rt2x00queue.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2x00lib
  19. Abstract: rt2x00 queue specific routines.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/dma-mapping.h>
  24. #include "rt2x00.h"
  25. #include "rt2x00lib.h"
  26. struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
  27. struct queue_entry *entry)
  28. {
  29. unsigned int frame_size;
  30. unsigned int reserved_size;
  31. struct sk_buff *skb;
  32. struct skb_frame_desc *skbdesc;
  33. /*
  34. * The frame size includes descriptor size, because the
  35. * hardware directly receive the frame into the skbuffer.
  36. */
  37. frame_size = entry->queue->data_size + entry->queue->desc_size;
  38. /*
  39. * Reserve a few bytes extra headroom to allow drivers some moving
  40. * space (e.g. for alignment), while keeping the skb aligned.
  41. */
  42. reserved_size = 8;
  43. /*
  44. * Allocate skbuffer.
  45. */
  46. skb = dev_alloc_skb(frame_size + reserved_size);
  47. if (!skb)
  48. return NULL;
  49. skb_reserve(skb, reserved_size);
  50. skb_put(skb, frame_size);
  51. /*
  52. * Populate skbdesc.
  53. */
  54. skbdesc = get_skb_frame_desc(skb);
  55. memset(skbdesc, 0, sizeof(*skbdesc));
  56. skbdesc->entry = entry;
  57. if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
  58. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
  59. skb->data,
  60. skb->len,
  61. DMA_FROM_DEVICE);
  62. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  63. }
  64. return skb;
  65. }
  66. void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  67. {
  68. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  69. skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
  70. DMA_TO_DEVICE);
  71. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  72. }
  73. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  74. void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  75. {
  76. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  77. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  78. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  79. DMA_FROM_DEVICE);
  80. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  81. }
  82. if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  83. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  84. DMA_TO_DEVICE);
  85. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  86. }
  87. }
  88. void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
  89. {
  90. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  91. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  92. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  93. DMA_FROM_DEVICE);
  94. }
  95. if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  96. dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
  97. DMA_TO_DEVICE);
  98. }
  99. dev_kfree_skb_any(skb);
  100. }
  101. void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
  102. struct txentry_desc *txdesc)
  103. {
  104. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  105. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
  106. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  107. struct ieee80211_rate *rate =
  108. ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  109. const struct rt2x00_rate *hwrate;
  110. unsigned int data_length;
  111. unsigned int duration;
  112. unsigned int residual;
  113. memset(txdesc, 0, sizeof(*txdesc));
  114. /*
  115. * Initialize information from queue
  116. */
  117. txdesc->queue = entry->queue->qid;
  118. txdesc->cw_min = entry->queue->cw_min;
  119. txdesc->cw_max = entry->queue->cw_max;
  120. txdesc->aifs = entry->queue->aifs;
  121. /* Data length should be extended with 4 bytes for CRC */
  122. data_length = entry->skb->len + 4;
  123. /*
  124. * Check whether this frame is to be acked.
  125. */
  126. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  127. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  128. /*
  129. * Check if this is a RTS/CTS frame
  130. */
  131. if (ieee80211_is_rts(hdr->frame_control) ||
  132. ieee80211_is_cts(hdr->frame_control)) {
  133. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  134. if (ieee80211_is_rts(hdr->frame_control))
  135. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  136. else
  137. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  138. if (tx_info->control.rts_cts_rate_idx >= 0)
  139. rate =
  140. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  141. }
  142. /*
  143. * Determine retry information.
  144. */
  145. txdesc->retry_limit = tx_info->control.retry_limit;
  146. if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
  147. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  148. /*
  149. * Check if more fragments are pending
  150. */
  151. if (ieee80211_has_morefrags(hdr->frame_control)) {
  152. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  153. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  154. }
  155. /*
  156. * Beacons and probe responses require the tsf timestamp
  157. * to be inserted into the frame.
  158. */
  159. if (ieee80211_is_beacon(hdr->frame_control) ||
  160. ieee80211_is_probe_resp(hdr->frame_control))
  161. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  162. /*
  163. * Determine with what IFS priority this frame should be send.
  164. * Set ifs to IFS_SIFS when the this is not the first fragment,
  165. * or this fragment came after RTS/CTS.
  166. */
  167. if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
  168. txdesc->ifs = IFS_SIFS;
  169. } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
  170. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  171. txdesc->ifs = IFS_BACKOFF;
  172. } else {
  173. txdesc->ifs = IFS_SIFS;
  174. }
  175. /*
  176. * PLCP setup
  177. * Length calculation depends on OFDM/CCK rate.
  178. */
  179. hwrate = rt2x00_get_rate(rate->hw_value);
  180. txdesc->signal = hwrate->plcp;
  181. txdesc->service = 0x04;
  182. if (hwrate->flags & DEV_RATE_OFDM) {
  183. __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
  184. txdesc->length_high = (data_length >> 6) & 0x3f;
  185. txdesc->length_low = data_length & 0x3f;
  186. } else {
  187. /*
  188. * Convert length to microseconds.
  189. */
  190. residual = get_duration_res(data_length, hwrate->bitrate);
  191. duration = get_duration(data_length, hwrate->bitrate);
  192. if (residual != 0) {
  193. duration++;
  194. /*
  195. * Check if we need to set the Length Extension
  196. */
  197. if (hwrate->bitrate == 110 && residual <= 30)
  198. txdesc->service |= 0x80;
  199. }
  200. txdesc->length_high = (duration >> 8) & 0xff;
  201. txdesc->length_low = duration & 0xff;
  202. /*
  203. * When preamble is enabled we should set the
  204. * preamble bit for the signal.
  205. */
  206. if (rt2x00_get_rate_preamble(rate->hw_value))
  207. txdesc->signal |= 0x08;
  208. }
  209. }
  210. EXPORT_SYMBOL_GPL(rt2x00queue_create_tx_descriptor);
  211. void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  212. struct txentry_desc *txdesc)
  213. {
  214. struct data_queue *queue = entry->queue;
  215. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  216. rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
  217. /*
  218. * All processing on the frame has been completed, this means
  219. * it is now ready to be dumped to userspace through debugfs.
  220. */
  221. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
  222. /*
  223. * Check if we need to kick the queue, there are however a few rules
  224. * 1) Don't kick beacon queue
  225. * 2) Don't kick unless this is the last in frame in a burst.
  226. * When the burst flag is set, this frame is always followed
  227. * by another frame which in some way are related to eachother.
  228. * This is true for fragments, RTS or CTS-to-self frames.
  229. * 3) Rule 2 can be broken when the available entries
  230. * in the queue are less then a certain threshold.
  231. */
  232. if (entry->queue->qid == QID_BEACON)
  233. return;
  234. if (rt2x00queue_threshold(queue) ||
  235. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  236. rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
  237. }
  238. EXPORT_SYMBOL_GPL(rt2x00queue_write_tx_descriptor);
  239. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
  240. {
  241. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  242. struct txentry_desc txdesc;
  243. struct skb_frame_desc *skbdesc;
  244. if (unlikely(rt2x00queue_full(queue)))
  245. return -EINVAL;
  246. if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
  247. ERROR(queue->rt2x00dev,
  248. "Arrived at non-free entry in the non-full queue %d.\n"
  249. "Please file bug report to %s.\n",
  250. queue->qid, DRV_PROJECT);
  251. return -EINVAL;
  252. }
  253. /*
  254. * Copy all TX descriptor information into txdesc,
  255. * after that we are free to use the skb->cb array
  256. * for our information.
  257. */
  258. entry->skb = skb;
  259. rt2x00queue_create_tx_descriptor(entry, &txdesc);
  260. /*
  261. * skb->cb array is now ours and we are free to use it.
  262. */
  263. skbdesc = get_skb_frame_desc(entry->skb);
  264. memset(skbdesc, 0, sizeof(*skbdesc));
  265. skbdesc->entry = entry;
  266. if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
  267. __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  268. return -EIO;
  269. }
  270. if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
  271. rt2x00queue_map_txskb(queue->rt2x00dev, skb);
  272. __set_bit(ENTRY_DATA_PENDING, &entry->flags);
  273. rt2x00queue_index_inc(queue, Q_INDEX);
  274. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  275. return 0;
  276. }
  277. struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
  278. const enum data_queue_qid queue)
  279. {
  280. int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  281. if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
  282. return &rt2x00dev->tx[queue];
  283. if (!rt2x00dev->bcn)
  284. return NULL;
  285. if (queue == QID_BEACON)
  286. return &rt2x00dev->bcn[0];
  287. else if (queue == QID_ATIM && atim)
  288. return &rt2x00dev->bcn[1];
  289. return NULL;
  290. }
  291. EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
  292. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  293. enum queue_index index)
  294. {
  295. struct queue_entry *entry;
  296. unsigned long irqflags;
  297. if (unlikely(index >= Q_INDEX_MAX)) {
  298. ERROR(queue->rt2x00dev,
  299. "Entry requested from invalid index type (%d)\n", index);
  300. return NULL;
  301. }
  302. spin_lock_irqsave(&queue->lock, irqflags);
  303. entry = &queue->entries[queue->index[index]];
  304. spin_unlock_irqrestore(&queue->lock, irqflags);
  305. return entry;
  306. }
  307. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  308. void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
  309. {
  310. unsigned long irqflags;
  311. if (unlikely(index >= Q_INDEX_MAX)) {
  312. ERROR(queue->rt2x00dev,
  313. "Index change on invalid index type (%d)\n", index);
  314. return;
  315. }
  316. spin_lock_irqsave(&queue->lock, irqflags);
  317. queue->index[index]++;
  318. if (queue->index[index] >= queue->limit)
  319. queue->index[index] = 0;
  320. if (index == Q_INDEX) {
  321. queue->length++;
  322. } else if (index == Q_INDEX_DONE) {
  323. queue->length--;
  324. queue->count ++;
  325. }
  326. spin_unlock_irqrestore(&queue->lock, irqflags);
  327. }
  328. static void rt2x00queue_reset(struct data_queue *queue)
  329. {
  330. unsigned long irqflags;
  331. spin_lock_irqsave(&queue->lock, irqflags);
  332. queue->count = 0;
  333. queue->length = 0;
  334. memset(queue->index, 0, sizeof(queue->index));
  335. spin_unlock_irqrestore(&queue->lock, irqflags);
  336. }
  337. void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
  338. {
  339. struct data_queue *queue = rt2x00dev->rx;
  340. unsigned int i;
  341. rt2x00queue_reset(queue);
  342. if (!rt2x00dev->ops->lib->init_rxentry)
  343. return;
  344. for (i = 0; i < queue->limit; i++)
  345. rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
  346. &queue->entries[i]);
  347. }
  348. void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
  349. {
  350. struct data_queue *queue;
  351. unsigned int i;
  352. txall_queue_for_each(rt2x00dev, queue) {
  353. rt2x00queue_reset(queue);
  354. if (!rt2x00dev->ops->lib->init_txentry)
  355. continue;
  356. for (i = 0; i < queue->limit; i++)
  357. rt2x00dev->ops->lib->init_txentry(rt2x00dev,
  358. &queue->entries[i]);
  359. }
  360. }
  361. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  362. const struct data_queue_desc *qdesc)
  363. {
  364. struct queue_entry *entries;
  365. unsigned int entry_size;
  366. unsigned int i;
  367. rt2x00queue_reset(queue);
  368. queue->limit = qdesc->entry_num;
  369. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  370. queue->data_size = qdesc->data_size;
  371. queue->desc_size = qdesc->desc_size;
  372. /*
  373. * Allocate all queue entries.
  374. */
  375. entry_size = sizeof(*entries) + qdesc->priv_size;
  376. entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
  377. if (!entries)
  378. return -ENOMEM;
  379. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  380. ( ((char *)(__base)) + ((__limit) * (__esize)) + \
  381. ((__index) * (__psize)) )
  382. for (i = 0; i < queue->limit; i++) {
  383. entries[i].flags = 0;
  384. entries[i].queue = queue;
  385. entries[i].skb = NULL;
  386. entries[i].entry_idx = i;
  387. entries[i].priv_data =
  388. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  389. sizeof(*entries), qdesc->priv_size);
  390. }
  391. #undef QUEUE_ENTRY_PRIV_OFFSET
  392. queue->entries = entries;
  393. return 0;
  394. }
  395. static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
  396. struct data_queue *queue)
  397. {
  398. unsigned int i;
  399. if (!queue->entries)
  400. return;
  401. for (i = 0; i < queue->limit; i++) {
  402. if (queue->entries[i].skb)
  403. rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
  404. }
  405. }
  406. static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
  407. struct data_queue *queue)
  408. {
  409. unsigned int i;
  410. struct sk_buff *skb;
  411. for (i = 0; i < queue->limit; i++) {
  412. skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
  413. if (!skb)
  414. goto exit;
  415. queue->entries[i].skb = skb;
  416. }
  417. return 0;
  418. exit:
  419. rt2x00queue_free_skbs(rt2x00dev, queue);
  420. return -ENOMEM;
  421. }
  422. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  423. {
  424. struct data_queue *queue;
  425. int status;
  426. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  427. if (status)
  428. goto exit;
  429. tx_queue_for_each(rt2x00dev, queue) {
  430. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  431. if (status)
  432. goto exit;
  433. }
  434. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  435. if (status)
  436. goto exit;
  437. if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
  438. status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
  439. rt2x00dev->ops->atim);
  440. if (status)
  441. goto exit;
  442. }
  443. status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
  444. if (status)
  445. goto exit;
  446. return 0;
  447. exit:
  448. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  449. rt2x00queue_uninitialize(rt2x00dev);
  450. return status;
  451. }
  452. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  453. {
  454. struct data_queue *queue;
  455. rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
  456. queue_for_each(rt2x00dev, queue) {
  457. kfree(queue->entries);
  458. queue->entries = NULL;
  459. }
  460. }
  461. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  462. struct data_queue *queue, enum data_queue_qid qid)
  463. {
  464. spin_lock_init(&queue->lock);
  465. queue->rt2x00dev = rt2x00dev;
  466. queue->qid = qid;
  467. queue->aifs = 2;
  468. queue->cw_min = 5;
  469. queue->cw_max = 10;
  470. }
  471. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  472. {
  473. struct data_queue *queue;
  474. enum data_queue_qid qid;
  475. unsigned int req_atim =
  476. !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  477. /*
  478. * We need the following queues:
  479. * RX: 1
  480. * TX: ops->tx_queues
  481. * Beacon: 1
  482. * Atim: 1 (if required)
  483. */
  484. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  485. queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
  486. if (!queue) {
  487. ERROR(rt2x00dev, "Queue allocation failed.\n");
  488. return -ENOMEM;
  489. }
  490. /*
  491. * Initialize pointers
  492. */
  493. rt2x00dev->rx = queue;
  494. rt2x00dev->tx = &queue[1];
  495. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  496. /*
  497. * Initialize queue parameters.
  498. * RX: qid = QID_RX
  499. * TX: qid = QID_AC_BE + index
  500. * TX: cw_min: 2^5 = 32.
  501. * TX: cw_max: 2^10 = 1024.
  502. * BCN: qid = QID_BEACON
  503. * ATIM: qid = QID_ATIM
  504. */
  505. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  506. qid = QID_AC_BE;
  507. tx_queue_for_each(rt2x00dev, queue)
  508. rt2x00queue_init(rt2x00dev, queue, qid++);
  509. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
  510. if (req_atim)
  511. rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
  512. return 0;
  513. }
  514. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  515. {
  516. kfree(rt2x00dev->rx);
  517. rt2x00dev->rx = NULL;
  518. rt2x00dev->tx = NULL;
  519. rt2x00dev->bcn = NULL;
  520. }