ctree.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. if (path)
  44. path->reada = 1;
  45. return path;
  46. }
  47. /*
  48. * set all locked nodes in the path to blocking locks. This should
  49. * be done before scheduling
  50. */
  51. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  52. {
  53. int i;
  54. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  55. if (p->nodes[i] && p->locks[i])
  56. btrfs_set_lock_blocking(p->nodes[i]);
  57. }
  58. }
  59. /*
  60. * reset all the locked nodes in the patch to spinning locks.
  61. *
  62. * held is used to keep lockdep happy, when lockdep is enabled
  63. * we set held to a blocking lock before we go around and
  64. * retake all the spinlocks in the path. You can safely use NULL
  65. * for held
  66. */
  67. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  68. struct extent_buffer *held)
  69. {
  70. int i;
  71. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  72. /* lockdep really cares that we take all of these spinlocks
  73. * in the right order. If any of the locks in the path are not
  74. * currently blocking, it is going to complain. So, make really
  75. * really sure by forcing the path to blocking before we clear
  76. * the path blocking.
  77. */
  78. if (held)
  79. btrfs_set_lock_blocking(held);
  80. btrfs_set_path_blocking(p);
  81. #endif
  82. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  83. if (p->nodes[i] && p->locks[i])
  84. btrfs_clear_lock_blocking(p->nodes[i]);
  85. }
  86. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  87. if (held)
  88. btrfs_clear_lock_blocking(held);
  89. #endif
  90. }
  91. /* this also releases the path */
  92. void btrfs_free_path(struct btrfs_path *p)
  93. {
  94. if (!p)
  95. return;
  96. btrfs_release_path(p);
  97. kmem_cache_free(btrfs_path_cachep, p);
  98. }
  99. /*
  100. * path release drops references on the extent buffers in the path
  101. * and it drops any locks held by this path
  102. *
  103. * It is safe to call this on paths that no locks or extent buffers held.
  104. */
  105. noinline void btrfs_release_path(struct btrfs_path *p)
  106. {
  107. int i;
  108. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  109. p->slots[i] = 0;
  110. if (!p->nodes[i])
  111. continue;
  112. if (p->locks[i]) {
  113. btrfs_tree_unlock(p->nodes[i]);
  114. p->locks[i] = 0;
  115. }
  116. free_extent_buffer(p->nodes[i]);
  117. p->nodes[i] = NULL;
  118. }
  119. }
  120. /*
  121. * safely gets a reference on the root node of a tree. A lock
  122. * is not taken, so a concurrent writer may put a different node
  123. * at the root of the tree. See btrfs_lock_root_node for the
  124. * looping required.
  125. *
  126. * The extent buffer returned by this has a reference taken, so
  127. * it won't disappear. It may stop being the root of the tree
  128. * at any time because there are no locks held.
  129. */
  130. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  131. {
  132. struct extent_buffer *eb;
  133. rcu_read_lock();
  134. eb = rcu_dereference(root->node);
  135. extent_buffer_get(eb);
  136. rcu_read_unlock();
  137. return eb;
  138. }
  139. /* loop around taking references on and locking the root node of the
  140. * tree until you end up with a lock on the root. A locked buffer
  141. * is returned, with a reference held.
  142. */
  143. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. while (1) {
  147. eb = btrfs_root_node(root);
  148. btrfs_tree_lock(eb);
  149. if (eb == root->node)
  150. break;
  151. btrfs_tree_unlock(eb);
  152. free_extent_buffer(eb);
  153. }
  154. return eb;
  155. }
  156. /* cowonly root (everything not a reference counted cow subvolume), just get
  157. * put onto a simple dirty list. transaction.c walks this to make sure they
  158. * get properly updated on disk.
  159. */
  160. static void add_root_to_dirty_list(struct btrfs_root *root)
  161. {
  162. if (root->track_dirty && list_empty(&root->dirty_list)) {
  163. list_add(&root->dirty_list,
  164. &root->fs_info->dirty_cowonly_roots);
  165. }
  166. }
  167. /*
  168. * used by snapshot creation to make a copy of a root for a tree with
  169. * a given objectid. The buffer with the new root node is returned in
  170. * cow_ret, and this func returns zero on success or a negative error code.
  171. */
  172. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  173. struct btrfs_root *root,
  174. struct extent_buffer *buf,
  175. struct extent_buffer **cow_ret, u64 new_root_objectid)
  176. {
  177. struct extent_buffer *cow;
  178. int ret = 0;
  179. int level;
  180. struct btrfs_disk_key disk_key;
  181. WARN_ON(root->ref_cows && trans->transid !=
  182. root->fs_info->running_transaction->transid);
  183. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  184. level = btrfs_header_level(buf);
  185. if (level == 0)
  186. btrfs_item_key(buf, &disk_key, 0);
  187. else
  188. btrfs_node_key(buf, &disk_key, 0);
  189. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  190. new_root_objectid, &disk_key, level,
  191. buf->start, 0);
  192. if (IS_ERR(cow))
  193. return PTR_ERR(cow);
  194. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  195. btrfs_set_header_bytenr(cow, cow->start);
  196. btrfs_set_header_generation(cow, trans->transid);
  197. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  198. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  199. BTRFS_HEADER_FLAG_RELOC);
  200. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  201. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  202. else
  203. btrfs_set_header_owner(cow, new_root_objectid);
  204. write_extent_buffer(cow, root->fs_info->fsid,
  205. (unsigned long)btrfs_header_fsid(cow),
  206. BTRFS_FSID_SIZE);
  207. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  208. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  209. ret = btrfs_inc_ref(trans, root, cow, 1);
  210. else
  211. ret = btrfs_inc_ref(trans, root, cow, 0);
  212. if (ret)
  213. return ret;
  214. btrfs_mark_buffer_dirty(cow);
  215. *cow_ret = cow;
  216. return 0;
  217. }
  218. /*
  219. * check if the tree block can be shared by multiple trees
  220. */
  221. int btrfs_block_can_be_shared(struct btrfs_root *root,
  222. struct extent_buffer *buf)
  223. {
  224. /*
  225. * Tree blocks not in refernece counted trees and tree roots
  226. * are never shared. If a block was allocated after the last
  227. * snapshot and the block was not allocated by tree relocation,
  228. * we know the block is not shared.
  229. */
  230. if (root->ref_cows &&
  231. buf != root->node && buf != root->commit_root &&
  232. (btrfs_header_generation(buf) <=
  233. btrfs_root_last_snapshot(&root->root_item) ||
  234. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  235. return 1;
  236. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  237. if (root->ref_cows &&
  238. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  239. return 1;
  240. #endif
  241. return 0;
  242. }
  243. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  244. struct btrfs_root *root,
  245. struct extent_buffer *buf,
  246. struct extent_buffer *cow,
  247. int *last_ref)
  248. {
  249. u64 refs;
  250. u64 owner;
  251. u64 flags;
  252. u64 new_flags = 0;
  253. int ret;
  254. /*
  255. * Backrefs update rules:
  256. *
  257. * Always use full backrefs for extent pointers in tree block
  258. * allocated by tree relocation.
  259. *
  260. * If a shared tree block is no longer referenced by its owner
  261. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  262. * use full backrefs for extent pointers in tree block.
  263. *
  264. * If a tree block is been relocating
  265. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  266. * use full backrefs for extent pointers in tree block.
  267. * The reason for this is some operations (such as drop tree)
  268. * are only allowed for blocks use full backrefs.
  269. */
  270. if (btrfs_block_can_be_shared(root, buf)) {
  271. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  272. buf->len, &refs, &flags);
  273. BUG_ON(ret);
  274. BUG_ON(refs == 0);
  275. } else {
  276. refs = 1;
  277. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  278. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  279. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  280. else
  281. flags = 0;
  282. }
  283. owner = btrfs_header_owner(buf);
  284. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  285. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  286. if (refs > 1) {
  287. if ((owner == root->root_key.objectid ||
  288. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  289. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  290. ret = btrfs_inc_ref(trans, root, buf, 1);
  291. BUG_ON(ret);
  292. if (root->root_key.objectid ==
  293. BTRFS_TREE_RELOC_OBJECTID) {
  294. ret = btrfs_dec_ref(trans, root, buf, 0);
  295. BUG_ON(ret);
  296. ret = btrfs_inc_ref(trans, root, cow, 1);
  297. BUG_ON(ret);
  298. }
  299. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  300. } else {
  301. if (root->root_key.objectid ==
  302. BTRFS_TREE_RELOC_OBJECTID)
  303. ret = btrfs_inc_ref(trans, root, cow, 1);
  304. else
  305. ret = btrfs_inc_ref(trans, root, cow, 0);
  306. BUG_ON(ret);
  307. }
  308. if (new_flags != 0) {
  309. ret = btrfs_set_disk_extent_flags(trans, root,
  310. buf->start,
  311. buf->len,
  312. new_flags, 0);
  313. BUG_ON(ret);
  314. }
  315. } else {
  316. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  317. if (root->root_key.objectid ==
  318. BTRFS_TREE_RELOC_OBJECTID)
  319. ret = btrfs_inc_ref(trans, root, cow, 1);
  320. else
  321. ret = btrfs_inc_ref(trans, root, cow, 0);
  322. BUG_ON(ret);
  323. ret = btrfs_dec_ref(trans, root, buf, 1);
  324. BUG_ON(ret);
  325. }
  326. clean_tree_block(trans, root, buf);
  327. *last_ref = 1;
  328. }
  329. return 0;
  330. }
  331. /*
  332. * does the dirty work in cow of a single block. The parent block (if
  333. * supplied) is updated to point to the new cow copy. The new buffer is marked
  334. * dirty and returned locked. If you modify the block it needs to be marked
  335. * dirty again.
  336. *
  337. * search_start -- an allocation hint for the new block
  338. *
  339. * empty_size -- a hint that you plan on doing more cow. This is the size in
  340. * bytes the allocator should try to find free next to the block it returns.
  341. * This is just a hint and may be ignored by the allocator.
  342. */
  343. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  344. struct btrfs_root *root,
  345. struct extent_buffer *buf,
  346. struct extent_buffer *parent, int parent_slot,
  347. struct extent_buffer **cow_ret,
  348. u64 search_start, u64 empty_size)
  349. {
  350. struct btrfs_disk_key disk_key;
  351. struct extent_buffer *cow;
  352. int level;
  353. int last_ref = 0;
  354. int unlock_orig = 0;
  355. u64 parent_start;
  356. if (*cow_ret == buf)
  357. unlock_orig = 1;
  358. btrfs_assert_tree_locked(buf);
  359. WARN_ON(root->ref_cows && trans->transid !=
  360. root->fs_info->running_transaction->transid);
  361. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  362. level = btrfs_header_level(buf);
  363. if (level == 0)
  364. btrfs_item_key(buf, &disk_key, 0);
  365. else
  366. btrfs_node_key(buf, &disk_key, 0);
  367. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  368. if (parent)
  369. parent_start = parent->start;
  370. else
  371. parent_start = 0;
  372. } else
  373. parent_start = 0;
  374. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  375. root->root_key.objectid, &disk_key,
  376. level, search_start, empty_size);
  377. if (IS_ERR(cow))
  378. return PTR_ERR(cow);
  379. /* cow is set to blocking by btrfs_init_new_buffer */
  380. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  381. btrfs_set_header_bytenr(cow, cow->start);
  382. btrfs_set_header_generation(cow, trans->transid);
  383. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  384. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  385. BTRFS_HEADER_FLAG_RELOC);
  386. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  387. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  388. else
  389. btrfs_set_header_owner(cow, root->root_key.objectid);
  390. write_extent_buffer(cow, root->fs_info->fsid,
  391. (unsigned long)btrfs_header_fsid(cow),
  392. BTRFS_FSID_SIZE);
  393. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  394. if (root->ref_cows)
  395. btrfs_reloc_cow_block(trans, root, buf, cow);
  396. if (buf == root->node) {
  397. WARN_ON(parent && parent != buf);
  398. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  399. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  400. parent_start = buf->start;
  401. else
  402. parent_start = 0;
  403. extent_buffer_get(cow);
  404. rcu_assign_pointer(root->node, cow);
  405. btrfs_free_tree_block(trans, root, buf, parent_start,
  406. last_ref);
  407. free_extent_buffer(buf);
  408. add_root_to_dirty_list(root);
  409. } else {
  410. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  411. parent_start = parent->start;
  412. else
  413. parent_start = 0;
  414. WARN_ON(trans->transid != btrfs_header_generation(parent));
  415. btrfs_set_node_blockptr(parent, parent_slot,
  416. cow->start);
  417. btrfs_set_node_ptr_generation(parent, parent_slot,
  418. trans->transid);
  419. btrfs_mark_buffer_dirty(parent);
  420. btrfs_free_tree_block(trans, root, buf, parent_start,
  421. last_ref);
  422. }
  423. if (unlock_orig)
  424. btrfs_tree_unlock(buf);
  425. free_extent_buffer(buf);
  426. btrfs_mark_buffer_dirty(cow);
  427. *cow_ret = cow;
  428. return 0;
  429. }
  430. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  431. struct btrfs_root *root,
  432. struct extent_buffer *buf)
  433. {
  434. if (btrfs_header_generation(buf) == trans->transid &&
  435. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  436. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  437. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  438. return 0;
  439. return 1;
  440. }
  441. /*
  442. * cows a single block, see __btrfs_cow_block for the real work.
  443. * This version of it has extra checks so that a block isn't cow'd more than
  444. * once per transaction, as long as it hasn't been written yet
  445. */
  446. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  447. struct btrfs_root *root, struct extent_buffer *buf,
  448. struct extent_buffer *parent, int parent_slot,
  449. struct extent_buffer **cow_ret)
  450. {
  451. u64 search_start;
  452. int ret;
  453. if (trans->transaction != root->fs_info->running_transaction) {
  454. printk(KERN_CRIT "trans %llu running %llu\n",
  455. (unsigned long long)trans->transid,
  456. (unsigned long long)
  457. root->fs_info->running_transaction->transid);
  458. WARN_ON(1);
  459. }
  460. if (trans->transid != root->fs_info->generation) {
  461. printk(KERN_CRIT "trans %llu running %llu\n",
  462. (unsigned long long)trans->transid,
  463. (unsigned long long)root->fs_info->generation);
  464. WARN_ON(1);
  465. }
  466. if (!should_cow_block(trans, root, buf)) {
  467. *cow_ret = buf;
  468. return 0;
  469. }
  470. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  471. if (parent)
  472. btrfs_set_lock_blocking(parent);
  473. btrfs_set_lock_blocking(buf);
  474. ret = __btrfs_cow_block(trans, root, buf, parent,
  475. parent_slot, cow_ret, search_start, 0);
  476. trace_btrfs_cow_block(root, buf, *cow_ret);
  477. return ret;
  478. }
  479. /*
  480. * helper function for defrag to decide if two blocks pointed to by a
  481. * node are actually close by
  482. */
  483. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  484. {
  485. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  486. return 1;
  487. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  488. return 1;
  489. return 0;
  490. }
  491. /*
  492. * compare two keys in a memcmp fashion
  493. */
  494. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  495. {
  496. struct btrfs_key k1;
  497. btrfs_disk_key_to_cpu(&k1, disk);
  498. return btrfs_comp_cpu_keys(&k1, k2);
  499. }
  500. /*
  501. * same as comp_keys only with two btrfs_key's
  502. */
  503. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  504. {
  505. if (k1->objectid > k2->objectid)
  506. return 1;
  507. if (k1->objectid < k2->objectid)
  508. return -1;
  509. if (k1->type > k2->type)
  510. return 1;
  511. if (k1->type < k2->type)
  512. return -1;
  513. if (k1->offset > k2->offset)
  514. return 1;
  515. if (k1->offset < k2->offset)
  516. return -1;
  517. return 0;
  518. }
  519. /*
  520. * this is used by the defrag code to go through all the
  521. * leaves pointed to by a node and reallocate them so that
  522. * disk order is close to key order
  523. */
  524. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  525. struct btrfs_root *root, struct extent_buffer *parent,
  526. int start_slot, int cache_only, u64 *last_ret,
  527. struct btrfs_key *progress)
  528. {
  529. struct extent_buffer *cur;
  530. u64 blocknr;
  531. u64 gen;
  532. u64 search_start = *last_ret;
  533. u64 last_block = 0;
  534. u64 other;
  535. u32 parent_nritems;
  536. int end_slot;
  537. int i;
  538. int err = 0;
  539. int parent_level;
  540. int uptodate;
  541. u32 blocksize;
  542. int progress_passed = 0;
  543. struct btrfs_disk_key disk_key;
  544. parent_level = btrfs_header_level(parent);
  545. if (cache_only && parent_level != 1)
  546. return 0;
  547. if (trans->transaction != root->fs_info->running_transaction)
  548. WARN_ON(1);
  549. if (trans->transid != root->fs_info->generation)
  550. WARN_ON(1);
  551. parent_nritems = btrfs_header_nritems(parent);
  552. blocksize = btrfs_level_size(root, parent_level - 1);
  553. end_slot = parent_nritems;
  554. if (parent_nritems == 1)
  555. return 0;
  556. btrfs_set_lock_blocking(parent);
  557. for (i = start_slot; i < end_slot; i++) {
  558. int close = 1;
  559. if (!parent->map_token) {
  560. map_extent_buffer(parent,
  561. btrfs_node_key_ptr_offset(i),
  562. sizeof(struct btrfs_key_ptr),
  563. &parent->map_token, &parent->kaddr,
  564. &parent->map_start, &parent->map_len,
  565. KM_USER1);
  566. }
  567. btrfs_node_key(parent, &disk_key, i);
  568. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  569. continue;
  570. progress_passed = 1;
  571. blocknr = btrfs_node_blockptr(parent, i);
  572. gen = btrfs_node_ptr_generation(parent, i);
  573. if (last_block == 0)
  574. last_block = blocknr;
  575. if (i > 0) {
  576. other = btrfs_node_blockptr(parent, i - 1);
  577. close = close_blocks(blocknr, other, blocksize);
  578. }
  579. if (!close && i < end_slot - 2) {
  580. other = btrfs_node_blockptr(parent, i + 1);
  581. close = close_blocks(blocknr, other, blocksize);
  582. }
  583. if (close) {
  584. last_block = blocknr;
  585. continue;
  586. }
  587. if (parent->map_token) {
  588. unmap_extent_buffer(parent, parent->map_token,
  589. KM_USER1);
  590. parent->map_token = NULL;
  591. }
  592. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  593. if (cur)
  594. uptodate = btrfs_buffer_uptodate(cur, gen);
  595. else
  596. uptodate = 0;
  597. if (!cur || !uptodate) {
  598. if (cache_only) {
  599. free_extent_buffer(cur);
  600. continue;
  601. }
  602. if (!cur) {
  603. cur = read_tree_block(root, blocknr,
  604. blocksize, gen);
  605. if (!cur)
  606. return -EIO;
  607. } else if (!uptodate) {
  608. btrfs_read_buffer(cur, gen);
  609. }
  610. }
  611. if (search_start == 0)
  612. search_start = last_block;
  613. btrfs_tree_lock(cur);
  614. btrfs_set_lock_blocking(cur);
  615. err = __btrfs_cow_block(trans, root, cur, parent, i,
  616. &cur, search_start,
  617. min(16 * blocksize,
  618. (end_slot - i) * blocksize));
  619. if (err) {
  620. btrfs_tree_unlock(cur);
  621. free_extent_buffer(cur);
  622. break;
  623. }
  624. search_start = cur->start;
  625. last_block = cur->start;
  626. *last_ret = search_start;
  627. btrfs_tree_unlock(cur);
  628. free_extent_buffer(cur);
  629. }
  630. if (parent->map_token) {
  631. unmap_extent_buffer(parent, parent->map_token,
  632. KM_USER1);
  633. parent->map_token = NULL;
  634. }
  635. return err;
  636. }
  637. /*
  638. * The leaf data grows from end-to-front in the node.
  639. * this returns the address of the start of the last item,
  640. * which is the stop of the leaf data stack
  641. */
  642. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  643. struct extent_buffer *leaf)
  644. {
  645. u32 nr = btrfs_header_nritems(leaf);
  646. if (nr == 0)
  647. return BTRFS_LEAF_DATA_SIZE(root);
  648. return btrfs_item_offset_nr(leaf, nr - 1);
  649. }
  650. /*
  651. * search for key in the extent_buffer. The items start at offset p,
  652. * and they are item_size apart. There are 'max' items in p.
  653. *
  654. * the slot in the array is returned via slot, and it points to
  655. * the place where you would insert key if it is not found in
  656. * the array.
  657. *
  658. * slot may point to max if the key is bigger than all of the keys
  659. */
  660. static noinline int generic_bin_search(struct extent_buffer *eb,
  661. unsigned long p,
  662. int item_size, struct btrfs_key *key,
  663. int max, int *slot)
  664. {
  665. int low = 0;
  666. int high = max;
  667. int mid;
  668. int ret;
  669. struct btrfs_disk_key *tmp = NULL;
  670. struct btrfs_disk_key unaligned;
  671. unsigned long offset;
  672. char *map_token = NULL;
  673. char *kaddr = NULL;
  674. unsigned long map_start = 0;
  675. unsigned long map_len = 0;
  676. int err;
  677. while (low < high) {
  678. mid = (low + high) / 2;
  679. offset = p + mid * item_size;
  680. if (!map_token || offset < map_start ||
  681. (offset + sizeof(struct btrfs_disk_key)) >
  682. map_start + map_len) {
  683. if (map_token) {
  684. unmap_extent_buffer(eb, map_token, KM_USER0);
  685. map_token = NULL;
  686. }
  687. err = map_private_extent_buffer(eb, offset,
  688. sizeof(struct btrfs_disk_key),
  689. &map_token, &kaddr,
  690. &map_start, &map_len, KM_USER0);
  691. if (!err) {
  692. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  693. map_start);
  694. } else {
  695. read_extent_buffer(eb, &unaligned,
  696. offset, sizeof(unaligned));
  697. tmp = &unaligned;
  698. }
  699. } else {
  700. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  701. map_start);
  702. }
  703. ret = comp_keys(tmp, key);
  704. if (ret < 0)
  705. low = mid + 1;
  706. else if (ret > 0)
  707. high = mid;
  708. else {
  709. *slot = mid;
  710. if (map_token)
  711. unmap_extent_buffer(eb, map_token, KM_USER0);
  712. return 0;
  713. }
  714. }
  715. *slot = low;
  716. if (map_token)
  717. unmap_extent_buffer(eb, map_token, KM_USER0);
  718. return 1;
  719. }
  720. /*
  721. * simple bin_search frontend that does the right thing for
  722. * leaves vs nodes
  723. */
  724. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  725. int level, int *slot)
  726. {
  727. if (level == 0) {
  728. return generic_bin_search(eb,
  729. offsetof(struct btrfs_leaf, items),
  730. sizeof(struct btrfs_item),
  731. key, btrfs_header_nritems(eb),
  732. slot);
  733. } else {
  734. return generic_bin_search(eb,
  735. offsetof(struct btrfs_node, ptrs),
  736. sizeof(struct btrfs_key_ptr),
  737. key, btrfs_header_nritems(eb),
  738. slot);
  739. }
  740. return -1;
  741. }
  742. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  743. int level, int *slot)
  744. {
  745. return bin_search(eb, key, level, slot);
  746. }
  747. static void root_add_used(struct btrfs_root *root, u32 size)
  748. {
  749. spin_lock(&root->accounting_lock);
  750. btrfs_set_root_used(&root->root_item,
  751. btrfs_root_used(&root->root_item) + size);
  752. spin_unlock(&root->accounting_lock);
  753. }
  754. static void root_sub_used(struct btrfs_root *root, u32 size)
  755. {
  756. spin_lock(&root->accounting_lock);
  757. btrfs_set_root_used(&root->root_item,
  758. btrfs_root_used(&root->root_item) - size);
  759. spin_unlock(&root->accounting_lock);
  760. }
  761. /* given a node and slot number, this reads the blocks it points to. The
  762. * extent buffer is returned with a reference taken (but unlocked).
  763. * NULL is returned on error.
  764. */
  765. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  766. struct extent_buffer *parent, int slot)
  767. {
  768. int level = btrfs_header_level(parent);
  769. if (slot < 0)
  770. return NULL;
  771. if (slot >= btrfs_header_nritems(parent))
  772. return NULL;
  773. BUG_ON(level == 0);
  774. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  775. btrfs_level_size(root, level - 1),
  776. btrfs_node_ptr_generation(parent, slot));
  777. }
  778. /*
  779. * node level balancing, used to make sure nodes are in proper order for
  780. * item deletion. We balance from the top down, so we have to make sure
  781. * that a deletion won't leave an node completely empty later on.
  782. */
  783. static noinline int balance_level(struct btrfs_trans_handle *trans,
  784. struct btrfs_root *root,
  785. struct btrfs_path *path, int level)
  786. {
  787. struct extent_buffer *right = NULL;
  788. struct extent_buffer *mid;
  789. struct extent_buffer *left = NULL;
  790. struct extent_buffer *parent = NULL;
  791. int ret = 0;
  792. int wret;
  793. int pslot;
  794. int orig_slot = path->slots[level];
  795. u64 orig_ptr;
  796. if (level == 0)
  797. return 0;
  798. mid = path->nodes[level];
  799. WARN_ON(!path->locks[level]);
  800. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  801. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  802. if (level < BTRFS_MAX_LEVEL - 1)
  803. parent = path->nodes[level + 1];
  804. pslot = path->slots[level + 1];
  805. /*
  806. * deal with the case where there is only one pointer in the root
  807. * by promoting the node below to a root
  808. */
  809. if (!parent) {
  810. struct extent_buffer *child;
  811. if (btrfs_header_nritems(mid) != 1)
  812. return 0;
  813. /* promote the child to a root */
  814. child = read_node_slot(root, mid, 0);
  815. BUG_ON(!child);
  816. btrfs_tree_lock(child);
  817. btrfs_set_lock_blocking(child);
  818. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  819. if (ret) {
  820. btrfs_tree_unlock(child);
  821. free_extent_buffer(child);
  822. goto enospc;
  823. }
  824. rcu_assign_pointer(root->node, child);
  825. add_root_to_dirty_list(root);
  826. btrfs_tree_unlock(child);
  827. path->locks[level] = 0;
  828. path->nodes[level] = NULL;
  829. clean_tree_block(trans, root, mid);
  830. btrfs_tree_unlock(mid);
  831. /* once for the path */
  832. free_extent_buffer(mid);
  833. root_sub_used(root, mid->len);
  834. btrfs_free_tree_block(trans, root, mid, 0, 1);
  835. /* once for the root ptr */
  836. free_extent_buffer(mid);
  837. return 0;
  838. }
  839. if (btrfs_header_nritems(mid) >
  840. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  841. return 0;
  842. btrfs_header_nritems(mid);
  843. left = read_node_slot(root, parent, pslot - 1);
  844. if (left) {
  845. btrfs_tree_lock(left);
  846. btrfs_set_lock_blocking(left);
  847. wret = btrfs_cow_block(trans, root, left,
  848. parent, pslot - 1, &left);
  849. if (wret) {
  850. ret = wret;
  851. goto enospc;
  852. }
  853. }
  854. right = read_node_slot(root, parent, pslot + 1);
  855. if (right) {
  856. btrfs_tree_lock(right);
  857. btrfs_set_lock_blocking(right);
  858. wret = btrfs_cow_block(trans, root, right,
  859. parent, pslot + 1, &right);
  860. if (wret) {
  861. ret = wret;
  862. goto enospc;
  863. }
  864. }
  865. /* first, try to make some room in the middle buffer */
  866. if (left) {
  867. orig_slot += btrfs_header_nritems(left);
  868. wret = push_node_left(trans, root, left, mid, 1);
  869. if (wret < 0)
  870. ret = wret;
  871. btrfs_header_nritems(mid);
  872. }
  873. /*
  874. * then try to empty the right most buffer into the middle
  875. */
  876. if (right) {
  877. wret = push_node_left(trans, root, mid, right, 1);
  878. if (wret < 0 && wret != -ENOSPC)
  879. ret = wret;
  880. if (btrfs_header_nritems(right) == 0) {
  881. clean_tree_block(trans, root, right);
  882. btrfs_tree_unlock(right);
  883. wret = del_ptr(trans, root, path, level + 1, pslot +
  884. 1);
  885. if (wret)
  886. ret = wret;
  887. root_sub_used(root, right->len);
  888. btrfs_free_tree_block(trans, root, right, 0, 1);
  889. free_extent_buffer(right);
  890. right = NULL;
  891. } else {
  892. struct btrfs_disk_key right_key;
  893. btrfs_node_key(right, &right_key, 0);
  894. btrfs_set_node_key(parent, &right_key, pslot + 1);
  895. btrfs_mark_buffer_dirty(parent);
  896. }
  897. }
  898. if (btrfs_header_nritems(mid) == 1) {
  899. /*
  900. * we're not allowed to leave a node with one item in the
  901. * tree during a delete. A deletion from lower in the tree
  902. * could try to delete the only pointer in this node.
  903. * So, pull some keys from the left.
  904. * There has to be a left pointer at this point because
  905. * otherwise we would have pulled some pointers from the
  906. * right
  907. */
  908. BUG_ON(!left);
  909. wret = balance_node_right(trans, root, mid, left);
  910. if (wret < 0) {
  911. ret = wret;
  912. goto enospc;
  913. }
  914. if (wret == 1) {
  915. wret = push_node_left(trans, root, left, mid, 1);
  916. if (wret < 0)
  917. ret = wret;
  918. }
  919. BUG_ON(wret == 1);
  920. }
  921. if (btrfs_header_nritems(mid) == 0) {
  922. clean_tree_block(trans, root, mid);
  923. btrfs_tree_unlock(mid);
  924. wret = del_ptr(trans, root, path, level + 1, pslot);
  925. if (wret)
  926. ret = wret;
  927. root_sub_used(root, mid->len);
  928. btrfs_free_tree_block(trans, root, mid, 0, 1);
  929. free_extent_buffer(mid);
  930. mid = NULL;
  931. } else {
  932. /* update the parent key to reflect our changes */
  933. struct btrfs_disk_key mid_key;
  934. btrfs_node_key(mid, &mid_key, 0);
  935. btrfs_set_node_key(parent, &mid_key, pslot);
  936. btrfs_mark_buffer_dirty(parent);
  937. }
  938. /* update the path */
  939. if (left) {
  940. if (btrfs_header_nritems(left) > orig_slot) {
  941. extent_buffer_get(left);
  942. /* left was locked after cow */
  943. path->nodes[level] = left;
  944. path->slots[level + 1] -= 1;
  945. path->slots[level] = orig_slot;
  946. if (mid) {
  947. btrfs_tree_unlock(mid);
  948. free_extent_buffer(mid);
  949. }
  950. } else {
  951. orig_slot -= btrfs_header_nritems(left);
  952. path->slots[level] = orig_slot;
  953. }
  954. }
  955. /* double check we haven't messed things up */
  956. if (orig_ptr !=
  957. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  958. BUG();
  959. enospc:
  960. if (right) {
  961. btrfs_tree_unlock(right);
  962. free_extent_buffer(right);
  963. }
  964. if (left) {
  965. if (path->nodes[level] != left)
  966. btrfs_tree_unlock(left);
  967. free_extent_buffer(left);
  968. }
  969. return ret;
  970. }
  971. /* Node balancing for insertion. Here we only split or push nodes around
  972. * when they are completely full. This is also done top down, so we
  973. * have to be pessimistic.
  974. */
  975. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  976. struct btrfs_root *root,
  977. struct btrfs_path *path, int level)
  978. {
  979. struct extent_buffer *right = NULL;
  980. struct extent_buffer *mid;
  981. struct extent_buffer *left = NULL;
  982. struct extent_buffer *parent = NULL;
  983. int ret = 0;
  984. int wret;
  985. int pslot;
  986. int orig_slot = path->slots[level];
  987. if (level == 0)
  988. return 1;
  989. mid = path->nodes[level];
  990. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  991. if (level < BTRFS_MAX_LEVEL - 1)
  992. parent = path->nodes[level + 1];
  993. pslot = path->slots[level + 1];
  994. if (!parent)
  995. return 1;
  996. left = read_node_slot(root, parent, pslot - 1);
  997. /* first, try to make some room in the middle buffer */
  998. if (left) {
  999. u32 left_nr;
  1000. btrfs_tree_lock(left);
  1001. btrfs_set_lock_blocking(left);
  1002. left_nr = btrfs_header_nritems(left);
  1003. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1004. wret = 1;
  1005. } else {
  1006. ret = btrfs_cow_block(trans, root, left, parent,
  1007. pslot - 1, &left);
  1008. if (ret)
  1009. wret = 1;
  1010. else {
  1011. wret = push_node_left(trans, root,
  1012. left, mid, 0);
  1013. }
  1014. }
  1015. if (wret < 0)
  1016. ret = wret;
  1017. if (wret == 0) {
  1018. struct btrfs_disk_key disk_key;
  1019. orig_slot += left_nr;
  1020. btrfs_node_key(mid, &disk_key, 0);
  1021. btrfs_set_node_key(parent, &disk_key, pslot);
  1022. btrfs_mark_buffer_dirty(parent);
  1023. if (btrfs_header_nritems(left) > orig_slot) {
  1024. path->nodes[level] = left;
  1025. path->slots[level + 1] -= 1;
  1026. path->slots[level] = orig_slot;
  1027. btrfs_tree_unlock(mid);
  1028. free_extent_buffer(mid);
  1029. } else {
  1030. orig_slot -=
  1031. btrfs_header_nritems(left);
  1032. path->slots[level] = orig_slot;
  1033. btrfs_tree_unlock(left);
  1034. free_extent_buffer(left);
  1035. }
  1036. return 0;
  1037. }
  1038. btrfs_tree_unlock(left);
  1039. free_extent_buffer(left);
  1040. }
  1041. right = read_node_slot(root, parent, pslot + 1);
  1042. /*
  1043. * then try to empty the right most buffer into the middle
  1044. */
  1045. if (right) {
  1046. u32 right_nr;
  1047. btrfs_tree_lock(right);
  1048. btrfs_set_lock_blocking(right);
  1049. right_nr = btrfs_header_nritems(right);
  1050. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1051. wret = 1;
  1052. } else {
  1053. ret = btrfs_cow_block(trans, root, right,
  1054. parent, pslot + 1,
  1055. &right);
  1056. if (ret)
  1057. wret = 1;
  1058. else {
  1059. wret = balance_node_right(trans, root,
  1060. right, mid);
  1061. }
  1062. }
  1063. if (wret < 0)
  1064. ret = wret;
  1065. if (wret == 0) {
  1066. struct btrfs_disk_key disk_key;
  1067. btrfs_node_key(right, &disk_key, 0);
  1068. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1069. btrfs_mark_buffer_dirty(parent);
  1070. if (btrfs_header_nritems(mid) <= orig_slot) {
  1071. path->nodes[level] = right;
  1072. path->slots[level + 1] += 1;
  1073. path->slots[level] = orig_slot -
  1074. btrfs_header_nritems(mid);
  1075. btrfs_tree_unlock(mid);
  1076. free_extent_buffer(mid);
  1077. } else {
  1078. btrfs_tree_unlock(right);
  1079. free_extent_buffer(right);
  1080. }
  1081. return 0;
  1082. }
  1083. btrfs_tree_unlock(right);
  1084. free_extent_buffer(right);
  1085. }
  1086. return 1;
  1087. }
  1088. /*
  1089. * readahead one full node of leaves, finding things that are close
  1090. * to the block in 'slot', and triggering ra on them.
  1091. */
  1092. static void reada_for_search(struct btrfs_root *root,
  1093. struct btrfs_path *path,
  1094. int level, int slot, u64 objectid)
  1095. {
  1096. struct extent_buffer *node;
  1097. struct btrfs_disk_key disk_key;
  1098. u32 nritems;
  1099. u64 search;
  1100. u64 target;
  1101. u64 nread = 0;
  1102. int direction = path->reada;
  1103. struct extent_buffer *eb;
  1104. u32 nr;
  1105. u32 blocksize;
  1106. u32 nscan = 0;
  1107. if (level != 1)
  1108. return;
  1109. if (!path->nodes[level])
  1110. return;
  1111. node = path->nodes[level];
  1112. search = btrfs_node_blockptr(node, slot);
  1113. blocksize = btrfs_level_size(root, level - 1);
  1114. eb = btrfs_find_tree_block(root, search, blocksize);
  1115. if (eb) {
  1116. free_extent_buffer(eb);
  1117. return;
  1118. }
  1119. target = search;
  1120. nritems = btrfs_header_nritems(node);
  1121. nr = slot;
  1122. while (1) {
  1123. if (direction < 0) {
  1124. if (nr == 0)
  1125. break;
  1126. nr--;
  1127. } else if (direction > 0) {
  1128. nr++;
  1129. if (nr >= nritems)
  1130. break;
  1131. }
  1132. if (path->reada < 0 && objectid) {
  1133. btrfs_node_key(node, &disk_key, nr);
  1134. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1135. break;
  1136. }
  1137. search = btrfs_node_blockptr(node, nr);
  1138. if ((search <= target && target - search <= 65536) ||
  1139. (search > target && search - target <= 65536)) {
  1140. readahead_tree_block(root, search, blocksize,
  1141. btrfs_node_ptr_generation(node, nr));
  1142. nread += blocksize;
  1143. }
  1144. nscan++;
  1145. if ((nread > 65536 || nscan > 32))
  1146. break;
  1147. }
  1148. }
  1149. /*
  1150. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1151. * cache
  1152. */
  1153. static noinline int reada_for_balance(struct btrfs_root *root,
  1154. struct btrfs_path *path, int level)
  1155. {
  1156. int slot;
  1157. int nritems;
  1158. struct extent_buffer *parent;
  1159. struct extent_buffer *eb;
  1160. u64 gen;
  1161. u64 block1 = 0;
  1162. u64 block2 = 0;
  1163. int ret = 0;
  1164. int blocksize;
  1165. parent = path->nodes[level + 1];
  1166. if (!parent)
  1167. return 0;
  1168. nritems = btrfs_header_nritems(parent);
  1169. slot = path->slots[level + 1];
  1170. blocksize = btrfs_level_size(root, level);
  1171. if (slot > 0) {
  1172. block1 = btrfs_node_blockptr(parent, slot - 1);
  1173. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1174. eb = btrfs_find_tree_block(root, block1, blocksize);
  1175. if (eb && btrfs_buffer_uptodate(eb, gen))
  1176. block1 = 0;
  1177. free_extent_buffer(eb);
  1178. }
  1179. if (slot + 1 < nritems) {
  1180. block2 = btrfs_node_blockptr(parent, slot + 1);
  1181. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1182. eb = btrfs_find_tree_block(root, block2, blocksize);
  1183. if (eb && btrfs_buffer_uptodate(eb, gen))
  1184. block2 = 0;
  1185. free_extent_buffer(eb);
  1186. }
  1187. if (block1 || block2) {
  1188. ret = -EAGAIN;
  1189. /* release the whole path */
  1190. btrfs_release_path(path);
  1191. /* read the blocks */
  1192. if (block1)
  1193. readahead_tree_block(root, block1, blocksize, 0);
  1194. if (block2)
  1195. readahead_tree_block(root, block2, blocksize, 0);
  1196. if (block1) {
  1197. eb = read_tree_block(root, block1, blocksize, 0);
  1198. free_extent_buffer(eb);
  1199. }
  1200. if (block2) {
  1201. eb = read_tree_block(root, block2, blocksize, 0);
  1202. free_extent_buffer(eb);
  1203. }
  1204. }
  1205. return ret;
  1206. }
  1207. /*
  1208. * when we walk down the tree, it is usually safe to unlock the higher layers
  1209. * in the tree. The exceptions are when our path goes through slot 0, because
  1210. * operations on the tree might require changing key pointers higher up in the
  1211. * tree.
  1212. *
  1213. * callers might also have set path->keep_locks, which tells this code to keep
  1214. * the lock if the path points to the last slot in the block. This is part of
  1215. * walking through the tree, and selecting the next slot in the higher block.
  1216. *
  1217. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1218. * if lowest_unlock is 1, level 0 won't be unlocked
  1219. */
  1220. static noinline void unlock_up(struct btrfs_path *path, int level,
  1221. int lowest_unlock)
  1222. {
  1223. int i;
  1224. int skip_level = level;
  1225. int no_skips = 0;
  1226. struct extent_buffer *t;
  1227. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1228. if (!path->nodes[i])
  1229. break;
  1230. if (!path->locks[i])
  1231. break;
  1232. if (!no_skips && path->slots[i] == 0) {
  1233. skip_level = i + 1;
  1234. continue;
  1235. }
  1236. if (!no_skips && path->keep_locks) {
  1237. u32 nritems;
  1238. t = path->nodes[i];
  1239. nritems = btrfs_header_nritems(t);
  1240. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1241. skip_level = i + 1;
  1242. continue;
  1243. }
  1244. }
  1245. if (skip_level < i && i >= lowest_unlock)
  1246. no_skips = 1;
  1247. t = path->nodes[i];
  1248. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1249. btrfs_tree_unlock(t);
  1250. path->locks[i] = 0;
  1251. }
  1252. }
  1253. }
  1254. /*
  1255. * This releases any locks held in the path starting at level and
  1256. * going all the way up to the root.
  1257. *
  1258. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1259. * corner cases, such as COW of the block at slot zero in the node. This
  1260. * ignores those rules, and it should only be called when there are no
  1261. * more updates to be done higher up in the tree.
  1262. */
  1263. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1264. {
  1265. int i;
  1266. if (path->keep_locks)
  1267. return;
  1268. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1269. if (!path->nodes[i])
  1270. continue;
  1271. if (!path->locks[i])
  1272. continue;
  1273. btrfs_tree_unlock(path->nodes[i]);
  1274. path->locks[i] = 0;
  1275. }
  1276. }
  1277. /*
  1278. * helper function for btrfs_search_slot. The goal is to find a block
  1279. * in cache without setting the path to blocking. If we find the block
  1280. * we return zero and the path is unchanged.
  1281. *
  1282. * If we can't find the block, we set the path blocking and do some
  1283. * reada. -EAGAIN is returned and the search must be repeated.
  1284. */
  1285. static int
  1286. read_block_for_search(struct btrfs_trans_handle *trans,
  1287. struct btrfs_root *root, struct btrfs_path *p,
  1288. struct extent_buffer **eb_ret, int level, int slot,
  1289. struct btrfs_key *key)
  1290. {
  1291. u64 blocknr;
  1292. u64 gen;
  1293. u32 blocksize;
  1294. struct extent_buffer *b = *eb_ret;
  1295. struct extent_buffer *tmp;
  1296. int ret;
  1297. blocknr = btrfs_node_blockptr(b, slot);
  1298. gen = btrfs_node_ptr_generation(b, slot);
  1299. blocksize = btrfs_level_size(root, level - 1);
  1300. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1301. if (tmp) {
  1302. if (btrfs_buffer_uptodate(tmp, 0)) {
  1303. if (btrfs_buffer_uptodate(tmp, gen)) {
  1304. /*
  1305. * we found an up to date block without
  1306. * sleeping, return
  1307. * right away
  1308. */
  1309. *eb_ret = tmp;
  1310. return 0;
  1311. }
  1312. /* the pages were up to date, but we failed
  1313. * the generation number check. Do a full
  1314. * read for the generation number that is correct.
  1315. * We must do this without dropping locks so
  1316. * we can trust our generation number
  1317. */
  1318. free_extent_buffer(tmp);
  1319. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1320. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1321. *eb_ret = tmp;
  1322. return 0;
  1323. }
  1324. free_extent_buffer(tmp);
  1325. btrfs_release_path(p);
  1326. return -EIO;
  1327. }
  1328. }
  1329. /*
  1330. * reduce lock contention at high levels
  1331. * of the btree by dropping locks before
  1332. * we read. Don't release the lock on the current
  1333. * level because we need to walk this node to figure
  1334. * out which blocks to read.
  1335. */
  1336. btrfs_unlock_up_safe(p, level + 1);
  1337. btrfs_set_path_blocking(p);
  1338. free_extent_buffer(tmp);
  1339. if (p->reada)
  1340. reada_for_search(root, p, level, slot, key->objectid);
  1341. btrfs_release_path(p);
  1342. ret = -EAGAIN;
  1343. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1344. if (tmp) {
  1345. /*
  1346. * If the read above didn't mark this buffer up to date,
  1347. * it will never end up being up to date. Set ret to EIO now
  1348. * and give up so that our caller doesn't loop forever
  1349. * on our EAGAINs.
  1350. */
  1351. if (!btrfs_buffer_uptodate(tmp, 0))
  1352. ret = -EIO;
  1353. free_extent_buffer(tmp);
  1354. }
  1355. return ret;
  1356. }
  1357. /*
  1358. * helper function for btrfs_search_slot. This does all of the checks
  1359. * for node-level blocks and does any balancing required based on
  1360. * the ins_len.
  1361. *
  1362. * If no extra work was required, zero is returned. If we had to
  1363. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1364. * start over
  1365. */
  1366. static int
  1367. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1368. struct btrfs_root *root, struct btrfs_path *p,
  1369. struct extent_buffer *b, int level, int ins_len)
  1370. {
  1371. int ret;
  1372. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1373. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1374. int sret;
  1375. sret = reada_for_balance(root, p, level);
  1376. if (sret)
  1377. goto again;
  1378. btrfs_set_path_blocking(p);
  1379. sret = split_node(trans, root, p, level);
  1380. btrfs_clear_path_blocking(p, NULL);
  1381. BUG_ON(sret > 0);
  1382. if (sret) {
  1383. ret = sret;
  1384. goto done;
  1385. }
  1386. b = p->nodes[level];
  1387. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1388. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1389. int sret;
  1390. sret = reada_for_balance(root, p, level);
  1391. if (sret)
  1392. goto again;
  1393. btrfs_set_path_blocking(p);
  1394. sret = balance_level(trans, root, p, level);
  1395. btrfs_clear_path_blocking(p, NULL);
  1396. if (sret) {
  1397. ret = sret;
  1398. goto done;
  1399. }
  1400. b = p->nodes[level];
  1401. if (!b) {
  1402. btrfs_release_path(p);
  1403. goto again;
  1404. }
  1405. BUG_ON(btrfs_header_nritems(b) == 1);
  1406. }
  1407. return 0;
  1408. again:
  1409. ret = -EAGAIN;
  1410. done:
  1411. return ret;
  1412. }
  1413. /*
  1414. * look for key in the tree. path is filled in with nodes along the way
  1415. * if key is found, we return zero and you can find the item in the leaf
  1416. * level of the path (level 0)
  1417. *
  1418. * If the key isn't found, the path points to the slot where it should
  1419. * be inserted, and 1 is returned. If there are other errors during the
  1420. * search a negative error number is returned.
  1421. *
  1422. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1423. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1424. * possible)
  1425. */
  1426. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1427. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1428. ins_len, int cow)
  1429. {
  1430. struct extent_buffer *b;
  1431. int slot;
  1432. int ret;
  1433. int err;
  1434. int level;
  1435. int lowest_unlock = 1;
  1436. u8 lowest_level = 0;
  1437. lowest_level = p->lowest_level;
  1438. WARN_ON(lowest_level && ins_len > 0);
  1439. WARN_ON(p->nodes[0] != NULL);
  1440. if (ins_len < 0)
  1441. lowest_unlock = 2;
  1442. again:
  1443. if (p->search_commit_root) {
  1444. b = root->commit_root;
  1445. extent_buffer_get(b);
  1446. if (!p->skip_locking)
  1447. btrfs_tree_lock(b);
  1448. } else {
  1449. if (p->skip_locking)
  1450. b = btrfs_root_node(root);
  1451. else
  1452. b = btrfs_lock_root_node(root);
  1453. }
  1454. while (b) {
  1455. level = btrfs_header_level(b);
  1456. /*
  1457. * setup the path here so we can release it under lock
  1458. * contention with the cow code
  1459. */
  1460. p->nodes[level] = b;
  1461. if (!p->skip_locking)
  1462. p->locks[level] = 1;
  1463. if (cow) {
  1464. /*
  1465. * if we don't really need to cow this block
  1466. * then we don't want to set the path blocking,
  1467. * so we test it here
  1468. */
  1469. if (!should_cow_block(trans, root, b))
  1470. goto cow_done;
  1471. btrfs_set_path_blocking(p);
  1472. err = btrfs_cow_block(trans, root, b,
  1473. p->nodes[level + 1],
  1474. p->slots[level + 1], &b);
  1475. if (err) {
  1476. ret = err;
  1477. goto done;
  1478. }
  1479. }
  1480. cow_done:
  1481. BUG_ON(!cow && ins_len);
  1482. if (level != btrfs_header_level(b))
  1483. WARN_ON(1);
  1484. level = btrfs_header_level(b);
  1485. p->nodes[level] = b;
  1486. if (!p->skip_locking)
  1487. p->locks[level] = 1;
  1488. btrfs_clear_path_blocking(p, NULL);
  1489. /*
  1490. * we have a lock on b and as long as we aren't changing
  1491. * the tree, there is no way to for the items in b to change.
  1492. * It is safe to drop the lock on our parent before we
  1493. * go through the expensive btree search on b.
  1494. *
  1495. * If cow is true, then we might be changing slot zero,
  1496. * which may require changing the parent. So, we can't
  1497. * drop the lock until after we know which slot we're
  1498. * operating on.
  1499. */
  1500. if (!cow)
  1501. btrfs_unlock_up_safe(p, level + 1);
  1502. ret = bin_search(b, key, level, &slot);
  1503. if (level != 0) {
  1504. int dec = 0;
  1505. if (ret && slot > 0) {
  1506. dec = 1;
  1507. slot -= 1;
  1508. }
  1509. p->slots[level] = slot;
  1510. err = setup_nodes_for_search(trans, root, p, b, level,
  1511. ins_len);
  1512. if (err == -EAGAIN)
  1513. goto again;
  1514. if (err) {
  1515. ret = err;
  1516. goto done;
  1517. }
  1518. b = p->nodes[level];
  1519. slot = p->slots[level];
  1520. unlock_up(p, level, lowest_unlock);
  1521. if (level == lowest_level) {
  1522. if (dec)
  1523. p->slots[level]++;
  1524. goto done;
  1525. }
  1526. err = read_block_for_search(trans, root, p,
  1527. &b, level, slot, key);
  1528. if (err == -EAGAIN)
  1529. goto again;
  1530. if (err) {
  1531. ret = err;
  1532. goto done;
  1533. }
  1534. if (!p->skip_locking) {
  1535. btrfs_clear_path_blocking(p, NULL);
  1536. err = btrfs_try_spin_lock(b);
  1537. if (!err) {
  1538. btrfs_set_path_blocking(p);
  1539. btrfs_tree_lock(b);
  1540. btrfs_clear_path_blocking(p, b);
  1541. }
  1542. }
  1543. } else {
  1544. p->slots[level] = slot;
  1545. if (ins_len > 0 &&
  1546. btrfs_leaf_free_space(root, b) < ins_len) {
  1547. btrfs_set_path_blocking(p);
  1548. err = split_leaf(trans, root, key,
  1549. p, ins_len, ret == 0);
  1550. btrfs_clear_path_blocking(p, NULL);
  1551. BUG_ON(err > 0);
  1552. if (err) {
  1553. ret = err;
  1554. goto done;
  1555. }
  1556. }
  1557. if (!p->search_for_split)
  1558. unlock_up(p, level, lowest_unlock);
  1559. goto done;
  1560. }
  1561. }
  1562. ret = 1;
  1563. done:
  1564. /*
  1565. * we don't really know what they plan on doing with the path
  1566. * from here on, so for now just mark it as blocking
  1567. */
  1568. if (!p->leave_spinning)
  1569. btrfs_set_path_blocking(p);
  1570. if (ret < 0)
  1571. btrfs_release_path(p);
  1572. return ret;
  1573. }
  1574. /*
  1575. * adjust the pointers going up the tree, starting at level
  1576. * making sure the right key of each node is points to 'key'.
  1577. * This is used after shifting pointers to the left, so it stops
  1578. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1579. * higher levels
  1580. *
  1581. * If this fails to write a tree block, it returns -1, but continues
  1582. * fixing up the blocks in ram so the tree is consistent.
  1583. */
  1584. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1585. struct btrfs_root *root, struct btrfs_path *path,
  1586. struct btrfs_disk_key *key, int level)
  1587. {
  1588. int i;
  1589. int ret = 0;
  1590. struct extent_buffer *t;
  1591. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1592. int tslot = path->slots[i];
  1593. if (!path->nodes[i])
  1594. break;
  1595. t = path->nodes[i];
  1596. btrfs_set_node_key(t, key, tslot);
  1597. btrfs_mark_buffer_dirty(path->nodes[i]);
  1598. if (tslot != 0)
  1599. break;
  1600. }
  1601. return ret;
  1602. }
  1603. /*
  1604. * update item key.
  1605. *
  1606. * This function isn't completely safe. It's the caller's responsibility
  1607. * that the new key won't break the order
  1608. */
  1609. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1610. struct btrfs_root *root, struct btrfs_path *path,
  1611. struct btrfs_key *new_key)
  1612. {
  1613. struct btrfs_disk_key disk_key;
  1614. struct extent_buffer *eb;
  1615. int slot;
  1616. eb = path->nodes[0];
  1617. slot = path->slots[0];
  1618. if (slot > 0) {
  1619. btrfs_item_key(eb, &disk_key, slot - 1);
  1620. if (comp_keys(&disk_key, new_key) >= 0)
  1621. return -1;
  1622. }
  1623. if (slot < btrfs_header_nritems(eb) - 1) {
  1624. btrfs_item_key(eb, &disk_key, slot + 1);
  1625. if (comp_keys(&disk_key, new_key) <= 0)
  1626. return -1;
  1627. }
  1628. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1629. btrfs_set_item_key(eb, &disk_key, slot);
  1630. btrfs_mark_buffer_dirty(eb);
  1631. if (slot == 0)
  1632. fixup_low_keys(trans, root, path, &disk_key, 1);
  1633. return 0;
  1634. }
  1635. /*
  1636. * try to push data from one node into the next node left in the
  1637. * tree.
  1638. *
  1639. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1640. * error, and > 0 if there was no room in the left hand block.
  1641. */
  1642. static int push_node_left(struct btrfs_trans_handle *trans,
  1643. struct btrfs_root *root, struct extent_buffer *dst,
  1644. struct extent_buffer *src, int empty)
  1645. {
  1646. int push_items = 0;
  1647. int src_nritems;
  1648. int dst_nritems;
  1649. int ret = 0;
  1650. src_nritems = btrfs_header_nritems(src);
  1651. dst_nritems = btrfs_header_nritems(dst);
  1652. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1653. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1654. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1655. if (!empty && src_nritems <= 8)
  1656. return 1;
  1657. if (push_items <= 0)
  1658. return 1;
  1659. if (empty) {
  1660. push_items = min(src_nritems, push_items);
  1661. if (push_items < src_nritems) {
  1662. /* leave at least 8 pointers in the node if
  1663. * we aren't going to empty it
  1664. */
  1665. if (src_nritems - push_items < 8) {
  1666. if (push_items <= 8)
  1667. return 1;
  1668. push_items -= 8;
  1669. }
  1670. }
  1671. } else
  1672. push_items = min(src_nritems - 8, push_items);
  1673. copy_extent_buffer(dst, src,
  1674. btrfs_node_key_ptr_offset(dst_nritems),
  1675. btrfs_node_key_ptr_offset(0),
  1676. push_items * sizeof(struct btrfs_key_ptr));
  1677. if (push_items < src_nritems) {
  1678. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1679. btrfs_node_key_ptr_offset(push_items),
  1680. (src_nritems - push_items) *
  1681. sizeof(struct btrfs_key_ptr));
  1682. }
  1683. btrfs_set_header_nritems(src, src_nritems - push_items);
  1684. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1685. btrfs_mark_buffer_dirty(src);
  1686. btrfs_mark_buffer_dirty(dst);
  1687. return ret;
  1688. }
  1689. /*
  1690. * try to push data from one node into the next node right in the
  1691. * tree.
  1692. *
  1693. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1694. * error, and > 0 if there was no room in the right hand block.
  1695. *
  1696. * this will only push up to 1/2 the contents of the left node over
  1697. */
  1698. static int balance_node_right(struct btrfs_trans_handle *trans,
  1699. struct btrfs_root *root,
  1700. struct extent_buffer *dst,
  1701. struct extent_buffer *src)
  1702. {
  1703. int push_items = 0;
  1704. int max_push;
  1705. int src_nritems;
  1706. int dst_nritems;
  1707. int ret = 0;
  1708. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1709. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1710. src_nritems = btrfs_header_nritems(src);
  1711. dst_nritems = btrfs_header_nritems(dst);
  1712. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1713. if (push_items <= 0)
  1714. return 1;
  1715. if (src_nritems < 4)
  1716. return 1;
  1717. max_push = src_nritems / 2 + 1;
  1718. /* don't try to empty the node */
  1719. if (max_push >= src_nritems)
  1720. return 1;
  1721. if (max_push < push_items)
  1722. push_items = max_push;
  1723. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1724. btrfs_node_key_ptr_offset(0),
  1725. (dst_nritems) *
  1726. sizeof(struct btrfs_key_ptr));
  1727. copy_extent_buffer(dst, src,
  1728. btrfs_node_key_ptr_offset(0),
  1729. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1730. push_items * sizeof(struct btrfs_key_ptr));
  1731. btrfs_set_header_nritems(src, src_nritems - push_items);
  1732. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1733. btrfs_mark_buffer_dirty(src);
  1734. btrfs_mark_buffer_dirty(dst);
  1735. return ret;
  1736. }
  1737. /*
  1738. * helper function to insert a new root level in the tree.
  1739. * A new node is allocated, and a single item is inserted to
  1740. * point to the existing root
  1741. *
  1742. * returns zero on success or < 0 on failure.
  1743. */
  1744. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1745. struct btrfs_root *root,
  1746. struct btrfs_path *path, int level)
  1747. {
  1748. u64 lower_gen;
  1749. struct extent_buffer *lower;
  1750. struct extent_buffer *c;
  1751. struct extent_buffer *old;
  1752. struct btrfs_disk_key lower_key;
  1753. BUG_ON(path->nodes[level]);
  1754. BUG_ON(path->nodes[level-1] != root->node);
  1755. lower = path->nodes[level-1];
  1756. if (level == 1)
  1757. btrfs_item_key(lower, &lower_key, 0);
  1758. else
  1759. btrfs_node_key(lower, &lower_key, 0);
  1760. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1761. root->root_key.objectid, &lower_key,
  1762. level, root->node->start, 0);
  1763. if (IS_ERR(c))
  1764. return PTR_ERR(c);
  1765. root_add_used(root, root->nodesize);
  1766. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1767. btrfs_set_header_nritems(c, 1);
  1768. btrfs_set_header_level(c, level);
  1769. btrfs_set_header_bytenr(c, c->start);
  1770. btrfs_set_header_generation(c, trans->transid);
  1771. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1772. btrfs_set_header_owner(c, root->root_key.objectid);
  1773. write_extent_buffer(c, root->fs_info->fsid,
  1774. (unsigned long)btrfs_header_fsid(c),
  1775. BTRFS_FSID_SIZE);
  1776. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1777. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1778. BTRFS_UUID_SIZE);
  1779. btrfs_set_node_key(c, &lower_key, 0);
  1780. btrfs_set_node_blockptr(c, 0, lower->start);
  1781. lower_gen = btrfs_header_generation(lower);
  1782. WARN_ON(lower_gen != trans->transid);
  1783. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1784. btrfs_mark_buffer_dirty(c);
  1785. old = root->node;
  1786. rcu_assign_pointer(root->node, c);
  1787. /* the super has an extra ref to root->node */
  1788. free_extent_buffer(old);
  1789. add_root_to_dirty_list(root);
  1790. extent_buffer_get(c);
  1791. path->nodes[level] = c;
  1792. path->locks[level] = 1;
  1793. path->slots[level] = 0;
  1794. return 0;
  1795. }
  1796. /*
  1797. * worker function to insert a single pointer in a node.
  1798. * the node should have enough room for the pointer already
  1799. *
  1800. * slot and level indicate where you want the key to go, and
  1801. * blocknr is the block the key points to.
  1802. *
  1803. * returns zero on success and < 0 on any error
  1804. */
  1805. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1806. *root, struct btrfs_path *path, struct btrfs_disk_key
  1807. *key, u64 bytenr, int slot, int level)
  1808. {
  1809. struct extent_buffer *lower;
  1810. int nritems;
  1811. BUG_ON(!path->nodes[level]);
  1812. btrfs_assert_tree_locked(path->nodes[level]);
  1813. lower = path->nodes[level];
  1814. nritems = btrfs_header_nritems(lower);
  1815. BUG_ON(slot > nritems);
  1816. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1817. BUG();
  1818. if (slot != nritems) {
  1819. memmove_extent_buffer(lower,
  1820. btrfs_node_key_ptr_offset(slot + 1),
  1821. btrfs_node_key_ptr_offset(slot),
  1822. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1823. }
  1824. btrfs_set_node_key(lower, key, slot);
  1825. btrfs_set_node_blockptr(lower, slot, bytenr);
  1826. WARN_ON(trans->transid == 0);
  1827. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1828. btrfs_set_header_nritems(lower, nritems + 1);
  1829. btrfs_mark_buffer_dirty(lower);
  1830. return 0;
  1831. }
  1832. /*
  1833. * split the node at the specified level in path in two.
  1834. * The path is corrected to point to the appropriate node after the split
  1835. *
  1836. * Before splitting this tries to make some room in the node by pushing
  1837. * left and right, if either one works, it returns right away.
  1838. *
  1839. * returns 0 on success and < 0 on failure
  1840. */
  1841. static noinline int split_node(struct btrfs_trans_handle *trans,
  1842. struct btrfs_root *root,
  1843. struct btrfs_path *path, int level)
  1844. {
  1845. struct extent_buffer *c;
  1846. struct extent_buffer *split;
  1847. struct btrfs_disk_key disk_key;
  1848. int mid;
  1849. int ret;
  1850. int wret;
  1851. u32 c_nritems;
  1852. c = path->nodes[level];
  1853. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1854. if (c == root->node) {
  1855. /* trying to split the root, lets make a new one */
  1856. ret = insert_new_root(trans, root, path, level + 1);
  1857. if (ret)
  1858. return ret;
  1859. } else {
  1860. ret = push_nodes_for_insert(trans, root, path, level);
  1861. c = path->nodes[level];
  1862. if (!ret && btrfs_header_nritems(c) <
  1863. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1864. return 0;
  1865. if (ret < 0)
  1866. return ret;
  1867. }
  1868. c_nritems = btrfs_header_nritems(c);
  1869. mid = (c_nritems + 1) / 2;
  1870. btrfs_node_key(c, &disk_key, mid);
  1871. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1872. root->root_key.objectid,
  1873. &disk_key, level, c->start, 0);
  1874. if (IS_ERR(split))
  1875. return PTR_ERR(split);
  1876. root_add_used(root, root->nodesize);
  1877. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1878. btrfs_set_header_level(split, btrfs_header_level(c));
  1879. btrfs_set_header_bytenr(split, split->start);
  1880. btrfs_set_header_generation(split, trans->transid);
  1881. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1882. btrfs_set_header_owner(split, root->root_key.objectid);
  1883. write_extent_buffer(split, root->fs_info->fsid,
  1884. (unsigned long)btrfs_header_fsid(split),
  1885. BTRFS_FSID_SIZE);
  1886. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1887. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1888. BTRFS_UUID_SIZE);
  1889. copy_extent_buffer(split, c,
  1890. btrfs_node_key_ptr_offset(0),
  1891. btrfs_node_key_ptr_offset(mid),
  1892. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1893. btrfs_set_header_nritems(split, c_nritems - mid);
  1894. btrfs_set_header_nritems(c, mid);
  1895. ret = 0;
  1896. btrfs_mark_buffer_dirty(c);
  1897. btrfs_mark_buffer_dirty(split);
  1898. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1899. path->slots[level + 1] + 1,
  1900. level + 1);
  1901. if (wret)
  1902. ret = wret;
  1903. if (path->slots[level] >= mid) {
  1904. path->slots[level] -= mid;
  1905. btrfs_tree_unlock(c);
  1906. free_extent_buffer(c);
  1907. path->nodes[level] = split;
  1908. path->slots[level + 1] += 1;
  1909. } else {
  1910. btrfs_tree_unlock(split);
  1911. free_extent_buffer(split);
  1912. }
  1913. return ret;
  1914. }
  1915. /*
  1916. * how many bytes are required to store the items in a leaf. start
  1917. * and nr indicate which items in the leaf to check. This totals up the
  1918. * space used both by the item structs and the item data
  1919. */
  1920. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1921. {
  1922. int data_len;
  1923. int nritems = btrfs_header_nritems(l);
  1924. int end = min(nritems, start + nr) - 1;
  1925. if (!nr)
  1926. return 0;
  1927. data_len = btrfs_item_end_nr(l, start);
  1928. data_len = data_len - btrfs_item_offset_nr(l, end);
  1929. data_len += sizeof(struct btrfs_item) * nr;
  1930. WARN_ON(data_len < 0);
  1931. return data_len;
  1932. }
  1933. /*
  1934. * The space between the end of the leaf items and
  1935. * the start of the leaf data. IOW, how much room
  1936. * the leaf has left for both items and data
  1937. */
  1938. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  1939. struct extent_buffer *leaf)
  1940. {
  1941. int nritems = btrfs_header_nritems(leaf);
  1942. int ret;
  1943. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1944. if (ret < 0) {
  1945. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  1946. "used %d nritems %d\n",
  1947. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1948. leaf_space_used(leaf, 0, nritems), nritems);
  1949. }
  1950. return ret;
  1951. }
  1952. /*
  1953. * min slot controls the lowest index we're willing to push to the
  1954. * right. We'll push up to and including min_slot, but no lower
  1955. */
  1956. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  1957. struct btrfs_root *root,
  1958. struct btrfs_path *path,
  1959. int data_size, int empty,
  1960. struct extent_buffer *right,
  1961. int free_space, u32 left_nritems,
  1962. u32 min_slot)
  1963. {
  1964. struct extent_buffer *left = path->nodes[0];
  1965. struct extent_buffer *upper = path->nodes[1];
  1966. struct btrfs_disk_key disk_key;
  1967. int slot;
  1968. u32 i;
  1969. int push_space = 0;
  1970. int push_items = 0;
  1971. struct btrfs_item *item;
  1972. u32 nr;
  1973. u32 right_nritems;
  1974. u32 data_end;
  1975. u32 this_item_size;
  1976. if (empty)
  1977. nr = 0;
  1978. else
  1979. nr = max_t(u32, 1, min_slot);
  1980. if (path->slots[0] >= left_nritems)
  1981. push_space += data_size;
  1982. slot = path->slots[1];
  1983. i = left_nritems - 1;
  1984. while (i >= nr) {
  1985. item = btrfs_item_nr(left, i);
  1986. if (!empty && push_items > 0) {
  1987. if (path->slots[0] > i)
  1988. break;
  1989. if (path->slots[0] == i) {
  1990. int space = btrfs_leaf_free_space(root, left);
  1991. if (space + push_space * 2 > free_space)
  1992. break;
  1993. }
  1994. }
  1995. if (path->slots[0] == i)
  1996. push_space += data_size;
  1997. if (!left->map_token) {
  1998. map_extent_buffer(left, (unsigned long)item,
  1999. sizeof(struct btrfs_item),
  2000. &left->map_token, &left->kaddr,
  2001. &left->map_start, &left->map_len,
  2002. KM_USER1);
  2003. }
  2004. this_item_size = btrfs_item_size(left, item);
  2005. if (this_item_size + sizeof(*item) + push_space > free_space)
  2006. break;
  2007. push_items++;
  2008. push_space += this_item_size + sizeof(*item);
  2009. if (i == 0)
  2010. break;
  2011. i--;
  2012. }
  2013. if (left->map_token) {
  2014. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2015. left->map_token = NULL;
  2016. }
  2017. if (push_items == 0)
  2018. goto out_unlock;
  2019. if (!empty && push_items == left_nritems)
  2020. WARN_ON(1);
  2021. /* push left to right */
  2022. right_nritems = btrfs_header_nritems(right);
  2023. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2024. push_space -= leaf_data_end(root, left);
  2025. /* make room in the right data area */
  2026. data_end = leaf_data_end(root, right);
  2027. memmove_extent_buffer(right,
  2028. btrfs_leaf_data(right) + data_end - push_space,
  2029. btrfs_leaf_data(right) + data_end,
  2030. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2031. /* copy from the left data area */
  2032. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2033. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2034. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2035. push_space);
  2036. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2037. btrfs_item_nr_offset(0),
  2038. right_nritems * sizeof(struct btrfs_item));
  2039. /* copy the items from left to right */
  2040. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2041. btrfs_item_nr_offset(left_nritems - push_items),
  2042. push_items * sizeof(struct btrfs_item));
  2043. /* update the item pointers */
  2044. right_nritems += push_items;
  2045. btrfs_set_header_nritems(right, right_nritems);
  2046. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2047. for (i = 0; i < right_nritems; i++) {
  2048. item = btrfs_item_nr(right, i);
  2049. if (!right->map_token) {
  2050. map_extent_buffer(right, (unsigned long)item,
  2051. sizeof(struct btrfs_item),
  2052. &right->map_token, &right->kaddr,
  2053. &right->map_start, &right->map_len,
  2054. KM_USER1);
  2055. }
  2056. push_space -= btrfs_item_size(right, item);
  2057. btrfs_set_item_offset(right, item, push_space);
  2058. }
  2059. if (right->map_token) {
  2060. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2061. right->map_token = NULL;
  2062. }
  2063. left_nritems -= push_items;
  2064. btrfs_set_header_nritems(left, left_nritems);
  2065. if (left_nritems)
  2066. btrfs_mark_buffer_dirty(left);
  2067. else
  2068. clean_tree_block(trans, root, left);
  2069. btrfs_mark_buffer_dirty(right);
  2070. btrfs_item_key(right, &disk_key, 0);
  2071. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2072. btrfs_mark_buffer_dirty(upper);
  2073. /* then fixup the leaf pointer in the path */
  2074. if (path->slots[0] >= left_nritems) {
  2075. path->slots[0] -= left_nritems;
  2076. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2077. clean_tree_block(trans, root, path->nodes[0]);
  2078. btrfs_tree_unlock(path->nodes[0]);
  2079. free_extent_buffer(path->nodes[0]);
  2080. path->nodes[0] = right;
  2081. path->slots[1] += 1;
  2082. } else {
  2083. btrfs_tree_unlock(right);
  2084. free_extent_buffer(right);
  2085. }
  2086. return 0;
  2087. out_unlock:
  2088. btrfs_tree_unlock(right);
  2089. free_extent_buffer(right);
  2090. return 1;
  2091. }
  2092. /*
  2093. * push some data in the path leaf to the right, trying to free up at
  2094. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2095. *
  2096. * returns 1 if the push failed because the other node didn't have enough
  2097. * room, 0 if everything worked out and < 0 if there were major errors.
  2098. *
  2099. * this will push starting from min_slot to the end of the leaf. It won't
  2100. * push any slot lower than min_slot
  2101. */
  2102. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2103. *root, struct btrfs_path *path,
  2104. int min_data_size, int data_size,
  2105. int empty, u32 min_slot)
  2106. {
  2107. struct extent_buffer *left = path->nodes[0];
  2108. struct extent_buffer *right;
  2109. struct extent_buffer *upper;
  2110. int slot;
  2111. int free_space;
  2112. u32 left_nritems;
  2113. int ret;
  2114. if (!path->nodes[1])
  2115. return 1;
  2116. slot = path->slots[1];
  2117. upper = path->nodes[1];
  2118. if (slot >= btrfs_header_nritems(upper) - 1)
  2119. return 1;
  2120. btrfs_assert_tree_locked(path->nodes[1]);
  2121. right = read_node_slot(root, upper, slot + 1);
  2122. if (right == NULL)
  2123. return 1;
  2124. btrfs_tree_lock(right);
  2125. btrfs_set_lock_blocking(right);
  2126. free_space = btrfs_leaf_free_space(root, right);
  2127. if (free_space < data_size)
  2128. goto out_unlock;
  2129. /* cow and double check */
  2130. ret = btrfs_cow_block(trans, root, right, upper,
  2131. slot + 1, &right);
  2132. if (ret)
  2133. goto out_unlock;
  2134. free_space = btrfs_leaf_free_space(root, right);
  2135. if (free_space < data_size)
  2136. goto out_unlock;
  2137. left_nritems = btrfs_header_nritems(left);
  2138. if (left_nritems == 0)
  2139. goto out_unlock;
  2140. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2141. right, free_space, left_nritems, min_slot);
  2142. out_unlock:
  2143. btrfs_tree_unlock(right);
  2144. free_extent_buffer(right);
  2145. return 1;
  2146. }
  2147. /*
  2148. * push some data in the path leaf to the left, trying to free up at
  2149. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2150. *
  2151. * max_slot can put a limit on how far into the leaf we'll push items. The
  2152. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2153. * items
  2154. */
  2155. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2156. struct btrfs_root *root,
  2157. struct btrfs_path *path, int data_size,
  2158. int empty, struct extent_buffer *left,
  2159. int free_space, u32 right_nritems,
  2160. u32 max_slot)
  2161. {
  2162. struct btrfs_disk_key disk_key;
  2163. struct extent_buffer *right = path->nodes[0];
  2164. int i;
  2165. int push_space = 0;
  2166. int push_items = 0;
  2167. struct btrfs_item *item;
  2168. u32 old_left_nritems;
  2169. u32 nr;
  2170. int ret = 0;
  2171. int wret;
  2172. u32 this_item_size;
  2173. u32 old_left_item_size;
  2174. if (empty)
  2175. nr = min(right_nritems, max_slot);
  2176. else
  2177. nr = min(right_nritems - 1, max_slot);
  2178. for (i = 0; i < nr; i++) {
  2179. item = btrfs_item_nr(right, i);
  2180. if (!right->map_token) {
  2181. map_extent_buffer(right, (unsigned long)item,
  2182. sizeof(struct btrfs_item),
  2183. &right->map_token, &right->kaddr,
  2184. &right->map_start, &right->map_len,
  2185. KM_USER1);
  2186. }
  2187. if (!empty && push_items > 0) {
  2188. if (path->slots[0] < i)
  2189. break;
  2190. if (path->slots[0] == i) {
  2191. int space = btrfs_leaf_free_space(root, right);
  2192. if (space + push_space * 2 > free_space)
  2193. break;
  2194. }
  2195. }
  2196. if (path->slots[0] == i)
  2197. push_space += data_size;
  2198. this_item_size = btrfs_item_size(right, item);
  2199. if (this_item_size + sizeof(*item) + push_space > free_space)
  2200. break;
  2201. push_items++;
  2202. push_space += this_item_size + sizeof(*item);
  2203. }
  2204. if (right->map_token) {
  2205. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2206. right->map_token = NULL;
  2207. }
  2208. if (push_items == 0) {
  2209. ret = 1;
  2210. goto out;
  2211. }
  2212. if (!empty && push_items == btrfs_header_nritems(right))
  2213. WARN_ON(1);
  2214. /* push data from right to left */
  2215. copy_extent_buffer(left, right,
  2216. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2217. btrfs_item_nr_offset(0),
  2218. push_items * sizeof(struct btrfs_item));
  2219. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2220. btrfs_item_offset_nr(right, push_items - 1);
  2221. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2222. leaf_data_end(root, left) - push_space,
  2223. btrfs_leaf_data(right) +
  2224. btrfs_item_offset_nr(right, push_items - 1),
  2225. push_space);
  2226. old_left_nritems = btrfs_header_nritems(left);
  2227. BUG_ON(old_left_nritems <= 0);
  2228. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2229. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2230. u32 ioff;
  2231. item = btrfs_item_nr(left, i);
  2232. if (!left->map_token) {
  2233. map_extent_buffer(left, (unsigned long)item,
  2234. sizeof(struct btrfs_item),
  2235. &left->map_token, &left->kaddr,
  2236. &left->map_start, &left->map_len,
  2237. KM_USER1);
  2238. }
  2239. ioff = btrfs_item_offset(left, item);
  2240. btrfs_set_item_offset(left, item,
  2241. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2242. }
  2243. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2244. if (left->map_token) {
  2245. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2246. left->map_token = NULL;
  2247. }
  2248. /* fixup right node */
  2249. if (push_items > right_nritems) {
  2250. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2251. right_nritems);
  2252. WARN_ON(1);
  2253. }
  2254. if (push_items < right_nritems) {
  2255. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2256. leaf_data_end(root, right);
  2257. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2258. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2259. btrfs_leaf_data(right) +
  2260. leaf_data_end(root, right), push_space);
  2261. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2262. btrfs_item_nr_offset(push_items),
  2263. (btrfs_header_nritems(right) - push_items) *
  2264. sizeof(struct btrfs_item));
  2265. }
  2266. right_nritems -= push_items;
  2267. btrfs_set_header_nritems(right, right_nritems);
  2268. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2269. for (i = 0; i < right_nritems; i++) {
  2270. item = btrfs_item_nr(right, i);
  2271. if (!right->map_token) {
  2272. map_extent_buffer(right, (unsigned long)item,
  2273. sizeof(struct btrfs_item),
  2274. &right->map_token, &right->kaddr,
  2275. &right->map_start, &right->map_len,
  2276. KM_USER1);
  2277. }
  2278. push_space = push_space - btrfs_item_size(right, item);
  2279. btrfs_set_item_offset(right, item, push_space);
  2280. }
  2281. if (right->map_token) {
  2282. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2283. right->map_token = NULL;
  2284. }
  2285. btrfs_mark_buffer_dirty(left);
  2286. if (right_nritems)
  2287. btrfs_mark_buffer_dirty(right);
  2288. else
  2289. clean_tree_block(trans, root, right);
  2290. btrfs_item_key(right, &disk_key, 0);
  2291. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2292. if (wret)
  2293. ret = wret;
  2294. /* then fixup the leaf pointer in the path */
  2295. if (path->slots[0] < push_items) {
  2296. path->slots[0] += old_left_nritems;
  2297. btrfs_tree_unlock(path->nodes[0]);
  2298. free_extent_buffer(path->nodes[0]);
  2299. path->nodes[0] = left;
  2300. path->slots[1] -= 1;
  2301. } else {
  2302. btrfs_tree_unlock(left);
  2303. free_extent_buffer(left);
  2304. path->slots[0] -= push_items;
  2305. }
  2306. BUG_ON(path->slots[0] < 0);
  2307. return ret;
  2308. out:
  2309. btrfs_tree_unlock(left);
  2310. free_extent_buffer(left);
  2311. return ret;
  2312. }
  2313. /*
  2314. * push some data in the path leaf to the left, trying to free up at
  2315. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2316. *
  2317. * max_slot can put a limit on how far into the leaf we'll push items. The
  2318. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2319. * items
  2320. */
  2321. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2322. *root, struct btrfs_path *path, int min_data_size,
  2323. int data_size, int empty, u32 max_slot)
  2324. {
  2325. struct extent_buffer *right = path->nodes[0];
  2326. struct extent_buffer *left;
  2327. int slot;
  2328. int free_space;
  2329. u32 right_nritems;
  2330. int ret = 0;
  2331. slot = path->slots[1];
  2332. if (slot == 0)
  2333. return 1;
  2334. if (!path->nodes[1])
  2335. return 1;
  2336. right_nritems = btrfs_header_nritems(right);
  2337. if (right_nritems == 0)
  2338. return 1;
  2339. btrfs_assert_tree_locked(path->nodes[1]);
  2340. left = read_node_slot(root, path->nodes[1], slot - 1);
  2341. if (left == NULL)
  2342. return 1;
  2343. btrfs_tree_lock(left);
  2344. btrfs_set_lock_blocking(left);
  2345. free_space = btrfs_leaf_free_space(root, left);
  2346. if (free_space < data_size) {
  2347. ret = 1;
  2348. goto out;
  2349. }
  2350. /* cow and double check */
  2351. ret = btrfs_cow_block(trans, root, left,
  2352. path->nodes[1], slot - 1, &left);
  2353. if (ret) {
  2354. /* we hit -ENOSPC, but it isn't fatal here */
  2355. ret = 1;
  2356. goto out;
  2357. }
  2358. free_space = btrfs_leaf_free_space(root, left);
  2359. if (free_space < data_size) {
  2360. ret = 1;
  2361. goto out;
  2362. }
  2363. return __push_leaf_left(trans, root, path, min_data_size,
  2364. empty, left, free_space, right_nritems,
  2365. max_slot);
  2366. out:
  2367. btrfs_tree_unlock(left);
  2368. free_extent_buffer(left);
  2369. return ret;
  2370. }
  2371. /*
  2372. * split the path's leaf in two, making sure there is at least data_size
  2373. * available for the resulting leaf level of the path.
  2374. *
  2375. * returns 0 if all went well and < 0 on failure.
  2376. */
  2377. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2378. struct btrfs_root *root,
  2379. struct btrfs_path *path,
  2380. struct extent_buffer *l,
  2381. struct extent_buffer *right,
  2382. int slot, int mid, int nritems)
  2383. {
  2384. int data_copy_size;
  2385. int rt_data_off;
  2386. int i;
  2387. int ret = 0;
  2388. int wret;
  2389. struct btrfs_disk_key disk_key;
  2390. nritems = nritems - mid;
  2391. btrfs_set_header_nritems(right, nritems);
  2392. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2393. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2394. btrfs_item_nr_offset(mid),
  2395. nritems * sizeof(struct btrfs_item));
  2396. copy_extent_buffer(right, l,
  2397. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2398. data_copy_size, btrfs_leaf_data(l) +
  2399. leaf_data_end(root, l), data_copy_size);
  2400. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2401. btrfs_item_end_nr(l, mid);
  2402. for (i = 0; i < nritems; i++) {
  2403. struct btrfs_item *item = btrfs_item_nr(right, i);
  2404. u32 ioff;
  2405. if (!right->map_token) {
  2406. map_extent_buffer(right, (unsigned long)item,
  2407. sizeof(struct btrfs_item),
  2408. &right->map_token, &right->kaddr,
  2409. &right->map_start, &right->map_len,
  2410. KM_USER1);
  2411. }
  2412. ioff = btrfs_item_offset(right, item);
  2413. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2414. }
  2415. if (right->map_token) {
  2416. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2417. right->map_token = NULL;
  2418. }
  2419. btrfs_set_header_nritems(l, mid);
  2420. ret = 0;
  2421. btrfs_item_key(right, &disk_key, 0);
  2422. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2423. path->slots[1] + 1, 1);
  2424. if (wret)
  2425. ret = wret;
  2426. btrfs_mark_buffer_dirty(right);
  2427. btrfs_mark_buffer_dirty(l);
  2428. BUG_ON(path->slots[0] != slot);
  2429. if (mid <= slot) {
  2430. btrfs_tree_unlock(path->nodes[0]);
  2431. free_extent_buffer(path->nodes[0]);
  2432. path->nodes[0] = right;
  2433. path->slots[0] -= mid;
  2434. path->slots[1] += 1;
  2435. } else {
  2436. btrfs_tree_unlock(right);
  2437. free_extent_buffer(right);
  2438. }
  2439. BUG_ON(path->slots[0] < 0);
  2440. return ret;
  2441. }
  2442. /*
  2443. * double splits happen when we need to insert a big item in the middle
  2444. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2445. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2446. * A B C
  2447. *
  2448. * We avoid this by trying to push the items on either side of our target
  2449. * into the adjacent leaves. If all goes well we can avoid the double split
  2450. * completely.
  2451. */
  2452. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2453. struct btrfs_root *root,
  2454. struct btrfs_path *path,
  2455. int data_size)
  2456. {
  2457. int ret;
  2458. int progress = 0;
  2459. int slot;
  2460. u32 nritems;
  2461. slot = path->slots[0];
  2462. /*
  2463. * try to push all the items after our slot into the
  2464. * right leaf
  2465. */
  2466. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2467. if (ret < 0)
  2468. return ret;
  2469. if (ret == 0)
  2470. progress++;
  2471. nritems = btrfs_header_nritems(path->nodes[0]);
  2472. /*
  2473. * our goal is to get our slot at the start or end of a leaf. If
  2474. * we've done so we're done
  2475. */
  2476. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2477. return 0;
  2478. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2479. return 0;
  2480. /* try to push all the items before our slot into the next leaf */
  2481. slot = path->slots[0];
  2482. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2483. if (ret < 0)
  2484. return ret;
  2485. if (ret == 0)
  2486. progress++;
  2487. if (progress)
  2488. return 0;
  2489. return 1;
  2490. }
  2491. /*
  2492. * split the path's leaf in two, making sure there is at least data_size
  2493. * available for the resulting leaf level of the path.
  2494. *
  2495. * returns 0 if all went well and < 0 on failure.
  2496. */
  2497. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2498. struct btrfs_root *root,
  2499. struct btrfs_key *ins_key,
  2500. struct btrfs_path *path, int data_size,
  2501. int extend)
  2502. {
  2503. struct btrfs_disk_key disk_key;
  2504. struct extent_buffer *l;
  2505. u32 nritems;
  2506. int mid;
  2507. int slot;
  2508. struct extent_buffer *right;
  2509. int ret = 0;
  2510. int wret;
  2511. int split;
  2512. int num_doubles = 0;
  2513. int tried_avoid_double = 0;
  2514. l = path->nodes[0];
  2515. slot = path->slots[0];
  2516. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2517. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2518. return -EOVERFLOW;
  2519. /* first try to make some room by pushing left and right */
  2520. if (data_size) {
  2521. wret = push_leaf_right(trans, root, path, data_size,
  2522. data_size, 0, 0);
  2523. if (wret < 0)
  2524. return wret;
  2525. if (wret) {
  2526. wret = push_leaf_left(trans, root, path, data_size,
  2527. data_size, 0, (u32)-1);
  2528. if (wret < 0)
  2529. return wret;
  2530. }
  2531. l = path->nodes[0];
  2532. /* did the pushes work? */
  2533. if (btrfs_leaf_free_space(root, l) >= data_size)
  2534. return 0;
  2535. }
  2536. if (!path->nodes[1]) {
  2537. ret = insert_new_root(trans, root, path, 1);
  2538. if (ret)
  2539. return ret;
  2540. }
  2541. again:
  2542. split = 1;
  2543. l = path->nodes[0];
  2544. slot = path->slots[0];
  2545. nritems = btrfs_header_nritems(l);
  2546. mid = (nritems + 1) / 2;
  2547. if (mid <= slot) {
  2548. if (nritems == 1 ||
  2549. leaf_space_used(l, mid, nritems - mid) + data_size >
  2550. BTRFS_LEAF_DATA_SIZE(root)) {
  2551. if (slot >= nritems) {
  2552. split = 0;
  2553. } else {
  2554. mid = slot;
  2555. if (mid != nritems &&
  2556. leaf_space_used(l, mid, nritems - mid) +
  2557. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2558. if (data_size && !tried_avoid_double)
  2559. goto push_for_double;
  2560. split = 2;
  2561. }
  2562. }
  2563. }
  2564. } else {
  2565. if (leaf_space_used(l, 0, mid) + data_size >
  2566. BTRFS_LEAF_DATA_SIZE(root)) {
  2567. if (!extend && data_size && slot == 0) {
  2568. split = 0;
  2569. } else if ((extend || !data_size) && slot == 0) {
  2570. mid = 1;
  2571. } else {
  2572. mid = slot;
  2573. if (mid != nritems &&
  2574. leaf_space_used(l, mid, nritems - mid) +
  2575. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2576. if (data_size && !tried_avoid_double)
  2577. goto push_for_double;
  2578. split = 2 ;
  2579. }
  2580. }
  2581. }
  2582. }
  2583. if (split == 0)
  2584. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2585. else
  2586. btrfs_item_key(l, &disk_key, mid);
  2587. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2588. root->root_key.objectid,
  2589. &disk_key, 0, l->start, 0);
  2590. if (IS_ERR(right))
  2591. return PTR_ERR(right);
  2592. root_add_used(root, root->leafsize);
  2593. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2594. btrfs_set_header_bytenr(right, right->start);
  2595. btrfs_set_header_generation(right, trans->transid);
  2596. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2597. btrfs_set_header_owner(right, root->root_key.objectid);
  2598. btrfs_set_header_level(right, 0);
  2599. write_extent_buffer(right, root->fs_info->fsid,
  2600. (unsigned long)btrfs_header_fsid(right),
  2601. BTRFS_FSID_SIZE);
  2602. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2603. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2604. BTRFS_UUID_SIZE);
  2605. if (split == 0) {
  2606. if (mid <= slot) {
  2607. btrfs_set_header_nritems(right, 0);
  2608. wret = insert_ptr(trans, root, path,
  2609. &disk_key, right->start,
  2610. path->slots[1] + 1, 1);
  2611. if (wret)
  2612. ret = wret;
  2613. btrfs_tree_unlock(path->nodes[0]);
  2614. free_extent_buffer(path->nodes[0]);
  2615. path->nodes[0] = right;
  2616. path->slots[0] = 0;
  2617. path->slots[1] += 1;
  2618. } else {
  2619. btrfs_set_header_nritems(right, 0);
  2620. wret = insert_ptr(trans, root, path,
  2621. &disk_key,
  2622. right->start,
  2623. path->slots[1], 1);
  2624. if (wret)
  2625. ret = wret;
  2626. btrfs_tree_unlock(path->nodes[0]);
  2627. free_extent_buffer(path->nodes[0]);
  2628. path->nodes[0] = right;
  2629. path->slots[0] = 0;
  2630. if (path->slots[1] == 0) {
  2631. wret = fixup_low_keys(trans, root,
  2632. path, &disk_key, 1);
  2633. if (wret)
  2634. ret = wret;
  2635. }
  2636. }
  2637. btrfs_mark_buffer_dirty(right);
  2638. return ret;
  2639. }
  2640. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2641. BUG_ON(ret);
  2642. if (split == 2) {
  2643. BUG_ON(num_doubles != 0);
  2644. num_doubles++;
  2645. goto again;
  2646. }
  2647. return ret;
  2648. push_for_double:
  2649. push_for_double_split(trans, root, path, data_size);
  2650. tried_avoid_double = 1;
  2651. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2652. return 0;
  2653. goto again;
  2654. }
  2655. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2656. struct btrfs_root *root,
  2657. struct btrfs_path *path, int ins_len)
  2658. {
  2659. struct btrfs_key key;
  2660. struct extent_buffer *leaf;
  2661. struct btrfs_file_extent_item *fi;
  2662. u64 extent_len = 0;
  2663. u32 item_size;
  2664. int ret;
  2665. leaf = path->nodes[0];
  2666. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2667. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2668. key.type != BTRFS_EXTENT_CSUM_KEY);
  2669. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2670. return 0;
  2671. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2672. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2673. fi = btrfs_item_ptr(leaf, path->slots[0],
  2674. struct btrfs_file_extent_item);
  2675. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2676. }
  2677. btrfs_release_path(path);
  2678. path->keep_locks = 1;
  2679. path->search_for_split = 1;
  2680. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2681. path->search_for_split = 0;
  2682. if (ret < 0)
  2683. goto err;
  2684. ret = -EAGAIN;
  2685. leaf = path->nodes[0];
  2686. /* if our item isn't there or got smaller, return now */
  2687. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2688. goto err;
  2689. /* the leaf has changed, it now has room. return now */
  2690. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2691. goto err;
  2692. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2693. fi = btrfs_item_ptr(leaf, path->slots[0],
  2694. struct btrfs_file_extent_item);
  2695. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2696. goto err;
  2697. }
  2698. btrfs_set_path_blocking(path);
  2699. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2700. if (ret)
  2701. goto err;
  2702. path->keep_locks = 0;
  2703. btrfs_unlock_up_safe(path, 1);
  2704. return 0;
  2705. err:
  2706. path->keep_locks = 0;
  2707. return ret;
  2708. }
  2709. static noinline int split_item(struct btrfs_trans_handle *trans,
  2710. struct btrfs_root *root,
  2711. struct btrfs_path *path,
  2712. struct btrfs_key *new_key,
  2713. unsigned long split_offset)
  2714. {
  2715. struct extent_buffer *leaf;
  2716. struct btrfs_item *item;
  2717. struct btrfs_item *new_item;
  2718. int slot;
  2719. char *buf;
  2720. u32 nritems;
  2721. u32 item_size;
  2722. u32 orig_offset;
  2723. struct btrfs_disk_key disk_key;
  2724. leaf = path->nodes[0];
  2725. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2726. btrfs_set_path_blocking(path);
  2727. item = btrfs_item_nr(leaf, path->slots[0]);
  2728. orig_offset = btrfs_item_offset(leaf, item);
  2729. item_size = btrfs_item_size(leaf, item);
  2730. buf = kmalloc(item_size, GFP_NOFS);
  2731. if (!buf)
  2732. return -ENOMEM;
  2733. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2734. path->slots[0]), item_size);
  2735. slot = path->slots[0] + 1;
  2736. nritems = btrfs_header_nritems(leaf);
  2737. if (slot != nritems) {
  2738. /* shift the items */
  2739. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2740. btrfs_item_nr_offset(slot),
  2741. (nritems - slot) * sizeof(struct btrfs_item));
  2742. }
  2743. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2744. btrfs_set_item_key(leaf, &disk_key, slot);
  2745. new_item = btrfs_item_nr(leaf, slot);
  2746. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2747. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2748. btrfs_set_item_offset(leaf, item,
  2749. orig_offset + item_size - split_offset);
  2750. btrfs_set_item_size(leaf, item, split_offset);
  2751. btrfs_set_header_nritems(leaf, nritems + 1);
  2752. /* write the data for the start of the original item */
  2753. write_extent_buffer(leaf, buf,
  2754. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2755. split_offset);
  2756. /* write the data for the new item */
  2757. write_extent_buffer(leaf, buf + split_offset,
  2758. btrfs_item_ptr_offset(leaf, slot),
  2759. item_size - split_offset);
  2760. btrfs_mark_buffer_dirty(leaf);
  2761. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2762. kfree(buf);
  2763. return 0;
  2764. }
  2765. /*
  2766. * This function splits a single item into two items,
  2767. * giving 'new_key' to the new item and splitting the
  2768. * old one at split_offset (from the start of the item).
  2769. *
  2770. * The path may be released by this operation. After
  2771. * the split, the path is pointing to the old item. The
  2772. * new item is going to be in the same node as the old one.
  2773. *
  2774. * Note, the item being split must be smaller enough to live alone on
  2775. * a tree block with room for one extra struct btrfs_item
  2776. *
  2777. * This allows us to split the item in place, keeping a lock on the
  2778. * leaf the entire time.
  2779. */
  2780. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2781. struct btrfs_root *root,
  2782. struct btrfs_path *path,
  2783. struct btrfs_key *new_key,
  2784. unsigned long split_offset)
  2785. {
  2786. int ret;
  2787. ret = setup_leaf_for_split(trans, root, path,
  2788. sizeof(struct btrfs_item));
  2789. if (ret)
  2790. return ret;
  2791. ret = split_item(trans, root, path, new_key, split_offset);
  2792. return ret;
  2793. }
  2794. /*
  2795. * This function duplicate a item, giving 'new_key' to the new item.
  2796. * It guarantees both items live in the same tree leaf and the new item
  2797. * is contiguous with the original item.
  2798. *
  2799. * This allows us to split file extent in place, keeping a lock on the
  2800. * leaf the entire time.
  2801. */
  2802. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2803. struct btrfs_root *root,
  2804. struct btrfs_path *path,
  2805. struct btrfs_key *new_key)
  2806. {
  2807. struct extent_buffer *leaf;
  2808. int ret;
  2809. u32 item_size;
  2810. leaf = path->nodes[0];
  2811. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2812. ret = setup_leaf_for_split(trans, root, path,
  2813. item_size + sizeof(struct btrfs_item));
  2814. if (ret)
  2815. return ret;
  2816. path->slots[0]++;
  2817. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2818. item_size, item_size +
  2819. sizeof(struct btrfs_item), 1);
  2820. BUG_ON(ret);
  2821. leaf = path->nodes[0];
  2822. memcpy_extent_buffer(leaf,
  2823. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2824. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2825. item_size);
  2826. return 0;
  2827. }
  2828. /*
  2829. * make the item pointed to by the path smaller. new_size indicates
  2830. * how small to make it, and from_end tells us if we just chop bytes
  2831. * off the end of the item or if we shift the item to chop bytes off
  2832. * the front.
  2833. */
  2834. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2835. struct btrfs_root *root,
  2836. struct btrfs_path *path,
  2837. u32 new_size, int from_end)
  2838. {
  2839. int slot;
  2840. struct extent_buffer *leaf;
  2841. struct btrfs_item *item;
  2842. u32 nritems;
  2843. unsigned int data_end;
  2844. unsigned int old_data_start;
  2845. unsigned int old_size;
  2846. unsigned int size_diff;
  2847. int i;
  2848. leaf = path->nodes[0];
  2849. slot = path->slots[0];
  2850. old_size = btrfs_item_size_nr(leaf, slot);
  2851. if (old_size == new_size)
  2852. return 0;
  2853. nritems = btrfs_header_nritems(leaf);
  2854. data_end = leaf_data_end(root, leaf);
  2855. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2856. size_diff = old_size - new_size;
  2857. BUG_ON(slot < 0);
  2858. BUG_ON(slot >= nritems);
  2859. /*
  2860. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2861. */
  2862. /* first correct the data pointers */
  2863. for (i = slot; i < nritems; i++) {
  2864. u32 ioff;
  2865. item = btrfs_item_nr(leaf, i);
  2866. if (!leaf->map_token) {
  2867. map_extent_buffer(leaf, (unsigned long)item,
  2868. sizeof(struct btrfs_item),
  2869. &leaf->map_token, &leaf->kaddr,
  2870. &leaf->map_start, &leaf->map_len,
  2871. KM_USER1);
  2872. }
  2873. ioff = btrfs_item_offset(leaf, item);
  2874. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2875. }
  2876. if (leaf->map_token) {
  2877. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2878. leaf->map_token = NULL;
  2879. }
  2880. /* shift the data */
  2881. if (from_end) {
  2882. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2883. data_end + size_diff, btrfs_leaf_data(leaf) +
  2884. data_end, old_data_start + new_size - data_end);
  2885. } else {
  2886. struct btrfs_disk_key disk_key;
  2887. u64 offset;
  2888. btrfs_item_key(leaf, &disk_key, slot);
  2889. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2890. unsigned long ptr;
  2891. struct btrfs_file_extent_item *fi;
  2892. fi = btrfs_item_ptr(leaf, slot,
  2893. struct btrfs_file_extent_item);
  2894. fi = (struct btrfs_file_extent_item *)(
  2895. (unsigned long)fi - size_diff);
  2896. if (btrfs_file_extent_type(leaf, fi) ==
  2897. BTRFS_FILE_EXTENT_INLINE) {
  2898. ptr = btrfs_item_ptr_offset(leaf, slot);
  2899. memmove_extent_buffer(leaf, ptr,
  2900. (unsigned long)fi,
  2901. offsetof(struct btrfs_file_extent_item,
  2902. disk_bytenr));
  2903. }
  2904. }
  2905. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2906. data_end + size_diff, btrfs_leaf_data(leaf) +
  2907. data_end, old_data_start - data_end);
  2908. offset = btrfs_disk_key_offset(&disk_key);
  2909. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2910. btrfs_set_item_key(leaf, &disk_key, slot);
  2911. if (slot == 0)
  2912. fixup_low_keys(trans, root, path, &disk_key, 1);
  2913. }
  2914. item = btrfs_item_nr(leaf, slot);
  2915. btrfs_set_item_size(leaf, item, new_size);
  2916. btrfs_mark_buffer_dirty(leaf);
  2917. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2918. btrfs_print_leaf(root, leaf);
  2919. BUG();
  2920. }
  2921. return 0;
  2922. }
  2923. /*
  2924. * make the item pointed to by the path bigger, data_size is the new size.
  2925. */
  2926. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2927. struct btrfs_root *root, struct btrfs_path *path,
  2928. u32 data_size)
  2929. {
  2930. int slot;
  2931. struct extent_buffer *leaf;
  2932. struct btrfs_item *item;
  2933. u32 nritems;
  2934. unsigned int data_end;
  2935. unsigned int old_data;
  2936. unsigned int old_size;
  2937. int i;
  2938. leaf = path->nodes[0];
  2939. nritems = btrfs_header_nritems(leaf);
  2940. data_end = leaf_data_end(root, leaf);
  2941. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2942. btrfs_print_leaf(root, leaf);
  2943. BUG();
  2944. }
  2945. slot = path->slots[0];
  2946. old_data = btrfs_item_end_nr(leaf, slot);
  2947. BUG_ON(slot < 0);
  2948. if (slot >= nritems) {
  2949. btrfs_print_leaf(root, leaf);
  2950. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2951. slot, nritems);
  2952. BUG_ON(1);
  2953. }
  2954. /*
  2955. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2956. */
  2957. /* first correct the data pointers */
  2958. for (i = slot; i < nritems; i++) {
  2959. u32 ioff;
  2960. item = btrfs_item_nr(leaf, i);
  2961. if (!leaf->map_token) {
  2962. map_extent_buffer(leaf, (unsigned long)item,
  2963. sizeof(struct btrfs_item),
  2964. &leaf->map_token, &leaf->kaddr,
  2965. &leaf->map_start, &leaf->map_len,
  2966. KM_USER1);
  2967. }
  2968. ioff = btrfs_item_offset(leaf, item);
  2969. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2970. }
  2971. if (leaf->map_token) {
  2972. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2973. leaf->map_token = NULL;
  2974. }
  2975. /* shift the data */
  2976. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2977. data_end - data_size, btrfs_leaf_data(leaf) +
  2978. data_end, old_data - data_end);
  2979. data_end = old_data;
  2980. old_size = btrfs_item_size_nr(leaf, slot);
  2981. item = btrfs_item_nr(leaf, slot);
  2982. btrfs_set_item_size(leaf, item, old_size + data_size);
  2983. btrfs_mark_buffer_dirty(leaf);
  2984. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2985. btrfs_print_leaf(root, leaf);
  2986. BUG();
  2987. }
  2988. return 0;
  2989. }
  2990. /*
  2991. * Given a key and some data, insert items into the tree.
  2992. * This does all the path init required, making room in the tree if needed.
  2993. * Returns the number of keys that were inserted.
  2994. */
  2995. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  2996. struct btrfs_root *root,
  2997. struct btrfs_path *path,
  2998. struct btrfs_key *cpu_key, u32 *data_size,
  2999. int nr)
  3000. {
  3001. struct extent_buffer *leaf;
  3002. struct btrfs_item *item;
  3003. int ret = 0;
  3004. int slot;
  3005. int i;
  3006. u32 nritems;
  3007. u32 total_data = 0;
  3008. u32 total_size = 0;
  3009. unsigned int data_end;
  3010. struct btrfs_disk_key disk_key;
  3011. struct btrfs_key found_key;
  3012. for (i = 0; i < nr; i++) {
  3013. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3014. BTRFS_LEAF_DATA_SIZE(root)) {
  3015. break;
  3016. nr = i;
  3017. }
  3018. total_data += data_size[i];
  3019. total_size += data_size[i] + sizeof(struct btrfs_item);
  3020. }
  3021. BUG_ON(nr == 0);
  3022. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3023. if (ret == 0)
  3024. return -EEXIST;
  3025. if (ret < 0)
  3026. goto out;
  3027. leaf = path->nodes[0];
  3028. nritems = btrfs_header_nritems(leaf);
  3029. data_end = leaf_data_end(root, leaf);
  3030. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3031. for (i = nr; i >= 0; i--) {
  3032. total_data -= data_size[i];
  3033. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3034. if (total_size < btrfs_leaf_free_space(root, leaf))
  3035. break;
  3036. }
  3037. nr = i;
  3038. }
  3039. slot = path->slots[0];
  3040. BUG_ON(slot < 0);
  3041. if (slot != nritems) {
  3042. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3043. item = btrfs_item_nr(leaf, slot);
  3044. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3045. /* figure out how many keys we can insert in here */
  3046. total_data = data_size[0];
  3047. for (i = 1; i < nr; i++) {
  3048. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3049. break;
  3050. total_data += data_size[i];
  3051. }
  3052. nr = i;
  3053. if (old_data < data_end) {
  3054. btrfs_print_leaf(root, leaf);
  3055. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3056. slot, old_data, data_end);
  3057. BUG_ON(1);
  3058. }
  3059. /*
  3060. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3061. */
  3062. /* first correct the data pointers */
  3063. WARN_ON(leaf->map_token);
  3064. for (i = slot; i < nritems; i++) {
  3065. u32 ioff;
  3066. item = btrfs_item_nr(leaf, i);
  3067. if (!leaf->map_token) {
  3068. map_extent_buffer(leaf, (unsigned long)item,
  3069. sizeof(struct btrfs_item),
  3070. &leaf->map_token, &leaf->kaddr,
  3071. &leaf->map_start, &leaf->map_len,
  3072. KM_USER1);
  3073. }
  3074. ioff = btrfs_item_offset(leaf, item);
  3075. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3076. }
  3077. if (leaf->map_token) {
  3078. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3079. leaf->map_token = NULL;
  3080. }
  3081. /* shift the items */
  3082. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3083. btrfs_item_nr_offset(slot),
  3084. (nritems - slot) * sizeof(struct btrfs_item));
  3085. /* shift the data */
  3086. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3087. data_end - total_data, btrfs_leaf_data(leaf) +
  3088. data_end, old_data - data_end);
  3089. data_end = old_data;
  3090. } else {
  3091. /*
  3092. * this sucks but it has to be done, if we are inserting at
  3093. * the end of the leaf only insert 1 of the items, since we
  3094. * have no way of knowing whats on the next leaf and we'd have
  3095. * to drop our current locks to figure it out
  3096. */
  3097. nr = 1;
  3098. }
  3099. /* setup the item for the new data */
  3100. for (i = 0; i < nr; i++) {
  3101. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3102. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3103. item = btrfs_item_nr(leaf, slot + i);
  3104. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3105. data_end -= data_size[i];
  3106. btrfs_set_item_size(leaf, item, data_size[i]);
  3107. }
  3108. btrfs_set_header_nritems(leaf, nritems + nr);
  3109. btrfs_mark_buffer_dirty(leaf);
  3110. ret = 0;
  3111. if (slot == 0) {
  3112. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3113. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3114. }
  3115. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3116. btrfs_print_leaf(root, leaf);
  3117. BUG();
  3118. }
  3119. out:
  3120. if (!ret)
  3121. ret = nr;
  3122. return ret;
  3123. }
  3124. /*
  3125. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3126. * to save stack depth by doing the bulk of the work in a function
  3127. * that doesn't call btrfs_search_slot
  3128. */
  3129. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3130. struct btrfs_root *root, struct btrfs_path *path,
  3131. struct btrfs_key *cpu_key, u32 *data_size,
  3132. u32 total_data, u32 total_size, int nr)
  3133. {
  3134. struct btrfs_item *item;
  3135. int i;
  3136. u32 nritems;
  3137. unsigned int data_end;
  3138. struct btrfs_disk_key disk_key;
  3139. int ret;
  3140. struct extent_buffer *leaf;
  3141. int slot;
  3142. leaf = path->nodes[0];
  3143. slot = path->slots[0];
  3144. nritems = btrfs_header_nritems(leaf);
  3145. data_end = leaf_data_end(root, leaf);
  3146. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3147. btrfs_print_leaf(root, leaf);
  3148. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3149. total_size, btrfs_leaf_free_space(root, leaf));
  3150. BUG();
  3151. }
  3152. if (slot != nritems) {
  3153. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3154. if (old_data < data_end) {
  3155. btrfs_print_leaf(root, leaf);
  3156. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3157. slot, old_data, data_end);
  3158. BUG_ON(1);
  3159. }
  3160. /*
  3161. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3162. */
  3163. /* first correct the data pointers */
  3164. WARN_ON(leaf->map_token);
  3165. for (i = slot; i < nritems; i++) {
  3166. u32 ioff;
  3167. item = btrfs_item_nr(leaf, i);
  3168. if (!leaf->map_token) {
  3169. map_extent_buffer(leaf, (unsigned long)item,
  3170. sizeof(struct btrfs_item),
  3171. &leaf->map_token, &leaf->kaddr,
  3172. &leaf->map_start, &leaf->map_len,
  3173. KM_USER1);
  3174. }
  3175. ioff = btrfs_item_offset(leaf, item);
  3176. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3177. }
  3178. if (leaf->map_token) {
  3179. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3180. leaf->map_token = NULL;
  3181. }
  3182. /* shift the items */
  3183. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3184. btrfs_item_nr_offset(slot),
  3185. (nritems - slot) * sizeof(struct btrfs_item));
  3186. /* shift the data */
  3187. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3188. data_end - total_data, btrfs_leaf_data(leaf) +
  3189. data_end, old_data - data_end);
  3190. data_end = old_data;
  3191. }
  3192. /* setup the item for the new data */
  3193. for (i = 0; i < nr; i++) {
  3194. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3195. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3196. item = btrfs_item_nr(leaf, slot + i);
  3197. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3198. data_end -= data_size[i];
  3199. btrfs_set_item_size(leaf, item, data_size[i]);
  3200. }
  3201. btrfs_set_header_nritems(leaf, nritems + nr);
  3202. ret = 0;
  3203. if (slot == 0) {
  3204. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3205. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3206. }
  3207. btrfs_unlock_up_safe(path, 1);
  3208. btrfs_mark_buffer_dirty(leaf);
  3209. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3210. btrfs_print_leaf(root, leaf);
  3211. BUG();
  3212. }
  3213. return ret;
  3214. }
  3215. /*
  3216. * Given a key and some data, insert items into the tree.
  3217. * This does all the path init required, making room in the tree if needed.
  3218. */
  3219. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3220. struct btrfs_root *root,
  3221. struct btrfs_path *path,
  3222. struct btrfs_key *cpu_key, u32 *data_size,
  3223. int nr)
  3224. {
  3225. int ret = 0;
  3226. int slot;
  3227. int i;
  3228. u32 total_size = 0;
  3229. u32 total_data = 0;
  3230. for (i = 0; i < nr; i++)
  3231. total_data += data_size[i];
  3232. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3233. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3234. if (ret == 0)
  3235. return -EEXIST;
  3236. if (ret < 0)
  3237. goto out;
  3238. slot = path->slots[0];
  3239. BUG_ON(slot < 0);
  3240. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3241. total_data, total_size, nr);
  3242. out:
  3243. return ret;
  3244. }
  3245. /*
  3246. * Given a key and some data, insert an item into the tree.
  3247. * This does all the path init required, making room in the tree if needed.
  3248. */
  3249. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3250. *root, struct btrfs_key *cpu_key, void *data, u32
  3251. data_size)
  3252. {
  3253. int ret = 0;
  3254. struct btrfs_path *path;
  3255. struct extent_buffer *leaf;
  3256. unsigned long ptr;
  3257. path = btrfs_alloc_path();
  3258. if (!path)
  3259. return -ENOMEM;
  3260. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3261. if (!ret) {
  3262. leaf = path->nodes[0];
  3263. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3264. write_extent_buffer(leaf, data, ptr, data_size);
  3265. btrfs_mark_buffer_dirty(leaf);
  3266. }
  3267. btrfs_free_path(path);
  3268. return ret;
  3269. }
  3270. /*
  3271. * delete the pointer from a given node.
  3272. *
  3273. * the tree should have been previously balanced so the deletion does not
  3274. * empty a node.
  3275. */
  3276. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3277. struct btrfs_path *path, int level, int slot)
  3278. {
  3279. struct extent_buffer *parent = path->nodes[level];
  3280. u32 nritems;
  3281. int ret = 0;
  3282. int wret;
  3283. nritems = btrfs_header_nritems(parent);
  3284. if (slot != nritems - 1) {
  3285. memmove_extent_buffer(parent,
  3286. btrfs_node_key_ptr_offset(slot),
  3287. btrfs_node_key_ptr_offset(slot + 1),
  3288. sizeof(struct btrfs_key_ptr) *
  3289. (nritems - slot - 1));
  3290. }
  3291. nritems--;
  3292. btrfs_set_header_nritems(parent, nritems);
  3293. if (nritems == 0 && parent == root->node) {
  3294. BUG_ON(btrfs_header_level(root->node) != 1);
  3295. /* just turn the root into a leaf and break */
  3296. btrfs_set_header_level(root->node, 0);
  3297. } else if (slot == 0) {
  3298. struct btrfs_disk_key disk_key;
  3299. btrfs_node_key(parent, &disk_key, 0);
  3300. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3301. if (wret)
  3302. ret = wret;
  3303. }
  3304. btrfs_mark_buffer_dirty(parent);
  3305. return ret;
  3306. }
  3307. /*
  3308. * a helper function to delete the leaf pointed to by path->slots[1] and
  3309. * path->nodes[1].
  3310. *
  3311. * This deletes the pointer in path->nodes[1] and frees the leaf
  3312. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3313. *
  3314. * The path must have already been setup for deleting the leaf, including
  3315. * all the proper balancing. path->nodes[1] must be locked.
  3316. */
  3317. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3318. struct btrfs_root *root,
  3319. struct btrfs_path *path,
  3320. struct extent_buffer *leaf)
  3321. {
  3322. int ret;
  3323. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3324. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3325. if (ret)
  3326. return ret;
  3327. /*
  3328. * btrfs_free_extent is expensive, we want to make sure we
  3329. * aren't holding any locks when we call it
  3330. */
  3331. btrfs_unlock_up_safe(path, 0);
  3332. root_sub_used(root, leaf->len);
  3333. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  3334. return 0;
  3335. }
  3336. /*
  3337. * delete the item at the leaf level in path. If that empties
  3338. * the leaf, remove it from the tree
  3339. */
  3340. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3341. struct btrfs_path *path, int slot, int nr)
  3342. {
  3343. struct extent_buffer *leaf;
  3344. struct btrfs_item *item;
  3345. int last_off;
  3346. int dsize = 0;
  3347. int ret = 0;
  3348. int wret;
  3349. int i;
  3350. u32 nritems;
  3351. leaf = path->nodes[0];
  3352. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3353. for (i = 0; i < nr; i++)
  3354. dsize += btrfs_item_size_nr(leaf, slot + i);
  3355. nritems = btrfs_header_nritems(leaf);
  3356. if (slot + nr != nritems) {
  3357. int data_end = leaf_data_end(root, leaf);
  3358. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3359. data_end + dsize,
  3360. btrfs_leaf_data(leaf) + data_end,
  3361. last_off - data_end);
  3362. for (i = slot + nr; i < nritems; i++) {
  3363. u32 ioff;
  3364. item = btrfs_item_nr(leaf, i);
  3365. if (!leaf->map_token) {
  3366. map_extent_buffer(leaf, (unsigned long)item,
  3367. sizeof(struct btrfs_item),
  3368. &leaf->map_token, &leaf->kaddr,
  3369. &leaf->map_start, &leaf->map_len,
  3370. KM_USER1);
  3371. }
  3372. ioff = btrfs_item_offset(leaf, item);
  3373. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3374. }
  3375. if (leaf->map_token) {
  3376. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3377. leaf->map_token = NULL;
  3378. }
  3379. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3380. btrfs_item_nr_offset(slot + nr),
  3381. sizeof(struct btrfs_item) *
  3382. (nritems - slot - nr));
  3383. }
  3384. btrfs_set_header_nritems(leaf, nritems - nr);
  3385. nritems -= nr;
  3386. /* delete the leaf if we've emptied it */
  3387. if (nritems == 0) {
  3388. if (leaf == root->node) {
  3389. btrfs_set_header_level(leaf, 0);
  3390. } else {
  3391. btrfs_set_path_blocking(path);
  3392. clean_tree_block(trans, root, leaf);
  3393. ret = btrfs_del_leaf(trans, root, path, leaf);
  3394. BUG_ON(ret);
  3395. }
  3396. } else {
  3397. int used = leaf_space_used(leaf, 0, nritems);
  3398. if (slot == 0) {
  3399. struct btrfs_disk_key disk_key;
  3400. btrfs_item_key(leaf, &disk_key, 0);
  3401. wret = fixup_low_keys(trans, root, path,
  3402. &disk_key, 1);
  3403. if (wret)
  3404. ret = wret;
  3405. }
  3406. /* delete the leaf if it is mostly empty */
  3407. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3408. /* push_leaf_left fixes the path.
  3409. * make sure the path still points to our leaf
  3410. * for possible call to del_ptr below
  3411. */
  3412. slot = path->slots[1];
  3413. extent_buffer_get(leaf);
  3414. btrfs_set_path_blocking(path);
  3415. wret = push_leaf_left(trans, root, path, 1, 1,
  3416. 1, (u32)-1);
  3417. if (wret < 0 && wret != -ENOSPC)
  3418. ret = wret;
  3419. if (path->nodes[0] == leaf &&
  3420. btrfs_header_nritems(leaf)) {
  3421. wret = push_leaf_right(trans, root, path, 1,
  3422. 1, 1, 0);
  3423. if (wret < 0 && wret != -ENOSPC)
  3424. ret = wret;
  3425. }
  3426. if (btrfs_header_nritems(leaf) == 0) {
  3427. path->slots[1] = slot;
  3428. ret = btrfs_del_leaf(trans, root, path, leaf);
  3429. BUG_ON(ret);
  3430. free_extent_buffer(leaf);
  3431. } else {
  3432. /* if we're still in the path, make sure
  3433. * we're dirty. Otherwise, one of the
  3434. * push_leaf functions must have already
  3435. * dirtied this buffer
  3436. */
  3437. if (path->nodes[0] == leaf)
  3438. btrfs_mark_buffer_dirty(leaf);
  3439. free_extent_buffer(leaf);
  3440. }
  3441. } else {
  3442. btrfs_mark_buffer_dirty(leaf);
  3443. }
  3444. }
  3445. return ret;
  3446. }
  3447. /*
  3448. * search the tree again to find a leaf with lesser keys
  3449. * returns 0 if it found something or 1 if there are no lesser leaves.
  3450. * returns < 0 on io errors.
  3451. *
  3452. * This may release the path, and so you may lose any locks held at the
  3453. * time you call it.
  3454. */
  3455. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3456. {
  3457. struct btrfs_key key;
  3458. struct btrfs_disk_key found_key;
  3459. int ret;
  3460. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3461. if (key.offset > 0)
  3462. key.offset--;
  3463. else if (key.type > 0)
  3464. key.type--;
  3465. else if (key.objectid > 0)
  3466. key.objectid--;
  3467. else
  3468. return 1;
  3469. btrfs_release_path(path);
  3470. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3471. if (ret < 0)
  3472. return ret;
  3473. btrfs_item_key(path->nodes[0], &found_key, 0);
  3474. ret = comp_keys(&found_key, &key);
  3475. if (ret < 0)
  3476. return 0;
  3477. return 1;
  3478. }
  3479. /*
  3480. * A helper function to walk down the tree starting at min_key, and looking
  3481. * for nodes or leaves that are either in cache or have a minimum
  3482. * transaction id. This is used by the btree defrag code, and tree logging
  3483. *
  3484. * This does not cow, but it does stuff the starting key it finds back
  3485. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3486. * key and get a writable path.
  3487. *
  3488. * This does lock as it descends, and path->keep_locks should be set
  3489. * to 1 by the caller.
  3490. *
  3491. * This honors path->lowest_level to prevent descent past a given level
  3492. * of the tree.
  3493. *
  3494. * min_trans indicates the oldest transaction that you are interested
  3495. * in walking through. Any nodes or leaves older than min_trans are
  3496. * skipped over (without reading them).
  3497. *
  3498. * returns zero if something useful was found, < 0 on error and 1 if there
  3499. * was nothing in the tree that matched the search criteria.
  3500. */
  3501. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3502. struct btrfs_key *max_key,
  3503. struct btrfs_path *path, int cache_only,
  3504. u64 min_trans)
  3505. {
  3506. struct extent_buffer *cur;
  3507. struct btrfs_key found_key;
  3508. int slot;
  3509. int sret;
  3510. u32 nritems;
  3511. int level;
  3512. int ret = 1;
  3513. WARN_ON(!path->keep_locks);
  3514. again:
  3515. cur = btrfs_lock_root_node(root);
  3516. level = btrfs_header_level(cur);
  3517. WARN_ON(path->nodes[level]);
  3518. path->nodes[level] = cur;
  3519. path->locks[level] = 1;
  3520. if (btrfs_header_generation(cur) < min_trans) {
  3521. ret = 1;
  3522. goto out;
  3523. }
  3524. while (1) {
  3525. nritems = btrfs_header_nritems(cur);
  3526. level = btrfs_header_level(cur);
  3527. sret = bin_search(cur, min_key, level, &slot);
  3528. /* at the lowest level, we're done, setup the path and exit */
  3529. if (level == path->lowest_level) {
  3530. if (slot >= nritems)
  3531. goto find_next_key;
  3532. ret = 0;
  3533. path->slots[level] = slot;
  3534. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3535. goto out;
  3536. }
  3537. if (sret && slot > 0)
  3538. slot--;
  3539. /*
  3540. * check this node pointer against the cache_only and
  3541. * min_trans parameters. If it isn't in cache or is too
  3542. * old, skip to the next one.
  3543. */
  3544. while (slot < nritems) {
  3545. u64 blockptr;
  3546. u64 gen;
  3547. struct extent_buffer *tmp;
  3548. struct btrfs_disk_key disk_key;
  3549. blockptr = btrfs_node_blockptr(cur, slot);
  3550. gen = btrfs_node_ptr_generation(cur, slot);
  3551. if (gen < min_trans) {
  3552. slot++;
  3553. continue;
  3554. }
  3555. if (!cache_only)
  3556. break;
  3557. if (max_key) {
  3558. btrfs_node_key(cur, &disk_key, slot);
  3559. if (comp_keys(&disk_key, max_key) >= 0) {
  3560. ret = 1;
  3561. goto out;
  3562. }
  3563. }
  3564. tmp = btrfs_find_tree_block(root, blockptr,
  3565. btrfs_level_size(root, level - 1));
  3566. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3567. free_extent_buffer(tmp);
  3568. break;
  3569. }
  3570. if (tmp)
  3571. free_extent_buffer(tmp);
  3572. slot++;
  3573. }
  3574. find_next_key:
  3575. /*
  3576. * we didn't find a candidate key in this node, walk forward
  3577. * and find another one
  3578. */
  3579. if (slot >= nritems) {
  3580. path->slots[level] = slot;
  3581. btrfs_set_path_blocking(path);
  3582. sret = btrfs_find_next_key(root, path, min_key, level,
  3583. cache_only, min_trans);
  3584. if (sret == 0) {
  3585. btrfs_release_path(path);
  3586. goto again;
  3587. } else {
  3588. goto out;
  3589. }
  3590. }
  3591. /* save our key for returning back */
  3592. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3593. path->slots[level] = slot;
  3594. if (level == path->lowest_level) {
  3595. ret = 0;
  3596. unlock_up(path, level, 1);
  3597. goto out;
  3598. }
  3599. btrfs_set_path_blocking(path);
  3600. cur = read_node_slot(root, cur, slot);
  3601. BUG_ON(!cur);
  3602. btrfs_tree_lock(cur);
  3603. path->locks[level - 1] = 1;
  3604. path->nodes[level - 1] = cur;
  3605. unlock_up(path, level, 1);
  3606. btrfs_clear_path_blocking(path, NULL);
  3607. }
  3608. out:
  3609. if (ret == 0)
  3610. memcpy(min_key, &found_key, sizeof(found_key));
  3611. btrfs_set_path_blocking(path);
  3612. return ret;
  3613. }
  3614. /*
  3615. * this is similar to btrfs_next_leaf, but does not try to preserve
  3616. * and fixup the path. It looks for and returns the next key in the
  3617. * tree based on the current path and the cache_only and min_trans
  3618. * parameters.
  3619. *
  3620. * 0 is returned if another key is found, < 0 if there are any errors
  3621. * and 1 is returned if there are no higher keys in the tree
  3622. *
  3623. * path->keep_locks should be set to 1 on the search made before
  3624. * calling this function.
  3625. */
  3626. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3627. struct btrfs_key *key, int level,
  3628. int cache_only, u64 min_trans)
  3629. {
  3630. int slot;
  3631. struct extent_buffer *c;
  3632. WARN_ON(!path->keep_locks);
  3633. while (level < BTRFS_MAX_LEVEL) {
  3634. if (!path->nodes[level])
  3635. return 1;
  3636. slot = path->slots[level] + 1;
  3637. c = path->nodes[level];
  3638. next:
  3639. if (slot >= btrfs_header_nritems(c)) {
  3640. int ret;
  3641. int orig_lowest;
  3642. struct btrfs_key cur_key;
  3643. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3644. !path->nodes[level + 1])
  3645. return 1;
  3646. if (path->locks[level + 1]) {
  3647. level++;
  3648. continue;
  3649. }
  3650. slot = btrfs_header_nritems(c) - 1;
  3651. if (level == 0)
  3652. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3653. else
  3654. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3655. orig_lowest = path->lowest_level;
  3656. btrfs_release_path(path);
  3657. path->lowest_level = level;
  3658. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3659. 0, 0);
  3660. path->lowest_level = orig_lowest;
  3661. if (ret < 0)
  3662. return ret;
  3663. c = path->nodes[level];
  3664. slot = path->slots[level];
  3665. if (ret == 0)
  3666. slot++;
  3667. goto next;
  3668. }
  3669. if (level == 0)
  3670. btrfs_item_key_to_cpu(c, key, slot);
  3671. else {
  3672. u64 blockptr = btrfs_node_blockptr(c, slot);
  3673. u64 gen = btrfs_node_ptr_generation(c, slot);
  3674. if (cache_only) {
  3675. struct extent_buffer *cur;
  3676. cur = btrfs_find_tree_block(root, blockptr,
  3677. btrfs_level_size(root, level - 1));
  3678. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3679. slot++;
  3680. if (cur)
  3681. free_extent_buffer(cur);
  3682. goto next;
  3683. }
  3684. free_extent_buffer(cur);
  3685. }
  3686. if (gen < min_trans) {
  3687. slot++;
  3688. goto next;
  3689. }
  3690. btrfs_node_key_to_cpu(c, key, slot);
  3691. }
  3692. return 0;
  3693. }
  3694. return 1;
  3695. }
  3696. /*
  3697. * search the tree again to find a leaf with greater keys
  3698. * returns 0 if it found something or 1 if there are no greater leaves.
  3699. * returns < 0 on io errors.
  3700. */
  3701. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3702. {
  3703. int slot;
  3704. int level;
  3705. struct extent_buffer *c;
  3706. struct extent_buffer *next;
  3707. struct btrfs_key key;
  3708. u32 nritems;
  3709. int ret;
  3710. int old_spinning = path->leave_spinning;
  3711. int force_blocking = 0;
  3712. nritems = btrfs_header_nritems(path->nodes[0]);
  3713. if (nritems == 0)
  3714. return 1;
  3715. /*
  3716. * we take the blocks in an order that upsets lockdep. Using
  3717. * blocking mode is the only way around it.
  3718. */
  3719. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3720. force_blocking = 1;
  3721. #endif
  3722. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3723. again:
  3724. level = 1;
  3725. next = NULL;
  3726. btrfs_release_path(path);
  3727. path->keep_locks = 1;
  3728. if (!force_blocking)
  3729. path->leave_spinning = 1;
  3730. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3731. path->keep_locks = 0;
  3732. if (ret < 0)
  3733. return ret;
  3734. nritems = btrfs_header_nritems(path->nodes[0]);
  3735. /*
  3736. * by releasing the path above we dropped all our locks. A balance
  3737. * could have added more items next to the key that used to be
  3738. * at the very end of the block. So, check again here and
  3739. * advance the path if there are now more items available.
  3740. */
  3741. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3742. if (ret == 0)
  3743. path->slots[0]++;
  3744. ret = 0;
  3745. goto done;
  3746. }
  3747. while (level < BTRFS_MAX_LEVEL) {
  3748. if (!path->nodes[level]) {
  3749. ret = 1;
  3750. goto done;
  3751. }
  3752. slot = path->slots[level] + 1;
  3753. c = path->nodes[level];
  3754. if (slot >= btrfs_header_nritems(c)) {
  3755. level++;
  3756. if (level == BTRFS_MAX_LEVEL) {
  3757. ret = 1;
  3758. goto done;
  3759. }
  3760. continue;
  3761. }
  3762. if (next) {
  3763. btrfs_tree_unlock(next);
  3764. free_extent_buffer(next);
  3765. }
  3766. next = c;
  3767. ret = read_block_for_search(NULL, root, path, &next, level,
  3768. slot, &key);
  3769. if (ret == -EAGAIN)
  3770. goto again;
  3771. if (ret < 0) {
  3772. btrfs_release_path(path);
  3773. goto done;
  3774. }
  3775. if (!path->skip_locking) {
  3776. ret = btrfs_try_spin_lock(next);
  3777. if (!ret) {
  3778. btrfs_set_path_blocking(path);
  3779. btrfs_tree_lock(next);
  3780. if (!force_blocking)
  3781. btrfs_clear_path_blocking(path, next);
  3782. }
  3783. if (force_blocking)
  3784. btrfs_set_lock_blocking(next);
  3785. }
  3786. break;
  3787. }
  3788. path->slots[level] = slot;
  3789. while (1) {
  3790. level--;
  3791. c = path->nodes[level];
  3792. if (path->locks[level])
  3793. btrfs_tree_unlock(c);
  3794. free_extent_buffer(c);
  3795. path->nodes[level] = next;
  3796. path->slots[level] = 0;
  3797. if (!path->skip_locking)
  3798. path->locks[level] = 1;
  3799. if (!level)
  3800. break;
  3801. ret = read_block_for_search(NULL, root, path, &next, level,
  3802. 0, &key);
  3803. if (ret == -EAGAIN)
  3804. goto again;
  3805. if (ret < 0) {
  3806. btrfs_release_path(path);
  3807. goto done;
  3808. }
  3809. if (!path->skip_locking) {
  3810. btrfs_assert_tree_locked(path->nodes[level]);
  3811. ret = btrfs_try_spin_lock(next);
  3812. if (!ret) {
  3813. btrfs_set_path_blocking(path);
  3814. btrfs_tree_lock(next);
  3815. if (!force_blocking)
  3816. btrfs_clear_path_blocking(path, next);
  3817. }
  3818. if (force_blocking)
  3819. btrfs_set_lock_blocking(next);
  3820. }
  3821. }
  3822. ret = 0;
  3823. done:
  3824. unlock_up(path, 0, 1);
  3825. path->leave_spinning = old_spinning;
  3826. if (!old_spinning)
  3827. btrfs_set_path_blocking(path);
  3828. return ret;
  3829. }
  3830. /*
  3831. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3832. * searching until it gets past min_objectid or finds an item of 'type'
  3833. *
  3834. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3835. */
  3836. int btrfs_previous_item(struct btrfs_root *root,
  3837. struct btrfs_path *path, u64 min_objectid,
  3838. int type)
  3839. {
  3840. struct btrfs_key found_key;
  3841. struct extent_buffer *leaf;
  3842. u32 nritems;
  3843. int ret;
  3844. while (1) {
  3845. if (path->slots[0] == 0) {
  3846. btrfs_set_path_blocking(path);
  3847. ret = btrfs_prev_leaf(root, path);
  3848. if (ret != 0)
  3849. return ret;
  3850. } else {
  3851. path->slots[0]--;
  3852. }
  3853. leaf = path->nodes[0];
  3854. nritems = btrfs_header_nritems(leaf);
  3855. if (nritems == 0)
  3856. return 1;
  3857. if (path->slots[0] == nritems)
  3858. path->slots[0]--;
  3859. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3860. if (found_key.objectid < min_objectid)
  3861. break;
  3862. if (found_key.type == type)
  3863. return 0;
  3864. if (found_key.objectid == min_objectid &&
  3865. found_key.type < type)
  3866. break;
  3867. }
  3868. return 1;
  3869. }