memory.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else /* SPLIT_RSS_COUNTING */
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif /* SPLIT_RSS_COUNTING */
  167. #ifdef HAVE_GENERIC_MMU_GATHER
  168. static int tlb_next_batch(struct mmu_gather *tlb)
  169. {
  170. struct mmu_gather_batch *batch;
  171. batch = tlb->active;
  172. if (batch->next) {
  173. tlb->active = batch->next;
  174. return 1;
  175. }
  176. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  177. if (!batch)
  178. return 0;
  179. batch->next = NULL;
  180. batch->nr = 0;
  181. batch->max = MAX_GATHER_BATCH;
  182. tlb->active->next = batch;
  183. tlb->active = batch;
  184. return 1;
  185. }
  186. /* tlb_gather_mmu
  187. * Called to initialize an (on-stack) mmu_gather structure for page-table
  188. * tear-down from @mm. The @fullmm argument is used when @mm is without
  189. * users and we're going to destroy the full address space (exit/execve).
  190. */
  191. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  192. {
  193. tlb->mm = mm;
  194. tlb->fullmm = fullmm;
  195. tlb->need_flush = 0;
  196. tlb->fast_mode = (num_possible_cpus() == 1);
  197. tlb->local.next = NULL;
  198. tlb->local.nr = 0;
  199. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  200. tlb->active = &tlb->local;
  201. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  202. tlb->batch = NULL;
  203. #endif
  204. }
  205. void tlb_flush_mmu(struct mmu_gather *tlb)
  206. {
  207. struct mmu_gather_batch *batch;
  208. if (!tlb->need_flush)
  209. return;
  210. tlb->need_flush = 0;
  211. tlb_flush(tlb);
  212. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  213. tlb_table_flush(tlb);
  214. #endif
  215. if (tlb_fast_mode(tlb))
  216. return;
  217. for (batch = &tlb->local; batch; batch = batch->next) {
  218. free_pages_and_swap_cache(batch->pages, batch->nr);
  219. batch->nr = 0;
  220. }
  221. tlb->active = &tlb->local;
  222. }
  223. /* tlb_finish_mmu
  224. * Called at the end of the shootdown operation to free up any resources
  225. * that were required.
  226. */
  227. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  228. {
  229. struct mmu_gather_batch *batch, *next;
  230. tlb_flush_mmu(tlb);
  231. /* keep the page table cache within bounds */
  232. check_pgt_cache();
  233. for (batch = tlb->local.next; batch; batch = next) {
  234. next = batch->next;
  235. free_pages((unsigned long)batch, 0);
  236. }
  237. tlb->local.next = NULL;
  238. }
  239. /* __tlb_remove_page
  240. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  241. * handling the additional races in SMP caused by other CPUs caching valid
  242. * mappings in their TLBs. Returns the number of free page slots left.
  243. * When out of page slots we must call tlb_flush_mmu().
  244. */
  245. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  246. {
  247. struct mmu_gather_batch *batch;
  248. tlb->need_flush = 1;
  249. if (tlb_fast_mode(tlb)) {
  250. free_page_and_swap_cache(page);
  251. return 1; /* avoid calling tlb_flush_mmu() */
  252. }
  253. batch = tlb->active;
  254. batch->pages[batch->nr++] = page;
  255. if (batch->nr == batch->max) {
  256. if (!tlb_next_batch(tlb))
  257. return 0;
  258. }
  259. VM_BUG_ON(batch->nr > batch->max);
  260. return batch->max - batch->nr;
  261. }
  262. #endif /* HAVE_GENERIC_MMU_GATHER */
  263. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  264. /*
  265. * See the comment near struct mmu_table_batch.
  266. */
  267. static void tlb_remove_table_smp_sync(void *arg)
  268. {
  269. /* Simply deliver the interrupt */
  270. }
  271. static void tlb_remove_table_one(void *table)
  272. {
  273. /*
  274. * This isn't an RCU grace period and hence the page-tables cannot be
  275. * assumed to be actually RCU-freed.
  276. *
  277. * It is however sufficient for software page-table walkers that rely on
  278. * IRQ disabling. See the comment near struct mmu_table_batch.
  279. */
  280. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  281. __tlb_remove_table(table);
  282. }
  283. static void tlb_remove_table_rcu(struct rcu_head *head)
  284. {
  285. struct mmu_table_batch *batch;
  286. int i;
  287. batch = container_of(head, struct mmu_table_batch, rcu);
  288. for (i = 0; i < batch->nr; i++)
  289. __tlb_remove_table(batch->tables[i]);
  290. free_page((unsigned long)batch);
  291. }
  292. void tlb_table_flush(struct mmu_gather *tlb)
  293. {
  294. struct mmu_table_batch **batch = &tlb->batch;
  295. if (*batch) {
  296. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  297. *batch = NULL;
  298. }
  299. }
  300. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  301. {
  302. struct mmu_table_batch **batch = &tlb->batch;
  303. tlb->need_flush = 1;
  304. /*
  305. * When there's less then two users of this mm there cannot be a
  306. * concurrent page-table walk.
  307. */
  308. if (atomic_read(&tlb->mm->mm_users) < 2) {
  309. __tlb_remove_table(table);
  310. return;
  311. }
  312. if (*batch == NULL) {
  313. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  314. if (*batch == NULL) {
  315. tlb_remove_table_one(table);
  316. return;
  317. }
  318. (*batch)->nr = 0;
  319. }
  320. (*batch)->tables[(*batch)->nr++] = table;
  321. if ((*batch)->nr == MAX_TABLE_BATCH)
  322. tlb_table_flush(tlb);
  323. }
  324. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  325. /*
  326. * If a p?d_bad entry is found while walking page tables, report
  327. * the error, before resetting entry to p?d_none. Usually (but
  328. * very seldom) called out from the p?d_none_or_clear_bad macros.
  329. */
  330. void pgd_clear_bad(pgd_t *pgd)
  331. {
  332. pgd_ERROR(*pgd);
  333. pgd_clear(pgd);
  334. }
  335. void pud_clear_bad(pud_t *pud)
  336. {
  337. pud_ERROR(*pud);
  338. pud_clear(pud);
  339. }
  340. void pmd_clear_bad(pmd_t *pmd)
  341. {
  342. pmd_ERROR(*pmd);
  343. pmd_clear(pmd);
  344. }
  345. /*
  346. * Note: this doesn't free the actual pages themselves. That
  347. * has been handled earlier when unmapping all the memory regions.
  348. */
  349. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  350. unsigned long addr)
  351. {
  352. pgtable_t token = pmd_pgtable(*pmd);
  353. pmd_clear(pmd);
  354. pte_free_tlb(tlb, token, addr);
  355. tlb->mm->nr_ptes--;
  356. }
  357. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  358. unsigned long addr, unsigned long end,
  359. unsigned long floor, unsigned long ceiling)
  360. {
  361. pmd_t *pmd;
  362. unsigned long next;
  363. unsigned long start;
  364. start = addr;
  365. pmd = pmd_offset(pud, addr);
  366. do {
  367. next = pmd_addr_end(addr, end);
  368. if (pmd_none_or_clear_bad(pmd))
  369. continue;
  370. free_pte_range(tlb, pmd, addr);
  371. } while (pmd++, addr = next, addr != end);
  372. start &= PUD_MASK;
  373. if (start < floor)
  374. return;
  375. if (ceiling) {
  376. ceiling &= PUD_MASK;
  377. if (!ceiling)
  378. return;
  379. }
  380. if (end - 1 > ceiling - 1)
  381. return;
  382. pmd = pmd_offset(pud, start);
  383. pud_clear(pud);
  384. pmd_free_tlb(tlb, pmd, start);
  385. }
  386. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  387. unsigned long addr, unsigned long end,
  388. unsigned long floor, unsigned long ceiling)
  389. {
  390. pud_t *pud;
  391. unsigned long next;
  392. unsigned long start;
  393. start = addr;
  394. pud = pud_offset(pgd, addr);
  395. do {
  396. next = pud_addr_end(addr, end);
  397. if (pud_none_or_clear_bad(pud))
  398. continue;
  399. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  400. } while (pud++, addr = next, addr != end);
  401. start &= PGDIR_MASK;
  402. if (start < floor)
  403. return;
  404. if (ceiling) {
  405. ceiling &= PGDIR_MASK;
  406. if (!ceiling)
  407. return;
  408. }
  409. if (end - 1 > ceiling - 1)
  410. return;
  411. pud = pud_offset(pgd, start);
  412. pgd_clear(pgd);
  413. pud_free_tlb(tlb, pud, start);
  414. }
  415. /*
  416. * This function frees user-level page tables of a process.
  417. *
  418. * Must be called with pagetable lock held.
  419. */
  420. void free_pgd_range(struct mmu_gather *tlb,
  421. unsigned long addr, unsigned long end,
  422. unsigned long floor, unsigned long ceiling)
  423. {
  424. pgd_t *pgd;
  425. unsigned long next;
  426. /*
  427. * The next few lines have given us lots of grief...
  428. *
  429. * Why are we testing PMD* at this top level? Because often
  430. * there will be no work to do at all, and we'd prefer not to
  431. * go all the way down to the bottom just to discover that.
  432. *
  433. * Why all these "- 1"s? Because 0 represents both the bottom
  434. * of the address space and the top of it (using -1 for the
  435. * top wouldn't help much: the masks would do the wrong thing).
  436. * The rule is that addr 0 and floor 0 refer to the bottom of
  437. * the address space, but end 0 and ceiling 0 refer to the top
  438. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  439. * that end 0 case should be mythical).
  440. *
  441. * Wherever addr is brought up or ceiling brought down, we must
  442. * be careful to reject "the opposite 0" before it confuses the
  443. * subsequent tests. But what about where end is brought down
  444. * by PMD_SIZE below? no, end can't go down to 0 there.
  445. *
  446. * Whereas we round start (addr) and ceiling down, by different
  447. * masks at different levels, in order to test whether a table
  448. * now has no other vmas using it, so can be freed, we don't
  449. * bother to round floor or end up - the tests don't need that.
  450. */
  451. addr &= PMD_MASK;
  452. if (addr < floor) {
  453. addr += PMD_SIZE;
  454. if (!addr)
  455. return;
  456. }
  457. if (ceiling) {
  458. ceiling &= PMD_MASK;
  459. if (!ceiling)
  460. return;
  461. }
  462. if (end - 1 > ceiling - 1)
  463. end -= PMD_SIZE;
  464. if (addr > end - 1)
  465. return;
  466. pgd = pgd_offset(tlb->mm, addr);
  467. do {
  468. next = pgd_addr_end(addr, end);
  469. if (pgd_none_or_clear_bad(pgd))
  470. continue;
  471. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  472. } while (pgd++, addr = next, addr != end);
  473. }
  474. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  475. unsigned long floor, unsigned long ceiling)
  476. {
  477. while (vma) {
  478. struct vm_area_struct *next = vma->vm_next;
  479. unsigned long addr = vma->vm_start;
  480. /*
  481. * Hide vma from rmap and truncate_pagecache before freeing
  482. * pgtables
  483. */
  484. unlink_anon_vmas(vma);
  485. unlink_file_vma(vma);
  486. if (is_vm_hugetlb_page(vma)) {
  487. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  488. floor, next? next->vm_start: ceiling);
  489. } else {
  490. /*
  491. * Optimization: gather nearby vmas into one call down
  492. */
  493. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  494. && !is_vm_hugetlb_page(next)) {
  495. vma = next;
  496. next = vma->vm_next;
  497. unlink_anon_vmas(vma);
  498. unlink_file_vma(vma);
  499. }
  500. free_pgd_range(tlb, addr, vma->vm_end,
  501. floor, next? next->vm_start: ceiling);
  502. }
  503. vma = next;
  504. }
  505. }
  506. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  507. pmd_t *pmd, unsigned long address)
  508. {
  509. pgtable_t new = pte_alloc_one(mm, address);
  510. int wait_split_huge_page;
  511. if (!new)
  512. return -ENOMEM;
  513. /*
  514. * Ensure all pte setup (eg. pte page lock and page clearing) are
  515. * visible before the pte is made visible to other CPUs by being
  516. * put into page tables.
  517. *
  518. * The other side of the story is the pointer chasing in the page
  519. * table walking code (when walking the page table without locking;
  520. * ie. most of the time). Fortunately, these data accesses consist
  521. * of a chain of data-dependent loads, meaning most CPUs (alpha
  522. * being the notable exception) will already guarantee loads are
  523. * seen in-order. See the alpha page table accessors for the
  524. * smp_read_barrier_depends() barriers in page table walking code.
  525. */
  526. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  527. spin_lock(&mm->page_table_lock);
  528. wait_split_huge_page = 0;
  529. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  530. mm->nr_ptes++;
  531. pmd_populate(mm, pmd, new);
  532. new = NULL;
  533. } else if (unlikely(pmd_trans_splitting(*pmd)))
  534. wait_split_huge_page = 1;
  535. spin_unlock(&mm->page_table_lock);
  536. if (new)
  537. pte_free(mm, new);
  538. if (wait_split_huge_page)
  539. wait_split_huge_page(vma->anon_vma, pmd);
  540. return 0;
  541. }
  542. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  543. {
  544. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  545. if (!new)
  546. return -ENOMEM;
  547. smp_wmb(); /* See comment in __pte_alloc */
  548. spin_lock(&init_mm.page_table_lock);
  549. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  550. pmd_populate_kernel(&init_mm, pmd, new);
  551. new = NULL;
  552. } else
  553. VM_BUG_ON(pmd_trans_splitting(*pmd));
  554. spin_unlock(&init_mm.page_table_lock);
  555. if (new)
  556. pte_free_kernel(&init_mm, new);
  557. return 0;
  558. }
  559. static inline void init_rss_vec(int *rss)
  560. {
  561. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  562. }
  563. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  564. {
  565. int i;
  566. if (current->mm == mm)
  567. sync_mm_rss(current, mm);
  568. for (i = 0; i < NR_MM_COUNTERS; i++)
  569. if (rss[i])
  570. add_mm_counter(mm, i, rss[i]);
  571. }
  572. /*
  573. * This function is called to print an error when a bad pte
  574. * is found. For example, we might have a PFN-mapped pte in
  575. * a region that doesn't allow it.
  576. *
  577. * The calling function must still handle the error.
  578. */
  579. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  580. pte_t pte, struct page *page)
  581. {
  582. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  583. pud_t *pud = pud_offset(pgd, addr);
  584. pmd_t *pmd = pmd_offset(pud, addr);
  585. struct address_space *mapping;
  586. pgoff_t index;
  587. static unsigned long resume;
  588. static unsigned long nr_shown;
  589. static unsigned long nr_unshown;
  590. /*
  591. * Allow a burst of 60 reports, then keep quiet for that minute;
  592. * or allow a steady drip of one report per second.
  593. */
  594. if (nr_shown == 60) {
  595. if (time_before(jiffies, resume)) {
  596. nr_unshown++;
  597. return;
  598. }
  599. if (nr_unshown) {
  600. printk(KERN_ALERT
  601. "BUG: Bad page map: %lu messages suppressed\n",
  602. nr_unshown);
  603. nr_unshown = 0;
  604. }
  605. nr_shown = 0;
  606. }
  607. if (nr_shown++ == 0)
  608. resume = jiffies + 60 * HZ;
  609. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  610. index = linear_page_index(vma, addr);
  611. printk(KERN_ALERT
  612. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  613. current->comm,
  614. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  615. if (page)
  616. dump_page(page);
  617. printk(KERN_ALERT
  618. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  619. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  620. /*
  621. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  622. */
  623. if (vma->vm_ops)
  624. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  625. (unsigned long)vma->vm_ops->fault);
  626. if (vma->vm_file && vma->vm_file->f_op)
  627. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  628. (unsigned long)vma->vm_file->f_op->mmap);
  629. dump_stack();
  630. add_taint(TAINT_BAD_PAGE);
  631. }
  632. static inline int is_cow_mapping(vm_flags_t flags)
  633. {
  634. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  635. }
  636. #ifndef is_zero_pfn
  637. static inline int is_zero_pfn(unsigned long pfn)
  638. {
  639. return pfn == zero_pfn;
  640. }
  641. #endif
  642. #ifndef my_zero_pfn
  643. static inline unsigned long my_zero_pfn(unsigned long addr)
  644. {
  645. return zero_pfn;
  646. }
  647. #endif
  648. /*
  649. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  650. *
  651. * "Special" mappings do not wish to be associated with a "struct page" (either
  652. * it doesn't exist, or it exists but they don't want to touch it). In this
  653. * case, NULL is returned here. "Normal" mappings do have a struct page.
  654. *
  655. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  656. * pte bit, in which case this function is trivial. Secondly, an architecture
  657. * may not have a spare pte bit, which requires a more complicated scheme,
  658. * described below.
  659. *
  660. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  661. * special mapping (even if there are underlying and valid "struct pages").
  662. * COWed pages of a VM_PFNMAP are always normal.
  663. *
  664. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  665. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  666. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  667. * mapping will always honor the rule
  668. *
  669. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  670. *
  671. * And for normal mappings this is false.
  672. *
  673. * This restricts such mappings to be a linear translation from virtual address
  674. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  675. * as the vma is not a COW mapping; in that case, we know that all ptes are
  676. * special (because none can have been COWed).
  677. *
  678. *
  679. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  680. *
  681. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  682. * page" backing, however the difference is that _all_ pages with a struct
  683. * page (that is, those where pfn_valid is true) are refcounted and considered
  684. * normal pages by the VM. The disadvantage is that pages are refcounted
  685. * (which can be slower and simply not an option for some PFNMAP users). The
  686. * advantage is that we don't have to follow the strict linearity rule of
  687. * PFNMAP mappings in order to support COWable mappings.
  688. *
  689. */
  690. #ifdef __HAVE_ARCH_PTE_SPECIAL
  691. # define HAVE_PTE_SPECIAL 1
  692. #else
  693. # define HAVE_PTE_SPECIAL 0
  694. #endif
  695. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  696. pte_t pte)
  697. {
  698. unsigned long pfn = pte_pfn(pte);
  699. if (HAVE_PTE_SPECIAL) {
  700. if (likely(!pte_special(pte)))
  701. goto check_pfn;
  702. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  703. return NULL;
  704. if (!is_zero_pfn(pfn))
  705. print_bad_pte(vma, addr, pte, NULL);
  706. return NULL;
  707. }
  708. /* !HAVE_PTE_SPECIAL case follows: */
  709. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  710. if (vma->vm_flags & VM_MIXEDMAP) {
  711. if (!pfn_valid(pfn))
  712. return NULL;
  713. goto out;
  714. } else {
  715. unsigned long off;
  716. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  717. if (pfn == vma->vm_pgoff + off)
  718. return NULL;
  719. if (!is_cow_mapping(vma->vm_flags))
  720. return NULL;
  721. }
  722. }
  723. if (is_zero_pfn(pfn))
  724. return NULL;
  725. check_pfn:
  726. if (unlikely(pfn > highest_memmap_pfn)) {
  727. print_bad_pte(vma, addr, pte, NULL);
  728. return NULL;
  729. }
  730. /*
  731. * NOTE! We still have PageReserved() pages in the page tables.
  732. * eg. VDSO mappings can cause them to exist.
  733. */
  734. out:
  735. return pfn_to_page(pfn);
  736. }
  737. /*
  738. * copy one vm_area from one task to the other. Assumes the page tables
  739. * already present in the new task to be cleared in the whole range
  740. * covered by this vma.
  741. */
  742. static inline unsigned long
  743. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  744. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  745. unsigned long addr, int *rss)
  746. {
  747. unsigned long vm_flags = vma->vm_flags;
  748. pte_t pte = *src_pte;
  749. struct page *page;
  750. /* pte contains position in swap or file, so copy. */
  751. if (unlikely(!pte_present(pte))) {
  752. if (!pte_file(pte)) {
  753. swp_entry_t entry = pte_to_swp_entry(pte);
  754. if (swap_duplicate(entry) < 0)
  755. return entry.val;
  756. /* make sure dst_mm is on swapoff's mmlist. */
  757. if (unlikely(list_empty(&dst_mm->mmlist))) {
  758. spin_lock(&mmlist_lock);
  759. if (list_empty(&dst_mm->mmlist))
  760. list_add(&dst_mm->mmlist,
  761. &src_mm->mmlist);
  762. spin_unlock(&mmlist_lock);
  763. }
  764. if (likely(!non_swap_entry(entry)))
  765. rss[MM_SWAPENTS]++;
  766. else if (is_write_migration_entry(entry) &&
  767. is_cow_mapping(vm_flags)) {
  768. /*
  769. * COW mappings require pages in both parent
  770. * and child to be set to read.
  771. */
  772. make_migration_entry_read(&entry);
  773. pte = swp_entry_to_pte(entry);
  774. set_pte_at(src_mm, addr, src_pte, pte);
  775. }
  776. }
  777. goto out_set_pte;
  778. }
  779. /*
  780. * If it's a COW mapping, write protect it both
  781. * in the parent and the child
  782. */
  783. if (is_cow_mapping(vm_flags)) {
  784. ptep_set_wrprotect(src_mm, addr, src_pte);
  785. pte = pte_wrprotect(pte);
  786. }
  787. /*
  788. * If it's a shared mapping, mark it clean in
  789. * the child
  790. */
  791. if (vm_flags & VM_SHARED)
  792. pte = pte_mkclean(pte);
  793. pte = pte_mkold(pte);
  794. page = vm_normal_page(vma, addr, pte);
  795. if (page) {
  796. get_page(page);
  797. page_dup_rmap(page);
  798. if (PageAnon(page))
  799. rss[MM_ANONPAGES]++;
  800. else
  801. rss[MM_FILEPAGES]++;
  802. }
  803. out_set_pte:
  804. set_pte_at(dst_mm, addr, dst_pte, pte);
  805. return 0;
  806. }
  807. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  808. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  809. unsigned long addr, unsigned long end)
  810. {
  811. pte_t *orig_src_pte, *orig_dst_pte;
  812. pte_t *src_pte, *dst_pte;
  813. spinlock_t *src_ptl, *dst_ptl;
  814. int progress = 0;
  815. int rss[NR_MM_COUNTERS];
  816. swp_entry_t entry = (swp_entry_t){0};
  817. again:
  818. init_rss_vec(rss);
  819. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  820. if (!dst_pte)
  821. return -ENOMEM;
  822. src_pte = pte_offset_map(src_pmd, addr);
  823. src_ptl = pte_lockptr(src_mm, src_pmd);
  824. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  825. orig_src_pte = src_pte;
  826. orig_dst_pte = dst_pte;
  827. arch_enter_lazy_mmu_mode();
  828. do {
  829. /*
  830. * We are holding two locks at this point - either of them
  831. * could generate latencies in another task on another CPU.
  832. */
  833. if (progress >= 32) {
  834. progress = 0;
  835. if (need_resched() ||
  836. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  837. break;
  838. }
  839. if (pte_none(*src_pte)) {
  840. progress++;
  841. continue;
  842. }
  843. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  844. vma, addr, rss);
  845. if (entry.val)
  846. break;
  847. progress += 8;
  848. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  849. arch_leave_lazy_mmu_mode();
  850. spin_unlock(src_ptl);
  851. pte_unmap(orig_src_pte);
  852. add_mm_rss_vec(dst_mm, rss);
  853. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  854. cond_resched();
  855. if (entry.val) {
  856. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  857. return -ENOMEM;
  858. progress = 0;
  859. }
  860. if (addr != end)
  861. goto again;
  862. return 0;
  863. }
  864. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  865. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  866. unsigned long addr, unsigned long end)
  867. {
  868. pmd_t *src_pmd, *dst_pmd;
  869. unsigned long next;
  870. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  871. if (!dst_pmd)
  872. return -ENOMEM;
  873. src_pmd = pmd_offset(src_pud, addr);
  874. do {
  875. next = pmd_addr_end(addr, end);
  876. if (pmd_trans_huge(*src_pmd)) {
  877. int err;
  878. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  879. err = copy_huge_pmd(dst_mm, src_mm,
  880. dst_pmd, src_pmd, addr, vma);
  881. if (err == -ENOMEM)
  882. return -ENOMEM;
  883. if (!err)
  884. continue;
  885. /* fall through */
  886. }
  887. if (pmd_none_or_clear_bad(src_pmd))
  888. continue;
  889. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  890. vma, addr, next))
  891. return -ENOMEM;
  892. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  893. return 0;
  894. }
  895. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  896. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  897. unsigned long addr, unsigned long end)
  898. {
  899. pud_t *src_pud, *dst_pud;
  900. unsigned long next;
  901. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  902. if (!dst_pud)
  903. return -ENOMEM;
  904. src_pud = pud_offset(src_pgd, addr);
  905. do {
  906. next = pud_addr_end(addr, end);
  907. if (pud_none_or_clear_bad(src_pud))
  908. continue;
  909. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  910. vma, addr, next))
  911. return -ENOMEM;
  912. } while (dst_pud++, src_pud++, addr = next, addr != end);
  913. return 0;
  914. }
  915. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  916. struct vm_area_struct *vma)
  917. {
  918. pgd_t *src_pgd, *dst_pgd;
  919. unsigned long next;
  920. unsigned long addr = vma->vm_start;
  921. unsigned long end = vma->vm_end;
  922. int ret;
  923. /*
  924. * Don't copy ptes where a page fault will fill them correctly.
  925. * Fork becomes much lighter when there are big shared or private
  926. * readonly mappings. The tradeoff is that copy_page_range is more
  927. * efficient than faulting.
  928. */
  929. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  930. if (!vma->anon_vma)
  931. return 0;
  932. }
  933. if (is_vm_hugetlb_page(vma))
  934. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  935. if (unlikely(is_pfn_mapping(vma))) {
  936. /*
  937. * We do not free on error cases below as remove_vma
  938. * gets called on error from higher level routine
  939. */
  940. ret = track_pfn_vma_copy(vma);
  941. if (ret)
  942. return ret;
  943. }
  944. /*
  945. * We need to invalidate the secondary MMU mappings only when
  946. * there could be a permission downgrade on the ptes of the
  947. * parent mm. And a permission downgrade will only happen if
  948. * is_cow_mapping() returns true.
  949. */
  950. if (is_cow_mapping(vma->vm_flags))
  951. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  952. ret = 0;
  953. dst_pgd = pgd_offset(dst_mm, addr);
  954. src_pgd = pgd_offset(src_mm, addr);
  955. do {
  956. next = pgd_addr_end(addr, end);
  957. if (pgd_none_or_clear_bad(src_pgd))
  958. continue;
  959. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  960. vma, addr, next))) {
  961. ret = -ENOMEM;
  962. break;
  963. }
  964. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  965. if (is_cow_mapping(vma->vm_flags))
  966. mmu_notifier_invalidate_range_end(src_mm,
  967. vma->vm_start, end);
  968. return ret;
  969. }
  970. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  971. struct vm_area_struct *vma, pmd_t *pmd,
  972. unsigned long addr, unsigned long end,
  973. struct zap_details *details)
  974. {
  975. struct mm_struct *mm = tlb->mm;
  976. int force_flush = 0;
  977. int rss[NR_MM_COUNTERS];
  978. spinlock_t *ptl;
  979. pte_t *pte;
  980. again:
  981. init_rss_vec(rss);
  982. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  983. arch_enter_lazy_mmu_mode();
  984. do {
  985. pte_t ptent = *pte;
  986. if (pte_none(ptent)) {
  987. continue;
  988. }
  989. if (pte_present(ptent)) {
  990. struct page *page;
  991. page = vm_normal_page(vma, addr, ptent);
  992. if (unlikely(details) && page) {
  993. /*
  994. * unmap_shared_mapping_pages() wants to
  995. * invalidate cache without truncating:
  996. * unmap shared but keep private pages.
  997. */
  998. if (details->check_mapping &&
  999. details->check_mapping != page->mapping)
  1000. continue;
  1001. /*
  1002. * Each page->index must be checked when
  1003. * invalidating or truncating nonlinear.
  1004. */
  1005. if (details->nonlinear_vma &&
  1006. (page->index < details->first_index ||
  1007. page->index > details->last_index))
  1008. continue;
  1009. }
  1010. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1011. tlb->fullmm);
  1012. tlb_remove_tlb_entry(tlb, pte, addr);
  1013. if (unlikely(!page))
  1014. continue;
  1015. if (unlikely(details) && details->nonlinear_vma
  1016. && linear_page_index(details->nonlinear_vma,
  1017. addr) != page->index)
  1018. set_pte_at(mm, addr, pte,
  1019. pgoff_to_pte(page->index));
  1020. if (PageAnon(page))
  1021. rss[MM_ANONPAGES]--;
  1022. else {
  1023. if (pte_dirty(ptent))
  1024. set_page_dirty(page);
  1025. if (pte_young(ptent) &&
  1026. likely(!VM_SequentialReadHint(vma)))
  1027. mark_page_accessed(page);
  1028. rss[MM_FILEPAGES]--;
  1029. }
  1030. page_remove_rmap(page);
  1031. if (unlikely(page_mapcount(page) < 0))
  1032. print_bad_pte(vma, addr, ptent, page);
  1033. force_flush = !__tlb_remove_page(tlb, page);
  1034. if (force_flush)
  1035. break;
  1036. continue;
  1037. }
  1038. /*
  1039. * If details->check_mapping, we leave swap entries;
  1040. * if details->nonlinear_vma, we leave file entries.
  1041. */
  1042. if (unlikely(details))
  1043. continue;
  1044. if (pte_file(ptent)) {
  1045. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1046. print_bad_pte(vma, addr, ptent, NULL);
  1047. } else {
  1048. swp_entry_t entry = pte_to_swp_entry(ptent);
  1049. if (!non_swap_entry(entry))
  1050. rss[MM_SWAPENTS]--;
  1051. if (unlikely(!free_swap_and_cache(entry)))
  1052. print_bad_pte(vma, addr, ptent, NULL);
  1053. }
  1054. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1055. } while (pte++, addr += PAGE_SIZE, addr != end);
  1056. add_mm_rss_vec(mm, rss);
  1057. arch_leave_lazy_mmu_mode();
  1058. pte_unmap_unlock(pte - 1, ptl);
  1059. /*
  1060. * mmu_gather ran out of room to batch pages, we break out of
  1061. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1062. * and page-free while holding it.
  1063. */
  1064. if (force_flush) {
  1065. force_flush = 0;
  1066. tlb_flush_mmu(tlb);
  1067. if (addr != end)
  1068. goto again;
  1069. }
  1070. return addr;
  1071. }
  1072. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1073. struct vm_area_struct *vma, pud_t *pud,
  1074. unsigned long addr, unsigned long end,
  1075. struct zap_details *details)
  1076. {
  1077. pmd_t *pmd;
  1078. unsigned long next;
  1079. pmd = pmd_offset(pud, addr);
  1080. do {
  1081. next = pmd_addr_end(addr, end);
  1082. if (pmd_trans_huge(*pmd)) {
  1083. if (next-addr != HPAGE_PMD_SIZE) {
  1084. VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
  1085. split_huge_page_pmd(vma->vm_mm, pmd);
  1086. } else if (zap_huge_pmd(tlb, vma, pmd))
  1087. continue;
  1088. /* fall through */
  1089. }
  1090. if (pmd_none_or_clear_bad(pmd))
  1091. continue;
  1092. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1093. cond_resched();
  1094. } while (pmd++, addr = next, addr != end);
  1095. return addr;
  1096. }
  1097. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1098. struct vm_area_struct *vma, pgd_t *pgd,
  1099. unsigned long addr, unsigned long end,
  1100. struct zap_details *details)
  1101. {
  1102. pud_t *pud;
  1103. unsigned long next;
  1104. pud = pud_offset(pgd, addr);
  1105. do {
  1106. next = pud_addr_end(addr, end);
  1107. if (pud_none_or_clear_bad(pud))
  1108. continue;
  1109. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1110. } while (pud++, addr = next, addr != end);
  1111. return addr;
  1112. }
  1113. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  1114. struct vm_area_struct *vma,
  1115. unsigned long addr, unsigned long end,
  1116. struct zap_details *details)
  1117. {
  1118. pgd_t *pgd;
  1119. unsigned long next;
  1120. if (details && !details->check_mapping && !details->nonlinear_vma)
  1121. details = NULL;
  1122. BUG_ON(addr >= end);
  1123. mem_cgroup_uncharge_start();
  1124. tlb_start_vma(tlb, vma);
  1125. pgd = pgd_offset(vma->vm_mm, addr);
  1126. do {
  1127. next = pgd_addr_end(addr, end);
  1128. if (pgd_none_or_clear_bad(pgd))
  1129. continue;
  1130. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1131. } while (pgd++, addr = next, addr != end);
  1132. tlb_end_vma(tlb, vma);
  1133. mem_cgroup_uncharge_end();
  1134. return addr;
  1135. }
  1136. #ifdef CONFIG_PREEMPT
  1137. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  1138. #else
  1139. /* No preempt: go for improved straight-line efficiency */
  1140. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  1141. #endif
  1142. /**
  1143. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1144. * @tlbp: address of the caller's struct mmu_gather
  1145. * @vma: the starting vma
  1146. * @start_addr: virtual address at which to start unmapping
  1147. * @end_addr: virtual address at which to end unmapping
  1148. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  1149. * @details: details of nonlinear truncation or shared cache invalidation
  1150. *
  1151. * Returns the end address of the unmapping (restart addr if interrupted).
  1152. *
  1153. * Unmap all pages in the vma list.
  1154. *
  1155. * We aim to not hold locks for too long (for scheduling latency reasons).
  1156. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  1157. * return the ending mmu_gather to the caller.
  1158. *
  1159. * Only addresses between `start' and `end' will be unmapped.
  1160. *
  1161. * The VMA list must be sorted in ascending virtual address order.
  1162. *
  1163. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1164. * range after unmap_vmas() returns. So the only responsibility here is to
  1165. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1166. * drops the lock and schedules.
  1167. */
  1168. unsigned long unmap_vmas(struct mmu_gather *tlb,
  1169. struct vm_area_struct *vma, unsigned long start_addr,
  1170. unsigned long end_addr, unsigned long *nr_accounted,
  1171. struct zap_details *details)
  1172. {
  1173. unsigned long start = start_addr;
  1174. struct mm_struct *mm = vma->vm_mm;
  1175. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1176. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  1177. unsigned long end;
  1178. start = max(vma->vm_start, start_addr);
  1179. if (start >= vma->vm_end)
  1180. continue;
  1181. end = min(vma->vm_end, end_addr);
  1182. if (end <= vma->vm_start)
  1183. continue;
  1184. if (vma->vm_flags & VM_ACCOUNT)
  1185. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1186. if (unlikely(is_pfn_mapping(vma)))
  1187. untrack_pfn_vma(vma, 0, 0);
  1188. while (start != end) {
  1189. if (unlikely(is_vm_hugetlb_page(vma))) {
  1190. /*
  1191. * It is undesirable to test vma->vm_file as it
  1192. * should be non-null for valid hugetlb area.
  1193. * However, vm_file will be NULL in the error
  1194. * cleanup path of do_mmap_pgoff. When
  1195. * hugetlbfs ->mmap method fails,
  1196. * do_mmap_pgoff() nullifies vma->vm_file
  1197. * before calling this function to clean up.
  1198. * Since no pte has actually been setup, it is
  1199. * safe to do nothing in this case.
  1200. */
  1201. if (vma->vm_file)
  1202. unmap_hugepage_range(vma, start, end, NULL);
  1203. start = end;
  1204. } else
  1205. start = unmap_page_range(tlb, vma, start, end, details);
  1206. }
  1207. }
  1208. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1209. return start; /* which is now the end (or restart) address */
  1210. }
  1211. /**
  1212. * zap_page_range - remove user pages in a given range
  1213. * @vma: vm_area_struct holding the applicable pages
  1214. * @address: starting address of pages to zap
  1215. * @size: number of bytes to zap
  1216. * @details: details of nonlinear truncation or shared cache invalidation
  1217. */
  1218. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1219. unsigned long size, struct zap_details *details)
  1220. {
  1221. struct mm_struct *mm = vma->vm_mm;
  1222. struct mmu_gather tlb;
  1223. unsigned long end = address + size;
  1224. unsigned long nr_accounted = 0;
  1225. lru_add_drain();
  1226. tlb_gather_mmu(&tlb, mm, 0);
  1227. update_hiwater_rss(mm);
  1228. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1229. tlb_finish_mmu(&tlb, address, end);
  1230. return end;
  1231. }
  1232. /**
  1233. * zap_vma_ptes - remove ptes mapping the vma
  1234. * @vma: vm_area_struct holding ptes to be zapped
  1235. * @address: starting address of pages to zap
  1236. * @size: number of bytes to zap
  1237. *
  1238. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1239. *
  1240. * The entire address range must be fully contained within the vma.
  1241. *
  1242. * Returns 0 if successful.
  1243. */
  1244. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1245. unsigned long size)
  1246. {
  1247. if (address < vma->vm_start || address + size > vma->vm_end ||
  1248. !(vma->vm_flags & VM_PFNMAP))
  1249. return -1;
  1250. zap_page_range(vma, address, size, NULL);
  1251. return 0;
  1252. }
  1253. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1254. /**
  1255. * follow_page - look up a page descriptor from a user-virtual address
  1256. * @vma: vm_area_struct mapping @address
  1257. * @address: virtual address to look up
  1258. * @flags: flags modifying lookup behaviour
  1259. *
  1260. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1261. *
  1262. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1263. * an error pointer if there is a mapping to something not represented
  1264. * by a page descriptor (see also vm_normal_page()).
  1265. */
  1266. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1267. unsigned int flags)
  1268. {
  1269. pgd_t *pgd;
  1270. pud_t *pud;
  1271. pmd_t *pmd;
  1272. pte_t *ptep, pte;
  1273. spinlock_t *ptl;
  1274. struct page *page;
  1275. struct mm_struct *mm = vma->vm_mm;
  1276. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1277. if (!IS_ERR(page)) {
  1278. BUG_ON(flags & FOLL_GET);
  1279. goto out;
  1280. }
  1281. page = NULL;
  1282. pgd = pgd_offset(mm, address);
  1283. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1284. goto no_page_table;
  1285. pud = pud_offset(pgd, address);
  1286. if (pud_none(*pud))
  1287. goto no_page_table;
  1288. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1289. BUG_ON(flags & FOLL_GET);
  1290. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1291. goto out;
  1292. }
  1293. if (unlikely(pud_bad(*pud)))
  1294. goto no_page_table;
  1295. pmd = pmd_offset(pud, address);
  1296. if (pmd_none(*pmd))
  1297. goto no_page_table;
  1298. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1299. BUG_ON(flags & FOLL_GET);
  1300. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1301. goto out;
  1302. }
  1303. if (pmd_trans_huge(*pmd)) {
  1304. if (flags & FOLL_SPLIT) {
  1305. split_huge_page_pmd(mm, pmd);
  1306. goto split_fallthrough;
  1307. }
  1308. spin_lock(&mm->page_table_lock);
  1309. if (likely(pmd_trans_huge(*pmd))) {
  1310. if (unlikely(pmd_trans_splitting(*pmd))) {
  1311. spin_unlock(&mm->page_table_lock);
  1312. wait_split_huge_page(vma->anon_vma, pmd);
  1313. } else {
  1314. page = follow_trans_huge_pmd(mm, address,
  1315. pmd, flags);
  1316. spin_unlock(&mm->page_table_lock);
  1317. goto out;
  1318. }
  1319. } else
  1320. spin_unlock(&mm->page_table_lock);
  1321. /* fall through */
  1322. }
  1323. split_fallthrough:
  1324. if (unlikely(pmd_bad(*pmd)))
  1325. goto no_page_table;
  1326. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1327. pte = *ptep;
  1328. if (!pte_present(pte))
  1329. goto no_page;
  1330. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1331. goto unlock;
  1332. page = vm_normal_page(vma, address, pte);
  1333. if (unlikely(!page)) {
  1334. if ((flags & FOLL_DUMP) ||
  1335. !is_zero_pfn(pte_pfn(pte)))
  1336. goto bad_page;
  1337. page = pte_page(pte);
  1338. }
  1339. if (flags & FOLL_GET)
  1340. get_page(page);
  1341. if (flags & FOLL_TOUCH) {
  1342. if ((flags & FOLL_WRITE) &&
  1343. !pte_dirty(pte) && !PageDirty(page))
  1344. set_page_dirty(page);
  1345. /*
  1346. * pte_mkyoung() would be more correct here, but atomic care
  1347. * is needed to avoid losing the dirty bit: it is easier to use
  1348. * mark_page_accessed().
  1349. */
  1350. mark_page_accessed(page);
  1351. }
  1352. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1353. /*
  1354. * The preliminary mapping check is mainly to avoid the
  1355. * pointless overhead of lock_page on the ZERO_PAGE
  1356. * which might bounce very badly if there is contention.
  1357. *
  1358. * If the page is already locked, we don't need to
  1359. * handle it now - vmscan will handle it later if and
  1360. * when it attempts to reclaim the page.
  1361. */
  1362. if (page->mapping && trylock_page(page)) {
  1363. lru_add_drain(); /* push cached pages to LRU */
  1364. /*
  1365. * Because we lock page here and migration is
  1366. * blocked by the pte's page reference, we need
  1367. * only check for file-cache page truncation.
  1368. */
  1369. if (page->mapping)
  1370. mlock_vma_page(page);
  1371. unlock_page(page);
  1372. }
  1373. }
  1374. unlock:
  1375. pte_unmap_unlock(ptep, ptl);
  1376. out:
  1377. return page;
  1378. bad_page:
  1379. pte_unmap_unlock(ptep, ptl);
  1380. return ERR_PTR(-EFAULT);
  1381. no_page:
  1382. pte_unmap_unlock(ptep, ptl);
  1383. if (!pte_none(pte))
  1384. return page;
  1385. no_page_table:
  1386. /*
  1387. * When core dumping an enormous anonymous area that nobody
  1388. * has touched so far, we don't want to allocate unnecessary pages or
  1389. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1390. * then get_dump_page() will return NULL to leave a hole in the dump.
  1391. * But we can only make this optimization where a hole would surely
  1392. * be zero-filled if handle_mm_fault() actually did handle it.
  1393. */
  1394. if ((flags & FOLL_DUMP) &&
  1395. (!vma->vm_ops || !vma->vm_ops->fault))
  1396. return ERR_PTR(-EFAULT);
  1397. return page;
  1398. }
  1399. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1400. {
  1401. return stack_guard_page_start(vma, addr) ||
  1402. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1403. }
  1404. /**
  1405. * __get_user_pages() - pin user pages in memory
  1406. * @tsk: task_struct of target task
  1407. * @mm: mm_struct of target mm
  1408. * @start: starting user address
  1409. * @nr_pages: number of pages from start to pin
  1410. * @gup_flags: flags modifying pin behaviour
  1411. * @pages: array that receives pointers to the pages pinned.
  1412. * Should be at least nr_pages long. Or NULL, if caller
  1413. * only intends to ensure the pages are faulted in.
  1414. * @vmas: array of pointers to vmas corresponding to each page.
  1415. * Or NULL if the caller does not require them.
  1416. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1417. *
  1418. * Returns number of pages pinned. This may be fewer than the number
  1419. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1420. * were pinned, returns -errno. Each page returned must be released
  1421. * with a put_page() call when it is finished with. vmas will only
  1422. * remain valid while mmap_sem is held.
  1423. *
  1424. * Must be called with mmap_sem held for read or write.
  1425. *
  1426. * __get_user_pages walks a process's page tables and takes a reference to
  1427. * each struct page that each user address corresponds to at a given
  1428. * instant. That is, it takes the page that would be accessed if a user
  1429. * thread accesses the given user virtual address at that instant.
  1430. *
  1431. * This does not guarantee that the page exists in the user mappings when
  1432. * __get_user_pages returns, and there may even be a completely different
  1433. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1434. * and subsequently re faulted). However it does guarantee that the page
  1435. * won't be freed completely. And mostly callers simply care that the page
  1436. * contains data that was valid *at some point in time*. Typically, an IO
  1437. * or similar operation cannot guarantee anything stronger anyway because
  1438. * locks can't be held over the syscall boundary.
  1439. *
  1440. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1441. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1442. * appropriate) must be called after the page is finished with, and
  1443. * before put_page is called.
  1444. *
  1445. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1446. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1447. * *@nonblocking will be set to 0.
  1448. *
  1449. * In most cases, get_user_pages or get_user_pages_fast should be used
  1450. * instead of __get_user_pages. __get_user_pages should be used only if
  1451. * you need some special @gup_flags.
  1452. */
  1453. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1454. unsigned long start, int nr_pages, unsigned int gup_flags,
  1455. struct page **pages, struct vm_area_struct **vmas,
  1456. int *nonblocking)
  1457. {
  1458. int i;
  1459. unsigned long vm_flags;
  1460. if (nr_pages <= 0)
  1461. return 0;
  1462. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1463. /*
  1464. * Require read or write permissions.
  1465. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1466. */
  1467. vm_flags = (gup_flags & FOLL_WRITE) ?
  1468. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1469. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1470. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1471. i = 0;
  1472. do {
  1473. struct vm_area_struct *vma;
  1474. vma = find_extend_vma(mm, start);
  1475. if (!vma && in_gate_area(mm, start)) {
  1476. unsigned long pg = start & PAGE_MASK;
  1477. pgd_t *pgd;
  1478. pud_t *pud;
  1479. pmd_t *pmd;
  1480. pte_t *pte;
  1481. /* user gate pages are read-only */
  1482. if (gup_flags & FOLL_WRITE)
  1483. return i ? : -EFAULT;
  1484. if (pg > TASK_SIZE)
  1485. pgd = pgd_offset_k(pg);
  1486. else
  1487. pgd = pgd_offset_gate(mm, pg);
  1488. BUG_ON(pgd_none(*pgd));
  1489. pud = pud_offset(pgd, pg);
  1490. BUG_ON(pud_none(*pud));
  1491. pmd = pmd_offset(pud, pg);
  1492. if (pmd_none(*pmd))
  1493. return i ? : -EFAULT;
  1494. VM_BUG_ON(pmd_trans_huge(*pmd));
  1495. pte = pte_offset_map(pmd, pg);
  1496. if (pte_none(*pte)) {
  1497. pte_unmap(pte);
  1498. return i ? : -EFAULT;
  1499. }
  1500. vma = get_gate_vma(mm);
  1501. if (pages) {
  1502. struct page *page;
  1503. page = vm_normal_page(vma, start, *pte);
  1504. if (!page) {
  1505. if (!(gup_flags & FOLL_DUMP) &&
  1506. is_zero_pfn(pte_pfn(*pte)))
  1507. page = pte_page(*pte);
  1508. else {
  1509. pte_unmap(pte);
  1510. return i ? : -EFAULT;
  1511. }
  1512. }
  1513. pages[i] = page;
  1514. get_page(page);
  1515. }
  1516. pte_unmap(pte);
  1517. goto next_page;
  1518. }
  1519. if (!vma ||
  1520. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1521. !(vm_flags & vma->vm_flags))
  1522. return i ? : -EFAULT;
  1523. if (is_vm_hugetlb_page(vma)) {
  1524. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1525. &start, &nr_pages, i, gup_flags);
  1526. continue;
  1527. }
  1528. do {
  1529. struct page *page;
  1530. unsigned int foll_flags = gup_flags;
  1531. /*
  1532. * If we have a pending SIGKILL, don't keep faulting
  1533. * pages and potentially allocating memory.
  1534. */
  1535. if (unlikely(fatal_signal_pending(current)))
  1536. return i ? i : -ERESTARTSYS;
  1537. cond_resched();
  1538. while (!(page = follow_page(vma, start, foll_flags))) {
  1539. int ret;
  1540. unsigned int fault_flags = 0;
  1541. /* For mlock, just skip the stack guard page. */
  1542. if (foll_flags & FOLL_MLOCK) {
  1543. if (stack_guard_page(vma, start))
  1544. goto next_page;
  1545. }
  1546. if (foll_flags & FOLL_WRITE)
  1547. fault_flags |= FAULT_FLAG_WRITE;
  1548. if (nonblocking)
  1549. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1550. if (foll_flags & FOLL_NOWAIT)
  1551. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1552. ret = handle_mm_fault(mm, vma, start,
  1553. fault_flags);
  1554. if (ret & VM_FAULT_ERROR) {
  1555. if (ret & VM_FAULT_OOM)
  1556. return i ? i : -ENOMEM;
  1557. if (ret & (VM_FAULT_HWPOISON |
  1558. VM_FAULT_HWPOISON_LARGE)) {
  1559. if (i)
  1560. return i;
  1561. else if (gup_flags & FOLL_HWPOISON)
  1562. return -EHWPOISON;
  1563. else
  1564. return -EFAULT;
  1565. }
  1566. if (ret & VM_FAULT_SIGBUS)
  1567. return i ? i : -EFAULT;
  1568. BUG();
  1569. }
  1570. if (tsk) {
  1571. if (ret & VM_FAULT_MAJOR)
  1572. tsk->maj_flt++;
  1573. else
  1574. tsk->min_flt++;
  1575. }
  1576. if (ret & VM_FAULT_RETRY) {
  1577. if (nonblocking)
  1578. *nonblocking = 0;
  1579. return i;
  1580. }
  1581. /*
  1582. * The VM_FAULT_WRITE bit tells us that
  1583. * do_wp_page has broken COW when necessary,
  1584. * even if maybe_mkwrite decided not to set
  1585. * pte_write. We can thus safely do subsequent
  1586. * page lookups as if they were reads. But only
  1587. * do so when looping for pte_write is futile:
  1588. * in some cases userspace may also be wanting
  1589. * to write to the gotten user page, which a
  1590. * read fault here might prevent (a readonly
  1591. * page might get reCOWed by userspace write).
  1592. */
  1593. if ((ret & VM_FAULT_WRITE) &&
  1594. !(vma->vm_flags & VM_WRITE))
  1595. foll_flags &= ~FOLL_WRITE;
  1596. cond_resched();
  1597. }
  1598. if (IS_ERR(page))
  1599. return i ? i : PTR_ERR(page);
  1600. if (pages) {
  1601. pages[i] = page;
  1602. flush_anon_page(vma, page, start);
  1603. flush_dcache_page(page);
  1604. }
  1605. next_page:
  1606. if (vmas)
  1607. vmas[i] = vma;
  1608. i++;
  1609. start += PAGE_SIZE;
  1610. nr_pages--;
  1611. } while (nr_pages && start < vma->vm_end);
  1612. } while (nr_pages);
  1613. return i;
  1614. }
  1615. EXPORT_SYMBOL(__get_user_pages);
  1616. /**
  1617. * get_user_pages() - pin user pages in memory
  1618. * @tsk: the task_struct to use for page fault accounting, or
  1619. * NULL if faults are not to be recorded.
  1620. * @mm: mm_struct of target mm
  1621. * @start: starting user address
  1622. * @nr_pages: number of pages from start to pin
  1623. * @write: whether pages will be written to by the caller
  1624. * @force: whether to force write access even if user mapping is
  1625. * readonly. This will result in the page being COWed even
  1626. * in MAP_SHARED mappings. You do not want this.
  1627. * @pages: array that receives pointers to the pages pinned.
  1628. * Should be at least nr_pages long. Or NULL, if caller
  1629. * only intends to ensure the pages are faulted in.
  1630. * @vmas: array of pointers to vmas corresponding to each page.
  1631. * Or NULL if the caller does not require them.
  1632. *
  1633. * Returns number of pages pinned. This may be fewer than the number
  1634. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1635. * were pinned, returns -errno. Each page returned must be released
  1636. * with a put_page() call when it is finished with. vmas will only
  1637. * remain valid while mmap_sem is held.
  1638. *
  1639. * Must be called with mmap_sem held for read or write.
  1640. *
  1641. * get_user_pages walks a process's page tables and takes a reference to
  1642. * each struct page that each user address corresponds to at a given
  1643. * instant. That is, it takes the page that would be accessed if a user
  1644. * thread accesses the given user virtual address at that instant.
  1645. *
  1646. * This does not guarantee that the page exists in the user mappings when
  1647. * get_user_pages returns, and there may even be a completely different
  1648. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1649. * and subsequently re faulted). However it does guarantee that the page
  1650. * won't be freed completely. And mostly callers simply care that the page
  1651. * contains data that was valid *at some point in time*. Typically, an IO
  1652. * or similar operation cannot guarantee anything stronger anyway because
  1653. * locks can't be held over the syscall boundary.
  1654. *
  1655. * If write=0, the page must not be written to. If the page is written to,
  1656. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1657. * after the page is finished with, and before put_page is called.
  1658. *
  1659. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1660. * handle on the memory by some means other than accesses via the user virtual
  1661. * addresses. The pages may be submitted for DMA to devices or accessed via
  1662. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1663. * use the correct cache flushing APIs.
  1664. *
  1665. * See also get_user_pages_fast, for performance critical applications.
  1666. */
  1667. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1668. unsigned long start, int nr_pages, int write, int force,
  1669. struct page **pages, struct vm_area_struct **vmas)
  1670. {
  1671. int flags = FOLL_TOUCH;
  1672. if (pages)
  1673. flags |= FOLL_GET;
  1674. if (write)
  1675. flags |= FOLL_WRITE;
  1676. if (force)
  1677. flags |= FOLL_FORCE;
  1678. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1679. NULL);
  1680. }
  1681. EXPORT_SYMBOL(get_user_pages);
  1682. /**
  1683. * get_dump_page() - pin user page in memory while writing it to core dump
  1684. * @addr: user address
  1685. *
  1686. * Returns struct page pointer of user page pinned for dump,
  1687. * to be freed afterwards by page_cache_release() or put_page().
  1688. *
  1689. * Returns NULL on any kind of failure - a hole must then be inserted into
  1690. * the corefile, to preserve alignment with its headers; and also returns
  1691. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1692. * allowing a hole to be left in the corefile to save diskspace.
  1693. *
  1694. * Called without mmap_sem, but after all other threads have been killed.
  1695. */
  1696. #ifdef CONFIG_ELF_CORE
  1697. struct page *get_dump_page(unsigned long addr)
  1698. {
  1699. struct vm_area_struct *vma;
  1700. struct page *page;
  1701. if (__get_user_pages(current, current->mm, addr, 1,
  1702. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1703. NULL) < 1)
  1704. return NULL;
  1705. flush_cache_page(vma, addr, page_to_pfn(page));
  1706. return page;
  1707. }
  1708. #endif /* CONFIG_ELF_CORE */
  1709. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1710. spinlock_t **ptl)
  1711. {
  1712. pgd_t * pgd = pgd_offset(mm, addr);
  1713. pud_t * pud = pud_alloc(mm, pgd, addr);
  1714. if (pud) {
  1715. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1716. if (pmd) {
  1717. VM_BUG_ON(pmd_trans_huge(*pmd));
  1718. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1719. }
  1720. }
  1721. return NULL;
  1722. }
  1723. /*
  1724. * This is the old fallback for page remapping.
  1725. *
  1726. * For historical reasons, it only allows reserved pages. Only
  1727. * old drivers should use this, and they needed to mark their
  1728. * pages reserved for the old functions anyway.
  1729. */
  1730. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1731. struct page *page, pgprot_t prot)
  1732. {
  1733. struct mm_struct *mm = vma->vm_mm;
  1734. int retval;
  1735. pte_t *pte;
  1736. spinlock_t *ptl;
  1737. retval = -EINVAL;
  1738. if (PageAnon(page))
  1739. goto out;
  1740. retval = -ENOMEM;
  1741. flush_dcache_page(page);
  1742. pte = get_locked_pte(mm, addr, &ptl);
  1743. if (!pte)
  1744. goto out;
  1745. retval = -EBUSY;
  1746. if (!pte_none(*pte))
  1747. goto out_unlock;
  1748. /* Ok, finally just insert the thing.. */
  1749. get_page(page);
  1750. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1751. page_add_file_rmap(page);
  1752. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1753. retval = 0;
  1754. pte_unmap_unlock(pte, ptl);
  1755. return retval;
  1756. out_unlock:
  1757. pte_unmap_unlock(pte, ptl);
  1758. out:
  1759. return retval;
  1760. }
  1761. /**
  1762. * vm_insert_page - insert single page into user vma
  1763. * @vma: user vma to map to
  1764. * @addr: target user address of this page
  1765. * @page: source kernel page
  1766. *
  1767. * This allows drivers to insert individual pages they've allocated
  1768. * into a user vma.
  1769. *
  1770. * The page has to be a nice clean _individual_ kernel allocation.
  1771. * If you allocate a compound page, you need to have marked it as
  1772. * such (__GFP_COMP), or manually just split the page up yourself
  1773. * (see split_page()).
  1774. *
  1775. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1776. * took an arbitrary page protection parameter. This doesn't allow
  1777. * that. Your vma protection will have to be set up correctly, which
  1778. * means that if you want a shared writable mapping, you'd better
  1779. * ask for a shared writable mapping!
  1780. *
  1781. * The page does not need to be reserved.
  1782. */
  1783. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1784. struct page *page)
  1785. {
  1786. if (addr < vma->vm_start || addr >= vma->vm_end)
  1787. return -EFAULT;
  1788. if (!page_count(page))
  1789. return -EINVAL;
  1790. vma->vm_flags |= VM_INSERTPAGE;
  1791. return insert_page(vma, addr, page, vma->vm_page_prot);
  1792. }
  1793. EXPORT_SYMBOL(vm_insert_page);
  1794. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1795. unsigned long pfn, pgprot_t prot)
  1796. {
  1797. struct mm_struct *mm = vma->vm_mm;
  1798. int retval;
  1799. pte_t *pte, entry;
  1800. spinlock_t *ptl;
  1801. retval = -ENOMEM;
  1802. pte = get_locked_pte(mm, addr, &ptl);
  1803. if (!pte)
  1804. goto out;
  1805. retval = -EBUSY;
  1806. if (!pte_none(*pte))
  1807. goto out_unlock;
  1808. /* Ok, finally just insert the thing.. */
  1809. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1810. set_pte_at(mm, addr, pte, entry);
  1811. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1812. retval = 0;
  1813. out_unlock:
  1814. pte_unmap_unlock(pte, ptl);
  1815. out:
  1816. return retval;
  1817. }
  1818. /**
  1819. * vm_insert_pfn - insert single pfn into user vma
  1820. * @vma: user vma to map to
  1821. * @addr: target user address of this page
  1822. * @pfn: source kernel pfn
  1823. *
  1824. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1825. * they've allocated into a user vma. Same comments apply.
  1826. *
  1827. * This function should only be called from a vm_ops->fault handler, and
  1828. * in that case the handler should return NULL.
  1829. *
  1830. * vma cannot be a COW mapping.
  1831. *
  1832. * As this is called only for pages that do not currently exist, we
  1833. * do not need to flush old virtual caches or the TLB.
  1834. */
  1835. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1836. unsigned long pfn)
  1837. {
  1838. int ret;
  1839. pgprot_t pgprot = vma->vm_page_prot;
  1840. /*
  1841. * Technically, architectures with pte_special can avoid all these
  1842. * restrictions (same for remap_pfn_range). However we would like
  1843. * consistency in testing and feature parity among all, so we should
  1844. * try to keep these invariants in place for everybody.
  1845. */
  1846. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1847. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1848. (VM_PFNMAP|VM_MIXEDMAP));
  1849. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1850. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1851. if (addr < vma->vm_start || addr >= vma->vm_end)
  1852. return -EFAULT;
  1853. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1854. return -EINVAL;
  1855. ret = insert_pfn(vma, addr, pfn, pgprot);
  1856. if (ret)
  1857. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1858. return ret;
  1859. }
  1860. EXPORT_SYMBOL(vm_insert_pfn);
  1861. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1862. unsigned long pfn)
  1863. {
  1864. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1865. if (addr < vma->vm_start || addr >= vma->vm_end)
  1866. return -EFAULT;
  1867. /*
  1868. * If we don't have pte special, then we have to use the pfn_valid()
  1869. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1870. * refcount the page if pfn_valid is true (hence insert_page rather
  1871. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1872. * without pte special, it would there be refcounted as a normal page.
  1873. */
  1874. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1875. struct page *page;
  1876. page = pfn_to_page(pfn);
  1877. return insert_page(vma, addr, page, vma->vm_page_prot);
  1878. }
  1879. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1880. }
  1881. EXPORT_SYMBOL(vm_insert_mixed);
  1882. /*
  1883. * maps a range of physical memory into the requested pages. the old
  1884. * mappings are removed. any references to nonexistent pages results
  1885. * in null mappings (currently treated as "copy-on-access")
  1886. */
  1887. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1888. unsigned long addr, unsigned long end,
  1889. unsigned long pfn, pgprot_t prot)
  1890. {
  1891. pte_t *pte;
  1892. spinlock_t *ptl;
  1893. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1894. if (!pte)
  1895. return -ENOMEM;
  1896. arch_enter_lazy_mmu_mode();
  1897. do {
  1898. BUG_ON(!pte_none(*pte));
  1899. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1900. pfn++;
  1901. } while (pte++, addr += PAGE_SIZE, addr != end);
  1902. arch_leave_lazy_mmu_mode();
  1903. pte_unmap_unlock(pte - 1, ptl);
  1904. return 0;
  1905. }
  1906. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1907. unsigned long addr, unsigned long end,
  1908. unsigned long pfn, pgprot_t prot)
  1909. {
  1910. pmd_t *pmd;
  1911. unsigned long next;
  1912. pfn -= addr >> PAGE_SHIFT;
  1913. pmd = pmd_alloc(mm, pud, addr);
  1914. if (!pmd)
  1915. return -ENOMEM;
  1916. VM_BUG_ON(pmd_trans_huge(*pmd));
  1917. do {
  1918. next = pmd_addr_end(addr, end);
  1919. if (remap_pte_range(mm, pmd, addr, next,
  1920. pfn + (addr >> PAGE_SHIFT), prot))
  1921. return -ENOMEM;
  1922. } while (pmd++, addr = next, addr != end);
  1923. return 0;
  1924. }
  1925. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1926. unsigned long addr, unsigned long end,
  1927. unsigned long pfn, pgprot_t prot)
  1928. {
  1929. pud_t *pud;
  1930. unsigned long next;
  1931. pfn -= addr >> PAGE_SHIFT;
  1932. pud = pud_alloc(mm, pgd, addr);
  1933. if (!pud)
  1934. return -ENOMEM;
  1935. do {
  1936. next = pud_addr_end(addr, end);
  1937. if (remap_pmd_range(mm, pud, addr, next,
  1938. pfn + (addr >> PAGE_SHIFT), prot))
  1939. return -ENOMEM;
  1940. } while (pud++, addr = next, addr != end);
  1941. return 0;
  1942. }
  1943. /**
  1944. * remap_pfn_range - remap kernel memory to userspace
  1945. * @vma: user vma to map to
  1946. * @addr: target user address to start at
  1947. * @pfn: physical address of kernel memory
  1948. * @size: size of map area
  1949. * @prot: page protection flags for this mapping
  1950. *
  1951. * Note: this is only safe if the mm semaphore is held when called.
  1952. */
  1953. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1954. unsigned long pfn, unsigned long size, pgprot_t prot)
  1955. {
  1956. pgd_t *pgd;
  1957. unsigned long next;
  1958. unsigned long end = addr + PAGE_ALIGN(size);
  1959. struct mm_struct *mm = vma->vm_mm;
  1960. int err;
  1961. /*
  1962. * Physically remapped pages are special. Tell the
  1963. * rest of the world about it:
  1964. * VM_IO tells people not to look at these pages
  1965. * (accesses can have side effects).
  1966. * VM_RESERVED is specified all over the place, because
  1967. * in 2.4 it kept swapout's vma scan off this vma; but
  1968. * in 2.6 the LRU scan won't even find its pages, so this
  1969. * flag means no more than count its pages in reserved_vm,
  1970. * and omit it from core dump, even when VM_IO turned off.
  1971. * VM_PFNMAP tells the core MM that the base pages are just
  1972. * raw PFN mappings, and do not have a "struct page" associated
  1973. * with them.
  1974. *
  1975. * There's a horrible special case to handle copy-on-write
  1976. * behaviour that some programs depend on. We mark the "original"
  1977. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1978. */
  1979. if (addr == vma->vm_start && end == vma->vm_end) {
  1980. vma->vm_pgoff = pfn;
  1981. vma->vm_flags |= VM_PFN_AT_MMAP;
  1982. } else if (is_cow_mapping(vma->vm_flags))
  1983. return -EINVAL;
  1984. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1985. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1986. if (err) {
  1987. /*
  1988. * To indicate that track_pfn related cleanup is not
  1989. * needed from higher level routine calling unmap_vmas
  1990. */
  1991. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1992. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1993. return -EINVAL;
  1994. }
  1995. BUG_ON(addr >= end);
  1996. pfn -= addr >> PAGE_SHIFT;
  1997. pgd = pgd_offset(mm, addr);
  1998. flush_cache_range(vma, addr, end);
  1999. do {
  2000. next = pgd_addr_end(addr, end);
  2001. err = remap_pud_range(mm, pgd, addr, next,
  2002. pfn + (addr >> PAGE_SHIFT), prot);
  2003. if (err)
  2004. break;
  2005. } while (pgd++, addr = next, addr != end);
  2006. if (err)
  2007. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  2008. return err;
  2009. }
  2010. EXPORT_SYMBOL(remap_pfn_range);
  2011. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2012. unsigned long addr, unsigned long end,
  2013. pte_fn_t fn, void *data)
  2014. {
  2015. pte_t *pte;
  2016. int err;
  2017. pgtable_t token;
  2018. spinlock_t *uninitialized_var(ptl);
  2019. pte = (mm == &init_mm) ?
  2020. pte_alloc_kernel(pmd, addr) :
  2021. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2022. if (!pte)
  2023. return -ENOMEM;
  2024. BUG_ON(pmd_huge(*pmd));
  2025. arch_enter_lazy_mmu_mode();
  2026. token = pmd_pgtable(*pmd);
  2027. do {
  2028. err = fn(pte++, token, addr, data);
  2029. if (err)
  2030. break;
  2031. } while (addr += PAGE_SIZE, addr != end);
  2032. arch_leave_lazy_mmu_mode();
  2033. if (mm != &init_mm)
  2034. pte_unmap_unlock(pte-1, ptl);
  2035. return err;
  2036. }
  2037. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2038. unsigned long addr, unsigned long end,
  2039. pte_fn_t fn, void *data)
  2040. {
  2041. pmd_t *pmd;
  2042. unsigned long next;
  2043. int err;
  2044. BUG_ON(pud_huge(*pud));
  2045. pmd = pmd_alloc(mm, pud, addr);
  2046. if (!pmd)
  2047. return -ENOMEM;
  2048. do {
  2049. next = pmd_addr_end(addr, end);
  2050. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2051. if (err)
  2052. break;
  2053. } while (pmd++, addr = next, addr != end);
  2054. return err;
  2055. }
  2056. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2057. unsigned long addr, unsigned long end,
  2058. pte_fn_t fn, void *data)
  2059. {
  2060. pud_t *pud;
  2061. unsigned long next;
  2062. int err;
  2063. pud = pud_alloc(mm, pgd, addr);
  2064. if (!pud)
  2065. return -ENOMEM;
  2066. do {
  2067. next = pud_addr_end(addr, end);
  2068. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2069. if (err)
  2070. break;
  2071. } while (pud++, addr = next, addr != end);
  2072. return err;
  2073. }
  2074. /*
  2075. * Scan a region of virtual memory, filling in page tables as necessary
  2076. * and calling a provided function on each leaf page table.
  2077. */
  2078. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2079. unsigned long size, pte_fn_t fn, void *data)
  2080. {
  2081. pgd_t *pgd;
  2082. unsigned long next;
  2083. unsigned long end = addr + size;
  2084. int err;
  2085. BUG_ON(addr >= end);
  2086. pgd = pgd_offset(mm, addr);
  2087. do {
  2088. next = pgd_addr_end(addr, end);
  2089. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2090. if (err)
  2091. break;
  2092. } while (pgd++, addr = next, addr != end);
  2093. return err;
  2094. }
  2095. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2096. /*
  2097. * handle_pte_fault chooses page fault handler according to an entry
  2098. * which was read non-atomically. Before making any commitment, on
  2099. * those architectures or configurations (e.g. i386 with PAE) which
  2100. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2101. * must check under lock before unmapping the pte and proceeding
  2102. * (but do_wp_page is only called after already making such a check;
  2103. * and do_anonymous_page can safely check later on).
  2104. */
  2105. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2106. pte_t *page_table, pte_t orig_pte)
  2107. {
  2108. int same = 1;
  2109. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2110. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2111. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2112. spin_lock(ptl);
  2113. same = pte_same(*page_table, orig_pte);
  2114. spin_unlock(ptl);
  2115. }
  2116. #endif
  2117. pte_unmap(page_table);
  2118. return same;
  2119. }
  2120. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2121. {
  2122. /*
  2123. * If the source page was a PFN mapping, we don't have
  2124. * a "struct page" for it. We do a best-effort copy by
  2125. * just copying from the original user address. If that
  2126. * fails, we just zero-fill it. Live with it.
  2127. */
  2128. if (unlikely(!src)) {
  2129. void *kaddr = kmap_atomic(dst, KM_USER0);
  2130. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2131. /*
  2132. * This really shouldn't fail, because the page is there
  2133. * in the page tables. But it might just be unreadable,
  2134. * in which case we just give up and fill the result with
  2135. * zeroes.
  2136. */
  2137. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2138. clear_page(kaddr);
  2139. kunmap_atomic(kaddr, KM_USER0);
  2140. flush_dcache_page(dst);
  2141. } else
  2142. copy_user_highpage(dst, src, va, vma);
  2143. }
  2144. /*
  2145. * This routine handles present pages, when users try to write
  2146. * to a shared page. It is done by copying the page to a new address
  2147. * and decrementing the shared-page counter for the old page.
  2148. *
  2149. * Note that this routine assumes that the protection checks have been
  2150. * done by the caller (the low-level page fault routine in most cases).
  2151. * Thus we can safely just mark it writable once we've done any necessary
  2152. * COW.
  2153. *
  2154. * We also mark the page dirty at this point even though the page will
  2155. * change only once the write actually happens. This avoids a few races,
  2156. * and potentially makes it more efficient.
  2157. *
  2158. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2159. * but allow concurrent faults), with pte both mapped and locked.
  2160. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2161. */
  2162. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2163. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2164. spinlock_t *ptl, pte_t orig_pte)
  2165. __releases(ptl)
  2166. {
  2167. struct page *old_page, *new_page;
  2168. pte_t entry;
  2169. int ret = 0;
  2170. int page_mkwrite = 0;
  2171. struct page *dirty_page = NULL;
  2172. old_page = vm_normal_page(vma, address, orig_pte);
  2173. if (!old_page) {
  2174. /*
  2175. * VM_MIXEDMAP !pfn_valid() case
  2176. *
  2177. * We should not cow pages in a shared writeable mapping.
  2178. * Just mark the pages writable as we can't do any dirty
  2179. * accounting on raw pfn maps.
  2180. */
  2181. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2182. (VM_WRITE|VM_SHARED))
  2183. goto reuse;
  2184. goto gotten;
  2185. }
  2186. /*
  2187. * Take out anonymous pages first, anonymous shared vmas are
  2188. * not dirty accountable.
  2189. */
  2190. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2191. if (!trylock_page(old_page)) {
  2192. page_cache_get(old_page);
  2193. pte_unmap_unlock(page_table, ptl);
  2194. lock_page(old_page);
  2195. page_table = pte_offset_map_lock(mm, pmd, address,
  2196. &ptl);
  2197. if (!pte_same(*page_table, orig_pte)) {
  2198. unlock_page(old_page);
  2199. goto unlock;
  2200. }
  2201. page_cache_release(old_page);
  2202. }
  2203. if (reuse_swap_page(old_page)) {
  2204. /*
  2205. * The page is all ours. Move it to our anon_vma so
  2206. * the rmap code will not search our parent or siblings.
  2207. * Protected against the rmap code by the page lock.
  2208. */
  2209. page_move_anon_rmap(old_page, vma, address);
  2210. unlock_page(old_page);
  2211. goto reuse;
  2212. }
  2213. unlock_page(old_page);
  2214. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2215. (VM_WRITE|VM_SHARED))) {
  2216. /*
  2217. * Only catch write-faults on shared writable pages,
  2218. * read-only shared pages can get COWed by
  2219. * get_user_pages(.write=1, .force=1).
  2220. */
  2221. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2222. struct vm_fault vmf;
  2223. int tmp;
  2224. vmf.virtual_address = (void __user *)(address &
  2225. PAGE_MASK);
  2226. vmf.pgoff = old_page->index;
  2227. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2228. vmf.page = old_page;
  2229. /*
  2230. * Notify the address space that the page is about to
  2231. * become writable so that it can prohibit this or wait
  2232. * for the page to get into an appropriate state.
  2233. *
  2234. * We do this without the lock held, so that it can
  2235. * sleep if it needs to.
  2236. */
  2237. page_cache_get(old_page);
  2238. pte_unmap_unlock(page_table, ptl);
  2239. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2240. if (unlikely(tmp &
  2241. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2242. ret = tmp;
  2243. goto unwritable_page;
  2244. }
  2245. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2246. lock_page(old_page);
  2247. if (!old_page->mapping) {
  2248. ret = 0; /* retry the fault */
  2249. unlock_page(old_page);
  2250. goto unwritable_page;
  2251. }
  2252. } else
  2253. VM_BUG_ON(!PageLocked(old_page));
  2254. /*
  2255. * Since we dropped the lock we need to revalidate
  2256. * the PTE as someone else may have changed it. If
  2257. * they did, we just return, as we can count on the
  2258. * MMU to tell us if they didn't also make it writable.
  2259. */
  2260. page_table = pte_offset_map_lock(mm, pmd, address,
  2261. &ptl);
  2262. if (!pte_same(*page_table, orig_pte)) {
  2263. unlock_page(old_page);
  2264. goto unlock;
  2265. }
  2266. page_mkwrite = 1;
  2267. }
  2268. dirty_page = old_page;
  2269. get_page(dirty_page);
  2270. reuse:
  2271. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2272. entry = pte_mkyoung(orig_pte);
  2273. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2274. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2275. update_mmu_cache(vma, address, page_table);
  2276. pte_unmap_unlock(page_table, ptl);
  2277. ret |= VM_FAULT_WRITE;
  2278. if (!dirty_page)
  2279. return ret;
  2280. /*
  2281. * Yes, Virginia, this is actually required to prevent a race
  2282. * with clear_page_dirty_for_io() from clearing the page dirty
  2283. * bit after it clear all dirty ptes, but before a racing
  2284. * do_wp_page installs a dirty pte.
  2285. *
  2286. * __do_fault is protected similarly.
  2287. */
  2288. if (!page_mkwrite) {
  2289. wait_on_page_locked(dirty_page);
  2290. set_page_dirty_balance(dirty_page, page_mkwrite);
  2291. }
  2292. put_page(dirty_page);
  2293. if (page_mkwrite) {
  2294. struct address_space *mapping = dirty_page->mapping;
  2295. set_page_dirty(dirty_page);
  2296. unlock_page(dirty_page);
  2297. page_cache_release(dirty_page);
  2298. if (mapping) {
  2299. /*
  2300. * Some device drivers do not set page.mapping
  2301. * but still dirty their pages
  2302. */
  2303. balance_dirty_pages_ratelimited(mapping);
  2304. }
  2305. }
  2306. /* file_update_time outside page_lock */
  2307. if (vma->vm_file)
  2308. file_update_time(vma->vm_file);
  2309. return ret;
  2310. }
  2311. /*
  2312. * Ok, we need to copy. Oh, well..
  2313. */
  2314. page_cache_get(old_page);
  2315. gotten:
  2316. pte_unmap_unlock(page_table, ptl);
  2317. if (unlikely(anon_vma_prepare(vma)))
  2318. goto oom;
  2319. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2320. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2321. if (!new_page)
  2322. goto oom;
  2323. } else {
  2324. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2325. if (!new_page)
  2326. goto oom;
  2327. cow_user_page(new_page, old_page, address, vma);
  2328. }
  2329. __SetPageUptodate(new_page);
  2330. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2331. goto oom_free_new;
  2332. /*
  2333. * Re-check the pte - we dropped the lock
  2334. */
  2335. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2336. if (likely(pte_same(*page_table, orig_pte))) {
  2337. if (old_page) {
  2338. if (!PageAnon(old_page)) {
  2339. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2340. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2341. }
  2342. } else
  2343. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2344. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2345. entry = mk_pte(new_page, vma->vm_page_prot);
  2346. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2347. /*
  2348. * Clear the pte entry and flush it first, before updating the
  2349. * pte with the new entry. This will avoid a race condition
  2350. * seen in the presence of one thread doing SMC and another
  2351. * thread doing COW.
  2352. */
  2353. ptep_clear_flush(vma, address, page_table);
  2354. page_add_new_anon_rmap(new_page, vma, address);
  2355. /*
  2356. * We call the notify macro here because, when using secondary
  2357. * mmu page tables (such as kvm shadow page tables), we want the
  2358. * new page to be mapped directly into the secondary page table.
  2359. */
  2360. set_pte_at_notify(mm, address, page_table, entry);
  2361. update_mmu_cache(vma, address, page_table);
  2362. if (old_page) {
  2363. /*
  2364. * Only after switching the pte to the new page may
  2365. * we remove the mapcount here. Otherwise another
  2366. * process may come and find the rmap count decremented
  2367. * before the pte is switched to the new page, and
  2368. * "reuse" the old page writing into it while our pte
  2369. * here still points into it and can be read by other
  2370. * threads.
  2371. *
  2372. * The critical issue is to order this
  2373. * page_remove_rmap with the ptp_clear_flush above.
  2374. * Those stores are ordered by (if nothing else,)
  2375. * the barrier present in the atomic_add_negative
  2376. * in page_remove_rmap.
  2377. *
  2378. * Then the TLB flush in ptep_clear_flush ensures that
  2379. * no process can access the old page before the
  2380. * decremented mapcount is visible. And the old page
  2381. * cannot be reused until after the decremented
  2382. * mapcount is visible. So transitively, TLBs to
  2383. * old page will be flushed before it can be reused.
  2384. */
  2385. page_remove_rmap(old_page);
  2386. }
  2387. /* Free the old page.. */
  2388. new_page = old_page;
  2389. ret |= VM_FAULT_WRITE;
  2390. } else
  2391. mem_cgroup_uncharge_page(new_page);
  2392. if (new_page)
  2393. page_cache_release(new_page);
  2394. unlock:
  2395. pte_unmap_unlock(page_table, ptl);
  2396. if (old_page) {
  2397. /*
  2398. * Don't let another task, with possibly unlocked vma,
  2399. * keep the mlocked page.
  2400. */
  2401. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2402. lock_page(old_page); /* LRU manipulation */
  2403. munlock_vma_page(old_page);
  2404. unlock_page(old_page);
  2405. }
  2406. page_cache_release(old_page);
  2407. }
  2408. return ret;
  2409. oom_free_new:
  2410. page_cache_release(new_page);
  2411. oom:
  2412. if (old_page) {
  2413. if (page_mkwrite) {
  2414. unlock_page(old_page);
  2415. page_cache_release(old_page);
  2416. }
  2417. page_cache_release(old_page);
  2418. }
  2419. return VM_FAULT_OOM;
  2420. unwritable_page:
  2421. page_cache_release(old_page);
  2422. return ret;
  2423. }
  2424. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2425. unsigned long start_addr, unsigned long end_addr,
  2426. struct zap_details *details)
  2427. {
  2428. zap_page_range(vma, start_addr, end_addr - start_addr, details);
  2429. }
  2430. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2431. struct zap_details *details)
  2432. {
  2433. struct vm_area_struct *vma;
  2434. struct prio_tree_iter iter;
  2435. pgoff_t vba, vea, zba, zea;
  2436. vma_prio_tree_foreach(vma, &iter, root,
  2437. details->first_index, details->last_index) {
  2438. vba = vma->vm_pgoff;
  2439. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2440. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2441. zba = details->first_index;
  2442. if (zba < vba)
  2443. zba = vba;
  2444. zea = details->last_index;
  2445. if (zea > vea)
  2446. zea = vea;
  2447. unmap_mapping_range_vma(vma,
  2448. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2449. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2450. details);
  2451. }
  2452. }
  2453. static inline void unmap_mapping_range_list(struct list_head *head,
  2454. struct zap_details *details)
  2455. {
  2456. struct vm_area_struct *vma;
  2457. /*
  2458. * In nonlinear VMAs there is no correspondence between virtual address
  2459. * offset and file offset. So we must perform an exhaustive search
  2460. * across *all* the pages in each nonlinear VMA, not just the pages
  2461. * whose virtual address lies outside the file truncation point.
  2462. */
  2463. list_for_each_entry(vma, head, shared.vm_set.list) {
  2464. details->nonlinear_vma = vma;
  2465. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2466. }
  2467. }
  2468. /**
  2469. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2470. * @mapping: the address space containing mmaps to be unmapped.
  2471. * @holebegin: byte in first page to unmap, relative to the start of
  2472. * the underlying file. This will be rounded down to a PAGE_SIZE
  2473. * boundary. Note that this is different from truncate_pagecache(), which
  2474. * must keep the partial page. In contrast, we must get rid of
  2475. * partial pages.
  2476. * @holelen: size of prospective hole in bytes. This will be rounded
  2477. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2478. * end of the file.
  2479. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2480. * but 0 when invalidating pagecache, don't throw away private data.
  2481. */
  2482. void unmap_mapping_range(struct address_space *mapping,
  2483. loff_t const holebegin, loff_t const holelen, int even_cows)
  2484. {
  2485. struct zap_details details;
  2486. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2487. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2488. /* Check for overflow. */
  2489. if (sizeof(holelen) > sizeof(hlen)) {
  2490. long long holeend =
  2491. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2492. if (holeend & ~(long long)ULONG_MAX)
  2493. hlen = ULONG_MAX - hba + 1;
  2494. }
  2495. details.check_mapping = even_cows? NULL: mapping;
  2496. details.nonlinear_vma = NULL;
  2497. details.first_index = hba;
  2498. details.last_index = hba + hlen - 1;
  2499. if (details.last_index < details.first_index)
  2500. details.last_index = ULONG_MAX;
  2501. mutex_lock(&mapping->i_mmap_mutex);
  2502. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2503. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2504. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2505. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2506. mutex_unlock(&mapping->i_mmap_mutex);
  2507. }
  2508. EXPORT_SYMBOL(unmap_mapping_range);
  2509. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2510. {
  2511. struct address_space *mapping = inode->i_mapping;
  2512. /*
  2513. * If the underlying filesystem is not going to provide
  2514. * a way to truncate a range of blocks (punch a hole) -
  2515. * we should return failure right now.
  2516. */
  2517. if (!inode->i_op->truncate_range)
  2518. return -ENOSYS;
  2519. mutex_lock(&inode->i_mutex);
  2520. down_write(&inode->i_alloc_sem);
  2521. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2522. truncate_inode_pages_range(mapping, offset, end);
  2523. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2524. inode->i_op->truncate_range(inode, offset, end);
  2525. up_write(&inode->i_alloc_sem);
  2526. mutex_unlock(&inode->i_mutex);
  2527. return 0;
  2528. }
  2529. /*
  2530. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2531. * but allow concurrent faults), and pte mapped but not yet locked.
  2532. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2533. */
  2534. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2535. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2536. unsigned int flags, pte_t orig_pte)
  2537. {
  2538. spinlock_t *ptl;
  2539. struct page *page, *swapcache = NULL;
  2540. swp_entry_t entry;
  2541. pte_t pte;
  2542. int locked;
  2543. struct mem_cgroup *ptr;
  2544. int exclusive = 0;
  2545. int ret = 0;
  2546. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2547. goto out;
  2548. entry = pte_to_swp_entry(orig_pte);
  2549. if (unlikely(non_swap_entry(entry))) {
  2550. if (is_migration_entry(entry)) {
  2551. migration_entry_wait(mm, pmd, address);
  2552. } else if (is_hwpoison_entry(entry)) {
  2553. ret = VM_FAULT_HWPOISON;
  2554. } else {
  2555. print_bad_pte(vma, address, orig_pte, NULL);
  2556. ret = VM_FAULT_SIGBUS;
  2557. }
  2558. goto out;
  2559. }
  2560. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2561. page = lookup_swap_cache(entry);
  2562. if (!page) {
  2563. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2564. page = swapin_readahead(entry,
  2565. GFP_HIGHUSER_MOVABLE, vma, address);
  2566. if (!page) {
  2567. /*
  2568. * Back out if somebody else faulted in this pte
  2569. * while we released the pte lock.
  2570. */
  2571. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2572. if (likely(pte_same(*page_table, orig_pte)))
  2573. ret = VM_FAULT_OOM;
  2574. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2575. goto unlock;
  2576. }
  2577. /* Had to read the page from swap area: Major fault */
  2578. ret = VM_FAULT_MAJOR;
  2579. count_vm_event(PGMAJFAULT);
  2580. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2581. } else if (PageHWPoison(page)) {
  2582. /*
  2583. * hwpoisoned dirty swapcache pages are kept for killing
  2584. * owner processes (which may be unknown at hwpoison time)
  2585. */
  2586. ret = VM_FAULT_HWPOISON;
  2587. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2588. goto out_release;
  2589. }
  2590. locked = lock_page_or_retry(page, mm, flags);
  2591. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2592. if (!locked) {
  2593. ret |= VM_FAULT_RETRY;
  2594. goto out_release;
  2595. }
  2596. /*
  2597. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2598. * release the swapcache from under us. The page pin, and pte_same
  2599. * test below, are not enough to exclude that. Even if it is still
  2600. * swapcache, we need to check that the page's swap has not changed.
  2601. */
  2602. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2603. goto out_page;
  2604. if (ksm_might_need_to_copy(page, vma, address)) {
  2605. swapcache = page;
  2606. page = ksm_does_need_to_copy(page, vma, address);
  2607. if (unlikely(!page)) {
  2608. ret = VM_FAULT_OOM;
  2609. page = swapcache;
  2610. swapcache = NULL;
  2611. goto out_page;
  2612. }
  2613. }
  2614. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2615. ret = VM_FAULT_OOM;
  2616. goto out_page;
  2617. }
  2618. /*
  2619. * Back out if somebody else already faulted in this pte.
  2620. */
  2621. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2622. if (unlikely(!pte_same(*page_table, orig_pte)))
  2623. goto out_nomap;
  2624. if (unlikely(!PageUptodate(page))) {
  2625. ret = VM_FAULT_SIGBUS;
  2626. goto out_nomap;
  2627. }
  2628. /*
  2629. * The page isn't present yet, go ahead with the fault.
  2630. *
  2631. * Be careful about the sequence of operations here.
  2632. * To get its accounting right, reuse_swap_page() must be called
  2633. * while the page is counted on swap but not yet in mapcount i.e.
  2634. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2635. * must be called after the swap_free(), or it will never succeed.
  2636. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2637. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2638. * in page->private. In this case, a record in swap_cgroup is silently
  2639. * discarded at swap_free().
  2640. */
  2641. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2642. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2643. pte = mk_pte(page, vma->vm_page_prot);
  2644. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2645. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2646. flags &= ~FAULT_FLAG_WRITE;
  2647. ret |= VM_FAULT_WRITE;
  2648. exclusive = 1;
  2649. }
  2650. flush_icache_page(vma, page);
  2651. set_pte_at(mm, address, page_table, pte);
  2652. do_page_add_anon_rmap(page, vma, address, exclusive);
  2653. /* It's better to call commit-charge after rmap is established */
  2654. mem_cgroup_commit_charge_swapin(page, ptr);
  2655. swap_free(entry);
  2656. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2657. try_to_free_swap(page);
  2658. unlock_page(page);
  2659. if (swapcache) {
  2660. /*
  2661. * Hold the lock to avoid the swap entry to be reused
  2662. * until we take the PT lock for the pte_same() check
  2663. * (to avoid false positives from pte_same). For
  2664. * further safety release the lock after the swap_free
  2665. * so that the swap count won't change under a
  2666. * parallel locked swapcache.
  2667. */
  2668. unlock_page(swapcache);
  2669. page_cache_release(swapcache);
  2670. }
  2671. if (flags & FAULT_FLAG_WRITE) {
  2672. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2673. if (ret & VM_FAULT_ERROR)
  2674. ret &= VM_FAULT_ERROR;
  2675. goto out;
  2676. }
  2677. /* No need to invalidate - it was non-present before */
  2678. update_mmu_cache(vma, address, page_table);
  2679. unlock:
  2680. pte_unmap_unlock(page_table, ptl);
  2681. out:
  2682. return ret;
  2683. out_nomap:
  2684. mem_cgroup_cancel_charge_swapin(ptr);
  2685. pte_unmap_unlock(page_table, ptl);
  2686. out_page:
  2687. unlock_page(page);
  2688. out_release:
  2689. page_cache_release(page);
  2690. if (swapcache) {
  2691. unlock_page(swapcache);
  2692. page_cache_release(swapcache);
  2693. }
  2694. return ret;
  2695. }
  2696. /*
  2697. * This is like a special single-page "expand_{down|up}wards()",
  2698. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2699. * doesn't hit another vma.
  2700. */
  2701. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2702. {
  2703. address &= PAGE_MASK;
  2704. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2705. struct vm_area_struct *prev = vma->vm_prev;
  2706. /*
  2707. * Is there a mapping abutting this one below?
  2708. *
  2709. * That's only ok if it's the same stack mapping
  2710. * that has gotten split..
  2711. */
  2712. if (prev && prev->vm_end == address)
  2713. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2714. expand_downwards(vma, address - PAGE_SIZE);
  2715. }
  2716. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2717. struct vm_area_struct *next = vma->vm_next;
  2718. /* As VM_GROWSDOWN but s/below/above/ */
  2719. if (next && next->vm_start == address + PAGE_SIZE)
  2720. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2721. expand_upwards(vma, address + PAGE_SIZE);
  2722. }
  2723. return 0;
  2724. }
  2725. /*
  2726. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2727. * but allow concurrent faults), and pte mapped but not yet locked.
  2728. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2729. */
  2730. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2731. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2732. unsigned int flags)
  2733. {
  2734. struct page *page;
  2735. spinlock_t *ptl;
  2736. pte_t entry;
  2737. pte_unmap(page_table);
  2738. /* Check if we need to add a guard page to the stack */
  2739. if (check_stack_guard_page(vma, address) < 0)
  2740. return VM_FAULT_SIGBUS;
  2741. /* Use the zero-page for reads */
  2742. if (!(flags & FAULT_FLAG_WRITE)) {
  2743. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2744. vma->vm_page_prot));
  2745. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2746. if (!pte_none(*page_table))
  2747. goto unlock;
  2748. goto setpte;
  2749. }
  2750. /* Allocate our own private page. */
  2751. if (unlikely(anon_vma_prepare(vma)))
  2752. goto oom;
  2753. page = alloc_zeroed_user_highpage_movable(vma, address);
  2754. if (!page)
  2755. goto oom;
  2756. __SetPageUptodate(page);
  2757. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2758. goto oom_free_page;
  2759. entry = mk_pte(page, vma->vm_page_prot);
  2760. if (vma->vm_flags & VM_WRITE)
  2761. entry = pte_mkwrite(pte_mkdirty(entry));
  2762. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2763. if (!pte_none(*page_table))
  2764. goto release;
  2765. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2766. page_add_new_anon_rmap(page, vma, address);
  2767. setpte:
  2768. set_pte_at(mm, address, page_table, entry);
  2769. /* No need to invalidate - it was non-present before */
  2770. update_mmu_cache(vma, address, page_table);
  2771. unlock:
  2772. pte_unmap_unlock(page_table, ptl);
  2773. return 0;
  2774. release:
  2775. mem_cgroup_uncharge_page(page);
  2776. page_cache_release(page);
  2777. goto unlock;
  2778. oom_free_page:
  2779. page_cache_release(page);
  2780. oom:
  2781. return VM_FAULT_OOM;
  2782. }
  2783. /*
  2784. * __do_fault() tries to create a new page mapping. It aggressively
  2785. * tries to share with existing pages, but makes a separate copy if
  2786. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2787. * the next page fault.
  2788. *
  2789. * As this is called only for pages that do not currently exist, we
  2790. * do not need to flush old virtual caches or the TLB.
  2791. *
  2792. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2793. * but allow concurrent faults), and pte neither mapped nor locked.
  2794. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2795. */
  2796. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2797. unsigned long address, pmd_t *pmd,
  2798. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2799. {
  2800. pte_t *page_table;
  2801. spinlock_t *ptl;
  2802. struct page *page;
  2803. pte_t entry;
  2804. int anon = 0;
  2805. int charged = 0;
  2806. struct page *dirty_page = NULL;
  2807. struct vm_fault vmf;
  2808. int ret;
  2809. int page_mkwrite = 0;
  2810. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2811. vmf.pgoff = pgoff;
  2812. vmf.flags = flags;
  2813. vmf.page = NULL;
  2814. ret = vma->vm_ops->fault(vma, &vmf);
  2815. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2816. VM_FAULT_RETRY)))
  2817. return ret;
  2818. if (unlikely(PageHWPoison(vmf.page))) {
  2819. if (ret & VM_FAULT_LOCKED)
  2820. unlock_page(vmf.page);
  2821. return VM_FAULT_HWPOISON;
  2822. }
  2823. /*
  2824. * For consistency in subsequent calls, make the faulted page always
  2825. * locked.
  2826. */
  2827. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2828. lock_page(vmf.page);
  2829. else
  2830. VM_BUG_ON(!PageLocked(vmf.page));
  2831. /*
  2832. * Should we do an early C-O-W break?
  2833. */
  2834. page = vmf.page;
  2835. if (flags & FAULT_FLAG_WRITE) {
  2836. if (!(vma->vm_flags & VM_SHARED)) {
  2837. anon = 1;
  2838. if (unlikely(anon_vma_prepare(vma))) {
  2839. ret = VM_FAULT_OOM;
  2840. goto out;
  2841. }
  2842. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2843. vma, address);
  2844. if (!page) {
  2845. ret = VM_FAULT_OOM;
  2846. goto out;
  2847. }
  2848. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2849. ret = VM_FAULT_OOM;
  2850. page_cache_release(page);
  2851. goto out;
  2852. }
  2853. charged = 1;
  2854. copy_user_highpage(page, vmf.page, address, vma);
  2855. __SetPageUptodate(page);
  2856. } else {
  2857. /*
  2858. * If the page will be shareable, see if the backing
  2859. * address space wants to know that the page is about
  2860. * to become writable
  2861. */
  2862. if (vma->vm_ops->page_mkwrite) {
  2863. int tmp;
  2864. unlock_page(page);
  2865. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2866. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2867. if (unlikely(tmp &
  2868. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2869. ret = tmp;
  2870. goto unwritable_page;
  2871. }
  2872. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2873. lock_page(page);
  2874. if (!page->mapping) {
  2875. ret = 0; /* retry the fault */
  2876. unlock_page(page);
  2877. goto unwritable_page;
  2878. }
  2879. } else
  2880. VM_BUG_ON(!PageLocked(page));
  2881. page_mkwrite = 1;
  2882. }
  2883. }
  2884. }
  2885. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2886. /*
  2887. * This silly early PAGE_DIRTY setting removes a race
  2888. * due to the bad i386 page protection. But it's valid
  2889. * for other architectures too.
  2890. *
  2891. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2892. * an exclusive copy of the page, or this is a shared mapping,
  2893. * so we can make it writable and dirty to avoid having to
  2894. * handle that later.
  2895. */
  2896. /* Only go through if we didn't race with anybody else... */
  2897. if (likely(pte_same(*page_table, orig_pte))) {
  2898. flush_icache_page(vma, page);
  2899. entry = mk_pte(page, vma->vm_page_prot);
  2900. if (flags & FAULT_FLAG_WRITE)
  2901. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2902. if (anon) {
  2903. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2904. page_add_new_anon_rmap(page, vma, address);
  2905. } else {
  2906. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2907. page_add_file_rmap(page);
  2908. if (flags & FAULT_FLAG_WRITE) {
  2909. dirty_page = page;
  2910. get_page(dirty_page);
  2911. }
  2912. }
  2913. set_pte_at(mm, address, page_table, entry);
  2914. /* no need to invalidate: a not-present page won't be cached */
  2915. update_mmu_cache(vma, address, page_table);
  2916. } else {
  2917. if (charged)
  2918. mem_cgroup_uncharge_page(page);
  2919. if (anon)
  2920. page_cache_release(page);
  2921. else
  2922. anon = 1; /* no anon but release faulted_page */
  2923. }
  2924. pte_unmap_unlock(page_table, ptl);
  2925. out:
  2926. if (dirty_page) {
  2927. struct address_space *mapping = page->mapping;
  2928. if (set_page_dirty(dirty_page))
  2929. page_mkwrite = 1;
  2930. unlock_page(dirty_page);
  2931. put_page(dirty_page);
  2932. if (page_mkwrite && mapping) {
  2933. /*
  2934. * Some device drivers do not set page.mapping but still
  2935. * dirty their pages
  2936. */
  2937. balance_dirty_pages_ratelimited(mapping);
  2938. }
  2939. /* file_update_time outside page_lock */
  2940. if (vma->vm_file)
  2941. file_update_time(vma->vm_file);
  2942. } else {
  2943. unlock_page(vmf.page);
  2944. if (anon)
  2945. page_cache_release(vmf.page);
  2946. }
  2947. return ret;
  2948. unwritable_page:
  2949. page_cache_release(page);
  2950. return ret;
  2951. }
  2952. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2953. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2954. unsigned int flags, pte_t orig_pte)
  2955. {
  2956. pgoff_t pgoff = (((address & PAGE_MASK)
  2957. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2958. pte_unmap(page_table);
  2959. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2960. }
  2961. /*
  2962. * Fault of a previously existing named mapping. Repopulate the pte
  2963. * from the encoded file_pte if possible. This enables swappable
  2964. * nonlinear vmas.
  2965. *
  2966. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2967. * but allow concurrent faults), and pte mapped but not yet locked.
  2968. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2969. */
  2970. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2971. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2972. unsigned int flags, pte_t orig_pte)
  2973. {
  2974. pgoff_t pgoff;
  2975. flags |= FAULT_FLAG_NONLINEAR;
  2976. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2977. return 0;
  2978. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2979. /*
  2980. * Page table corrupted: show pte and kill process.
  2981. */
  2982. print_bad_pte(vma, address, orig_pte, NULL);
  2983. return VM_FAULT_SIGBUS;
  2984. }
  2985. pgoff = pte_to_pgoff(orig_pte);
  2986. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2987. }
  2988. /*
  2989. * These routines also need to handle stuff like marking pages dirty
  2990. * and/or accessed for architectures that don't do it in hardware (most
  2991. * RISC architectures). The early dirtying is also good on the i386.
  2992. *
  2993. * There is also a hook called "update_mmu_cache()" that architectures
  2994. * with external mmu caches can use to update those (ie the Sparc or
  2995. * PowerPC hashed page tables that act as extended TLBs).
  2996. *
  2997. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2998. * but allow concurrent faults), and pte mapped but not yet locked.
  2999. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3000. */
  3001. int handle_pte_fault(struct mm_struct *mm,
  3002. struct vm_area_struct *vma, unsigned long address,
  3003. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3004. {
  3005. pte_t entry;
  3006. spinlock_t *ptl;
  3007. entry = *pte;
  3008. if (!pte_present(entry)) {
  3009. if (pte_none(entry)) {
  3010. if (vma->vm_ops) {
  3011. if (likely(vma->vm_ops->fault))
  3012. return do_linear_fault(mm, vma, address,
  3013. pte, pmd, flags, entry);
  3014. }
  3015. return do_anonymous_page(mm, vma, address,
  3016. pte, pmd, flags);
  3017. }
  3018. if (pte_file(entry))
  3019. return do_nonlinear_fault(mm, vma, address,
  3020. pte, pmd, flags, entry);
  3021. return do_swap_page(mm, vma, address,
  3022. pte, pmd, flags, entry);
  3023. }
  3024. ptl = pte_lockptr(mm, pmd);
  3025. spin_lock(ptl);
  3026. if (unlikely(!pte_same(*pte, entry)))
  3027. goto unlock;
  3028. if (flags & FAULT_FLAG_WRITE) {
  3029. if (!pte_write(entry))
  3030. return do_wp_page(mm, vma, address,
  3031. pte, pmd, ptl, entry);
  3032. entry = pte_mkdirty(entry);
  3033. }
  3034. entry = pte_mkyoung(entry);
  3035. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3036. update_mmu_cache(vma, address, pte);
  3037. } else {
  3038. /*
  3039. * This is needed only for protection faults but the arch code
  3040. * is not yet telling us if this is a protection fault or not.
  3041. * This still avoids useless tlb flushes for .text page faults
  3042. * with threads.
  3043. */
  3044. if (flags & FAULT_FLAG_WRITE)
  3045. flush_tlb_fix_spurious_fault(vma, address);
  3046. }
  3047. unlock:
  3048. pte_unmap_unlock(pte, ptl);
  3049. return 0;
  3050. }
  3051. /*
  3052. * By the time we get here, we already hold the mm semaphore
  3053. */
  3054. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3055. unsigned long address, unsigned int flags)
  3056. {
  3057. pgd_t *pgd;
  3058. pud_t *pud;
  3059. pmd_t *pmd;
  3060. pte_t *pte;
  3061. __set_current_state(TASK_RUNNING);
  3062. count_vm_event(PGFAULT);
  3063. mem_cgroup_count_vm_event(mm, PGFAULT);
  3064. /* do counter updates before entering really critical section. */
  3065. check_sync_rss_stat(current);
  3066. if (unlikely(is_vm_hugetlb_page(vma)))
  3067. return hugetlb_fault(mm, vma, address, flags);
  3068. pgd = pgd_offset(mm, address);
  3069. pud = pud_alloc(mm, pgd, address);
  3070. if (!pud)
  3071. return VM_FAULT_OOM;
  3072. pmd = pmd_alloc(mm, pud, address);
  3073. if (!pmd)
  3074. return VM_FAULT_OOM;
  3075. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3076. if (!vma->vm_ops)
  3077. return do_huge_pmd_anonymous_page(mm, vma, address,
  3078. pmd, flags);
  3079. } else {
  3080. pmd_t orig_pmd = *pmd;
  3081. barrier();
  3082. if (pmd_trans_huge(orig_pmd)) {
  3083. if (flags & FAULT_FLAG_WRITE &&
  3084. !pmd_write(orig_pmd) &&
  3085. !pmd_trans_splitting(orig_pmd))
  3086. return do_huge_pmd_wp_page(mm, vma, address,
  3087. pmd, orig_pmd);
  3088. return 0;
  3089. }
  3090. }
  3091. /*
  3092. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3093. * run pte_offset_map on the pmd, if an huge pmd could
  3094. * materialize from under us from a different thread.
  3095. */
  3096. if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
  3097. return VM_FAULT_OOM;
  3098. /* if an huge pmd materialized from under us just retry later */
  3099. if (unlikely(pmd_trans_huge(*pmd)))
  3100. return 0;
  3101. /*
  3102. * A regular pmd is established and it can't morph into a huge pmd
  3103. * from under us anymore at this point because we hold the mmap_sem
  3104. * read mode and khugepaged takes it in write mode. So now it's
  3105. * safe to run pte_offset_map().
  3106. */
  3107. pte = pte_offset_map(pmd, address);
  3108. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3109. }
  3110. #ifndef __PAGETABLE_PUD_FOLDED
  3111. /*
  3112. * Allocate page upper directory.
  3113. * We've already handled the fast-path in-line.
  3114. */
  3115. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3116. {
  3117. pud_t *new = pud_alloc_one(mm, address);
  3118. if (!new)
  3119. return -ENOMEM;
  3120. smp_wmb(); /* See comment in __pte_alloc */
  3121. spin_lock(&mm->page_table_lock);
  3122. if (pgd_present(*pgd)) /* Another has populated it */
  3123. pud_free(mm, new);
  3124. else
  3125. pgd_populate(mm, pgd, new);
  3126. spin_unlock(&mm->page_table_lock);
  3127. return 0;
  3128. }
  3129. #endif /* __PAGETABLE_PUD_FOLDED */
  3130. #ifndef __PAGETABLE_PMD_FOLDED
  3131. /*
  3132. * Allocate page middle directory.
  3133. * We've already handled the fast-path in-line.
  3134. */
  3135. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3136. {
  3137. pmd_t *new = pmd_alloc_one(mm, address);
  3138. if (!new)
  3139. return -ENOMEM;
  3140. smp_wmb(); /* See comment in __pte_alloc */
  3141. spin_lock(&mm->page_table_lock);
  3142. #ifndef __ARCH_HAS_4LEVEL_HACK
  3143. if (pud_present(*pud)) /* Another has populated it */
  3144. pmd_free(mm, new);
  3145. else
  3146. pud_populate(mm, pud, new);
  3147. #else
  3148. if (pgd_present(*pud)) /* Another has populated it */
  3149. pmd_free(mm, new);
  3150. else
  3151. pgd_populate(mm, pud, new);
  3152. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3153. spin_unlock(&mm->page_table_lock);
  3154. return 0;
  3155. }
  3156. #endif /* __PAGETABLE_PMD_FOLDED */
  3157. int make_pages_present(unsigned long addr, unsigned long end)
  3158. {
  3159. int ret, len, write;
  3160. struct vm_area_struct * vma;
  3161. vma = find_vma(current->mm, addr);
  3162. if (!vma)
  3163. return -ENOMEM;
  3164. /*
  3165. * We want to touch writable mappings with a write fault in order
  3166. * to break COW, except for shared mappings because these don't COW
  3167. * and we would not want to dirty them for nothing.
  3168. */
  3169. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3170. BUG_ON(addr >= end);
  3171. BUG_ON(end > vma->vm_end);
  3172. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3173. ret = get_user_pages(current, current->mm, addr,
  3174. len, write, 0, NULL, NULL);
  3175. if (ret < 0)
  3176. return ret;
  3177. return ret == len ? 0 : -EFAULT;
  3178. }
  3179. #if !defined(__HAVE_ARCH_GATE_AREA)
  3180. #if defined(AT_SYSINFO_EHDR)
  3181. static struct vm_area_struct gate_vma;
  3182. static int __init gate_vma_init(void)
  3183. {
  3184. gate_vma.vm_mm = NULL;
  3185. gate_vma.vm_start = FIXADDR_USER_START;
  3186. gate_vma.vm_end = FIXADDR_USER_END;
  3187. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3188. gate_vma.vm_page_prot = __P101;
  3189. /*
  3190. * Make sure the vDSO gets into every core dump.
  3191. * Dumping its contents makes post-mortem fully interpretable later
  3192. * without matching up the same kernel and hardware config to see
  3193. * what PC values meant.
  3194. */
  3195. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  3196. return 0;
  3197. }
  3198. __initcall(gate_vma_init);
  3199. #endif
  3200. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3201. {
  3202. #ifdef AT_SYSINFO_EHDR
  3203. return &gate_vma;
  3204. #else
  3205. return NULL;
  3206. #endif
  3207. }
  3208. int in_gate_area_no_mm(unsigned long addr)
  3209. {
  3210. #ifdef AT_SYSINFO_EHDR
  3211. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3212. return 1;
  3213. #endif
  3214. return 0;
  3215. }
  3216. #endif /* __HAVE_ARCH_GATE_AREA */
  3217. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3218. pte_t **ptepp, spinlock_t **ptlp)
  3219. {
  3220. pgd_t *pgd;
  3221. pud_t *pud;
  3222. pmd_t *pmd;
  3223. pte_t *ptep;
  3224. pgd = pgd_offset(mm, address);
  3225. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3226. goto out;
  3227. pud = pud_offset(pgd, address);
  3228. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3229. goto out;
  3230. pmd = pmd_offset(pud, address);
  3231. VM_BUG_ON(pmd_trans_huge(*pmd));
  3232. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3233. goto out;
  3234. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3235. if (pmd_huge(*pmd))
  3236. goto out;
  3237. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3238. if (!ptep)
  3239. goto out;
  3240. if (!pte_present(*ptep))
  3241. goto unlock;
  3242. *ptepp = ptep;
  3243. return 0;
  3244. unlock:
  3245. pte_unmap_unlock(ptep, *ptlp);
  3246. out:
  3247. return -EINVAL;
  3248. }
  3249. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3250. pte_t **ptepp, spinlock_t **ptlp)
  3251. {
  3252. int res;
  3253. /* (void) is needed to make gcc happy */
  3254. (void) __cond_lock(*ptlp,
  3255. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3256. return res;
  3257. }
  3258. /**
  3259. * follow_pfn - look up PFN at a user virtual address
  3260. * @vma: memory mapping
  3261. * @address: user virtual address
  3262. * @pfn: location to store found PFN
  3263. *
  3264. * Only IO mappings and raw PFN mappings are allowed.
  3265. *
  3266. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3267. */
  3268. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3269. unsigned long *pfn)
  3270. {
  3271. int ret = -EINVAL;
  3272. spinlock_t *ptl;
  3273. pte_t *ptep;
  3274. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3275. return ret;
  3276. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3277. if (ret)
  3278. return ret;
  3279. *pfn = pte_pfn(*ptep);
  3280. pte_unmap_unlock(ptep, ptl);
  3281. return 0;
  3282. }
  3283. EXPORT_SYMBOL(follow_pfn);
  3284. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3285. int follow_phys(struct vm_area_struct *vma,
  3286. unsigned long address, unsigned int flags,
  3287. unsigned long *prot, resource_size_t *phys)
  3288. {
  3289. int ret = -EINVAL;
  3290. pte_t *ptep, pte;
  3291. spinlock_t *ptl;
  3292. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3293. goto out;
  3294. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3295. goto out;
  3296. pte = *ptep;
  3297. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3298. goto unlock;
  3299. *prot = pgprot_val(pte_pgprot(pte));
  3300. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3301. ret = 0;
  3302. unlock:
  3303. pte_unmap_unlock(ptep, ptl);
  3304. out:
  3305. return ret;
  3306. }
  3307. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3308. void *buf, int len, int write)
  3309. {
  3310. resource_size_t phys_addr;
  3311. unsigned long prot = 0;
  3312. void __iomem *maddr;
  3313. int offset = addr & (PAGE_SIZE-1);
  3314. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3315. return -EINVAL;
  3316. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3317. if (write)
  3318. memcpy_toio(maddr + offset, buf, len);
  3319. else
  3320. memcpy_fromio(buf, maddr + offset, len);
  3321. iounmap(maddr);
  3322. return len;
  3323. }
  3324. #endif
  3325. /*
  3326. * Access another process' address space as given in mm. If non-NULL, use the
  3327. * given task for page fault accounting.
  3328. */
  3329. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3330. unsigned long addr, void *buf, int len, int write)
  3331. {
  3332. struct vm_area_struct *vma;
  3333. void *old_buf = buf;
  3334. down_read(&mm->mmap_sem);
  3335. /* ignore errors, just check how much was successfully transferred */
  3336. while (len) {
  3337. int bytes, ret, offset;
  3338. void *maddr;
  3339. struct page *page = NULL;
  3340. ret = get_user_pages(tsk, mm, addr, 1,
  3341. write, 1, &page, &vma);
  3342. if (ret <= 0) {
  3343. /*
  3344. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3345. * we can access using slightly different code.
  3346. */
  3347. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3348. vma = find_vma(mm, addr);
  3349. if (!vma || vma->vm_start > addr)
  3350. break;
  3351. if (vma->vm_ops && vma->vm_ops->access)
  3352. ret = vma->vm_ops->access(vma, addr, buf,
  3353. len, write);
  3354. if (ret <= 0)
  3355. #endif
  3356. break;
  3357. bytes = ret;
  3358. } else {
  3359. bytes = len;
  3360. offset = addr & (PAGE_SIZE-1);
  3361. if (bytes > PAGE_SIZE-offset)
  3362. bytes = PAGE_SIZE-offset;
  3363. maddr = kmap(page);
  3364. if (write) {
  3365. copy_to_user_page(vma, page, addr,
  3366. maddr + offset, buf, bytes);
  3367. set_page_dirty_lock(page);
  3368. } else {
  3369. copy_from_user_page(vma, page, addr,
  3370. buf, maddr + offset, bytes);
  3371. }
  3372. kunmap(page);
  3373. page_cache_release(page);
  3374. }
  3375. len -= bytes;
  3376. buf += bytes;
  3377. addr += bytes;
  3378. }
  3379. up_read(&mm->mmap_sem);
  3380. return buf - old_buf;
  3381. }
  3382. /**
  3383. * access_remote_vm - access another process' address space
  3384. * @mm: the mm_struct of the target address space
  3385. * @addr: start address to access
  3386. * @buf: source or destination buffer
  3387. * @len: number of bytes to transfer
  3388. * @write: whether the access is a write
  3389. *
  3390. * The caller must hold a reference on @mm.
  3391. */
  3392. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3393. void *buf, int len, int write)
  3394. {
  3395. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3396. }
  3397. /*
  3398. * Access another process' address space.
  3399. * Source/target buffer must be kernel space,
  3400. * Do not walk the page table directly, use get_user_pages
  3401. */
  3402. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3403. void *buf, int len, int write)
  3404. {
  3405. struct mm_struct *mm;
  3406. int ret;
  3407. mm = get_task_mm(tsk);
  3408. if (!mm)
  3409. return 0;
  3410. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3411. mmput(mm);
  3412. return ret;
  3413. }
  3414. /*
  3415. * Print the name of a VMA.
  3416. */
  3417. void print_vma_addr(char *prefix, unsigned long ip)
  3418. {
  3419. struct mm_struct *mm = current->mm;
  3420. struct vm_area_struct *vma;
  3421. /*
  3422. * Do not print if we are in atomic
  3423. * contexts (in exception stacks, etc.):
  3424. */
  3425. if (preempt_count())
  3426. return;
  3427. down_read(&mm->mmap_sem);
  3428. vma = find_vma(mm, ip);
  3429. if (vma && vma->vm_file) {
  3430. struct file *f = vma->vm_file;
  3431. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3432. if (buf) {
  3433. char *p, *s;
  3434. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3435. if (IS_ERR(p))
  3436. p = "?";
  3437. s = strrchr(p, '/');
  3438. if (s)
  3439. p = s+1;
  3440. printk("%s%s[%lx+%lx]", prefix, p,
  3441. vma->vm_start,
  3442. vma->vm_end - vma->vm_start);
  3443. free_page((unsigned long)buf);
  3444. }
  3445. }
  3446. up_read(&current->mm->mmap_sem);
  3447. }
  3448. #ifdef CONFIG_PROVE_LOCKING
  3449. void might_fault(void)
  3450. {
  3451. /*
  3452. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3453. * holding the mmap_sem, this is safe because kernel memory doesn't
  3454. * get paged out, therefore we'll never actually fault, and the
  3455. * below annotations will generate false positives.
  3456. */
  3457. if (segment_eq(get_fs(), KERNEL_DS))
  3458. return;
  3459. might_sleep();
  3460. /*
  3461. * it would be nicer only to annotate paths which are not under
  3462. * pagefault_disable, however that requires a larger audit and
  3463. * providing helpers like get_user_atomic.
  3464. */
  3465. if (!in_atomic() && current->mm)
  3466. might_lock_read(&current->mm->mmap_sem);
  3467. }
  3468. EXPORT_SYMBOL(might_fault);
  3469. #endif
  3470. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3471. static void clear_gigantic_page(struct page *page,
  3472. unsigned long addr,
  3473. unsigned int pages_per_huge_page)
  3474. {
  3475. int i;
  3476. struct page *p = page;
  3477. might_sleep();
  3478. for (i = 0; i < pages_per_huge_page;
  3479. i++, p = mem_map_next(p, page, i)) {
  3480. cond_resched();
  3481. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3482. }
  3483. }
  3484. void clear_huge_page(struct page *page,
  3485. unsigned long addr, unsigned int pages_per_huge_page)
  3486. {
  3487. int i;
  3488. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3489. clear_gigantic_page(page, addr, pages_per_huge_page);
  3490. return;
  3491. }
  3492. might_sleep();
  3493. for (i = 0; i < pages_per_huge_page; i++) {
  3494. cond_resched();
  3495. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3496. }
  3497. }
  3498. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3499. unsigned long addr,
  3500. struct vm_area_struct *vma,
  3501. unsigned int pages_per_huge_page)
  3502. {
  3503. int i;
  3504. struct page *dst_base = dst;
  3505. struct page *src_base = src;
  3506. for (i = 0; i < pages_per_huge_page; ) {
  3507. cond_resched();
  3508. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3509. i++;
  3510. dst = mem_map_next(dst, dst_base, i);
  3511. src = mem_map_next(src, src_base, i);
  3512. }
  3513. }
  3514. void copy_user_huge_page(struct page *dst, struct page *src,
  3515. unsigned long addr, struct vm_area_struct *vma,
  3516. unsigned int pages_per_huge_page)
  3517. {
  3518. int i;
  3519. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3520. copy_user_gigantic_page(dst, src, addr, vma,
  3521. pages_per_huge_page);
  3522. return;
  3523. }
  3524. might_sleep();
  3525. for (i = 0; i < pages_per_huge_page; i++) {
  3526. cond_resched();
  3527. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3528. }
  3529. }
  3530. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */