sched_rt.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_RT_GROUP_SCHED
  6. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  7. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  8. {
  9. #ifdef CONFIG_SCHED_DEBUG
  10. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  11. #endif
  12. return container_of(rt_se, struct task_struct, rt);
  13. }
  14. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  15. {
  16. return rt_rq->rq;
  17. }
  18. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  19. {
  20. return rt_se->rt_rq;
  21. }
  22. #else /* CONFIG_RT_GROUP_SCHED */
  23. #define rt_entity_is_task(rt_se) (1)
  24. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  25. {
  26. return container_of(rt_se, struct task_struct, rt);
  27. }
  28. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  29. {
  30. return container_of(rt_rq, struct rq, rt);
  31. }
  32. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  33. {
  34. struct task_struct *p = rt_task_of(rt_se);
  35. struct rq *rq = task_rq(p);
  36. return &rq->rt;
  37. }
  38. #endif /* CONFIG_RT_GROUP_SCHED */
  39. #ifdef CONFIG_SMP
  40. static inline int rt_overloaded(struct rq *rq)
  41. {
  42. return atomic_read(&rq->rd->rto_count);
  43. }
  44. static inline void rt_set_overload(struct rq *rq)
  45. {
  46. if (!rq->online)
  47. return;
  48. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  49. /*
  50. * Make sure the mask is visible before we set
  51. * the overload count. That is checked to determine
  52. * if we should look at the mask. It would be a shame
  53. * if we looked at the mask, but the mask was not
  54. * updated yet.
  55. */
  56. wmb();
  57. atomic_inc(&rq->rd->rto_count);
  58. }
  59. static inline void rt_clear_overload(struct rq *rq)
  60. {
  61. if (!rq->online)
  62. return;
  63. /* the order here really doesn't matter */
  64. atomic_dec(&rq->rd->rto_count);
  65. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  66. }
  67. static void update_rt_migration(struct rt_rq *rt_rq)
  68. {
  69. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  70. if (!rt_rq->overloaded) {
  71. rt_set_overload(rq_of_rt_rq(rt_rq));
  72. rt_rq->overloaded = 1;
  73. }
  74. } else if (rt_rq->overloaded) {
  75. rt_clear_overload(rq_of_rt_rq(rt_rq));
  76. rt_rq->overloaded = 0;
  77. }
  78. }
  79. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  80. {
  81. if (!rt_entity_is_task(rt_se))
  82. return;
  83. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  84. rt_rq->rt_nr_total++;
  85. if (rt_se->nr_cpus_allowed > 1)
  86. rt_rq->rt_nr_migratory++;
  87. update_rt_migration(rt_rq);
  88. }
  89. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  90. {
  91. if (!rt_entity_is_task(rt_se))
  92. return;
  93. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  94. rt_rq->rt_nr_total--;
  95. if (rt_se->nr_cpus_allowed > 1)
  96. rt_rq->rt_nr_migratory--;
  97. update_rt_migration(rt_rq);
  98. }
  99. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  100. {
  101. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  102. plist_node_init(&p->pushable_tasks, p->prio);
  103. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  104. }
  105. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  106. {
  107. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  108. }
  109. static inline int has_pushable_tasks(struct rq *rq)
  110. {
  111. return !plist_head_empty(&rq->rt.pushable_tasks);
  112. }
  113. #else
  114. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  115. {
  116. }
  117. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  118. {
  119. }
  120. static inline
  121. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  122. {
  123. }
  124. static inline
  125. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  126. {
  127. }
  128. #endif /* CONFIG_SMP */
  129. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  130. {
  131. return !list_empty(&rt_se->run_list);
  132. }
  133. #ifdef CONFIG_RT_GROUP_SCHED
  134. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  135. {
  136. if (!rt_rq->tg)
  137. return RUNTIME_INF;
  138. return rt_rq->rt_runtime;
  139. }
  140. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  141. {
  142. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  143. }
  144. typedef struct task_group *rt_rq_iter_t;
  145. #define for_each_rt_rq(rt_rq, iter, rq) \
  146. for (iter = list_entry_rcu(task_groups.next, typeof(*iter), list); \
  147. (&iter->list != &task_groups) && \
  148. (rt_rq = iter->rt_rq[cpu_of(rq)]); \
  149. iter = list_entry_rcu(iter->list.next, typeof(*iter), list))
  150. static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
  151. {
  152. list_add_rcu(&rt_rq->leaf_rt_rq_list,
  153. &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
  154. }
  155. static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
  156. {
  157. list_del_rcu(&rt_rq->leaf_rt_rq_list);
  158. }
  159. #define for_each_leaf_rt_rq(rt_rq, rq) \
  160. list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  161. #define for_each_sched_rt_entity(rt_se) \
  162. for (; rt_se; rt_se = rt_se->parent)
  163. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  164. {
  165. return rt_se->my_q;
  166. }
  167. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
  168. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  169. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  170. {
  171. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  172. struct sched_rt_entity *rt_se;
  173. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  174. rt_se = rt_rq->tg->rt_se[cpu];
  175. if (rt_rq->rt_nr_running) {
  176. if (rt_se && !on_rt_rq(rt_se))
  177. enqueue_rt_entity(rt_se, false);
  178. if (rt_rq->highest_prio.curr < curr->prio)
  179. resched_task(curr);
  180. }
  181. }
  182. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  183. {
  184. struct sched_rt_entity *rt_se;
  185. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  186. rt_se = rt_rq->tg->rt_se[cpu];
  187. if (rt_se && on_rt_rq(rt_se))
  188. dequeue_rt_entity(rt_se);
  189. }
  190. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  191. {
  192. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  193. }
  194. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  195. {
  196. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  197. struct task_struct *p;
  198. if (rt_rq)
  199. return !!rt_rq->rt_nr_boosted;
  200. p = rt_task_of(rt_se);
  201. return p->prio != p->normal_prio;
  202. }
  203. #ifdef CONFIG_SMP
  204. static inline const struct cpumask *sched_rt_period_mask(void)
  205. {
  206. return cpu_rq(smp_processor_id())->rd->span;
  207. }
  208. #else
  209. static inline const struct cpumask *sched_rt_period_mask(void)
  210. {
  211. return cpu_online_mask;
  212. }
  213. #endif
  214. static inline
  215. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  216. {
  217. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  218. }
  219. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  220. {
  221. return &rt_rq->tg->rt_bandwidth;
  222. }
  223. #else /* !CONFIG_RT_GROUP_SCHED */
  224. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  225. {
  226. return rt_rq->rt_runtime;
  227. }
  228. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  229. {
  230. return ktime_to_ns(def_rt_bandwidth.rt_period);
  231. }
  232. typedef struct rt_rq *rt_rq_iter_t;
  233. #define for_each_rt_rq(rt_rq, iter, rq) \
  234. for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  235. static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
  236. {
  237. }
  238. static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
  239. {
  240. }
  241. #define for_each_leaf_rt_rq(rt_rq, rq) \
  242. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  243. #define for_each_sched_rt_entity(rt_se) \
  244. for (; rt_se; rt_se = NULL)
  245. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  246. {
  247. return NULL;
  248. }
  249. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  250. {
  251. if (rt_rq->rt_nr_running)
  252. resched_task(rq_of_rt_rq(rt_rq)->curr);
  253. }
  254. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  255. {
  256. }
  257. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  258. {
  259. return rt_rq->rt_throttled;
  260. }
  261. static inline const struct cpumask *sched_rt_period_mask(void)
  262. {
  263. return cpu_online_mask;
  264. }
  265. static inline
  266. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  267. {
  268. return &cpu_rq(cpu)->rt;
  269. }
  270. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  271. {
  272. return &def_rt_bandwidth;
  273. }
  274. #endif /* CONFIG_RT_GROUP_SCHED */
  275. #ifdef CONFIG_SMP
  276. /*
  277. * We ran out of runtime, see if we can borrow some from our neighbours.
  278. */
  279. static int do_balance_runtime(struct rt_rq *rt_rq)
  280. {
  281. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  282. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  283. int i, weight, more = 0;
  284. u64 rt_period;
  285. weight = cpumask_weight(rd->span);
  286. raw_spin_lock(&rt_b->rt_runtime_lock);
  287. rt_period = ktime_to_ns(rt_b->rt_period);
  288. for_each_cpu(i, rd->span) {
  289. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  290. s64 diff;
  291. if (iter == rt_rq)
  292. continue;
  293. raw_spin_lock(&iter->rt_runtime_lock);
  294. /*
  295. * Either all rqs have inf runtime and there's nothing to steal
  296. * or __disable_runtime() below sets a specific rq to inf to
  297. * indicate its been disabled and disalow stealing.
  298. */
  299. if (iter->rt_runtime == RUNTIME_INF)
  300. goto next;
  301. /*
  302. * From runqueues with spare time, take 1/n part of their
  303. * spare time, but no more than our period.
  304. */
  305. diff = iter->rt_runtime - iter->rt_time;
  306. if (diff > 0) {
  307. diff = div_u64((u64)diff, weight);
  308. if (rt_rq->rt_runtime + diff > rt_period)
  309. diff = rt_period - rt_rq->rt_runtime;
  310. iter->rt_runtime -= diff;
  311. rt_rq->rt_runtime += diff;
  312. more = 1;
  313. if (rt_rq->rt_runtime == rt_period) {
  314. raw_spin_unlock(&iter->rt_runtime_lock);
  315. break;
  316. }
  317. }
  318. next:
  319. raw_spin_unlock(&iter->rt_runtime_lock);
  320. }
  321. raw_spin_unlock(&rt_b->rt_runtime_lock);
  322. return more;
  323. }
  324. /*
  325. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  326. */
  327. static void __disable_runtime(struct rq *rq)
  328. {
  329. struct root_domain *rd = rq->rd;
  330. rt_rq_iter_t iter;
  331. struct rt_rq *rt_rq;
  332. if (unlikely(!scheduler_running))
  333. return;
  334. for_each_rt_rq(rt_rq, iter, rq) {
  335. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  336. s64 want;
  337. int i;
  338. raw_spin_lock(&rt_b->rt_runtime_lock);
  339. raw_spin_lock(&rt_rq->rt_runtime_lock);
  340. /*
  341. * Either we're all inf and nobody needs to borrow, or we're
  342. * already disabled and thus have nothing to do, or we have
  343. * exactly the right amount of runtime to take out.
  344. */
  345. if (rt_rq->rt_runtime == RUNTIME_INF ||
  346. rt_rq->rt_runtime == rt_b->rt_runtime)
  347. goto balanced;
  348. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  349. /*
  350. * Calculate the difference between what we started out with
  351. * and what we current have, that's the amount of runtime
  352. * we lend and now have to reclaim.
  353. */
  354. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  355. /*
  356. * Greedy reclaim, take back as much as we can.
  357. */
  358. for_each_cpu(i, rd->span) {
  359. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  360. s64 diff;
  361. /*
  362. * Can't reclaim from ourselves or disabled runqueues.
  363. */
  364. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  365. continue;
  366. raw_spin_lock(&iter->rt_runtime_lock);
  367. if (want > 0) {
  368. diff = min_t(s64, iter->rt_runtime, want);
  369. iter->rt_runtime -= diff;
  370. want -= diff;
  371. } else {
  372. iter->rt_runtime -= want;
  373. want -= want;
  374. }
  375. raw_spin_unlock(&iter->rt_runtime_lock);
  376. if (!want)
  377. break;
  378. }
  379. raw_spin_lock(&rt_rq->rt_runtime_lock);
  380. /*
  381. * We cannot be left wanting - that would mean some runtime
  382. * leaked out of the system.
  383. */
  384. BUG_ON(want);
  385. balanced:
  386. /*
  387. * Disable all the borrow logic by pretending we have inf
  388. * runtime - in which case borrowing doesn't make sense.
  389. */
  390. rt_rq->rt_runtime = RUNTIME_INF;
  391. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  392. raw_spin_unlock(&rt_b->rt_runtime_lock);
  393. }
  394. }
  395. static void disable_runtime(struct rq *rq)
  396. {
  397. unsigned long flags;
  398. raw_spin_lock_irqsave(&rq->lock, flags);
  399. __disable_runtime(rq);
  400. raw_spin_unlock_irqrestore(&rq->lock, flags);
  401. }
  402. static void __enable_runtime(struct rq *rq)
  403. {
  404. rt_rq_iter_t iter;
  405. struct rt_rq *rt_rq;
  406. if (unlikely(!scheduler_running))
  407. return;
  408. /*
  409. * Reset each runqueue's bandwidth settings
  410. */
  411. for_each_rt_rq(rt_rq, iter, rq) {
  412. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  413. raw_spin_lock(&rt_b->rt_runtime_lock);
  414. raw_spin_lock(&rt_rq->rt_runtime_lock);
  415. rt_rq->rt_runtime = rt_b->rt_runtime;
  416. rt_rq->rt_time = 0;
  417. rt_rq->rt_throttled = 0;
  418. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  419. raw_spin_unlock(&rt_b->rt_runtime_lock);
  420. }
  421. }
  422. static void enable_runtime(struct rq *rq)
  423. {
  424. unsigned long flags;
  425. raw_spin_lock_irqsave(&rq->lock, flags);
  426. __enable_runtime(rq);
  427. raw_spin_unlock_irqrestore(&rq->lock, flags);
  428. }
  429. static int balance_runtime(struct rt_rq *rt_rq)
  430. {
  431. int more = 0;
  432. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  433. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  434. more = do_balance_runtime(rt_rq);
  435. raw_spin_lock(&rt_rq->rt_runtime_lock);
  436. }
  437. return more;
  438. }
  439. #else /* !CONFIG_SMP */
  440. static inline int balance_runtime(struct rt_rq *rt_rq)
  441. {
  442. return 0;
  443. }
  444. #endif /* CONFIG_SMP */
  445. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  446. {
  447. int i, idle = 1;
  448. const struct cpumask *span;
  449. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  450. return 1;
  451. span = sched_rt_period_mask();
  452. for_each_cpu(i, span) {
  453. int enqueue = 0;
  454. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  455. struct rq *rq = rq_of_rt_rq(rt_rq);
  456. raw_spin_lock(&rq->lock);
  457. if (rt_rq->rt_time) {
  458. u64 runtime;
  459. raw_spin_lock(&rt_rq->rt_runtime_lock);
  460. if (rt_rq->rt_throttled)
  461. balance_runtime(rt_rq);
  462. runtime = rt_rq->rt_runtime;
  463. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  464. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  465. rt_rq->rt_throttled = 0;
  466. enqueue = 1;
  467. /*
  468. * Force a clock update if the CPU was idle,
  469. * lest wakeup -> unthrottle time accumulate.
  470. */
  471. if (rt_rq->rt_nr_running && rq->curr == rq->idle)
  472. rq->skip_clock_update = -1;
  473. }
  474. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  475. idle = 0;
  476. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  477. } else if (rt_rq->rt_nr_running) {
  478. idle = 0;
  479. if (!rt_rq_throttled(rt_rq))
  480. enqueue = 1;
  481. }
  482. if (enqueue)
  483. sched_rt_rq_enqueue(rt_rq);
  484. raw_spin_unlock(&rq->lock);
  485. }
  486. return idle;
  487. }
  488. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  489. {
  490. #ifdef CONFIG_RT_GROUP_SCHED
  491. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  492. if (rt_rq)
  493. return rt_rq->highest_prio.curr;
  494. #endif
  495. return rt_task_of(rt_se)->prio;
  496. }
  497. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  498. {
  499. u64 runtime = sched_rt_runtime(rt_rq);
  500. if (rt_rq->rt_throttled)
  501. return rt_rq_throttled(rt_rq);
  502. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  503. return 0;
  504. balance_runtime(rt_rq);
  505. runtime = sched_rt_runtime(rt_rq);
  506. if (runtime == RUNTIME_INF)
  507. return 0;
  508. if (rt_rq->rt_time > runtime) {
  509. rt_rq->rt_throttled = 1;
  510. if (rt_rq_throttled(rt_rq)) {
  511. sched_rt_rq_dequeue(rt_rq);
  512. return 1;
  513. }
  514. }
  515. return 0;
  516. }
  517. /*
  518. * Update the current task's runtime statistics. Skip current tasks that
  519. * are not in our scheduling class.
  520. */
  521. static void update_curr_rt(struct rq *rq)
  522. {
  523. struct task_struct *curr = rq->curr;
  524. struct sched_rt_entity *rt_se = &curr->rt;
  525. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  526. u64 delta_exec;
  527. if (curr->sched_class != &rt_sched_class)
  528. return;
  529. delta_exec = rq->clock_task - curr->se.exec_start;
  530. if (unlikely((s64)delta_exec < 0))
  531. delta_exec = 0;
  532. schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
  533. curr->se.sum_exec_runtime += delta_exec;
  534. account_group_exec_runtime(curr, delta_exec);
  535. curr->se.exec_start = rq->clock_task;
  536. cpuacct_charge(curr, delta_exec);
  537. sched_rt_avg_update(rq, delta_exec);
  538. if (!rt_bandwidth_enabled())
  539. return;
  540. for_each_sched_rt_entity(rt_se) {
  541. rt_rq = rt_rq_of_se(rt_se);
  542. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  543. raw_spin_lock(&rt_rq->rt_runtime_lock);
  544. rt_rq->rt_time += delta_exec;
  545. if (sched_rt_runtime_exceeded(rt_rq))
  546. resched_task(curr);
  547. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  548. }
  549. }
  550. }
  551. #if defined CONFIG_SMP
  552. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
  553. static inline int next_prio(struct rq *rq)
  554. {
  555. struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
  556. if (next && rt_prio(next->prio))
  557. return next->prio;
  558. else
  559. return MAX_RT_PRIO;
  560. }
  561. static void
  562. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  563. {
  564. struct rq *rq = rq_of_rt_rq(rt_rq);
  565. if (prio < prev_prio) {
  566. /*
  567. * If the new task is higher in priority than anything on the
  568. * run-queue, we know that the previous high becomes our
  569. * next-highest.
  570. */
  571. rt_rq->highest_prio.next = prev_prio;
  572. if (rq->online)
  573. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  574. } else if (prio == rt_rq->highest_prio.curr)
  575. /*
  576. * If the next task is equal in priority to the highest on
  577. * the run-queue, then we implicitly know that the next highest
  578. * task cannot be any lower than current
  579. */
  580. rt_rq->highest_prio.next = prio;
  581. else if (prio < rt_rq->highest_prio.next)
  582. /*
  583. * Otherwise, we need to recompute next-highest
  584. */
  585. rt_rq->highest_prio.next = next_prio(rq);
  586. }
  587. static void
  588. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  589. {
  590. struct rq *rq = rq_of_rt_rq(rt_rq);
  591. if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
  592. rt_rq->highest_prio.next = next_prio(rq);
  593. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  594. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  595. }
  596. #else /* CONFIG_SMP */
  597. static inline
  598. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  599. static inline
  600. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  601. #endif /* CONFIG_SMP */
  602. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  603. static void
  604. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  605. {
  606. int prev_prio = rt_rq->highest_prio.curr;
  607. if (prio < prev_prio)
  608. rt_rq->highest_prio.curr = prio;
  609. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  610. }
  611. static void
  612. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  613. {
  614. int prev_prio = rt_rq->highest_prio.curr;
  615. if (rt_rq->rt_nr_running) {
  616. WARN_ON(prio < prev_prio);
  617. /*
  618. * This may have been our highest task, and therefore
  619. * we may have some recomputation to do
  620. */
  621. if (prio == prev_prio) {
  622. struct rt_prio_array *array = &rt_rq->active;
  623. rt_rq->highest_prio.curr =
  624. sched_find_first_bit(array->bitmap);
  625. }
  626. } else
  627. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  628. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  629. }
  630. #else
  631. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  632. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  633. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  634. #ifdef CONFIG_RT_GROUP_SCHED
  635. static void
  636. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  637. {
  638. if (rt_se_boosted(rt_se))
  639. rt_rq->rt_nr_boosted++;
  640. if (rt_rq->tg)
  641. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  642. }
  643. static void
  644. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  645. {
  646. if (rt_se_boosted(rt_se))
  647. rt_rq->rt_nr_boosted--;
  648. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  649. }
  650. #else /* CONFIG_RT_GROUP_SCHED */
  651. static void
  652. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  653. {
  654. start_rt_bandwidth(&def_rt_bandwidth);
  655. }
  656. static inline
  657. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  658. #endif /* CONFIG_RT_GROUP_SCHED */
  659. static inline
  660. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  661. {
  662. int prio = rt_se_prio(rt_se);
  663. WARN_ON(!rt_prio(prio));
  664. rt_rq->rt_nr_running++;
  665. inc_rt_prio(rt_rq, prio);
  666. inc_rt_migration(rt_se, rt_rq);
  667. inc_rt_group(rt_se, rt_rq);
  668. }
  669. static inline
  670. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  671. {
  672. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  673. WARN_ON(!rt_rq->rt_nr_running);
  674. rt_rq->rt_nr_running--;
  675. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  676. dec_rt_migration(rt_se, rt_rq);
  677. dec_rt_group(rt_se, rt_rq);
  678. }
  679. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  680. {
  681. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  682. struct rt_prio_array *array = &rt_rq->active;
  683. struct rt_rq *group_rq = group_rt_rq(rt_se);
  684. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  685. /*
  686. * Don't enqueue the group if its throttled, or when empty.
  687. * The latter is a consequence of the former when a child group
  688. * get throttled and the current group doesn't have any other
  689. * active members.
  690. */
  691. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  692. return;
  693. if (!rt_rq->rt_nr_running)
  694. list_add_leaf_rt_rq(rt_rq);
  695. if (head)
  696. list_add(&rt_se->run_list, queue);
  697. else
  698. list_add_tail(&rt_se->run_list, queue);
  699. __set_bit(rt_se_prio(rt_se), array->bitmap);
  700. inc_rt_tasks(rt_se, rt_rq);
  701. }
  702. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  703. {
  704. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  705. struct rt_prio_array *array = &rt_rq->active;
  706. list_del_init(&rt_se->run_list);
  707. if (list_empty(array->queue + rt_se_prio(rt_se)))
  708. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  709. dec_rt_tasks(rt_se, rt_rq);
  710. if (!rt_rq->rt_nr_running)
  711. list_del_leaf_rt_rq(rt_rq);
  712. }
  713. /*
  714. * Because the prio of an upper entry depends on the lower
  715. * entries, we must remove entries top - down.
  716. */
  717. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  718. {
  719. struct sched_rt_entity *back = NULL;
  720. for_each_sched_rt_entity(rt_se) {
  721. rt_se->back = back;
  722. back = rt_se;
  723. }
  724. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  725. if (on_rt_rq(rt_se))
  726. __dequeue_rt_entity(rt_se);
  727. }
  728. }
  729. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  730. {
  731. dequeue_rt_stack(rt_se);
  732. for_each_sched_rt_entity(rt_se)
  733. __enqueue_rt_entity(rt_se, head);
  734. }
  735. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  736. {
  737. dequeue_rt_stack(rt_se);
  738. for_each_sched_rt_entity(rt_se) {
  739. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  740. if (rt_rq && rt_rq->rt_nr_running)
  741. __enqueue_rt_entity(rt_se, false);
  742. }
  743. }
  744. /*
  745. * Adding/removing a task to/from a priority array:
  746. */
  747. static void
  748. enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  749. {
  750. struct sched_rt_entity *rt_se = &p->rt;
  751. if (flags & ENQUEUE_WAKEUP)
  752. rt_se->timeout = 0;
  753. enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
  754. if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
  755. enqueue_pushable_task(rq, p);
  756. }
  757. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  758. {
  759. struct sched_rt_entity *rt_se = &p->rt;
  760. update_curr_rt(rq);
  761. dequeue_rt_entity(rt_se);
  762. dequeue_pushable_task(rq, p);
  763. }
  764. /*
  765. * Put task to the end of the run list without the overhead of dequeue
  766. * followed by enqueue.
  767. */
  768. static void
  769. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  770. {
  771. if (on_rt_rq(rt_se)) {
  772. struct rt_prio_array *array = &rt_rq->active;
  773. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  774. if (head)
  775. list_move(&rt_se->run_list, queue);
  776. else
  777. list_move_tail(&rt_se->run_list, queue);
  778. }
  779. }
  780. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  781. {
  782. struct sched_rt_entity *rt_se = &p->rt;
  783. struct rt_rq *rt_rq;
  784. for_each_sched_rt_entity(rt_se) {
  785. rt_rq = rt_rq_of_se(rt_se);
  786. requeue_rt_entity(rt_rq, rt_se, head);
  787. }
  788. }
  789. static void yield_task_rt(struct rq *rq)
  790. {
  791. requeue_task_rt(rq, rq->curr, 0);
  792. }
  793. #ifdef CONFIG_SMP
  794. static int find_lowest_rq(struct task_struct *task);
  795. static int
  796. select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
  797. {
  798. struct task_struct *curr;
  799. struct rq *rq;
  800. int cpu;
  801. if (sd_flag != SD_BALANCE_WAKE)
  802. return smp_processor_id();
  803. cpu = task_cpu(p);
  804. rq = cpu_rq(cpu);
  805. rcu_read_lock();
  806. curr = ACCESS_ONCE(rq->curr); /* unlocked access */
  807. /*
  808. * If the current task on @p's runqueue is an RT task, then
  809. * try to see if we can wake this RT task up on another
  810. * runqueue. Otherwise simply start this RT task
  811. * on its current runqueue.
  812. *
  813. * We want to avoid overloading runqueues. If the woken
  814. * task is a higher priority, then it will stay on this CPU
  815. * and the lower prio task should be moved to another CPU.
  816. * Even though this will probably make the lower prio task
  817. * lose its cache, we do not want to bounce a higher task
  818. * around just because it gave up its CPU, perhaps for a
  819. * lock?
  820. *
  821. * For equal prio tasks, we just let the scheduler sort it out.
  822. *
  823. * Otherwise, just let it ride on the affined RQ and the
  824. * post-schedule router will push the preempted task away
  825. *
  826. * This test is optimistic, if we get it wrong the load-balancer
  827. * will have to sort it out.
  828. */
  829. if (curr && unlikely(rt_task(curr)) &&
  830. (curr->rt.nr_cpus_allowed < 2 ||
  831. curr->prio < p->prio) &&
  832. (p->rt.nr_cpus_allowed > 1)) {
  833. int target = find_lowest_rq(p);
  834. if (target != -1)
  835. cpu = target;
  836. }
  837. rcu_read_unlock();
  838. return cpu;
  839. }
  840. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  841. {
  842. if (rq->curr->rt.nr_cpus_allowed == 1)
  843. return;
  844. if (p->rt.nr_cpus_allowed != 1
  845. && cpupri_find(&rq->rd->cpupri, p, NULL))
  846. return;
  847. if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  848. return;
  849. /*
  850. * There appears to be other cpus that can accept
  851. * current and none to run 'p', so lets reschedule
  852. * to try and push current away:
  853. */
  854. requeue_task_rt(rq, p, 1);
  855. resched_task(rq->curr);
  856. }
  857. #endif /* CONFIG_SMP */
  858. /*
  859. * Preempt the current task with a newly woken task if needed:
  860. */
  861. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  862. {
  863. if (p->prio < rq->curr->prio) {
  864. resched_task(rq->curr);
  865. return;
  866. }
  867. #ifdef CONFIG_SMP
  868. /*
  869. * If:
  870. *
  871. * - the newly woken task is of equal priority to the current task
  872. * - the newly woken task is non-migratable while current is migratable
  873. * - current will be preempted on the next reschedule
  874. *
  875. * we should check to see if current can readily move to a different
  876. * cpu. If so, we will reschedule to allow the push logic to try
  877. * to move current somewhere else, making room for our non-migratable
  878. * task.
  879. */
  880. if (p->prio == rq->curr->prio && !need_resched())
  881. check_preempt_equal_prio(rq, p);
  882. #endif
  883. }
  884. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  885. struct rt_rq *rt_rq)
  886. {
  887. struct rt_prio_array *array = &rt_rq->active;
  888. struct sched_rt_entity *next = NULL;
  889. struct list_head *queue;
  890. int idx;
  891. idx = sched_find_first_bit(array->bitmap);
  892. BUG_ON(idx >= MAX_RT_PRIO);
  893. queue = array->queue + idx;
  894. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  895. return next;
  896. }
  897. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  898. {
  899. struct sched_rt_entity *rt_se;
  900. struct task_struct *p;
  901. struct rt_rq *rt_rq;
  902. rt_rq = &rq->rt;
  903. if (unlikely(!rt_rq->rt_nr_running))
  904. return NULL;
  905. if (rt_rq_throttled(rt_rq))
  906. return NULL;
  907. do {
  908. rt_se = pick_next_rt_entity(rq, rt_rq);
  909. BUG_ON(!rt_se);
  910. rt_rq = group_rt_rq(rt_se);
  911. } while (rt_rq);
  912. p = rt_task_of(rt_se);
  913. p->se.exec_start = rq->clock_task;
  914. return p;
  915. }
  916. static struct task_struct *pick_next_task_rt(struct rq *rq)
  917. {
  918. struct task_struct *p = _pick_next_task_rt(rq);
  919. /* The running task is never eligible for pushing */
  920. if (p)
  921. dequeue_pushable_task(rq, p);
  922. #ifdef CONFIG_SMP
  923. /*
  924. * We detect this state here so that we can avoid taking the RQ
  925. * lock again later if there is no need to push
  926. */
  927. rq->post_schedule = has_pushable_tasks(rq);
  928. #endif
  929. return p;
  930. }
  931. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  932. {
  933. update_curr_rt(rq);
  934. p->se.exec_start = 0;
  935. /*
  936. * The previous task needs to be made eligible for pushing
  937. * if it is still active
  938. */
  939. if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
  940. enqueue_pushable_task(rq, p);
  941. }
  942. #ifdef CONFIG_SMP
  943. /* Only try algorithms three times */
  944. #define RT_MAX_TRIES 3
  945. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  946. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  947. {
  948. if (!task_running(rq, p) &&
  949. (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
  950. (p->rt.nr_cpus_allowed > 1))
  951. return 1;
  952. return 0;
  953. }
  954. /* Return the second highest RT task, NULL otherwise */
  955. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  956. {
  957. struct task_struct *next = NULL;
  958. struct sched_rt_entity *rt_se;
  959. struct rt_prio_array *array;
  960. struct rt_rq *rt_rq;
  961. int idx;
  962. for_each_leaf_rt_rq(rt_rq, rq) {
  963. array = &rt_rq->active;
  964. idx = sched_find_first_bit(array->bitmap);
  965. next_idx:
  966. if (idx >= MAX_RT_PRIO)
  967. continue;
  968. if (next && next->prio < idx)
  969. continue;
  970. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  971. struct task_struct *p;
  972. if (!rt_entity_is_task(rt_se))
  973. continue;
  974. p = rt_task_of(rt_se);
  975. if (pick_rt_task(rq, p, cpu)) {
  976. next = p;
  977. break;
  978. }
  979. }
  980. if (!next) {
  981. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  982. goto next_idx;
  983. }
  984. }
  985. return next;
  986. }
  987. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  988. static int find_lowest_rq(struct task_struct *task)
  989. {
  990. struct sched_domain *sd;
  991. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  992. int this_cpu = smp_processor_id();
  993. int cpu = task_cpu(task);
  994. if (task->rt.nr_cpus_allowed == 1)
  995. return -1; /* No other targets possible */
  996. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  997. return -1; /* No targets found */
  998. /*
  999. * At this point we have built a mask of cpus representing the
  1000. * lowest priority tasks in the system. Now we want to elect
  1001. * the best one based on our affinity and topology.
  1002. *
  1003. * We prioritize the last cpu that the task executed on since
  1004. * it is most likely cache-hot in that location.
  1005. */
  1006. if (cpumask_test_cpu(cpu, lowest_mask))
  1007. return cpu;
  1008. /*
  1009. * Otherwise, we consult the sched_domains span maps to figure
  1010. * out which cpu is logically closest to our hot cache data.
  1011. */
  1012. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  1013. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  1014. rcu_read_lock();
  1015. for_each_domain(cpu, sd) {
  1016. if (sd->flags & SD_WAKE_AFFINE) {
  1017. int best_cpu;
  1018. /*
  1019. * "this_cpu" is cheaper to preempt than a
  1020. * remote processor.
  1021. */
  1022. if (this_cpu != -1 &&
  1023. cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
  1024. rcu_read_unlock();
  1025. return this_cpu;
  1026. }
  1027. best_cpu = cpumask_first_and(lowest_mask,
  1028. sched_domain_span(sd));
  1029. if (best_cpu < nr_cpu_ids) {
  1030. rcu_read_unlock();
  1031. return best_cpu;
  1032. }
  1033. }
  1034. }
  1035. rcu_read_unlock();
  1036. /*
  1037. * And finally, if there were no matches within the domains
  1038. * just give the caller *something* to work with from the compatible
  1039. * locations.
  1040. */
  1041. if (this_cpu != -1)
  1042. return this_cpu;
  1043. cpu = cpumask_any(lowest_mask);
  1044. if (cpu < nr_cpu_ids)
  1045. return cpu;
  1046. return -1;
  1047. }
  1048. /* Will lock the rq it finds */
  1049. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  1050. {
  1051. struct rq *lowest_rq = NULL;
  1052. int tries;
  1053. int cpu;
  1054. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  1055. cpu = find_lowest_rq(task);
  1056. if ((cpu == -1) || (cpu == rq->cpu))
  1057. break;
  1058. lowest_rq = cpu_rq(cpu);
  1059. /* if the prio of this runqueue changed, try again */
  1060. if (double_lock_balance(rq, lowest_rq)) {
  1061. /*
  1062. * We had to unlock the run queue. In
  1063. * the mean time, task could have
  1064. * migrated already or had its affinity changed.
  1065. * Also make sure that it wasn't scheduled on its rq.
  1066. */
  1067. if (unlikely(task_rq(task) != rq ||
  1068. !cpumask_test_cpu(lowest_rq->cpu,
  1069. &task->cpus_allowed) ||
  1070. task_running(rq, task) ||
  1071. !task->on_rq)) {
  1072. raw_spin_unlock(&lowest_rq->lock);
  1073. lowest_rq = NULL;
  1074. break;
  1075. }
  1076. }
  1077. /* If this rq is still suitable use it. */
  1078. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1079. break;
  1080. /* try again */
  1081. double_unlock_balance(rq, lowest_rq);
  1082. lowest_rq = NULL;
  1083. }
  1084. return lowest_rq;
  1085. }
  1086. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1087. {
  1088. struct task_struct *p;
  1089. if (!has_pushable_tasks(rq))
  1090. return NULL;
  1091. p = plist_first_entry(&rq->rt.pushable_tasks,
  1092. struct task_struct, pushable_tasks);
  1093. BUG_ON(rq->cpu != task_cpu(p));
  1094. BUG_ON(task_current(rq, p));
  1095. BUG_ON(p->rt.nr_cpus_allowed <= 1);
  1096. BUG_ON(!p->on_rq);
  1097. BUG_ON(!rt_task(p));
  1098. return p;
  1099. }
  1100. /*
  1101. * If the current CPU has more than one RT task, see if the non
  1102. * running task can migrate over to a CPU that is running a task
  1103. * of lesser priority.
  1104. */
  1105. static int push_rt_task(struct rq *rq)
  1106. {
  1107. struct task_struct *next_task;
  1108. struct rq *lowest_rq;
  1109. if (!rq->rt.overloaded)
  1110. return 0;
  1111. next_task = pick_next_pushable_task(rq);
  1112. if (!next_task)
  1113. return 0;
  1114. retry:
  1115. if (unlikely(next_task == rq->curr)) {
  1116. WARN_ON(1);
  1117. return 0;
  1118. }
  1119. /*
  1120. * It's possible that the next_task slipped in of
  1121. * higher priority than current. If that's the case
  1122. * just reschedule current.
  1123. */
  1124. if (unlikely(next_task->prio < rq->curr->prio)) {
  1125. resched_task(rq->curr);
  1126. return 0;
  1127. }
  1128. /* We might release rq lock */
  1129. get_task_struct(next_task);
  1130. /* find_lock_lowest_rq locks the rq if found */
  1131. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1132. if (!lowest_rq) {
  1133. struct task_struct *task;
  1134. /*
  1135. * find lock_lowest_rq releases rq->lock
  1136. * so it is possible that next_task has migrated.
  1137. *
  1138. * We need to make sure that the task is still on the same
  1139. * run-queue and is also still the next task eligible for
  1140. * pushing.
  1141. */
  1142. task = pick_next_pushable_task(rq);
  1143. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1144. /*
  1145. * If we get here, the task hasn't moved at all, but
  1146. * it has failed to push. We will not try again,
  1147. * since the other cpus will pull from us when they
  1148. * are ready.
  1149. */
  1150. dequeue_pushable_task(rq, next_task);
  1151. goto out;
  1152. }
  1153. if (!task)
  1154. /* No more tasks, just exit */
  1155. goto out;
  1156. /*
  1157. * Something has shifted, try again.
  1158. */
  1159. put_task_struct(next_task);
  1160. next_task = task;
  1161. goto retry;
  1162. }
  1163. deactivate_task(rq, next_task, 0);
  1164. set_task_cpu(next_task, lowest_rq->cpu);
  1165. activate_task(lowest_rq, next_task, 0);
  1166. resched_task(lowest_rq->curr);
  1167. double_unlock_balance(rq, lowest_rq);
  1168. out:
  1169. put_task_struct(next_task);
  1170. return 1;
  1171. }
  1172. static void push_rt_tasks(struct rq *rq)
  1173. {
  1174. /* push_rt_task will return true if it moved an RT */
  1175. while (push_rt_task(rq))
  1176. ;
  1177. }
  1178. static int pull_rt_task(struct rq *this_rq)
  1179. {
  1180. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1181. struct task_struct *p;
  1182. struct rq *src_rq;
  1183. if (likely(!rt_overloaded(this_rq)))
  1184. return 0;
  1185. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1186. if (this_cpu == cpu)
  1187. continue;
  1188. src_rq = cpu_rq(cpu);
  1189. /*
  1190. * Don't bother taking the src_rq->lock if the next highest
  1191. * task is known to be lower-priority than our current task.
  1192. * This may look racy, but if this value is about to go
  1193. * logically higher, the src_rq will push this task away.
  1194. * And if its going logically lower, we do not care
  1195. */
  1196. if (src_rq->rt.highest_prio.next >=
  1197. this_rq->rt.highest_prio.curr)
  1198. continue;
  1199. /*
  1200. * We can potentially drop this_rq's lock in
  1201. * double_lock_balance, and another CPU could
  1202. * alter this_rq
  1203. */
  1204. double_lock_balance(this_rq, src_rq);
  1205. /*
  1206. * Are there still pullable RT tasks?
  1207. */
  1208. if (src_rq->rt.rt_nr_running <= 1)
  1209. goto skip;
  1210. p = pick_next_highest_task_rt(src_rq, this_cpu);
  1211. /*
  1212. * Do we have an RT task that preempts
  1213. * the to-be-scheduled task?
  1214. */
  1215. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1216. WARN_ON(p == src_rq->curr);
  1217. WARN_ON(!p->on_rq);
  1218. /*
  1219. * There's a chance that p is higher in priority
  1220. * than what's currently running on its cpu.
  1221. * This is just that p is wakeing up and hasn't
  1222. * had a chance to schedule. We only pull
  1223. * p if it is lower in priority than the
  1224. * current task on the run queue
  1225. */
  1226. if (p->prio < src_rq->curr->prio)
  1227. goto skip;
  1228. ret = 1;
  1229. deactivate_task(src_rq, p, 0);
  1230. set_task_cpu(p, this_cpu);
  1231. activate_task(this_rq, p, 0);
  1232. /*
  1233. * We continue with the search, just in
  1234. * case there's an even higher prio task
  1235. * in another runqueue. (low likelihood
  1236. * but possible)
  1237. */
  1238. }
  1239. skip:
  1240. double_unlock_balance(this_rq, src_rq);
  1241. }
  1242. return ret;
  1243. }
  1244. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1245. {
  1246. /* Try to pull RT tasks here if we lower this rq's prio */
  1247. if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
  1248. pull_rt_task(rq);
  1249. }
  1250. static void post_schedule_rt(struct rq *rq)
  1251. {
  1252. push_rt_tasks(rq);
  1253. }
  1254. /*
  1255. * If we are not running and we are not going to reschedule soon, we should
  1256. * try to push tasks away now
  1257. */
  1258. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1259. {
  1260. if (!task_running(rq, p) &&
  1261. !test_tsk_need_resched(rq->curr) &&
  1262. has_pushable_tasks(rq) &&
  1263. p->rt.nr_cpus_allowed > 1 &&
  1264. rt_task(rq->curr) &&
  1265. (rq->curr->rt.nr_cpus_allowed < 2 ||
  1266. rq->curr->prio < p->prio))
  1267. push_rt_tasks(rq);
  1268. }
  1269. static void set_cpus_allowed_rt(struct task_struct *p,
  1270. const struct cpumask *new_mask)
  1271. {
  1272. int weight = cpumask_weight(new_mask);
  1273. BUG_ON(!rt_task(p));
  1274. /*
  1275. * Update the migration status of the RQ if we have an RT task
  1276. * which is running AND changing its weight value.
  1277. */
  1278. if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1279. struct rq *rq = task_rq(p);
  1280. if (!task_current(rq, p)) {
  1281. /*
  1282. * Make sure we dequeue this task from the pushable list
  1283. * before going further. It will either remain off of
  1284. * the list because we are no longer pushable, or it
  1285. * will be requeued.
  1286. */
  1287. if (p->rt.nr_cpus_allowed > 1)
  1288. dequeue_pushable_task(rq, p);
  1289. /*
  1290. * Requeue if our weight is changing and still > 1
  1291. */
  1292. if (weight > 1)
  1293. enqueue_pushable_task(rq, p);
  1294. }
  1295. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1296. rq->rt.rt_nr_migratory++;
  1297. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1298. BUG_ON(!rq->rt.rt_nr_migratory);
  1299. rq->rt.rt_nr_migratory--;
  1300. }
  1301. update_rt_migration(&rq->rt);
  1302. }
  1303. cpumask_copy(&p->cpus_allowed, new_mask);
  1304. p->rt.nr_cpus_allowed = weight;
  1305. }
  1306. /* Assumes rq->lock is held */
  1307. static void rq_online_rt(struct rq *rq)
  1308. {
  1309. if (rq->rt.overloaded)
  1310. rt_set_overload(rq);
  1311. __enable_runtime(rq);
  1312. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1313. }
  1314. /* Assumes rq->lock is held */
  1315. static void rq_offline_rt(struct rq *rq)
  1316. {
  1317. if (rq->rt.overloaded)
  1318. rt_clear_overload(rq);
  1319. __disable_runtime(rq);
  1320. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1321. }
  1322. /*
  1323. * When switch from the rt queue, we bring ourselves to a position
  1324. * that we might want to pull RT tasks from other runqueues.
  1325. */
  1326. static void switched_from_rt(struct rq *rq, struct task_struct *p)
  1327. {
  1328. /*
  1329. * If there are other RT tasks then we will reschedule
  1330. * and the scheduling of the other RT tasks will handle
  1331. * the balancing. But if we are the last RT task
  1332. * we may need to handle the pulling of RT tasks
  1333. * now.
  1334. */
  1335. if (p->on_rq && !rq->rt.rt_nr_running)
  1336. pull_rt_task(rq);
  1337. }
  1338. static inline void init_sched_rt_class(void)
  1339. {
  1340. unsigned int i;
  1341. for_each_possible_cpu(i)
  1342. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1343. GFP_KERNEL, cpu_to_node(i));
  1344. }
  1345. #endif /* CONFIG_SMP */
  1346. /*
  1347. * When switching a task to RT, we may overload the runqueue
  1348. * with RT tasks. In this case we try to push them off to
  1349. * other runqueues.
  1350. */
  1351. static void switched_to_rt(struct rq *rq, struct task_struct *p)
  1352. {
  1353. int check_resched = 1;
  1354. /*
  1355. * If we are already running, then there's nothing
  1356. * that needs to be done. But if we are not running
  1357. * we may need to preempt the current running task.
  1358. * If that current running task is also an RT task
  1359. * then see if we can move to another run queue.
  1360. */
  1361. if (p->on_rq && rq->curr != p) {
  1362. #ifdef CONFIG_SMP
  1363. if (rq->rt.overloaded && push_rt_task(rq) &&
  1364. /* Don't resched if we changed runqueues */
  1365. rq != task_rq(p))
  1366. check_resched = 0;
  1367. #endif /* CONFIG_SMP */
  1368. if (check_resched && p->prio < rq->curr->prio)
  1369. resched_task(rq->curr);
  1370. }
  1371. }
  1372. /*
  1373. * Priority of the task has changed. This may cause
  1374. * us to initiate a push or pull.
  1375. */
  1376. static void
  1377. prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
  1378. {
  1379. if (!p->on_rq)
  1380. return;
  1381. if (rq->curr == p) {
  1382. #ifdef CONFIG_SMP
  1383. /*
  1384. * If our priority decreases while running, we
  1385. * may need to pull tasks to this runqueue.
  1386. */
  1387. if (oldprio < p->prio)
  1388. pull_rt_task(rq);
  1389. /*
  1390. * If there's a higher priority task waiting to run
  1391. * then reschedule. Note, the above pull_rt_task
  1392. * can release the rq lock and p could migrate.
  1393. * Only reschedule if p is still on the same runqueue.
  1394. */
  1395. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1396. resched_task(p);
  1397. #else
  1398. /* For UP simply resched on drop of prio */
  1399. if (oldprio < p->prio)
  1400. resched_task(p);
  1401. #endif /* CONFIG_SMP */
  1402. } else {
  1403. /*
  1404. * This task is not running, but if it is
  1405. * greater than the current running task
  1406. * then reschedule.
  1407. */
  1408. if (p->prio < rq->curr->prio)
  1409. resched_task(rq->curr);
  1410. }
  1411. }
  1412. static void watchdog(struct rq *rq, struct task_struct *p)
  1413. {
  1414. unsigned long soft, hard;
  1415. /* max may change after cur was read, this will be fixed next tick */
  1416. soft = task_rlimit(p, RLIMIT_RTTIME);
  1417. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1418. if (soft != RLIM_INFINITY) {
  1419. unsigned long next;
  1420. p->rt.timeout++;
  1421. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1422. if (p->rt.timeout > next)
  1423. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1424. }
  1425. }
  1426. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1427. {
  1428. update_curr_rt(rq);
  1429. watchdog(rq, p);
  1430. /*
  1431. * RR tasks need a special form of timeslice management.
  1432. * FIFO tasks have no timeslices.
  1433. */
  1434. if (p->policy != SCHED_RR)
  1435. return;
  1436. if (--p->rt.time_slice)
  1437. return;
  1438. p->rt.time_slice = DEF_TIMESLICE;
  1439. /*
  1440. * Requeue to the end of queue if we are not the only element
  1441. * on the queue:
  1442. */
  1443. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1444. requeue_task_rt(rq, p, 0);
  1445. set_tsk_need_resched(p);
  1446. }
  1447. }
  1448. static void set_curr_task_rt(struct rq *rq)
  1449. {
  1450. struct task_struct *p = rq->curr;
  1451. p->se.exec_start = rq->clock_task;
  1452. /* The running task is never eligible for pushing */
  1453. dequeue_pushable_task(rq, p);
  1454. }
  1455. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1456. {
  1457. /*
  1458. * Time slice is 0 for SCHED_FIFO tasks
  1459. */
  1460. if (task->policy == SCHED_RR)
  1461. return DEF_TIMESLICE;
  1462. else
  1463. return 0;
  1464. }
  1465. static const struct sched_class rt_sched_class = {
  1466. .next = &fair_sched_class,
  1467. .enqueue_task = enqueue_task_rt,
  1468. .dequeue_task = dequeue_task_rt,
  1469. .yield_task = yield_task_rt,
  1470. .check_preempt_curr = check_preempt_curr_rt,
  1471. .pick_next_task = pick_next_task_rt,
  1472. .put_prev_task = put_prev_task_rt,
  1473. #ifdef CONFIG_SMP
  1474. .select_task_rq = select_task_rq_rt,
  1475. .set_cpus_allowed = set_cpus_allowed_rt,
  1476. .rq_online = rq_online_rt,
  1477. .rq_offline = rq_offline_rt,
  1478. .pre_schedule = pre_schedule_rt,
  1479. .post_schedule = post_schedule_rt,
  1480. .task_woken = task_woken_rt,
  1481. .switched_from = switched_from_rt,
  1482. #endif
  1483. .set_curr_task = set_curr_task_rt,
  1484. .task_tick = task_tick_rt,
  1485. .get_rr_interval = get_rr_interval_rt,
  1486. .prio_changed = prio_changed_rt,
  1487. .switched_to = switched_to_rt,
  1488. };
  1489. #ifdef CONFIG_SCHED_DEBUG
  1490. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1491. static void print_rt_stats(struct seq_file *m, int cpu)
  1492. {
  1493. rt_rq_iter_t iter;
  1494. struct rt_rq *rt_rq;
  1495. rcu_read_lock();
  1496. for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
  1497. print_rt_rq(m, cpu, rt_rq);
  1498. rcu_read_unlock();
  1499. }
  1500. #endif /* CONFIG_SCHED_DEBUG */