timer.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, kernel timekeeping, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/notifier.h>
  29. #include <linux/thread_info.h>
  30. #include <linux/time.h>
  31. #include <linux/jiffies.h>
  32. #include <linux/posix-timers.h>
  33. #include <linux/cpu.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/delay.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/unistd.h>
  38. #include <asm/div64.h>
  39. #include <asm/timex.h>
  40. #include <asm/io.h>
  41. #ifdef CONFIG_TIME_INTERPOLATION
  42. static void time_interpolator_update(long delta_nsec);
  43. #else
  44. #define time_interpolator_update(x)
  45. #endif
  46. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  47. EXPORT_SYMBOL(jiffies_64);
  48. /*
  49. * per-CPU timer vector definitions:
  50. */
  51. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  52. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  53. #define TVN_SIZE (1 << TVN_BITS)
  54. #define TVR_SIZE (1 << TVR_BITS)
  55. #define TVN_MASK (TVN_SIZE - 1)
  56. #define TVR_MASK (TVR_SIZE - 1)
  57. typedef struct tvec_s {
  58. struct list_head vec[TVN_SIZE];
  59. } tvec_t;
  60. typedef struct tvec_root_s {
  61. struct list_head vec[TVR_SIZE];
  62. } tvec_root_t;
  63. struct tvec_t_base_s {
  64. spinlock_t lock;
  65. struct timer_list *running_timer;
  66. unsigned long timer_jiffies;
  67. tvec_root_t tv1;
  68. tvec_t tv2;
  69. tvec_t tv3;
  70. tvec_t tv4;
  71. tvec_t tv5;
  72. } ____cacheline_aligned_in_smp;
  73. typedef struct tvec_t_base_s tvec_base_t;
  74. tvec_base_t boot_tvec_bases;
  75. EXPORT_SYMBOL(boot_tvec_bases);
  76. static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
  77. static inline void set_running_timer(tvec_base_t *base,
  78. struct timer_list *timer)
  79. {
  80. #ifdef CONFIG_SMP
  81. base->running_timer = timer;
  82. #endif
  83. }
  84. static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
  85. {
  86. unsigned long expires = timer->expires;
  87. unsigned long idx = expires - base->timer_jiffies;
  88. struct list_head *vec;
  89. if (idx < TVR_SIZE) {
  90. int i = expires & TVR_MASK;
  91. vec = base->tv1.vec + i;
  92. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  93. int i = (expires >> TVR_BITS) & TVN_MASK;
  94. vec = base->tv2.vec + i;
  95. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  96. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  97. vec = base->tv3.vec + i;
  98. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  99. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  100. vec = base->tv4.vec + i;
  101. } else if ((signed long) idx < 0) {
  102. /*
  103. * Can happen if you add a timer with expires == jiffies,
  104. * or you set a timer to go off in the past
  105. */
  106. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  107. } else {
  108. int i;
  109. /* If the timeout is larger than 0xffffffff on 64-bit
  110. * architectures then we use the maximum timeout:
  111. */
  112. if (idx > 0xffffffffUL) {
  113. idx = 0xffffffffUL;
  114. expires = idx + base->timer_jiffies;
  115. }
  116. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  117. vec = base->tv5.vec + i;
  118. }
  119. /*
  120. * Timers are FIFO:
  121. */
  122. list_add_tail(&timer->entry, vec);
  123. }
  124. /***
  125. * init_timer - initialize a timer.
  126. * @timer: the timer to be initialized
  127. *
  128. * init_timer() must be done to a timer prior calling *any* of the
  129. * other timer functions.
  130. */
  131. void fastcall init_timer(struct timer_list *timer)
  132. {
  133. timer->entry.next = NULL;
  134. timer->base = __raw_get_cpu_var(tvec_bases);
  135. }
  136. EXPORT_SYMBOL(init_timer);
  137. static inline void detach_timer(struct timer_list *timer,
  138. int clear_pending)
  139. {
  140. struct list_head *entry = &timer->entry;
  141. __list_del(entry->prev, entry->next);
  142. if (clear_pending)
  143. entry->next = NULL;
  144. entry->prev = LIST_POISON2;
  145. }
  146. /*
  147. * We are using hashed locking: holding per_cpu(tvec_bases).lock
  148. * means that all timers which are tied to this base via timer->base are
  149. * locked, and the base itself is locked too.
  150. *
  151. * So __run_timers/migrate_timers can safely modify all timers which could
  152. * be found on ->tvX lists.
  153. *
  154. * When the timer's base is locked, and the timer removed from list, it is
  155. * possible to set timer->base = NULL and drop the lock: the timer remains
  156. * locked.
  157. */
  158. static tvec_base_t *lock_timer_base(struct timer_list *timer,
  159. unsigned long *flags)
  160. {
  161. tvec_base_t *base;
  162. for (;;) {
  163. base = timer->base;
  164. if (likely(base != NULL)) {
  165. spin_lock_irqsave(&base->lock, *flags);
  166. if (likely(base == timer->base))
  167. return base;
  168. /* The timer has migrated to another CPU */
  169. spin_unlock_irqrestore(&base->lock, *flags);
  170. }
  171. cpu_relax();
  172. }
  173. }
  174. int __mod_timer(struct timer_list *timer, unsigned long expires)
  175. {
  176. tvec_base_t *base, *new_base;
  177. unsigned long flags;
  178. int ret = 0;
  179. BUG_ON(!timer->function);
  180. base = lock_timer_base(timer, &flags);
  181. if (timer_pending(timer)) {
  182. detach_timer(timer, 0);
  183. ret = 1;
  184. }
  185. new_base = __get_cpu_var(tvec_bases);
  186. if (base != new_base) {
  187. /*
  188. * We are trying to schedule the timer on the local CPU.
  189. * However we can't change timer's base while it is running,
  190. * otherwise del_timer_sync() can't detect that the timer's
  191. * handler yet has not finished. This also guarantees that
  192. * the timer is serialized wrt itself.
  193. */
  194. if (likely(base->running_timer != timer)) {
  195. /* See the comment in lock_timer_base() */
  196. timer->base = NULL;
  197. spin_unlock(&base->lock);
  198. base = new_base;
  199. spin_lock(&base->lock);
  200. timer->base = base;
  201. }
  202. }
  203. timer->expires = expires;
  204. internal_add_timer(base, timer);
  205. spin_unlock_irqrestore(&base->lock, flags);
  206. return ret;
  207. }
  208. EXPORT_SYMBOL(__mod_timer);
  209. /***
  210. * add_timer_on - start a timer on a particular CPU
  211. * @timer: the timer to be added
  212. * @cpu: the CPU to start it on
  213. *
  214. * This is not very scalable on SMP. Double adds are not possible.
  215. */
  216. void add_timer_on(struct timer_list *timer, int cpu)
  217. {
  218. tvec_base_t *base = per_cpu(tvec_bases, cpu);
  219. unsigned long flags;
  220. BUG_ON(timer_pending(timer) || !timer->function);
  221. spin_lock_irqsave(&base->lock, flags);
  222. timer->base = base;
  223. internal_add_timer(base, timer);
  224. spin_unlock_irqrestore(&base->lock, flags);
  225. }
  226. /***
  227. * mod_timer - modify a timer's timeout
  228. * @timer: the timer to be modified
  229. *
  230. * mod_timer is a more efficient way to update the expire field of an
  231. * active timer (if the timer is inactive it will be activated)
  232. *
  233. * mod_timer(timer, expires) is equivalent to:
  234. *
  235. * del_timer(timer); timer->expires = expires; add_timer(timer);
  236. *
  237. * Note that if there are multiple unserialized concurrent users of the
  238. * same timer, then mod_timer() is the only safe way to modify the timeout,
  239. * since add_timer() cannot modify an already running timer.
  240. *
  241. * The function returns whether it has modified a pending timer or not.
  242. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  243. * active timer returns 1.)
  244. */
  245. int mod_timer(struct timer_list *timer, unsigned long expires)
  246. {
  247. BUG_ON(!timer->function);
  248. /*
  249. * This is a common optimization triggered by the
  250. * networking code - if the timer is re-modified
  251. * to be the same thing then just return:
  252. */
  253. if (timer->expires == expires && timer_pending(timer))
  254. return 1;
  255. return __mod_timer(timer, expires);
  256. }
  257. EXPORT_SYMBOL(mod_timer);
  258. /***
  259. * del_timer - deactive a timer.
  260. * @timer: the timer to be deactivated
  261. *
  262. * del_timer() deactivates a timer - this works on both active and inactive
  263. * timers.
  264. *
  265. * The function returns whether it has deactivated a pending timer or not.
  266. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  267. * active timer returns 1.)
  268. */
  269. int del_timer(struct timer_list *timer)
  270. {
  271. tvec_base_t *base;
  272. unsigned long flags;
  273. int ret = 0;
  274. if (timer_pending(timer)) {
  275. base = lock_timer_base(timer, &flags);
  276. if (timer_pending(timer)) {
  277. detach_timer(timer, 1);
  278. ret = 1;
  279. }
  280. spin_unlock_irqrestore(&base->lock, flags);
  281. }
  282. return ret;
  283. }
  284. EXPORT_SYMBOL(del_timer);
  285. #ifdef CONFIG_SMP
  286. /*
  287. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  288. * exit the timer is not queued and the handler is not running on any CPU.
  289. *
  290. * It must not be called from interrupt contexts.
  291. */
  292. int try_to_del_timer_sync(struct timer_list *timer)
  293. {
  294. tvec_base_t *base;
  295. unsigned long flags;
  296. int ret = -1;
  297. base = lock_timer_base(timer, &flags);
  298. if (base->running_timer == timer)
  299. goto out;
  300. ret = 0;
  301. if (timer_pending(timer)) {
  302. detach_timer(timer, 1);
  303. ret = 1;
  304. }
  305. out:
  306. spin_unlock_irqrestore(&base->lock, flags);
  307. return ret;
  308. }
  309. /***
  310. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  311. * @timer: the timer to be deactivated
  312. *
  313. * This function only differs from del_timer() on SMP: besides deactivating
  314. * the timer it also makes sure the handler has finished executing on other
  315. * CPUs.
  316. *
  317. * Synchronization rules: callers must prevent restarting of the timer,
  318. * otherwise this function is meaningless. It must not be called from
  319. * interrupt contexts. The caller must not hold locks which would prevent
  320. * completion of the timer's handler. The timer's handler must not call
  321. * add_timer_on(). Upon exit the timer is not queued and the handler is
  322. * not running on any CPU.
  323. *
  324. * The function returns whether it has deactivated a pending timer or not.
  325. */
  326. int del_timer_sync(struct timer_list *timer)
  327. {
  328. for (;;) {
  329. int ret = try_to_del_timer_sync(timer);
  330. if (ret >= 0)
  331. return ret;
  332. }
  333. }
  334. EXPORT_SYMBOL(del_timer_sync);
  335. #endif
  336. static int cascade(tvec_base_t *base, tvec_t *tv, int index)
  337. {
  338. /* cascade all the timers from tv up one level */
  339. struct timer_list *timer, *tmp;
  340. struct list_head tv_list;
  341. list_replace_init(tv->vec + index, &tv_list);
  342. /*
  343. * We are removing _all_ timers from the list, so we
  344. * don't have to detach them individually.
  345. */
  346. list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
  347. BUG_ON(timer->base != base);
  348. internal_add_timer(base, timer);
  349. }
  350. return index;
  351. }
  352. /***
  353. * __run_timers - run all expired timers (if any) on this CPU.
  354. * @base: the timer vector to be processed.
  355. *
  356. * This function cascades all vectors and executes all expired timer
  357. * vectors.
  358. */
  359. #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
  360. static inline void __run_timers(tvec_base_t *base)
  361. {
  362. struct timer_list *timer;
  363. spin_lock_irq(&base->lock);
  364. while (time_after_eq(jiffies, base->timer_jiffies)) {
  365. struct list_head work_list;
  366. struct list_head *head = &work_list;
  367. int index = base->timer_jiffies & TVR_MASK;
  368. /*
  369. * Cascade timers:
  370. */
  371. if (!index &&
  372. (!cascade(base, &base->tv2, INDEX(0))) &&
  373. (!cascade(base, &base->tv3, INDEX(1))) &&
  374. !cascade(base, &base->tv4, INDEX(2)))
  375. cascade(base, &base->tv5, INDEX(3));
  376. ++base->timer_jiffies;
  377. list_replace_init(base->tv1.vec + index, &work_list);
  378. while (!list_empty(head)) {
  379. void (*fn)(unsigned long);
  380. unsigned long data;
  381. timer = list_entry(head->next,struct timer_list,entry);
  382. fn = timer->function;
  383. data = timer->data;
  384. set_running_timer(base, timer);
  385. detach_timer(timer, 1);
  386. spin_unlock_irq(&base->lock);
  387. {
  388. int preempt_count = preempt_count();
  389. fn(data);
  390. if (preempt_count != preempt_count()) {
  391. printk(KERN_WARNING "huh, entered %p "
  392. "with preempt_count %08x, exited"
  393. " with %08x?\n",
  394. fn, preempt_count,
  395. preempt_count());
  396. BUG();
  397. }
  398. }
  399. spin_lock_irq(&base->lock);
  400. }
  401. }
  402. set_running_timer(base, NULL);
  403. spin_unlock_irq(&base->lock);
  404. }
  405. #ifdef CONFIG_NO_IDLE_HZ
  406. /*
  407. * Find out when the next timer event is due to happen. This
  408. * is used on S/390 to stop all activity when a cpus is idle.
  409. * This functions needs to be called disabled.
  410. */
  411. unsigned long next_timer_interrupt(void)
  412. {
  413. tvec_base_t *base;
  414. struct list_head *list;
  415. struct timer_list *nte;
  416. unsigned long expires;
  417. unsigned long hr_expires = MAX_JIFFY_OFFSET;
  418. ktime_t hr_delta;
  419. tvec_t *varray[4];
  420. int i, j;
  421. hr_delta = hrtimer_get_next_event();
  422. if (hr_delta.tv64 != KTIME_MAX) {
  423. struct timespec tsdelta;
  424. tsdelta = ktime_to_timespec(hr_delta);
  425. hr_expires = timespec_to_jiffies(&tsdelta);
  426. if (hr_expires < 3)
  427. return hr_expires + jiffies;
  428. }
  429. hr_expires += jiffies;
  430. base = __get_cpu_var(tvec_bases);
  431. spin_lock(&base->lock);
  432. expires = base->timer_jiffies + (LONG_MAX >> 1);
  433. list = NULL;
  434. /* Look for timer events in tv1. */
  435. j = base->timer_jiffies & TVR_MASK;
  436. do {
  437. list_for_each_entry(nte, base->tv1.vec + j, entry) {
  438. expires = nte->expires;
  439. if (j < (base->timer_jiffies & TVR_MASK))
  440. list = base->tv2.vec + (INDEX(0));
  441. goto found;
  442. }
  443. j = (j + 1) & TVR_MASK;
  444. } while (j != (base->timer_jiffies & TVR_MASK));
  445. /* Check tv2-tv5. */
  446. varray[0] = &base->tv2;
  447. varray[1] = &base->tv3;
  448. varray[2] = &base->tv4;
  449. varray[3] = &base->tv5;
  450. for (i = 0; i < 4; i++) {
  451. j = INDEX(i);
  452. do {
  453. if (list_empty(varray[i]->vec + j)) {
  454. j = (j + 1) & TVN_MASK;
  455. continue;
  456. }
  457. list_for_each_entry(nte, varray[i]->vec + j, entry)
  458. if (time_before(nte->expires, expires))
  459. expires = nte->expires;
  460. if (j < (INDEX(i)) && i < 3)
  461. list = varray[i + 1]->vec + (INDEX(i + 1));
  462. goto found;
  463. } while (j != (INDEX(i)));
  464. }
  465. found:
  466. if (list) {
  467. /*
  468. * The search wrapped. We need to look at the next list
  469. * from next tv element that would cascade into tv element
  470. * where we found the timer element.
  471. */
  472. list_for_each_entry(nte, list, entry) {
  473. if (time_before(nte->expires, expires))
  474. expires = nte->expires;
  475. }
  476. }
  477. spin_unlock(&base->lock);
  478. /*
  479. * It can happen that other CPUs service timer IRQs and increment
  480. * jiffies, but we have not yet got a local timer tick to process
  481. * the timer wheels. In that case, the expiry time can be before
  482. * jiffies, but since the high-resolution timer here is relative to
  483. * jiffies, the default expression when high-resolution timers are
  484. * not active,
  485. *
  486. * time_before(MAX_JIFFY_OFFSET + jiffies, expires)
  487. *
  488. * would falsely evaluate to true. If that is the case, just
  489. * return jiffies so that we can immediately fire the local timer
  490. */
  491. if (time_before(expires, jiffies))
  492. return jiffies;
  493. if (time_before(hr_expires, expires))
  494. return hr_expires;
  495. return expires;
  496. }
  497. #endif
  498. /******************************************************************/
  499. /*
  500. * Timekeeping variables
  501. */
  502. unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
  503. unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
  504. /*
  505. * The current time
  506. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  507. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  508. * at zero at system boot time, so wall_to_monotonic will be negative,
  509. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  510. * the usual normalization.
  511. */
  512. struct timespec xtime __attribute__ ((aligned (16)));
  513. struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
  514. EXPORT_SYMBOL(xtime);
  515. /* Don't completely fail for HZ > 500. */
  516. int tickadj = 500/HZ ? : 1; /* microsecs */
  517. /*
  518. * phase-lock loop variables
  519. */
  520. /* TIME_ERROR prevents overwriting the CMOS clock */
  521. int time_state = TIME_OK; /* clock synchronization status */
  522. int time_status = STA_UNSYNC; /* clock status bits */
  523. long time_offset; /* time adjustment (us) */
  524. long time_constant = 2; /* pll time constant */
  525. long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
  526. long time_precision = 1; /* clock precision (us) */
  527. long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
  528. long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
  529. long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
  530. /* frequency offset (scaled ppm)*/
  531. static long time_adj; /* tick adjust (scaled 1 / HZ) */
  532. long time_reftime; /* time at last adjustment (s) */
  533. long time_adjust;
  534. long time_next_adjust;
  535. /*
  536. * this routine handles the overflow of the microsecond field
  537. *
  538. * The tricky bits of code to handle the accurate clock support
  539. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  540. * They were originally developed for SUN and DEC kernels.
  541. * All the kudos should go to Dave for this stuff.
  542. *
  543. */
  544. static void second_overflow(void)
  545. {
  546. long ltemp;
  547. /* Bump the maxerror field */
  548. time_maxerror += time_tolerance >> SHIFT_USEC;
  549. if (time_maxerror > NTP_PHASE_LIMIT) {
  550. time_maxerror = NTP_PHASE_LIMIT;
  551. time_status |= STA_UNSYNC;
  552. }
  553. /*
  554. * Leap second processing. If in leap-insert state at the end of the
  555. * day, the system clock is set back one second; if in leap-delete
  556. * state, the system clock is set ahead one second. The microtime()
  557. * routine or external clock driver will insure that reported time is
  558. * always monotonic. The ugly divides should be replaced.
  559. */
  560. switch (time_state) {
  561. case TIME_OK:
  562. if (time_status & STA_INS)
  563. time_state = TIME_INS;
  564. else if (time_status & STA_DEL)
  565. time_state = TIME_DEL;
  566. break;
  567. case TIME_INS:
  568. if (xtime.tv_sec % 86400 == 0) {
  569. xtime.tv_sec--;
  570. wall_to_monotonic.tv_sec++;
  571. /*
  572. * The timer interpolator will make time change
  573. * gradually instead of an immediate jump by one second
  574. */
  575. time_interpolator_update(-NSEC_PER_SEC);
  576. time_state = TIME_OOP;
  577. clock_was_set();
  578. printk(KERN_NOTICE "Clock: inserting leap second "
  579. "23:59:60 UTC\n");
  580. }
  581. break;
  582. case TIME_DEL:
  583. if ((xtime.tv_sec + 1) % 86400 == 0) {
  584. xtime.tv_sec++;
  585. wall_to_monotonic.tv_sec--;
  586. /*
  587. * Use of time interpolator for a gradual change of
  588. * time
  589. */
  590. time_interpolator_update(NSEC_PER_SEC);
  591. time_state = TIME_WAIT;
  592. clock_was_set();
  593. printk(KERN_NOTICE "Clock: deleting leap second "
  594. "23:59:59 UTC\n");
  595. }
  596. break;
  597. case TIME_OOP:
  598. time_state = TIME_WAIT;
  599. break;
  600. case TIME_WAIT:
  601. if (!(time_status & (STA_INS | STA_DEL)))
  602. time_state = TIME_OK;
  603. }
  604. /*
  605. * Compute the phase adjustment for the next second. In PLL mode, the
  606. * offset is reduced by a fixed factor times the time constant. In FLL
  607. * mode the offset is used directly. In either mode, the maximum phase
  608. * adjustment for each second is clamped so as to spread the adjustment
  609. * over not more than the number of seconds between updates.
  610. */
  611. ltemp = time_offset;
  612. if (!(time_status & STA_FLL))
  613. ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
  614. ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
  615. ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
  616. time_offset -= ltemp;
  617. time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
  618. /*
  619. * Compute the frequency estimate and additional phase adjustment due
  620. * to frequency error for the next second.
  621. */
  622. ltemp = time_freq;
  623. time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
  624. #if HZ == 100
  625. /*
  626. * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
  627. * get 128.125; => only 0.125% error (p. 14)
  628. */
  629. time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
  630. #endif
  631. #if HZ == 250
  632. /*
  633. * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
  634. * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
  635. */
  636. time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
  637. #endif
  638. #if HZ == 1000
  639. /*
  640. * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
  641. * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
  642. */
  643. time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
  644. #endif
  645. }
  646. /*
  647. * Returns how many microseconds we need to add to xtime this tick
  648. * in doing an adjustment requested with adjtime.
  649. */
  650. static long adjtime_adjustment(void)
  651. {
  652. long time_adjust_step;
  653. time_adjust_step = time_adjust;
  654. if (time_adjust_step) {
  655. /*
  656. * We are doing an adjtime thing. Prepare time_adjust_step to
  657. * be within bounds. Note that a positive time_adjust means we
  658. * want the clock to run faster.
  659. *
  660. * Limit the amount of the step to be in the range
  661. * -tickadj .. +tickadj
  662. */
  663. time_adjust_step = min(time_adjust_step, (long)tickadj);
  664. time_adjust_step = max(time_adjust_step, (long)-tickadj);
  665. }
  666. return time_adjust_step;
  667. }
  668. /* in the NTP reference this is called "hardclock()" */
  669. static void update_ntp_one_tick(void)
  670. {
  671. long time_adjust_step;
  672. time_adjust_step = adjtime_adjustment();
  673. if (time_adjust_step)
  674. /* Reduce by this step the amount of time left */
  675. time_adjust -= time_adjust_step;
  676. /* Changes by adjtime() do not take effect till next tick. */
  677. if (time_next_adjust != 0) {
  678. time_adjust = time_next_adjust;
  679. time_next_adjust = 0;
  680. }
  681. }
  682. /*
  683. * Return how long ticks are at the moment, that is, how much time
  684. * update_wall_time_one_tick will add to xtime next time we call it
  685. * (assuming no calls to do_adjtimex in the meantime).
  686. * The return value is in fixed-point nanoseconds shifted by the
  687. * specified number of bits to the right of the binary point.
  688. * This function has no side-effects.
  689. */
  690. u64 current_tick_length(void)
  691. {
  692. long delta_nsec;
  693. u64 ret;
  694. /* calculate the finest interval NTP will allow.
  695. * ie: nanosecond value shifted by (SHIFT_SCALE - 10)
  696. */
  697. delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
  698. ret = (u64)delta_nsec << TICK_LENGTH_SHIFT;
  699. ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
  700. return ret;
  701. }
  702. /* XXX - all of this timekeeping code should be later moved to time.c */
  703. #include <linux/clocksource.h>
  704. static struct clocksource *clock; /* pointer to current clocksource */
  705. #ifdef CONFIG_GENERIC_TIME
  706. /**
  707. * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
  708. *
  709. * private function, must hold xtime_lock lock when being
  710. * called. Returns the number of nanoseconds since the
  711. * last call to update_wall_time() (adjusted by NTP scaling)
  712. */
  713. static inline s64 __get_nsec_offset(void)
  714. {
  715. cycle_t cycle_now, cycle_delta;
  716. s64 ns_offset;
  717. /* read clocksource: */
  718. cycle_now = clocksource_read(clock);
  719. /* calculate the delta since the last update_wall_time: */
  720. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  721. /* convert to nanoseconds: */
  722. ns_offset = cyc2ns(clock, cycle_delta);
  723. return ns_offset;
  724. }
  725. /**
  726. * __get_realtime_clock_ts - Returns the time of day in a timespec
  727. * @ts: pointer to the timespec to be set
  728. *
  729. * Returns the time of day in a timespec. Used by
  730. * do_gettimeofday() and get_realtime_clock_ts().
  731. */
  732. static inline void __get_realtime_clock_ts(struct timespec *ts)
  733. {
  734. unsigned long seq;
  735. s64 nsecs;
  736. do {
  737. seq = read_seqbegin(&xtime_lock);
  738. *ts = xtime;
  739. nsecs = __get_nsec_offset();
  740. } while (read_seqretry(&xtime_lock, seq));
  741. timespec_add_ns(ts, nsecs);
  742. }
  743. /**
  744. * getnstimeofday - Returns the time of day in a timespec
  745. * @ts: pointer to the timespec to be set
  746. *
  747. * Returns the time of day in a timespec.
  748. */
  749. void getnstimeofday(struct timespec *ts)
  750. {
  751. __get_realtime_clock_ts(ts);
  752. }
  753. EXPORT_SYMBOL(getnstimeofday);
  754. /**
  755. * do_gettimeofday - Returns the time of day in a timeval
  756. * @tv: pointer to the timeval to be set
  757. *
  758. * NOTE: Users should be converted to using get_realtime_clock_ts()
  759. */
  760. void do_gettimeofday(struct timeval *tv)
  761. {
  762. struct timespec now;
  763. __get_realtime_clock_ts(&now);
  764. tv->tv_sec = now.tv_sec;
  765. tv->tv_usec = now.tv_nsec/1000;
  766. }
  767. EXPORT_SYMBOL(do_gettimeofday);
  768. /**
  769. * do_settimeofday - Sets the time of day
  770. * @tv: pointer to the timespec variable containing the new time
  771. *
  772. * Sets the time of day to the new time and update NTP and notify hrtimers
  773. */
  774. int do_settimeofday(struct timespec *tv)
  775. {
  776. unsigned long flags;
  777. time_t wtm_sec, sec = tv->tv_sec;
  778. long wtm_nsec, nsec = tv->tv_nsec;
  779. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  780. return -EINVAL;
  781. write_seqlock_irqsave(&xtime_lock, flags);
  782. nsec -= __get_nsec_offset();
  783. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  784. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  785. set_normalized_timespec(&xtime, sec, nsec);
  786. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  787. ntp_clear();
  788. write_sequnlock_irqrestore(&xtime_lock, flags);
  789. /* signal hrtimers about time change */
  790. clock_was_set();
  791. return 0;
  792. }
  793. EXPORT_SYMBOL(do_settimeofday);
  794. /**
  795. * change_clocksource - Swaps clocksources if a new one is available
  796. *
  797. * Accumulates current time interval and initializes new clocksource
  798. */
  799. static int change_clocksource(void)
  800. {
  801. struct clocksource *new;
  802. cycle_t now;
  803. u64 nsec;
  804. new = clocksource_get_next();
  805. if (clock != new) {
  806. now = clocksource_read(new);
  807. nsec = __get_nsec_offset();
  808. timespec_add_ns(&xtime, nsec);
  809. clock = new;
  810. clock->cycle_last = now;
  811. printk(KERN_INFO "Time: %s clocksource has been installed.\n",
  812. clock->name);
  813. return 1;
  814. } else if (clock->update_callback) {
  815. return clock->update_callback();
  816. }
  817. return 0;
  818. }
  819. #else
  820. #define change_clocksource() (0)
  821. #endif
  822. /**
  823. * timeofday_is_continuous - check to see if timekeeping is free running
  824. */
  825. int timekeeping_is_continuous(void)
  826. {
  827. unsigned long seq;
  828. int ret;
  829. do {
  830. seq = read_seqbegin(&xtime_lock);
  831. ret = clock->is_continuous;
  832. } while (read_seqretry(&xtime_lock, seq));
  833. return ret;
  834. }
  835. /*
  836. * timekeeping_init - Initializes the clocksource and common timekeeping values
  837. */
  838. void __init timekeeping_init(void)
  839. {
  840. unsigned long flags;
  841. write_seqlock_irqsave(&xtime_lock, flags);
  842. clock = clocksource_get_next();
  843. clocksource_calculate_interval(clock, tick_nsec);
  844. clock->cycle_last = clocksource_read(clock);
  845. ntp_clear();
  846. write_sequnlock_irqrestore(&xtime_lock, flags);
  847. }
  848. /*
  849. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  850. * @dev: unused
  851. *
  852. * This is for the generic clocksource timekeeping.
  853. * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
  854. * still managed by arch specific suspend/resume code.
  855. */
  856. static int timekeeping_resume(struct sys_device *dev)
  857. {
  858. unsigned long flags;
  859. write_seqlock_irqsave(&xtime_lock, flags);
  860. /* restart the last cycle value */
  861. clock->cycle_last = clocksource_read(clock);
  862. write_sequnlock_irqrestore(&xtime_lock, flags);
  863. return 0;
  864. }
  865. /* sysfs resume/suspend bits for timekeeping */
  866. static struct sysdev_class timekeeping_sysclass = {
  867. .resume = timekeeping_resume,
  868. set_kset_name("timekeeping"),
  869. };
  870. static struct sys_device device_timer = {
  871. .id = 0,
  872. .cls = &timekeeping_sysclass,
  873. };
  874. static int __init timekeeping_init_device(void)
  875. {
  876. int error = sysdev_class_register(&timekeeping_sysclass);
  877. if (!error)
  878. error = sysdev_register(&device_timer);
  879. return error;
  880. }
  881. device_initcall(timekeeping_init_device);
  882. /*
  883. * If the error is already larger, we look ahead another tick,
  884. * to compensate for late or lost adjustments.
  885. */
  886. static __always_inline int clocksource_bigadjust(int sign, s64 error, s64 *interval, s64 *offset)
  887. {
  888. int adj;
  889. /*
  890. * As soon as the machine is synchronized to the external time
  891. * source this should be the common case.
  892. */
  893. error >>= 2;
  894. if (likely(sign > 0 ? error <= *interval : error >= *interval))
  895. return sign;
  896. /*
  897. * An extra look ahead dampens the effect of the current error,
  898. * which can grow quite large with continously late updates, as
  899. * it would dominate the adjustment value and can lead to
  900. * oscillation.
  901. */
  902. error += current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1);
  903. error -= clock->xtime_interval >> 1;
  904. adj = 0;
  905. while (1) {
  906. error >>= 1;
  907. if (sign > 0 ? error <= *interval : error >= *interval)
  908. break;
  909. adj++;
  910. }
  911. /*
  912. * Add the current adjustments to the error and take the offset
  913. * into account, the latter can cause the error to be hardly
  914. * reduced at the next tick. Check the error again if there's
  915. * room for another adjustment, thus further reducing the error
  916. * which otherwise had to be corrected at the next update.
  917. */
  918. error = (error << 1) - *interval + *offset;
  919. if (sign > 0 ? error > *interval : error < *interval)
  920. adj++;
  921. *interval <<= adj;
  922. *offset <<= adj;
  923. return sign << adj;
  924. }
  925. /*
  926. * Adjust the multiplier to reduce the error value,
  927. * this is optimized for the most common adjustments of -1,0,1,
  928. * for other values we can do a bit more work.
  929. */
  930. static void clocksource_adjust(struct clocksource *clock, s64 offset)
  931. {
  932. s64 error, interval = clock->cycle_interval;
  933. int adj;
  934. error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
  935. if (error > interval) {
  936. adj = clocksource_bigadjust(1, error, &interval, &offset);
  937. } else if (error < -interval) {
  938. interval = -interval;
  939. offset = -offset;
  940. adj = clocksource_bigadjust(-1, error, &interval, &offset);
  941. } else
  942. return;
  943. clock->mult += adj;
  944. clock->xtime_interval += interval;
  945. clock->xtime_nsec -= offset;
  946. clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift);
  947. }
  948. /*
  949. * update_wall_time - Uses the current clocksource to increment the wall time
  950. *
  951. * Called from the timer interrupt, must hold a write on xtime_lock.
  952. */
  953. static void update_wall_time(void)
  954. {
  955. cycle_t offset;
  956. clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
  957. #ifdef CONFIG_GENERIC_TIME
  958. offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
  959. #else
  960. offset = clock->cycle_interval;
  961. #endif
  962. /* normally this loop will run just once, however in the
  963. * case of lost or late ticks, it will accumulate correctly.
  964. */
  965. while (offset >= clock->cycle_interval) {
  966. /* accumulate one interval */
  967. clock->xtime_nsec += clock->xtime_interval;
  968. clock->cycle_last += clock->cycle_interval;
  969. offset -= clock->cycle_interval;
  970. if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
  971. clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
  972. xtime.tv_sec++;
  973. second_overflow();
  974. }
  975. /* interpolator bits */
  976. time_interpolator_update(clock->xtime_interval
  977. >> clock->shift);
  978. /* increment the NTP state machine */
  979. update_ntp_one_tick();
  980. /* accumulate error between NTP and clock interval */
  981. clock->error += current_tick_length();
  982. clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
  983. }
  984. /* correct the clock when NTP error is too big */
  985. clocksource_adjust(clock, offset);
  986. /* store full nanoseconds into xtime */
  987. xtime.tv_nsec = clock->xtime_nsec >> clock->shift;
  988. clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
  989. /* check to see if there is a new clocksource to use */
  990. if (change_clocksource()) {
  991. clock->error = 0;
  992. clock->xtime_nsec = 0;
  993. clocksource_calculate_interval(clock, tick_nsec);
  994. }
  995. }
  996. /*
  997. * Called from the timer interrupt handler to charge one tick to the current
  998. * process. user_tick is 1 if the tick is user time, 0 for system.
  999. */
  1000. void update_process_times(int user_tick)
  1001. {
  1002. struct task_struct *p = current;
  1003. int cpu = smp_processor_id();
  1004. /* Note: this timer irq context must be accounted for as well. */
  1005. if (user_tick)
  1006. account_user_time(p, jiffies_to_cputime(1));
  1007. else
  1008. account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
  1009. run_local_timers();
  1010. if (rcu_pending(cpu))
  1011. rcu_check_callbacks(cpu, user_tick);
  1012. scheduler_tick();
  1013. run_posix_cpu_timers(p);
  1014. }
  1015. /*
  1016. * Nr of active tasks - counted in fixed-point numbers
  1017. */
  1018. static unsigned long count_active_tasks(void)
  1019. {
  1020. return nr_active() * FIXED_1;
  1021. }
  1022. /*
  1023. * Hmm.. Changed this, as the GNU make sources (load.c) seems to
  1024. * imply that avenrun[] is the standard name for this kind of thing.
  1025. * Nothing else seems to be standardized: the fractional size etc
  1026. * all seem to differ on different machines.
  1027. *
  1028. * Requires xtime_lock to access.
  1029. */
  1030. unsigned long avenrun[3];
  1031. EXPORT_SYMBOL(avenrun);
  1032. /*
  1033. * calc_load - given tick count, update the avenrun load estimates.
  1034. * This is called while holding a write_lock on xtime_lock.
  1035. */
  1036. static inline void calc_load(unsigned long ticks)
  1037. {
  1038. unsigned long active_tasks; /* fixed-point */
  1039. static int count = LOAD_FREQ;
  1040. count -= ticks;
  1041. if (count < 0) {
  1042. count += LOAD_FREQ;
  1043. active_tasks = count_active_tasks();
  1044. CALC_LOAD(avenrun[0], EXP_1, active_tasks);
  1045. CALC_LOAD(avenrun[1], EXP_5, active_tasks);
  1046. CALC_LOAD(avenrun[2], EXP_15, active_tasks);
  1047. }
  1048. }
  1049. /* jiffies at the most recent update of wall time */
  1050. unsigned long wall_jiffies = INITIAL_JIFFIES;
  1051. /*
  1052. * This read-write spinlock protects us from races in SMP while
  1053. * playing with xtime and avenrun.
  1054. */
  1055. #ifndef ARCH_HAVE_XTIME_LOCK
  1056. __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
  1057. EXPORT_SYMBOL(xtime_lock);
  1058. #endif
  1059. /*
  1060. * This function runs timers and the timer-tq in bottom half context.
  1061. */
  1062. static void run_timer_softirq(struct softirq_action *h)
  1063. {
  1064. tvec_base_t *base = __get_cpu_var(tvec_bases);
  1065. hrtimer_run_queues();
  1066. if (time_after_eq(jiffies, base->timer_jiffies))
  1067. __run_timers(base);
  1068. }
  1069. /*
  1070. * Called by the local, per-CPU timer interrupt on SMP.
  1071. */
  1072. void run_local_timers(void)
  1073. {
  1074. raise_softirq(TIMER_SOFTIRQ);
  1075. softlockup_tick();
  1076. }
  1077. /*
  1078. * Called by the timer interrupt. xtime_lock must already be taken
  1079. * by the timer IRQ!
  1080. */
  1081. static inline void update_times(void)
  1082. {
  1083. unsigned long ticks;
  1084. ticks = jiffies - wall_jiffies;
  1085. wall_jiffies += ticks;
  1086. update_wall_time();
  1087. calc_load(ticks);
  1088. }
  1089. /*
  1090. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  1091. * without sampling the sequence number in xtime_lock.
  1092. * jiffies is defined in the linker script...
  1093. */
  1094. void do_timer(struct pt_regs *regs)
  1095. {
  1096. jiffies_64++;
  1097. /* prevent loading jiffies before storing new jiffies_64 value. */
  1098. barrier();
  1099. update_times();
  1100. }
  1101. #ifdef __ARCH_WANT_SYS_ALARM
  1102. /*
  1103. * For backwards compatibility? This can be done in libc so Alpha
  1104. * and all newer ports shouldn't need it.
  1105. */
  1106. asmlinkage unsigned long sys_alarm(unsigned int seconds)
  1107. {
  1108. return alarm_setitimer(seconds);
  1109. }
  1110. #endif
  1111. #ifndef __alpha__
  1112. /*
  1113. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  1114. * should be moved into arch/i386 instead?
  1115. */
  1116. /**
  1117. * sys_getpid - return the thread group id of the current process
  1118. *
  1119. * Note, despite the name, this returns the tgid not the pid. The tgid and
  1120. * the pid are identical unless CLONE_THREAD was specified on clone() in
  1121. * which case the tgid is the same in all threads of the same group.
  1122. *
  1123. * This is SMP safe as current->tgid does not change.
  1124. */
  1125. asmlinkage long sys_getpid(void)
  1126. {
  1127. return current->tgid;
  1128. }
  1129. /*
  1130. * Accessing ->group_leader->real_parent is not SMP-safe, it could
  1131. * change from under us. However, rather than getting any lock
  1132. * we can use an optimistic algorithm: get the parent
  1133. * pid, and go back and check that the parent is still
  1134. * the same. If it has changed (which is extremely unlikely
  1135. * indeed), we just try again..
  1136. *
  1137. * NOTE! This depends on the fact that even if we _do_
  1138. * get an old value of "parent", we can happily dereference
  1139. * the pointer (it was and remains a dereferencable kernel pointer
  1140. * no matter what): we just can't necessarily trust the result
  1141. * until we know that the parent pointer is valid.
  1142. *
  1143. * NOTE2: ->group_leader never changes from under us.
  1144. */
  1145. asmlinkage long sys_getppid(void)
  1146. {
  1147. int pid;
  1148. struct task_struct *me = current;
  1149. struct task_struct *parent;
  1150. parent = me->group_leader->real_parent;
  1151. for (;;) {
  1152. pid = parent->tgid;
  1153. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1154. {
  1155. struct task_struct *old = parent;
  1156. /*
  1157. * Make sure we read the pid before re-reading the
  1158. * parent pointer:
  1159. */
  1160. smp_rmb();
  1161. parent = me->group_leader->real_parent;
  1162. if (old != parent)
  1163. continue;
  1164. }
  1165. #endif
  1166. break;
  1167. }
  1168. return pid;
  1169. }
  1170. asmlinkage long sys_getuid(void)
  1171. {
  1172. /* Only we change this so SMP safe */
  1173. return current->uid;
  1174. }
  1175. asmlinkage long sys_geteuid(void)
  1176. {
  1177. /* Only we change this so SMP safe */
  1178. return current->euid;
  1179. }
  1180. asmlinkage long sys_getgid(void)
  1181. {
  1182. /* Only we change this so SMP safe */
  1183. return current->gid;
  1184. }
  1185. asmlinkage long sys_getegid(void)
  1186. {
  1187. /* Only we change this so SMP safe */
  1188. return current->egid;
  1189. }
  1190. #endif
  1191. static void process_timeout(unsigned long __data)
  1192. {
  1193. wake_up_process((task_t *)__data);
  1194. }
  1195. /**
  1196. * schedule_timeout - sleep until timeout
  1197. * @timeout: timeout value in jiffies
  1198. *
  1199. * Make the current task sleep until @timeout jiffies have
  1200. * elapsed. The routine will return immediately unless
  1201. * the current task state has been set (see set_current_state()).
  1202. *
  1203. * You can set the task state as follows -
  1204. *
  1205. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  1206. * pass before the routine returns. The routine will return 0
  1207. *
  1208. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1209. * delivered to the current task. In this case the remaining time
  1210. * in jiffies will be returned, or 0 if the timer expired in time
  1211. *
  1212. * The current task state is guaranteed to be TASK_RUNNING when this
  1213. * routine returns.
  1214. *
  1215. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  1216. * the CPU away without a bound on the timeout. In this case the return
  1217. * value will be %MAX_SCHEDULE_TIMEOUT.
  1218. *
  1219. * In all cases the return value is guaranteed to be non-negative.
  1220. */
  1221. fastcall signed long __sched schedule_timeout(signed long timeout)
  1222. {
  1223. struct timer_list timer;
  1224. unsigned long expire;
  1225. switch (timeout)
  1226. {
  1227. case MAX_SCHEDULE_TIMEOUT:
  1228. /*
  1229. * These two special cases are useful to be comfortable
  1230. * in the caller. Nothing more. We could take
  1231. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  1232. * but I' d like to return a valid offset (>=0) to allow
  1233. * the caller to do everything it want with the retval.
  1234. */
  1235. schedule();
  1236. goto out;
  1237. default:
  1238. /*
  1239. * Another bit of PARANOID. Note that the retval will be
  1240. * 0 since no piece of kernel is supposed to do a check
  1241. * for a negative retval of schedule_timeout() (since it
  1242. * should never happens anyway). You just have the printk()
  1243. * that will tell you if something is gone wrong and where.
  1244. */
  1245. if (timeout < 0)
  1246. {
  1247. printk(KERN_ERR "schedule_timeout: wrong timeout "
  1248. "value %lx from %p\n", timeout,
  1249. __builtin_return_address(0));
  1250. current->state = TASK_RUNNING;
  1251. goto out;
  1252. }
  1253. }
  1254. expire = timeout + jiffies;
  1255. setup_timer(&timer, process_timeout, (unsigned long)current);
  1256. __mod_timer(&timer, expire);
  1257. schedule();
  1258. del_singleshot_timer_sync(&timer);
  1259. timeout = expire - jiffies;
  1260. out:
  1261. return timeout < 0 ? 0 : timeout;
  1262. }
  1263. EXPORT_SYMBOL(schedule_timeout);
  1264. /*
  1265. * We can use __set_current_state() here because schedule_timeout() calls
  1266. * schedule() unconditionally.
  1267. */
  1268. signed long __sched schedule_timeout_interruptible(signed long timeout)
  1269. {
  1270. __set_current_state(TASK_INTERRUPTIBLE);
  1271. return schedule_timeout(timeout);
  1272. }
  1273. EXPORT_SYMBOL(schedule_timeout_interruptible);
  1274. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  1275. {
  1276. __set_current_state(TASK_UNINTERRUPTIBLE);
  1277. return schedule_timeout(timeout);
  1278. }
  1279. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  1280. /* Thread ID - the internal kernel "pid" */
  1281. asmlinkage long sys_gettid(void)
  1282. {
  1283. return current->pid;
  1284. }
  1285. /*
  1286. * sys_sysinfo - fill in sysinfo struct
  1287. */
  1288. asmlinkage long sys_sysinfo(struct sysinfo __user *info)
  1289. {
  1290. struct sysinfo val;
  1291. unsigned long mem_total, sav_total;
  1292. unsigned int mem_unit, bitcount;
  1293. unsigned long seq;
  1294. memset((char *)&val, 0, sizeof(struct sysinfo));
  1295. do {
  1296. struct timespec tp;
  1297. seq = read_seqbegin(&xtime_lock);
  1298. /*
  1299. * This is annoying. The below is the same thing
  1300. * posix_get_clock_monotonic() does, but it wants to
  1301. * take the lock which we want to cover the loads stuff
  1302. * too.
  1303. */
  1304. getnstimeofday(&tp);
  1305. tp.tv_sec += wall_to_monotonic.tv_sec;
  1306. tp.tv_nsec += wall_to_monotonic.tv_nsec;
  1307. if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
  1308. tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
  1309. tp.tv_sec++;
  1310. }
  1311. val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1312. val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
  1313. val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
  1314. val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
  1315. val.procs = nr_threads;
  1316. } while (read_seqretry(&xtime_lock, seq));
  1317. si_meminfo(&val);
  1318. si_swapinfo(&val);
  1319. /*
  1320. * If the sum of all the available memory (i.e. ram + swap)
  1321. * is less than can be stored in a 32 bit unsigned long then
  1322. * we can be binary compatible with 2.2.x kernels. If not,
  1323. * well, in that case 2.2.x was broken anyways...
  1324. *
  1325. * -Erik Andersen <andersee@debian.org>
  1326. */
  1327. mem_total = val.totalram + val.totalswap;
  1328. if (mem_total < val.totalram || mem_total < val.totalswap)
  1329. goto out;
  1330. bitcount = 0;
  1331. mem_unit = val.mem_unit;
  1332. while (mem_unit > 1) {
  1333. bitcount++;
  1334. mem_unit >>= 1;
  1335. sav_total = mem_total;
  1336. mem_total <<= 1;
  1337. if (mem_total < sav_total)
  1338. goto out;
  1339. }
  1340. /*
  1341. * If mem_total did not overflow, multiply all memory values by
  1342. * val.mem_unit and set it to 1. This leaves things compatible
  1343. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1344. * kernels...
  1345. */
  1346. val.mem_unit = 1;
  1347. val.totalram <<= bitcount;
  1348. val.freeram <<= bitcount;
  1349. val.sharedram <<= bitcount;
  1350. val.bufferram <<= bitcount;
  1351. val.totalswap <<= bitcount;
  1352. val.freeswap <<= bitcount;
  1353. val.totalhigh <<= bitcount;
  1354. val.freehigh <<= bitcount;
  1355. out:
  1356. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1357. return -EFAULT;
  1358. return 0;
  1359. }
  1360. /*
  1361. * lockdep: we want to track each per-CPU base as a separate lock-class,
  1362. * but timer-bases are kmalloc()-ed, so we need to attach separate
  1363. * keys to them:
  1364. */
  1365. static struct lock_class_key base_lock_keys[NR_CPUS];
  1366. static int __devinit init_timers_cpu(int cpu)
  1367. {
  1368. int j;
  1369. tvec_base_t *base;
  1370. static char __devinitdata tvec_base_done[NR_CPUS];
  1371. if (!tvec_base_done[cpu]) {
  1372. static char boot_done;
  1373. if (boot_done) {
  1374. /*
  1375. * The APs use this path later in boot
  1376. */
  1377. base = kmalloc_node(sizeof(*base), GFP_KERNEL,
  1378. cpu_to_node(cpu));
  1379. if (!base)
  1380. return -ENOMEM;
  1381. memset(base, 0, sizeof(*base));
  1382. per_cpu(tvec_bases, cpu) = base;
  1383. } else {
  1384. /*
  1385. * This is for the boot CPU - we use compile-time
  1386. * static initialisation because per-cpu memory isn't
  1387. * ready yet and because the memory allocators are not
  1388. * initialised either.
  1389. */
  1390. boot_done = 1;
  1391. base = &boot_tvec_bases;
  1392. }
  1393. tvec_base_done[cpu] = 1;
  1394. } else {
  1395. base = per_cpu(tvec_bases, cpu);
  1396. }
  1397. spin_lock_init(&base->lock);
  1398. lockdep_set_class(&base->lock, base_lock_keys + cpu);
  1399. for (j = 0; j < TVN_SIZE; j++) {
  1400. INIT_LIST_HEAD(base->tv5.vec + j);
  1401. INIT_LIST_HEAD(base->tv4.vec + j);
  1402. INIT_LIST_HEAD(base->tv3.vec + j);
  1403. INIT_LIST_HEAD(base->tv2.vec + j);
  1404. }
  1405. for (j = 0; j < TVR_SIZE; j++)
  1406. INIT_LIST_HEAD(base->tv1.vec + j);
  1407. base->timer_jiffies = jiffies;
  1408. return 0;
  1409. }
  1410. #ifdef CONFIG_HOTPLUG_CPU
  1411. static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
  1412. {
  1413. struct timer_list *timer;
  1414. while (!list_empty(head)) {
  1415. timer = list_entry(head->next, struct timer_list, entry);
  1416. detach_timer(timer, 0);
  1417. timer->base = new_base;
  1418. internal_add_timer(new_base, timer);
  1419. }
  1420. }
  1421. static void __devinit migrate_timers(int cpu)
  1422. {
  1423. tvec_base_t *old_base;
  1424. tvec_base_t *new_base;
  1425. int i;
  1426. BUG_ON(cpu_online(cpu));
  1427. old_base = per_cpu(tvec_bases, cpu);
  1428. new_base = get_cpu_var(tvec_bases);
  1429. local_irq_disable();
  1430. spin_lock(&new_base->lock);
  1431. spin_lock(&old_base->lock);
  1432. BUG_ON(old_base->running_timer);
  1433. for (i = 0; i < TVR_SIZE; i++)
  1434. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1435. for (i = 0; i < TVN_SIZE; i++) {
  1436. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1437. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1438. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1439. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1440. }
  1441. spin_unlock(&old_base->lock);
  1442. spin_unlock(&new_base->lock);
  1443. local_irq_enable();
  1444. put_cpu_var(tvec_bases);
  1445. }
  1446. #endif /* CONFIG_HOTPLUG_CPU */
  1447. static int __devinit timer_cpu_notify(struct notifier_block *self,
  1448. unsigned long action, void *hcpu)
  1449. {
  1450. long cpu = (long)hcpu;
  1451. switch(action) {
  1452. case CPU_UP_PREPARE:
  1453. if (init_timers_cpu(cpu) < 0)
  1454. return NOTIFY_BAD;
  1455. break;
  1456. #ifdef CONFIG_HOTPLUG_CPU
  1457. case CPU_DEAD:
  1458. migrate_timers(cpu);
  1459. break;
  1460. #endif
  1461. default:
  1462. break;
  1463. }
  1464. return NOTIFY_OK;
  1465. }
  1466. static struct notifier_block __devinitdata timers_nb = {
  1467. .notifier_call = timer_cpu_notify,
  1468. };
  1469. void __init init_timers(void)
  1470. {
  1471. timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1472. (void *)(long)smp_processor_id());
  1473. register_cpu_notifier(&timers_nb);
  1474. open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
  1475. }
  1476. #ifdef CONFIG_TIME_INTERPOLATION
  1477. struct time_interpolator *time_interpolator __read_mostly;
  1478. static struct time_interpolator *time_interpolator_list __read_mostly;
  1479. static DEFINE_SPINLOCK(time_interpolator_lock);
  1480. static inline u64 time_interpolator_get_cycles(unsigned int src)
  1481. {
  1482. unsigned long (*x)(void);
  1483. switch (src)
  1484. {
  1485. case TIME_SOURCE_FUNCTION:
  1486. x = time_interpolator->addr;
  1487. return x();
  1488. case TIME_SOURCE_MMIO64 :
  1489. return readq_relaxed((void __iomem *)time_interpolator->addr);
  1490. case TIME_SOURCE_MMIO32 :
  1491. return readl_relaxed((void __iomem *)time_interpolator->addr);
  1492. default: return get_cycles();
  1493. }
  1494. }
  1495. static inline u64 time_interpolator_get_counter(int writelock)
  1496. {
  1497. unsigned int src = time_interpolator->source;
  1498. if (time_interpolator->jitter)
  1499. {
  1500. u64 lcycle;
  1501. u64 now;
  1502. do {
  1503. lcycle = time_interpolator->last_cycle;
  1504. now = time_interpolator_get_cycles(src);
  1505. if (lcycle && time_after(lcycle, now))
  1506. return lcycle;
  1507. /* When holding the xtime write lock, there's no need
  1508. * to add the overhead of the cmpxchg. Readers are
  1509. * force to retry until the write lock is released.
  1510. */
  1511. if (writelock) {
  1512. time_interpolator->last_cycle = now;
  1513. return now;
  1514. }
  1515. /* Keep track of the last timer value returned. The use of cmpxchg here
  1516. * will cause contention in an SMP environment.
  1517. */
  1518. } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
  1519. return now;
  1520. }
  1521. else
  1522. return time_interpolator_get_cycles(src);
  1523. }
  1524. void time_interpolator_reset(void)
  1525. {
  1526. time_interpolator->offset = 0;
  1527. time_interpolator->last_counter = time_interpolator_get_counter(1);
  1528. }
  1529. #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
  1530. unsigned long time_interpolator_get_offset(void)
  1531. {
  1532. /* If we do not have a time interpolator set up then just return zero */
  1533. if (!time_interpolator)
  1534. return 0;
  1535. return time_interpolator->offset +
  1536. GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
  1537. }
  1538. #define INTERPOLATOR_ADJUST 65536
  1539. #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
  1540. static void time_interpolator_update(long delta_nsec)
  1541. {
  1542. u64 counter;
  1543. unsigned long offset;
  1544. /* If there is no time interpolator set up then do nothing */
  1545. if (!time_interpolator)
  1546. return;
  1547. /*
  1548. * The interpolator compensates for late ticks by accumulating the late
  1549. * time in time_interpolator->offset. A tick earlier than expected will
  1550. * lead to a reset of the offset and a corresponding jump of the clock
  1551. * forward. Again this only works if the interpolator clock is running
  1552. * slightly slower than the regular clock and the tuning logic insures
  1553. * that.
  1554. */
  1555. counter = time_interpolator_get_counter(1);
  1556. offset = time_interpolator->offset +
  1557. GET_TI_NSECS(counter, time_interpolator);
  1558. if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
  1559. time_interpolator->offset = offset - delta_nsec;
  1560. else {
  1561. time_interpolator->skips++;
  1562. time_interpolator->ns_skipped += delta_nsec - offset;
  1563. time_interpolator->offset = 0;
  1564. }
  1565. time_interpolator->last_counter = counter;
  1566. /* Tuning logic for time interpolator invoked every minute or so.
  1567. * Decrease interpolator clock speed if no skips occurred and an offset is carried.
  1568. * Increase interpolator clock speed if we skip too much time.
  1569. */
  1570. if (jiffies % INTERPOLATOR_ADJUST == 0)
  1571. {
  1572. if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
  1573. time_interpolator->nsec_per_cyc--;
  1574. if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
  1575. time_interpolator->nsec_per_cyc++;
  1576. time_interpolator->skips = 0;
  1577. time_interpolator->ns_skipped = 0;
  1578. }
  1579. }
  1580. static inline int
  1581. is_better_time_interpolator(struct time_interpolator *new)
  1582. {
  1583. if (!time_interpolator)
  1584. return 1;
  1585. return new->frequency > 2*time_interpolator->frequency ||
  1586. (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
  1587. }
  1588. void
  1589. register_time_interpolator(struct time_interpolator *ti)
  1590. {
  1591. unsigned long flags;
  1592. /* Sanity check */
  1593. BUG_ON(ti->frequency == 0 || ti->mask == 0);
  1594. ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
  1595. spin_lock(&time_interpolator_lock);
  1596. write_seqlock_irqsave(&xtime_lock, flags);
  1597. if (is_better_time_interpolator(ti)) {
  1598. time_interpolator = ti;
  1599. time_interpolator_reset();
  1600. }
  1601. write_sequnlock_irqrestore(&xtime_lock, flags);
  1602. ti->next = time_interpolator_list;
  1603. time_interpolator_list = ti;
  1604. spin_unlock(&time_interpolator_lock);
  1605. }
  1606. void
  1607. unregister_time_interpolator(struct time_interpolator *ti)
  1608. {
  1609. struct time_interpolator *curr, **prev;
  1610. unsigned long flags;
  1611. spin_lock(&time_interpolator_lock);
  1612. prev = &time_interpolator_list;
  1613. for (curr = *prev; curr; curr = curr->next) {
  1614. if (curr == ti) {
  1615. *prev = curr->next;
  1616. break;
  1617. }
  1618. prev = &curr->next;
  1619. }
  1620. write_seqlock_irqsave(&xtime_lock, flags);
  1621. if (ti == time_interpolator) {
  1622. /* we lost the best time-interpolator: */
  1623. time_interpolator = NULL;
  1624. /* find the next-best interpolator */
  1625. for (curr = time_interpolator_list; curr; curr = curr->next)
  1626. if (is_better_time_interpolator(curr))
  1627. time_interpolator = curr;
  1628. time_interpolator_reset();
  1629. }
  1630. write_sequnlock_irqrestore(&xtime_lock, flags);
  1631. spin_unlock(&time_interpolator_lock);
  1632. }
  1633. #endif /* CONFIG_TIME_INTERPOLATION */
  1634. /**
  1635. * msleep - sleep safely even with waitqueue interruptions
  1636. * @msecs: Time in milliseconds to sleep for
  1637. */
  1638. void msleep(unsigned int msecs)
  1639. {
  1640. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1641. while (timeout)
  1642. timeout = schedule_timeout_uninterruptible(timeout);
  1643. }
  1644. EXPORT_SYMBOL(msleep);
  1645. /**
  1646. * msleep_interruptible - sleep waiting for signals
  1647. * @msecs: Time in milliseconds to sleep for
  1648. */
  1649. unsigned long msleep_interruptible(unsigned int msecs)
  1650. {
  1651. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1652. while (timeout && !signal_pending(current))
  1653. timeout = schedule_timeout_interruptible(timeout);
  1654. return jiffies_to_msecs(timeout);
  1655. }
  1656. EXPORT_SYMBOL(msleep_interruptible);