rtc-cmos.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220
  1. /*
  2. * RTC class driver for "CMOS RTC": PCs, ACPI, etc
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5. * Copyright (C) 2006 David Brownell (convert to new framework)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  14. * That defined the register interface now provided by all PCs, some
  15. * non-PC systems, and incorporated into ACPI. Modern PC chipsets
  16. * integrate an MC146818 clone in their southbridge, and boards use
  17. * that instead of discrete clones like the DS12887 or M48T86. There
  18. * are also clones that connect using the LPC bus.
  19. *
  20. * That register API is also used directly by various other drivers
  21. * (notably for integrated NVRAM), infrastructure (x86 has code to
  22. * bypass the RTC framework, directly reading the RTC during boot
  23. * and updating minutes/seconds for systems using NTP synch) and
  24. * utilities (like userspace 'hwclock', if no /dev node exists).
  25. *
  26. * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  27. * interrupts disabled, holding the global rtc_lock, to exclude those
  28. * other drivers and utilities on correctly configured systems.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/mod_devicetable.h>
  37. #include <linux/log2.h>
  38. /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  39. #include <asm-generic/rtc.h>
  40. struct cmos_rtc {
  41. struct rtc_device *rtc;
  42. struct device *dev;
  43. int irq;
  44. struct resource *iomem;
  45. void (*wake_on)(struct device *);
  46. void (*wake_off)(struct device *);
  47. u8 enabled_wake;
  48. u8 suspend_ctrl;
  49. /* newer hardware extends the original register set */
  50. u8 day_alrm;
  51. u8 mon_alrm;
  52. u8 century;
  53. };
  54. /* both platform and pnp busses use negative numbers for invalid irqs */
  55. #define is_valid_irq(n) ((n) > 0)
  56. static const char driver_name[] = "rtc_cmos";
  57. /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  58. * always mask it against the irq enable bits in RTC_CONTROL. Bit values
  59. * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  60. */
  61. #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
  62. static inline int is_intr(u8 rtc_intr)
  63. {
  64. if (!(rtc_intr & RTC_IRQF))
  65. return 0;
  66. return rtc_intr & RTC_IRQMASK;
  67. }
  68. /*----------------------------------------------------------------*/
  69. /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  70. * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  71. * used in a broken "legacy replacement" mode. The breakage includes
  72. * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  73. * other (better) use.
  74. *
  75. * When that broken mode is in use, platform glue provides a partial
  76. * emulation of hardware RTC IRQ facilities using HPET #1. We don't
  77. * want to use HPET for anything except those IRQs though...
  78. */
  79. #ifdef CONFIG_HPET_EMULATE_RTC
  80. #include <asm/hpet.h>
  81. #else
  82. static inline int is_hpet_enabled(void)
  83. {
  84. return 0;
  85. }
  86. static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
  87. {
  88. return 0;
  89. }
  90. static inline int hpet_set_rtc_irq_bit(unsigned long mask)
  91. {
  92. return 0;
  93. }
  94. static inline int
  95. hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
  96. {
  97. return 0;
  98. }
  99. static inline int hpet_set_periodic_freq(unsigned long freq)
  100. {
  101. return 0;
  102. }
  103. static inline int hpet_rtc_dropped_irq(void)
  104. {
  105. return 0;
  106. }
  107. static inline int hpet_rtc_timer_init(void)
  108. {
  109. return 0;
  110. }
  111. extern irq_handler_t hpet_rtc_interrupt;
  112. static inline int hpet_register_irq_handler(irq_handler_t handler)
  113. {
  114. return 0;
  115. }
  116. static inline int hpet_unregister_irq_handler(irq_handler_t handler)
  117. {
  118. return 0;
  119. }
  120. #endif
  121. /*----------------------------------------------------------------*/
  122. #ifdef RTC_PORT
  123. /* Most newer x86 systems have two register banks, the first used
  124. * for RTC and NVRAM and the second only for NVRAM. Caller must
  125. * own rtc_lock ... and we won't worry about access during NMI.
  126. */
  127. #define can_bank2 true
  128. static inline unsigned char cmos_read_bank2(unsigned char addr)
  129. {
  130. outb(addr, RTC_PORT(2));
  131. return inb(RTC_PORT(3));
  132. }
  133. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  134. {
  135. outb(addr, RTC_PORT(2));
  136. outb(val, RTC_PORT(2));
  137. }
  138. #else
  139. #define can_bank2 false
  140. static inline unsigned char cmos_read_bank2(unsigned char addr)
  141. {
  142. return 0;
  143. }
  144. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  145. {
  146. }
  147. #endif
  148. /*----------------------------------------------------------------*/
  149. static int cmos_read_time(struct device *dev, struct rtc_time *t)
  150. {
  151. /* REVISIT: if the clock has a "century" register, use
  152. * that instead of the heuristic in get_rtc_time().
  153. * That'll make Y3K compatility (year > 2070) easy!
  154. */
  155. get_rtc_time(t);
  156. return 0;
  157. }
  158. static int cmos_set_time(struct device *dev, struct rtc_time *t)
  159. {
  160. /* REVISIT: set the "century" register if available
  161. *
  162. * NOTE: this ignores the issue whereby updating the seconds
  163. * takes effect exactly 500ms after we write the register.
  164. * (Also queueing and other delays before we get this far.)
  165. */
  166. return set_rtc_time(t);
  167. }
  168. static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  169. {
  170. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  171. unsigned char rtc_control;
  172. if (!is_valid_irq(cmos->irq))
  173. return -EIO;
  174. /* Basic alarms only support hour, minute, and seconds fields.
  175. * Some also support day and month, for alarms up to a year in
  176. * the future.
  177. */
  178. t->time.tm_mday = -1;
  179. t->time.tm_mon = -1;
  180. spin_lock_irq(&rtc_lock);
  181. t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  182. t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  183. t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  184. if (cmos->day_alrm) {
  185. /* ignore upper bits on readback per ACPI spec */
  186. t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
  187. if (!t->time.tm_mday)
  188. t->time.tm_mday = -1;
  189. if (cmos->mon_alrm) {
  190. t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
  191. if (!t->time.tm_mon)
  192. t->time.tm_mon = -1;
  193. }
  194. }
  195. rtc_control = CMOS_READ(RTC_CONTROL);
  196. spin_unlock_irq(&rtc_lock);
  197. /* REVISIT this assumes PC style usage: always BCD */
  198. if (((unsigned)t->time.tm_sec) < 0x60)
  199. t->time.tm_sec = bcd2bin(t->time.tm_sec);
  200. else
  201. t->time.tm_sec = -1;
  202. if (((unsigned)t->time.tm_min) < 0x60)
  203. t->time.tm_min = bcd2bin(t->time.tm_min);
  204. else
  205. t->time.tm_min = -1;
  206. if (((unsigned)t->time.tm_hour) < 0x24)
  207. t->time.tm_hour = bcd2bin(t->time.tm_hour);
  208. else
  209. t->time.tm_hour = -1;
  210. if (cmos->day_alrm) {
  211. if (((unsigned)t->time.tm_mday) <= 0x31)
  212. t->time.tm_mday = bcd2bin(t->time.tm_mday);
  213. else
  214. t->time.tm_mday = -1;
  215. if (cmos->mon_alrm) {
  216. if (((unsigned)t->time.tm_mon) <= 0x12)
  217. t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1;
  218. else
  219. t->time.tm_mon = -1;
  220. }
  221. }
  222. t->time.tm_year = -1;
  223. t->enabled = !!(rtc_control & RTC_AIE);
  224. t->pending = 0;
  225. return 0;
  226. }
  227. static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
  228. {
  229. unsigned char rtc_intr;
  230. /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
  231. * allegedly some older rtcs need that to handle irqs properly
  232. */
  233. rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
  234. if (is_hpet_enabled())
  235. return;
  236. rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  237. if (is_intr(rtc_intr))
  238. rtc_update_irq(cmos->rtc, 1, rtc_intr);
  239. }
  240. static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
  241. {
  242. unsigned char rtc_control;
  243. /* flush any pending IRQ status, notably for update irqs,
  244. * before we enable new IRQs
  245. */
  246. rtc_control = CMOS_READ(RTC_CONTROL);
  247. cmos_checkintr(cmos, rtc_control);
  248. rtc_control |= mask;
  249. CMOS_WRITE(rtc_control, RTC_CONTROL);
  250. hpet_set_rtc_irq_bit(mask);
  251. cmos_checkintr(cmos, rtc_control);
  252. }
  253. static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
  254. {
  255. unsigned char rtc_control;
  256. rtc_control = CMOS_READ(RTC_CONTROL);
  257. rtc_control &= ~mask;
  258. CMOS_WRITE(rtc_control, RTC_CONTROL);
  259. hpet_mask_rtc_irq_bit(mask);
  260. cmos_checkintr(cmos, rtc_control);
  261. }
  262. static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  263. {
  264. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  265. unsigned char mon, mday, hrs, min, sec;
  266. if (!is_valid_irq(cmos->irq))
  267. return -EIO;
  268. /* REVISIT this assumes PC style usage: always BCD */
  269. /* Writing 0xff means "don't care" or "match all". */
  270. mon = t->time.tm_mon + 1;
  271. mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
  272. mday = t->time.tm_mday;
  273. mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
  274. hrs = t->time.tm_hour;
  275. hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
  276. min = t->time.tm_min;
  277. min = (min < 60) ? bin2bcd(min) : 0xff;
  278. sec = t->time.tm_sec;
  279. sec = (sec < 60) ? bin2bcd(sec) : 0xff;
  280. spin_lock_irq(&rtc_lock);
  281. /* next rtc irq must not be from previous alarm setting */
  282. cmos_irq_disable(cmos, RTC_AIE);
  283. /* update alarm */
  284. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  285. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  286. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  287. /* the system may support an "enhanced" alarm */
  288. if (cmos->day_alrm) {
  289. CMOS_WRITE(mday, cmos->day_alrm);
  290. if (cmos->mon_alrm)
  291. CMOS_WRITE(mon, cmos->mon_alrm);
  292. }
  293. /* FIXME the HPET alarm glue currently ignores day_alrm
  294. * and mon_alrm ...
  295. */
  296. hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
  297. if (t->enabled)
  298. cmos_irq_enable(cmos, RTC_AIE);
  299. spin_unlock_irq(&rtc_lock);
  300. return 0;
  301. }
  302. static int cmos_irq_set_freq(struct device *dev, int freq)
  303. {
  304. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  305. int f;
  306. unsigned long flags;
  307. if (!is_valid_irq(cmos->irq))
  308. return -ENXIO;
  309. if (!is_power_of_2(freq))
  310. return -EINVAL;
  311. /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
  312. f = ffs(freq);
  313. if (f-- > 16)
  314. return -EINVAL;
  315. f = 16 - f;
  316. spin_lock_irqsave(&rtc_lock, flags);
  317. hpet_set_periodic_freq(freq);
  318. CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
  319. spin_unlock_irqrestore(&rtc_lock, flags);
  320. return 0;
  321. }
  322. static int cmos_irq_set_state(struct device *dev, int enabled)
  323. {
  324. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  325. unsigned long flags;
  326. if (!is_valid_irq(cmos->irq))
  327. return -ENXIO;
  328. spin_lock_irqsave(&rtc_lock, flags);
  329. if (enabled)
  330. cmos_irq_enable(cmos, RTC_PIE);
  331. else
  332. cmos_irq_disable(cmos, RTC_PIE);
  333. spin_unlock_irqrestore(&rtc_lock, flags);
  334. return 0;
  335. }
  336. static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
  337. {
  338. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  339. unsigned long flags;
  340. if (!is_valid_irq(cmos->irq))
  341. return -EINVAL;
  342. spin_lock_irqsave(&rtc_lock, flags);
  343. if (enabled)
  344. cmos_irq_enable(cmos, RTC_AIE);
  345. else
  346. cmos_irq_disable(cmos, RTC_AIE);
  347. spin_unlock_irqrestore(&rtc_lock, flags);
  348. return 0;
  349. }
  350. static int cmos_update_irq_enable(struct device *dev, unsigned int enabled)
  351. {
  352. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  353. unsigned long flags;
  354. if (!is_valid_irq(cmos->irq))
  355. return -EINVAL;
  356. spin_lock_irqsave(&rtc_lock, flags);
  357. if (enabled)
  358. cmos_irq_enable(cmos, RTC_UIE);
  359. else
  360. cmos_irq_disable(cmos, RTC_UIE);
  361. spin_unlock_irqrestore(&rtc_lock, flags);
  362. return 0;
  363. }
  364. #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
  365. static int cmos_procfs(struct device *dev, struct seq_file *seq)
  366. {
  367. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  368. unsigned char rtc_control, valid;
  369. spin_lock_irq(&rtc_lock);
  370. rtc_control = CMOS_READ(RTC_CONTROL);
  371. valid = CMOS_READ(RTC_VALID);
  372. spin_unlock_irq(&rtc_lock);
  373. /* NOTE: at least ICH6 reports battery status using a different
  374. * (non-RTC) bit; and SQWE is ignored on many current systems.
  375. */
  376. return seq_printf(seq,
  377. "periodic_IRQ\t: %s\n"
  378. "update_IRQ\t: %s\n"
  379. "HPET_emulated\t: %s\n"
  380. // "square_wave\t: %s\n"
  381. // "BCD\t\t: %s\n"
  382. "DST_enable\t: %s\n"
  383. "periodic_freq\t: %d\n"
  384. "batt_status\t: %s\n",
  385. (rtc_control & RTC_PIE) ? "yes" : "no",
  386. (rtc_control & RTC_UIE) ? "yes" : "no",
  387. is_hpet_enabled() ? "yes" : "no",
  388. // (rtc_control & RTC_SQWE) ? "yes" : "no",
  389. // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
  390. (rtc_control & RTC_DST_EN) ? "yes" : "no",
  391. cmos->rtc->irq_freq,
  392. (valid & RTC_VRT) ? "okay" : "dead");
  393. }
  394. #else
  395. #define cmos_procfs NULL
  396. #endif
  397. static const struct rtc_class_ops cmos_rtc_ops = {
  398. .read_time = cmos_read_time,
  399. .set_time = cmos_set_time,
  400. .read_alarm = cmos_read_alarm,
  401. .set_alarm = cmos_set_alarm,
  402. .proc = cmos_procfs,
  403. .irq_set_freq = cmos_irq_set_freq,
  404. .irq_set_state = cmos_irq_set_state,
  405. .alarm_irq_enable = cmos_alarm_irq_enable,
  406. .update_irq_enable = cmos_update_irq_enable,
  407. };
  408. /*----------------------------------------------------------------*/
  409. /*
  410. * All these chips have at least 64 bytes of address space, shared by
  411. * RTC registers and NVRAM. Most of those bytes of NVRAM are used
  412. * by boot firmware. Modern chips have 128 or 256 bytes.
  413. */
  414. #define NVRAM_OFFSET (RTC_REG_D + 1)
  415. static ssize_t
  416. cmos_nvram_read(struct file *filp, struct kobject *kobj,
  417. struct bin_attribute *attr,
  418. char *buf, loff_t off, size_t count)
  419. {
  420. int retval;
  421. if (unlikely(off >= attr->size))
  422. return 0;
  423. if (unlikely(off < 0))
  424. return -EINVAL;
  425. if ((off + count) > attr->size)
  426. count = attr->size - off;
  427. off += NVRAM_OFFSET;
  428. spin_lock_irq(&rtc_lock);
  429. for (retval = 0; count; count--, off++, retval++) {
  430. if (off < 128)
  431. *buf++ = CMOS_READ(off);
  432. else if (can_bank2)
  433. *buf++ = cmos_read_bank2(off);
  434. else
  435. break;
  436. }
  437. spin_unlock_irq(&rtc_lock);
  438. return retval;
  439. }
  440. static ssize_t
  441. cmos_nvram_write(struct file *filp, struct kobject *kobj,
  442. struct bin_attribute *attr,
  443. char *buf, loff_t off, size_t count)
  444. {
  445. struct cmos_rtc *cmos;
  446. int retval;
  447. cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
  448. if (unlikely(off >= attr->size))
  449. return -EFBIG;
  450. if (unlikely(off < 0))
  451. return -EINVAL;
  452. if ((off + count) > attr->size)
  453. count = attr->size - off;
  454. /* NOTE: on at least PCs and Ataris, the boot firmware uses a
  455. * checksum on part of the NVRAM data. That's currently ignored
  456. * here. If userspace is smart enough to know what fields of
  457. * NVRAM to update, updating checksums is also part of its job.
  458. */
  459. off += NVRAM_OFFSET;
  460. spin_lock_irq(&rtc_lock);
  461. for (retval = 0; count; count--, off++, retval++) {
  462. /* don't trash RTC registers */
  463. if (off == cmos->day_alrm
  464. || off == cmos->mon_alrm
  465. || off == cmos->century)
  466. buf++;
  467. else if (off < 128)
  468. CMOS_WRITE(*buf++, off);
  469. else if (can_bank2)
  470. cmos_write_bank2(*buf++, off);
  471. else
  472. break;
  473. }
  474. spin_unlock_irq(&rtc_lock);
  475. return retval;
  476. }
  477. static struct bin_attribute nvram = {
  478. .attr = {
  479. .name = "nvram",
  480. .mode = S_IRUGO | S_IWUSR,
  481. },
  482. .read = cmos_nvram_read,
  483. .write = cmos_nvram_write,
  484. /* size gets set up later */
  485. };
  486. /*----------------------------------------------------------------*/
  487. static struct cmos_rtc cmos_rtc;
  488. static irqreturn_t cmos_interrupt(int irq, void *p)
  489. {
  490. u8 irqstat;
  491. u8 rtc_control;
  492. spin_lock(&rtc_lock);
  493. /* When the HPET interrupt handler calls us, the interrupt
  494. * status is passed as arg1 instead of the irq number. But
  495. * always clear irq status, even when HPET is in the way.
  496. *
  497. * Note that HPET and RTC are almost certainly out of phase,
  498. * giving different IRQ status ...
  499. */
  500. irqstat = CMOS_READ(RTC_INTR_FLAGS);
  501. rtc_control = CMOS_READ(RTC_CONTROL);
  502. if (is_hpet_enabled())
  503. irqstat = (unsigned long)irq & 0xF0;
  504. irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  505. /* All Linux RTC alarms should be treated as if they were oneshot.
  506. * Similar code may be needed in system wakeup paths, in case the
  507. * alarm woke the system.
  508. */
  509. if (irqstat & RTC_AIE) {
  510. rtc_control &= ~RTC_AIE;
  511. CMOS_WRITE(rtc_control, RTC_CONTROL);
  512. hpet_mask_rtc_irq_bit(RTC_AIE);
  513. CMOS_READ(RTC_INTR_FLAGS);
  514. }
  515. spin_unlock(&rtc_lock);
  516. if (is_intr(irqstat)) {
  517. rtc_update_irq(p, 1, irqstat);
  518. return IRQ_HANDLED;
  519. } else
  520. return IRQ_NONE;
  521. }
  522. #ifdef CONFIG_PNP
  523. #define INITSECTION
  524. #else
  525. #define INITSECTION __init
  526. #endif
  527. static int INITSECTION
  528. cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
  529. {
  530. struct cmos_rtc_board_info *info = dev->platform_data;
  531. int retval = 0;
  532. unsigned char rtc_control;
  533. unsigned address_space;
  534. /* there can be only one ... */
  535. if (cmos_rtc.dev)
  536. return -EBUSY;
  537. if (!ports)
  538. return -ENODEV;
  539. /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
  540. *
  541. * REVISIT non-x86 systems may instead use memory space resources
  542. * (needing ioremap etc), not i/o space resources like this ...
  543. */
  544. ports = request_region(ports->start,
  545. ports->end + 1 - ports->start,
  546. driver_name);
  547. if (!ports) {
  548. dev_dbg(dev, "i/o registers already in use\n");
  549. return -EBUSY;
  550. }
  551. cmos_rtc.irq = rtc_irq;
  552. cmos_rtc.iomem = ports;
  553. /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
  554. * driver did, but don't reject unknown configs. Old hardware
  555. * won't address 128 bytes. Newer chips have multiple banks,
  556. * though they may not be listed in one I/O resource.
  557. */
  558. #if defined(CONFIG_ATARI)
  559. address_space = 64;
  560. #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
  561. || defined(__sparc__) || defined(__mips__)
  562. address_space = 128;
  563. #else
  564. #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
  565. address_space = 128;
  566. #endif
  567. if (can_bank2 && ports->end > (ports->start + 1))
  568. address_space = 256;
  569. /* For ACPI systems extension info comes from the FADT. On others,
  570. * board specific setup provides it as appropriate. Systems where
  571. * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
  572. * some almost-clones) can provide hooks to make that behave.
  573. *
  574. * Note that ACPI doesn't preclude putting these registers into
  575. * "extended" areas of the chip, including some that we won't yet
  576. * expect CMOS_READ and friends to handle.
  577. */
  578. if (info) {
  579. if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
  580. cmos_rtc.day_alrm = info->rtc_day_alarm;
  581. if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
  582. cmos_rtc.mon_alrm = info->rtc_mon_alarm;
  583. if (info->rtc_century && info->rtc_century < 128)
  584. cmos_rtc.century = info->rtc_century;
  585. if (info->wake_on && info->wake_off) {
  586. cmos_rtc.wake_on = info->wake_on;
  587. cmos_rtc.wake_off = info->wake_off;
  588. }
  589. }
  590. cmos_rtc.rtc = rtc_device_register(driver_name, dev,
  591. &cmos_rtc_ops, THIS_MODULE);
  592. if (IS_ERR(cmos_rtc.rtc)) {
  593. retval = PTR_ERR(cmos_rtc.rtc);
  594. goto cleanup0;
  595. }
  596. cmos_rtc.dev = dev;
  597. dev_set_drvdata(dev, &cmos_rtc);
  598. rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
  599. spin_lock_irq(&rtc_lock);
  600. /* force periodic irq to CMOS reset default of 1024Hz;
  601. *
  602. * REVISIT it's been reported that at least one x86_64 ALI mobo
  603. * doesn't use 32KHz here ... for portability we might need to
  604. * do something about other clock frequencies.
  605. */
  606. cmos_rtc.rtc->irq_freq = 1024;
  607. hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
  608. CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
  609. /* disable irqs */
  610. cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
  611. rtc_control = CMOS_READ(RTC_CONTROL);
  612. spin_unlock_irq(&rtc_lock);
  613. /* FIXME teach the alarm code how to handle binary mode;
  614. * <asm-generic/rtc.h> doesn't know 12-hour mode either.
  615. */
  616. if (is_valid_irq(rtc_irq) &&
  617. (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) {
  618. dev_dbg(dev, "only 24-hr BCD mode supported\n");
  619. retval = -ENXIO;
  620. goto cleanup1;
  621. }
  622. if (is_valid_irq(rtc_irq)) {
  623. irq_handler_t rtc_cmos_int_handler;
  624. if (is_hpet_enabled()) {
  625. int err;
  626. rtc_cmos_int_handler = hpet_rtc_interrupt;
  627. err = hpet_register_irq_handler(cmos_interrupt);
  628. if (err != 0) {
  629. printk(KERN_WARNING "hpet_register_irq_handler "
  630. " failed in rtc_init().");
  631. goto cleanup1;
  632. }
  633. } else
  634. rtc_cmos_int_handler = cmos_interrupt;
  635. retval = request_irq(rtc_irq, rtc_cmos_int_handler,
  636. IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
  637. cmos_rtc.rtc);
  638. if (retval < 0) {
  639. dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
  640. goto cleanup1;
  641. }
  642. }
  643. hpet_rtc_timer_init();
  644. /* export at least the first block of NVRAM */
  645. nvram.size = address_space - NVRAM_OFFSET;
  646. retval = sysfs_create_bin_file(&dev->kobj, &nvram);
  647. if (retval < 0) {
  648. dev_dbg(dev, "can't create nvram file? %d\n", retval);
  649. goto cleanup2;
  650. }
  651. pr_info("%s: %s%s, %zd bytes nvram%s\n",
  652. dev_name(&cmos_rtc.rtc->dev),
  653. !is_valid_irq(rtc_irq) ? "no alarms" :
  654. cmos_rtc.mon_alrm ? "alarms up to one year" :
  655. cmos_rtc.day_alrm ? "alarms up to one month" :
  656. "alarms up to one day",
  657. cmos_rtc.century ? ", y3k" : "",
  658. nvram.size,
  659. is_hpet_enabled() ? ", hpet irqs" : "");
  660. return 0;
  661. cleanup2:
  662. if (is_valid_irq(rtc_irq))
  663. free_irq(rtc_irq, cmos_rtc.rtc);
  664. cleanup1:
  665. cmos_rtc.dev = NULL;
  666. rtc_device_unregister(cmos_rtc.rtc);
  667. cleanup0:
  668. release_region(ports->start, ports->end + 1 - ports->start);
  669. return retval;
  670. }
  671. static void cmos_do_shutdown(void)
  672. {
  673. spin_lock_irq(&rtc_lock);
  674. cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
  675. spin_unlock_irq(&rtc_lock);
  676. }
  677. static void __exit cmos_do_remove(struct device *dev)
  678. {
  679. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  680. struct resource *ports;
  681. cmos_do_shutdown();
  682. sysfs_remove_bin_file(&dev->kobj, &nvram);
  683. if (is_valid_irq(cmos->irq)) {
  684. free_irq(cmos->irq, cmos->rtc);
  685. hpet_unregister_irq_handler(cmos_interrupt);
  686. }
  687. rtc_device_unregister(cmos->rtc);
  688. cmos->rtc = NULL;
  689. ports = cmos->iomem;
  690. release_region(ports->start, ports->end + 1 - ports->start);
  691. cmos->iomem = NULL;
  692. cmos->dev = NULL;
  693. dev_set_drvdata(dev, NULL);
  694. }
  695. #ifdef CONFIG_PM
  696. static int cmos_suspend(struct device *dev, pm_message_t mesg)
  697. {
  698. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  699. unsigned char tmp;
  700. /* only the alarm might be a wakeup event source */
  701. spin_lock_irq(&rtc_lock);
  702. cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
  703. if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
  704. unsigned char mask;
  705. if (device_may_wakeup(dev))
  706. mask = RTC_IRQMASK & ~RTC_AIE;
  707. else
  708. mask = RTC_IRQMASK;
  709. tmp &= ~mask;
  710. CMOS_WRITE(tmp, RTC_CONTROL);
  711. /* shut down hpet emulation - we don't need it for alarm */
  712. hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
  713. cmos_checkintr(cmos, tmp);
  714. }
  715. spin_unlock_irq(&rtc_lock);
  716. if (tmp & RTC_AIE) {
  717. cmos->enabled_wake = 1;
  718. if (cmos->wake_on)
  719. cmos->wake_on(dev);
  720. else
  721. enable_irq_wake(cmos->irq);
  722. }
  723. pr_debug("%s: suspend%s, ctrl %02x\n",
  724. dev_name(&cmos_rtc.rtc->dev),
  725. (tmp & RTC_AIE) ? ", alarm may wake" : "",
  726. tmp);
  727. return 0;
  728. }
  729. /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
  730. * after a detour through G3 "mechanical off", although the ACPI spec
  731. * says wakeup should only work from G1/S4 "hibernate". To most users,
  732. * distinctions between S4 and S5 are pointless. So when the hardware
  733. * allows, don't draw that distinction.
  734. */
  735. static inline int cmos_poweroff(struct device *dev)
  736. {
  737. return cmos_suspend(dev, PMSG_HIBERNATE);
  738. }
  739. static int cmos_resume(struct device *dev)
  740. {
  741. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  742. unsigned char tmp = cmos->suspend_ctrl;
  743. /* re-enable any irqs previously active */
  744. if (tmp & RTC_IRQMASK) {
  745. unsigned char mask;
  746. if (cmos->enabled_wake) {
  747. if (cmos->wake_off)
  748. cmos->wake_off(dev);
  749. else
  750. disable_irq_wake(cmos->irq);
  751. cmos->enabled_wake = 0;
  752. }
  753. spin_lock_irq(&rtc_lock);
  754. do {
  755. CMOS_WRITE(tmp, RTC_CONTROL);
  756. hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
  757. mask = CMOS_READ(RTC_INTR_FLAGS);
  758. mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
  759. if (!is_hpet_enabled() || !is_intr(mask))
  760. break;
  761. /* force one-shot behavior if HPET blocked
  762. * the wake alarm's irq
  763. */
  764. rtc_update_irq(cmos->rtc, 1, mask);
  765. tmp &= ~RTC_AIE;
  766. hpet_mask_rtc_irq_bit(RTC_AIE);
  767. } while (mask & RTC_AIE);
  768. spin_unlock_irq(&rtc_lock);
  769. }
  770. pr_debug("%s: resume, ctrl %02x\n",
  771. dev_name(&cmos_rtc.rtc->dev),
  772. tmp);
  773. return 0;
  774. }
  775. #else
  776. #define cmos_suspend NULL
  777. #define cmos_resume NULL
  778. static inline int cmos_poweroff(struct device *dev)
  779. {
  780. return -ENOSYS;
  781. }
  782. #endif
  783. /*----------------------------------------------------------------*/
  784. /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
  785. * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
  786. * probably list them in similar PNPBIOS tables; so PNP is more common.
  787. *
  788. * We don't use legacy "poke at the hardware" probing. Ancient PCs that
  789. * predate even PNPBIOS should set up platform_bus devices.
  790. */
  791. #ifdef CONFIG_ACPI
  792. #include <linux/acpi.h>
  793. #ifdef CONFIG_PM
  794. static u32 rtc_handler(void *context)
  795. {
  796. acpi_clear_event(ACPI_EVENT_RTC);
  797. acpi_disable_event(ACPI_EVENT_RTC, 0);
  798. return ACPI_INTERRUPT_HANDLED;
  799. }
  800. static inline void rtc_wake_setup(void)
  801. {
  802. acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
  803. /*
  804. * After the RTC handler is installed, the Fixed_RTC event should
  805. * be disabled. Only when the RTC alarm is set will it be enabled.
  806. */
  807. acpi_clear_event(ACPI_EVENT_RTC);
  808. acpi_disable_event(ACPI_EVENT_RTC, 0);
  809. }
  810. static void rtc_wake_on(struct device *dev)
  811. {
  812. acpi_clear_event(ACPI_EVENT_RTC);
  813. acpi_enable_event(ACPI_EVENT_RTC, 0);
  814. }
  815. static void rtc_wake_off(struct device *dev)
  816. {
  817. acpi_disable_event(ACPI_EVENT_RTC, 0);
  818. }
  819. #else
  820. #define rtc_wake_setup() do{}while(0)
  821. #define rtc_wake_on NULL
  822. #define rtc_wake_off NULL
  823. #endif
  824. /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
  825. * its device node and pass extra config data. This helps its driver use
  826. * capabilities that the now-obsolete mc146818 didn't have, and informs it
  827. * that this board's RTC is wakeup-capable (per ACPI spec).
  828. */
  829. static struct cmos_rtc_board_info acpi_rtc_info;
  830. static void __devinit
  831. cmos_wake_setup(struct device *dev)
  832. {
  833. if (acpi_disabled)
  834. return;
  835. rtc_wake_setup();
  836. acpi_rtc_info.wake_on = rtc_wake_on;
  837. acpi_rtc_info.wake_off = rtc_wake_off;
  838. /* workaround bug in some ACPI tables */
  839. if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
  840. dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
  841. acpi_gbl_FADT.month_alarm);
  842. acpi_gbl_FADT.month_alarm = 0;
  843. }
  844. acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
  845. acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
  846. acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
  847. /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
  848. if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
  849. dev_info(dev, "RTC can wake from S4\n");
  850. dev->platform_data = &acpi_rtc_info;
  851. /* RTC always wakes from S1/S2/S3, and often S4/STD */
  852. device_init_wakeup(dev, 1);
  853. }
  854. #else
  855. static void __devinit
  856. cmos_wake_setup(struct device *dev)
  857. {
  858. }
  859. #endif
  860. #ifdef CONFIG_PNP
  861. #include <linux/pnp.h>
  862. static int __devinit
  863. cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
  864. {
  865. cmos_wake_setup(&pnp->dev);
  866. if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
  867. /* Some machines contain a PNP entry for the RTC, but
  868. * don't define the IRQ. It should always be safe to
  869. * hardcode it in these cases
  870. */
  871. return cmos_do_probe(&pnp->dev,
  872. pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
  873. else
  874. return cmos_do_probe(&pnp->dev,
  875. pnp_get_resource(pnp, IORESOURCE_IO, 0),
  876. pnp_irq(pnp, 0));
  877. }
  878. static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
  879. {
  880. cmos_do_remove(&pnp->dev);
  881. }
  882. #ifdef CONFIG_PM
  883. static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
  884. {
  885. return cmos_suspend(&pnp->dev, mesg);
  886. }
  887. static int cmos_pnp_resume(struct pnp_dev *pnp)
  888. {
  889. return cmos_resume(&pnp->dev);
  890. }
  891. #else
  892. #define cmos_pnp_suspend NULL
  893. #define cmos_pnp_resume NULL
  894. #endif
  895. static void cmos_pnp_shutdown(struct pnp_dev *pnp)
  896. {
  897. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
  898. return;
  899. cmos_do_shutdown();
  900. }
  901. static const struct pnp_device_id rtc_ids[] = {
  902. { .id = "PNP0b00", },
  903. { .id = "PNP0b01", },
  904. { .id = "PNP0b02", },
  905. { },
  906. };
  907. MODULE_DEVICE_TABLE(pnp, rtc_ids);
  908. static struct pnp_driver cmos_pnp_driver = {
  909. .name = (char *) driver_name,
  910. .id_table = rtc_ids,
  911. .probe = cmos_pnp_probe,
  912. .remove = __exit_p(cmos_pnp_remove),
  913. .shutdown = cmos_pnp_shutdown,
  914. /* flag ensures resume() gets called, and stops syslog spam */
  915. .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
  916. .suspend = cmos_pnp_suspend,
  917. .resume = cmos_pnp_resume,
  918. };
  919. #endif /* CONFIG_PNP */
  920. /*----------------------------------------------------------------*/
  921. /* Platform setup should have set up an RTC device, when PNP is
  922. * unavailable ... this could happen even on (older) PCs.
  923. */
  924. static int __init cmos_platform_probe(struct platform_device *pdev)
  925. {
  926. cmos_wake_setup(&pdev->dev);
  927. return cmos_do_probe(&pdev->dev,
  928. platform_get_resource(pdev, IORESOURCE_IO, 0),
  929. platform_get_irq(pdev, 0));
  930. }
  931. static int __exit cmos_platform_remove(struct platform_device *pdev)
  932. {
  933. cmos_do_remove(&pdev->dev);
  934. return 0;
  935. }
  936. static void cmos_platform_shutdown(struct platform_device *pdev)
  937. {
  938. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
  939. return;
  940. cmos_do_shutdown();
  941. }
  942. /* work with hotplug and coldplug */
  943. MODULE_ALIAS("platform:rtc_cmos");
  944. static struct platform_driver cmos_platform_driver = {
  945. .remove = __exit_p(cmos_platform_remove),
  946. .shutdown = cmos_platform_shutdown,
  947. .driver = {
  948. .name = (char *) driver_name,
  949. .suspend = cmos_suspend,
  950. .resume = cmos_resume,
  951. }
  952. };
  953. #ifdef CONFIG_PNP
  954. static bool pnp_driver_registered;
  955. #endif
  956. static bool platform_driver_registered;
  957. static int __init cmos_init(void)
  958. {
  959. int retval = 0;
  960. #ifdef CONFIG_PNP
  961. retval = pnp_register_driver(&cmos_pnp_driver);
  962. if (retval == 0)
  963. pnp_driver_registered = true;
  964. #endif
  965. if (!cmos_rtc.dev) {
  966. retval = platform_driver_probe(&cmos_platform_driver,
  967. cmos_platform_probe);
  968. if (retval == 0)
  969. platform_driver_registered = true;
  970. }
  971. if (retval == 0)
  972. return 0;
  973. #ifdef CONFIG_PNP
  974. if (pnp_driver_registered)
  975. pnp_unregister_driver(&cmos_pnp_driver);
  976. #endif
  977. return retval;
  978. }
  979. module_init(cmos_init);
  980. static void __exit cmos_exit(void)
  981. {
  982. #ifdef CONFIG_PNP
  983. if (pnp_driver_registered)
  984. pnp_unregister_driver(&cmos_pnp_driver);
  985. #endif
  986. if (platform_driver_registered)
  987. platform_driver_unregister(&cmos_platform_driver);
  988. }
  989. module_exit(cmos_exit);
  990. MODULE_AUTHOR("David Brownell");
  991. MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
  992. MODULE_LICENSE("GPL");