calibrate.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. /* calibrate.c: default delay calibration
  2. *
  3. * Excised from init/main.c
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/jiffies.h>
  7. #include <linux/delay.h>
  8. #include <linux/init.h>
  9. #include <linux/timex.h>
  10. #include <linux/smp.h>
  11. unsigned long lpj_fine;
  12. unsigned long preset_lpj;
  13. static int __init lpj_setup(char *str)
  14. {
  15. preset_lpj = simple_strtoul(str,NULL,0);
  16. return 1;
  17. }
  18. __setup("lpj=", lpj_setup);
  19. #ifdef ARCH_HAS_READ_CURRENT_TIMER
  20. /* This routine uses the read_current_timer() routine and gets the
  21. * loops per jiffy directly, instead of guessing it using delay().
  22. * Also, this code tries to handle non-maskable asynchronous events
  23. * (like SMIs)
  24. */
  25. #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
  26. #define MAX_DIRECT_CALIBRATION_RETRIES 5
  27. static unsigned long __cpuinit calibrate_delay_direct(void)
  28. {
  29. unsigned long pre_start, start, post_start;
  30. unsigned long pre_end, end, post_end;
  31. unsigned long start_jiffies;
  32. unsigned long timer_rate_min, timer_rate_max;
  33. unsigned long good_timer_sum = 0;
  34. unsigned long good_timer_count = 0;
  35. unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
  36. int max = -1; /* index of measured_times with max/min values or not set */
  37. int min = -1;
  38. int i;
  39. if (read_current_timer(&pre_start) < 0 )
  40. return 0;
  41. /*
  42. * A simple loop like
  43. * while ( jiffies < start_jiffies+1)
  44. * start = read_current_timer();
  45. * will not do. As we don't really know whether jiffy switch
  46. * happened first or timer_value was read first. And some asynchronous
  47. * event can happen between these two events introducing errors in lpj.
  48. *
  49. * So, we do
  50. * 1. pre_start <- When we are sure that jiffy switch hasn't happened
  51. * 2. check jiffy switch
  52. * 3. start <- timer value before or after jiffy switch
  53. * 4. post_start <- When we are sure that jiffy switch has happened
  54. *
  55. * Note, we don't know anything about order of 2 and 3.
  56. * Now, by looking at post_start and pre_start difference, we can
  57. * check whether any asynchronous event happened or not
  58. */
  59. for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
  60. pre_start = 0;
  61. read_current_timer(&start);
  62. start_jiffies = jiffies;
  63. while (time_before_eq(jiffies, start_jiffies + 1)) {
  64. pre_start = start;
  65. read_current_timer(&start);
  66. }
  67. read_current_timer(&post_start);
  68. pre_end = 0;
  69. end = post_start;
  70. while (time_before_eq(jiffies, start_jiffies + 1 +
  71. DELAY_CALIBRATION_TICKS)) {
  72. pre_end = end;
  73. read_current_timer(&end);
  74. }
  75. read_current_timer(&post_end);
  76. timer_rate_max = (post_end - pre_start) /
  77. DELAY_CALIBRATION_TICKS;
  78. timer_rate_min = (pre_end - post_start) /
  79. DELAY_CALIBRATION_TICKS;
  80. /*
  81. * If the upper limit and lower limit of the timer_rate is
  82. * >= 12.5% apart, redo calibration.
  83. */
  84. printk(KERN_DEBUG "calibrate_delay_direct() timer_rate_max=%lu "
  85. "timer_rate_min=%lu pre_start=%lu pre_end=%lu\n",
  86. timer_rate_max, timer_rate_min, pre_start, pre_end);
  87. if (start >= post_end)
  88. printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
  89. "timer_rate as we had a TSC wrap around"
  90. " start=%lu >=post_end=%lu\n",
  91. start, post_end);
  92. if (start < post_end && pre_start != 0 && pre_end != 0 &&
  93. (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
  94. good_timer_count++;
  95. good_timer_sum += timer_rate_max;
  96. measured_times[i] = timer_rate_max;
  97. if (max < 0 || timer_rate_max > measured_times[max])
  98. max = i;
  99. if (min < 0 || timer_rate_max < measured_times[min])
  100. min = i;
  101. } else
  102. measured_times[i] = 0;
  103. }
  104. /*
  105. * Find the maximum & minimum - if they differ too much throw out the
  106. * one with the largest difference from the mean and try again...
  107. */
  108. while (good_timer_count > 1) {
  109. unsigned long estimate;
  110. unsigned long maxdiff;
  111. /* compute the estimate */
  112. estimate = (good_timer_sum/good_timer_count);
  113. maxdiff = estimate >> 3;
  114. /* if range is within 12% let's take it */
  115. if ((measured_times[max] - measured_times[min]) < maxdiff)
  116. return estimate;
  117. /* ok - drop the worse value and try again... */
  118. good_timer_sum = 0;
  119. good_timer_count = 0;
  120. if ((measured_times[max] - estimate) <
  121. (estimate - measured_times[min])) {
  122. printk(KERN_NOTICE "calibrate_delay_direct() dropping "
  123. "min bogoMips estimate %d = %lu\n",
  124. min, measured_times[min]);
  125. measured_times[min] = 0;
  126. min = max;
  127. } else {
  128. printk(KERN_NOTICE "calibrate_delay_direct() dropping "
  129. "max bogoMips estimate %d = %lu\n",
  130. max, measured_times[max]);
  131. measured_times[max] = 0;
  132. max = min;
  133. }
  134. for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
  135. if (measured_times[i] == 0)
  136. continue;
  137. good_timer_count++;
  138. good_timer_sum += measured_times[i];
  139. if (measured_times[i] < measured_times[min])
  140. min = i;
  141. if (measured_times[i] > measured_times[max])
  142. max = i;
  143. }
  144. }
  145. printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
  146. "estimate for loops_per_jiffy.\nProbably due to long platform "
  147. "interrupts. Consider using \"lpj=\" boot option.\n");
  148. return 0;
  149. }
  150. #else
  151. static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
  152. #endif
  153. /*
  154. * This is the number of bits of precision for the loops_per_jiffy. Each
  155. * time we refine our estimate after the first takes 1.5/HZ seconds, so try
  156. * to start with a good estimate.
  157. * For the boot cpu we can skip the delay calibration and assign it a value
  158. * calculated based on the timer frequency.
  159. * For the rest of the CPUs we cannot assume that the timer frequency is same as
  160. * the cpu frequency, hence do the calibration for those.
  161. */
  162. #define LPS_PREC 8
  163. static unsigned long __cpuinit calibrate_delay_converge(void)
  164. {
  165. /* First stage - slowly accelerate to find initial bounds */
  166. unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
  167. int trials = 0, band = 0, trial_in_band = 0;
  168. lpj = (1<<12);
  169. /* wait for "start of" clock tick */
  170. ticks = jiffies;
  171. while (ticks == jiffies)
  172. ; /* nothing */
  173. /* Go .. */
  174. ticks = jiffies;
  175. do {
  176. if (++trial_in_band == (1<<band)) {
  177. ++band;
  178. trial_in_band = 0;
  179. }
  180. __delay(lpj * band);
  181. trials += band;
  182. } while (ticks == jiffies);
  183. /*
  184. * We overshot, so retreat to a clear underestimate. Then estimate
  185. * the largest likely undershoot. This defines our chop bounds.
  186. */
  187. trials -= band;
  188. loopadd_base = lpj * band;
  189. lpj_base = lpj * trials;
  190. recalibrate:
  191. lpj = lpj_base;
  192. loopadd = loopadd_base;
  193. /*
  194. * Do a binary approximation to get lpj set to
  195. * equal one clock (up to LPS_PREC bits)
  196. */
  197. chop_limit = lpj >> LPS_PREC;
  198. while (loopadd > chop_limit) {
  199. lpj += loopadd;
  200. ticks = jiffies;
  201. while (ticks == jiffies)
  202. ; /* nothing */
  203. ticks = jiffies;
  204. __delay(lpj);
  205. if (jiffies != ticks) /* longer than 1 tick */
  206. lpj -= loopadd;
  207. loopadd >>= 1;
  208. }
  209. /*
  210. * If we incremented every single time possible, presume we've
  211. * massively underestimated initially, and retry with a higher
  212. * start, and larger range. (Only seen on x86_64, due to SMIs)
  213. */
  214. if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
  215. lpj_base = lpj;
  216. loopadd_base <<= 2;
  217. goto recalibrate;
  218. }
  219. return lpj;
  220. }
  221. void __cpuinit calibrate_delay(void)
  222. {
  223. static bool printed;
  224. if (preset_lpj) {
  225. loops_per_jiffy = preset_lpj;
  226. if (!printed)
  227. pr_info("Calibrating delay loop (skipped) "
  228. "preset value.. ");
  229. } else if ((!printed) && lpj_fine) {
  230. loops_per_jiffy = lpj_fine;
  231. pr_info("Calibrating delay loop (skipped), "
  232. "value calculated using timer frequency.. ");
  233. } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
  234. if (!printed)
  235. pr_info("Calibrating delay using timer "
  236. "specific routine.. ");
  237. } else {
  238. if (!printed)
  239. pr_info("Calibrating delay loop... ");
  240. loops_per_jiffy = calibrate_delay_converge();
  241. }
  242. if (!printed)
  243. pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
  244. loops_per_jiffy/(500000/HZ),
  245. (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
  246. printed = true;
  247. }