);
  938. else {
  939. svm->vmcb->save.rax = data & 0xffffffff;
  940. svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
  941. svm->next_rip = svm->vmcb->save.rip + 2;
  942. skip_emulated_instruction(&svm->vcpu);
  943. }
  944. return 1;
  945. }
  946. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  947. {
  948. struct vcpu_svm *svm = to_svm(vcpu);
  949. switch (ecx) {
  950. case MSR_IA32_TIME_STAMP_COUNTER: {
  951. u64 tsc;
  952. rdtscll(tsc);
  953. svm->vmcb->control.tsc_offset = data - tsc;
  954. break;
  955. }
  956. case MSR_K6_STAR:
  957. svm->vmcb->save.star = data;
  958. break;
  959. #ifdef CONFIG_X86_64
  960. case MSR_LSTAR:
  961. svm->vmcb->save.lstar = data;
  962. break;
  963. case MSR_CSTAR:
  964. svm->vmcb->save.cstar = data;
  965. break;
  966. case MSR_KERNEL_GS_BASE:
  967. svm->vmcb->save.kernel_gs_base = data;
  968. break;
  969. case MSR_SYSCALL_MASK:
  970. svm->vmcb->save.sfmask = data;
  971. break;
  972. #endif
  973. case MSR_IA32_SYSENTER_CS:
  974. svm->vmcb->save.sysenter_cs = data;
  975. break;
  976. case MSR_IA32_SYSENTER_EIP:
  977. svm->vmcb->save.sysenter_eip = data;
  978. break;
  979. case MSR_IA32_SYSENTER_ESP:
  980. svm->vmcb->save.sysenter_esp = data;
  981. break;
  982. default:
  983. return kvm_set_msr_common(vcpu, ecx, data);
  984. }
  985. return 0;
  986. }
  987. static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  988. {
  989. u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
  990. u64 data = (svm->vmcb->save.rax & -1u)
  991. | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
  992. svm->next_rip = svm->vmcb->save.rip + 2;
  993. if (svm_set_msr(&svm->vcpu, ecx, data))
  994. svm_inject_gp(&svm->vcpu, 0);
  995. else
  996. skip_emulated_instruction(&svm->vcpu);
  997. return 1;
  998. }
  999. static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1000. {
  1001. if (svm->vmcb->control.exit_info_1)
  1002. return wrmsr_interception(svm, kvm_run);
  1003. else
  1004. return rdmsr_interception(svm, kvm_run);
  1005. }
  1006. static int interrupt_window_interception(struct vcpu_svm *svm,
  1007. struct kvm_run *kvm_run)
  1008. {
  1009. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  1010. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1011. /*
  1012. * If the user space waits to inject interrupts, exit as soon as
  1013. * possible
  1014. */
  1015. if (kvm_run->request_interrupt_window &&
  1016. !svm->vcpu.irq_summary) {
  1017. ++svm->vcpu.stat.irq_window_exits;
  1018. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1019. return 0;
  1020. }
  1021. return 1;
  1022. }
  1023. static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
  1024. struct kvm_run *kvm_run) = {
  1025. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1026. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1027. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1028. /* for now: */
  1029. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1030. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1031. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1032. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1033. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1034. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1035. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1036. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1037. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1038. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1039. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1040. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1041. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1042. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  1043. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1044. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1045. [SVM_EXIT_INTR] = nop_on_interception,
  1046. [SVM_EXIT_NMI] = nop_on_interception,
  1047. [SVM_EXIT_SMI] = nop_on_interception,
  1048. [SVM_EXIT_INIT] = nop_on_interception,
  1049. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1050. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1051. [SVM_EXIT_CPUID] = cpuid_interception,
  1052. [SVM_EXIT_INVD] = emulate_on_interception,
  1053. [SVM_EXIT_HLT] = halt_interception,
  1054. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1055. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1056. [SVM_EXIT_IOIO] = io_interception,
  1057. [SVM_EXIT_MSR] = msr_interception,
  1058. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1059. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1060. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1061. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1062. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1063. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1064. [SVM_EXIT_STGI] = invalid_op_interception,
  1065. [SVM_EXIT_CLGI] = invalid_op_interception,
  1066. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1067. [SVM_EXIT_WBINVD] = emulate_on_interception,
  1068. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1069. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1070. };
  1071. static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1072. {
  1073. struct vcpu_svm *svm = to_svm(vcpu);
  1074. u32 exit_code = svm->vmcb->control.exit_code;
  1075. kvm_reput_irq(svm);
  1076. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1077. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1078. kvm_run->fail_entry.hardware_entry_failure_reason
  1079. = svm->vmcb->control.exit_code;
  1080. return 0;
  1081. }
  1082. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  1083. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1084. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1085. "exit_code 0x%x\n",
  1086. __FUNCTION__, svm->vmcb->control.exit_int_info,
  1087. exit_code);
  1088. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1089. || svm_exit_handlers[exit_code] == 0) {
  1090. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1091. kvm_run->hw.hardware_exit_reason = exit_code;
  1092. return 0;
  1093. }
  1094. return svm_exit_handlers[exit_code](svm, kvm_run);
  1095. }
  1096. static void reload_tss(struct kvm_vcpu *vcpu)
  1097. {
  1098. int cpu = raw_smp_processor_id();
  1099. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1100. svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
  1101. load_TR_desc();
  1102. }
  1103. static void pre_svm_run(struct vcpu_svm *svm)
  1104. {
  1105. int cpu = raw_smp_processor_id();
  1106. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1107. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1108. if (svm->vcpu.cpu != cpu ||
  1109. svm->asid_generation != svm_data->asid_generation)
  1110. new_asid(svm, svm_data);
  1111. }
  1112. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  1113. {
  1114. struct vmcb_control_area *control;
  1115. control = &svm->vmcb->control;
  1116. control->int_vector = irq;
  1117. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1118. control->int_ctl |= V_IRQ_MASK |
  1119. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1120. }
  1121. static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
  1122. {
  1123. struct vcpu_svm *svm = to_svm(vcpu);
  1124. svm_inject_irq(svm, irq);
  1125. }
  1126. static void svm_intr_assist(struct kvm_vcpu *vcpu)
  1127. {
  1128. struct vcpu_svm *svm = to_svm(vcpu);
  1129. struct vmcb *vmcb = svm->vmcb;
  1130. int intr_vector = -1;
  1131. kvm_inject_pending_timer_irqs(vcpu);
  1132. if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
  1133. ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
  1134. intr_vector = vmcb->control.exit_int_info &
  1135. SVM_EVTINJ_VEC_MASK;
  1136. vmcb->control.exit_int_info = 0;
  1137. svm_inject_irq(svm, intr_vector);
  1138. return;
  1139. }
  1140. if (vmcb->control.int_ctl & V_IRQ_MASK)
  1141. return;
  1142. if (!kvm_cpu_has_interrupt(vcpu))
  1143. return;
  1144. if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
  1145. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
  1146. (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
  1147. /* unable to deliver irq, set pending irq */
  1148. vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
  1149. svm_inject_irq(svm, 0x0);
  1150. return;
  1151. }
  1152. /* Okay, we can deliver the interrupt: grab it and update PIC state. */
  1153. intr_vector = kvm_cpu_get_interrupt(vcpu);
  1154. svm_inject_irq(svm, intr_vector);
  1155. kvm_timer_intr_post(vcpu, intr_vector);
  1156. }
  1157. static void kvm_reput_irq(struct vcpu_svm *svm)
  1158. {
  1159. struct vmcb_control_area *control = &svm->vmcb->control;
  1160. if ((control->int_ctl & V_IRQ_MASK)
  1161. && !irqchip_in_kernel(svm->vcpu.kvm)) {
  1162. control->int_ctl &= ~V_IRQ_MASK;
  1163. push_irq(&svm->vcpu, control->int_vector);
  1164. }
  1165. svm->vcpu.interrupt_window_open =
  1166. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1167. }
  1168. static void svm_do_inject_vector(struct vcpu_svm *svm)
  1169. {
  1170. struct kvm_vcpu *vcpu = &svm->vcpu;
  1171. int word_index = __ffs(vcpu->irq_summary);
  1172. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1173. int irq = word_index * BITS_PER_LONG + bit_index;
  1174. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1175. if (!vcpu->irq_pending[word_index])
  1176. clear_bit(word_index, &vcpu->irq_summary);
  1177. svm_inject_irq(svm, irq);
  1178. }
  1179. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1180. struct kvm_run *kvm_run)
  1181. {
  1182. struct vcpu_svm *svm = to_svm(vcpu);
  1183. struct vmcb_control_area *control = &svm->vmcb->control;
  1184. svm->vcpu.interrupt_window_open =
  1185. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1186. (svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1187. if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
  1188. /*
  1189. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1190. */
  1191. svm_do_inject_vector(svm);
  1192. /*
  1193. * Interrupts blocked. Wait for unblock.
  1194. */
  1195. if (!svm->vcpu.interrupt_window_open &&
  1196. (svm->vcpu.irq_summary || kvm_run->request_interrupt_window))
  1197. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1198. else
  1199. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1200. }
  1201. static void save_db_regs(unsigned long *db_regs)
  1202. {
  1203. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1204. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1205. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1206. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1207. }
  1208. static void load_db_regs(unsigned long *db_regs)
  1209. {
  1210. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1211. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1212. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1213. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1214. }
  1215. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1216. {
  1217. force_new_asid(vcpu);
  1218. }
  1219. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  1220. {
  1221. }
  1222. static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1223. {
  1224. struct vcpu_svm *svm = to_svm(vcpu);
  1225. u16 fs_selector;
  1226. u16 gs_selector;
  1227. u16 ldt_selector;
  1228. pre_svm_run(svm);
  1229. save_host_msrs(vcpu);
  1230. fs_selector = read_fs();
  1231. gs_selector = read_gs();
  1232. ldt_selector = read_ldt();
  1233. svm->host_cr2 = kvm_read_cr2();
  1234. svm->host_dr6 = read_dr6();
  1235. svm->host_dr7 = read_dr7();
  1236. svm->vmcb->save.cr2 = vcpu->cr2;
  1237. if (svm->vmcb->save.dr7 & 0xff) {
  1238. write_dr7(0);
  1239. save_db_regs(svm->host_db_regs);
  1240. load_db_regs(svm->db_regs);
  1241. }
  1242. clgi();
  1243. local_irq_enable();
  1244. asm volatile (
  1245. #ifdef CONFIG_X86_64
  1246. "push %%rbx; push %%rcx; push %%rdx;"
  1247. "push %%rsi; push %%rdi; push %%rbp;"
  1248. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1249. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1250. #else
  1251. "push %%ebx; push %%ecx; push %%edx;"
  1252. "push %%esi; push %%edi; push %%ebp;"
  1253. #endif
  1254. #ifdef CONFIG_X86_64
  1255. "mov %c[rbx](%[svm]), %%rbx \n\t"
  1256. "mov %c[rcx](%[svm]), %%rcx \n\t"
  1257. "mov %c[rdx](%[svm]), %%rdx \n\t"
  1258. "mov %c[rsi](%[svm]), %%rsi \n\t"
  1259. "mov %c[rdi](%[svm]), %%rdi \n\t"
  1260. "mov %c[rbp](%[svm]), %%rbp \n\t"
  1261. "mov %c[r8](%[svm]), %%r8 \n\t"
  1262. "mov %c[r9](%[svm]), %%r9 \n\t"
  1263. "mov %c[r10](%[svm]), %%r10 \n\t"
  1264. "mov %c[r11](%[svm]), %%r11 \n\t"
  1265. "mov %c[r12](%[svm]), %%r12 \n\t"
  1266. "mov %c[r13](%[svm]), %%r13 \n\t"
  1267. "mov %c[r14](%[svm]), %%r14 \n\t"
  1268. "mov %c[r15](%[svm]), %%r15 \n\t"
  1269. #else
  1270. "mov %c[rbx](%[svm]), %%ebx \n\t"
  1271. "mov %c[rcx](%[svm]), %%ecx \n\t"
  1272. "mov %c[rdx](%[svm]), %%edx \n\t"
  1273. "mov %c[rsi](%[svm]), %%esi \n\t"
  1274. "mov %c[rdi](%[svm]), %%edi \n\t"
  1275. "mov %c[rbp](%[svm]), %%ebp \n\t"
  1276. #endif
  1277. #ifdef CONFIG_X86_64
  1278. /* Enter guest mode */
  1279. "push %%rax \n\t"
  1280. "mov %c[vmcb](%[svm]), %%rax \n\t"
  1281. SVM_VMLOAD "\n\t"
  1282. SVM_VMRUN "\n\t"
  1283. SVM_VMSAVE "\n\t"
  1284. "pop %%rax \n\t"
  1285. #else
  1286. /* Enter guest mode */
  1287. "push %%eax \n\t"
  1288. "mov %c[vmcb](%[svm]), %%eax \n\t"
  1289. SVM_VMLOAD "\n\t"
  1290. SVM_VMRUN "\n\t"
  1291. SVM_VMSAVE "\n\t"
  1292. "pop %%eax \n\t"
  1293. #endif
  1294. /* Save guest registers, load host registers */
  1295. #ifdef CONFIG_X86_64
  1296. "mov %%rbx, %c[rbx](%[svm]) \n\t"
  1297. "mov %%rcx, %c[rcx](%[svm]) \n\t"
  1298. "mov %%rdx, %c[rdx](%[svm]) \n\t"
  1299. "mov %%rsi, %c[rsi](%[svm]) \n\t"
  1300. "mov %%rdi, %c[rdi](%[svm]) \n\t"
  1301. "mov %%rbp, %c[rbp](%[svm]) \n\t"
  1302. "mov %%r8, %c[r8](%[svm]) \n\t"
  1303. "mov %%r9, %c[r9](%[svm]) \n\t"
  1304. "mov %%r10, %c[r10](%[svm]) \n\t"
  1305. "mov %%r11, %c[r11](%[svm]) \n\t"
  1306. "mov %%r12, %c[r12](%[svm]) \n\t"
  1307. "mov %%r13, %c[r13](%[svm]) \n\t"
  1308. "mov %%r14, %c[r14](%[svm]) \n\t"
  1309. "mov %%r15, %c[r15](%[svm]) \n\t"
  1310. "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1311. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1312. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1313. "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
  1314. #else
  1315. "mov %%ebx, %c[rbx](%[svm]) \n\t"
  1316. "mov %%ecx, %c[rcx](%[svm]) \n\t"
  1317. "mov %%edx, %c[rdx](%[svm]) \n\t"
  1318. "mov %%esi, %c[rsi](%[svm]) \n\t"
  1319. "mov %%edi, %c[rdi](%[svm]) \n\t"
  1320. "mov %%ebp, %c[rbp](%[svm]) \n\t"
  1321. "pop %%ebp; pop %%edi; pop %%esi;"
  1322. "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
  1323. #endif
  1324. :
  1325. : [svm]"a"(svm),
  1326. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1327. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBX])),
  1328. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RCX])),
  1329. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDX])),
  1330. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RSI])),
  1331. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDI])),
  1332. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBP]))
  1333. #ifdef CONFIG_X86_64
  1334. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R8])),
  1335. [r9]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R9])),
  1336. [r10]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R10])),
  1337. [r11]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R11])),
  1338. [r12]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R12])),
  1339. [r13]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R13])),
  1340. [r14]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R14])),
  1341. [r15]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R15]))
  1342. #endif
  1343. : "cc", "memory");
  1344. if ((svm->vmcb->save.dr7 & 0xff))
  1345. load_db_regs(svm->host_db_regs);
  1346. vcpu->cr2 = svm->vmcb->save.cr2;
  1347. write_dr6(svm->host_dr6);
  1348. write_dr7(svm->host_dr7);
  1349. kvm_write_cr2(svm->host_cr2);
  1350. load_fs(fs_selector);
  1351. load_gs(gs_selector);
  1352. load_ldt(ldt_selector);
  1353. load_host_msrs(vcpu);
  1354. reload_tss(vcpu);
  1355. local_irq_disable();
  1356. stgi();
  1357. svm->next_rip = 0;
  1358. }
  1359. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1360. {
  1361. struct vcpu_svm *svm = to_svm(vcpu);
  1362. svm->vmcb->save.cr3 = root;
  1363. force_new_asid(vcpu);
  1364. if (vcpu->fpu_active) {
  1365. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  1366. svm->vmcb->save.cr0 |= X86_CR0_TS;
  1367. vcpu->fpu_active = 0;
  1368. }
  1369. }
  1370. static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
  1371. unsigned long addr,
  1372. uint32_t err_code)
  1373. {
  1374. struct vcpu_svm *svm = to_svm(vcpu);
  1375. uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
  1376. ++vcpu->stat.pf_guest;
  1377. if (is_page_fault(exit_int_info)) {
  1378. svm->vmcb->control.event_inj_err = 0;
  1379. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1380. SVM_EVTINJ_VALID_ERR |
  1381. SVM_EVTINJ_TYPE_EXEPT |
  1382. DF_VECTOR;
  1383. return;
  1384. }
  1385. vcpu->cr2 = addr;
  1386. svm->vmcb->save.cr2 = addr;
  1387. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1388. SVM_EVTINJ_VALID_ERR |
  1389. SVM_EVTINJ_TYPE_EXEPT |
  1390. PF_VECTOR;
  1391. svm->vmcb->control.event_inj_err = err_code;
  1392. }
  1393. static int is_disabled(void)
  1394. {
  1395. u64 vm_cr;
  1396. rdmsrl(MSR_VM_CR, vm_cr);
  1397. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  1398. return 1;
  1399. return 0;
  1400. }
  1401. static void
  1402. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1403. {
  1404. /*
  1405. * Patch in the VMMCALL instruction:
  1406. */
  1407. hypercall[0] = 0x0f;
  1408. hypercall[1] = 0x01;
  1409. hypercall[2] = 0xd9;
  1410. }
  1411. static void svm_check_processor_compat(void *rtn)
  1412. {
  1413. *(int *)rtn = 0;
  1414. }
  1415. static struct kvm_x86_ops svm_x86_ops = {
  1416. .cpu_has_kvm_support = has_svm,
  1417. .disabled_by_bios = is_disabled,
  1418. .hardware_setup = svm_hardware_setup,
  1419. .hardware_unsetup = svm_hardware_unsetup,
  1420. .check_processor_compatibility = svm_check_processor_compat,
  1421. .hardware_enable = svm_hardware_enable,
  1422. .hardware_disable = svm_hardware_disable,
  1423. .vcpu_create = svm_create_vcpu,
  1424. .vcpu_free = svm_free_vcpu,
  1425. .vcpu_reset = svm_vcpu_reset,
  1426. .prepare_guest_switch = svm_prepare_guest_switch,
  1427. .vcpu_load = svm_vcpu_load,
  1428. .vcpu_put = svm_vcpu_put,
  1429. .vcpu_decache = svm_vcpu_decache,
  1430. .set_guest_debug = svm_guest_debug,
  1431. .get_msr = svm_get_msr,
  1432. .set_msr = svm_set_msr,
  1433. .get_segment_base = svm_get_segment_base,
  1434. .get_segment = svm_get_segment,
  1435. .set_segment = svm_set_segment,
  1436. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  1437. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  1438. .set_cr0 = svm_set_cr0,
  1439. .set_cr3 = svm_set_cr3,
  1440. .set_cr4 = svm_set_cr4,
  1441. .set_efer = svm_set_efer,
  1442. .get_idt = svm_get_idt,
  1443. .set_idt = svm_set_idt,
  1444. .get_gdt = svm_get_gdt,
  1445. .set_gdt = svm_set_gdt,
  1446. .get_dr = svm_get_dr,
  1447. .set_dr = svm_set_dr,
  1448. .cache_regs = svm_cache_regs,
  1449. .decache_regs = svm_decache_regs,
  1450. .get_rflags = svm_get_rflags,
  1451. .set_rflags = svm_set_rflags,
  1452. .tlb_flush = svm_flush_tlb,
  1453. .inject_page_fault = svm_inject_page_fault,
  1454. .inject_gp = svm_inject_gp,
  1455. .run = svm_vcpu_run,
  1456. .handle_exit = handle_exit,
  1457. .skip_emulated_instruction = skip_emulated_instruction,
  1458. .patch_hypercall = svm_patch_hypercall,
  1459. .get_irq = svm_get_irq,
  1460. .set_irq = svm_set_irq,
  1461. .inject_pending_irq = svm_intr_assist,
  1462. .inject_pending_vectors = do_interrupt_requests,
  1463. };
  1464. static int __init svm_init(void)
  1465. {
  1466. return kvm_init_x86(&svm_x86_ops, sizeof(struct vcpu_svm),
  1467. THIS_MODULE);
  1468. }
  1469. static void __exit svm_exit(void)
  1470. {
  1471. kvm_exit_x86();
  1472. }
  1473. module_init(svm_init)
  1474. module_exit(svm_exit)