md.c 213 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mutex.h>
  31. #include <linux/buffer_head.h> /* for invalidate_bdev */
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. static void mddev_bio_destructor(struct bio *bio)
  134. {
  135. struct mddev *mddev, **mddevp;
  136. mddevp = (void*)bio;
  137. mddev = mddevp[-1];
  138. bio_free(bio, mddev->bio_set);
  139. }
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. struct mddev *mddev)
  142. {
  143. struct bio *b;
  144. struct mddev **mddevp;
  145. if (!mddev || !mddev->bio_set)
  146. return bio_alloc(gfp_mask, nr_iovecs);
  147. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  148. mddev->bio_set);
  149. if (!b)
  150. return NULL;
  151. mddevp = (void*)b;
  152. mddevp[-1] = mddev;
  153. b->bi_destructor = mddev_bio_destructor;
  154. return b;
  155. }
  156. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  157. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  158. struct mddev *mddev)
  159. {
  160. struct bio *b;
  161. struct mddev **mddevp;
  162. if (!mddev || !mddev->bio_set)
  163. return bio_clone(bio, gfp_mask);
  164. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  165. mddev->bio_set);
  166. if (!b)
  167. return NULL;
  168. mddevp = (void*)b;
  169. mddevp[-1] = mddev;
  170. b->bi_destructor = mddev_bio_destructor;
  171. __bio_clone(b, bio);
  172. if (bio_integrity(bio)) {
  173. int ret;
  174. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  175. if (ret < 0) {
  176. bio_put(b);
  177. return NULL;
  178. }
  179. }
  180. return b;
  181. }
  182. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  183. void md_trim_bio(struct bio *bio, int offset, int size)
  184. {
  185. /* 'bio' is a cloned bio which we need to trim to match
  186. * the given offset and size.
  187. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  188. */
  189. int i;
  190. struct bio_vec *bvec;
  191. int sofar = 0;
  192. size <<= 9;
  193. if (offset == 0 && size == bio->bi_size)
  194. return;
  195. bio->bi_sector += offset;
  196. bio->bi_size = size;
  197. offset <<= 9;
  198. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  199. while (bio->bi_idx < bio->bi_vcnt &&
  200. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  201. /* remove this whole bio_vec */
  202. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  203. bio->bi_idx++;
  204. }
  205. if (bio->bi_idx < bio->bi_vcnt) {
  206. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  207. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  208. }
  209. /* avoid any complications with bi_idx being non-zero*/
  210. if (bio->bi_idx) {
  211. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  212. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  213. bio->bi_vcnt -= bio->bi_idx;
  214. bio->bi_idx = 0;
  215. }
  216. /* Make sure vcnt and last bv are not too big */
  217. bio_for_each_segment(bvec, bio, i) {
  218. if (sofar + bvec->bv_len > size)
  219. bvec->bv_len = size - sofar;
  220. if (bvec->bv_len == 0) {
  221. bio->bi_vcnt = i;
  222. break;
  223. }
  224. sofar += bvec->bv_len;
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(md_trim_bio);
  228. /*
  229. * We have a system wide 'event count' that is incremented
  230. * on any 'interesting' event, and readers of /proc/mdstat
  231. * can use 'poll' or 'select' to find out when the event
  232. * count increases.
  233. *
  234. * Events are:
  235. * start array, stop array, error, add device, remove device,
  236. * start build, activate spare
  237. */
  238. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  239. static atomic_t md_event_count;
  240. void md_new_event(struct mddev *mddev)
  241. {
  242. atomic_inc(&md_event_count);
  243. wake_up(&md_event_waiters);
  244. }
  245. EXPORT_SYMBOL_GPL(md_new_event);
  246. /* Alternate version that can be called from interrupts
  247. * when calling sysfs_notify isn't needed.
  248. */
  249. static void md_new_event_inintr(struct mddev *mddev)
  250. {
  251. atomic_inc(&md_event_count);
  252. wake_up(&md_event_waiters);
  253. }
  254. /*
  255. * Enables to iterate over all existing md arrays
  256. * all_mddevs_lock protects this list.
  257. */
  258. static LIST_HEAD(all_mddevs);
  259. static DEFINE_SPINLOCK(all_mddevs_lock);
  260. /*
  261. * iterates through all used mddevs in the system.
  262. * We take care to grab the all_mddevs_lock whenever navigating
  263. * the list, and to always hold a refcount when unlocked.
  264. * Any code which breaks out of this loop while own
  265. * a reference to the current mddev and must mddev_put it.
  266. */
  267. #define for_each_mddev(_mddev,_tmp) \
  268. \
  269. for (({ spin_lock(&all_mddevs_lock); \
  270. _tmp = all_mddevs.next; \
  271. _mddev = NULL;}); \
  272. ({ if (_tmp != &all_mddevs) \
  273. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  274. spin_unlock(&all_mddevs_lock); \
  275. if (_mddev) mddev_put(_mddev); \
  276. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  277. _tmp != &all_mddevs;}); \
  278. ({ spin_lock(&all_mddevs_lock); \
  279. _tmp = _tmp->next;}) \
  280. )
  281. /* Rather than calling directly into the personality make_request function,
  282. * IO requests come here first so that we can check if the device is
  283. * being suspended pending a reconfiguration.
  284. * We hold a refcount over the call to ->make_request. By the time that
  285. * call has finished, the bio has been linked into some internal structure
  286. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  287. */
  288. static int md_make_request(struct request_queue *q, struct bio *bio)
  289. {
  290. const int rw = bio_data_dir(bio);
  291. struct mddev *mddev = q->queuedata;
  292. int rv;
  293. int cpu;
  294. unsigned int sectors;
  295. if (mddev == NULL || mddev->pers == NULL
  296. || !mddev->ready) {
  297. bio_io_error(bio);
  298. return 0;
  299. }
  300. smp_rmb(); /* Ensure implications of 'active' are visible */
  301. rcu_read_lock();
  302. if (mddev->suspended) {
  303. DEFINE_WAIT(__wait);
  304. for (;;) {
  305. prepare_to_wait(&mddev->sb_wait, &__wait,
  306. TASK_UNINTERRUPTIBLE);
  307. if (!mddev->suspended)
  308. break;
  309. rcu_read_unlock();
  310. schedule();
  311. rcu_read_lock();
  312. }
  313. finish_wait(&mddev->sb_wait, &__wait);
  314. }
  315. atomic_inc(&mddev->active_io);
  316. rcu_read_unlock();
  317. /*
  318. * save the sectors now since our bio can
  319. * go away inside make_request
  320. */
  321. sectors = bio_sectors(bio);
  322. rv = mddev->pers->make_request(mddev, bio);
  323. cpu = part_stat_lock();
  324. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  325. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  326. part_stat_unlock();
  327. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  328. wake_up(&mddev->sb_wait);
  329. return rv;
  330. }
  331. /* mddev_suspend makes sure no new requests are submitted
  332. * to the device, and that any requests that have been submitted
  333. * are completely handled.
  334. * Once ->stop is called and completes, the module will be completely
  335. * unused.
  336. */
  337. void mddev_suspend(struct mddev *mddev)
  338. {
  339. BUG_ON(mddev->suspended);
  340. mddev->suspended = 1;
  341. synchronize_rcu();
  342. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  343. mddev->pers->quiesce(mddev, 1);
  344. }
  345. EXPORT_SYMBOL_GPL(mddev_suspend);
  346. void mddev_resume(struct mddev *mddev)
  347. {
  348. mddev->suspended = 0;
  349. wake_up(&mddev->sb_wait);
  350. mddev->pers->quiesce(mddev, 0);
  351. md_wakeup_thread(mddev->thread);
  352. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  353. }
  354. EXPORT_SYMBOL_GPL(mddev_resume);
  355. int mddev_congested(struct mddev *mddev, int bits)
  356. {
  357. return mddev->suspended;
  358. }
  359. EXPORT_SYMBOL(mddev_congested);
  360. /*
  361. * Generic flush handling for md
  362. */
  363. static void md_end_flush(struct bio *bio, int err)
  364. {
  365. struct md_rdev *rdev = bio->bi_private;
  366. struct mddev *mddev = rdev->mddev;
  367. rdev_dec_pending(rdev, mddev);
  368. if (atomic_dec_and_test(&mddev->flush_pending)) {
  369. /* The pre-request flush has finished */
  370. queue_work(md_wq, &mddev->flush_work);
  371. }
  372. bio_put(bio);
  373. }
  374. static void md_submit_flush_data(struct work_struct *ws);
  375. static void submit_flushes(struct work_struct *ws)
  376. {
  377. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  378. struct md_rdev *rdev;
  379. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  380. atomic_set(&mddev->flush_pending, 1);
  381. rcu_read_lock();
  382. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  383. if (rdev->raid_disk >= 0 &&
  384. !test_bit(Faulty, &rdev->flags)) {
  385. /* Take two references, one is dropped
  386. * when request finishes, one after
  387. * we reclaim rcu_read_lock
  388. */
  389. struct bio *bi;
  390. atomic_inc(&rdev->nr_pending);
  391. atomic_inc(&rdev->nr_pending);
  392. rcu_read_unlock();
  393. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  394. bi->bi_end_io = md_end_flush;
  395. bi->bi_private = rdev;
  396. bi->bi_bdev = rdev->bdev;
  397. atomic_inc(&mddev->flush_pending);
  398. submit_bio(WRITE_FLUSH, bi);
  399. rcu_read_lock();
  400. rdev_dec_pending(rdev, mddev);
  401. }
  402. rcu_read_unlock();
  403. if (atomic_dec_and_test(&mddev->flush_pending))
  404. queue_work(md_wq, &mddev->flush_work);
  405. }
  406. static void md_submit_flush_data(struct work_struct *ws)
  407. {
  408. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  409. struct bio *bio = mddev->flush_bio;
  410. if (bio->bi_size == 0)
  411. /* an empty barrier - all done */
  412. bio_endio(bio, 0);
  413. else {
  414. bio->bi_rw &= ~REQ_FLUSH;
  415. if (mddev->pers->make_request(mddev, bio))
  416. generic_make_request(bio);
  417. }
  418. mddev->flush_bio = NULL;
  419. wake_up(&mddev->sb_wait);
  420. }
  421. void md_flush_request(struct mddev *mddev, struct bio *bio)
  422. {
  423. spin_lock_irq(&mddev->write_lock);
  424. wait_event_lock_irq(mddev->sb_wait,
  425. !mddev->flush_bio,
  426. mddev->write_lock, /*nothing*/);
  427. mddev->flush_bio = bio;
  428. spin_unlock_irq(&mddev->write_lock);
  429. INIT_WORK(&mddev->flush_work, submit_flushes);
  430. queue_work(md_wq, &mddev->flush_work);
  431. }
  432. EXPORT_SYMBOL(md_flush_request);
  433. /* Support for plugging.
  434. * This mirrors the plugging support in request_queue, but does not
  435. * require having a whole queue or request structures.
  436. * We allocate an md_plug_cb for each md device and each thread it gets
  437. * plugged on. This links tot the private plug_handle structure in the
  438. * personality data where we keep a count of the number of outstanding
  439. * plugs so other code can see if a plug is active.
  440. */
  441. struct md_plug_cb {
  442. struct blk_plug_cb cb;
  443. struct mddev *mddev;
  444. };
  445. static void plugger_unplug(struct blk_plug_cb *cb)
  446. {
  447. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  448. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  449. md_wakeup_thread(mdcb->mddev->thread);
  450. kfree(mdcb);
  451. }
  452. /* Check that an unplug wakeup will come shortly.
  453. * If not, wakeup the md thread immediately
  454. */
  455. int mddev_check_plugged(struct mddev *mddev)
  456. {
  457. struct blk_plug *plug = current->plug;
  458. struct md_plug_cb *mdcb;
  459. if (!plug)
  460. return 0;
  461. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  462. if (mdcb->cb.callback == plugger_unplug &&
  463. mdcb->mddev == mddev) {
  464. /* Already on the list, move to top */
  465. if (mdcb != list_first_entry(&plug->cb_list,
  466. struct md_plug_cb,
  467. cb.list))
  468. list_move(&mdcb->cb.list, &plug->cb_list);
  469. return 1;
  470. }
  471. }
  472. /* Not currently on the callback list */
  473. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  474. if (!mdcb)
  475. return 0;
  476. mdcb->mddev = mddev;
  477. mdcb->cb.callback = plugger_unplug;
  478. atomic_inc(&mddev->plug_cnt);
  479. list_add(&mdcb->cb.list, &plug->cb_list);
  480. return 1;
  481. }
  482. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  483. static inline struct mddev *mddev_get(struct mddev *mddev)
  484. {
  485. atomic_inc(&mddev->active);
  486. return mddev;
  487. }
  488. static void mddev_delayed_delete(struct work_struct *ws);
  489. static void mddev_put(struct mddev *mddev)
  490. {
  491. struct bio_set *bs = NULL;
  492. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  493. return;
  494. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  495. mddev->ctime == 0 && !mddev->hold_active) {
  496. /* Array is not configured at all, and not held active,
  497. * so destroy it */
  498. list_del(&mddev->all_mddevs);
  499. bs = mddev->bio_set;
  500. mddev->bio_set = NULL;
  501. if (mddev->gendisk) {
  502. /* We did a probe so need to clean up. Call
  503. * queue_work inside the spinlock so that
  504. * flush_workqueue() after mddev_find will
  505. * succeed in waiting for the work to be done.
  506. */
  507. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  508. queue_work(md_misc_wq, &mddev->del_work);
  509. } else
  510. kfree(mddev);
  511. }
  512. spin_unlock(&all_mddevs_lock);
  513. if (bs)
  514. bioset_free(bs);
  515. }
  516. void mddev_init(struct mddev *mddev)
  517. {
  518. mutex_init(&mddev->open_mutex);
  519. mutex_init(&mddev->reconfig_mutex);
  520. mutex_init(&mddev->bitmap_info.mutex);
  521. INIT_LIST_HEAD(&mddev->disks);
  522. INIT_LIST_HEAD(&mddev->all_mddevs);
  523. init_timer(&mddev->safemode_timer);
  524. atomic_set(&mddev->active, 1);
  525. atomic_set(&mddev->openers, 0);
  526. atomic_set(&mddev->active_io, 0);
  527. atomic_set(&mddev->plug_cnt, 0);
  528. spin_lock_init(&mddev->write_lock);
  529. atomic_set(&mddev->flush_pending, 0);
  530. init_waitqueue_head(&mddev->sb_wait);
  531. init_waitqueue_head(&mddev->recovery_wait);
  532. mddev->reshape_position = MaxSector;
  533. mddev->resync_min = 0;
  534. mddev->resync_max = MaxSector;
  535. mddev->level = LEVEL_NONE;
  536. }
  537. EXPORT_SYMBOL_GPL(mddev_init);
  538. static struct mddev * mddev_find(dev_t unit)
  539. {
  540. struct mddev *mddev, *new = NULL;
  541. if (unit && MAJOR(unit) != MD_MAJOR)
  542. unit &= ~((1<<MdpMinorShift)-1);
  543. retry:
  544. spin_lock(&all_mddevs_lock);
  545. if (unit) {
  546. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  547. if (mddev->unit == unit) {
  548. mddev_get(mddev);
  549. spin_unlock(&all_mddevs_lock);
  550. kfree(new);
  551. return mddev;
  552. }
  553. if (new) {
  554. list_add(&new->all_mddevs, &all_mddevs);
  555. spin_unlock(&all_mddevs_lock);
  556. new->hold_active = UNTIL_IOCTL;
  557. return new;
  558. }
  559. } else if (new) {
  560. /* find an unused unit number */
  561. static int next_minor = 512;
  562. int start = next_minor;
  563. int is_free = 0;
  564. int dev = 0;
  565. while (!is_free) {
  566. dev = MKDEV(MD_MAJOR, next_minor);
  567. next_minor++;
  568. if (next_minor > MINORMASK)
  569. next_minor = 0;
  570. if (next_minor == start) {
  571. /* Oh dear, all in use. */
  572. spin_unlock(&all_mddevs_lock);
  573. kfree(new);
  574. return NULL;
  575. }
  576. is_free = 1;
  577. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  578. if (mddev->unit == dev) {
  579. is_free = 0;
  580. break;
  581. }
  582. }
  583. new->unit = dev;
  584. new->md_minor = MINOR(dev);
  585. new->hold_active = UNTIL_STOP;
  586. list_add(&new->all_mddevs, &all_mddevs);
  587. spin_unlock(&all_mddevs_lock);
  588. return new;
  589. }
  590. spin_unlock(&all_mddevs_lock);
  591. new = kzalloc(sizeof(*new), GFP_KERNEL);
  592. if (!new)
  593. return NULL;
  594. new->unit = unit;
  595. if (MAJOR(unit) == MD_MAJOR)
  596. new->md_minor = MINOR(unit);
  597. else
  598. new->md_minor = MINOR(unit) >> MdpMinorShift;
  599. mddev_init(new);
  600. goto retry;
  601. }
  602. static inline int mddev_lock(struct mddev * mddev)
  603. {
  604. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  605. }
  606. static inline int mddev_is_locked(struct mddev *mddev)
  607. {
  608. return mutex_is_locked(&mddev->reconfig_mutex);
  609. }
  610. static inline int mddev_trylock(struct mddev * mddev)
  611. {
  612. return mutex_trylock(&mddev->reconfig_mutex);
  613. }
  614. static struct attribute_group md_redundancy_group;
  615. static void mddev_unlock(struct mddev * mddev)
  616. {
  617. if (mddev->to_remove) {
  618. /* These cannot be removed under reconfig_mutex as
  619. * an access to the files will try to take reconfig_mutex
  620. * while holding the file unremovable, which leads to
  621. * a deadlock.
  622. * So hold set sysfs_active while the remove in happeing,
  623. * and anything else which might set ->to_remove or my
  624. * otherwise change the sysfs namespace will fail with
  625. * -EBUSY if sysfs_active is still set.
  626. * We set sysfs_active under reconfig_mutex and elsewhere
  627. * test it under the same mutex to ensure its correct value
  628. * is seen.
  629. */
  630. struct attribute_group *to_remove = mddev->to_remove;
  631. mddev->to_remove = NULL;
  632. mddev->sysfs_active = 1;
  633. mutex_unlock(&mddev->reconfig_mutex);
  634. if (mddev->kobj.sd) {
  635. if (to_remove != &md_redundancy_group)
  636. sysfs_remove_group(&mddev->kobj, to_remove);
  637. if (mddev->pers == NULL ||
  638. mddev->pers->sync_request == NULL) {
  639. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  640. if (mddev->sysfs_action)
  641. sysfs_put(mddev->sysfs_action);
  642. mddev->sysfs_action = NULL;
  643. }
  644. }
  645. mddev->sysfs_active = 0;
  646. } else
  647. mutex_unlock(&mddev->reconfig_mutex);
  648. /* was we've dropped the mutex we need a spinlock to
  649. * make sur the thread doesn't disappear
  650. */
  651. spin_lock(&pers_lock);
  652. md_wakeup_thread(mddev->thread);
  653. spin_unlock(&pers_lock);
  654. }
  655. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  656. {
  657. struct md_rdev *rdev;
  658. list_for_each_entry(rdev, &mddev->disks, same_set)
  659. if (rdev->desc_nr == nr)
  660. return rdev;
  661. return NULL;
  662. }
  663. static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
  664. {
  665. struct md_rdev *rdev;
  666. list_for_each_entry(rdev, &mddev->disks, same_set)
  667. if (rdev->bdev->bd_dev == dev)
  668. return rdev;
  669. return NULL;
  670. }
  671. static struct md_personality *find_pers(int level, char *clevel)
  672. {
  673. struct md_personality *pers;
  674. list_for_each_entry(pers, &pers_list, list) {
  675. if (level != LEVEL_NONE && pers->level == level)
  676. return pers;
  677. if (strcmp(pers->name, clevel)==0)
  678. return pers;
  679. }
  680. return NULL;
  681. }
  682. /* return the offset of the super block in 512byte sectors */
  683. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  684. {
  685. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  686. return MD_NEW_SIZE_SECTORS(num_sectors);
  687. }
  688. static int alloc_disk_sb(struct md_rdev * rdev)
  689. {
  690. if (rdev->sb_page)
  691. MD_BUG();
  692. rdev->sb_page = alloc_page(GFP_KERNEL);
  693. if (!rdev->sb_page) {
  694. printk(KERN_ALERT "md: out of memory.\n");
  695. return -ENOMEM;
  696. }
  697. return 0;
  698. }
  699. static void free_disk_sb(struct md_rdev * rdev)
  700. {
  701. if (rdev->sb_page) {
  702. put_page(rdev->sb_page);
  703. rdev->sb_loaded = 0;
  704. rdev->sb_page = NULL;
  705. rdev->sb_start = 0;
  706. rdev->sectors = 0;
  707. }
  708. if (rdev->bb_page) {
  709. put_page(rdev->bb_page);
  710. rdev->bb_page = NULL;
  711. }
  712. }
  713. static void super_written(struct bio *bio, int error)
  714. {
  715. struct md_rdev *rdev = bio->bi_private;
  716. struct mddev *mddev = rdev->mddev;
  717. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  718. printk("md: super_written gets error=%d, uptodate=%d\n",
  719. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  720. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  721. md_error(mddev, rdev);
  722. }
  723. if (atomic_dec_and_test(&mddev->pending_writes))
  724. wake_up(&mddev->sb_wait);
  725. bio_put(bio);
  726. }
  727. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  728. sector_t sector, int size, struct page *page)
  729. {
  730. /* write first size bytes of page to sector of rdev
  731. * Increment mddev->pending_writes before returning
  732. * and decrement it on completion, waking up sb_wait
  733. * if zero is reached.
  734. * If an error occurred, call md_error
  735. */
  736. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  737. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  738. bio->bi_sector = sector;
  739. bio_add_page(bio, page, size, 0);
  740. bio->bi_private = rdev;
  741. bio->bi_end_io = super_written;
  742. atomic_inc(&mddev->pending_writes);
  743. submit_bio(WRITE_FLUSH_FUA, bio);
  744. }
  745. void md_super_wait(struct mddev *mddev)
  746. {
  747. /* wait for all superblock writes that were scheduled to complete */
  748. DEFINE_WAIT(wq);
  749. for(;;) {
  750. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  751. if (atomic_read(&mddev->pending_writes)==0)
  752. break;
  753. schedule();
  754. }
  755. finish_wait(&mddev->sb_wait, &wq);
  756. }
  757. static void bi_complete(struct bio *bio, int error)
  758. {
  759. complete((struct completion*)bio->bi_private);
  760. }
  761. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  762. struct page *page, int rw, bool metadata_op)
  763. {
  764. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  765. struct completion event;
  766. int ret;
  767. rw |= REQ_SYNC;
  768. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  769. rdev->meta_bdev : rdev->bdev;
  770. if (metadata_op)
  771. bio->bi_sector = sector + rdev->sb_start;
  772. else
  773. bio->bi_sector = sector + rdev->data_offset;
  774. bio_add_page(bio, page, size, 0);
  775. init_completion(&event);
  776. bio->bi_private = &event;
  777. bio->bi_end_io = bi_complete;
  778. submit_bio(rw, bio);
  779. wait_for_completion(&event);
  780. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  781. bio_put(bio);
  782. return ret;
  783. }
  784. EXPORT_SYMBOL_GPL(sync_page_io);
  785. static int read_disk_sb(struct md_rdev * rdev, int size)
  786. {
  787. char b[BDEVNAME_SIZE];
  788. if (!rdev->sb_page) {
  789. MD_BUG();
  790. return -EINVAL;
  791. }
  792. if (rdev->sb_loaded)
  793. return 0;
  794. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  795. goto fail;
  796. rdev->sb_loaded = 1;
  797. return 0;
  798. fail:
  799. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  800. bdevname(rdev->bdev,b));
  801. return -EINVAL;
  802. }
  803. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  804. {
  805. return sb1->set_uuid0 == sb2->set_uuid0 &&
  806. sb1->set_uuid1 == sb2->set_uuid1 &&
  807. sb1->set_uuid2 == sb2->set_uuid2 &&
  808. sb1->set_uuid3 == sb2->set_uuid3;
  809. }
  810. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  811. {
  812. int ret;
  813. mdp_super_t *tmp1, *tmp2;
  814. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  815. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  816. if (!tmp1 || !tmp2) {
  817. ret = 0;
  818. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  819. goto abort;
  820. }
  821. *tmp1 = *sb1;
  822. *tmp2 = *sb2;
  823. /*
  824. * nr_disks is not constant
  825. */
  826. tmp1->nr_disks = 0;
  827. tmp2->nr_disks = 0;
  828. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  829. abort:
  830. kfree(tmp1);
  831. kfree(tmp2);
  832. return ret;
  833. }
  834. static u32 md_csum_fold(u32 csum)
  835. {
  836. csum = (csum & 0xffff) + (csum >> 16);
  837. return (csum & 0xffff) + (csum >> 16);
  838. }
  839. static unsigned int calc_sb_csum(mdp_super_t * sb)
  840. {
  841. u64 newcsum = 0;
  842. u32 *sb32 = (u32*)sb;
  843. int i;
  844. unsigned int disk_csum, csum;
  845. disk_csum = sb->sb_csum;
  846. sb->sb_csum = 0;
  847. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  848. newcsum += sb32[i];
  849. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  850. #ifdef CONFIG_ALPHA
  851. /* This used to use csum_partial, which was wrong for several
  852. * reasons including that different results are returned on
  853. * different architectures. It isn't critical that we get exactly
  854. * the same return value as before (we always csum_fold before
  855. * testing, and that removes any differences). However as we
  856. * know that csum_partial always returned a 16bit value on
  857. * alphas, do a fold to maximise conformity to previous behaviour.
  858. */
  859. sb->sb_csum = md_csum_fold(disk_csum);
  860. #else
  861. sb->sb_csum = disk_csum;
  862. #endif
  863. return csum;
  864. }
  865. /*
  866. * Handle superblock details.
  867. * We want to be able to handle multiple superblock formats
  868. * so we have a common interface to them all, and an array of
  869. * different handlers.
  870. * We rely on user-space to write the initial superblock, and support
  871. * reading and updating of superblocks.
  872. * Interface methods are:
  873. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  874. * loads and validates a superblock on dev.
  875. * if refdev != NULL, compare superblocks on both devices
  876. * Return:
  877. * 0 - dev has a superblock that is compatible with refdev
  878. * 1 - dev has a superblock that is compatible and newer than refdev
  879. * so dev should be used as the refdev in future
  880. * -EINVAL superblock incompatible or invalid
  881. * -othererror e.g. -EIO
  882. *
  883. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  884. * Verify that dev is acceptable into mddev.
  885. * The first time, mddev->raid_disks will be 0, and data from
  886. * dev should be merged in. Subsequent calls check that dev
  887. * is new enough. Return 0 or -EINVAL
  888. *
  889. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  890. * Update the superblock for rdev with data in mddev
  891. * This does not write to disc.
  892. *
  893. */
  894. struct super_type {
  895. char *name;
  896. struct module *owner;
  897. int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
  898. int minor_version);
  899. int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
  900. void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
  901. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  902. sector_t num_sectors);
  903. };
  904. /*
  905. * Check that the given mddev has no bitmap.
  906. *
  907. * This function is called from the run method of all personalities that do not
  908. * support bitmaps. It prints an error message and returns non-zero if mddev
  909. * has a bitmap. Otherwise, it returns 0.
  910. *
  911. */
  912. int md_check_no_bitmap(struct mddev *mddev)
  913. {
  914. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  915. return 0;
  916. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  917. mdname(mddev), mddev->pers->name);
  918. return 1;
  919. }
  920. EXPORT_SYMBOL(md_check_no_bitmap);
  921. /*
  922. * load_super for 0.90.0
  923. */
  924. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  925. {
  926. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  927. mdp_super_t *sb;
  928. int ret;
  929. /*
  930. * Calculate the position of the superblock (512byte sectors),
  931. * it's at the end of the disk.
  932. *
  933. * It also happens to be a multiple of 4Kb.
  934. */
  935. rdev->sb_start = calc_dev_sboffset(rdev);
  936. ret = read_disk_sb(rdev, MD_SB_BYTES);
  937. if (ret) return ret;
  938. ret = -EINVAL;
  939. bdevname(rdev->bdev, b);
  940. sb = page_address(rdev->sb_page);
  941. if (sb->md_magic != MD_SB_MAGIC) {
  942. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  943. b);
  944. goto abort;
  945. }
  946. if (sb->major_version != 0 ||
  947. sb->minor_version < 90 ||
  948. sb->minor_version > 91) {
  949. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  950. sb->major_version, sb->minor_version,
  951. b);
  952. goto abort;
  953. }
  954. if (sb->raid_disks <= 0)
  955. goto abort;
  956. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  957. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  958. b);
  959. goto abort;
  960. }
  961. rdev->preferred_minor = sb->md_minor;
  962. rdev->data_offset = 0;
  963. rdev->sb_size = MD_SB_BYTES;
  964. rdev->badblocks.shift = -1;
  965. if (sb->level == LEVEL_MULTIPATH)
  966. rdev->desc_nr = -1;
  967. else
  968. rdev->desc_nr = sb->this_disk.number;
  969. if (!refdev) {
  970. ret = 1;
  971. } else {
  972. __u64 ev1, ev2;
  973. mdp_super_t *refsb = page_address(refdev->sb_page);
  974. if (!uuid_equal(refsb, sb)) {
  975. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  976. b, bdevname(refdev->bdev,b2));
  977. goto abort;
  978. }
  979. if (!sb_equal(refsb, sb)) {
  980. printk(KERN_WARNING "md: %s has same UUID"
  981. " but different superblock to %s\n",
  982. b, bdevname(refdev->bdev, b2));
  983. goto abort;
  984. }
  985. ev1 = md_event(sb);
  986. ev2 = md_event(refsb);
  987. if (ev1 > ev2)
  988. ret = 1;
  989. else
  990. ret = 0;
  991. }
  992. rdev->sectors = rdev->sb_start;
  993. /* Limit to 4TB as metadata cannot record more than that */
  994. if (rdev->sectors >= (2ULL << 32))
  995. rdev->sectors = (2ULL << 32) - 2;
  996. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  997. /* "this cannot possibly happen" ... */
  998. ret = -EINVAL;
  999. abort:
  1000. return ret;
  1001. }
  1002. /*
  1003. * validate_super for 0.90.0
  1004. */
  1005. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  1006. {
  1007. mdp_disk_t *desc;
  1008. mdp_super_t *sb = page_address(rdev->sb_page);
  1009. __u64 ev1 = md_event(sb);
  1010. rdev->raid_disk = -1;
  1011. clear_bit(Faulty, &rdev->flags);
  1012. clear_bit(In_sync, &rdev->flags);
  1013. clear_bit(WriteMostly, &rdev->flags);
  1014. if (mddev->raid_disks == 0) {
  1015. mddev->major_version = 0;
  1016. mddev->minor_version = sb->minor_version;
  1017. mddev->patch_version = sb->patch_version;
  1018. mddev->external = 0;
  1019. mddev->chunk_sectors = sb->chunk_size >> 9;
  1020. mddev->ctime = sb->ctime;
  1021. mddev->utime = sb->utime;
  1022. mddev->level = sb->level;
  1023. mddev->clevel[0] = 0;
  1024. mddev->layout = sb->layout;
  1025. mddev->raid_disks = sb->raid_disks;
  1026. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1027. mddev->events = ev1;
  1028. mddev->bitmap_info.offset = 0;
  1029. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1030. if (mddev->minor_version >= 91) {
  1031. mddev->reshape_position = sb->reshape_position;
  1032. mddev->delta_disks = sb->delta_disks;
  1033. mddev->new_level = sb->new_level;
  1034. mddev->new_layout = sb->new_layout;
  1035. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1036. } else {
  1037. mddev->reshape_position = MaxSector;
  1038. mddev->delta_disks = 0;
  1039. mddev->new_level = mddev->level;
  1040. mddev->new_layout = mddev->layout;
  1041. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1042. }
  1043. if (sb->state & (1<<MD_SB_CLEAN))
  1044. mddev->recovery_cp = MaxSector;
  1045. else {
  1046. if (sb->events_hi == sb->cp_events_hi &&
  1047. sb->events_lo == sb->cp_events_lo) {
  1048. mddev->recovery_cp = sb->recovery_cp;
  1049. } else
  1050. mddev->recovery_cp = 0;
  1051. }
  1052. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1053. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1054. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1055. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1056. mddev->max_disks = MD_SB_DISKS;
  1057. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1058. mddev->bitmap_info.file == NULL)
  1059. mddev->bitmap_info.offset =
  1060. mddev->bitmap_info.default_offset;
  1061. } else if (mddev->pers == NULL) {
  1062. /* Insist on good event counter while assembling, except
  1063. * for spares (which don't need an event count) */
  1064. ++ev1;
  1065. if (sb->disks[rdev->desc_nr].state & (
  1066. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1067. if (ev1 < mddev->events)
  1068. return -EINVAL;
  1069. } else if (mddev->bitmap) {
  1070. /* if adding to array with a bitmap, then we can accept an
  1071. * older device ... but not too old.
  1072. */
  1073. if (ev1 < mddev->bitmap->events_cleared)
  1074. return 0;
  1075. } else {
  1076. if (ev1 < mddev->events)
  1077. /* just a hot-add of a new device, leave raid_disk at -1 */
  1078. return 0;
  1079. }
  1080. if (mddev->level != LEVEL_MULTIPATH) {
  1081. desc = sb->disks + rdev->desc_nr;
  1082. if (desc->state & (1<<MD_DISK_FAULTY))
  1083. set_bit(Faulty, &rdev->flags);
  1084. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1085. desc->raid_disk < mddev->raid_disks */) {
  1086. set_bit(In_sync, &rdev->flags);
  1087. rdev->raid_disk = desc->raid_disk;
  1088. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1089. /* active but not in sync implies recovery up to
  1090. * reshape position. We don't know exactly where
  1091. * that is, so set to zero for now */
  1092. if (mddev->minor_version >= 91) {
  1093. rdev->recovery_offset = 0;
  1094. rdev->raid_disk = desc->raid_disk;
  1095. }
  1096. }
  1097. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1098. set_bit(WriteMostly, &rdev->flags);
  1099. } else /* MULTIPATH are always insync */
  1100. set_bit(In_sync, &rdev->flags);
  1101. return 0;
  1102. }
  1103. /*
  1104. * sync_super for 0.90.0
  1105. */
  1106. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1107. {
  1108. mdp_super_t *sb;
  1109. struct md_rdev *rdev2;
  1110. int next_spare = mddev->raid_disks;
  1111. /* make rdev->sb match mddev data..
  1112. *
  1113. * 1/ zero out disks
  1114. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1115. * 3/ any empty disks < next_spare become removed
  1116. *
  1117. * disks[0] gets initialised to REMOVED because
  1118. * we cannot be sure from other fields if it has
  1119. * been initialised or not.
  1120. */
  1121. int i;
  1122. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1123. rdev->sb_size = MD_SB_BYTES;
  1124. sb = page_address(rdev->sb_page);
  1125. memset(sb, 0, sizeof(*sb));
  1126. sb->md_magic = MD_SB_MAGIC;
  1127. sb->major_version = mddev->major_version;
  1128. sb->patch_version = mddev->patch_version;
  1129. sb->gvalid_words = 0; /* ignored */
  1130. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1131. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1132. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1133. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1134. sb->ctime = mddev->ctime;
  1135. sb->level = mddev->level;
  1136. sb->size = mddev->dev_sectors / 2;
  1137. sb->raid_disks = mddev->raid_disks;
  1138. sb->md_minor = mddev->md_minor;
  1139. sb->not_persistent = 0;
  1140. sb->utime = mddev->utime;
  1141. sb->state = 0;
  1142. sb->events_hi = (mddev->events>>32);
  1143. sb->events_lo = (u32)mddev->events;
  1144. if (mddev->reshape_position == MaxSector)
  1145. sb->minor_version = 90;
  1146. else {
  1147. sb->minor_version = 91;
  1148. sb->reshape_position = mddev->reshape_position;
  1149. sb->new_level = mddev->new_level;
  1150. sb->delta_disks = mddev->delta_disks;
  1151. sb->new_layout = mddev->new_layout;
  1152. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1153. }
  1154. mddev->minor_version = sb->minor_version;
  1155. if (mddev->in_sync)
  1156. {
  1157. sb->recovery_cp = mddev->recovery_cp;
  1158. sb->cp_events_hi = (mddev->events>>32);
  1159. sb->cp_events_lo = (u32)mddev->events;
  1160. if (mddev->recovery_cp == MaxSector)
  1161. sb->state = (1<< MD_SB_CLEAN);
  1162. } else
  1163. sb->recovery_cp = 0;
  1164. sb->layout = mddev->layout;
  1165. sb->chunk_size = mddev->chunk_sectors << 9;
  1166. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1167. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1168. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1169. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1170. mdp_disk_t *d;
  1171. int desc_nr;
  1172. int is_active = test_bit(In_sync, &rdev2->flags);
  1173. if (rdev2->raid_disk >= 0 &&
  1174. sb->minor_version >= 91)
  1175. /* we have nowhere to store the recovery_offset,
  1176. * but if it is not below the reshape_position,
  1177. * we can piggy-back on that.
  1178. */
  1179. is_active = 1;
  1180. if (rdev2->raid_disk < 0 ||
  1181. test_bit(Faulty, &rdev2->flags))
  1182. is_active = 0;
  1183. if (is_active)
  1184. desc_nr = rdev2->raid_disk;
  1185. else
  1186. desc_nr = next_spare++;
  1187. rdev2->desc_nr = desc_nr;
  1188. d = &sb->disks[rdev2->desc_nr];
  1189. nr_disks++;
  1190. d->number = rdev2->desc_nr;
  1191. d->major = MAJOR(rdev2->bdev->bd_dev);
  1192. d->minor = MINOR(rdev2->bdev->bd_dev);
  1193. if (is_active)
  1194. d->raid_disk = rdev2->raid_disk;
  1195. else
  1196. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1197. if (test_bit(Faulty, &rdev2->flags))
  1198. d->state = (1<<MD_DISK_FAULTY);
  1199. else if (is_active) {
  1200. d->state = (1<<MD_DISK_ACTIVE);
  1201. if (test_bit(In_sync, &rdev2->flags))
  1202. d->state |= (1<<MD_DISK_SYNC);
  1203. active++;
  1204. working++;
  1205. } else {
  1206. d->state = 0;
  1207. spare++;
  1208. working++;
  1209. }
  1210. if (test_bit(WriteMostly, &rdev2->flags))
  1211. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1212. }
  1213. /* now set the "removed" and "faulty" bits on any missing devices */
  1214. for (i=0 ; i < mddev->raid_disks ; i++) {
  1215. mdp_disk_t *d = &sb->disks[i];
  1216. if (d->state == 0 && d->number == 0) {
  1217. d->number = i;
  1218. d->raid_disk = i;
  1219. d->state = (1<<MD_DISK_REMOVED);
  1220. d->state |= (1<<MD_DISK_FAULTY);
  1221. failed++;
  1222. }
  1223. }
  1224. sb->nr_disks = nr_disks;
  1225. sb->active_disks = active;
  1226. sb->working_disks = working;
  1227. sb->failed_disks = failed;
  1228. sb->spare_disks = spare;
  1229. sb->this_disk = sb->disks[rdev->desc_nr];
  1230. sb->sb_csum = calc_sb_csum(sb);
  1231. }
  1232. /*
  1233. * rdev_size_change for 0.90.0
  1234. */
  1235. static unsigned long long
  1236. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1237. {
  1238. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1239. return 0; /* component must fit device */
  1240. if (rdev->mddev->bitmap_info.offset)
  1241. return 0; /* can't move bitmap */
  1242. rdev->sb_start = calc_dev_sboffset(rdev);
  1243. if (!num_sectors || num_sectors > rdev->sb_start)
  1244. num_sectors = rdev->sb_start;
  1245. /* Limit to 4TB as metadata cannot record more than that.
  1246. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1247. */
  1248. if (num_sectors >= (2ULL << 32))
  1249. num_sectors = (2ULL << 32) - 2;
  1250. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1251. rdev->sb_page);
  1252. md_super_wait(rdev->mddev);
  1253. return num_sectors;
  1254. }
  1255. /*
  1256. * version 1 superblock
  1257. */
  1258. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1259. {
  1260. __le32 disk_csum;
  1261. u32 csum;
  1262. unsigned long long newcsum;
  1263. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1264. __le32 *isuper = (__le32*)sb;
  1265. int i;
  1266. disk_csum = sb->sb_csum;
  1267. sb->sb_csum = 0;
  1268. newcsum = 0;
  1269. for (i=0; size>=4; size -= 4 )
  1270. newcsum += le32_to_cpu(*isuper++);
  1271. if (size == 2)
  1272. newcsum += le16_to_cpu(*(__le16*) isuper);
  1273. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1274. sb->sb_csum = disk_csum;
  1275. return cpu_to_le32(csum);
  1276. }
  1277. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1278. int acknowledged);
  1279. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1280. {
  1281. struct mdp_superblock_1 *sb;
  1282. int ret;
  1283. sector_t sb_start;
  1284. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1285. int bmask;
  1286. /*
  1287. * Calculate the position of the superblock in 512byte sectors.
  1288. * It is always aligned to a 4K boundary and
  1289. * depeding on minor_version, it can be:
  1290. * 0: At least 8K, but less than 12K, from end of device
  1291. * 1: At start of device
  1292. * 2: 4K from start of device.
  1293. */
  1294. switch(minor_version) {
  1295. case 0:
  1296. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1297. sb_start -= 8*2;
  1298. sb_start &= ~(sector_t)(4*2-1);
  1299. break;
  1300. case 1:
  1301. sb_start = 0;
  1302. break;
  1303. case 2:
  1304. sb_start = 8;
  1305. break;
  1306. default:
  1307. return -EINVAL;
  1308. }
  1309. rdev->sb_start = sb_start;
  1310. /* superblock is rarely larger than 1K, but it can be larger,
  1311. * and it is safe to read 4k, so we do that
  1312. */
  1313. ret = read_disk_sb(rdev, 4096);
  1314. if (ret) return ret;
  1315. sb = page_address(rdev->sb_page);
  1316. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1317. sb->major_version != cpu_to_le32(1) ||
  1318. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1319. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1320. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1321. return -EINVAL;
  1322. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1323. printk("md: invalid superblock checksum on %s\n",
  1324. bdevname(rdev->bdev,b));
  1325. return -EINVAL;
  1326. }
  1327. if (le64_to_cpu(sb->data_size) < 10) {
  1328. printk("md: data_size too small on %s\n",
  1329. bdevname(rdev->bdev,b));
  1330. return -EINVAL;
  1331. }
  1332. rdev->preferred_minor = 0xffff;
  1333. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1334. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1335. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1336. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1337. if (rdev->sb_size & bmask)
  1338. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1339. if (minor_version
  1340. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1341. return -EINVAL;
  1342. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1343. rdev->desc_nr = -1;
  1344. else
  1345. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1346. if (!rdev->bb_page) {
  1347. rdev->bb_page = alloc_page(GFP_KERNEL);
  1348. if (!rdev->bb_page)
  1349. return -ENOMEM;
  1350. }
  1351. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1352. rdev->badblocks.count == 0) {
  1353. /* need to load the bad block list.
  1354. * Currently we limit it to one page.
  1355. */
  1356. s32 offset;
  1357. sector_t bb_sector;
  1358. u64 *bbp;
  1359. int i;
  1360. int sectors = le16_to_cpu(sb->bblog_size);
  1361. if (sectors > (PAGE_SIZE / 512))
  1362. return -EINVAL;
  1363. offset = le32_to_cpu(sb->bblog_offset);
  1364. if (offset == 0)
  1365. return -EINVAL;
  1366. bb_sector = (long long)offset;
  1367. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1368. rdev->bb_page, READ, true))
  1369. return -EIO;
  1370. bbp = (u64 *)page_address(rdev->bb_page);
  1371. rdev->badblocks.shift = sb->bblog_shift;
  1372. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1373. u64 bb = le64_to_cpu(*bbp);
  1374. int count = bb & (0x3ff);
  1375. u64 sector = bb >> 10;
  1376. sector <<= sb->bblog_shift;
  1377. count <<= sb->bblog_shift;
  1378. if (bb + 1 == 0)
  1379. break;
  1380. if (md_set_badblocks(&rdev->badblocks,
  1381. sector, count, 1) == 0)
  1382. return -EINVAL;
  1383. }
  1384. } else if (sb->bblog_offset == 0)
  1385. rdev->badblocks.shift = -1;
  1386. if (!refdev) {
  1387. ret = 1;
  1388. } else {
  1389. __u64 ev1, ev2;
  1390. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1391. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1392. sb->level != refsb->level ||
  1393. sb->layout != refsb->layout ||
  1394. sb->chunksize != refsb->chunksize) {
  1395. printk(KERN_WARNING "md: %s has strangely different"
  1396. " superblock to %s\n",
  1397. bdevname(rdev->bdev,b),
  1398. bdevname(refdev->bdev,b2));
  1399. return -EINVAL;
  1400. }
  1401. ev1 = le64_to_cpu(sb->events);
  1402. ev2 = le64_to_cpu(refsb->events);
  1403. if (ev1 > ev2)
  1404. ret = 1;
  1405. else
  1406. ret = 0;
  1407. }
  1408. if (minor_version)
  1409. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1410. le64_to_cpu(sb->data_offset);
  1411. else
  1412. rdev->sectors = rdev->sb_start;
  1413. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1414. return -EINVAL;
  1415. rdev->sectors = le64_to_cpu(sb->data_size);
  1416. if (le64_to_cpu(sb->size) > rdev->sectors)
  1417. return -EINVAL;
  1418. return ret;
  1419. }
  1420. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1421. {
  1422. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1423. __u64 ev1 = le64_to_cpu(sb->events);
  1424. rdev->raid_disk = -1;
  1425. clear_bit(Faulty, &rdev->flags);
  1426. clear_bit(In_sync, &rdev->flags);
  1427. clear_bit(WriteMostly, &rdev->flags);
  1428. if (mddev->raid_disks == 0) {
  1429. mddev->major_version = 1;
  1430. mddev->patch_version = 0;
  1431. mddev->external = 0;
  1432. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1433. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1434. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1435. mddev->level = le32_to_cpu(sb->level);
  1436. mddev->clevel[0] = 0;
  1437. mddev->layout = le32_to_cpu(sb->layout);
  1438. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1439. mddev->dev_sectors = le64_to_cpu(sb->size);
  1440. mddev->events = ev1;
  1441. mddev->bitmap_info.offset = 0;
  1442. mddev->bitmap_info.default_offset = 1024 >> 9;
  1443. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1444. memcpy(mddev->uuid, sb->set_uuid, 16);
  1445. mddev->max_disks = (4096-256)/2;
  1446. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1447. mddev->bitmap_info.file == NULL )
  1448. mddev->bitmap_info.offset =
  1449. (__s32)le32_to_cpu(sb->bitmap_offset);
  1450. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1451. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1452. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1453. mddev->new_level = le32_to_cpu(sb->new_level);
  1454. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1455. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1456. } else {
  1457. mddev->reshape_position = MaxSector;
  1458. mddev->delta_disks = 0;
  1459. mddev->new_level = mddev->level;
  1460. mddev->new_layout = mddev->layout;
  1461. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1462. }
  1463. } else if (mddev->pers == NULL) {
  1464. /* Insist of good event counter while assembling, except for
  1465. * spares (which don't need an event count) */
  1466. ++ev1;
  1467. if (rdev->desc_nr >= 0 &&
  1468. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1469. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1470. if (ev1 < mddev->events)
  1471. return -EINVAL;
  1472. } else if (mddev->bitmap) {
  1473. /* If adding to array with a bitmap, then we can accept an
  1474. * older device, but not too old.
  1475. */
  1476. if (ev1 < mddev->bitmap->events_cleared)
  1477. return 0;
  1478. } else {
  1479. if (ev1 < mddev->events)
  1480. /* just a hot-add of a new device, leave raid_disk at -1 */
  1481. return 0;
  1482. }
  1483. if (mddev->level != LEVEL_MULTIPATH) {
  1484. int role;
  1485. if (rdev->desc_nr < 0 ||
  1486. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1487. role = 0xffff;
  1488. rdev->desc_nr = -1;
  1489. } else
  1490. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1491. switch(role) {
  1492. case 0xffff: /* spare */
  1493. break;
  1494. case 0xfffe: /* faulty */
  1495. set_bit(Faulty, &rdev->flags);
  1496. break;
  1497. default:
  1498. if ((le32_to_cpu(sb->feature_map) &
  1499. MD_FEATURE_RECOVERY_OFFSET))
  1500. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1501. else
  1502. set_bit(In_sync, &rdev->flags);
  1503. rdev->raid_disk = role;
  1504. break;
  1505. }
  1506. if (sb->devflags & WriteMostly1)
  1507. set_bit(WriteMostly, &rdev->flags);
  1508. } else /* MULTIPATH are always insync */
  1509. set_bit(In_sync, &rdev->flags);
  1510. return 0;
  1511. }
  1512. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1513. {
  1514. struct mdp_superblock_1 *sb;
  1515. struct md_rdev *rdev2;
  1516. int max_dev, i;
  1517. /* make rdev->sb match mddev and rdev data. */
  1518. sb = page_address(rdev->sb_page);
  1519. sb->feature_map = 0;
  1520. sb->pad0 = 0;
  1521. sb->recovery_offset = cpu_to_le64(0);
  1522. memset(sb->pad1, 0, sizeof(sb->pad1));
  1523. memset(sb->pad3, 0, sizeof(sb->pad3));
  1524. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1525. sb->events = cpu_to_le64(mddev->events);
  1526. if (mddev->in_sync)
  1527. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1528. else
  1529. sb->resync_offset = cpu_to_le64(0);
  1530. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1531. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1532. sb->size = cpu_to_le64(mddev->dev_sectors);
  1533. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1534. sb->level = cpu_to_le32(mddev->level);
  1535. sb->layout = cpu_to_le32(mddev->layout);
  1536. if (test_bit(WriteMostly, &rdev->flags))
  1537. sb->devflags |= WriteMostly1;
  1538. else
  1539. sb->devflags &= ~WriteMostly1;
  1540. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1541. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1542. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1543. }
  1544. if (rdev->raid_disk >= 0 &&
  1545. !test_bit(In_sync, &rdev->flags)) {
  1546. sb->feature_map |=
  1547. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1548. sb->recovery_offset =
  1549. cpu_to_le64(rdev->recovery_offset);
  1550. }
  1551. if (mddev->reshape_position != MaxSector) {
  1552. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1553. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1554. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1555. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1556. sb->new_level = cpu_to_le32(mddev->new_level);
  1557. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1558. }
  1559. if (rdev->badblocks.count == 0)
  1560. /* Nothing to do for bad blocks*/ ;
  1561. else if (sb->bblog_offset == 0)
  1562. /* Cannot record bad blocks on this device */
  1563. md_error(mddev, rdev);
  1564. else {
  1565. struct badblocks *bb = &rdev->badblocks;
  1566. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1567. u64 *p = bb->page;
  1568. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1569. if (bb->changed) {
  1570. unsigned seq;
  1571. retry:
  1572. seq = read_seqbegin(&bb->lock);
  1573. memset(bbp, 0xff, PAGE_SIZE);
  1574. for (i = 0 ; i < bb->count ; i++) {
  1575. u64 internal_bb = *p++;
  1576. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1577. | BB_LEN(internal_bb));
  1578. *bbp++ = cpu_to_le64(store_bb);
  1579. }
  1580. if (read_seqretry(&bb->lock, seq))
  1581. goto retry;
  1582. bb->sector = (rdev->sb_start +
  1583. (int)le32_to_cpu(sb->bblog_offset));
  1584. bb->size = le16_to_cpu(sb->bblog_size);
  1585. bb->changed = 0;
  1586. }
  1587. }
  1588. max_dev = 0;
  1589. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1590. if (rdev2->desc_nr+1 > max_dev)
  1591. max_dev = rdev2->desc_nr+1;
  1592. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1593. int bmask;
  1594. sb->max_dev = cpu_to_le32(max_dev);
  1595. rdev->sb_size = max_dev * 2 + 256;
  1596. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1597. if (rdev->sb_size & bmask)
  1598. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1599. } else
  1600. max_dev = le32_to_cpu(sb->max_dev);
  1601. for (i=0; i<max_dev;i++)
  1602. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1603. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1604. i = rdev2->desc_nr;
  1605. if (test_bit(Faulty, &rdev2->flags))
  1606. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1607. else if (test_bit(In_sync, &rdev2->flags))
  1608. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1609. else if (rdev2->raid_disk >= 0)
  1610. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1611. else
  1612. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1613. }
  1614. sb->sb_csum = calc_sb_1_csum(sb);
  1615. }
  1616. static unsigned long long
  1617. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1618. {
  1619. struct mdp_superblock_1 *sb;
  1620. sector_t max_sectors;
  1621. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1622. return 0; /* component must fit device */
  1623. if (rdev->sb_start < rdev->data_offset) {
  1624. /* minor versions 1 and 2; superblock before data */
  1625. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1626. max_sectors -= rdev->data_offset;
  1627. if (!num_sectors || num_sectors > max_sectors)
  1628. num_sectors = max_sectors;
  1629. } else if (rdev->mddev->bitmap_info.offset) {
  1630. /* minor version 0 with bitmap we can't move */
  1631. return 0;
  1632. } else {
  1633. /* minor version 0; superblock after data */
  1634. sector_t sb_start;
  1635. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1636. sb_start &= ~(sector_t)(4*2 - 1);
  1637. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1638. if (!num_sectors || num_sectors > max_sectors)
  1639. num_sectors = max_sectors;
  1640. rdev->sb_start = sb_start;
  1641. }
  1642. sb = page_address(rdev->sb_page);
  1643. sb->data_size = cpu_to_le64(num_sectors);
  1644. sb->super_offset = rdev->sb_start;
  1645. sb->sb_csum = calc_sb_1_csum(sb);
  1646. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1647. rdev->sb_page);
  1648. md_super_wait(rdev->mddev);
  1649. return num_sectors;
  1650. }
  1651. static struct super_type super_types[] = {
  1652. [0] = {
  1653. .name = "0.90.0",
  1654. .owner = THIS_MODULE,
  1655. .load_super = super_90_load,
  1656. .validate_super = super_90_validate,
  1657. .sync_super = super_90_sync,
  1658. .rdev_size_change = super_90_rdev_size_change,
  1659. },
  1660. [1] = {
  1661. .name = "md-1",
  1662. .owner = THIS_MODULE,
  1663. .load_super = super_1_load,
  1664. .validate_super = super_1_validate,
  1665. .sync_super = super_1_sync,
  1666. .rdev_size_change = super_1_rdev_size_change,
  1667. },
  1668. };
  1669. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1670. {
  1671. if (mddev->sync_super) {
  1672. mddev->sync_super(mddev, rdev);
  1673. return;
  1674. }
  1675. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1676. super_types[mddev->major_version].sync_super(mddev, rdev);
  1677. }
  1678. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1679. {
  1680. struct md_rdev *rdev, *rdev2;
  1681. rcu_read_lock();
  1682. rdev_for_each_rcu(rdev, mddev1)
  1683. rdev_for_each_rcu(rdev2, mddev2)
  1684. if (rdev->bdev->bd_contains ==
  1685. rdev2->bdev->bd_contains) {
  1686. rcu_read_unlock();
  1687. return 1;
  1688. }
  1689. rcu_read_unlock();
  1690. return 0;
  1691. }
  1692. static LIST_HEAD(pending_raid_disks);
  1693. /*
  1694. * Try to register data integrity profile for an mddev
  1695. *
  1696. * This is called when an array is started and after a disk has been kicked
  1697. * from the array. It only succeeds if all working and active component devices
  1698. * are integrity capable with matching profiles.
  1699. */
  1700. int md_integrity_register(struct mddev *mddev)
  1701. {
  1702. struct md_rdev *rdev, *reference = NULL;
  1703. if (list_empty(&mddev->disks))
  1704. return 0; /* nothing to do */
  1705. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1706. return 0; /* shouldn't register, or already is */
  1707. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1708. /* skip spares and non-functional disks */
  1709. if (test_bit(Faulty, &rdev->flags))
  1710. continue;
  1711. if (rdev->raid_disk < 0)
  1712. continue;
  1713. if (!reference) {
  1714. /* Use the first rdev as the reference */
  1715. reference = rdev;
  1716. continue;
  1717. }
  1718. /* does this rdev's profile match the reference profile? */
  1719. if (blk_integrity_compare(reference->bdev->bd_disk,
  1720. rdev->bdev->bd_disk) < 0)
  1721. return -EINVAL;
  1722. }
  1723. if (!reference || !bdev_get_integrity(reference->bdev))
  1724. return 0;
  1725. /*
  1726. * All component devices are integrity capable and have matching
  1727. * profiles, register the common profile for the md device.
  1728. */
  1729. if (blk_integrity_register(mddev->gendisk,
  1730. bdev_get_integrity(reference->bdev)) != 0) {
  1731. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1732. mdname(mddev));
  1733. return -EINVAL;
  1734. }
  1735. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1736. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1737. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1738. mdname(mddev));
  1739. return -EINVAL;
  1740. }
  1741. return 0;
  1742. }
  1743. EXPORT_SYMBOL(md_integrity_register);
  1744. /* Disable data integrity if non-capable/non-matching disk is being added */
  1745. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1746. {
  1747. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1748. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1749. if (!bi_mddev) /* nothing to do */
  1750. return;
  1751. if (rdev->raid_disk < 0) /* skip spares */
  1752. return;
  1753. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1754. rdev->bdev->bd_disk) >= 0)
  1755. return;
  1756. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1757. blk_integrity_unregister(mddev->gendisk);
  1758. }
  1759. EXPORT_SYMBOL(md_integrity_add_rdev);
  1760. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1761. {
  1762. char b[BDEVNAME_SIZE];
  1763. struct kobject *ko;
  1764. char *s;
  1765. int err;
  1766. if (rdev->mddev) {
  1767. MD_BUG();
  1768. return -EINVAL;
  1769. }
  1770. /* prevent duplicates */
  1771. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1772. return -EEXIST;
  1773. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1774. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1775. rdev->sectors < mddev->dev_sectors)) {
  1776. if (mddev->pers) {
  1777. /* Cannot change size, so fail
  1778. * If mddev->level <= 0, then we don't care
  1779. * about aligning sizes (e.g. linear)
  1780. */
  1781. if (mddev->level > 0)
  1782. return -ENOSPC;
  1783. } else
  1784. mddev->dev_sectors = rdev->sectors;
  1785. }
  1786. /* Verify rdev->desc_nr is unique.
  1787. * If it is -1, assign a free number, else
  1788. * check number is not in use
  1789. */
  1790. if (rdev->desc_nr < 0) {
  1791. int choice = 0;
  1792. if (mddev->pers) choice = mddev->raid_disks;
  1793. while (find_rdev_nr(mddev, choice))
  1794. choice++;
  1795. rdev->desc_nr = choice;
  1796. } else {
  1797. if (find_rdev_nr(mddev, rdev->desc_nr))
  1798. return -EBUSY;
  1799. }
  1800. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1801. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1802. mdname(mddev), mddev->max_disks);
  1803. return -EBUSY;
  1804. }
  1805. bdevname(rdev->bdev,b);
  1806. while ( (s=strchr(b, '/')) != NULL)
  1807. *s = '!';
  1808. rdev->mddev = mddev;
  1809. printk(KERN_INFO "md: bind<%s>\n", b);
  1810. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1811. goto fail;
  1812. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1813. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1814. /* failure here is OK */;
  1815. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1816. list_add_rcu(&rdev->same_set, &mddev->disks);
  1817. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1818. /* May as well allow recovery to be retried once */
  1819. mddev->recovery_disabled++;
  1820. return 0;
  1821. fail:
  1822. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1823. b, mdname(mddev));
  1824. return err;
  1825. }
  1826. static void md_delayed_delete(struct work_struct *ws)
  1827. {
  1828. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1829. kobject_del(&rdev->kobj);
  1830. kobject_put(&rdev->kobj);
  1831. }
  1832. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1833. {
  1834. char b[BDEVNAME_SIZE];
  1835. if (!rdev->mddev) {
  1836. MD_BUG();
  1837. return;
  1838. }
  1839. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1840. list_del_rcu(&rdev->same_set);
  1841. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1842. rdev->mddev = NULL;
  1843. sysfs_remove_link(&rdev->kobj, "block");
  1844. sysfs_put(rdev->sysfs_state);
  1845. rdev->sysfs_state = NULL;
  1846. kfree(rdev->badblocks.page);
  1847. rdev->badblocks.count = 0;
  1848. rdev->badblocks.page = NULL;
  1849. /* We need to delay this, otherwise we can deadlock when
  1850. * writing to 'remove' to "dev/state". We also need
  1851. * to delay it due to rcu usage.
  1852. */
  1853. synchronize_rcu();
  1854. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1855. kobject_get(&rdev->kobj);
  1856. queue_work(md_misc_wq, &rdev->del_work);
  1857. }
  1858. /*
  1859. * prevent the device from being mounted, repartitioned or
  1860. * otherwise reused by a RAID array (or any other kernel
  1861. * subsystem), by bd_claiming the device.
  1862. */
  1863. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1864. {
  1865. int err = 0;
  1866. struct block_device *bdev;
  1867. char b[BDEVNAME_SIZE];
  1868. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1869. shared ? (struct md_rdev *)lock_rdev : rdev);
  1870. if (IS_ERR(bdev)) {
  1871. printk(KERN_ERR "md: could not open %s.\n",
  1872. __bdevname(dev, b));
  1873. return PTR_ERR(bdev);
  1874. }
  1875. rdev->bdev = bdev;
  1876. return err;
  1877. }
  1878. static void unlock_rdev(struct md_rdev *rdev)
  1879. {
  1880. struct block_device *bdev = rdev->bdev;
  1881. rdev->bdev = NULL;
  1882. if (!bdev)
  1883. MD_BUG();
  1884. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1885. }
  1886. void md_autodetect_dev(dev_t dev);
  1887. static void export_rdev(struct md_rdev * rdev)
  1888. {
  1889. char b[BDEVNAME_SIZE];
  1890. printk(KERN_INFO "md: export_rdev(%s)\n",
  1891. bdevname(rdev->bdev,b));
  1892. if (rdev->mddev)
  1893. MD_BUG();
  1894. free_disk_sb(rdev);
  1895. #ifndef MODULE
  1896. if (test_bit(AutoDetected, &rdev->flags))
  1897. md_autodetect_dev(rdev->bdev->bd_dev);
  1898. #endif
  1899. unlock_rdev(rdev);
  1900. kobject_put(&rdev->kobj);
  1901. }
  1902. static void kick_rdev_from_array(struct md_rdev * rdev)
  1903. {
  1904. unbind_rdev_from_array(rdev);
  1905. export_rdev(rdev);
  1906. }
  1907. static void export_array(struct mddev *mddev)
  1908. {
  1909. struct md_rdev *rdev, *tmp;
  1910. rdev_for_each(rdev, tmp, mddev) {
  1911. if (!rdev->mddev) {
  1912. MD_BUG();
  1913. continue;
  1914. }
  1915. kick_rdev_from_array(rdev);
  1916. }
  1917. if (!list_empty(&mddev->disks))
  1918. MD_BUG();
  1919. mddev->raid_disks = 0;
  1920. mddev->major_version = 0;
  1921. }
  1922. static void print_desc(mdp_disk_t *desc)
  1923. {
  1924. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1925. desc->major,desc->minor,desc->raid_disk,desc->state);
  1926. }
  1927. static void print_sb_90(mdp_super_t *sb)
  1928. {
  1929. int i;
  1930. printk(KERN_INFO
  1931. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1932. sb->major_version, sb->minor_version, sb->patch_version,
  1933. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1934. sb->ctime);
  1935. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1936. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1937. sb->md_minor, sb->layout, sb->chunk_size);
  1938. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1939. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1940. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1941. sb->failed_disks, sb->spare_disks,
  1942. sb->sb_csum, (unsigned long)sb->events_lo);
  1943. printk(KERN_INFO);
  1944. for (i = 0; i < MD_SB_DISKS; i++) {
  1945. mdp_disk_t *desc;
  1946. desc = sb->disks + i;
  1947. if (desc->number || desc->major || desc->minor ||
  1948. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1949. printk(" D %2d: ", i);
  1950. print_desc(desc);
  1951. }
  1952. }
  1953. printk(KERN_INFO "md: THIS: ");
  1954. print_desc(&sb->this_disk);
  1955. }
  1956. static void print_sb_1(struct mdp_superblock_1 *sb)
  1957. {
  1958. __u8 *uuid;
  1959. uuid = sb->set_uuid;
  1960. printk(KERN_INFO
  1961. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1962. "md: Name: \"%s\" CT:%llu\n",
  1963. le32_to_cpu(sb->major_version),
  1964. le32_to_cpu(sb->feature_map),
  1965. uuid,
  1966. sb->set_name,
  1967. (unsigned long long)le64_to_cpu(sb->ctime)
  1968. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1969. uuid = sb->device_uuid;
  1970. printk(KERN_INFO
  1971. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1972. " RO:%llu\n"
  1973. "md: Dev:%08x UUID: %pU\n"
  1974. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1975. "md: (MaxDev:%u) \n",
  1976. le32_to_cpu(sb->level),
  1977. (unsigned long long)le64_to_cpu(sb->size),
  1978. le32_to_cpu(sb->raid_disks),
  1979. le32_to_cpu(sb->layout),
  1980. le32_to_cpu(sb->chunksize),
  1981. (unsigned long long)le64_to_cpu(sb->data_offset),
  1982. (unsigned long long)le64_to_cpu(sb->data_size),
  1983. (unsigned long long)le64_to_cpu(sb->super_offset),
  1984. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1985. le32_to_cpu(sb->dev_number),
  1986. uuid,
  1987. sb->devflags,
  1988. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1989. (unsigned long long)le64_to_cpu(sb->events),
  1990. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1991. le32_to_cpu(sb->sb_csum),
  1992. le32_to_cpu(sb->max_dev)
  1993. );
  1994. }
  1995. static void print_rdev(struct md_rdev *rdev, int major_version)
  1996. {
  1997. char b[BDEVNAME_SIZE];
  1998. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1999. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2000. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2001. rdev->desc_nr);
  2002. if (rdev->sb_loaded) {
  2003. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2004. switch (major_version) {
  2005. case 0:
  2006. print_sb_90(page_address(rdev->sb_page));
  2007. break;
  2008. case 1:
  2009. print_sb_1(page_address(rdev->sb_page));
  2010. break;
  2011. }
  2012. } else
  2013. printk(KERN_INFO "md: no rdev superblock!\n");
  2014. }
  2015. static void md_print_devices(void)
  2016. {
  2017. struct list_head *tmp;
  2018. struct md_rdev *rdev;
  2019. struct mddev *mddev;
  2020. char b[BDEVNAME_SIZE];
  2021. printk("\n");
  2022. printk("md: **********************************\n");
  2023. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2024. printk("md: **********************************\n");
  2025. for_each_mddev(mddev, tmp) {
  2026. if (mddev->bitmap)
  2027. bitmap_print_sb(mddev->bitmap);
  2028. else
  2029. printk("%s: ", mdname(mddev));
  2030. list_for_each_entry(rdev, &mddev->disks, same_set)
  2031. printk("<%s>", bdevname(rdev->bdev,b));
  2032. printk("\n");
  2033. list_for_each_entry(rdev, &mddev->disks, same_set)
  2034. print_rdev(rdev, mddev->major_version);
  2035. }
  2036. printk("md: **********************************\n");
  2037. printk("\n");
  2038. }
  2039. static void sync_sbs(struct mddev * mddev, int nospares)
  2040. {
  2041. /* Update each superblock (in-memory image), but
  2042. * if we are allowed to, skip spares which already
  2043. * have the right event counter, or have one earlier
  2044. * (which would mean they aren't being marked as dirty
  2045. * with the rest of the array)
  2046. */
  2047. struct md_rdev *rdev;
  2048. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2049. if (rdev->sb_events == mddev->events ||
  2050. (nospares &&
  2051. rdev->raid_disk < 0 &&
  2052. rdev->sb_events+1 == mddev->events)) {
  2053. /* Don't update this superblock */
  2054. rdev->sb_loaded = 2;
  2055. } else {
  2056. sync_super(mddev, rdev);
  2057. rdev->sb_loaded = 1;
  2058. }
  2059. }
  2060. }
  2061. static void md_update_sb(struct mddev * mddev, int force_change)
  2062. {
  2063. struct md_rdev *rdev;
  2064. int sync_req;
  2065. int nospares = 0;
  2066. int any_badblocks_changed = 0;
  2067. repeat:
  2068. /* First make sure individual recovery_offsets are correct */
  2069. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2070. if (rdev->raid_disk >= 0 &&
  2071. mddev->delta_disks >= 0 &&
  2072. !test_bit(In_sync, &rdev->flags) &&
  2073. mddev->curr_resync_completed > rdev->recovery_offset)
  2074. rdev->recovery_offset = mddev->curr_resync_completed;
  2075. }
  2076. if (!mddev->persistent) {
  2077. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2078. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2079. if (!mddev->external) {
  2080. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2081. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2082. if (rdev->badblocks.changed) {
  2083. md_ack_all_badblocks(&rdev->badblocks);
  2084. md_error(mddev, rdev);
  2085. }
  2086. clear_bit(Blocked, &rdev->flags);
  2087. clear_bit(BlockedBadBlocks, &rdev->flags);
  2088. wake_up(&rdev->blocked_wait);
  2089. }
  2090. }
  2091. wake_up(&mddev->sb_wait);
  2092. return;
  2093. }
  2094. spin_lock_irq(&mddev->write_lock);
  2095. mddev->utime = get_seconds();
  2096. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2097. force_change = 1;
  2098. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2099. /* just a clean<-> dirty transition, possibly leave spares alone,
  2100. * though if events isn't the right even/odd, we will have to do
  2101. * spares after all
  2102. */
  2103. nospares = 1;
  2104. if (force_change)
  2105. nospares = 0;
  2106. if (mddev->degraded)
  2107. /* If the array is degraded, then skipping spares is both
  2108. * dangerous and fairly pointless.
  2109. * Dangerous because a device that was removed from the array
  2110. * might have a event_count that still looks up-to-date,
  2111. * so it can be re-added without a resync.
  2112. * Pointless because if there are any spares to skip,
  2113. * then a recovery will happen and soon that array won't
  2114. * be degraded any more and the spare can go back to sleep then.
  2115. */
  2116. nospares = 0;
  2117. sync_req = mddev->in_sync;
  2118. /* If this is just a dirty<->clean transition, and the array is clean
  2119. * and 'events' is odd, we can roll back to the previous clean state */
  2120. if (nospares
  2121. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2122. && mddev->can_decrease_events
  2123. && mddev->events != 1) {
  2124. mddev->events--;
  2125. mddev->can_decrease_events = 0;
  2126. } else {
  2127. /* otherwise we have to go forward and ... */
  2128. mddev->events ++;
  2129. mddev->can_decrease_events = nospares;
  2130. }
  2131. if (!mddev->events) {
  2132. /*
  2133. * oops, this 64-bit counter should never wrap.
  2134. * Either we are in around ~1 trillion A.C., assuming
  2135. * 1 reboot per second, or we have a bug:
  2136. */
  2137. MD_BUG();
  2138. mddev->events --;
  2139. }
  2140. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2141. if (rdev->badblocks.changed)
  2142. any_badblocks_changed++;
  2143. if (test_bit(Faulty, &rdev->flags))
  2144. set_bit(FaultRecorded, &rdev->flags);
  2145. }
  2146. sync_sbs(mddev, nospares);
  2147. spin_unlock_irq(&mddev->write_lock);
  2148. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2149. mdname(mddev), mddev->in_sync);
  2150. bitmap_update_sb(mddev->bitmap);
  2151. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2152. char b[BDEVNAME_SIZE];
  2153. if (rdev->sb_loaded != 1)
  2154. continue; /* no noise on spare devices */
  2155. if (!test_bit(Faulty, &rdev->flags) &&
  2156. rdev->saved_raid_disk == -1) {
  2157. md_super_write(mddev,rdev,
  2158. rdev->sb_start, rdev->sb_size,
  2159. rdev->sb_page);
  2160. pr_debug("md: (write) %s's sb offset: %llu\n",
  2161. bdevname(rdev->bdev, b),
  2162. (unsigned long long)rdev->sb_start);
  2163. rdev->sb_events = mddev->events;
  2164. if (rdev->badblocks.size) {
  2165. md_super_write(mddev, rdev,
  2166. rdev->badblocks.sector,
  2167. rdev->badblocks.size << 9,
  2168. rdev->bb_page);
  2169. rdev->badblocks.size = 0;
  2170. }
  2171. } else if (test_bit(Faulty, &rdev->flags))
  2172. pr_debug("md: %s (skipping faulty)\n",
  2173. bdevname(rdev->bdev, b));
  2174. else
  2175. pr_debug("(skipping incremental s/r ");
  2176. if (mddev->level == LEVEL_MULTIPATH)
  2177. /* only need to write one superblock... */
  2178. break;
  2179. }
  2180. md_super_wait(mddev);
  2181. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2182. spin_lock_irq(&mddev->write_lock);
  2183. if (mddev->in_sync != sync_req ||
  2184. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2185. /* have to write it out again */
  2186. spin_unlock_irq(&mddev->write_lock);
  2187. goto repeat;
  2188. }
  2189. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2190. spin_unlock_irq(&mddev->write_lock);
  2191. wake_up(&mddev->sb_wait);
  2192. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2193. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2194. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2195. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2196. clear_bit(Blocked, &rdev->flags);
  2197. if (any_badblocks_changed)
  2198. md_ack_all_badblocks(&rdev->badblocks);
  2199. clear_bit(BlockedBadBlocks, &rdev->flags);
  2200. wake_up(&rdev->blocked_wait);
  2201. }
  2202. }
  2203. /* words written to sysfs files may, or may not, be \n terminated.
  2204. * We want to accept with case. For this we use cmd_match.
  2205. */
  2206. static int cmd_match(const char *cmd, const char *str)
  2207. {
  2208. /* See if cmd, written into a sysfs file, matches
  2209. * str. They must either be the same, or cmd can
  2210. * have a trailing newline
  2211. */
  2212. while (*cmd && *str && *cmd == *str) {
  2213. cmd++;
  2214. str++;
  2215. }
  2216. if (*cmd == '\n')
  2217. cmd++;
  2218. if (*str || *cmd)
  2219. return 0;
  2220. return 1;
  2221. }
  2222. struct rdev_sysfs_entry {
  2223. struct attribute attr;
  2224. ssize_t (*show)(struct md_rdev *, char *);
  2225. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2226. };
  2227. static ssize_t
  2228. state_show(struct md_rdev *rdev, char *page)
  2229. {
  2230. char *sep = "";
  2231. size_t len = 0;
  2232. if (test_bit(Faulty, &rdev->flags) ||
  2233. rdev->badblocks.unacked_exist) {
  2234. len+= sprintf(page+len, "%sfaulty",sep);
  2235. sep = ",";
  2236. }
  2237. if (test_bit(In_sync, &rdev->flags)) {
  2238. len += sprintf(page+len, "%sin_sync",sep);
  2239. sep = ",";
  2240. }
  2241. if (test_bit(WriteMostly, &rdev->flags)) {
  2242. len += sprintf(page+len, "%swrite_mostly",sep);
  2243. sep = ",";
  2244. }
  2245. if (test_bit(Blocked, &rdev->flags) ||
  2246. rdev->badblocks.unacked_exist) {
  2247. len += sprintf(page+len, "%sblocked", sep);
  2248. sep = ",";
  2249. }
  2250. if (!test_bit(Faulty, &rdev->flags) &&
  2251. !test_bit(In_sync, &rdev->flags)) {
  2252. len += sprintf(page+len, "%sspare", sep);
  2253. sep = ",";
  2254. }
  2255. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2256. len += sprintf(page+len, "%swrite_error", sep);
  2257. sep = ",";
  2258. }
  2259. return len+sprintf(page+len, "\n");
  2260. }
  2261. static ssize_t
  2262. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2263. {
  2264. /* can write
  2265. * faulty - simulates an error
  2266. * remove - disconnects the device
  2267. * writemostly - sets write_mostly
  2268. * -writemostly - clears write_mostly
  2269. * blocked - sets the Blocked flags
  2270. * -blocked - clears the Blocked and possibly simulates an error
  2271. * insync - sets Insync providing device isn't active
  2272. * write_error - sets WriteErrorSeen
  2273. * -write_error - clears WriteErrorSeen
  2274. */
  2275. int err = -EINVAL;
  2276. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2277. md_error(rdev->mddev, rdev);
  2278. if (test_bit(Faulty, &rdev->flags))
  2279. err = 0;
  2280. else
  2281. err = -EBUSY;
  2282. } else if (cmd_match(buf, "remove")) {
  2283. if (rdev->raid_disk >= 0)
  2284. err = -EBUSY;
  2285. else {
  2286. struct mddev *mddev = rdev->mddev;
  2287. kick_rdev_from_array(rdev);
  2288. if (mddev->pers)
  2289. md_update_sb(mddev, 1);
  2290. md_new_event(mddev);
  2291. err = 0;
  2292. }
  2293. } else if (cmd_match(buf, "writemostly")) {
  2294. set_bit(WriteMostly, &rdev->flags);
  2295. err = 0;
  2296. } else if (cmd_match(buf, "-writemostly")) {
  2297. clear_bit(WriteMostly, &rdev->flags);
  2298. err = 0;
  2299. } else if (cmd_match(buf, "blocked")) {
  2300. set_bit(Blocked, &rdev->flags);
  2301. err = 0;
  2302. } else if (cmd_match(buf, "-blocked")) {
  2303. if (!test_bit(Faulty, &rdev->flags) &&
  2304. rdev->badblocks.unacked_exist) {
  2305. /* metadata handler doesn't understand badblocks,
  2306. * so we need to fail the device
  2307. */
  2308. md_error(rdev->mddev, rdev);
  2309. }
  2310. clear_bit(Blocked, &rdev->flags);
  2311. clear_bit(BlockedBadBlocks, &rdev->flags);
  2312. wake_up(&rdev->blocked_wait);
  2313. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2314. md_wakeup_thread(rdev->mddev->thread);
  2315. err = 0;
  2316. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2317. set_bit(In_sync, &rdev->flags);
  2318. err = 0;
  2319. } else if (cmd_match(buf, "write_error")) {
  2320. set_bit(WriteErrorSeen, &rdev->flags);
  2321. err = 0;
  2322. } else if (cmd_match(buf, "-write_error")) {
  2323. clear_bit(WriteErrorSeen, &rdev->flags);
  2324. err = 0;
  2325. }
  2326. if (!err)
  2327. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2328. return err ? err : len;
  2329. }
  2330. static struct rdev_sysfs_entry rdev_state =
  2331. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2332. static ssize_t
  2333. errors_show(struct md_rdev *rdev, char *page)
  2334. {
  2335. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2336. }
  2337. static ssize_t
  2338. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2339. {
  2340. char *e;
  2341. unsigned long n = simple_strtoul(buf, &e, 10);
  2342. if (*buf && (*e == 0 || *e == '\n')) {
  2343. atomic_set(&rdev->corrected_errors, n);
  2344. return len;
  2345. }
  2346. return -EINVAL;
  2347. }
  2348. static struct rdev_sysfs_entry rdev_errors =
  2349. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2350. static ssize_t
  2351. slot_show(struct md_rdev *rdev, char *page)
  2352. {
  2353. if (rdev->raid_disk < 0)
  2354. return sprintf(page, "none\n");
  2355. else
  2356. return sprintf(page, "%d\n", rdev->raid_disk);
  2357. }
  2358. static ssize_t
  2359. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2360. {
  2361. char *e;
  2362. int err;
  2363. int slot = simple_strtoul(buf, &e, 10);
  2364. if (strncmp(buf, "none", 4)==0)
  2365. slot = -1;
  2366. else if (e==buf || (*e && *e!= '\n'))
  2367. return -EINVAL;
  2368. if (rdev->mddev->pers && slot == -1) {
  2369. /* Setting 'slot' on an active array requires also
  2370. * updating the 'rd%d' link, and communicating
  2371. * with the personality with ->hot_*_disk.
  2372. * For now we only support removing
  2373. * failed/spare devices. This normally happens automatically,
  2374. * but not when the metadata is externally managed.
  2375. */
  2376. if (rdev->raid_disk == -1)
  2377. return -EEXIST;
  2378. /* personality does all needed checks */
  2379. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2380. return -EINVAL;
  2381. err = rdev->mddev->pers->
  2382. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2383. if (err)
  2384. return err;
  2385. sysfs_unlink_rdev(rdev->mddev, rdev);
  2386. rdev->raid_disk = -1;
  2387. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2388. md_wakeup_thread(rdev->mddev->thread);
  2389. } else if (rdev->mddev->pers) {
  2390. struct md_rdev *rdev2;
  2391. /* Activating a spare .. or possibly reactivating
  2392. * if we ever get bitmaps working here.
  2393. */
  2394. if (rdev->raid_disk != -1)
  2395. return -EBUSY;
  2396. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2397. return -EBUSY;
  2398. if (rdev->mddev->pers->hot_add_disk == NULL)
  2399. return -EINVAL;
  2400. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2401. if (rdev2->raid_disk == slot)
  2402. return -EEXIST;
  2403. if (slot >= rdev->mddev->raid_disks &&
  2404. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2405. return -ENOSPC;
  2406. rdev->raid_disk = slot;
  2407. if (test_bit(In_sync, &rdev->flags))
  2408. rdev->saved_raid_disk = slot;
  2409. else
  2410. rdev->saved_raid_disk = -1;
  2411. clear_bit(In_sync, &rdev->flags);
  2412. err = rdev->mddev->pers->
  2413. hot_add_disk(rdev->mddev, rdev);
  2414. if (err) {
  2415. rdev->raid_disk = -1;
  2416. return err;
  2417. } else
  2418. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2419. if (sysfs_link_rdev(rdev->mddev, rdev))
  2420. /* failure here is OK */;
  2421. /* don't wakeup anyone, leave that to userspace. */
  2422. } else {
  2423. if (slot >= rdev->mddev->raid_disks &&
  2424. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2425. return -ENOSPC;
  2426. rdev->raid_disk = slot;
  2427. /* assume it is working */
  2428. clear_bit(Faulty, &rdev->flags);
  2429. clear_bit(WriteMostly, &rdev->flags);
  2430. set_bit(In_sync, &rdev->flags);
  2431. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2432. }
  2433. return len;
  2434. }
  2435. static struct rdev_sysfs_entry rdev_slot =
  2436. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2437. static ssize_t
  2438. offset_show(struct md_rdev *rdev, char *page)
  2439. {
  2440. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2441. }
  2442. static ssize_t
  2443. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2444. {
  2445. char *e;
  2446. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2447. if (e==buf || (*e && *e != '\n'))
  2448. return -EINVAL;
  2449. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2450. return -EBUSY;
  2451. if (rdev->sectors && rdev->mddev->external)
  2452. /* Must set offset before size, so overlap checks
  2453. * can be sane */
  2454. return -EBUSY;
  2455. rdev->data_offset = offset;
  2456. return len;
  2457. }
  2458. static struct rdev_sysfs_entry rdev_offset =
  2459. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2460. static ssize_t
  2461. rdev_size_show(struct md_rdev *rdev, char *page)
  2462. {
  2463. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2464. }
  2465. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2466. {
  2467. /* check if two start/length pairs overlap */
  2468. if (s1+l1 <= s2)
  2469. return 0;
  2470. if (s2+l2 <= s1)
  2471. return 0;
  2472. return 1;
  2473. }
  2474. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2475. {
  2476. unsigned long long blocks;
  2477. sector_t new;
  2478. if (strict_strtoull(buf, 10, &blocks) < 0)
  2479. return -EINVAL;
  2480. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2481. return -EINVAL; /* sector conversion overflow */
  2482. new = blocks * 2;
  2483. if (new != blocks * 2)
  2484. return -EINVAL; /* unsigned long long to sector_t overflow */
  2485. *sectors = new;
  2486. return 0;
  2487. }
  2488. static ssize_t
  2489. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2490. {
  2491. struct mddev *my_mddev = rdev->mddev;
  2492. sector_t oldsectors = rdev->sectors;
  2493. sector_t sectors;
  2494. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2495. return -EINVAL;
  2496. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2497. if (my_mddev->persistent) {
  2498. sectors = super_types[my_mddev->major_version].
  2499. rdev_size_change(rdev, sectors);
  2500. if (!sectors)
  2501. return -EBUSY;
  2502. } else if (!sectors)
  2503. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2504. rdev->data_offset;
  2505. }
  2506. if (sectors < my_mddev->dev_sectors)
  2507. return -EINVAL; /* component must fit device */
  2508. rdev->sectors = sectors;
  2509. if (sectors > oldsectors && my_mddev->external) {
  2510. /* need to check that all other rdevs with the same ->bdev
  2511. * do not overlap. We need to unlock the mddev to avoid
  2512. * a deadlock. We have already changed rdev->sectors, and if
  2513. * we have to change it back, we will have the lock again.
  2514. */
  2515. struct mddev *mddev;
  2516. int overlap = 0;
  2517. struct list_head *tmp;
  2518. mddev_unlock(my_mddev);
  2519. for_each_mddev(mddev, tmp) {
  2520. struct md_rdev *rdev2;
  2521. mddev_lock(mddev);
  2522. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2523. if (rdev->bdev == rdev2->bdev &&
  2524. rdev != rdev2 &&
  2525. overlaps(rdev->data_offset, rdev->sectors,
  2526. rdev2->data_offset,
  2527. rdev2->sectors)) {
  2528. overlap = 1;
  2529. break;
  2530. }
  2531. mddev_unlock(mddev);
  2532. if (overlap) {
  2533. mddev_put(mddev);
  2534. break;
  2535. }
  2536. }
  2537. mddev_lock(my_mddev);
  2538. if (overlap) {
  2539. /* Someone else could have slipped in a size
  2540. * change here, but doing so is just silly.
  2541. * We put oldsectors back because we *know* it is
  2542. * safe, and trust userspace not to race with
  2543. * itself
  2544. */
  2545. rdev->sectors = oldsectors;
  2546. return -EBUSY;
  2547. }
  2548. }
  2549. return len;
  2550. }
  2551. static struct rdev_sysfs_entry rdev_size =
  2552. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2553. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2554. {
  2555. unsigned long long recovery_start = rdev->recovery_offset;
  2556. if (test_bit(In_sync, &rdev->flags) ||
  2557. recovery_start == MaxSector)
  2558. return sprintf(page, "none\n");
  2559. return sprintf(page, "%llu\n", recovery_start);
  2560. }
  2561. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2562. {
  2563. unsigned long long recovery_start;
  2564. if (cmd_match(buf, "none"))
  2565. recovery_start = MaxSector;
  2566. else if (strict_strtoull(buf, 10, &recovery_start))
  2567. return -EINVAL;
  2568. if (rdev->mddev->pers &&
  2569. rdev->raid_disk >= 0)
  2570. return -EBUSY;
  2571. rdev->recovery_offset = recovery_start;
  2572. if (recovery_start == MaxSector)
  2573. set_bit(In_sync, &rdev->flags);
  2574. else
  2575. clear_bit(In_sync, &rdev->flags);
  2576. return len;
  2577. }
  2578. static struct rdev_sysfs_entry rdev_recovery_start =
  2579. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2580. static ssize_t
  2581. badblocks_show(struct badblocks *bb, char *page, int unack);
  2582. static ssize_t
  2583. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2584. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2585. {
  2586. return badblocks_show(&rdev->badblocks, page, 0);
  2587. }
  2588. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2589. {
  2590. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2591. /* Maybe that ack was all we needed */
  2592. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2593. wake_up(&rdev->blocked_wait);
  2594. return rv;
  2595. }
  2596. static struct rdev_sysfs_entry rdev_bad_blocks =
  2597. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2598. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2599. {
  2600. return badblocks_show(&rdev->badblocks, page, 1);
  2601. }
  2602. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2603. {
  2604. return badblocks_store(&rdev->badblocks, page, len, 1);
  2605. }
  2606. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2607. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2608. static struct attribute *rdev_default_attrs[] = {
  2609. &rdev_state.attr,
  2610. &rdev_errors.attr,
  2611. &rdev_slot.attr,
  2612. &rdev_offset.attr,
  2613. &rdev_size.attr,
  2614. &rdev_recovery_start.attr,
  2615. &rdev_bad_blocks.attr,
  2616. &rdev_unack_bad_blocks.attr,
  2617. NULL,
  2618. };
  2619. static ssize_t
  2620. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2621. {
  2622. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2623. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2624. struct mddev *mddev = rdev->mddev;
  2625. ssize_t rv;
  2626. if (!entry->show)
  2627. return -EIO;
  2628. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2629. if (!rv) {
  2630. if (rdev->mddev == NULL)
  2631. rv = -EBUSY;
  2632. else
  2633. rv = entry->show(rdev, page);
  2634. mddev_unlock(mddev);
  2635. }
  2636. return rv;
  2637. }
  2638. static ssize_t
  2639. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2640. const char *page, size_t length)
  2641. {
  2642. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2643. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2644. ssize_t rv;
  2645. struct mddev *mddev = rdev->mddev;
  2646. if (!entry->store)
  2647. return -EIO;
  2648. if (!capable(CAP_SYS_ADMIN))
  2649. return -EACCES;
  2650. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2651. if (!rv) {
  2652. if (rdev->mddev == NULL)
  2653. rv = -EBUSY;
  2654. else
  2655. rv = entry->store(rdev, page, length);
  2656. mddev_unlock(mddev);
  2657. }
  2658. return rv;
  2659. }
  2660. static void rdev_free(struct kobject *ko)
  2661. {
  2662. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2663. kfree(rdev);
  2664. }
  2665. static const struct sysfs_ops rdev_sysfs_ops = {
  2666. .show = rdev_attr_show,
  2667. .store = rdev_attr_store,
  2668. };
  2669. static struct kobj_type rdev_ktype = {
  2670. .release = rdev_free,
  2671. .sysfs_ops = &rdev_sysfs_ops,
  2672. .default_attrs = rdev_default_attrs,
  2673. };
  2674. int md_rdev_init(struct md_rdev *rdev)
  2675. {
  2676. rdev->desc_nr = -1;
  2677. rdev->saved_raid_disk = -1;
  2678. rdev->raid_disk = -1;
  2679. rdev->flags = 0;
  2680. rdev->data_offset = 0;
  2681. rdev->sb_events = 0;
  2682. rdev->last_read_error.tv_sec = 0;
  2683. rdev->last_read_error.tv_nsec = 0;
  2684. rdev->sb_loaded = 0;
  2685. rdev->bb_page = NULL;
  2686. atomic_set(&rdev->nr_pending, 0);
  2687. atomic_set(&rdev->read_errors, 0);
  2688. atomic_set(&rdev->corrected_errors, 0);
  2689. INIT_LIST_HEAD(&rdev->same_set);
  2690. init_waitqueue_head(&rdev->blocked_wait);
  2691. /* Add space to store bad block list.
  2692. * This reserves the space even on arrays where it cannot
  2693. * be used - I wonder if that matters
  2694. */
  2695. rdev->badblocks.count = 0;
  2696. rdev->badblocks.shift = 0;
  2697. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2698. seqlock_init(&rdev->badblocks.lock);
  2699. if (rdev->badblocks.page == NULL)
  2700. return -ENOMEM;
  2701. return 0;
  2702. }
  2703. EXPORT_SYMBOL_GPL(md_rdev_init);
  2704. /*
  2705. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2706. *
  2707. * mark the device faulty if:
  2708. *
  2709. * - the device is nonexistent (zero size)
  2710. * - the device has no valid superblock
  2711. *
  2712. * a faulty rdev _never_ has rdev->sb set.
  2713. */
  2714. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2715. {
  2716. char b[BDEVNAME_SIZE];
  2717. int err;
  2718. struct md_rdev *rdev;
  2719. sector_t size;
  2720. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2721. if (!rdev) {
  2722. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2723. return ERR_PTR(-ENOMEM);
  2724. }
  2725. err = md_rdev_init(rdev);
  2726. if (err)
  2727. goto abort_free;
  2728. err = alloc_disk_sb(rdev);
  2729. if (err)
  2730. goto abort_free;
  2731. err = lock_rdev(rdev, newdev, super_format == -2);
  2732. if (err)
  2733. goto abort_free;
  2734. kobject_init(&rdev->kobj, &rdev_ktype);
  2735. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2736. if (!size) {
  2737. printk(KERN_WARNING
  2738. "md: %s has zero or unknown size, marking faulty!\n",
  2739. bdevname(rdev->bdev,b));
  2740. err = -EINVAL;
  2741. goto abort_free;
  2742. }
  2743. if (super_format >= 0) {
  2744. err = super_types[super_format].
  2745. load_super(rdev, NULL, super_minor);
  2746. if (err == -EINVAL) {
  2747. printk(KERN_WARNING
  2748. "md: %s does not have a valid v%d.%d "
  2749. "superblock, not importing!\n",
  2750. bdevname(rdev->bdev,b),
  2751. super_format, super_minor);
  2752. goto abort_free;
  2753. }
  2754. if (err < 0) {
  2755. printk(KERN_WARNING
  2756. "md: could not read %s's sb, not importing!\n",
  2757. bdevname(rdev->bdev,b));
  2758. goto abort_free;
  2759. }
  2760. }
  2761. if (super_format == -1)
  2762. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2763. rdev->badblocks.shift = -1;
  2764. return rdev;
  2765. abort_free:
  2766. if (rdev->bdev)
  2767. unlock_rdev(rdev);
  2768. free_disk_sb(rdev);
  2769. kfree(rdev->badblocks.page);
  2770. kfree(rdev);
  2771. return ERR_PTR(err);
  2772. }
  2773. /*
  2774. * Check a full RAID array for plausibility
  2775. */
  2776. static void analyze_sbs(struct mddev * mddev)
  2777. {
  2778. int i;
  2779. struct md_rdev *rdev, *freshest, *tmp;
  2780. char b[BDEVNAME_SIZE];
  2781. freshest = NULL;
  2782. rdev_for_each(rdev, tmp, mddev)
  2783. switch (super_types[mddev->major_version].
  2784. load_super(rdev, freshest, mddev->minor_version)) {
  2785. case 1:
  2786. freshest = rdev;
  2787. break;
  2788. case 0:
  2789. break;
  2790. default:
  2791. printk( KERN_ERR \
  2792. "md: fatal superblock inconsistency in %s"
  2793. " -- removing from array\n",
  2794. bdevname(rdev->bdev,b));
  2795. kick_rdev_from_array(rdev);
  2796. }
  2797. super_types[mddev->major_version].
  2798. validate_super(mddev, freshest);
  2799. i = 0;
  2800. rdev_for_each(rdev, tmp, mddev) {
  2801. if (mddev->max_disks &&
  2802. (rdev->desc_nr >= mddev->max_disks ||
  2803. i > mddev->max_disks)) {
  2804. printk(KERN_WARNING
  2805. "md: %s: %s: only %d devices permitted\n",
  2806. mdname(mddev), bdevname(rdev->bdev, b),
  2807. mddev->max_disks);
  2808. kick_rdev_from_array(rdev);
  2809. continue;
  2810. }
  2811. if (rdev != freshest)
  2812. if (super_types[mddev->major_version].
  2813. validate_super(mddev, rdev)) {
  2814. printk(KERN_WARNING "md: kicking non-fresh %s"
  2815. " from array!\n",
  2816. bdevname(rdev->bdev,b));
  2817. kick_rdev_from_array(rdev);
  2818. continue;
  2819. }
  2820. if (mddev->level == LEVEL_MULTIPATH) {
  2821. rdev->desc_nr = i++;
  2822. rdev->raid_disk = rdev->desc_nr;
  2823. set_bit(In_sync, &rdev->flags);
  2824. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2825. rdev->raid_disk = -1;
  2826. clear_bit(In_sync, &rdev->flags);
  2827. }
  2828. }
  2829. }
  2830. /* Read a fixed-point number.
  2831. * Numbers in sysfs attributes should be in "standard" units where
  2832. * possible, so time should be in seconds.
  2833. * However we internally use a a much smaller unit such as
  2834. * milliseconds or jiffies.
  2835. * This function takes a decimal number with a possible fractional
  2836. * component, and produces an integer which is the result of
  2837. * multiplying that number by 10^'scale'.
  2838. * all without any floating-point arithmetic.
  2839. */
  2840. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2841. {
  2842. unsigned long result = 0;
  2843. long decimals = -1;
  2844. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2845. if (*cp == '.')
  2846. decimals = 0;
  2847. else if (decimals < scale) {
  2848. unsigned int value;
  2849. value = *cp - '0';
  2850. result = result * 10 + value;
  2851. if (decimals >= 0)
  2852. decimals++;
  2853. }
  2854. cp++;
  2855. }
  2856. if (*cp == '\n')
  2857. cp++;
  2858. if (*cp)
  2859. return -EINVAL;
  2860. if (decimals < 0)
  2861. decimals = 0;
  2862. while (decimals < scale) {
  2863. result *= 10;
  2864. decimals ++;
  2865. }
  2866. *res = result;
  2867. return 0;
  2868. }
  2869. static void md_safemode_timeout(unsigned long data);
  2870. static ssize_t
  2871. safe_delay_show(struct mddev *mddev, char *page)
  2872. {
  2873. int msec = (mddev->safemode_delay*1000)/HZ;
  2874. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2875. }
  2876. static ssize_t
  2877. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2878. {
  2879. unsigned long msec;
  2880. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2881. return -EINVAL;
  2882. if (msec == 0)
  2883. mddev->safemode_delay = 0;
  2884. else {
  2885. unsigned long old_delay = mddev->safemode_delay;
  2886. mddev->safemode_delay = (msec*HZ)/1000;
  2887. if (mddev->safemode_delay == 0)
  2888. mddev->safemode_delay = 1;
  2889. if (mddev->safemode_delay < old_delay)
  2890. md_safemode_timeout((unsigned long)mddev);
  2891. }
  2892. return len;
  2893. }
  2894. static struct md_sysfs_entry md_safe_delay =
  2895. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2896. static ssize_t
  2897. level_show(struct mddev *mddev, char *page)
  2898. {
  2899. struct md_personality *p = mddev->pers;
  2900. if (p)
  2901. return sprintf(page, "%s\n", p->name);
  2902. else if (mddev->clevel[0])
  2903. return sprintf(page, "%s\n", mddev->clevel);
  2904. else if (mddev->level != LEVEL_NONE)
  2905. return sprintf(page, "%d\n", mddev->level);
  2906. else
  2907. return 0;
  2908. }
  2909. static ssize_t
  2910. level_store(struct mddev *mddev, const char *buf, size_t len)
  2911. {
  2912. char clevel[16];
  2913. ssize_t rv = len;
  2914. struct md_personality *pers;
  2915. long level;
  2916. void *priv;
  2917. struct md_rdev *rdev;
  2918. if (mddev->pers == NULL) {
  2919. if (len == 0)
  2920. return 0;
  2921. if (len >= sizeof(mddev->clevel))
  2922. return -ENOSPC;
  2923. strncpy(mddev->clevel, buf, len);
  2924. if (mddev->clevel[len-1] == '\n')
  2925. len--;
  2926. mddev->clevel[len] = 0;
  2927. mddev->level = LEVEL_NONE;
  2928. return rv;
  2929. }
  2930. /* request to change the personality. Need to ensure:
  2931. * - array is not engaged in resync/recovery/reshape
  2932. * - old personality can be suspended
  2933. * - new personality will access other array.
  2934. */
  2935. if (mddev->sync_thread ||
  2936. mddev->reshape_position != MaxSector ||
  2937. mddev->sysfs_active)
  2938. return -EBUSY;
  2939. if (!mddev->pers->quiesce) {
  2940. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2941. mdname(mddev), mddev->pers->name);
  2942. return -EINVAL;
  2943. }
  2944. /* Now find the new personality */
  2945. if (len == 0 || len >= sizeof(clevel))
  2946. return -EINVAL;
  2947. strncpy(clevel, buf, len);
  2948. if (clevel[len-1] == '\n')
  2949. len--;
  2950. clevel[len] = 0;
  2951. if (strict_strtol(clevel, 10, &level))
  2952. level = LEVEL_NONE;
  2953. if (request_module("md-%s", clevel) != 0)
  2954. request_module("md-level-%s", clevel);
  2955. spin_lock(&pers_lock);
  2956. pers = find_pers(level, clevel);
  2957. if (!pers || !try_module_get(pers->owner)) {
  2958. spin_unlock(&pers_lock);
  2959. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2960. return -EINVAL;
  2961. }
  2962. spin_unlock(&pers_lock);
  2963. if (pers == mddev->pers) {
  2964. /* Nothing to do! */
  2965. module_put(pers->owner);
  2966. return rv;
  2967. }
  2968. if (!pers->takeover) {
  2969. module_put(pers->owner);
  2970. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2971. mdname(mddev), clevel);
  2972. return -EINVAL;
  2973. }
  2974. list_for_each_entry(rdev, &mddev->disks, same_set)
  2975. rdev->new_raid_disk = rdev->raid_disk;
  2976. /* ->takeover must set new_* and/or delta_disks
  2977. * if it succeeds, and may set them when it fails.
  2978. */
  2979. priv = pers->takeover(mddev);
  2980. if (IS_ERR(priv)) {
  2981. mddev->new_level = mddev->level;
  2982. mddev->new_layout = mddev->layout;
  2983. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2984. mddev->raid_disks -= mddev->delta_disks;
  2985. mddev->delta_disks = 0;
  2986. module_put(pers->owner);
  2987. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2988. mdname(mddev), clevel);
  2989. return PTR_ERR(priv);
  2990. }
  2991. /* Looks like we have a winner */
  2992. mddev_suspend(mddev);
  2993. mddev->pers->stop(mddev);
  2994. if (mddev->pers->sync_request == NULL &&
  2995. pers->sync_request != NULL) {
  2996. /* need to add the md_redundancy_group */
  2997. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2998. printk(KERN_WARNING
  2999. "md: cannot register extra attributes for %s\n",
  3000. mdname(mddev));
  3001. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3002. }
  3003. if (mddev->pers->sync_request != NULL &&
  3004. pers->sync_request == NULL) {
  3005. /* need to remove the md_redundancy_group */
  3006. if (mddev->to_remove == NULL)
  3007. mddev->to_remove = &md_redundancy_group;
  3008. }
  3009. if (mddev->pers->sync_request == NULL &&
  3010. mddev->external) {
  3011. /* We are converting from a no-redundancy array
  3012. * to a redundancy array and metadata is managed
  3013. * externally so we need to be sure that writes
  3014. * won't block due to a need to transition
  3015. * clean->dirty
  3016. * until external management is started.
  3017. */
  3018. mddev->in_sync = 0;
  3019. mddev->safemode_delay = 0;
  3020. mddev->safemode = 0;
  3021. }
  3022. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3023. if (rdev->raid_disk < 0)
  3024. continue;
  3025. if (rdev->new_raid_disk >= mddev->raid_disks)
  3026. rdev->new_raid_disk = -1;
  3027. if (rdev->new_raid_disk == rdev->raid_disk)
  3028. continue;
  3029. sysfs_unlink_rdev(mddev, rdev);
  3030. }
  3031. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3032. if (rdev->raid_disk < 0)
  3033. continue;
  3034. if (rdev->new_raid_disk == rdev->raid_disk)
  3035. continue;
  3036. rdev->raid_disk = rdev->new_raid_disk;
  3037. if (rdev->raid_disk < 0)
  3038. clear_bit(In_sync, &rdev->flags);
  3039. else {
  3040. if (sysfs_link_rdev(mddev, rdev))
  3041. printk(KERN_WARNING "md: cannot register rd%d"
  3042. " for %s after level change\n",
  3043. rdev->raid_disk, mdname(mddev));
  3044. }
  3045. }
  3046. module_put(mddev->pers->owner);
  3047. mddev->pers = pers;
  3048. mddev->private = priv;
  3049. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3050. mddev->level = mddev->new_level;
  3051. mddev->layout = mddev->new_layout;
  3052. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3053. mddev->delta_disks = 0;
  3054. mddev->degraded = 0;
  3055. if (mddev->pers->sync_request == NULL) {
  3056. /* this is now an array without redundancy, so
  3057. * it must always be in_sync
  3058. */
  3059. mddev->in_sync = 1;
  3060. del_timer_sync(&mddev->safemode_timer);
  3061. }
  3062. pers->run(mddev);
  3063. mddev_resume(mddev);
  3064. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3065. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3066. md_wakeup_thread(mddev->thread);
  3067. sysfs_notify(&mddev->kobj, NULL, "level");
  3068. md_new_event(mddev);
  3069. return rv;
  3070. }
  3071. static struct md_sysfs_entry md_level =
  3072. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3073. static ssize_t
  3074. layout_show(struct mddev *mddev, char *page)
  3075. {
  3076. /* just a number, not meaningful for all levels */
  3077. if (mddev->reshape_position != MaxSector &&
  3078. mddev->layout != mddev->new_layout)
  3079. return sprintf(page, "%d (%d)\n",
  3080. mddev->new_layout, mddev->layout);
  3081. return sprintf(page, "%d\n", mddev->layout);
  3082. }
  3083. static ssize_t
  3084. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3085. {
  3086. char *e;
  3087. unsigned long n = simple_strtoul(buf, &e, 10);
  3088. if (!*buf || (*e && *e != '\n'))
  3089. return -EINVAL;
  3090. if (mddev->pers) {
  3091. int err;
  3092. if (mddev->pers->check_reshape == NULL)
  3093. return -EBUSY;
  3094. mddev->new_layout = n;
  3095. err = mddev->pers->check_reshape(mddev);
  3096. if (err) {
  3097. mddev->new_layout = mddev->layout;
  3098. return err;
  3099. }
  3100. } else {
  3101. mddev->new_layout = n;
  3102. if (mddev->reshape_position == MaxSector)
  3103. mddev->layout = n;
  3104. }
  3105. return len;
  3106. }
  3107. static struct md_sysfs_entry md_layout =
  3108. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3109. static ssize_t
  3110. raid_disks_show(struct mddev *mddev, char *page)
  3111. {
  3112. if (mddev->raid_disks == 0)
  3113. return 0;
  3114. if (mddev->reshape_position != MaxSector &&
  3115. mddev->delta_disks != 0)
  3116. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3117. mddev->raid_disks - mddev->delta_disks);
  3118. return sprintf(page, "%d\n", mddev->raid_disks);
  3119. }
  3120. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3121. static ssize_t
  3122. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3123. {
  3124. char *e;
  3125. int rv = 0;
  3126. unsigned long n = simple_strtoul(buf, &e, 10);
  3127. if (!*buf || (*e && *e != '\n'))
  3128. return -EINVAL;
  3129. if (mddev->pers)
  3130. rv = update_raid_disks(mddev, n);
  3131. else if (mddev->reshape_position != MaxSector) {
  3132. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3133. mddev->delta_disks = n - olddisks;
  3134. mddev->raid_disks = n;
  3135. } else
  3136. mddev->raid_disks = n;
  3137. return rv ? rv : len;
  3138. }
  3139. static struct md_sysfs_entry md_raid_disks =
  3140. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3141. static ssize_t
  3142. chunk_size_show(struct mddev *mddev, char *page)
  3143. {
  3144. if (mddev->reshape_position != MaxSector &&
  3145. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3146. return sprintf(page, "%d (%d)\n",
  3147. mddev->new_chunk_sectors << 9,
  3148. mddev->chunk_sectors << 9);
  3149. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3150. }
  3151. static ssize_t
  3152. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3153. {
  3154. char *e;
  3155. unsigned long n = simple_strtoul(buf, &e, 10);
  3156. if (!*buf || (*e && *e != '\n'))
  3157. return -EINVAL;
  3158. if (mddev->pers) {
  3159. int err;
  3160. if (mddev->pers->check_reshape == NULL)
  3161. return -EBUSY;
  3162. mddev->new_chunk_sectors = n >> 9;
  3163. err = mddev->pers->check_reshape(mddev);
  3164. if (err) {
  3165. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3166. return err;
  3167. }
  3168. } else {
  3169. mddev->new_chunk_sectors = n >> 9;
  3170. if (mddev->reshape_position == MaxSector)
  3171. mddev->chunk_sectors = n >> 9;
  3172. }
  3173. return len;
  3174. }
  3175. static struct md_sysfs_entry md_chunk_size =
  3176. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3177. static ssize_t
  3178. resync_start_show(struct mddev *mddev, char *page)
  3179. {
  3180. if (mddev->recovery_cp == MaxSector)
  3181. return sprintf(page, "none\n");
  3182. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3183. }
  3184. static ssize_t
  3185. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3186. {
  3187. char *e;
  3188. unsigned long long n = simple_strtoull(buf, &e, 10);
  3189. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3190. return -EBUSY;
  3191. if (cmd_match(buf, "none"))
  3192. n = MaxSector;
  3193. else if (!*buf || (*e && *e != '\n'))
  3194. return -EINVAL;
  3195. mddev->recovery_cp = n;
  3196. return len;
  3197. }
  3198. static struct md_sysfs_entry md_resync_start =
  3199. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3200. /*
  3201. * The array state can be:
  3202. *
  3203. * clear
  3204. * No devices, no size, no level
  3205. * Equivalent to STOP_ARRAY ioctl
  3206. * inactive
  3207. * May have some settings, but array is not active
  3208. * all IO results in error
  3209. * When written, doesn't tear down array, but just stops it
  3210. * suspended (not supported yet)
  3211. * All IO requests will block. The array can be reconfigured.
  3212. * Writing this, if accepted, will block until array is quiescent
  3213. * readonly
  3214. * no resync can happen. no superblocks get written.
  3215. * write requests fail
  3216. * read-auto
  3217. * like readonly, but behaves like 'clean' on a write request.
  3218. *
  3219. * clean - no pending writes, but otherwise active.
  3220. * When written to inactive array, starts without resync
  3221. * If a write request arrives then
  3222. * if metadata is known, mark 'dirty' and switch to 'active'.
  3223. * if not known, block and switch to write-pending
  3224. * If written to an active array that has pending writes, then fails.
  3225. * active
  3226. * fully active: IO and resync can be happening.
  3227. * When written to inactive array, starts with resync
  3228. *
  3229. * write-pending
  3230. * clean, but writes are blocked waiting for 'active' to be written.
  3231. *
  3232. * active-idle
  3233. * like active, but no writes have been seen for a while (100msec).
  3234. *
  3235. */
  3236. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3237. write_pending, active_idle, bad_word};
  3238. static char *array_states[] = {
  3239. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3240. "write-pending", "active-idle", NULL };
  3241. static int match_word(const char *word, char **list)
  3242. {
  3243. int n;
  3244. for (n=0; list[n]; n++)
  3245. if (cmd_match(word, list[n]))
  3246. break;
  3247. return n;
  3248. }
  3249. static ssize_t
  3250. array_state_show(struct mddev *mddev, char *page)
  3251. {
  3252. enum array_state st = inactive;
  3253. if (mddev->pers)
  3254. switch(mddev->ro) {
  3255. case 1:
  3256. st = readonly;
  3257. break;
  3258. case 2:
  3259. st = read_auto;
  3260. break;
  3261. case 0:
  3262. if (mddev->in_sync)
  3263. st = clean;
  3264. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3265. st = write_pending;
  3266. else if (mddev->safemode)
  3267. st = active_idle;
  3268. else
  3269. st = active;
  3270. }
  3271. else {
  3272. if (list_empty(&mddev->disks) &&
  3273. mddev->raid_disks == 0 &&
  3274. mddev->dev_sectors == 0)
  3275. st = clear;
  3276. else
  3277. st = inactive;
  3278. }
  3279. return sprintf(page, "%s\n", array_states[st]);
  3280. }
  3281. static int do_md_stop(struct mddev * mddev, int ro, int is_open);
  3282. static int md_set_readonly(struct mddev * mddev, int is_open);
  3283. static int do_md_run(struct mddev * mddev);
  3284. static int restart_array(struct mddev *mddev);
  3285. static ssize_t
  3286. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3287. {
  3288. int err = -EINVAL;
  3289. enum array_state st = match_word(buf, array_states);
  3290. switch(st) {
  3291. case bad_word:
  3292. break;
  3293. case clear:
  3294. /* stopping an active array */
  3295. if (atomic_read(&mddev->openers) > 0)
  3296. return -EBUSY;
  3297. err = do_md_stop(mddev, 0, 0);
  3298. break;
  3299. case inactive:
  3300. /* stopping an active array */
  3301. if (mddev->pers) {
  3302. if (atomic_read(&mddev->openers) > 0)
  3303. return -EBUSY;
  3304. err = do_md_stop(mddev, 2, 0);
  3305. } else
  3306. err = 0; /* already inactive */
  3307. break;
  3308. case suspended:
  3309. break; /* not supported yet */
  3310. case readonly:
  3311. if (mddev->pers)
  3312. err = md_set_readonly(mddev, 0);
  3313. else {
  3314. mddev->ro = 1;
  3315. set_disk_ro(mddev->gendisk, 1);
  3316. err = do_md_run(mddev);
  3317. }
  3318. break;
  3319. case read_auto:
  3320. if (mddev->pers) {
  3321. if (mddev->ro == 0)
  3322. err = md_set_readonly(mddev, 0);
  3323. else if (mddev->ro == 1)
  3324. err = restart_array(mddev);
  3325. if (err == 0) {
  3326. mddev->ro = 2;
  3327. set_disk_ro(mddev->gendisk, 0);
  3328. }
  3329. } else {
  3330. mddev->ro = 2;
  3331. err = do_md_run(mddev);
  3332. }
  3333. break;
  3334. case clean:
  3335. if (mddev->pers) {
  3336. restart_array(mddev);
  3337. spin_lock_irq(&mddev->write_lock);
  3338. if (atomic_read(&mddev->writes_pending) == 0) {
  3339. if (mddev->in_sync == 0) {
  3340. mddev->in_sync = 1;
  3341. if (mddev->safemode == 1)
  3342. mddev->safemode = 0;
  3343. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3344. }
  3345. err = 0;
  3346. } else
  3347. err = -EBUSY;
  3348. spin_unlock_irq(&mddev->write_lock);
  3349. } else
  3350. err = -EINVAL;
  3351. break;
  3352. case active:
  3353. if (mddev->pers) {
  3354. restart_array(mddev);
  3355. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3356. wake_up(&mddev->sb_wait);
  3357. err = 0;
  3358. } else {
  3359. mddev->ro = 0;
  3360. set_disk_ro(mddev->gendisk, 0);
  3361. err = do_md_run(mddev);
  3362. }
  3363. break;
  3364. case write_pending:
  3365. case active_idle:
  3366. /* these cannot be set */
  3367. break;
  3368. }
  3369. if (err)
  3370. return err;
  3371. else {
  3372. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3373. return len;
  3374. }
  3375. }
  3376. static struct md_sysfs_entry md_array_state =
  3377. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3378. static ssize_t
  3379. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3380. return sprintf(page, "%d\n",
  3381. atomic_read(&mddev->max_corr_read_errors));
  3382. }
  3383. static ssize_t
  3384. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3385. {
  3386. char *e;
  3387. unsigned long n = simple_strtoul(buf, &e, 10);
  3388. if (*buf && (*e == 0 || *e == '\n')) {
  3389. atomic_set(&mddev->max_corr_read_errors, n);
  3390. return len;
  3391. }
  3392. return -EINVAL;
  3393. }
  3394. static struct md_sysfs_entry max_corr_read_errors =
  3395. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3396. max_corrected_read_errors_store);
  3397. static ssize_t
  3398. null_show(struct mddev *mddev, char *page)
  3399. {
  3400. return -EINVAL;
  3401. }
  3402. static ssize_t
  3403. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3404. {
  3405. /* buf must be %d:%d\n? giving major and minor numbers */
  3406. /* The new device is added to the array.
  3407. * If the array has a persistent superblock, we read the
  3408. * superblock to initialise info and check validity.
  3409. * Otherwise, only checking done is that in bind_rdev_to_array,
  3410. * which mainly checks size.
  3411. */
  3412. char *e;
  3413. int major = simple_strtoul(buf, &e, 10);
  3414. int minor;
  3415. dev_t dev;
  3416. struct md_rdev *rdev;
  3417. int err;
  3418. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3419. return -EINVAL;
  3420. minor = simple_strtoul(e+1, &e, 10);
  3421. if (*e && *e != '\n')
  3422. return -EINVAL;
  3423. dev = MKDEV(major, minor);
  3424. if (major != MAJOR(dev) ||
  3425. minor != MINOR(dev))
  3426. return -EOVERFLOW;
  3427. if (mddev->persistent) {
  3428. rdev = md_import_device(dev, mddev->major_version,
  3429. mddev->minor_version);
  3430. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3431. struct md_rdev *rdev0
  3432. = list_entry(mddev->disks.next,
  3433. struct md_rdev, same_set);
  3434. err = super_types[mddev->major_version]
  3435. .load_super(rdev, rdev0, mddev->minor_version);
  3436. if (err < 0)
  3437. goto out;
  3438. }
  3439. } else if (mddev->external)
  3440. rdev = md_import_device(dev, -2, -1);
  3441. else
  3442. rdev = md_import_device(dev, -1, -1);
  3443. if (IS_ERR(rdev))
  3444. return PTR_ERR(rdev);
  3445. err = bind_rdev_to_array(rdev, mddev);
  3446. out:
  3447. if (err)
  3448. export_rdev(rdev);
  3449. return err ? err : len;
  3450. }
  3451. static struct md_sysfs_entry md_new_device =
  3452. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3453. static ssize_t
  3454. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3455. {
  3456. char *end;
  3457. unsigned long chunk, end_chunk;
  3458. if (!mddev->bitmap)
  3459. goto out;
  3460. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3461. while (*buf) {
  3462. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3463. if (buf == end) break;
  3464. if (*end == '-') { /* range */
  3465. buf = end + 1;
  3466. end_chunk = simple_strtoul(buf, &end, 0);
  3467. if (buf == end) break;
  3468. }
  3469. if (*end && !isspace(*end)) break;
  3470. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3471. buf = skip_spaces(end);
  3472. }
  3473. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3474. out:
  3475. return len;
  3476. }
  3477. static struct md_sysfs_entry md_bitmap =
  3478. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3479. static ssize_t
  3480. size_show(struct mddev *mddev, char *page)
  3481. {
  3482. return sprintf(page, "%llu\n",
  3483. (unsigned long long)mddev->dev_sectors / 2);
  3484. }
  3485. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3486. static ssize_t
  3487. size_store(struct mddev *mddev, const char *buf, size_t len)
  3488. {
  3489. /* If array is inactive, we can reduce the component size, but
  3490. * not increase it (except from 0).
  3491. * If array is active, we can try an on-line resize
  3492. */
  3493. sector_t sectors;
  3494. int err = strict_blocks_to_sectors(buf, &sectors);
  3495. if (err < 0)
  3496. return err;
  3497. if (mddev->pers) {
  3498. err = update_size(mddev, sectors);
  3499. md_update_sb(mddev, 1);
  3500. } else {
  3501. if (mddev->dev_sectors == 0 ||
  3502. mddev->dev_sectors > sectors)
  3503. mddev->dev_sectors = sectors;
  3504. else
  3505. err = -ENOSPC;
  3506. }
  3507. return err ? err : len;
  3508. }
  3509. static struct md_sysfs_entry md_size =
  3510. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3511. /* Metdata version.
  3512. * This is one of
  3513. * 'none' for arrays with no metadata (good luck...)
  3514. * 'external' for arrays with externally managed metadata,
  3515. * or N.M for internally known formats
  3516. */
  3517. static ssize_t
  3518. metadata_show(struct mddev *mddev, char *page)
  3519. {
  3520. if (mddev->persistent)
  3521. return sprintf(page, "%d.%d\n",
  3522. mddev->major_version, mddev->minor_version);
  3523. else if (mddev->external)
  3524. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3525. else
  3526. return sprintf(page, "none\n");
  3527. }
  3528. static ssize_t
  3529. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3530. {
  3531. int major, minor;
  3532. char *e;
  3533. /* Changing the details of 'external' metadata is
  3534. * always permitted. Otherwise there must be
  3535. * no devices attached to the array.
  3536. */
  3537. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3538. ;
  3539. else if (!list_empty(&mddev->disks))
  3540. return -EBUSY;
  3541. if (cmd_match(buf, "none")) {
  3542. mddev->persistent = 0;
  3543. mddev->external = 0;
  3544. mddev->major_version = 0;
  3545. mddev->minor_version = 90;
  3546. return len;
  3547. }
  3548. if (strncmp(buf, "external:", 9) == 0) {
  3549. size_t namelen = len-9;
  3550. if (namelen >= sizeof(mddev->metadata_type))
  3551. namelen = sizeof(mddev->metadata_type)-1;
  3552. strncpy(mddev->metadata_type, buf+9, namelen);
  3553. mddev->metadata_type[namelen] = 0;
  3554. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3555. mddev->metadata_type[--namelen] = 0;
  3556. mddev->persistent = 0;
  3557. mddev->external = 1;
  3558. mddev->major_version = 0;
  3559. mddev->minor_version = 90;
  3560. return len;
  3561. }
  3562. major = simple_strtoul(buf, &e, 10);
  3563. if (e==buf || *e != '.')
  3564. return -EINVAL;
  3565. buf = e+1;
  3566. minor = simple_strtoul(buf, &e, 10);
  3567. if (e==buf || (*e && *e != '\n') )
  3568. return -EINVAL;
  3569. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3570. return -ENOENT;
  3571. mddev->major_version = major;
  3572. mddev->minor_version = minor;
  3573. mddev->persistent = 1;
  3574. mddev->external = 0;
  3575. return len;
  3576. }
  3577. static struct md_sysfs_entry md_metadata =
  3578. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3579. static ssize_t
  3580. action_show(struct mddev *mddev, char *page)
  3581. {
  3582. char *type = "idle";
  3583. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3584. type = "frozen";
  3585. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3586. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3587. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3588. type = "reshape";
  3589. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3590. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3591. type = "resync";
  3592. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3593. type = "check";
  3594. else
  3595. type = "repair";
  3596. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3597. type = "recover";
  3598. }
  3599. return sprintf(page, "%s\n", type);
  3600. }
  3601. static void reap_sync_thread(struct mddev *mddev);
  3602. static ssize_t
  3603. action_store(struct mddev *mddev, const char *page, size_t len)
  3604. {
  3605. if (!mddev->pers || !mddev->pers->sync_request)
  3606. return -EINVAL;
  3607. if (cmd_match(page, "frozen"))
  3608. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3609. else
  3610. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3611. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3612. if (mddev->sync_thread) {
  3613. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3614. reap_sync_thread(mddev);
  3615. }
  3616. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3617. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3618. return -EBUSY;
  3619. else if (cmd_match(page, "resync"))
  3620. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3621. else if (cmd_match(page, "recover")) {
  3622. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3623. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3624. } else if (cmd_match(page, "reshape")) {
  3625. int err;
  3626. if (mddev->pers->start_reshape == NULL)
  3627. return -EINVAL;
  3628. err = mddev->pers->start_reshape(mddev);
  3629. if (err)
  3630. return err;
  3631. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3632. } else {
  3633. if (cmd_match(page, "check"))
  3634. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3635. else if (!cmd_match(page, "repair"))
  3636. return -EINVAL;
  3637. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3638. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3639. }
  3640. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3641. md_wakeup_thread(mddev->thread);
  3642. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3643. return len;
  3644. }
  3645. static ssize_t
  3646. mismatch_cnt_show(struct mddev *mddev, char *page)
  3647. {
  3648. return sprintf(page, "%llu\n",
  3649. (unsigned long long) mddev->resync_mismatches);
  3650. }
  3651. static struct md_sysfs_entry md_scan_mode =
  3652. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3653. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3654. static ssize_t
  3655. sync_min_show(struct mddev *mddev, char *page)
  3656. {
  3657. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3658. mddev->sync_speed_min ? "local": "system");
  3659. }
  3660. static ssize_t
  3661. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3662. {
  3663. int min;
  3664. char *e;
  3665. if (strncmp(buf, "system", 6)==0) {
  3666. mddev->sync_speed_min = 0;
  3667. return len;
  3668. }
  3669. min = simple_strtoul(buf, &e, 10);
  3670. if (buf == e || (*e && *e != '\n') || min <= 0)
  3671. return -EINVAL;
  3672. mddev->sync_speed_min = min;
  3673. return len;
  3674. }
  3675. static struct md_sysfs_entry md_sync_min =
  3676. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3677. static ssize_t
  3678. sync_max_show(struct mddev *mddev, char *page)
  3679. {
  3680. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3681. mddev->sync_speed_max ? "local": "system");
  3682. }
  3683. static ssize_t
  3684. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3685. {
  3686. int max;
  3687. char *e;
  3688. if (strncmp(buf, "system", 6)==0) {
  3689. mddev->sync_speed_max = 0;
  3690. return len;
  3691. }
  3692. max = simple_strtoul(buf, &e, 10);
  3693. if (buf == e || (*e && *e != '\n') || max <= 0)
  3694. return -EINVAL;
  3695. mddev->sync_speed_max = max;
  3696. return len;
  3697. }
  3698. static struct md_sysfs_entry md_sync_max =
  3699. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3700. static ssize_t
  3701. degraded_show(struct mddev *mddev, char *page)
  3702. {
  3703. return sprintf(page, "%d\n", mddev->degraded);
  3704. }
  3705. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3706. static ssize_t
  3707. sync_force_parallel_show(struct mddev *mddev, char *page)
  3708. {
  3709. return sprintf(page, "%d\n", mddev->parallel_resync);
  3710. }
  3711. static ssize_t
  3712. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3713. {
  3714. long n;
  3715. if (strict_strtol(buf, 10, &n))
  3716. return -EINVAL;
  3717. if (n != 0 && n != 1)
  3718. return -EINVAL;
  3719. mddev->parallel_resync = n;
  3720. if (mddev->sync_thread)
  3721. wake_up(&resync_wait);
  3722. return len;
  3723. }
  3724. /* force parallel resync, even with shared block devices */
  3725. static struct md_sysfs_entry md_sync_force_parallel =
  3726. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3727. sync_force_parallel_show, sync_force_parallel_store);
  3728. static ssize_t
  3729. sync_speed_show(struct mddev *mddev, char *page)
  3730. {
  3731. unsigned long resync, dt, db;
  3732. if (mddev->curr_resync == 0)
  3733. return sprintf(page, "none\n");
  3734. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3735. dt = (jiffies - mddev->resync_mark) / HZ;
  3736. if (!dt) dt++;
  3737. db = resync - mddev->resync_mark_cnt;
  3738. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3739. }
  3740. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3741. static ssize_t
  3742. sync_completed_show(struct mddev *mddev, char *page)
  3743. {
  3744. unsigned long long max_sectors, resync;
  3745. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3746. return sprintf(page, "none\n");
  3747. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3748. max_sectors = mddev->resync_max_sectors;
  3749. else
  3750. max_sectors = mddev->dev_sectors;
  3751. resync = mddev->curr_resync_completed;
  3752. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3753. }
  3754. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3755. static ssize_t
  3756. min_sync_show(struct mddev *mddev, char *page)
  3757. {
  3758. return sprintf(page, "%llu\n",
  3759. (unsigned long long)mddev->resync_min);
  3760. }
  3761. static ssize_t
  3762. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3763. {
  3764. unsigned long long min;
  3765. if (strict_strtoull(buf, 10, &min))
  3766. return -EINVAL;
  3767. if (min > mddev->resync_max)
  3768. return -EINVAL;
  3769. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3770. return -EBUSY;
  3771. /* Must be a multiple of chunk_size */
  3772. if (mddev->chunk_sectors) {
  3773. sector_t temp = min;
  3774. if (sector_div(temp, mddev->chunk_sectors))
  3775. return -EINVAL;
  3776. }
  3777. mddev->resync_min = min;
  3778. return len;
  3779. }
  3780. static struct md_sysfs_entry md_min_sync =
  3781. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3782. static ssize_t
  3783. max_sync_show(struct mddev *mddev, char *page)
  3784. {
  3785. if (mddev->resync_max == MaxSector)
  3786. return sprintf(page, "max\n");
  3787. else
  3788. return sprintf(page, "%llu\n",
  3789. (unsigned long long)mddev->resync_max);
  3790. }
  3791. static ssize_t
  3792. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3793. {
  3794. if (strncmp(buf, "max", 3) == 0)
  3795. mddev->resync_max = MaxSector;
  3796. else {
  3797. unsigned long long max;
  3798. if (strict_strtoull(buf, 10, &max))
  3799. return -EINVAL;
  3800. if (max < mddev->resync_min)
  3801. return -EINVAL;
  3802. if (max < mddev->resync_max &&
  3803. mddev->ro == 0 &&
  3804. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3805. return -EBUSY;
  3806. /* Must be a multiple of chunk_size */
  3807. if (mddev->chunk_sectors) {
  3808. sector_t temp = max;
  3809. if (sector_div(temp, mddev->chunk_sectors))
  3810. return -EINVAL;
  3811. }
  3812. mddev->resync_max = max;
  3813. }
  3814. wake_up(&mddev->recovery_wait);
  3815. return len;
  3816. }
  3817. static struct md_sysfs_entry md_max_sync =
  3818. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3819. static ssize_t
  3820. suspend_lo_show(struct mddev *mddev, char *page)
  3821. {
  3822. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3823. }
  3824. static ssize_t
  3825. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  3826. {
  3827. char *e;
  3828. unsigned long long new = simple_strtoull(buf, &e, 10);
  3829. unsigned long long old = mddev->suspend_lo;
  3830. if (mddev->pers == NULL ||
  3831. mddev->pers->quiesce == NULL)
  3832. return -EINVAL;
  3833. if (buf == e || (*e && *e != '\n'))
  3834. return -EINVAL;
  3835. mddev->suspend_lo = new;
  3836. if (new >= old)
  3837. /* Shrinking suspended region */
  3838. mddev->pers->quiesce(mddev, 2);
  3839. else {
  3840. /* Expanding suspended region - need to wait */
  3841. mddev->pers->quiesce(mddev, 1);
  3842. mddev->pers->quiesce(mddev, 0);
  3843. }
  3844. return len;
  3845. }
  3846. static struct md_sysfs_entry md_suspend_lo =
  3847. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3848. static ssize_t
  3849. suspend_hi_show(struct mddev *mddev, char *page)
  3850. {
  3851. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3852. }
  3853. static ssize_t
  3854. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  3855. {
  3856. char *e;
  3857. unsigned long long new = simple_strtoull(buf, &e, 10);
  3858. unsigned long long old = mddev->suspend_hi;
  3859. if (mddev->pers == NULL ||
  3860. mddev->pers->quiesce == NULL)
  3861. return -EINVAL;
  3862. if (buf == e || (*e && *e != '\n'))
  3863. return -EINVAL;
  3864. mddev->suspend_hi = new;
  3865. if (new <= old)
  3866. /* Shrinking suspended region */
  3867. mddev->pers->quiesce(mddev, 2);
  3868. else {
  3869. /* Expanding suspended region - need to wait */
  3870. mddev->pers->quiesce(mddev, 1);
  3871. mddev->pers->quiesce(mddev, 0);
  3872. }
  3873. return len;
  3874. }
  3875. static struct md_sysfs_entry md_suspend_hi =
  3876. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3877. static ssize_t
  3878. reshape_position_show(struct mddev *mddev, char *page)
  3879. {
  3880. if (mddev->reshape_position != MaxSector)
  3881. return sprintf(page, "%llu\n",
  3882. (unsigned long long)mddev->reshape_position);
  3883. strcpy(page, "none\n");
  3884. return 5;
  3885. }
  3886. static ssize_t
  3887. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  3888. {
  3889. char *e;
  3890. unsigned long long new = simple_strtoull(buf, &e, 10);
  3891. if (mddev->pers)
  3892. return -EBUSY;
  3893. if (buf == e || (*e && *e != '\n'))
  3894. return -EINVAL;
  3895. mddev->reshape_position = new;
  3896. mddev->delta_disks = 0;
  3897. mddev->new_level = mddev->level;
  3898. mddev->new_layout = mddev->layout;
  3899. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3900. return len;
  3901. }
  3902. static struct md_sysfs_entry md_reshape_position =
  3903. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3904. reshape_position_store);
  3905. static ssize_t
  3906. array_size_show(struct mddev *mddev, char *page)
  3907. {
  3908. if (mddev->external_size)
  3909. return sprintf(page, "%llu\n",
  3910. (unsigned long long)mddev->array_sectors/2);
  3911. else
  3912. return sprintf(page, "default\n");
  3913. }
  3914. static ssize_t
  3915. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  3916. {
  3917. sector_t sectors;
  3918. if (strncmp(buf, "default", 7) == 0) {
  3919. if (mddev->pers)
  3920. sectors = mddev->pers->size(mddev, 0, 0);
  3921. else
  3922. sectors = mddev->array_sectors;
  3923. mddev->external_size = 0;
  3924. } else {
  3925. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3926. return -EINVAL;
  3927. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3928. return -E2BIG;
  3929. mddev->external_size = 1;
  3930. }
  3931. mddev->array_sectors = sectors;
  3932. if (mddev->pers) {
  3933. set_capacity(mddev->gendisk, mddev->array_sectors);
  3934. revalidate_disk(mddev->gendisk);
  3935. }
  3936. return len;
  3937. }
  3938. static struct md_sysfs_entry md_array_size =
  3939. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3940. array_size_store);
  3941. static struct attribute *md_default_attrs[] = {
  3942. &md_level.attr,
  3943. &md_layout.attr,
  3944. &md_raid_disks.attr,
  3945. &md_chunk_size.attr,
  3946. &md_size.attr,
  3947. &md_resync_start.attr,
  3948. &md_metadata.attr,
  3949. &md_new_device.attr,
  3950. &md_safe_delay.attr,
  3951. &md_array_state.attr,
  3952. &md_reshape_position.attr,
  3953. &md_array_size.attr,
  3954. &max_corr_read_errors.attr,
  3955. NULL,
  3956. };
  3957. static struct attribute *md_redundancy_attrs[] = {
  3958. &md_scan_mode.attr,
  3959. &md_mismatches.attr,
  3960. &md_sync_min.attr,
  3961. &md_sync_max.attr,
  3962. &md_sync_speed.attr,
  3963. &md_sync_force_parallel.attr,
  3964. &md_sync_completed.attr,
  3965. &md_min_sync.attr,
  3966. &md_max_sync.attr,
  3967. &md_suspend_lo.attr,
  3968. &md_suspend_hi.attr,
  3969. &md_bitmap.attr,
  3970. &md_degraded.attr,
  3971. NULL,
  3972. };
  3973. static struct attribute_group md_redundancy_group = {
  3974. .name = NULL,
  3975. .attrs = md_redundancy_attrs,
  3976. };
  3977. static ssize_t
  3978. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3979. {
  3980. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3981. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  3982. ssize_t rv;
  3983. if (!entry->show)
  3984. return -EIO;
  3985. rv = mddev_lock(mddev);
  3986. if (!rv) {
  3987. rv = entry->show(mddev, page);
  3988. mddev_unlock(mddev);
  3989. }
  3990. return rv;
  3991. }
  3992. static ssize_t
  3993. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3994. const char *page, size_t length)
  3995. {
  3996. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3997. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  3998. ssize_t rv;
  3999. if (!entry->store)
  4000. return -EIO;
  4001. if (!capable(CAP_SYS_ADMIN))
  4002. return -EACCES;
  4003. rv = mddev_lock(mddev);
  4004. if (mddev->hold_active == UNTIL_IOCTL)
  4005. mddev->hold_active = 0;
  4006. if (!rv) {
  4007. rv = entry->store(mddev, page, length);
  4008. mddev_unlock(mddev);
  4009. }
  4010. return rv;
  4011. }
  4012. static void md_free(struct kobject *ko)
  4013. {
  4014. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4015. if (mddev->sysfs_state)
  4016. sysfs_put(mddev->sysfs_state);
  4017. if (mddev->gendisk) {
  4018. del_gendisk(mddev->gendisk);
  4019. put_disk(mddev->gendisk);
  4020. }
  4021. if (mddev->queue)
  4022. blk_cleanup_queue(mddev->queue);
  4023. kfree(mddev);
  4024. }
  4025. static const struct sysfs_ops md_sysfs_ops = {
  4026. .show = md_attr_show,
  4027. .store = md_attr_store,
  4028. };
  4029. static struct kobj_type md_ktype = {
  4030. .release = md_free,
  4031. .sysfs_ops = &md_sysfs_ops,
  4032. .default_attrs = md_default_attrs,
  4033. };
  4034. int mdp_major = 0;
  4035. static void mddev_delayed_delete(struct work_struct *ws)
  4036. {
  4037. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4038. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4039. kobject_del(&mddev->kobj);
  4040. kobject_put(&mddev->kobj);
  4041. }
  4042. static int md_alloc(dev_t dev, char *name)
  4043. {
  4044. static DEFINE_MUTEX(disks_mutex);
  4045. struct mddev *mddev = mddev_find(dev);
  4046. struct gendisk *disk;
  4047. int partitioned;
  4048. int shift;
  4049. int unit;
  4050. int error;
  4051. if (!mddev)
  4052. return -ENODEV;
  4053. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4054. shift = partitioned ? MdpMinorShift : 0;
  4055. unit = MINOR(mddev->unit) >> shift;
  4056. /* wait for any previous instance of this device to be
  4057. * completely removed (mddev_delayed_delete).
  4058. */
  4059. flush_workqueue(md_misc_wq);
  4060. mutex_lock(&disks_mutex);
  4061. error = -EEXIST;
  4062. if (mddev->gendisk)
  4063. goto abort;
  4064. if (name) {
  4065. /* Need to ensure that 'name' is not a duplicate.
  4066. */
  4067. struct mddev *mddev2;
  4068. spin_lock(&all_mddevs_lock);
  4069. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4070. if (mddev2->gendisk &&
  4071. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4072. spin_unlock(&all_mddevs_lock);
  4073. goto abort;
  4074. }
  4075. spin_unlock(&all_mddevs_lock);
  4076. }
  4077. error = -ENOMEM;
  4078. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4079. if (!mddev->queue)
  4080. goto abort;
  4081. mddev->queue->queuedata = mddev;
  4082. blk_queue_make_request(mddev->queue, md_make_request);
  4083. disk = alloc_disk(1 << shift);
  4084. if (!disk) {
  4085. blk_cleanup_queue(mddev->queue);
  4086. mddev->queue = NULL;
  4087. goto abort;
  4088. }
  4089. disk->major = MAJOR(mddev->unit);
  4090. disk->first_minor = unit << shift;
  4091. if (name)
  4092. strcpy(disk->disk_name, name);
  4093. else if (partitioned)
  4094. sprintf(disk->disk_name, "md_d%d", unit);
  4095. else
  4096. sprintf(disk->disk_name, "md%d", unit);
  4097. disk->fops = &md_fops;
  4098. disk->private_data = mddev;
  4099. disk->queue = mddev->queue;
  4100. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4101. /* Allow extended partitions. This makes the
  4102. * 'mdp' device redundant, but we can't really
  4103. * remove it now.
  4104. */
  4105. disk->flags |= GENHD_FL_EXT_DEVT;
  4106. mddev->gendisk = disk;
  4107. /* As soon as we call add_disk(), another thread could get
  4108. * through to md_open, so make sure it doesn't get too far
  4109. */
  4110. mutex_lock(&mddev->open_mutex);
  4111. add_disk(disk);
  4112. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4113. &disk_to_dev(disk)->kobj, "%s", "md");
  4114. if (error) {
  4115. /* This isn't possible, but as kobject_init_and_add is marked
  4116. * __must_check, we must do something with the result
  4117. */
  4118. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4119. disk->disk_name);
  4120. error = 0;
  4121. }
  4122. if (mddev->kobj.sd &&
  4123. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4124. printk(KERN_DEBUG "pointless warning\n");
  4125. mutex_unlock(&mddev->open_mutex);
  4126. abort:
  4127. mutex_unlock(&disks_mutex);
  4128. if (!error && mddev->kobj.sd) {
  4129. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4130. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4131. }
  4132. mddev_put(mddev);
  4133. return error;
  4134. }
  4135. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4136. {
  4137. md_alloc(dev, NULL);
  4138. return NULL;
  4139. }
  4140. static int add_named_array(const char *val, struct kernel_param *kp)
  4141. {
  4142. /* val must be "md_*" where * is not all digits.
  4143. * We allocate an array with a large free minor number, and
  4144. * set the name to val. val must not already be an active name.
  4145. */
  4146. int len = strlen(val);
  4147. char buf[DISK_NAME_LEN];
  4148. while (len && val[len-1] == '\n')
  4149. len--;
  4150. if (len >= DISK_NAME_LEN)
  4151. return -E2BIG;
  4152. strlcpy(buf, val, len+1);
  4153. if (strncmp(buf, "md_", 3) != 0)
  4154. return -EINVAL;
  4155. return md_alloc(0, buf);
  4156. }
  4157. static void md_safemode_timeout(unsigned long data)
  4158. {
  4159. struct mddev *mddev = (struct mddev *) data;
  4160. if (!atomic_read(&mddev->writes_pending)) {
  4161. mddev->safemode = 1;
  4162. if (mddev->external)
  4163. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4164. }
  4165. md_wakeup_thread(mddev->thread);
  4166. }
  4167. static int start_dirty_degraded;
  4168. int md_run(struct mddev *mddev)
  4169. {
  4170. int err;
  4171. struct md_rdev *rdev;
  4172. struct md_personality *pers;
  4173. if (list_empty(&mddev->disks))
  4174. /* cannot run an array with no devices.. */
  4175. return -EINVAL;
  4176. if (mddev->pers)
  4177. return -EBUSY;
  4178. /* Cannot run until previous stop completes properly */
  4179. if (mddev->sysfs_active)
  4180. return -EBUSY;
  4181. /*
  4182. * Analyze all RAID superblock(s)
  4183. */
  4184. if (!mddev->raid_disks) {
  4185. if (!mddev->persistent)
  4186. return -EINVAL;
  4187. analyze_sbs(mddev);
  4188. }
  4189. if (mddev->level != LEVEL_NONE)
  4190. request_module("md-level-%d", mddev->level);
  4191. else if (mddev->clevel[0])
  4192. request_module("md-%s", mddev->clevel);
  4193. /*
  4194. * Drop all container device buffers, from now on
  4195. * the only valid external interface is through the md
  4196. * device.
  4197. */
  4198. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4199. if (test_bit(Faulty, &rdev->flags))
  4200. continue;
  4201. sync_blockdev(rdev->bdev);
  4202. invalidate_bdev(rdev->bdev);
  4203. /* perform some consistency tests on the device.
  4204. * We don't want the data to overlap the metadata,
  4205. * Internal Bitmap issues have been handled elsewhere.
  4206. */
  4207. if (rdev->meta_bdev) {
  4208. /* Nothing to check */;
  4209. } else if (rdev->data_offset < rdev->sb_start) {
  4210. if (mddev->dev_sectors &&
  4211. rdev->data_offset + mddev->dev_sectors
  4212. > rdev->sb_start) {
  4213. printk("md: %s: data overlaps metadata\n",
  4214. mdname(mddev));
  4215. return -EINVAL;
  4216. }
  4217. } else {
  4218. if (rdev->sb_start + rdev->sb_size/512
  4219. > rdev->data_offset) {
  4220. printk("md: %s: metadata overlaps data\n",
  4221. mdname(mddev));
  4222. return -EINVAL;
  4223. }
  4224. }
  4225. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4226. }
  4227. if (mddev->bio_set == NULL)
  4228. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4229. sizeof(struct mddev *));
  4230. spin_lock(&pers_lock);
  4231. pers = find_pers(mddev->level, mddev->clevel);
  4232. if (!pers || !try_module_get(pers->owner)) {
  4233. spin_unlock(&pers_lock);
  4234. if (mddev->level != LEVEL_NONE)
  4235. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4236. mddev->level);
  4237. else
  4238. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4239. mddev->clevel);
  4240. return -EINVAL;
  4241. }
  4242. mddev->pers = pers;
  4243. spin_unlock(&pers_lock);
  4244. if (mddev->level != pers->level) {
  4245. mddev->level = pers->level;
  4246. mddev->new_level = pers->level;
  4247. }
  4248. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4249. if (mddev->reshape_position != MaxSector &&
  4250. pers->start_reshape == NULL) {
  4251. /* This personality cannot handle reshaping... */
  4252. mddev->pers = NULL;
  4253. module_put(pers->owner);
  4254. return -EINVAL;
  4255. }
  4256. if (pers->sync_request) {
  4257. /* Warn if this is a potentially silly
  4258. * configuration.
  4259. */
  4260. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4261. struct md_rdev *rdev2;
  4262. int warned = 0;
  4263. list_for_each_entry(rdev, &mddev->disks, same_set)
  4264. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4265. if (rdev < rdev2 &&
  4266. rdev->bdev->bd_contains ==
  4267. rdev2->bdev->bd_contains) {
  4268. printk(KERN_WARNING
  4269. "%s: WARNING: %s appears to be"
  4270. " on the same physical disk as"
  4271. " %s.\n",
  4272. mdname(mddev),
  4273. bdevname(rdev->bdev,b),
  4274. bdevname(rdev2->bdev,b2));
  4275. warned = 1;
  4276. }
  4277. }
  4278. if (warned)
  4279. printk(KERN_WARNING
  4280. "True protection against single-disk"
  4281. " failure might be compromised.\n");
  4282. }
  4283. mddev->recovery = 0;
  4284. /* may be over-ridden by personality */
  4285. mddev->resync_max_sectors = mddev->dev_sectors;
  4286. mddev->ok_start_degraded = start_dirty_degraded;
  4287. if (start_readonly && mddev->ro == 0)
  4288. mddev->ro = 2; /* read-only, but switch on first write */
  4289. err = mddev->pers->run(mddev);
  4290. if (err)
  4291. printk(KERN_ERR "md: pers->run() failed ...\n");
  4292. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4293. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4294. " but 'external_size' not in effect?\n", __func__);
  4295. printk(KERN_ERR
  4296. "md: invalid array_size %llu > default size %llu\n",
  4297. (unsigned long long)mddev->array_sectors / 2,
  4298. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4299. err = -EINVAL;
  4300. mddev->pers->stop(mddev);
  4301. }
  4302. if (err == 0 && mddev->pers->sync_request) {
  4303. err = bitmap_create(mddev);
  4304. if (err) {
  4305. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4306. mdname(mddev), err);
  4307. mddev->pers->stop(mddev);
  4308. }
  4309. }
  4310. if (err) {
  4311. module_put(mddev->pers->owner);
  4312. mddev->pers = NULL;
  4313. bitmap_destroy(mddev);
  4314. return err;
  4315. }
  4316. if (mddev->pers->sync_request) {
  4317. if (mddev->kobj.sd &&
  4318. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4319. printk(KERN_WARNING
  4320. "md: cannot register extra attributes for %s\n",
  4321. mdname(mddev));
  4322. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4323. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4324. mddev->ro = 0;
  4325. atomic_set(&mddev->writes_pending,0);
  4326. atomic_set(&mddev->max_corr_read_errors,
  4327. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4328. mddev->safemode = 0;
  4329. mddev->safemode_timer.function = md_safemode_timeout;
  4330. mddev->safemode_timer.data = (unsigned long) mddev;
  4331. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4332. mddev->in_sync = 1;
  4333. smp_wmb();
  4334. mddev->ready = 1;
  4335. list_for_each_entry(rdev, &mddev->disks, same_set)
  4336. if (rdev->raid_disk >= 0)
  4337. if (sysfs_link_rdev(mddev, rdev))
  4338. /* failure here is OK */;
  4339. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4340. if (mddev->flags)
  4341. md_update_sb(mddev, 0);
  4342. md_new_event(mddev);
  4343. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4344. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4345. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4346. return 0;
  4347. }
  4348. EXPORT_SYMBOL_GPL(md_run);
  4349. static int do_md_run(struct mddev *mddev)
  4350. {
  4351. int err;
  4352. err = md_run(mddev);
  4353. if (err)
  4354. goto out;
  4355. err = bitmap_load(mddev);
  4356. if (err) {
  4357. bitmap_destroy(mddev);
  4358. goto out;
  4359. }
  4360. md_wakeup_thread(mddev->thread);
  4361. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4362. set_capacity(mddev->gendisk, mddev->array_sectors);
  4363. revalidate_disk(mddev->gendisk);
  4364. mddev->changed = 1;
  4365. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4366. out:
  4367. return err;
  4368. }
  4369. static int restart_array(struct mddev *mddev)
  4370. {
  4371. struct gendisk *disk = mddev->gendisk;
  4372. /* Complain if it has no devices */
  4373. if (list_empty(&mddev->disks))
  4374. return -ENXIO;
  4375. if (!mddev->pers)
  4376. return -EINVAL;
  4377. if (!mddev->ro)
  4378. return -EBUSY;
  4379. mddev->safemode = 0;
  4380. mddev->ro = 0;
  4381. set_disk_ro(disk, 0);
  4382. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4383. mdname(mddev));
  4384. /* Kick recovery or resync if necessary */
  4385. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4386. md_wakeup_thread(mddev->thread);
  4387. md_wakeup_thread(mddev->sync_thread);
  4388. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4389. return 0;
  4390. }
  4391. /* similar to deny_write_access, but accounts for our holding a reference
  4392. * to the file ourselves */
  4393. static int deny_bitmap_write_access(struct file * file)
  4394. {
  4395. struct inode *inode = file->f_mapping->host;
  4396. spin_lock(&inode->i_lock);
  4397. if (atomic_read(&inode->i_writecount) > 1) {
  4398. spin_unlock(&inode->i_lock);
  4399. return -ETXTBSY;
  4400. }
  4401. atomic_set(&inode->i_writecount, -1);
  4402. spin_unlock(&inode->i_lock);
  4403. return 0;
  4404. }
  4405. void restore_bitmap_write_access(struct file *file)
  4406. {
  4407. struct inode *inode = file->f_mapping->host;
  4408. spin_lock(&inode->i_lock);
  4409. atomic_set(&inode->i_writecount, 1);
  4410. spin_unlock(&inode->i_lock);
  4411. }
  4412. static void md_clean(struct mddev *mddev)
  4413. {
  4414. mddev->array_sectors = 0;
  4415. mddev->external_size = 0;
  4416. mddev->dev_sectors = 0;
  4417. mddev->raid_disks = 0;
  4418. mddev->recovery_cp = 0;
  4419. mddev->resync_min = 0;
  4420. mddev->resync_max = MaxSector;
  4421. mddev->reshape_position = MaxSector;
  4422. mddev->external = 0;
  4423. mddev->persistent = 0;
  4424. mddev->level = LEVEL_NONE;
  4425. mddev->clevel[0] = 0;
  4426. mddev->flags = 0;
  4427. mddev->ro = 0;
  4428. mddev->metadata_type[0] = 0;
  4429. mddev->chunk_sectors = 0;
  4430. mddev->ctime = mddev->utime = 0;
  4431. mddev->layout = 0;
  4432. mddev->max_disks = 0;
  4433. mddev->events = 0;
  4434. mddev->can_decrease_events = 0;
  4435. mddev->delta_disks = 0;
  4436. mddev->new_level = LEVEL_NONE;
  4437. mddev->new_layout = 0;
  4438. mddev->new_chunk_sectors = 0;
  4439. mddev->curr_resync = 0;
  4440. mddev->resync_mismatches = 0;
  4441. mddev->suspend_lo = mddev->suspend_hi = 0;
  4442. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4443. mddev->recovery = 0;
  4444. mddev->in_sync = 0;
  4445. mddev->changed = 0;
  4446. mddev->degraded = 0;
  4447. mddev->safemode = 0;
  4448. mddev->bitmap_info.offset = 0;
  4449. mddev->bitmap_info.default_offset = 0;
  4450. mddev->bitmap_info.chunksize = 0;
  4451. mddev->bitmap_info.daemon_sleep = 0;
  4452. mddev->bitmap_info.max_write_behind = 0;
  4453. }
  4454. static void __md_stop_writes(struct mddev *mddev)
  4455. {
  4456. if (mddev->sync_thread) {
  4457. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4458. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4459. reap_sync_thread(mddev);
  4460. }
  4461. del_timer_sync(&mddev->safemode_timer);
  4462. bitmap_flush(mddev);
  4463. md_super_wait(mddev);
  4464. if (!mddev->in_sync || mddev->flags) {
  4465. /* mark array as shutdown cleanly */
  4466. mddev->in_sync = 1;
  4467. md_update_sb(mddev, 1);
  4468. }
  4469. }
  4470. void md_stop_writes(struct mddev *mddev)
  4471. {
  4472. mddev_lock(mddev);
  4473. __md_stop_writes(mddev);
  4474. mddev_unlock(mddev);
  4475. }
  4476. EXPORT_SYMBOL_GPL(md_stop_writes);
  4477. void md_stop(struct mddev *mddev)
  4478. {
  4479. mddev->ready = 0;
  4480. mddev->pers->stop(mddev);
  4481. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4482. mddev->to_remove = &md_redundancy_group;
  4483. module_put(mddev->pers->owner);
  4484. mddev->pers = NULL;
  4485. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4486. }
  4487. EXPORT_SYMBOL_GPL(md_stop);
  4488. static int md_set_readonly(struct mddev *mddev, int is_open)
  4489. {
  4490. int err = 0;
  4491. mutex_lock(&mddev->open_mutex);
  4492. if (atomic_read(&mddev->openers) > is_open) {
  4493. printk("md: %s still in use.\n",mdname(mddev));
  4494. err = -EBUSY;
  4495. goto out;
  4496. }
  4497. if (mddev->pers) {
  4498. __md_stop_writes(mddev);
  4499. err = -ENXIO;
  4500. if (mddev->ro==1)
  4501. goto out;
  4502. mddev->ro = 1;
  4503. set_disk_ro(mddev->gendisk, 1);
  4504. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4505. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4506. err = 0;
  4507. }
  4508. out:
  4509. mutex_unlock(&mddev->open_mutex);
  4510. return err;
  4511. }
  4512. /* mode:
  4513. * 0 - completely stop and dis-assemble array
  4514. * 2 - stop but do not disassemble array
  4515. */
  4516. static int do_md_stop(struct mddev * mddev, int mode, int is_open)
  4517. {
  4518. struct gendisk *disk = mddev->gendisk;
  4519. struct md_rdev *rdev;
  4520. mutex_lock(&mddev->open_mutex);
  4521. if (atomic_read(&mddev->openers) > is_open ||
  4522. mddev->sysfs_active) {
  4523. printk("md: %s still in use.\n",mdname(mddev));
  4524. mutex_unlock(&mddev->open_mutex);
  4525. return -EBUSY;
  4526. }
  4527. if (mddev->pers) {
  4528. if (mddev->ro)
  4529. set_disk_ro(disk, 0);
  4530. __md_stop_writes(mddev);
  4531. md_stop(mddev);
  4532. mddev->queue->merge_bvec_fn = NULL;
  4533. mddev->queue->backing_dev_info.congested_fn = NULL;
  4534. /* tell userspace to handle 'inactive' */
  4535. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4536. list_for_each_entry(rdev, &mddev->disks, same_set)
  4537. if (rdev->raid_disk >= 0)
  4538. sysfs_unlink_rdev(mddev, rdev);
  4539. set_capacity(disk, 0);
  4540. mutex_unlock(&mddev->open_mutex);
  4541. mddev->changed = 1;
  4542. revalidate_disk(disk);
  4543. if (mddev->ro)
  4544. mddev->ro = 0;
  4545. } else
  4546. mutex_unlock(&mddev->open_mutex);
  4547. /*
  4548. * Free resources if final stop
  4549. */
  4550. if (mode == 0) {
  4551. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4552. bitmap_destroy(mddev);
  4553. if (mddev->bitmap_info.file) {
  4554. restore_bitmap_write_access(mddev->bitmap_info.file);
  4555. fput(mddev->bitmap_info.file);
  4556. mddev->bitmap_info.file = NULL;
  4557. }
  4558. mddev->bitmap_info.offset = 0;
  4559. export_array(mddev);
  4560. md_clean(mddev);
  4561. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4562. if (mddev->hold_active == UNTIL_STOP)
  4563. mddev->hold_active = 0;
  4564. }
  4565. blk_integrity_unregister(disk);
  4566. md_new_event(mddev);
  4567. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4568. return 0;
  4569. }
  4570. #ifndef MODULE
  4571. static void autorun_array(struct mddev *mddev)
  4572. {
  4573. struct md_rdev *rdev;
  4574. int err;
  4575. if (list_empty(&mddev->disks))
  4576. return;
  4577. printk(KERN_INFO "md: running: ");
  4578. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4579. char b[BDEVNAME_SIZE];
  4580. printk("<%s>", bdevname(rdev->bdev,b));
  4581. }
  4582. printk("\n");
  4583. err = do_md_run(mddev);
  4584. if (err) {
  4585. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4586. do_md_stop(mddev, 0, 0);
  4587. }
  4588. }
  4589. /*
  4590. * lets try to run arrays based on all disks that have arrived
  4591. * until now. (those are in pending_raid_disks)
  4592. *
  4593. * the method: pick the first pending disk, collect all disks with
  4594. * the same UUID, remove all from the pending list and put them into
  4595. * the 'same_array' list. Then order this list based on superblock
  4596. * update time (freshest comes first), kick out 'old' disks and
  4597. * compare superblocks. If everything's fine then run it.
  4598. *
  4599. * If "unit" is allocated, then bump its reference count
  4600. */
  4601. static void autorun_devices(int part)
  4602. {
  4603. struct md_rdev *rdev0, *rdev, *tmp;
  4604. struct mddev *mddev;
  4605. char b[BDEVNAME_SIZE];
  4606. printk(KERN_INFO "md: autorun ...\n");
  4607. while (!list_empty(&pending_raid_disks)) {
  4608. int unit;
  4609. dev_t dev;
  4610. LIST_HEAD(candidates);
  4611. rdev0 = list_entry(pending_raid_disks.next,
  4612. struct md_rdev, same_set);
  4613. printk(KERN_INFO "md: considering %s ...\n",
  4614. bdevname(rdev0->bdev,b));
  4615. INIT_LIST_HEAD(&candidates);
  4616. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4617. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4618. printk(KERN_INFO "md: adding %s ...\n",
  4619. bdevname(rdev->bdev,b));
  4620. list_move(&rdev->same_set, &candidates);
  4621. }
  4622. /*
  4623. * now we have a set of devices, with all of them having
  4624. * mostly sane superblocks. It's time to allocate the
  4625. * mddev.
  4626. */
  4627. if (part) {
  4628. dev = MKDEV(mdp_major,
  4629. rdev0->preferred_minor << MdpMinorShift);
  4630. unit = MINOR(dev) >> MdpMinorShift;
  4631. } else {
  4632. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4633. unit = MINOR(dev);
  4634. }
  4635. if (rdev0->preferred_minor != unit) {
  4636. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4637. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4638. break;
  4639. }
  4640. md_probe(dev, NULL, NULL);
  4641. mddev = mddev_find(dev);
  4642. if (!mddev || !mddev->gendisk) {
  4643. if (mddev)
  4644. mddev_put(mddev);
  4645. printk(KERN_ERR
  4646. "md: cannot allocate memory for md drive.\n");
  4647. break;
  4648. }
  4649. if (mddev_lock(mddev))
  4650. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4651. mdname(mddev));
  4652. else if (mddev->raid_disks || mddev->major_version
  4653. || !list_empty(&mddev->disks)) {
  4654. printk(KERN_WARNING
  4655. "md: %s already running, cannot run %s\n",
  4656. mdname(mddev), bdevname(rdev0->bdev,b));
  4657. mddev_unlock(mddev);
  4658. } else {
  4659. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4660. mddev->persistent = 1;
  4661. rdev_for_each_list(rdev, tmp, &candidates) {
  4662. list_del_init(&rdev->same_set);
  4663. if (bind_rdev_to_array(rdev, mddev))
  4664. export_rdev(rdev);
  4665. }
  4666. autorun_array(mddev);
  4667. mddev_unlock(mddev);
  4668. }
  4669. /* on success, candidates will be empty, on error
  4670. * it won't...
  4671. */
  4672. rdev_for_each_list(rdev, tmp, &candidates) {
  4673. list_del_init(&rdev->same_set);
  4674. export_rdev(rdev);
  4675. }
  4676. mddev_put(mddev);
  4677. }
  4678. printk(KERN_INFO "md: ... autorun DONE.\n");
  4679. }
  4680. #endif /* !MODULE */
  4681. static int get_version(void __user * arg)
  4682. {
  4683. mdu_version_t ver;
  4684. ver.major = MD_MAJOR_VERSION;
  4685. ver.minor = MD_MINOR_VERSION;
  4686. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4687. if (copy_to_user(arg, &ver, sizeof(ver)))
  4688. return -EFAULT;
  4689. return 0;
  4690. }
  4691. static int get_array_info(struct mddev * mddev, void __user * arg)
  4692. {
  4693. mdu_array_info_t info;
  4694. int nr,working,insync,failed,spare;
  4695. struct md_rdev *rdev;
  4696. nr=working=insync=failed=spare=0;
  4697. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4698. nr++;
  4699. if (test_bit(Faulty, &rdev->flags))
  4700. failed++;
  4701. else {
  4702. working++;
  4703. if (test_bit(In_sync, &rdev->flags))
  4704. insync++;
  4705. else
  4706. spare++;
  4707. }
  4708. }
  4709. info.major_version = mddev->major_version;
  4710. info.minor_version = mddev->minor_version;
  4711. info.patch_version = MD_PATCHLEVEL_VERSION;
  4712. info.ctime = mddev->ctime;
  4713. info.level = mddev->level;
  4714. info.size = mddev->dev_sectors / 2;
  4715. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4716. info.size = -1;
  4717. info.nr_disks = nr;
  4718. info.raid_disks = mddev->raid_disks;
  4719. info.md_minor = mddev->md_minor;
  4720. info.not_persistent= !mddev->persistent;
  4721. info.utime = mddev->utime;
  4722. info.state = 0;
  4723. if (mddev->in_sync)
  4724. info.state = (1<<MD_SB_CLEAN);
  4725. if (mddev->bitmap && mddev->bitmap_info.offset)
  4726. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4727. info.active_disks = insync;
  4728. info.working_disks = working;
  4729. info.failed_disks = failed;
  4730. info.spare_disks = spare;
  4731. info.layout = mddev->layout;
  4732. info.chunk_size = mddev->chunk_sectors << 9;
  4733. if (copy_to_user(arg, &info, sizeof(info)))
  4734. return -EFAULT;
  4735. return 0;
  4736. }
  4737. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4738. {
  4739. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4740. char *ptr, *buf = NULL;
  4741. int err = -ENOMEM;
  4742. if (md_allow_write(mddev))
  4743. file = kmalloc(sizeof(*file), GFP_NOIO);
  4744. else
  4745. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4746. if (!file)
  4747. goto out;
  4748. /* bitmap disabled, zero the first byte and copy out */
  4749. if (!mddev->bitmap || !mddev->bitmap->file) {
  4750. file->pathname[0] = '\0';
  4751. goto copy_out;
  4752. }
  4753. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4754. if (!buf)
  4755. goto out;
  4756. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4757. if (IS_ERR(ptr))
  4758. goto out;
  4759. strcpy(file->pathname, ptr);
  4760. copy_out:
  4761. err = 0;
  4762. if (copy_to_user(arg, file, sizeof(*file)))
  4763. err = -EFAULT;
  4764. out:
  4765. kfree(buf);
  4766. kfree(file);
  4767. return err;
  4768. }
  4769. static int get_disk_info(struct mddev * mddev, void __user * arg)
  4770. {
  4771. mdu_disk_info_t info;
  4772. struct md_rdev *rdev;
  4773. if (copy_from_user(&info, arg, sizeof(info)))
  4774. return -EFAULT;
  4775. rdev = find_rdev_nr(mddev, info.number);
  4776. if (rdev) {
  4777. info.major = MAJOR(rdev->bdev->bd_dev);
  4778. info.minor = MINOR(rdev->bdev->bd_dev);
  4779. info.raid_disk = rdev->raid_disk;
  4780. info.state = 0;
  4781. if (test_bit(Faulty, &rdev->flags))
  4782. info.state |= (1<<MD_DISK_FAULTY);
  4783. else if (test_bit(In_sync, &rdev->flags)) {
  4784. info.state |= (1<<MD_DISK_ACTIVE);
  4785. info.state |= (1<<MD_DISK_SYNC);
  4786. }
  4787. if (test_bit(WriteMostly, &rdev->flags))
  4788. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4789. } else {
  4790. info.major = info.minor = 0;
  4791. info.raid_disk = -1;
  4792. info.state = (1<<MD_DISK_REMOVED);
  4793. }
  4794. if (copy_to_user(arg, &info, sizeof(info)))
  4795. return -EFAULT;
  4796. return 0;
  4797. }
  4798. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  4799. {
  4800. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4801. struct md_rdev *rdev;
  4802. dev_t dev = MKDEV(info->major,info->minor);
  4803. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4804. return -EOVERFLOW;
  4805. if (!mddev->raid_disks) {
  4806. int err;
  4807. /* expecting a device which has a superblock */
  4808. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4809. if (IS_ERR(rdev)) {
  4810. printk(KERN_WARNING
  4811. "md: md_import_device returned %ld\n",
  4812. PTR_ERR(rdev));
  4813. return PTR_ERR(rdev);
  4814. }
  4815. if (!list_empty(&mddev->disks)) {
  4816. struct md_rdev *rdev0
  4817. = list_entry(mddev->disks.next,
  4818. struct md_rdev, same_set);
  4819. err = super_types[mddev->major_version]
  4820. .load_super(rdev, rdev0, mddev->minor_version);
  4821. if (err < 0) {
  4822. printk(KERN_WARNING
  4823. "md: %s has different UUID to %s\n",
  4824. bdevname(rdev->bdev,b),
  4825. bdevname(rdev0->bdev,b2));
  4826. export_rdev(rdev);
  4827. return -EINVAL;
  4828. }
  4829. }
  4830. err = bind_rdev_to_array(rdev, mddev);
  4831. if (err)
  4832. export_rdev(rdev);
  4833. return err;
  4834. }
  4835. /*
  4836. * add_new_disk can be used once the array is assembled
  4837. * to add "hot spares". They must already have a superblock
  4838. * written
  4839. */
  4840. if (mddev->pers) {
  4841. int err;
  4842. if (!mddev->pers->hot_add_disk) {
  4843. printk(KERN_WARNING
  4844. "%s: personality does not support diskops!\n",
  4845. mdname(mddev));
  4846. return -EINVAL;
  4847. }
  4848. if (mddev->persistent)
  4849. rdev = md_import_device(dev, mddev->major_version,
  4850. mddev->minor_version);
  4851. else
  4852. rdev = md_import_device(dev, -1, -1);
  4853. if (IS_ERR(rdev)) {
  4854. printk(KERN_WARNING
  4855. "md: md_import_device returned %ld\n",
  4856. PTR_ERR(rdev));
  4857. return PTR_ERR(rdev);
  4858. }
  4859. /* set saved_raid_disk if appropriate */
  4860. if (!mddev->persistent) {
  4861. if (info->state & (1<<MD_DISK_SYNC) &&
  4862. info->raid_disk < mddev->raid_disks) {
  4863. rdev->raid_disk = info->raid_disk;
  4864. set_bit(In_sync, &rdev->flags);
  4865. } else
  4866. rdev->raid_disk = -1;
  4867. } else
  4868. super_types[mddev->major_version].
  4869. validate_super(mddev, rdev);
  4870. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4871. (!test_bit(In_sync, &rdev->flags) ||
  4872. rdev->raid_disk != info->raid_disk)) {
  4873. /* This was a hot-add request, but events doesn't
  4874. * match, so reject it.
  4875. */
  4876. export_rdev(rdev);
  4877. return -EINVAL;
  4878. }
  4879. if (test_bit(In_sync, &rdev->flags))
  4880. rdev->saved_raid_disk = rdev->raid_disk;
  4881. else
  4882. rdev->saved_raid_disk = -1;
  4883. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4884. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4885. set_bit(WriteMostly, &rdev->flags);
  4886. else
  4887. clear_bit(WriteMostly, &rdev->flags);
  4888. rdev->raid_disk = -1;
  4889. err = bind_rdev_to_array(rdev, mddev);
  4890. if (!err && !mddev->pers->hot_remove_disk) {
  4891. /* If there is hot_add_disk but no hot_remove_disk
  4892. * then added disks for geometry changes,
  4893. * and should be added immediately.
  4894. */
  4895. super_types[mddev->major_version].
  4896. validate_super(mddev, rdev);
  4897. err = mddev->pers->hot_add_disk(mddev, rdev);
  4898. if (err)
  4899. unbind_rdev_from_array(rdev);
  4900. }
  4901. if (err)
  4902. export_rdev(rdev);
  4903. else
  4904. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4905. md_update_sb(mddev, 1);
  4906. if (mddev->degraded)
  4907. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4908. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4909. if (!err)
  4910. md_new_event(mddev);
  4911. md_wakeup_thread(mddev->thread);
  4912. return err;
  4913. }
  4914. /* otherwise, add_new_disk is only allowed
  4915. * for major_version==0 superblocks
  4916. */
  4917. if (mddev->major_version != 0) {
  4918. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4919. mdname(mddev));
  4920. return -EINVAL;
  4921. }
  4922. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4923. int err;
  4924. rdev = md_import_device(dev, -1, 0);
  4925. if (IS_ERR(rdev)) {
  4926. printk(KERN_WARNING
  4927. "md: error, md_import_device() returned %ld\n",
  4928. PTR_ERR(rdev));
  4929. return PTR_ERR(rdev);
  4930. }
  4931. rdev->desc_nr = info->number;
  4932. if (info->raid_disk < mddev->raid_disks)
  4933. rdev->raid_disk = info->raid_disk;
  4934. else
  4935. rdev->raid_disk = -1;
  4936. if (rdev->raid_disk < mddev->raid_disks)
  4937. if (info->state & (1<<MD_DISK_SYNC))
  4938. set_bit(In_sync, &rdev->flags);
  4939. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4940. set_bit(WriteMostly, &rdev->flags);
  4941. if (!mddev->persistent) {
  4942. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4943. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4944. } else
  4945. rdev->sb_start = calc_dev_sboffset(rdev);
  4946. rdev->sectors = rdev->sb_start;
  4947. err = bind_rdev_to_array(rdev, mddev);
  4948. if (err) {
  4949. export_rdev(rdev);
  4950. return err;
  4951. }
  4952. }
  4953. return 0;
  4954. }
  4955. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  4956. {
  4957. char b[BDEVNAME_SIZE];
  4958. struct md_rdev *rdev;
  4959. rdev = find_rdev(mddev, dev);
  4960. if (!rdev)
  4961. return -ENXIO;
  4962. if (rdev->raid_disk >= 0)
  4963. goto busy;
  4964. kick_rdev_from_array(rdev);
  4965. md_update_sb(mddev, 1);
  4966. md_new_event(mddev);
  4967. return 0;
  4968. busy:
  4969. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4970. bdevname(rdev->bdev,b), mdname(mddev));
  4971. return -EBUSY;
  4972. }
  4973. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  4974. {
  4975. char b[BDEVNAME_SIZE];
  4976. int err;
  4977. struct md_rdev *rdev;
  4978. if (!mddev->pers)
  4979. return -ENODEV;
  4980. if (mddev->major_version != 0) {
  4981. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4982. " version-0 superblocks.\n",
  4983. mdname(mddev));
  4984. return -EINVAL;
  4985. }
  4986. if (!mddev->pers->hot_add_disk) {
  4987. printk(KERN_WARNING
  4988. "%s: personality does not support diskops!\n",
  4989. mdname(mddev));
  4990. return -EINVAL;
  4991. }
  4992. rdev = md_import_device(dev, -1, 0);
  4993. if (IS_ERR(rdev)) {
  4994. printk(KERN_WARNING
  4995. "md: error, md_import_device() returned %ld\n",
  4996. PTR_ERR(rdev));
  4997. return -EINVAL;
  4998. }
  4999. if (mddev->persistent)
  5000. rdev->sb_start = calc_dev_sboffset(rdev);
  5001. else
  5002. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5003. rdev->sectors = rdev->sb_start;
  5004. if (test_bit(Faulty, &rdev->flags)) {
  5005. printk(KERN_WARNING
  5006. "md: can not hot-add faulty %s disk to %s!\n",
  5007. bdevname(rdev->bdev,b), mdname(mddev));
  5008. err = -EINVAL;
  5009. goto abort_export;
  5010. }
  5011. clear_bit(In_sync, &rdev->flags);
  5012. rdev->desc_nr = -1;
  5013. rdev->saved_raid_disk = -1;
  5014. err = bind_rdev_to_array(rdev, mddev);
  5015. if (err)
  5016. goto abort_export;
  5017. /*
  5018. * The rest should better be atomic, we can have disk failures
  5019. * noticed in interrupt contexts ...
  5020. */
  5021. rdev->raid_disk = -1;
  5022. md_update_sb(mddev, 1);
  5023. /*
  5024. * Kick recovery, maybe this spare has to be added to the
  5025. * array immediately.
  5026. */
  5027. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5028. md_wakeup_thread(mddev->thread);
  5029. md_new_event(mddev);
  5030. return 0;
  5031. abort_export:
  5032. export_rdev(rdev);
  5033. return err;
  5034. }
  5035. static int set_bitmap_file(struct mddev *mddev, int fd)
  5036. {
  5037. int err;
  5038. if (mddev->pers) {
  5039. if (!mddev->pers->quiesce)
  5040. return -EBUSY;
  5041. if (mddev->recovery || mddev->sync_thread)
  5042. return -EBUSY;
  5043. /* we should be able to change the bitmap.. */
  5044. }
  5045. if (fd >= 0) {
  5046. if (mddev->bitmap)
  5047. return -EEXIST; /* cannot add when bitmap is present */
  5048. mddev->bitmap_info.file = fget(fd);
  5049. if (mddev->bitmap_info.file == NULL) {
  5050. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5051. mdname(mddev));
  5052. return -EBADF;
  5053. }
  5054. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5055. if (err) {
  5056. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5057. mdname(mddev));
  5058. fput(mddev->bitmap_info.file);
  5059. mddev->bitmap_info.file = NULL;
  5060. return err;
  5061. }
  5062. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5063. } else if (mddev->bitmap == NULL)
  5064. return -ENOENT; /* cannot remove what isn't there */
  5065. err = 0;
  5066. if (mddev->pers) {
  5067. mddev->pers->quiesce(mddev, 1);
  5068. if (fd >= 0) {
  5069. err = bitmap_create(mddev);
  5070. if (!err)
  5071. err = bitmap_load(mddev);
  5072. }
  5073. if (fd < 0 || err) {
  5074. bitmap_destroy(mddev);
  5075. fd = -1; /* make sure to put the file */
  5076. }
  5077. mddev->pers->quiesce(mddev, 0);
  5078. }
  5079. if (fd < 0) {
  5080. if (mddev->bitmap_info.file) {
  5081. restore_bitmap_write_access(mddev->bitmap_info.file);
  5082. fput(mddev->bitmap_info.file);
  5083. }
  5084. mddev->bitmap_info.file = NULL;
  5085. }
  5086. return err;
  5087. }
  5088. /*
  5089. * set_array_info is used two different ways
  5090. * The original usage is when creating a new array.
  5091. * In this usage, raid_disks is > 0 and it together with
  5092. * level, size, not_persistent,layout,chunksize determine the
  5093. * shape of the array.
  5094. * This will always create an array with a type-0.90.0 superblock.
  5095. * The newer usage is when assembling an array.
  5096. * In this case raid_disks will be 0, and the major_version field is
  5097. * use to determine which style super-blocks are to be found on the devices.
  5098. * The minor and patch _version numbers are also kept incase the
  5099. * super_block handler wishes to interpret them.
  5100. */
  5101. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5102. {
  5103. if (info->raid_disks == 0) {
  5104. /* just setting version number for superblock loading */
  5105. if (info->major_version < 0 ||
  5106. info->major_version >= ARRAY_SIZE(super_types) ||
  5107. super_types[info->major_version].name == NULL) {
  5108. /* maybe try to auto-load a module? */
  5109. printk(KERN_INFO
  5110. "md: superblock version %d not known\n",
  5111. info->major_version);
  5112. return -EINVAL;
  5113. }
  5114. mddev->major_version = info->major_version;
  5115. mddev->minor_version = info->minor_version;
  5116. mddev->patch_version = info->patch_version;
  5117. mddev->persistent = !info->not_persistent;
  5118. /* ensure mddev_put doesn't delete this now that there
  5119. * is some minimal configuration.
  5120. */
  5121. mddev->ctime = get_seconds();
  5122. return 0;
  5123. }
  5124. mddev->major_version = MD_MAJOR_VERSION;
  5125. mddev->minor_version = MD_MINOR_VERSION;
  5126. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5127. mddev->ctime = get_seconds();
  5128. mddev->level = info->level;
  5129. mddev->clevel[0] = 0;
  5130. mddev->dev_sectors = 2 * (sector_t)info->size;
  5131. mddev->raid_disks = info->raid_disks;
  5132. /* don't set md_minor, it is determined by which /dev/md* was
  5133. * openned
  5134. */
  5135. if (info->state & (1<<MD_SB_CLEAN))
  5136. mddev->recovery_cp = MaxSector;
  5137. else
  5138. mddev->recovery_cp = 0;
  5139. mddev->persistent = ! info->not_persistent;
  5140. mddev->external = 0;
  5141. mddev->layout = info->layout;
  5142. mddev->chunk_sectors = info->chunk_size >> 9;
  5143. mddev->max_disks = MD_SB_DISKS;
  5144. if (mddev->persistent)
  5145. mddev->flags = 0;
  5146. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5147. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5148. mddev->bitmap_info.offset = 0;
  5149. mddev->reshape_position = MaxSector;
  5150. /*
  5151. * Generate a 128 bit UUID
  5152. */
  5153. get_random_bytes(mddev->uuid, 16);
  5154. mddev->new_level = mddev->level;
  5155. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5156. mddev->new_layout = mddev->layout;
  5157. mddev->delta_disks = 0;
  5158. return 0;
  5159. }
  5160. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5161. {
  5162. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5163. if (mddev->external_size)
  5164. return;
  5165. mddev->array_sectors = array_sectors;
  5166. }
  5167. EXPORT_SYMBOL(md_set_array_sectors);
  5168. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5169. {
  5170. struct md_rdev *rdev;
  5171. int rv;
  5172. int fit = (num_sectors == 0);
  5173. if (mddev->pers->resize == NULL)
  5174. return -EINVAL;
  5175. /* The "num_sectors" is the number of sectors of each device that
  5176. * is used. This can only make sense for arrays with redundancy.
  5177. * linear and raid0 always use whatever space is available. We can only
  5178. * consider changing this number if no resync or reconstruction is
  5179. * happening, and if the new size is acceptable. It must fit before the
  5180. * sb_start or, if that is <data_offset, it must fit before the size
  5181. * of each device. If num_sectors is zero, we find the largest size
  5182. * that fits.
  5183. */
  5184. if (mddev->sync_thread)
  5185. return -EBUSY;
  5186. if (mddev->bitmap)
  5187. /* Sorry, cannot grow a bitmap yet, just remove it,
  5188. * grow, and re-add.
  5189. */
  5190. return -EBUSY;
  5191. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5192. sector_t avail = rdev->sectors;
  5193. if (fit && (num_sectors == 0 || num_sectors > avail))
  5194. num_sectors = avail;
  5195. if (avail < num_sectors)
  5196. return -ENOSPC;
  5197. }
  5198. rv = mddev->pers->resize(mddev, num_sectors);
  5199. if (!rv)
  5200. revalidate_disk(mddev->gendisk);
  5201. return rv;
  5202. }
  5203. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5204. {
  5205. int rv;
  5206. /* change the number of raid disks */
  5207. if (mddev->pers->check_reshape == NULL)
  5208. return -EINVAL;
  5209. if (raid_disks <= 0 ||
  5210. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5211. return -EINVAL;
  5212. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5213. return -EBUSY;
  5214. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5215. rv = mddev->pers->check_reshape(mddev);
  5216. if (rv < 0)
  5217. mddev->delta_disks = 0;
  5218. return rv;
  5219. }
  5220. /*
  5221. * update_array_info is used to change the configuration of an
  5222. * on-line array.
  5223. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5224. * fields in the info are checked against the array.
  5225. * Any differences that cannot be handled will cause an error.
  5226. * Normally, only one change can be managed at a time.
  5227. */
  5228. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5229. {
  5230. int rv = 0;
  5231. int cnt = 0;
  5232. int state = 0;
  5233. /* calculate expected state,ignoring low bits */
  5234. if (mddev->bitmap && mddev->bitmap_info.offset)
  5235. state |= (1 << MD_SB_BITMAP_PRESENT);
  5236. if (mddev->major_version != info->major_version ||
  5237. mddev->minor_version != info->minor_version ||
  5238. /* mddev->patch_version != info->patch_version || */
  5239. mddev->ctime != info->ctime ||
  5240. mddev->level != info->level ||
  5241. /* mddev->layout != info->layout || */
  5242. !mddev->persistent != info->not_persistent||
  5243. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5244. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5245. ((state^info->state) & 0xfffffe00)
  5246. )
  5247. return -EINVAL;
  5248. /* Check there is only one change */
  5249. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5250. cnt++;
  5251. if (mddev->raid_disks != info->raid_disks)
  5252. cnt++;
  5253. if (mddev->layout != info->layout)
  5254. cnt++;
  5255. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5256. cnt++;
  5257. if (cnt == 0)
  5258. return 0;
  5259. if (cnt > 1)
  5260. return -EINVAL;
  5261. if (mddev->layout != info->layout) {
  5262. /* Change layout
  5263. * we don't need to do anything at the md level, the
  5264. * personality will take care of it all.
  5265. */
  5266. if (mddev->pers->check_reshape == NULL)
  5267. return -EINVAL;
  5268. else {
  5269. mddev->new_layout = info->layout;
  5270. rv = mddev->pers->check_reshape(mddev);
  5271. if (rv)
  5272. mddev->new_layout = mddev->layout;
  5273. return rv;
  5274. }
  5275. }
  5276. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5277. rv = update_size(mddev, (sector_t)info->size * 2);
  5278. if (mddev->raid_disks != info->raid_disks)
  5279. rv = update_raid_disks(mddev, info->raid_disks);
  5280. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5281. if (mddev->pers->quiesce == NULL)
  5282. return -EINVAL;
  5283. if (mddev->recovery || mddev->sync_thread)
  5284. return -EBUSY;
  5285. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5286. /* add the bitmap */
  5287. if (mddev->bitmap)
  5288. return -EEXIST;
  5289. if (mddev->bitmap_info.default_offset == 0)
  5290. return -EINVAL;
  5291. mddev->bitmap_info.offset =
  5292. mddev->bitmap_info.default_offset;
  5293. mddev->pers->quiesce(mddev, 1);
  5294. rv = bitmap_create(mddev);
  5295. if (!rv)
  5296. rv = bitmap_load(mddev);
  5297. if (rv)
  5298. bitmap_destroy(mddev);
  5299. mddev->pers->quiesce(mddev, 0);
  5300. } else {
  5301. /* remove the bitmap */
  5302. if (!mddev->bitmap)
  5303. return -ENOENT;
  5304. if (mddev->bitmap->file)
  5305. return -EINVAL;
  5306. mddev->pers->quiesce(mddev, 1);
  5307. bitmap_destroy(mddev);
  5308. mddev->pers->quiesce(mddev, 0);
  5309. mddev->bitmap_info.offset = 0;
  5310. }
  5311. }
  5312. md_update_sb(mddev, 1);
  5313. return rv;
  5314. }
  5315. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5316. {
  5317. struct md_rdev *rdev;
  5318. if (mddev->pers == NULL)
  5319. return -ENODEV;
  5320. rdev = find_rdev(mddev, dev);
  5321. if (!rdev)
  5322. return -ENODEV;
  5323. md_error(mddev, rdev);
  5324. if (!test_bit(Faulty, &rdev->flags))
  5325. return -EBUSY;
  5326. return 0;
  5327. }
  5328. /*
  5329. * We have a problem here : there is no easy way to give a CHS
  5330. * virtual geometry. We currently pretend that we have a 2 heads
  5331. * 4 sectors (with a BIG number of cylinders...). This drives
  5332. * dosfs just mad... ;-)
  5333. */
  5334. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5335. {
  5336. struct mddev *mddev = bdev->bd_disk->private_data;
  5337. geo->heads = 2;
  5338. geo->sectors = 4;
  5339. geo->cylinders = mddev->array_sectors / 8;
  5340. return 0;
  5341. }
  5342. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5343. unsigned int cmd, unsigned long arg)
  5344. {
  5345. int err = 0;
  5346. void __user *argp = (void __user *)arg;
  5347. struct mddev *mddev = NULL;
  5348. int ro;
  5349. if (!capable(CAP_SYS_ADMIN))
  5350. return -EACCES;
  5351. /*
  5352. * Commands dealing with the RAID driver but not any
  5353. * particular array:
  5354. */
  5355. switch (cmd)
  5356. {
  5357. case RAID_VERSION:
  5358. err = get_version(argp);
  5359. goto done;
  5360. case PRINT_RAID_DEBUG:
  5361. err = 0;
  5362. md_print_devices();
  5363. goto done;
  5364. #ifndef MODULE
  5365. case RAID_AUTORUN:
  5366. err = 0;
  5367. autostart_arrays(arg);
  5368. goto done;
  5369. #endif
  5370. default:;
  5371. }
  5372. /*
  5373. * Commands creating/starting a new array:
  5374. */
  5375. mddev = bdev->bd_disk->private_data;
  5376. if (!mddev) {
  5377. BUG();
  5378. goto abort;
  5379. }
  5380. err = mddev_lock(mddev);
  5381. if (err) {
  5382. printk(KERN_INFO
  5383. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5384. err, cmd);
  5385. goto abort;
  5386. }
  5387. switch (cmd)
  5388. {
  5389. case SET_ARRAY_INFO:
  5390. {
  5391. mdu_array_info_t info;
  5392. if (!arg)
  5393. memset(&info, 0, sizeof(info));
  5394. else if (copy_from_user(&info, argp, sizeof(info))) {
  5395. err = -EFAULT;
  5396. goto abort_unlock;
  5397. }
  5398. if (mddev->pers) {
  5399. err = update_array_info(mddev, &info);
  5400. if (err) {
  5401. printk(KERN_WARNING "md: couldn't update"
  5402. " array info. %d\n", err);
  5403. goto abort_unlock;
  5404. }
  5405. goto done_unlock;
  5406. }
  5407. if (!list_empty(&mddev->disks)) {
  5408. printk(KERN_WARNING
  5409. "md: array %s already has disks!\n",
  5410. mdname(mddev));
  5411. err = -EBUSY;
  5412. goto abort_unlock;
  5413. }
  5414. if (mddev->raid_disks) {
  5415. printk(KERN_WARNING
  5416. "md: array %s already initialised!\n",
  5417. mdname(mddev));
  5418. err = -EBUSY;
  5419. goto abort_unlock;
  5420. }
  5421. err = set_array_info(mddev, &info);
  5422. if (err) {
  5423. printk(KERN_WARNING "md: couldn't set"
  5424. " array info. %d\n", err);
  5425. goto abort_unlock;
  5426. }
  5427. }
  5428. goto done_unlock;
  5429. default:;
  5430. }
  5431. /*
  5432. * Commands querying/configuring an existing array:
  5433. */
  5434. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5435. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5436. if ((!mddev->raid_disks && !mddev->external)
  5437. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5438. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5439. && cmd != GET_BITMAP_FILE) {
  5440. err = -ENODEV;
  5441. goto abort_unlock;
  5442. }
  5443. /*
  5444. * Commands even a read-only array can execute:
  5445. */
  5446. switch (cmd)
  5447. {
  5448. case GET_ARRAY_INFO:
  5449. err = get_array_info(mddev, argp);
  5450. goto done_unlock;
  5451. case GET_BITMAP_FILE:
  5452. err = get_bitmap_file(mddev, argp);
  5453. goto done_unlock;
  5454. case GET_DISK_INFO:
  5455. err = get_disk_info(mddev, argp);
  5456. goto done_unlock;
  5457. case RESTART_ARRAY_RW:
  5458. err = restart_array(mddev);
  5459. goto done_unlock;
  5460. case STOP_ARRAY:
  5461. err = do_md_stop(mddev, 0, 1);
  5462. goto done_unlock;
  5463. case STOP_ARRAY_RO:
  5464. err = md_set_readonly(mddev, 1);
  5465. goto done_unlock;
  5466. case BLKROSET:
  5467. if (get_user(ro, (int __user *)(arg))) {
  5468. err = -EFAULT;
  5469. goto done_unlock;
  5470. }
  5471. err = -EINVAL;
  5472. /* if the bdev is going readonly the value of mddev->ro
  5473. * does not matter, no writes are coming
  5474. */
  5475. if (ro)
  5476. goto done_unlock;
  5477. /* are we are already prepared for writes? */
  5478. if (mddev->ro != 1)
  5479. goto done_unlock;
  5480. /* transitioning to readauto need only happen for
  5481. * arrays that call md_write_start
  5482. */
  5483. if (mddev->pers) {
  5484. err = restart_array(mddev);
  5485. if (err == 0) {
  5486. mddev->ro = 2;
  5487. set_disk_ro(mddev->gendisk, 0);
  5488. }
  5489. }
  5490. goto done_unlock;
  5491. }
  5492. /*
  5493. * The remaining ioctls are changing the state of the
  5494. * superblock, so we do not allow them on read-only arrays.
  5495. * However non-MD ioctls (e.g. get-size) will still come through
  5496. * here and hit the 'default' below, so only disallow
  5497. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5498. */
  5499. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5500. if (mddev->ro == 2) {
  5501. mddev->ro = 0;
  5502. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5503. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5504. md_wakeup_thread(mddev->thread);
  5505. } else {
  5506. err = -EROFS;
  5507. goto abort_unlock;
  5508. }
  5509. }
  5510. switch (cmd)
  5511. {
  5512. case ADD_NEW_DISK:
  5513. {
  5514. mdu_disk_info_t info;
  5515. if (copy_from_user(&info, argp, sizeof(info)))
  5516. err = -EFAULT;
  5517. else
  5518. err = add_new_disk(mddev, &info);
  5519. goto done_unlock;
  5520. }
  5521. case HOT_REMOVE_DISK:
  5522. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5523. goto done_unlock;
  5524. case HOT_ADD_DISK:
  5525. err = hot_add_disk(mddev, new_decode_dev(arg));
  5526. goto done_unlock;
  5527. case SET_DISK_FAULTY:
  5528. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5529. goto done_unlock;
  5530. case RUN_ARRAY:
  5531. err = do_md_run(mddev);
  5532. goto done_unlock;
  5533. case SET_BITMAP_FILE:
  5534. err = set_bitmap_file(mddev, (int)arg);
  5535. goto done_unlock;
  5536. default:
  5537. err = -EINVAL;
  5538. goto abort_unlock;
  5539. }
  5540. done_unlock:
  5541. abort_unlock:
  5542. if (mddev->hold_active == UNTIL_IOCTL &&
  5543. err != -EINVAL)
  5544. mddev->hold_active = 0;
  5545. mddev_unlock(mddev);
  5546. return err;
  5547. done:
  5548. if (err)
  5549. MD_BUG();
  5550. abort:
  5551. return err;
  5552. }
  5553. #ifdef CONFIG_COMPAT
  5554. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5555. unsigned int cmd, unsigned long arg)
  5556. {
  5557. switch (cmd) {
  5558. case HOT_REMOVE_DISK:
  5559. case HOT_ADD_DISK:
  5560. case SET_DISK_FAULTY:
  5561. case SET_BITMAP_FILE:
  5562. /* These take in integer arg, do not convert */
  5563. break;
  5564. default:
  5565. arg = (unsigned long)compat_ptr(arg);
  5566. break;
  5567. }
  5568. return md_ioctl(bdev, mode, cmd, arg);
  5569. }
  5570. #endif /* CONFIG_COMPAT */
  5571. static int md_open(struct block_device *bdev, fmode_t mode)
  5572. {
  5573. /*
  5574. * Succeed if we can lock the mddev, which confirms that
  5575. * it isn't being stopped right now.
  5576. */
  5577. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5578. int err;
  5579. if (mddev->gendisk != bdev->bd_disk) {
  5580. /* we are racing with mddev_put which is discarding this
  5581. * bd_disk.
  5582. */
  5583. mddev_put(mddev);
  5584. /* Wait until bdev->bd_disk is definitely gone */
  5585. flush_workqueue(md_misc_wq);
  5586. /* Then retry the open from the top */
  5587. return -ERESTARTSYS;
  5588. }
  5589. BUG_ON(mddev != bdev->bd_disk->private_data);
  5590. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5591. goto out;
  5592. err = 0;
  5593. atomic_inc(&mddev->openers);
  5594. mutex_unlock(&mddev->open_mutex);
  5595. check_disk_change(bdev);
  5596. out:
  5597. return err;
  5598. }
  5599. static int md_release(struct gendisk *disk, fmode_t mode)
  5600. {
  5601. struct mddev *mddev = disk->private_data;
  5602. BUG_ON(!mddev);
  5603. atomic_dec(&mddev->openers);
  5604. mddev_put(mddev);
  5605. return 0;
  5606. }
  5607. static int md_media_changed(struct gendisk *disk)
  5608. {
  5609. struct mddev *mddev = disk->private_data;
  5610. return mddev->changed;
  5611. }
  5612. static int md_revalidate(struct gendisk *disk)
  5613. {
  5614. struct mddev *mddev = disk->private_data;
  5615. mddev->changed = 0;
  5616. return 0;
  5617. }
  5618. static const struct block_device_operations md_fops =
  5619. {
  5620. .owner = THIS_MODULE,
  5621. .open = md_open,
  5622. .release = md_release,
  5623. .ioctl = md_ioctl,
  5624. #ifdef CONFIG_COMPAT
  5625. .compat_ioctl = md_compat_ioctl,
  5626. #endif
  5627. .getgeo = md_getgeo,
  5628. .media_changed = md_media_changed,
  5629. .revalidate_disk= md_revalidate,
  5630. };
  5631. static int md_thread(void * arg)
  5632. {
  5633. struct md_thread *thread = arg;
  5634. /*
  5635. * md_thread is a 'system-thread', it's priority should be very
  5636. * high. We avoid resource deadlocks individually in each
  5637. * raid personality. (RAID5 does preallocation) We also use RR and
  5638. * the very same RT priority as kswapd, thus we will never get
  5639. * into a priority inversion deadlock.
  5640. *
  5641. * we definitely have to have equal or higher priority than
  5642. * bdflush, otherwise bdflush will deadlock if there are too
  5643. * many dirty RAID5 blocks.
  5644. */
  5645. allow_signal(SIGKILL);
  5646. while (!kthread_should_stop()) {
  5647. /* We need to wait INTERRUPTIBLE so that
  5648. * we don't add to the load-average.
  5649. * That means we need to be sure no signals are
  5650. * pending
  5651. */
  5652. if (signal_pending(current))
  5653. flush_signals(current);
  5654. wait_event_interruptible_timeout
  5655. (thread->wqueue,
  5656. test_bit(THREAD_WAKEUP, &thread->flags)
  5657. || kthread_should_stop(),
  5658. thread->timeout);
  5659. clear_bit(THREAD_WAKEUP, &thread->flags);
  5660. if (!kthread_should_stop())
  5661. thread->run(thread->mddev);
  5662. }
  5663. return 0;
  5664. }
  5665. void md_wakeup_thread(struct md_thread *thread)
  5666. {
  5667. if (thread) {
  5668. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5669. set_bit(THREAD_WAKEUP, &thread->flags);
  5670. wake_up(&thread->wqueue);
  5671. }
  5672. }
  5673. struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
  5674. const char *name)
  5675. {
  5676. struct md_thread *thread;
  5677. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5678. if (!thread)
  5679. return NULL;
  5680. init_waitqueue_head(&thread->wqueue);
  5681. thread->run = run;
  5682. thread->mddev = mddev;
  5683. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5684. thread->tsk = kthread_run(md_thread, thread,
  5685. "%s_%s",
  5686. mdname(thread->mddev),
  5687. name ?: mddev->pers->name);
  5688. if (IS_ERR(thread->tsk)) {
  5689. kfree(thread);
  5690. return NULL;
  5691. }
  5692. return thread;
  5693. }
  5694. void md_unregister_thread(struct md_thread **threadp)
  5695. {
  5696. struct md_thread *thread = *threadp;
  5697. if (!thread)
  5698. return;
  5699. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5700. /* Locking ensures that mddev_unlock does not wake_up a
  5701. * non-existent thread
  5702. */
  5703. spin_lock(&pers_lock);
  5704. *threadp = NULL;
  5705. spin_unlock(&pers_lock);
  5706. kthread_stop(thread->tsk);
  5707. kfree(thread);
  5708. }
  5709. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  5710. {
  5711. if (!mddev) {
  5712. MD_BUG();
  5713. return;
  5714. }
  5715. if (!rdev || test_bit(Faulty, &rdev->flags))
  5716. return;
  5717. if (!mddev->pers || !mddev->pers->error_handler)
  5718. return;
  5719. mddev->pers->error_handler(mddev,rdev);
  5720. if (mddev->degraded)
  5721. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5722. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5723. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5724. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5725. md_wakeup_thread(mddev->thread);
  5726. if (mddev->event_work.func)
  5727. queue_work(md_misc_wq, &mddev->event_work);
  5728. md_new_event_inintr(mddev);
  5729. }
  5730. /* seq_file implementation /proc/mdstat */
  5731. static void status_unused(struct seq_file *seq)
  5732. {
  5733. int i = 0;
  5734. struct md_rdev *rdev;
  5735. seq_printf(seq, "unused devices: ");
  5736. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5737. char b[BDEVNAME_SIZE];
  5738. i++;
  5739. seq_printf(seq, "%s ",
  5740. bdevname(rdev->bdev,b));
  5741. }
  5742. if (!i)
  5743. seq_printf(seq, "<none>");
  5744. seq_printf(seq, "\n");
  5745. }
  5746. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  5747. {
  5748. sector_t max_sectors, resync, res;
  5749. unsigned long dt, db;
  5750. sector_t rt;
  5751. int scale;
  5752. unsigned int per_milli;
  5753. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5754. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5755. max_sectors = mddev->resync_max_sectors;
  5756. else
  5757. max_sectors = mddev->dev_sectors;
  5758. /*
  5759. * Should not happen.
  5760. */
  5761. if (!max_sectors) {
  5762. MD_BUG();
  5763. return;
  5764. }
  5765. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5766. * in a sector_t, and (max_sectors>>scale) will fit in a
  5767. * u32, as those are the requirements for sector_div.
  5768. * Thus 'scale' must be at least 10
  5769. */
  5770. scale = 10;
  5771. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5772. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5773. scale++;
  5774. }
  5775. res = (resync>>scale)*1000;
  5776. sector_div(res, (u32)((max_sectors>>scale)+1));
  5777. per_milli = res;
  5778. {
  5779. int i, x = per_milli/50, y = 20-x;
  5780. seq_printf(seq, "[");
  5781. for (i = 0; i < x; i++)
  5782. seq_printf(seq, "=");
  5783. seq_printf(seq, ">");
  5784. for (i = 0; i < y; i++)
  5785. seq_printf(seq, ".");
  5786. seq_printf(seq, "] ");
  5787. }
  5788. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5789. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5790. "reshape" :
  5791. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5792. "check" :
  5793. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5794. "resync" : "recovery"))),
  5795. per_milli/10, per_milli % 10,
  5796. (unsigned long long) resync/2,
  5797. (unsigned long long) max_sectors/2);
  5798. /*
  5799. * dt: time from mark until now
  5800. * db: blocks written from mark until now
  5801. * rt: remaining time
  5802. *
  5803. * rt is a sector_t, so could be 32bit or 64bit.
  5804. * So we divide before multiply in case it is 32bit and close
  5805. * to the limit.
  5806. * We scale the divisor (db) by 32 to avoid losing precision
  5807. * near the end of resync when the number of remaining sectors
  5808. * is close to 'db'.
  5809. * We then divide rt by 32 after multiplying by db to compensate.
  5810. * The '+1' avoids division by zero if db is very small.
  5811. */
  5812. dt = ((jiffies - mddev->resync_mark) / HZ);
  5813. if (!dt) dt++;
  5814. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5815. - mddev->resync_mark_cnt;
  5816. rt = max_sectors - resync; /* number of remaining sectors */
  5817. sector_div(rt, db/32+1);
  5818. rt *= dt;
  5819. rt >>= 5;
  5820. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5821. ((unsigned long)rt % 60)/6);
  5822. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5823. }
  5824. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5825. {
  5826. struct list_head *tmp;
  5827. loff_t l = *pos;
  5828. struct mddev *mddev;
  5829. if (l >= 0x10000)
  5830. return NULL;
  5831. if (!l--)
  5832. /* header */
  5833. return (void*)1;
  5834. spin_lock(&all_mddevs_lock);
  5835. list_for_each(tmp,&all_mddevs)
  5836. if (!l--) {
  5837. mddev = list_entry(tmp, struct mddev, all_mddevs);
  5838. mddev_get(mddev);
  5839. spin_unlock(&all_mddevs_lock);
  5840. return mddev;
  5841. }
  5842. spin_unlock(&all_mddevs_lock);
  5843. if (!l--)
  5844. return (void*)2;/* tail */
  5845. return NULL;
  5846. }
  5847. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5848. {
  5849. struct list_head *tmp;
  5850. struct mddev *next_mddev, *mddev = v;
  5851. ++*pos;
  5852. if (v == (void*)2)
  5853. return NULL;
  5854. spin_lock(&all_mddevs_lock);
  5855. if (v == (void*)1)
  5856. tmp = all_mddevs.next;
  5857. else
  5858. tmp = mddev->all_mddevs.next;
  5859. if (tmp != &all_mddevs)
  5860. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  5861. else {
  5862. next_mddev = (void*)2;
  5863. *pos = 0x10000;
  5864. }
  5865. spin_unlock(&all_mddevs_lock);
  5866. if (v != (void*)1)
  5867. mddev_put(mddev);
  5868. return next_mddev;
  5869. }
  5870. static void md_seq_stop(struct seq_file *seq, void *v)
  5871. {
  5872. struct mddev *mddev = v;
  5873. if (mddev && v != (void*)1 && v != (void*)2)
  5874. mddev_put(mddev);
  5875. }
  5876. static int md_seq_show(struct seq_file *seq, void *v)
  5877. {
  5878. struct mddev *mddev = v;
  5879. sector_t sectors;
  5880. struct md_rdev *rdev;
  5881. struct bitmap *bitmap;
  5882. if (v == (void*)1) {
  5883. struct md_personality *pers;
  5884. seq_printf(seq, "Personalities : ");
  5885. spin_lock(&pers_lock);
  5886. list_for_each_entry(pers, &pers_list, list)
  5887. seq_printf(seq, "[%s] ", pers->name);
  5888. spin_unlock(&pers_lock);
  5889. seq_printf(seq, "\n");
  5890. seq->poll_event = atomic_read(&md_event_count);
  5891. return 0;
  5892. }
  5893. if (v == (void*)2) {
  5894. status_unused(seq);
  5895. return 0;
  5896. }
  5897. if (mddev_lock(mddev) < 0)
  5898. return -EINTR;
  5899. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5900. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5901. mddev->pers ? "" : "in");
  5902. if (mddev->pers) {
  5903. if (mddev->ro==1)
  5904. seq_printf(seq, " (read-only)");
  5905. if (mddev->ro==2)
  5906. seq_printf(seq, " (auto-read-only)");
  5907. seq_printf(seq, " %s", mddev->pers->name);
  5908. }
  5909. sectors = 0;
  5910. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5911. char b[BDEVNAME_SIZE];
  5912. seq_printf(seq, " %s[%d]",
  5913. bdevname(rdev->bdev,b), rdev->desc_nr);
  5914. if (test_bit(WriteMostly, &rdev->flags))
  5915. seq_printf(seq, "(W)");
  5916. if (test_bit(Faulty, &rdev->flags)) {
  5917. seq_printf(seq, "(F)");
  5918. continue;
  5919. } else if (rdev->raid_disk < 0)
  5920. seq_printf(seq, "(S)"); /* spare */
  5921. sectors += rdev->sectors;
  5922. }
  5923. if (!list_empty(&mddev->disks)) {
  5924. if (mddev->pers)
  5925. seq_printf(seq, "\n %llu blocks",
  5926. (unsigned long long)
  5927. mddev->array_sectors / 2);
  5928. else
  5929. seq_printf(seq, "\n %llu blocks",
  5930. (unsigned long long)sectors / 2);
  5931. }
  5932. if (mddev->persistent) {
  5933. if (mddev->major_version != 0 ||
  5934. mddev->minor_version != 90) {
  5935. seq_printf(seq," super %d.%d",
  5936. mddev->major_version,
  5937. mddev->minor_version);
  5938. }
  5939. } else if (mddev->external)
  5940. seq_printf(seq, " super external:%s",
  5941. mddev->metadata_type);
  5942. else
  5943. seq_printf(seq, " super non-persistent");
  5944. if (mddev->pers) {
  5945. mddev->pers->status(seq, mddev);
  5946. seq_printf(seq, "\n ");
  5947. if (mddev->pers->sync_request) {
  5948. if (mddev->curr_resync > 2) {
  5949. status_resync(seq, mddev);
  5950. seq_printf(seq, "\n ");
  5951. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5952. seq_printf(seq, "\tresync=DELAYED\n ");
  5953. else if (mddev->recovery_cp < MaxSector)
  5954. seq_printf(seq, "\tresync=PENDING\n ");
  5955. }
  5956. } else
  5957. seq_printf(seq, "\n ");
  5958. if ((bitmap = mddev->bitmap)) {
  5959. unsigned long chunk_kb;
  5960. unsigned long flags;
  5961. spin_lock_irqsave(&bitmap->lock, flags);
  5962. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5963. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5964. "%lu%s chunk",
  5965. bitmap->pages - bitmap->missing_pages,
  5966. bitmap->pages,
  5967. (bitmap->pages - bitmap->missing_pages)
  5968. << (PAGE_SHIFT - 10),
  5969. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5970. chunk_kb ? "KB" : "B");
  5971. if (bitmap->file) {
  5972. seq_printf(seq, ", file: ");
  5973. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5974. }
  5975. seq_printf(seq, "\n");
  5976. spin_unlock_irqrestore(&bitmap->lock, flags);
  5977. }
  5978. seq_printf(seq, "\n");
  5979. }
  5980. mddev_unlock(mddev);
  5981. return 0;
  5982. }
  5983. static const struct seq_operations md_seq_ops = {
  5984. .start = md_seq_start,
  5985. .next = md_seq_next,
  5986. .stop = md_seq_stop,
  5987. .show = md_seq_show,
  5988. };
  5989. static int md_seq_open(struct inode *inode, struct file *file)
  5990. {
  5991. struct seq_file *seq;
  5992. int error;
  5993. error = seq_open(file, &md_seq_ops);
  5994. if (error)
  5995. return error;
  5996. seq = file->private_data;
  5997. seq->poll_event = atomic_read(&md_event_count);
  5998. return error;
  5999. }
  6000. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6001. {
  6002. struct seq_file *seq = filp->private_data;
  6003. int mask;
  6004. poll_wait(filp, &md_event_waiters, wait);
  6005. /* always allow read */
  6006. mask = POLLIN | POLLRDNORM;
  6007. if (seq->poll_event != atomic_read(&md_event_count))
  6008. mask |= POLLERR | POLLPRI;
  6009. return mask;
  6010. }
  6011. static const struct file_operations md_seq_fops = {
  6012. .owner = THIS_MODULE,
  6013. .open = md_seq_open,
  6014. .read = seq_read,
  6015. .llseek = seq_lseek,
  6016. .release = seq_release_private,
  6017. .poll = mdstat_poll,
  6018. };
  6019. int register_md_personality(struct md_personality *p)
  6020. {
  6021. spin_lock(&pers_lock);
  6022. list_add_tail(&p->list, &pers_list);
  6023. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6024. spin_unlock(&pers_lock);
  6025. return 0;
  6026. }
  6027. int unregister_md_personality(struct md_personality *p)
  6028. {
  6029. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6030. spin_lock(&pers_lock);
  6031. list_del_init(&p->list);
  6032. spin_unlock(&pers_lock);
  6033. return 0;
  6034. }
  6035. static int is_mddev_idle(struct mddev *mddev, int init)
  6036. {
  6037. struct md_rdev * rdev;
  6038. int idle;
  6039. int curr_events;
  6040. idle = 1;
  6041. rcu_read_lock();
  6042. rdev_for_each_rcu(rdev, mddev) {
  6043. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6044. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6045. (int)part_stat_read(&disk->part0, sectors[1]) -
  6046. atomic_read(&disk->sync_io);
  6047. /* sync IO will cause sync_io to increase before the disk_stats
  6048. * as sync_io is counted when a request starts, and
  6049. * disk_stats is counted when it completes.
  6050. * So resync activity will cause curr_events to be smaller than
  6051. * when there was no such activity.
  6052. * non-sync IO will cause disk_stat to increase without
  6053. * increasing sync_io so curr_events will (eventually)
  6054. * be larger than it was before. Once it becomes
  6055. * substantially larger, the test below will cause
  6056. * the array to appear non-idle, and resync will slow
  6057. * down.
  6058. * If there is a lot of outstanding resync activity when
  6059. * we set last_event to curr_events, then all that activity
  6060. * completing might cause the array to appear non-idle
  6061. * and resync will be slowed down even though there might
  6062. * not have been non-resync activity. This will only
  6063. * happen once though. 'last_events' will soon reflect
  6064. * the state where there is little or no outstanding
  6065. * resync requests, and further resync activity will
  6066. * always make curr_events less than last_events.
  6067. *
  6068. */
  6069. if (init || curr_events - rdev->last_events > 64) {
  6070. rdev->last_events = curr_events;
  6071. idle = 0;
  6072. }
  6073. }
  6074. rcu_read_unlock();
  6075. return idle;
  6076. }
  6077. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6078. {
  6079. /* another "blocks" (512byte) blocks have been synced */
  6080. atomic_sub(blocks, &mddev->recovery_active);
  6081. wake_up(&mddev->recovery_wait);
  6082. if (!ok) {
  6083. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6084. md_wakeup_thread(mddev->thread);
  6085. // stop recovery, signal do_sync ....
  6086. }
  6087. }
  6088. /* md_write_start(mddev, bi)
  6089. * If we need to update some array metadata (e.g. 'active' flag
  6090. * in superblock) before writing, schedule a superblock update
  6091. * and wait for it to complete.
  6092. */
  6093. void md_write_start(struct mddev *mddev, struct bio *bi)
  6094. {
  6095. int did_change = 0;
  6096. if (bio_data_dir(bi) != WRITE)
  6097. return;
  6098. BUG_ON(mddev->ro == 1);
  6099. if (mddev->ro == 2) {
  6100. /* need to switch to read/write */
  6101. mddev->ro = 0;
  6102. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6103. md_wakeup_thread(mddev->thread);
  6104. md_wakeup_thread(mddev->sync_thread);
  6105. did_change = 1;
  6106. }
  6107. atomic_inc(&mddev->writes_pending);
  6108. if (mddev->safemode == 1)
  6109. mddev->safemode = 0;
  6110. if (mddev->in_sync) {
  6111. spin_lock_irq(&mddev->write_lock);
  6112. if (mddev->in_sync) {
  6113. mddev->in_sync = 0;
  6114. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6115. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6116. md_wakeup_thread(mddev->thread);
  6117. did_change = 1;
  6118. }
  6119. spin_unlock_irq(&mddev->write_lock);
  6120. }
  6121. if (did_change)
  6122. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6123. wait_event(mddev->sb_wait,
  6124. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6125. }
  6126. void md_write_end(struct mddev *mddev)
  6127. {
  6128. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6129. if (mddev->safemode == 2)
  6130. md_wakeup_thread(mddev->thread);
  6131. else if (mddev->safemode_delay)
  6132. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6133. }
  6134. }
  6135. /* md_allow_write(mddev)
  6136. * Calling this ensures that the array is marked 'active' so that writes
  6137. * may proceed without blocking. It is important to call this before
  6138. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6139. * Must be called with mddev_lock held.
  6140. *
  6141. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6142. * is dropped, so return -EAGAIN after notifying userspace.
  6143. */
  6144. int md_allow_write(struct mddev *mddev)
  6145. {
  6146. if (!mddev->pers)
  6147. return 0;
  6148. if (mddev->ro)
  6149. return 0;
  6150. if (!mddev->pers->sync_request)
  6151. return 0;
  6152. spin_lock_irq(&mddev->write_lock);
  6153. if (mddev->in_sync) {
  6154. mddev->in_sync = 0;
  6155. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6156. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6157. if (mddev->safemode_delay &&
  6158. mddev->safemode == 0)
  6159. mddev->safemode = 1;
  6160. spin_unlock_irq(&mddev->write_lock);
  6161. md_update_sb(mddev, 0);
  6162. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6163. } else
  6164. spin_unlock_irq(&mddev->write_lock);
  6165. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6166. return -EAGAIN;
  6167. else
  6168. return 0;
  6169. }
  6170. EXPORT_SYMBOL_GPL(md_allow_write);
  6171. #define SYNC_MARKS 10
  6172. #define SYNC_MARK_STEP (3*HZ)
  6173. void md_do_sync(struct mddev *mddev)
  6174. {
  6175. struct mddev *mddev2;
  6176. unsigned int currspeed = 0,
  6177. window;
  6178. sector_t max_sectors,j, io_sectors;
  6179. unsigned long mark[SYNC_MARKS];
  6180. sector_t mark_cnt[SYNC_MARKS];
  6181. int last_mark,m;
  6182. struct list_head *tmp;
  6183. sector_t last_check;
  6184. int skipped = 0;
  6185. struct md_rdev *rdev;
  6186. char *desc;
  6187. /* just incase thread restarts... */
  6188. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6189. return;
  6190. if (mddev->ro) /* never try to sync a read-only array */
  6191. return;
  6192. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6193. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6194. desc = "data-check";
  6195. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6196. desc = "requested-resync";
  6197. else
  6198. desc = "resync";
  6199. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6200. desc = "reshape";
  6201. else
  6202. desc = "recovery";
  6203. /* we overload curr_resync somewhat here.
  6204. * 0 == not engaged in resync at all
  6205. * 2 == checking that there is no conflict with another sync
  6206. * 1 == like 2, but have yielded to allow conflicting resync to
  6207. * commense
  6208. * other == active in resync - this many blocks
  6209. *
  6210. * Before starting a resync we must have set curr_resync to
  6211. * 2, and then checked that every "conflicting" array has curr_resync
  6212. * less than ours. When we find one that is the same or higher
  6213. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6214. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6215. * This will mean we have to start checking from the beginning again.
  6216. *
  6217. */
  6218. do {
  6219. mddev->curr_resync = 2;
  6220. try_again:
  6221. if (kthread_should_stop())
  6222. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6223. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6224. goto skip;
  6225. for_each_mddev(mddev2, tmp) {
  6226. if (mddev2 == mddev)
  6227. continue;
  6228. if (!mddev->parallel_resync
  6229. && mddev2->curr_resync
  6230. && match_mddev_units(mddev, mddev2)) {
  6231. DEFINE_WAIT(wq);
  6232. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6233. /* arbitrarily yield */
  6234. mddev->curr_resync = 1;
  6235. wake_up(&resync_wait);
  6236. }
  6237. if (mddev > mddev2 && mddev->curr_resync == 1)
  6238. /* no need to wait here, we can wait the next
  6239. * time 'round when curr_resync == 2
  6240. */
  6241. continue;
  6242. /* We need to wait 'interruptible' so as not to
  6243. * contribute to the load average, and not to
  6244. * be caught by 'softlockup'
  6245. */
  6246. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6247. if (!kthread_should_stop() &&
  6248. mddev2->curr_resync >= mddev->curr_resync) {
  6249. printk(KERN_INFO "md: delaying %s of %s"
  6250. " until %s has finished (they"
  6251. " share one or more physical units)\n",
  6252. desc, mdname(mddev), mdname(mddev2));
  6253. mddev_put(mddev2);
  6254. if (signal_pending(current))
  6255. flush_signals(current);
  6256. schedule();
  6257. finish_wait(&resync_wait, &wq);
  6258. goto try_again;
  6259. }
  6260. finish_wait(&resync_wait, &wq);
  6261. }
  6262. }
  6263. } while (mddev->curr_resync < 2);
  6264. j = 0;
  6265. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6266. /* resync follows the size requested by the personality,
  6267. * which defaults to physical size, but can be virtual size
  6268. */
  6269. max_sectors = mddev->resync_max_sectors;
  6270. mddev->resync_mismatches = 0;
  6271. /* we don't use the checkpoint if there's a bitmap */
  6272. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6273. j = mddev->resync_min;
  6274. else if (!mddev->bitmap)
  6275. j = mddev->recovery_cp;
  6276. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6277. max_sectors = mddev->dev_sectors;
  6278. else {
  6279. /* recovery follows the physical size of devices */
  6280. max_sectors = mddev->dev_sectors;
  6281. j = MaxSector;
  6282. rcu_read_lock();
  6283. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6284. if (rdev->raid_disk >= 0 &&
  6285. !test_bit(Faulty, &rdev->flags) &&
  6286. !test_bit(In_sync, &rdev->flags) &&
  6287. rdev->recovery_offset < j)
  6288. j = rdev->recovery_offset;
  6289. rcu_read_unlock();
  6290. }
  6291. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6292. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6293. " %d KB/sec/disk.\n", speed_min(mddev));
  6294. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6295. "(but not more than %d KB/sec) for %s.\n",
  6296. speed_max(mddev), desc);
  6297. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6298. io_sectors = 0;
  6299. for (m = 0; m < SYNC_MARKS; m++) {
  6300. mark[m] = jiffies;
  6301. mark_cnt[m] = io_sectors;
  6302. }
  6303. last_mark = 0;
  6304. mddev->resync_mark = mark[last_mark];
  6305. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6306. /*
  6307. * Tune reconstruction:
  6308. */
  6309. window = 32*(PAGE_SIZE/512);
  6310. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6311. window/2, (unsigned long long)max_sectors/2);
  6312. atomic_set(&mddev->recovery_active, 0);
  6313. last_check = 0;
  6314. if (j>2) {
  6315. printk(KERN_INFO
  6316. "md: resuming %s of %s from checkpoint.\n",
  6317. desc, mdname(mddev));
  6318. mddev->curr_resync = j;
  6319. }
  6320. mddev->curr_resync_completed = j;
  6321. while (j < max_sectors) {
  6322. sector_t sectors;
  6323. skipped = 0;
  6324. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6325. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6326. (mddev->curr_resync - mddev->curr_resync_completed)
  6327. > (max_sectors >> 4)) ||
  6328. (j - mddev->curr_resync_completed)*2
  6329. >= mddev->resync_max - mddev->curr_resync_completed
  6330. )) {
  6331. /* time to update curr_resync_completed */
  6332. wait_event(mddev->recovery_wait,
  6333. atomic_read(&mddev->recovery_active) == 0);
  6334. mddev->curr_resync_completed = j;
  6335. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6336. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6337. }
  6338. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6339. /* As this condition is controlled by user-space,
  6340. * we can block indefinitely, so use '_interruptible'
  6341. * to avoid triggering warnings.
  6342. */
  6343. flush_signals(current); /* just in case */
  6344. wait_event_interruptible(mddev->recovery_wait,
  6345. mddev->resync_max > j
  6346. || kthread_should_stop());
  6347. }
  6348. if (kthread_should_stop())
  6349. goto interrupted;
  6350. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6351. currspeed < speed_min(mddev));
  6352. if (sectors == 0) {
  6353. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6354. goto out;
  6355. }
  6356. if (!skipped) { /* actual IO requested */
  6357. io_sectors += sectors;
  6358. atomic_add(sectors, &mddev->recovery_active);
  6359. }
  6360. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6361. break;
  6362. j += sectors;
  6363. if (j>1) mddev->curr_resync = j;
  6364. mddev->curr_mark_cnt = io_sectors;
  6365. if (last_check == 0)
  6366. /* this is the earliest that rebuild will be
  6367. * visible in /proc/mdstat
  6368. */
  6369. md_new_event(mddev);
  6370. if (last_check + window > io_sectors || j == max_sectors)
  6371. continue;
  6372. last_check = io_sectors;
  6373. repeat:
  6374. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6375. /* step marks */
  6376. int next = (last_mark+1) % SYNC_MARKS;
  6377. mddev->resync_mark = mark[next];
  6378. mddev->resync_mark_cnt = mark_cnt[next];
  6379. mark[next] = jiffies;
  6380. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6381. last_mark = next;
  6382. }
  6383. if (kthread_should_stop())
  6384. goto interrupted;
  6385. /*
  6386. * this loop exits only if either when we are slower than
  6387. * the 'hard' speed limit, or the system was IO-idle for
  6388. * a jiffy.
  6389. * the system might be non-idle CPU-wise, but we only care
  6390. * about not overloading the IO subsystem. (things like an
  6391. * e2fsck being done on the RAID array should execute fast)
  6392. */
  6393. cond_resched();
  6394. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6395. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6396. if (currspeed > speed_min(mddev)) {
  6397. if ((currspeed > speed_max(mddev)) ||
  6398. !is_mddev_idle(mddev, 0)) {
  6399. msleep(500);
  6400. goto repeat;
  6401. }
  6402. }
  6403. }
  6404. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6405. /*
  6406. * this also signals 'finished resyncing' to md_stop
  6407. */
  6408. out:
  6409. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6410. /* tell personality that we are finished */
  6411. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6412. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6413. mddev->curr_resync > 2) {
  6414. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6415. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6416. if (mddev->curr_resync >= mddev->recovery_cp) {
  6417. printk(KERN_INFO
  6418. "md: checkpointing %s of %s.\n",
  6419. desc, mdname(mddev));
  6420. mddev->recovery_cp = mddev->curr_resync;
  6421. }
  6422. } else
  6423. mddev->recovery_cp = MaxSector;
  6424. } else {
  6425. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6426. mddev->curr_resync = MaxSector;
  6427. rcu_read_lock();
  6428. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6429. if (rdev->raid_disk >= 0 &&
  6430. mddev->delta_disks >= 0 &&
  6431. !test_bit(Faulty, &rdev->flags) &&
  6432. !test_bit(In_sync, &rdev->flags) &&
  6433. rdev->recovery_offset < mddev->curr_resync)
  6434. rdev->recovery_offset = mddev->curr_resync;
  6435. rcu_read_unlock();
  6436. }
  6437. }
  6438. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6439. skip:
  6440. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6441. /* We completed so min/max setting can be forgotten if used. */
  6442. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6443. mddev->resync_min = 0;
  6444. mddev->resync_max = MaxSector;
  6445. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6446. mddev->resync_min = mddev->curr_resync_completed;
  6447. mddev->curr_resync = 0;
  6448. wake_up(&resync_wait);
  6449. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6450. md_wakeup_thread(mddev->thread);
  6451. return;
  6452. interrupted:
  6453. /*
  6454. * got a signal, exit.
  6455. */
  6456. printk(KERN_INFO
  6457. "md: md_do_sync() got signal ... exiting\n");
  6458. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6459. goto out;
  6460. }
  6461. EXPORT_SYMBOL_GPL(md_do_sync);
  6462. static int remove_and_add_spares(struct mddev *mddev)
  6463. {
  6464. struct md_rdev *rdev;
  6465. int spares = 0;
  6466. mddev->curr_resync_completed = 0;
  6467. list_for_each_entry(rdev, &mddev->disks, same_set)
  6468. if (rdev->raid_disk >= 0 &&
  6469. !test_bit(Blocked, &rdev->flags) &&
  6470. (test_bit(Faulty, &rdev->flags) ||
  6471. ! test_bit(In_sync, &rdev->flags)) &&
  6472. atomic_read(&rdev->nr_pending)==0) {
  6473. if (mddev->pers->hot_remove_disk(
  6474. mddev, rdev->raid_disk)==0) {
  6475. sysfs_unlink_rdev(mddev, rdev);
  6476. rdev->raid_disk = -1;
  6477. }
  6478. }
  6479. if (mddev->degraded) {
  6480. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6481. if (rdev->raid_disk >= 0 &&
  6482. !test_bit(In_sync, &rdev->flags) &&
  6483. !test_bit(Faulty, &rdev->flags))
  6484. spares++;
  6485. if (rdev->raid_disk < 0
  6486. && !test_bit(Faulty, &rdev->flags)) {
  6487. rdev->recovery_offset = 0;
  6488. if (mddev->pers->
  6489. hot_add_disk(mddev, rdev) == 0) {
  6490. if (sysfs_link_rdev(mddev, rdev))
  6491. /* failure here is OK */;
  6492. spares++;
  6493. md_new_event(mddev);
  6494. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6495. } else
  6496. break;
  6497. }
  6498. }
  6499. }
  6500. return spares;
  6501. }
  6502. static void reap_sync_thread(struct mddev *mddev)
  6503. {
  6504. struct md_rdev *rdev;
  6505. /* resync has finished, collect result */
  6506. md_unregister_thread(&mddev->sync_thread);
  6507. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6508. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6509. /* success...*/
  6510. /* activate any spares */
  6511. if (mddev->pers->spare_active(mddev))
  6512. sysfs_notify(&mddev->kobj, NULL,
  6513. "degraded");
  6514. }
  6515. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6516. mddev->pers->finish_reshape)
  6517. mddev->pers->finish_reshape(mddev);
  6518. /* If array is no-longer degraded, then any saved_raid_disk
  6519. * information must be scrapped. Also if any device is now
  6520. * In_sync we must scrape the saved_raid_disk for that device
  6521. * do the superblock for an incrementally recovered device
  6522. * written out.
  6523. */
  6524. list_for_each_entry(rdev, &mddev->disks, same_set)
  6525. if (!mddev->degraded ||
  6526. test_bit(In_sync, &rdev->flags))
  6527. rdev->saved_raid_disk = -1;
  6528. md_update_sb(mddev, 1);
  6529. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6530. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6531. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6532. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6533. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6534. /* flag recovery needed just to double check */
  6535. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6536. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6537. md_new_event(mddev);
  6538. if (mddev->event_work.func)
  6539. queue_work(md_misc_wq, &mddev->event_work);
  6540. }
  6541. /*
  6542. * This routine is regularly called by all per-raid-array threads to
  6543. * deal with generic issues like resync and super-block update.
  6544. * Raid personalities that don't have a thread (linear/raid0) do not
  6545. * need this as they never do any recovery or update the superblock.
  6546. *
  6547. * It does not do any resync itself, but rather "forks" off other threads
  6548. * to do that as needed.
  6549. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6550. * "->recovery" and create a thread at ->sync_thread.
  6551. * When the thread finishes it sets MD_RECOVERY_DONE
  6552. * and wakeups up this thread which will reap the thread and finish up.
  6553. * This thread also removes any faulty devices (with nr_pending == 0).
  6554. *
  6555. * The overall approach is:
  6556. * 1/ if the superblock needs updating, update it.
  6557. * 2/ If a recovery thread is running, don't do anything else.
  6558. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6559. * 4/ If there are any faulty devices, remove them.
  6560. * 5/ If array is degraded, try to add spares devices
  6561. * 6/ If array has spares or is not in-sync, start a resync thread.
  6562. */
  6563. void md_check_recovery(struct mddev *mddev)
  6564. {
  6565. if (mddev->suspended)
  6566. return;
  6567. if (mddev->bitmap)
  6568. bitmap_daemon_work(mddev);
  6569. if (signal_pending(current)) {
  6570. if (mddev->pers->sync_request && !mddev->external) {
  6571. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6572. mdname(mddev));
  6573. mddev->safemode = 2;
  6574. }
  6575. flush_signals(current);
  6576. }
  6577. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6578. return;
  6579. if ( ! (
  6580. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6581. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6582. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6583. (mddev->external == 0 && mddev->safemode == 1) ||
  6584. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6585. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6586. ))
  6587. return;
  6588. if (mddev_trylock(mddev)) {
  6589. int spares = 0;
  6590. if (mddev->ro) {
  6591. /* Only thing we do on a ro array is remove
  6592. * failed devices.
  6593. */
  6594. struct md_rdev *rdev;
  6595. list_for_each_entry(rdev, &mddev->disks, same_set)
  6596. if (rdev->raid_disk >= 0 &&
  6597. !test_bit(Blocked, &rdev->flags) &&
  6598. test_bit(Faulty, &rdev->flags) &&
  6599. atomic_read(&rdev->nr_pending)==0) {
  6600. if (mddev->pers->hot_remove_disk(
  6601. mddev, rdev->raid_disk)==0) {
  6602. sysfs_unlink_rdev(mddev, rdev);
  6603. rdev->raid_disk = -1;
  6604. }
  6605. }
  6606. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6607. goto unlock;
  6608. }
  6609. if (!mddev->external) {
  6610. int did_change = 0;
  6611. spin_lock_irq(&mddev->write_lock);
  6612. if (mddev->safemode &&
  6613. !atomic_read(&mddev->writes_pending) &&
  6614. !mddev->in_sync &&
  6615. mddev->recovery_cp == MaxSector) {
  6616. mddev->in_sync = 1;
  6617. did_change = 1;
  6618. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6619. }
  6620. if (mddev->safemode == 1)
  6621. mddev->safemode = 0;
  6622. spin_unlock_irq(&mddev->write_lock);
  6623. if (did_change)
  6624. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6625. }
  6626. if (mddev->flags)
  6627. md_update_sb(mddev, 0);
  6628. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6629. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6630. /* resync/recovery still happening */
  6631. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6632. goto unlock;
  6633. }
  6634. if (mddev->sync_thread) {
  6635. reap_sync_thread(mddev);
  6636. goto unlock;
  6637. }
  6638. /* Set RUNNING before clearing NEEDED to avoid
  6639. * any transients in the value of "sync_action".
  6640. */
  6641. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6642. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6643. /* Clear some bits that don't mean anything, but
  6644. * might be left set
  6645. */
  6646. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6647. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6648. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6649. goto unlock;
  6650. /* no recovery is running.
  6651. * remove any failed drives, then
  6652. * add spares if possible.
  6653. * Spare are also removed and re-added, to allow
  6654. * the personality to fail the re-add.
  6655. */
  6656. if (mddev->reshape_position != MaxSector) {
  6657. if (mddev->pers->check_reshape == NULL ||
  6658. mddev->pers->check_reshape(mddev) != 0)
  6659. /* Cannot proceed */
  6660. goto unlock;
  6661. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6662. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6663. } else if ((spares = remove_and_add_spares(mddev))) {
  6664. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6665. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6666. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6667. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6668. } else if (mddev->recovery_cp < MaxSector) {
  6669. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6670. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6671. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6672. /* nothing to be done ... */
  6673. goto unlock;
  6674. if (mddev->pers->sync_request) {
  6675. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6676. /* We are adding a device or devices to an array
  6677. * which has the bitmap stored on all devices.
  6678. * So make sure all bitmap pages get written
  6679. */
  6680. bitmap_write_all(mddev->bitmap);
  6681. }
  6682. mddev->sync_thread = md_register_thread(md_do_sync,
  6683. mddev,
  6684. "resync");
  6685. if (!mddev->sync_thread) {
  6686. printk(KERN_ERR "%s: could not start resync"
  6687. " thread...\n",
  6688. mdname(mddev));
  6689. /* leave the spares where they are, it shouldn't hurt */
  6690. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6691. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6692. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6693. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6694. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6695. } else
  6696. md_wakeup_thread(mddev->sync_thread);
  6697. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6698. md_new_event(mddev);
  6699. }
  6700. unlock:
  6701. if (!mddev->sync_thread) {
  6702. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6703. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6704. &mddev->recovery))
  6705. if (mddev->sysfs_action)
  6706. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6707. }
  6708. mddev_unlock(mddev);
  6709. }
  6710. }
  6711. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  6712. {
  6713. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6714. wait_event_timeout(rdev->blocked_wait,
  6715. !test_bit(Blocked, &rdev->flags) &&
  6716. !test_bit(BlockedBadBlocks, &rdev->flags),
  6717. msecs_to_jiffies(5000));
  6718. rdev_dec_pending(rdev, mddev);
  6719. }
  6720. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6721. /* Bad block management.
  6722. * We can record which blocks on each device are 'bad' and so just
  6723. * fail those blocks, or that stripe, rather than the whole device.
  6724. * Entries in the bad-block table are 64bits wide. This comprises:
  6725. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6726. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6727. * A 'shift' can be set so that larger blocks are tracked and
  6728. * consequently larger devices can be covered.
  6729. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6730. *
  6731. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6732. * might need to retry if it is very unlucky.
  6733. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6734. * so we use the write_seqlock_irq variant.
  6735. *
  6736. * When looking for a bad block we specify a range and want to
  6737. * know if any block in the range is bad. So we binary-search
  6738. * to the last range that starts at-or-before the given endpoint,
  6739. * (or "before the sector after the target range")
  6740. * then see if it ends after the given start.
  6741. * We return
  6742. * 0 if there are no known bad blocks in the range
  6743. * 1 if there are known bad block which are all acknowledged
  6744. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6745. * plus the start/length of the first bad section we overlap.
  6746. */
  6747. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6748. sector_t *first_bad, int *bad_sectors)
  6749. {
  6750. int hi;
  6751. int lo = 0;
  6752. u64 *p = bb->page;
  6753. int rv = 0;
  6754. sector_t target = s + sectors;
  6755. unsigned seq;
  6756. if (bb->shift > 0) {
  6757. /* round the start down, and the end up */
  6758. s >>= bb->shift;
  6759. target += (1<<bb->shift) - 1;
  6760. target >>= bb->shift;
  6761. sectors = target - s;
  6762. }
  6763. /* 'target' is now the first block after the bad range */
  6764. retry:
  6765. seq = read_seqbegin(&bb->lock);
  6766. hi = bb->count;
  6767. /* Binary search between lo and hi for 'target'
  6768. * i.e. for the last range that starts before 'target'
  6769. */
  6770. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6771. * are known not to be the last range before target.
  6772. * VARIANT: hi-lo is the number of possible
  6773. * ranges, and decreases until it reaches 1
  6774. */
  6775. while (hi - lo > 1) {
  6776. int mid = (lo + hi) / 2;
  6777. sector_t a = BB_OFFSET(p[mid]);
  6778. if (a < target)
  6779. /* This could still be the one, earlier ranges
  6780. * could not. */
  6781. lo = mid;
  6782. else
  6783. /* This and later ranges are definitely out. */
  6784. hi = mid;
  6785. }
  6786. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6787. if (hi > lo) {
  6788. /* need to check all range that end after 's' to see if
  6789. * any are unacknowledged.
  6790. */
  6791. while (lo >= 0 &&
  6792. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6793. if (BB_OFFSET(p[lo]) < target) {
  6794. /* starts before the end, and finishes after
  6795. * the start, so they must overlap
  6796. */
  6797. if (rv != -1 && BB_ACK(p[lo]))
  6798. rv = 1;
  6799. else
  6800. rv = -1;
  6801. *first_bad = BB_OFFSET(p[lo]);
  6802. *bad_sectors = BB_LEN(p[lo]);
  6803. }
  6804. lo--;
  6805. }
  6806. }
  6807. if (read_seqretry(&bb->lock, seq))
  6808. goto retry;
  6809. return rv;
  6810. }
  6811. EXPORT_SYMBOL_GPL(md_is_badblock);
  6812. /*
  6813. * Add a range of bad blocks to the table.
  6814. * This might extend the table, or might contract it
  6815. * if two adjacent ranges can be merged.
  6816. * We binary-search to find the 'insertion' point, then
  6817. * decide how best to handle it.
  6818. */
  6819. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6820. int acknowledged)
  6821. {
  6822. u64 *p;
  6823. int lo, hi;
  6824. int rv = 1;
  6825. if (bb->shift < 0)
  6826. /* badblocks are disabled */
  6827. return 0;
  6828. if (bb->shift) {
  6829. /* round the start down, and the end up */
  6830. sector_t next = s + sectors;
  6831. s >>= bb->shift;
  6832. next += (1<<bb->shift) - 1;
  6833. next >>= bb->shift;
  6834. sectors = next - s;
  6835. }
  6836. write_seqlock_irq(&bb->lock);
  6837. p = bb->page;
  6838. lo = 0;
  6839. hi = bb->count;
  6840. /* Find the last range that starts at-or-before 's' */
  6841. while (hi - lo > 1) {
  6842. int mid = (lo + hi) / 2;
  6843. sector_t a = BB_OFFSET(p[mid]);
  6844. if (a <= s)
  6845. lo = mid;
  6846. else
  6847. hi = mid;
  6848. }
  6849. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6850. hi = lo;
  6851. if (hi > lo) {
  6852. /* we found a range that might merge with the start
  6853. * of our new range
  6854. */
  6855. sector_t a = BB_OFFSET(p[lo]);
  6856. sector_t e = a + BB_LEN(p[lo]);
  6857. int ack = BB_ACK(p[lo]);
  6858. if (e >= s) {
  6859. /* Yes, we can merge with a previous range */
  6860. if (s == a && s + sectors >= e)
  6861. /* new range covers old */
  6862. ack = acknowledged;
  6863. else
  6864. ack = ack && acknowledged;
  6865. if (e < s + sectors)
  6866. e = s + sectors;
  6867. if (e - a <= BB_MAX_LEN) {
  6868. p[lo] = BB_MAKE(a, e-a, ack);
  6869. s = e;
  6870. } else {
  6871. /* does not all fit in one range,
  6872. * make p[lo] maximal
  6873. */
  6874. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6875. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6876. s = a + BB_MAX_LEN;
  6877. }
  6878. sectors = e - s;
  6879. }
  6880. }
  6881. if (sectors && hi < bb->count) {
  6882. /* 'hi' points to the first range that starts after 's'.
  6883. * Maybe we can merge with the start of that range */
  6884. sector_t a = BB_OFFSET(p[hi]);
  6885. sector_t e = a + BB_LEN(p[hi]);
  6886. int ack = BB_ACK(p[hi]);
  6887. if (a <= s + sectors) {
  6888. /* merging is possible */
  6889. if (e <= s + sectors) {
  6890. /* full overlap */
  6891. e = s + sectors;
  6892. ack = acknowledged;
  6893. } else
  6894. ack = ack && acknowledged;
  6895. a = s;
  6896. if (e - a <= BB_MAX_LEN) {
  6897. p[hi] = BB_MAKE(a, e-a, ack);
  6898. s = e;
  6899. } else {
  6900. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6901. s = a + BB_MAX_LEN;
  6902. }
  6903. sectors = e - s;
  6904. lo = hi;
  6905. hi++;
  6906. }
  6907. }
  6908. if (sectors == 0 && hi < bb->count) {
  6909. /* we might be able to combine lo and hi */
  6910. /* Note: 's' is at the end of 'lo' */
  6911. sector_t a = BB_OFFSET(p[hi]);
  6912. int lolen = BB_LEN(p[lo]);
  6913. int hilen = BB_LEN(p[hi]);
  6914. int newlen = lolen + hilen - (s - a);
  6915. if (s >= a && newlen < BB_MAX_LEN) {
  6916. /* yes, we can combine them */
  6917. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6918. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6919. memmove(p + hi, p + hi + 1,
  6920. (bb->count - hi - 1) * 8);
  6921. bb->count--;
  6922. }
  6923. }
  6924. while (sectors) {
  6925. /* didn't merge (it all).
  6926. * Need to add a range just before 'hi' */
  6927. if (bb->count >= MD_MAX_BADBLOCKS) {
  6928. /* No room for more */
  6929. rv = 0;
  6930. break;
  6931. } else {
  6932. int this_sectors = sectors;
  6933. memmove(p + hi + 1, p + hi,
  6934. (bb->count - hi) * 8);
  6935. bb->count++;
  6936. if (this_sectors > BB_MAX_LEN)
  6937. this_sectors = BB_MAX_LEN;
  6938. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  6939. sectors -= this_sectors;
  6940. s += this_sectors;
  6941. }
  6942. }
  6943. bb->changed = 1;
  6944. if (!acknowledged)
  6945. bb->unacked_exist = 1;
  6946. write_sequnlock_irq(&bb->lock);
  6947. return rv;
  6948. }
  6949. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  6950. int acknowledged)
  6951. {
  6952. int rv = md_set_badblocks(&rdev->badblocks,
  6953. s + rdev->data_offset, sectors, acknowledged);
  6954. if (rv) {
  6955. /* Make sure they get written out promptly */
  6956. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  6957. md_wakeup_thread(rdev->mddev->thread);
  6958. }
  6959. return rv;
  6960. }
  6961. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  6962. /*
  6963. * Remove a range of bad blocks from the table.
  6964. * This may involve extending the table if we spilt a region,
  6965. * but it must not fail. So if the table becomes full, we just
  6966. * drop the remove request.
  6967. */
  6968. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  6969. {
  6970. u64 *p;
  6971. int lo, hi;
  6972. sector_t target = s + sectors;
  6973. int rv = 0;
  6974. if (bb->shift > 0) {
  6975. /* When clearing we round the start up and the end down.
  6976. * This should not matter as the shift should align with
  6977. * the block size and no rounding should ever be needed.
  6978. * However it is better the think a block is bad when it
  6979. * isn't than to think a block is not bad when it is.
  6980. */
  6981. s += (1<<bb->shift) - 1;
  6982. s >>= bb->shift;
  6983. target >>= bb->shift;
  6984. sectors = target - s;
  6985. }
  6986. write_seqlock_irq(&bb->lock);
  6987. p = bb->page;
  6988. lo = 0;
  6989. hi = bb->count;
  6990. /* Find the last range that starts before 'target' */
  6991. while (hi - lo > 1) {
  6992. int mid = (lo + hi) / 2;
  6993. sector_t a = BB_OFFSET(p[mid]);
  6994. if (a < target)
  6995. lo = mid;
  6996. else
  6997. hi = mid;
  6998. }
  6999. if (hi > lo) {
  7000. /* p[lo] is the last range that could overlap the
  7001. * current range. Earlier ranges could also overlap,
  7002. * but only this one can overlap the end of the range.
  7003. */
  7004. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7005. /* Partial overlap, leave the tail of this range */
  7006. int ack = BB_ACK(p[lo]);
  7007. sector_t a = BB_OFFSET(p[lo]);
  7008. sector_t end = a + BB_LEN(p[lo]);
  7009. if (a < s) {
  7010. /* we need to split this range */
  7011. if (bb->count >= MD_MAX_BADBLOCKS) {
  7012. rv = 0;
  7013. goto out;
  7014. }
  7015. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7016. bb->count++;
  7017. p[lo] = BB_MAKE(a, s-a, ack);
  7018. lo++;
  7019. }
  7020. p[lo] = BB_MAKE(target, end - target, ack);
  7021. /* there is no longer an overlap */
  7022. hi = lo;
  7023. lo--;
  7024. }
  7025. while (lo >= 0 &&
  7026. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7027. /* This range does overlap */
  7028. if (BB_OFFSET(p[lo]) < s) {
  7029. /* Keep the early parts of this range. */
  7030. int ack = BB_ACK(p[lo]);
  7031. sector_t start = BB_OFFSET(p[lo]);
  7032. p[lo] = BB_MAKE(start, s - start, ack);
  7033. /* now low doesn't overlap, so.. */
  7034. break;
  7035. }
  7036. lo--;
  7037. }
  7038. /* 'lo' is strictly before, 'hi' is strictly after,
  7039. * anything between needs to be discarded
  7040. */
  7041. if (hi - lo > 1) {
  7042. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7043. bb->count -= (hi - lo - 1);
  7044. }
  7045. }
  7046. bb->changed = 1;
  7047. out:
  7048. write_sequnlock_irq(&bb->lock);
  7049. return rv;
  7050. }
  7051. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
  7052. {
  7053. return md_clear_badblocks(&rdev->badblocks,
  7054. s + rdev->data_offset,
  7055. sectors);
  7056. }
  7057. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7058. /*
  7059. * Acknowledge all bad blocks in a list.
  7060. * This only succeeds if ->changed is clear. It is used by
  7061. * in-kernel metadata updates
  7062. */
  7063. void md_ack_all_badblocks(struct badblocks *bb)
  7064. {
  7065. if (bb->page == NULL || bb->changed)
  7066. /* no point even trying */
  7067. return;
  7068. write_seqlock_irq(&bb->lock);
  7069. if (bb->changed == 0) {
  7070. u64 *p = bb->page;
  7071. int i;
  7072. for (i = 0; i < bb->count ; i++) {
  7073. if (!BB_ACK(p[i])) {
  7074. sector_t start = BB_OFFSET(p[i]);
  7075. int len = BB_LEN(p[i]);
  7076. p[i] = BB_MAKE(start, len, 1);
  7077. }
  7078. }
  7079. bb->unacked_exist = 0;
  7080. }
  7081. write_sequnlock_irq(&bb->lock);
  7082. }
  7083. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7084. /* sysfs access to bad-blocks list.
  7085. * We present two files.
  7086. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7087. * are recorded as bad. The list is truncated to fit within
  7088. * the one-page limit of sysfs.
  7089. * Writing "sector length" to this file adds an acknowledged
  7090. * bad block list.
  7091. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7092. * been acknowledged. Writing to this file adds bad blocks
  7093. * without acknowledging them. This is largely for testing.
  7094. */
  7095. static ssize_t
  7096. badblocks_show(struct badblocks *bb, char *page, int unack)
  7097. {
  7098. size_t len;
  7099. int i;
  7100. u64 *p = bb->page;
  7101. unsigned seq;
  7102. if (bb->shift < 0)
  7103. return 0;
  7104. retry:
  7105. seq = read_seqbegin(&bb->lock);
  7106. len = 0;
  7107. i = 0;
  7108. while (len < PAGE_SIZE && i < bb->count) {
  7109. sector_t s = BB_OFFSET(p[i]);
  7110. unsigned int length = BB_LEN(p[i]);
  7111. int ack = BB_ACK(p[i]);
  7112. i++;
  7113. if (unack && ack)
  7114. continue;
  7115. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7116. (unsigned long long)s << bb->shift,
  7117. length << bb->shift);
  7118. }
  7119. if (unack && len == 0)
  7120. bb->unacked_exist = 0;
  7121. if (read_seqretry(&bb->lock, seq))
  7122. goto retry;
  7123. return len;
  7124. }
  7125. #define DO_DEBUG 1
  7126. static ssize_t
  7127. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7128. {
  7129. unsigned long long sector;
  7130. int length;
  7131. char newline;
  7132. #ifdef DO_DEBUG
  7133. /* Allow clearing via sysfs *only* for testing/debugging.
  7134. * Normally only a successful write may clear a badblock
  7135. */
  7136. int clear = 0;
  7137. if (page[0] == '-') {
  7138. clear = 1;
  7139. page++;
  7140. }
  7141. #endif /* DO_DEBUG */
  7142. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7143. case 3:
  7144. if (newline != '\n')
  7145. return -EINVAL;
  7146. case 2:
  7147. if (length <= 0)
  7148. return -EINVAL;
  7149. break;
  7150. default:
  7151. return -EINVAL;
  7152. }
  7153. #ifdef DO_DEBUG
  7154. if (clear) {
  7155. md_clear_badblocks(bb, sector, length);
  7156. return len;
  7157. }
  7158. #endif /* DO_DEBUG */
  7159. if (md_set_badblocks(bb, sector, length, !unack))
  7160. return len;
  7161. else
  7162. return -ENOSPC;
  7163. }
  7164. static int md_notify_reboot(struct notifier_block *this,
  7165. unsigned long code, void *x)
  7166. {
  7167. struct list_head *tmp;
  7168. struct mddev *mddev;
  7169. int need_delay = 0;
  7170. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  7171. printk(KERN_INFO "md: stopping all md devices.\n");
  7172. for_each_mddev(mddev, tmp) {
  7173. if (mddev_trylock(mddev)) {
  7174. /* Force a switch to readonly even array
  7175. * appears to still be in use. Hence
  7176. * the '100'.
  7177. */
  7178. md_set_readonly(mddev, 100);
  7179. mddev_unlock(mddev);
  7180. }
  7181. need_delay = 1;
  7182. }
  7183. /*
  7184. * certain more exotic SCSI devices are known to be
  7185. * volatile wrt too early system reboots. While the
  7186. * right place to handle this issue is the given
  7187. * driver, we do want to have a safe RAID driver ...
  7188. */
  7189. if (need_delay)
  7190. mdelay(1000*1);
  7191. }
  7192. return NOTIFY_DONE;
  7193. }
  7194. static struct notifier_block md_notifier = {
  7195. .notifier_call = md_notify_reboot,
  7196. .next = NULL,
  7197. .priority = INT_MAX, /* before any real devices */
  7198. };
  7199. static void md_geninit(void)
  7200. {
  7201. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7202. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7203. }
  7204. static int __init md_init(void)
  7205. {
  7206. int ret = -ENOMEM;
  7207. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7208. if (!md_wq)
  7209. goto err_wq;
  7210. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7211. if (!md_misc_wq)
  7212. goto err_misc_wq;
  7213. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7214. goto err_md;
  7215. if ((ret = register_blkdev(0, "mdp")) < 0)
  7216. goto err_mdp;
  7217. mdp_major = ret;
  7218. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7219. md_probe, NULL, NULL);
  7220. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7221. md_probe, NULL, NULL);
  7222. register_reboot_notifier(&md_notifier);
  7223. raid_table_header = register_sysctl_table(raid_root_table);
  7224. md_geninit();
  7225. return 0;
  7226. err_mdp:
  7227. unregister_blkdev(MD_MAJOR, "md");
  7228. err_md:
  7229. destroy_workqueue(md_misc_wq);
  7230. err_misc_wq:
  7231. destroy_workqueue(md_wq);
  7232. err_wq:
  7233. return ret;
  7234. }
  7235. #ifndef MODULE
  7236. /*
  7237. * Searches all registered partitions for autorun RAID arrays
  7238. * at boot time.
  7239. */
  7240. static LIST_HEAD(all_detected_devices);
  7241. struct detected_devices_node {
  7242. struct list_head list;
  7243. dev_t dev;
  7244. };
  7245. void md_autodetect_dev(dev_t dev)
  7246. {
  7247. struct detected_devices_node *node_detected_dev;
  7248. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7249. if (node_detected_dev) {
  7250. node_detected_dev->dev = dev;
  7251. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7252. } else {
  7253. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7254. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7255. }
  7256. }
  7257. static void autostart_arrays(int part)
  7258. {
  7259. struct md_rdev *rdev;
  7260. struct detected_devices_node *node_detected_dev;
  7261. dev_t dev;
  7262. int i_scanned, i_passed;
  7263. i_scanned = 0;
  7264. i_passed = 0;
  7265. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7266. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7267. i_scanned++;
  7268. node_detected_dev = list_entry(all_detected_devices.next,
  7269. struct detected_devices_node, list);
  7270. list_del(&node_detected_dev->list);
  7271. dev = node_detected_dev->dev;
  7272. kfree(node_detected_dev);
  7273. rdev = md_import_device(dev,0, 90);
  7274. if (IS_ERR(rdev))
  7275. continue;
  7276. if (test_bit(Faulty, &rdev->flags)) {
  7277. MD_BUG();
  7278. continue;
  7279. }
  7280. set_bit(AutoDetected, &rdev->flags);
  7281. list_add(&rdev->same_set, &pending_raid_disks);
  7282. i_passed++;
  7283. }
  7284. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7285. i_scanned, i_passed);
  7286. autorun_devices(part);
  7287. }
  7288. #endif /* !MODULE */
  7289. static __exit void md_exit(void)
  7290. {
  7291. struct mddev *mddev;
  7292. struct list_head *tmp;
  7293. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7294. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7295. unregister_blkdev(MD_MAJOR,"md");
  7296. unregister_blkdev(mdp_major, "mdp");
  7297. unregister_reboot_notifier(&md_notifier);
  7298. unregister_sysctl_table(raid_table_header);
  7299. remove_proc_entry("mdstat", NULL);
  7300. for_each_mddev(mddev, tmp) {
  7301. export_array(mddev);
  7302. mddev->hold_active = 0;
  7303. }
  7304. destroy_workqueue(md_misc_wq);
  7305. destroy_workqueue(md_wq);
  7306. }
  7307. subsys_initcall(md_init);
  7308. module_exit(md_exit)
  7309. static int get_ro(char *buffer, struct kernel_param *kp)
  7310. {
  7311. return sprintf(buffer, "%d", start_readonly);
  7312. }
  7313. static int set_ro(const char *val, struct kernel_param *kp)
  7314. {
  7315. char *e;
  7316. int num = simple_strtoul(val, &e, 10);
  7317. if (*val && (*e == '\0' || *e == '\n')) {
  7318. start_readonly = num;
  7319. return 0;
  7320. }
  7321. return -EINVAL;
  7322. }
  7323. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7324. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7325. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7326. EXPORT_SYMBOL(register_md_personality);
  7327. EXPORT_SYMBOL(unregister_md_personality);
  7328. EXPORT_SYMBOL(md_error);
  7329. EXPORT_SYMBOL(md_done_sync);
  7330. EXPORT_SYMBOL(md_write_start);
  7331. EXPORT_SYMBOL(md_write_end);
  7332. EXPORT_SYMBOL(md_register_thread);
  7333. EXPORT_SYMBOL(md_unregister_thread);
  7334. EXPORT_SYMBOL(md_wakeup_thread);
  7335. EXPORT_SYMBOL(md_check_recovery);
  7336. MODULE_LICENSE("GPL");
  7337. MODULE_DESCRIPTION("MD RAID framework");
  7338. MODULE_ALIAS("md");
  7339. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);