intel_display.c 298 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. int
  64. intel_pch_rawclk(struct drm_device *dev)
  65. {
  66. struct drm_i915_private *dev_priv = dev->dev_private;
  67. WARN_ON(!HAS_PCH_SPLIT(dev));
  68. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  69. }
  70. static inline u32 /* units of 100MHz */
  71. intel_fdi_link_freq(struct drm_device *dev)
  72. {
  73. if (IS_GEN5(dev)) {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  76. } else
  77. return 27;
  78. }
  79. static const intel_limit_t intel_limits_i8xx_dac = {
  80. .dot = { .min = 25000, .max = 350000 },
  81. .vco = { .min = 930000, .max = 1400000 },
  82. .n = { .min = 3, .max = 16 },
  83. .m = { .min = 96, .max = 140 },
  84. .m1 = { .min = 18, .max = 26 },
  85. .m2 = { .min = 6, .max = 16 },
  86. .p = { .min = 4, .max = 128 },
  87. .p1 = { .min = 2, .max = 33 },
  88. .p2 = { .dot_limit = 165000,
  89. .p2_slow = 4, .p2_fast = 2 },
  90. };
  91. static const intel_limit_t intel_limits_i8xx_dvo = {
  92. .dot = { .min = 25000, .max = 350000 },
  93. .vco = { .min = 930000, .max = 1400000 },
  94. .n = { .min = 3, .max = 16 },
  95. .m = { .min = 96, .max = 140 },
  96. .m1 = { .min = 18, .max = 26 },
  97. .m2 = { .min = 6, .max = 16 },
  98. .p = { .min = 4, .max = 128 },
  99. .p1 = { .min = 2, .max = 33 },
  100. .p2 = { .dot_limit = 165000,
  101. .p2_slow = 4, .p2_fast = 4 },
  102. };
  103. static const intel_limit_t intel_limits_i8xx_lvds = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 1, .max = 6 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 14, .p2_fast = 7 },
  114. };
  115. static const intel_limit_t intel_limits_i9xx_sdvo = {
  116. .dot = { .min = 20000, .max = 400000 },
  117. .vco = { .min = 1400000, .max = 2800000 },
  118. .n = { .min = 1, .max = 6 },
  119. .m = { .min = 70, .max = 120 },
  120. .m1 = { .min = 8, .max = 18 },
  121. .m2 = { .min = 3, .max = 7 },
  122. .p = { .min = 5, .max = 80 },
  123. .p1 = { .min = 1, .max = 8 },
  124. .p2 = { .dot_limit = 200000,
  125. .p2_slow = 10, .p2_fast = 5 },
  126. };
  127. static const intel_limit_t intel_limits_i9xx_lvds = {
  128. .dot = { .min = 20000, .max = 400000 },
  129. .vco = { .min = 1400000, .max = 2800000 },
  130. .n = { .min = 1, .max = 6 },
  131. .m = { .min = 70, .max = 120 },
  132. .m1 = { .min = 8, .max = 18 },
  133. .m2 = { .min = 3, .max = 7 },
  134. .p = { .min = 7, .max = 98 },
  135. .p1 = { .min = 1, .max = 8 },
  136. .p2 = { .dot_limit = 112000,
  137. .p2_slow = 14, .p2_fast = 7 },
  138. };
  139. static const intel_limit_t intel_limits_g4x_sdvo = {
  140. .dot = { .min = 25000, .max = 270000 },
  141. .vco = { .min = 1750000, .max = 3500000},
  142. .n = { .min = 1, .max = 4 },
  143. .m = { .min = 104, .max = 138 },
  144. .m1 = { .min = 17, .max = 23 },
  145. .m2 = { .min = 5, .max = 11 },
  146. .p = { .min = 10, .max = 30 },
  147. .p1 = { .min = 1, .max = 3},
  148. .p2 = { .dot_limit = 270000,
  149. .p2_slow = 10,
  150. .p2_fast = 10
  151. },
  152. };
  153. static const intel_limit_t intel_limits_g4x_hdmi = {
  154. .dot = { .min = 22000, .max = 400000 },
  155. .vco = { .min = 1750000, .max = 3500000},
  156. .n = { .min = 1, .max = 4 },
  157. .m = { .min = 104, .max = 138 },
  158. .m1 = { .min = 16, .max = 23 },
  159. .m2 = { .min = 5, .max = 11 },
  160. .p = { .min = 5, .max = 80 },
  161. .p1 = { .min = 1, .max = 8},
  162. .p2 = { .dot_limit = 165000,
  163. .p2_slow = 10, .p2_fast = 5 },
  164. };
  165. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  166. .dot = { .min = 20000, .max = 115000 },
  167. .vco = { .min = 1750000, .max = 3500000 },
  168. .n = { .min = 1, .max = 3 },
  169. .m = { .min = 104, .max = 138 },
  170. .m1 = { .min = 17, .max = 23 },
  171. .m2 = { .min = 5, .max = 11 },
  172. .p = { .min = 28, .max = 112 },
  173. .p1 = { .min = 2, .max = 8 },
  174. .p2 = { .dot_limit = 0,
  175. .p2_slow = 14, .p2_fast = 14
  176. },
  177. };
  178. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  179. .dot = { .min = 80000, .max = 224000 },
  180. .vco = { .min = 1750000, .max = 3500000 },
  181. .n = { .min = 1, .max = 3 },
  182. .m = { .min = 104, .max = 138 },
  183. .m1 = { .min = 17, .max = 23 },
  184. .m2 = { .min = 5, .max = 11 },
  185. .p = { .min = 14, .max = 42 },
  186. .p1 = { .min = 2, .max = 6 },
  187. .p2 = { .dot_limit = 0,
  188. .p2_slow = 7, .p2_fast = 7
  189. },
  190. };
  191. static const intel_limit_t intel_limits_pineview_sdvo = {
  192. .dot = { .min = 20000, .max = 400000},
  193. .vco = { .min = 1700000, .max = 3500000 },
  194. /* Pineview's Ncounter is a ring counter */
  195. .n = { .min = 3, .max = 6 },
  196. .m = { .min = 2, .max = 256 },
  197. /* Pineview only has one combined m divider, which we treat as m2. */
  198. .m1 = { .min = 0, .max = 0 },
  199. .m2 = { .min = 0, .max = 254 },
  200. .p = { .min = 5, .max = 80 },
  201. .p1 = { .min = 1, .max = 8 },
  202. .p2 = { .dot_limit = 200000,
  203. .p2_slow = 10, .p2_fast = 5 },
  204. };
  205. static const intel_limit_t intel_limits_pineview_lvds = {
  206. .dot = { .min = 20000, .max = 400000 },
  207. .vco = { .min = 1700000, .max = 3500000 },
  208. .n = { .min = 3, .max = 6 },
  209. .m = { .min = 2, .max = 256 },
  210. .m1 = { .min = 0, .max = 0 },
  211. .m2 = { .min = 0, .max = 254 },
  212. .p = { .min = 7, .max = 112 },
  213. .p1 = { .min = 1, .max = 8 },
  214. .p2 = { .dot_limit = 112000,
  215. .p2_slow = 14, .p2_fast = 14 },
  216. };
  217. /* Ironlake / Sandybridge
  218. *
  219. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  220. * the range value for them is (actual_value - 2).
  221. */
  222. static const intel_limit_t intel_limits_ironlake_dac = {
  223. .dot = { .min = 25000, .max = 350000 },
  224. .vco = { .min = 1760000, .max = 3510000 },
  225. .n = { .min = 1, .max = 5 },
  226. .m = { .min = 79, .max = 127 },
  227. .m1 = { .min = 12, .max = 22 },
  228. .m2 = { .min = 5, .max = 9 },
  229. .p = { .min = 5, .max = 80 },
  230. .p1 = { .min = 1, .max = 8 },
  231. .p2 = { .dot_limit = 225000,
  232. .p2_slow = 10, .p2_fast = 5 },
  233. };
  234. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  235. .dot = { .min = 25000, .max = 350000 },
  236. .vco = { .min = 1760000, .max = 3510000 },
  237. .n = { .min = 1, .max = 3 },
  238. .m = { .min = 79, .max = 118 },
  239. .m1 = { .min = 12, .max = 22 },
  240. .m2 = { .min = 5, .max = 9 },
  241. .p = { .min = 28, .max = 112 },
  242. .p1 = { .min = 2, .max = 8 },
  243. .p2 = { .dot_limit = 225000,
  244. .p2_slow = 14, .p2_fast = 14 },
  245. };
  246. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  247. .dot = { .min = 25000, .max = 350000 },
  248. .vco = { .min = 1760000, .max = 3510000 },
  249. .n = { .min = 1, .max = 3 },
  250. .m = { .min = 79, .max = 127 },
  251. .m1 = { .min = 12, .max = 22 },
  252. .m2 = { .min = 5, .max = 9 },
  253. .p = { .min = 14, .max = 56 },
  254. .p1 = { .min = 2, .max = 8 },
  255. .p2 = { .dot_limit = 225000,
  256. .p2_slow = 7, .p2_fast = 7 },
  257. };
  258. /* LVDS 100mhz refclk limits. */
  259. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  260. .dot = { .min = 25000, .max = 350000 },
  261. .vco = { .min = 1760000, .max = 3510000 },
  262. .n = { .min = 1, .max = 2 },
  263. .m = { .min = 79, .max = 126 },
  264. .m1 = { .min = 12, .max = 22 },
  265. .m2 = { .min = 5, .max = 9 },
  266. .p = { .min = 28, .max = 112 },
  267. .p1 = { .min = 2, .max = 8 },
  268. .p2 = { .dot_limit = 225000,
  269. .p2_slow = 14, .p2_fast = 14 },
  270. };
  271. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  272. .dot = { .min = 25000, .max = 350000 },
  273. .vco = { .min = 1760000, .max = 3510000 },
  274. .n = { .min = 1, .max = 3 },
  275. .m = { .min = 79, .max = 126 },
  276. .m1 = { .min = 12, .max = 22 },
  277. .m2 = { .min = 5, .max = 9 },
  278. .p = { .min = 14, .max = 42 },
  279. .p1 = { .min = 2, .max = 6 },
  280. .p2 = { .dot_limit = 225000,
  281. .p2_slow = 7, .p2_fast = 7 },
  282. };
  283. static const intel_limit_t intel_limits_vlv_dac = {
  284. .dot = { .min = 25000, .max = 270000 },
  285. .vco = { .min = 4000000, .max = 6000000 },
  286. .n = { .min = 1, .max = 7 },
  287. .m = { .min = 22, .max = 450 }, /* guess */
  288. .m1 = { .min = 2, .max = 3 },
  289. .m2 = { .min = 11, .max = 156 },
  290. .p = { .min = 10, .max = 30 },
  291. .p1 = { .min = 1, .max = 3 },
  292. .p2 = { .dot_limit = 270000,
  293. .p2_slow = 2, .p2_fast = 20 },
  294. };
  295. static const intel_limit_t intel_limits_vlv_hdmi = {
  296. .dot = { .min = 25000, .max = 270000 },
  297. .vco = { .min = 4000000, .max = 6000000 },
  298. .n = { .min = 1, .max = 7 },
  299. .m = { .min = 60, .max = 300 }, /* guess */
  300. .m1 = { .min = 2, .max = 3 },
  301. .m2 = { .min = 11, .max = 156 },
  302. .p = { .min = 10, .max = 30 },
  303. .p1 = { .min = 2, .max = 3 },
  304. .p2 = { .dot_limit = 270000,
  305. .p2_slow = 2, .p2_fast = 20 },
  306. };
  307. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  308. int refclk)
  309. {
  310. struct drm_device *dev = crtc->dev;
  311. const intel_limit_t *limit;
  312. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  313. if (intel_is_dual_link_lvds(dev)) {
  314. if (refclk == 100000)
  315. limit = &intel_limits_ironlake_dual_lvds_100m;
  316. else
  317. limit = &intel_limits_ironlake_dual_lvds;
  318. } else {
  319. if (refclk == 100000)
  320. limit = &intel_limits_ironlake_single_lvds_100m;
  321. else
  322. limit = &intel_limits_ironlake_single_lvds;
  323. }
  324. } else
  325. limit = &intel_limits_ironlake_dac;
  326. return limit;
  327. }
  328. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  329. {
  330. struct drm_device *dev = crtc->dev;
  331. const intel_limit_t *limit;
  332. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  333. if (intel_is_dual_link_lvds(dev))
  334. limit = &intel_limits_g4x_dual_channel_lvds;
  335. else
  336. limit = &intel_limits_g4x_single_channel_lvds;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  338. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  339. limit = &intel_limits_g4x_hdmi;
  340. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  341. limit = &intel_limits_g4x_sdvo;
  342. } else /* The option is for other outputs */
  343. limit = &intel_limits_i9xx_sdvo;
  344. return limit;
  345. }
  346. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  347. {
  348. struct drm_device *dev = crtc->dev;
  349. const intel_limit_t *limit;
  350. if (HAS_PCH_SPLIT(dev))
  351. limit = intel_ironlake_limit(crtc, refclk);
  352. else if (IS_G4X(dev)) {
  353. limit = intel_g4x_limit(crtc);
  354. } else if (IS_PINEVIEW(dev)) {
  355. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  356. limit = &intel_limits_pineview_lvds;
  357. else
  358. limit = &intel_limits_pineview_sdvo;
  359. } else if (IS_VALLEYVIEW(dev)) {
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  361. limit = &intel_limits_vlv_dac;
  362. else
  363. limit = &intel_limits_vlv_hdmi;
  364. } else if (!IS_GEN2(dev)) {
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  366. limit = &intel_limits_i9xx_lvds;
  367. else
  368. limit = &intel_limits_i9xx_sdvo;
  369. } else {
  370. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  371. limit = &intel_limits_i8xx_lvds;
  372. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  373. limit = &intel_limits_i8xx_dvo;
  374. else
  375. limit = &intel_limits_i8xx_dac;
  376. }
  377. return limit;
  378. }
  379. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  380. static void pineview_clock(int refclk, intel_clock_t *clock)
  381. {
  382. clock->m = clock->m2 + 2;
  383. clock->p = clock->p1 * clock->p2;
  384. clock->vco = refclk * clock->m / clock->n;
  385. clock->dot = clock->vco / clock->p;
  386. }
  387. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  388. {
  389. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  390. }
  391. static void i9xx_clock(int refclk, intel_clock_t *clock)
  392. {
  393. clock->m = i9xx_dpll_compute_m(clock);
  394. clock->p = clock->p1 * clock->p2;
  395. clock->vco = refclk * clock->m / (clock->n + 2);
  396. clock->dot = clock->vco / clock->p;
  397. }
  398. /**
  399. * Returns whether any output on the specified pipe is of the specified type
  400. */
  401. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  402. {
  403. struct drm_device *dev = crtc->dev;
  404. struct intel_encoder *encoder;
  405. for_each_encoder_on_crtc(dev, crtc, encoder)
  406. if (encoder->type == type)
  407. return true;
  408. return false;
  409. }
  410. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  411. /**
  412. * Returns whether the given set of divisors are valid for a given refclk with
  413. * the given connectors.
  414. */
  415. static bool intel_PLL_is_valid(struct drm_device *dev,
  416. const intel_limit_t *limit,
  417. const intel_clock_t *clock)
  418. {
  419. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  420. INTELPllInvalid("p1 out of range\n");
  421. if (clock->p < limit->p.min || limit->p.max < clock->p)
  422. INTELPllInvalid("p out of range\n");
  423. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  424. INTELPllInvalid("m2 out of range\n");
  425. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  426. INTELPllInvalid("m1 out of range\n");
  427. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  428. INTELPllInvalid("m1 <= m2\n");
  429. if (clock->m < limit->m.min || limit->m.max < clock->m)
  430. INTELPllInvalid("m out of range\n");
  431. if (clock->n < limit->n.min || limit->n.max < clock->n)
  432. INTELPllInvalid("n out of range\n");
  433. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  434. INTELPllInvalid("vco out of range\n");
  435. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  436. * connector, etc., rather than just a single range.
  437. */
  438. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  439. INTELPllInvalid("dot out of range\n");
  440. return true;
  441. }
  442. static bool
  443. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  444. int target, int refclk, intel_clock_t *match_clock,
  445. intel_clock_t *best_clock)
  446. {
  447. struct drm_device *dev = crtc->dev;
  448. intel_clock_t clock;
  449. int err = target;
  450. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  451. /*
  452. * For LVDS just rely on its current settings for dual-channel.
  453. * We haven't figured out how to reliably set up different
  454. * single/dual channel state, if we even can.
  455. */
  456. if (intel_is_dual_link_lvds(dev))
  457. clock.p2 = limit->p2.p2_fast;
  458. else
  459. clock.p2 = limit->p2.p2_slow;
  460. } else {
  461. if (target < limit->p2.dot_limit)
  462. clock.p2 = limit->p2.p2_slow;
  463. else
  464. clock.p2 = limit->p2.p2_fast;
  465. }
  466. memset(best_clock, 0, sizeof(*best_clock));
  467. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  468. clock.m1++) {
  469. for (clock.m2 = limit->m2.min;
  470. clock.m2 <= limit->m2.max; clock.m2++) {
  471. if (clock.m2 >= clock.m1)
  472. break;
  473. for (clock.n = limit->n.min;
  474. clock.n <= limit->n.max; clock.n++) {
  475. for (clock.p1 = limit->p1.min;
  476. clock.p1 <= limit->p1.max; clock.p1++) {
  477. int this_err;
  478. i9xx_clock(refclk, &clock);
  479. if (!intel_PLL_is_valid(dev, limit,
  480. &clock))
  481. continue;
  482. if (match_clock &&
  483. clock.p != match_clock->p)
  484. continue;
  485. this_err = abs(clock.dot - target);
  486. if (this_err < err) {
  487. *best_clock = clock;
  488. err = this_err;
  489. }
  490. }
  491. }
  492. }
  493. }
  494. return (err != target);
  495. }
  496. static bool
  497. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  498. int target, int refclk, intel_clock_t *match_clock,
  499. intel_clock_t *best_clock)
  500. {
  501. struct drm_device *dev = crtc->dev;
  502. intel_clock_t clock;
  503. int err = target;
  504. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  505. /*
  506. * For LVDS just rely on its current settings for dual-channel.
  507. * We haven't figured out how to reliably set up different
  508. * single/dual channel state, if we even can.
  509. */
  510. if (intel_is_dual_link_lvds(dev))
  511. clock.p2 = limit->p2.p2_fast;
  512. else
  513. clock.p2 = limit->p2.p2_slow;
  514. } else {
  515. if (target < limit->p2.dot_limit)
  516. clock.p2 = limit->p2.p2_slow;
  517. else
  518. clock.p2 = limit->p2.p2_fast;
  519. }
  520. memset(best_clock, 0, sizeof(*best_clock));
  521. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  522. clock.m1++) {
  523. for (clock.m2 = limit->m2.min;
  524. clock.m2 <= limit->m2.max; clock.m2++) {
  525. for (clock.n = limit->n.min;
  526. clock.n <= limit->n.max; clock.n++) {
  527. for (clock.p1 = limit->p1.min;
  528. clock.p1 <= limit->p1.max; clock.p1++) {
  529. int this_err;
  530. pineview_clock(refclk, &clock);
  531. if (!intel_PLL_is_valid(dev, limit,
  532. &clock))
  533. continue;
  534. if (match_clock &&
  535. clock.p != match_clock->p)
  536. continue;
  537. this_err = abs(clock.dot - target);
  538. if (this_err < err) {
  539. *best_clock = clock;
  540. err = this_err;
  541. }
  542. }
  543. }
  544. }
  545. }
  546. return (err != target);
  547. }
  548. static bool
  549. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  550. int target, int refclk, intel_clock_t *match_clock,
  551. intel_clock_t *best_clock)
  552. {
  553. struct drm_device *dev = crtc->dev;
  554. intel_clock_t clock;
  555. int max_n;
  556. bool found;
  557. /* approximately equals target * 0.00585 */
  558. int err_most = (target >> 8) + (target >> 9);
  559. found = false;
  560. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  561. if (intel_is_dual_link_lvds(dev))
  562. clock.p2 = limit->p2.p2_fast;
  563. else
  564. clock.p2 = limit->p2.p2_slow;
  565. } else {
  566. if (target < limit->p2.dot_limit)
  567. clock.p2 = limit->p2.p2_slow;
  568. else
  569. clock.p2 = limit->p2.p2_fast;
  570. }
  571. memset(best_clock, 0, sizeof(*best_clock));
  572. max_n = limit->n.max;
  573. /* based on hardware requirement, prefer smaller n to precision */
  574. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  575. /* based on hardware requirement, prefere larger m1,m2 */
  576. for (clock.m1 = limit->m1.max;
  577. clock.m1 >= limit->m1.min; clock.m1--) {
  578. for (clock.m2 = limit->m2.max;
  579. clock.m2 >= limit->m2.min; clock.m2--) {
  580. for (clock.p1 = limit->p1.max;
  581. clock.p1 >= limit->p1.min; clock.p1--) {
  582. int this_err;
  583. i9xx_clock(refclk, &clock);
  584. if (!intel_PLL_is_valid(dev, limit,
  585. &clock))
  586. continue;
  587. this_err = abs(clock.dot - target);
  588. if (this_err < err_most) {
  589. *best_clock = clock;
  590. err_most = this_err;
  591. max_n = clock.n;
  592. found = true;
  593. }
  594. }
  595. }
  596. }
  597. }
  598. return found;
  599. }
  600. static bool
  601. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  602. int target, int refclk, intel_clock_t *match_clock,
  603. intel_clock_t *best_clock)
  604. {
  605. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  606. u32 m, n, fastclk;
  607. u32 updrate, minupdate, p;
  608. unsigned long bestppm, ppm, absppm;
  609. int dotclk, flag;
  610. flag = 0;
  611. dotclk = target * 1000;
  612. bestppm = 1000000;
  613. ppm = absppm = 0;
  614. fastclk = dotclk / (2*100);
  615. updrate = 0;
  616. minupdate = 19200;
  617. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  618. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  619. /* based on hardware requirement, prefer smaller n to precision */
  620. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  621. updrate = refclk / n;
  622. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  623. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  624. if (p2 > 10)
  625. p2 = p2 - 1;
  626. p = p1 * p2;
  627. /* based on hardware requirement, prefer bigger m1,m2 values */
  628. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  629. m2 = (((2*(fastclk * p * n / m1 )) +
  630. refclk) / (2*refclk));
  631. m = m1 * m2;
  632. vco = updrate * m;
  633. if (vco >= limit->vco.min && vco < limit->vco.max) {
  634. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  635. absppm = (ppm > 0) ? ppm : (-ppm);
  636. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  637. bestppm = 0;
  638. flag = 1;
  639. }
  640. if (absppm < bestppm - 10) {
  641. bestppm = absppm;
  642. flag = 1;
  643. }
  644. if (flag) {
  645. bestn = n;
  646. bestm1 = m1;
  647. bestm2 = m2;
  648. bestp1 = p1;
  649. bestp2 = p2;
  650. flag = 0;
  651. }
  652. }
  653. }
  654. }
  655. }
  656. }
  657. best_clock->n = bestn;
  658. best_clock->m1 = bestm1;
  659. best_clock->m2 = bestm2;
  660. best_clock->p1 = bestp1;
  661. best_clock->p2 = bestp2;
  662. return true;
  663. }
  664. bool intel_crtc_active(struct drm_crtc *crtc)
  665. {
  666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  667. /* Be paranoid as we can arrive here with only partial
  668. * state retrieved from the hardware during setup.
  669. *
  670. * We can ditch the adjusted_mode.clock check as soon
  671. * as Haswell has gained clock readout/fastboot support.
  672. *
  673. * We can ditch the crtc->fb check as soon as we can
  674. * properly reconstruct framebuffers.
  675. */
  676. return intel_crtc->active && crtc->fb &&
  677. intel_crtc->config.adjusted_mode.clock;
  678. }
  679. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  680. enum pipe pipe)
  681. {
  682. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  683. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  684. return intel_crtc->config.cpu_transcoder;
  685. }
  686. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  687. {
  688. struct drm_i915_private *dev_priv = dev->dev_private;
  689. u32 frame, frame_reg = PIPEFRAME(pipe);
  690. frame = I915_READ(frame_reg);
  691. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  692. DRM_DEBUG_KMS("vblank wait timed out\n");
  693. }
  694. /**
  695. * intel_wait_for_vblank - wait for vblank on a given pipe
  696. * @dev: drm device
  697. * @pipe: pipe to wait for
  698. *
  699. * Wait for vblank to occur on a given pipe. Needed for various bits of
  700. * mode setting code.
  701. */
  702. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  703. {
  704. struct drm_i915_private *dev_priv = dev->dev_private;
  705. int pipestat_reg = PIPESTAT(pipe);
  706. if (INTEL_INFO(dev)->gen >= 5) {
  707. ironlake_wait_for_vblank(dev, pipe);
  708. return;
  709. }
  710. /* Clear existing vblank status. Note this will clear any other
  711. * sticky status fields as well.
  712. *
  713. * This races with i915_driver_irq_handler() with the result
  714. * that either function could miss a vblank event. Here it is not
  715. * fatal, as we will either wait upon the next vblank interrupt or
  716. * timeout. Generally speaking intel_wait_for_vblank() is only
  717. * called during modeset at which time the GPU should be idle and
  718. * should *not* be performing page flips and thus not waiting on
  719. * vblanks...
  720. * Currently, the result of us stealing a vblank from the irq
  721. * handler is that a single frame will be skipped during swapbuffers.
  722. */
  723. I915_WRITE(pipestat_reg,
  724. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  725. /* Wait for vblank interrupt bit to set */
  726. if (wait_for(I915_READ(pipestat_reg) &
  727. PIPE_VBLANK_INTERRUPT_STATUS,
  728. 50))
  729. DRM_DEBUG_KMS("vblank wait timed out\n");
  730. }
  731. /*
  732. * intel_wait_for_pipe_off - wait for pipe to turn off
  733. * @dev: drm device
  734. * @pipe: pipe to wait for
  735. *
  736. * After disabling a pipe, we can't wait for vblank in the usual way,
  737. * spinning on the vblank interrupt status bit, since we won't actually
  738. * see an interrupt when the pipe is disabled.
  739. *
  740. * On Gen4 and above:
  741. * wait for the pipe register state bit to turn off
  742. *
  743. * Otherwise:
  744. * wait for the display line value to settle (it usually
  745. * ends up stopping at the start of the next frame).
  746. *
  747. */
  748. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  749. {
  750. struct drm_i915_private *dev_priv = dev->dev_private;
  751. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  752. pipe);
  753. if (INTEL_INFO(dev)->gen >= 4) {
  754. int reg = PIPECONF(cpu_transcoder);
  755. /* Wait for the Pipe State to go off */
  756. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  757. 100))
  758. WARN(1, "pipe_off wait timed out\n");
  759. } else {
  760. u32 last_line, line_mask;
  761. int reg = PIPEDSL(pipe);
  762. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  763. if (IS_GEN2(dev))
  764. line_mask = DSL_LINEMASK_GEN2;
  765. else
  766. line_mask = DSL_LINEMASK_GEN3;
  767. /* Wait for the display line to settle */
  768. do {
  769. last_line = I915_READ(reg) & line_mask;
  770. mdelay(5);
  771. } while (((I915_READ(reg) & line_mask) != last_line) &&
  772. time_after(timeout, jiffies));
  773. if (time_after(jiffies, timeout))
  774. WARN(1, "pipe_off wait timed out\n");
  775. }
  776. }
  777. /*
  778. * ibx_digital_port_connected - is the specified port connected?
  779. * @dev_priv: i915 private structure
  780. * @port: the port to test
  781. *
  782. * Returns true if @port is connected, false otherwise.
  783. */
  784. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  785. struct intel_digital_port *port)
  786. {
  787. u32 bit;
  788. if (HAS_PCH_IBX(dev_priv->dev)) {
  789. switch(port->port) {
  790. case PORT_B:
  791. bit = SDE_PORTB_HOTPLUG;
  792. break;
  793. case PORT_C:
  794. bit = SDE_PORTC_HOTPLUG;
  795. break;
  796. case PORT_D:
  797. bit = SDE_PORTD_HOTPLUG;
  798. break;
  799. default:
  800. return true;
  801. }
  802. } else {
  803. switch(port->port) {
  804. case PORT_B:
  805. bit = SDE_PORTB_HOTPLUG_CPT;
  806. break;
  807. case PORT_C:
  808. bit = SDE_PORTC_HOTPLUG_CPT;
  809. break;
  810. case PORT_D:
  811. bit = SDE_PORTD_HOTPLUG_CPT;
  812. break;
  813. default:
  814. return true;
  815. }
  816. }
  817. return I915_READ(SDEISR) & bit;
  818. }
  819. static const char *state_string(bool enabled)
  820. {
  821. return enabled ? "on" : "off";
  822. }
  823. /* Only for pre-ILK configs */
  824. void assert_pll(struct drm_i915_private *dev_priv,
  825. enum pipe pipe, bool state)
  826. {
  827. int reg;
  828. u32 val;
  829. bool cur_state;
  830. reg = DPLL(pipe);
  831. val = I915_READ(reg);
  832. cur_state = !!(val & DPLL_VCO_ENABLE);
  833. WARN(cur_state != state,
  834. "PLL state assertion failure (expected %s, current %s)\n",
  835. state_string(state), state_string(cur_state));
  836. }
  837. /* XXX: the dsi pll is shared between MIPI DSI ports */
  838. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  839. {
  840. u32 val;
  841. bool cur_state;
  842. mutex_lock(&dev_priv->dpio_lock);
  843. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  844. mutex_unlock(&dev_priv->dpio_lock);
  845. cur_state = val & DSI_PLL_VCO_EN;
  846. WARN(cur_state != state,
  847. "DSI PLL state assertion failure (expected %s, current %s)\n",
  848. state_string(state), state_string(cur_state));
  849. }
  850. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  851. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  852. struct intel_shared_dpll *
  853. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  854. {
  855. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  856. if (crtc->config.shared_dpll < 0)
  857. return NULL;
  858. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  859. }
  860. /* For ILK+ */
  861. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  862. struct intel_shared_dpll *pll,
  863. bool state)
  864. {
  865. bool cur_state;
  866. struct intel_dpll_hw_state hw_state;
  867. if (HAS_PCH_LPT(dev_priv->dev)) {
  868. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  869. return;
  870. }
  871. if (WARN (!pll,
  872. "asserting DPLL %s with no DPLL\n", state_string(state)))
  873. return;
  874. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  875. WARN(cur_state != state,
  876. "%s assertion failure (expected %s, current %s)\n",
  877. pll->name, state_string(state), state_string(cur_state));
  878. }
  879. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  880. enum pipe pipe, bool state)
  881. {
  882. int reg;
  883. u32 val;
  884. bool cur_state;
  885. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  886. pipe);
  887. if (HAS_DDI(dev_priv->dev)) {
  888. /* DDI does not have a specific FDI_TX register */
  889. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  890. val = I915_READ(reg);
  891. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  892. } else {
  893. reg = FDI_TX_CTL(pipe);
  894. val = I915_READ(reg);
  895. cur_state = !!(val & FDI_TX_ENABLE);
  896. }
  897. WARN(cur_state != state,
  898. "FDI TX state assertion failure (expected %s, current %s)\n",
  899. state_string(state), state_string(cur_state));
  900. }
  901. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  902. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  903. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  904. enum pipe pipe, bool state)
  905. {
  906. int reg;
  907. u32 val;
  908. bool cur_state;
  909. reg = FDI_RX_CTL(pipe);
  910. val = I915_READ(reg);
  911. cur_state = !!(val & FDI_RX_ENABLE);
  912. WARN(cur_state != state,
  913. "FDI RX state assertion failure (expected %s, current %s)\n",
  914. state_string(state), state_string(cur_state));
  915. }
  916. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  917. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  918. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  919. enum pipe pipe)
  920. {
  921. int reg;
  922. u32 val;
  923. /* ILK FDI PLL is always enabled */
  924. if (dev_priv->info->gen == 5)
  925. return;
  926. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  927. if (HAS_DDI(dev_priv->dev))
  928. return;
  929. reg = FDI_TX_CTL(pipe);
  930. val = I915_READ(reg);
  931. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  932. }
  933. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  934. enum pipe pipe, bool state)
  935. {
  936. int reg;
  937. u32 val;
  938. bool cur_state;
  939. reg = FDI_RX_CTL(pipe);
  940. val = I915_READ(reg);
  941. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  942. WARN(cur_state != state,
  943. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  944. state_string(state), state_string(cur_state));
  945. }
  946. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  947. enum pipe pipe)
  948. {
  949. int pp_reg, lvds_reg;
  950. u32 val;
  951. enum pipe panel_pipe = PIPE_A;
  952. bool locked = true;
  953. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  954. pp_reg = PCH_PP_CONTROL;
  955. lvds_reg = PCH_LVDS;
  956. } else {
  957. pp_reg = PP_CONTROL;
  958. lvds_reg = LVDS;
  959. }
  960. val = I915_READ(pp_reg);
  961. if (!(val & PANEL_POWER_ON) ||
  962. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  963. locked = false;
  964. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  965. panel_pipe = PIPE_B;
  966. WARN(panel_pipe == pipe && locked,
  967. "panel assertion failure, pipe %c regs locked\n",
  968. pipe_name(pipe));
  969. }
  970. static void assert_cursor(struct drm_i915_private *dev_priv,
  971. enum pipe pipe, bool state)
  972. {
  973. struct drm_device *dev = dev_priv->dev;
  974. bool cur_state;
  975. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  976. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  977. else if (IS_845G(dev) || IS_I865G(dev))
  978. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  979. else
  980. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  981. WARN(cur_state != state,
  982. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  983. pipe_name(pipe), state_string(state), state_string(cur_state));
  984. }
  985. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  986. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  987. void assert_pipe(struct drm_i915_private *dev_priv,
  988. enum pipe pipe, bool state)
  989. {
  990. int reg;
  991. u32 val;
  992. bool cur_state;
  993. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  994. pipe);
  995. /* if we need the pipe A quirk it must be always on */
  996. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  997. state = true;
  998. if (!intel_display_power_enabled(dev_priv->dev,
  999. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  1000. cur_state = false;
  1001. } else {
  1002. reg = PIPECONF(cpu_transcoder);
  1003. val = I915_READ(reg);
  1004. cur_state = !!(val & PIPECONF_ENABLE);
  1005. }
  1006. WARN(cur_state != state,
  1007. "pipe %c assertion failure (expected %s, current %s)\n",
  1008. pipe_name(pipe), state_string(state), state_string(cur_state));
  1009. }
  1010. static void assert_plane(struct drm_i915_private *dev_priv,
  1011. enum plane plane, bool state)
  1012. {
  1013. int reg;
  1014. u32 val;
  1015. bool cur_state;
  1016. reg = DSPCNTR(plane);
  1017. val = I915_READ(reg);
  1018. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1019. WARN(cur_state != state,
  1020. "plane %c assertion failure (expected %s, current %s)\n",
  1021. plane_name(plane), state_string(state), state_string(cur_state));
  1022. }
  1023. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1024. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1025. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1026. enum pipe pipe)
  1027. {
  1028. struct drm_device *dev = dev_priv->dev;
  1029. int reg, i;
  1030. u32 val;
  1031. int cur_pipe;
  1032. /* Primary planes are fixed to pipes on gen4+ */
  1033. if (INTEL_INFO(dev)->gen >= 4) {
  1034. reg = DSPCNTR(pipe);
  1035. val = I915_READ(reg);
  1036. WARN((val & DISPLAY_PLANE_ENABLE),
  1037. "plane %c assertion failure, should be disabled but not\n",
  1038. plane_name(pipe));
  1039. return;
  1040. }
  1041. /* Need to check both planes against the pipe */
  1042. for_each_pipe(i) {
  1043. reg = DSPCNTR(i);
  1044. val = I915_READ(reg);
  1045. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1046. DISPPLANE_SEL_PIPE_SHIFT;
  1047. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1048. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1049. plane_name(i), pipe_name(pipe));
  1050. }
  1051. }
  1052. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1053. enum pipe pipe)
  1054. {
  1055. struct drm_device *dev = dev_priv->dev;
  1056. int reg, i;
  1057. u32 val;
  1058. if (IS_VALLEYVIEW(dev)) {
  1059. for (i = 0; i < dev_priv->num_plane; i++) {
  1060. reg = SPCNTR(pipe, i);
  1061. val = I915_READ(reg);
  1062. WARN((val & SP_ENABLE),
  1063. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1064. sprite_name(pipe, i), pipe_name(pipe));
  1065. }
  1066. } else if (INTEL_INFO(dev)->gen >= 7) {
  1067. reg = SPRCTL(pipe);
  1068. val = I915_READ(reg);
  1069. WARN((val & SPRITE_ENABLE),
  1070. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1071. plane_name(pipe), pipe_name(pipe));
  1072. } else if (INTEL_INFO(dev)->gen >= 5) {
  1073. reg = DVSCNTR(pipe);
  1074. val = I915_READ(reg);
  1075. WARN((val & DVS_ENABLE),
  1076. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1077. plane_name(pipe), pipe_name(pipe));
  1078. }
  1079. }
  1080. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1081. {
  1082. u32 val;
  1083. bool enabled;
  1084. if (HAS_PCH_LPT(dev_priv->dev)) {
  1085. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1086. return;
  1087. }
  1088. val = I915_READ(PCH_DREF_CONTROL);
  1089. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1090. DREF_SUPERSPREAD_SOURCE_MASK));
  1091. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1092. }
  1093. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1094. enum pipe pipe)
  1095. {
  1096. int reg;
  1097. u32 val;
  1098. bool enabled;
  1099. reg = PCH_TRANSCONF(pipe);
  1100. val = I915_READ(reg);
  1101. enabled = !!(val & TRANS_ENABLE);
  1102. WARN(enabled,
  1103. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1104. pipe_name(pipe));
  1105. }
  1106. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1107. enum pipe pipe, u32 port_sel, u32 val)
  1108. {
  1109. if ((val & DP_PORT_EN) == 0)
  1110. return false;
  1111. if (HAS_PCH_CPT(dev_priv->dev)) {
  1112. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1113. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1114. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1115. return false;
  1116. } else {
  1117. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1118. return false;
  1119. }
  1120. return true;
  1121. }
  1122. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1123. enum pipe pipe, u32 val)
  1124. {
  1125. if ((val & SDVO_ENABLE) == 0)
  1126. return false;
  1127. if (HAS_PCH_CPT(dev_priv->dev)) {
  1128. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1129. return false;
  1130. } else {
  1131. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1132. return false;
  1133. }
  1134. return true;
  1135. }
  1136. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1137. enum pipe pipe, u32 val)
  1138. {
  1139. if ((val & LVDS_PORT_EN) == 0)
  1140. return false;
  1141. if (HAS_PCH_CPT(dev_priv->dev)) {
  1142. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1143. return false;
  1144. } else {
  1145. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1146. return false;
  1147. }
  1148. return true;
  1149. }
  1150. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1151. enum pipe pipe, u32 val)
  1152. {
  1153. if ((val & ADPA_DAC_ENABLE) == 0)
  1154. return false;
  1155. if (HAS_PCH_CPT(dev_priv->dev)) {
  1156. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1157. return false;
  1158. } else {
  1159. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1160. return false;
  1161. }
  1162. return true;
  1163. }
  1164. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1165. enum pipe pipe, int reg, u32 port_sel)
  1166. {
  1167. u32 val = I915_READ(reg);
  1168. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1169. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1170. reg, pipe_name(pipe));
  1171. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1172. && (val & DP_PIPEB_SELECT),
  1173. "IBX PCH dp port still using transcoder B\n");
  1174. }
  1175. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1176. enum pipe pipe, int reg)
  1177. {
  1178. u32 val = I915_READ(reg);
  1179. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1180. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1181. reg, pipe_name(pipe));
  1182. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1183. && (val & SDVO_PIPE_B_SELECT),
  1184. "IBX PCH hdmi port still using transcoder B\n");
  1185. }
  1186. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1187. enum pipe pipe)
  1188. {
  1189. int reg;
  1190. u32 val;
  1191. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1192. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1193. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1194. reg = PCH_ADPA;
  1195. val = I915_READ(reg);
  1196. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1197. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1198. pipe_name(pipe));
  1199. reg = PCH_LVDS;
  1200. val = I915_READ(reg);
  1201. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1202. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1203. pipe_name(pipe));
  1204. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1205. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1206. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1207. }
  1208. static void vlv_enable_pll(struct intel_crtc *crtc)
  1209. {
  1210. struct drm_device *dev = crtc->base.dev;
  1211. struct drm_i915_private *dev_priv = dev->dev_private;
  1212. int reg = DPLL(crtc->pipe);
  1213. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1214. assert_pipe_disabled(dev_priv, crtc->pipe);
  1215. /* No really, not for ILK+ */
  1216. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1217. /* PLL is protected by panel, make sure we can write it */
  1218. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1219. assert_panel_unlocked(dev_priv, crtc->pipe);
  1220. I915_WRITE(reg, dpll);
  1221. POSTING_READ(reg);
  1222. udelay(150);
  1223. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1224. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1225. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1226. POSTING_READ(DPLL_MD(crtc->pipe));
  1227. /* We do this three times for luck */
  1228. I915_WRITE(reg, dpll);
  1229. POSTING_READ(reg);
  1230. udelay(150); /* wait for warmup */
  1231. I915_WRITE(reg, dpll);
  1232. POSTING_READ(reg);
  1233. udelay(150); /* wait for warmup */
  1234. I915_WRITE(reg, dpll);
  1235. POSTING_READ(reg);
  1236. udelay(150); /* wait for warmup */
  1237. }
  1238. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1239. {
  1240. struct drm_device *dev = crtc->base.dev;
  1241. struct drm_i915_private *dev_priv = dev->dev_private;
  1242. int reg = DPLL(crtc->pipe);
  1243. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1244. assert_pipe_disabled(dev_priv, crtc->pipe);
  1245. /* No really, not for ILK+ */
  1246. BUG_ON(dev_priv->info->gen >= 5);
  1247. /* PLL is protected by panel, make sure we can write it */
  1248. if (IS_MOBILE(dev) && !IS_I830(dev))
  1249. assert_panel_unlocked(dev_priv, crtc->pipe);
  1250. I915_WRITE(reg, dpll);
  1251. /* Wait for the clocks to stabilize. */
  1252. POSTING_READ(reg);
  1253. udelay(150);
  1254. if (INTEL_INFO(dev)->gen >= 4) {
  1255. I915_WRITE(DPLL_MD(crtc->pipe),
  1256. crtc->config.dpll_hw_state.dpll_md);
  1257. } else {
  1258. /* The pixel multiplier can only be updated once the
  1259. * DPLL is enabled and the clocks are stable.
  1260. *
  1261. * So write it again.
  1262. */
  1263. I915_WRITE(reg, dpll);
  1264. }
  1265. /* We do this three times for luck */
  1266. I915_WRITE(reg, dpll);
  1267. POSTING_READ(reg);
  1268. udelay(150); /* wait for warmup */
  1269. I915_WRITE(reg, dpll);
  1270. POSTING_READ(reg);
  1271. udelay(150); /* wait for warmup */
  1272. I915_WRITE(reg, dpll);
  1273. POSTING_READ(reg);
  1274. udelay(150); /* wait for warmup */
  1275. }
  1276. /**
  1277. * i9xx_disable_pll - disable a PLL
  1278. * @dev_priv: i915 private structure
  1279. * @pipe: pipe PLL to disable
  1280. *
  1281. * Disable the PLL for @pipe, making sure the pipe is off first.
  1282. *
  1283. * Note! This is for pre-ILK only.
  1284. */
  1285. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1286. {
  1287. /* Don't disable pipe A or pipe A PLLs if needed */
  1288. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1289. return;
  1290. /* Make sure the pipe isn't still relying on us */
  1291. assert_pipe_disabled(dev_priv, pipe);
  1292. I915_WRITE(DPLL(pipe), 0);
  1293. POSTING_READ(DPLL(pipe));
  1294. }
  1295. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1296. {
  1297. u32 port_mask;
  1298. if (!port)
  1299. port_mask = DPLL_PORTB_READY_MASK;
  1300. else
  1301. port_mask = DPLL_PORTC_READY_MASK;
  1302. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1303. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1304. 'B' + port, I915_READ(DPLL(0)));
  1305. }
  1306. /**
  1307. * ironlake_enable_shared_dpll - enable PCH PLL
  1308. * @dev_priv: i915 private structure
  1309. * @pipe: pipe PLL to enable
  1310. *
  1311. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1312. * drives the transcoder clock.
  1313. */
  1314. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1315. {
  1316. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1317. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1318. /* PCH PLLs only available on ILK, SNB and IVB */
  1319. BUG_ON(dev_priv->info->gen < 5);
  1320. if (WARN_ON(pll == NULL))
  1321. return;
  1322. if (WARN_ON(pll->refcount == 0))
  1323. return;
  1324. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1325. pll->name, pll->active, pll->on,
  1326. crtc->base.base.id);
  1327. if (pll->active++) {
  1328. WARN_ON(!pll->on);
  1329. assert_shared_dpll_enabled(dev_priv, pll);
  1330. return;
  1331. }
  1332. WARN_ON(pll->on);
  1333. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1334. pll->enable(dev_priv, pll);
  1335. pll->on = true;
  1336. }
  1337. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1338. {
  1339. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1340. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1341. /* PCH only available on ILK+ */
  1342. BUG_ON(dev_priv->info->gen < 5);
  1343. if (WARN_ON(pll == NULL))
  1344. return;
  1345. if (WARN_ON(pll->refcount == 0))
  1346. return;
  1347. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1348. pll->name, pll->active, pll->on,
  1349. crtc->base.base.id);
  1350. if (WARN_ON(pll->active == 0)) {
  1351. assert_shared_dpll_disabled(dev_priv, pll);
  1352. return;
  1353. }
  1354. assert_shared_dpll_enabled(dev_priv, pll);
  1355. WARN_ON(!pll->on);
  1356. if (--pll->active)
  1357. return;
  1358. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1359. pll->disable(dev_priv, pll);
  1360. pll->on = false;
  1361. }
  1362. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1363. enum pipe pipe)
  1364. {
  1365. struct drm_device *dev = dev_priv->dev;
  1366. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1367. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1368. uint32_t reg, val, pipeconf_val;
  1369. /* PCH only available on ILK+ */
  1370. BUG_ON(dev_priv->info->gen < 5);
  1371. /* Make sure PCH DPLL is enabled */
  1372. assert_shared_dpll_enabled(dev_priv,
  1373. intel_crtc_to_shared_dpll(intel_crtc));
  1374. /* FDI must be feeding us bits for PCH ports */
  1375. assert_fdi_tx_enabled(dev_priv, pipe);
  1376. assert_fdi_rx_enabled(dev_priv, pipe);
  1377. if (HAS_PCH_CPT(dev)) {
  1378. /* Workaround: Set the timing override bit before enabling the
  1379. * pch transcoder. */
  1380. reg = TRANS_CHICKEN2(pipe);
  1381. val = I915_READ(reg);
  1382. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1383. I915_WRITE(reg, val);
  1384. }
  1385. reg = PCH_TRANSCONF(pipe);
  1386. val = I915_READ(reg);
  1387. pipeconf_val = I915_READ(PIPECONF(pipe));
  1388. if (HAS_PCH_IBX(dev_priv->dev)) {
  1389. /*
  1390. * make the BPC in transcoder be consistent with
  1391. * that in pipeconf reg.
  1392. */
  1393. val &= ~PIPECONF_BPC_MASK;
  1394. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1395. }
  1396. val &= ~TRANS_INTERLACE_MASK;
  1397. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1398. if (HAS_PCH_IBX(dev_priv->dev) &&
  1399. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1400. val |= TRANS_LEGACY_INTERLACED_ILK;
  1401. else
  1402. val |= TRANS_INTERLACED;
  1403. else
  1404. val |= TRANS_PROGRESSIVE;
  1405. I915_WRITE(reg, val | TRANS_ENABLE);
  1406. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1407. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1408. }
  1409. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1410. enum transcoder cpu_transcoder)
  1411. {
  1412. u32 val, pipeconf_val;
  1413. /* PCH only available on ILK+ */
  1414. BUG_ON(dev_priv->info->gen < 5);
  1415. /* FDI must be feeding us bits for PCH ports */
  1416. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1417. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1418. /* Workaround: set timing override bit. */
  1419. val = I915_READ(_TRANSA_CHICKEN2);
  1420. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1421. I915_WRITE(_TRANSA_CHICKEN2, val);
  1422. val = TRANS_ENABLE;
  1423. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1424. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1425. PIPECONF_INTERLACED_ILK)
  1426. val |= TRANS_INTERLACED;
  1427. else
  1428. val |= TRANS_PROGRESSIVE;
  1429. I915_WRITE(LPT_TRANSCONF, val);
  1430. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1431. DRM_ERROR("Failed to enable PCH transcoder\n");
  1432. }
  1433. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1434. enum pipe pipe)
  1435. {
  1436. struct drm_device *dev = dev_priv->dev;
  1437. uint32_t reg, val;
  1438. /* FDI relies on the transcoder */
  1439. assert_fdi_tx_disabled(dev_priv, pipe);
  1440. assert_fdi_rx_disabled(dev_priv, pipe);
  1441. /* Ports must be off as well */
  1442. assert_pch_ports_disabled(dev_priv, pipe);
  1443. reg = PCH_TRANSCONF(pipe);
  1444. val = I915_READ(reg);
  1445. val &= ~TRANS_ENABLE;
  1446. I915_WRITE(reg, val);
  1447. /* wait for PCH transcoder off, transcoder state */
  1448. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1449. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1450. if (!HAS_PCH_IBX(dev)) {
  1451. /* Workaround: Clear the timing override chicken bit again. */
  1452. reg = TRANS_CHICKEN2(pipe);
  1453. val = I915_READ(reg);
  1454. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1455. I915_WRITE(reg, val);
  1456. }
  1457. }
  1458. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1459. {
  1460. u32 val;
  1461. val = I915_READ(LPT_TRANSCONF);
  1462. val &= ~TRANS_ENABLE;
  1463. I915_WRITE(LPT_TRANSCONF, val);
  1464. /* wait for PCH transcoder off, transcoder state */
  1465. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1466. DRM_ERROR("Failed to disable PCH transcoder\n");
  1467. /* Workaround: clear timing override bit. */
  1468. val = I915_READ(_TRANSA_CHICKEN2);
  1469. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1470. I915_WRITE(_TRANSA_CHICKEN2, val);
  1471. }
  1472. /**
  1473. * intel_enable_pipe - enable a pipe, asserting requirements
  1474. * @dev_priv: i915 private structure
  1475. * @pipe: pipe to enable
  1476. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1477. *
  1478. * Enable @pipe, making sure that various hardware specific requirements
  1479. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1480. *
  1481. * @pipe should be %PIPE_A or %PIPE_B.
  1482. *
  1483. * Will wait until the pipe is actually running (i.e. first vblank) before
  1484. * returning.
  1485. */
  1486. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1487. bool pch_port, bool dsi)
  1488. {
  1489. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1490. pipe);
  1491. enum pipe pch_transcoder;
  1492. int reg;
  1493. u32 val;
  1494. assert_planes_disabled(dev_priv, pipe);
  1495. assert_cursor_disabled(dev_priv, pipe);
  1496. assert_sprites_disabled(dev_priv, pipe);
  1497. if (HAS_PCH_LPT(dev_priv->dev))
  1498. pch_transcoder = TRANSCODER_A;
  1499. else
  1500. pch_transcoder = pipe;
  1501. /*
  1502. * A pipe without a PLL won't actually be able to drive bits from
  1503. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1504. * need the check.
  1505. */
  1506. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1507. if (dsi)
  1508. assert_dsi_pll_enabled(dev_priv);
  1509. else
  1510. assert_pll_enabled(dev_priv, pipe);
  1511. else {
  1512. if (pch_port) {
  1513. /* if driving the PCH, we need FDI enabled */
  1514. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1515. assert_fdi_tx_pll_enabled(dev_priv,
  1516. (enum pipe) cpu_transcoder);
  1517. }
  1518. /* FIXME: assert CPU port conditions for SNB+ */
  1519. }
  1520. reg = PIPECONF(cpu_transcoder);
  1521. val = I915_READ(reg);
  1522. if (val & PIPECONF_ENABLE)
  1523. return;
  1524. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1525. intel_wait_for_vblank(dev_priv->dev, pipe);
  1526. }
  1527. /**
  1528. * intel_disable_pipe - disable a pipe, asserting requirements
  1529. * @dev_priv: i915 private structure
  1530. * @pipe: pipe to disable
  1531. *
  1532. * Disable @pipe, making sure that various hardware specific requirements
  1533. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1534. *
  1535. * @pipe should be %PIPE_A or %PIPE_B.
  1536. *
  1537. * Will wait until the pipe has shut down before returning.
  1538. */
  1539. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1540. enum pipe pipe)
  1541. {
  1542. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1543. pipe);
  1544. int reg;
  1545. u32 val;
  1546. /*
  1547. * Make sure planes won't keep trying to pump pixels to us,
  1548. * or we might hang the display.
  1549. */
  1550. assert_planes_disabled(dev_priv, pipe);
  1551. assert_cursor_disabled(dev_priv, pipe);
  1552. assert_sprites_disabled(dev_priv, pipe);
  1553. /* Don't disable pipe A or pipe A PLLs if needed */
  1554. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1555. return;
  1556. reg = PIPECONF(cpu_transcoder);
  1557. val = I915_READ(reg);
  1558. if ((val & PIPECONF_ENABLE) == 0)
  1559. return;
  1560. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1561. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1562. }
  1563. /*
  1564. * Plane regs are double buffered, going from enabled->disabled needs a
  1565. * trigger in order to latch. The display address reg provides this.
  1566. */
  1567. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1568. enum plane plane)
  1569. {
  1570. if (dev_priv->info->gen >= 4)
  1571. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1572. else
  1573. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1574. }
  1575. /**
  1576. * intel_enable_plane - enable a display plane on a given pipe
  1577. * @dev_priv: i915 private structure
  1578. * @plane: plane to enable
  1579. * @pipe: pipe being fed
  1580. *
  1581. * Enable @plane on @pipe, making sure that @pipe is running first.
  1582. */
  1583. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1584. enum plane plane, enum pipe pipe)
  1585. {
  1586. int reg;
  1587. u32 val;
  1588. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1589. assert_pipe_enabled(dev_priv, pipe);
  1590. reg = DSPCNTR(plane);
  1591. val = I915_READ(reg);
  1592. if (val & DISPLAY_PLANE_ENABLE)
  1593. return;
  1594. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1595. intel_flush_display_plane(dev_priv, plane);
  1596. intel_wait_for_vblank(dev_priv->dev, pipe);
  1597. }
  1598. /**
  1599. * intel_disable_plane - disable a display plane
  1600. * @dev_priv: i915 private structure
  1601. * @plane: plane to disable
  1602. * @pipe: pipe consuming the data
  1603. *
  1604. * Disable @plane; should be an independent operation.
  1605. */
  1606. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1607. enum plane plane, enum pipe pipe)
  1608. {
  1609. int reg;
  1610. u32 val;
  1611. reg = DSPCNTR(plane);
  1612. val = I915_READ(reg);
  1613. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1614. return;
  1615. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1616. intel_flush_display_plane(dev_priv, plane);
  1617. intel_wait_for_vblank(dev_priv->dev, pipe);
  1618. }
  1619. static bool need_vtd_wa(struct drm_device *dev)
  1620. {
  1621. #ifdef CONFIG_INTEL_IOMMU
  1622. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1623. return true;
  1624. #endif
  1625. return false;
  1626. }
  1627. int
  1628. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1629. struct drm_i915_gem_object *obj,
  1630. struct intel_ring_buffer *pipelined)
  1631. {
  1632. struct drm_i915_private *dev_priv = dev->dev_private;
  1633. u32 alignment;
  1634. int ret;
  1635. switch (obj->tiling_mode) {
  1636. case I915_TILING_NONE:
  1637. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1638. alignment = 128 * 1024;
  1639. else if (INTEL_INFO(dev)->gen >= 4)
  1640. alignment = 4 * 1024;
  1641. else
  1642. alignment = 64 * 1024;
  1643. break;
  1644. case I915_TILING_X:
  1645. /* pin() will align the object as required by fence */
  1646. alignment = 0;
  1647. break;
  1648. case I915_TILING_Y:
  1649. /* Despite that we check this in framebuffer_init userspace can
  1650. * screw us over and change the tiling after the fact. Only
  1651. * pinned buffers can't change their tiling. */
  1652. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1653. return -EINVAL;
  1654. default:
  1655. BUG();
  1656. }
  1657. /* Note that the w/a also requires 64 PTE of padding following the
  1658. * bo. We currently fill all unused PTE with the shadow page and so
  1659. * we should always have valid PTE following the scanout preventing
  1660. * the VT-d warning.
  1661. */
  1662. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1663. alignment = 256 * 1024;
  1664. dev_priv->mm.interruptible = false;
  1665. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1666. if (ret)
  1667. goto err_interruptible;
  1668. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1669. * fence, whereas 965+ only requires a fence if using
  1670. * framebuffer compression. For simplicity, we always install
  1671. * a fence as the cost is not that onerous.
  1672. */
  1673. ret = i915_gem_object_get_fence(obj);
  1674. if (ret)
  1675. goto err_unpin;
  1676. i915_gem_object_pin_fence(obj);
  1677. dev_priv->mm.interruptible = true;
  1678. return 0;
  1679. err_unpin:
  1680. i915_gem_object_unpin_from_display_plane(obj);
  1681. err_interruptible:
  1682. dev_priv->mm.interruptible = true;
  1683. return ret;
  1684. }
  1685. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1686. {
  1687. i915_gem_object_unpin_fence(obj);
  1688. i915_gem_object_unpin_from_display_plane(obj);
  1689. }
  1690. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1691. * is assumed to be a power-of-two. */
  1692. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1693. unsigned int tiling_mode,
  1694. unsigned int cpp,
  1695. unsigned int pitch)
  1696. {
  1697. if (tiling_mode != I915_TILING_NONE) {
  1698. unsigned int tile_rows, tiles;
  1699. tile_rows = *y / 8;
  1700. *y %= 8;
  1701. tiles = *x / (512/cpp);
  1702. *x %= 512/cpp;
  1703. return tile_rows * pitch * 8 + tiles * 4096;
  1704. } else {
  1705. unsigned int offset;
  1706. offset = *y * pitch + *x * cpp;
  1707. *y = 0;
  1708. *x = (offset & 4095) / cpp;
  1709. return offset & -4096;
  1710. }
  1711. }
  1712. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1713. int x, int y)
  1714. {
  1715. struct drm_device *dev = crtc->dev;
  1716. struct drm_i915_private *dev_priv = dev->dev_private;
  1717. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1718. struct intel_framebuffer *intel_fb;
  1719. struct drm_i915_gem_object *obj;
  1720. int plane = intel_crtc->plane;
  1721. unsigned long linear_offset;
  1722. u32 dspcntr;
  1723. u32 reg;
  1724. switch (plane) {
  1725. case 0:
  1726. case 1:
  1727. break;
  1728. default:
  1729. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1730. return -EINVAL;
  1731. }
  1732. intel_fb = to_intel_framebuffer(fb);
  1733. obj = intel_fb->obj;
  1734. reg = DSPCNTR(plane);
  1735. dspcntr = I915_READ(reg);
  1736. /* Mask out pixel format bits in case we change it */
  1737. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1738. switch (fb->pixel_format) {
  1739. case DRM_FORMAT_C8:
  1740. dspcntr |= DISPPLANE_8BPP;
  1741. break;
  1742. case DRM_FORMAT_XRGB1555:
  1743. case DRM_FORMAT_ARGB1555:
  1744. dspcntr |= DISPPLANE_BGRX555;
  1745. break;
  1746. case DRM_FORMAT_RGB565:
  1747. dspcntr |= DISPPLANE_BGRX565;
  1748. break;
  1749. case DRM_FORMAT_XRGB8888:
  1750. case DRM_FORMAT_ARGB8888:
  1751. dspcntr |= DISPPLANE_BGRX888;
  1752. break;
  1753. case DRM_FORMAT_XBGR8888:
  1754. case DRM_FORMAT_ABGR8888:
  1755. dspcntr |= DISPPLANE_RGBX888;
  1756. break;
  1757. case DRM_FORMAT_XRGB2101010:
  1758. case DRM_FORMAT_ARGB2101010:
  1759. dspcntr |= DISPPLANE_BGRX101010;
  1760. break;
  1761. case DRM_FORMAT_XBGR2101010:
  1762. case DRM_FORMAT_ABGR2101010:
  1763. dspcntr |= DISPPLANE_RGBX101010;
  1764. break;
  1765. default:
  1766. BUG();
  1767. }
  1768. if (INTEL_INFO(dev)->gen >= 4) {
  1769. if (obj->tiling_mode != I915_TILING_NONE)
  1770. dspcntr |= DISPPLANE_TILED;
  1771. else
  1772. dspcntr &= ~DISPPLANE_TILED;
  1773. }
  1774. if (IS_G4X(dev))
  1775. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1776. I915_WRITE(reg, dspcntr);
  1777. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1778. if (INTEL_INFO(dev)->gen >= 4) {
  1779. intel_crtc->dspaddr_offset =
  1780. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1781. fb->bits_per_pixel / 8,
  1782. fb->pitches[0]);
  1783. linear_offset -= intel_crtc->dspaddr_offset;
  1784. } else {
  1785. intel_crtc->dspaddr_offset = linear_offset;
  1786. }
  1787. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1788. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1789. fb->pitches[0]);
  1790. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1791. if (INTEL_INFO(dev)->gen >= 4) {
  1792. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1793. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1794. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1795. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1796. } else
  1797. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1798. POSTING_READ(reg);
  1799. return 0;
  1800. }
  1801. static int ironlake_update_plane(struct drm_crtc *crtc,
  1802. struct drm_framebuffer *fb, int x, int y)
  1803. {
  1804. struct drm_device *dev = crtc->dev;
  1805. struct drm_i915_private *dev_priv = dev->dev_private;
  1806. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1807. struct intel_framebuffer *intel_fb;
  1808. struct drm_i915_gem_object *obj;
  1809. int plane = intel_crtc->plane;
  1810. unsigned long linear_offset;
  1811. u32 dspcntr;
  1812. u32 reg;
  1813. switch (plane) {
  1814. case 0:
  1815. case 1:
  1816. case 2:
  1817. break;
  1818. default:
  1819. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1820. return -EINVAL;
  1821. }
  1822. intel_fb = to_intel_framebuffer(fb);
  1823. obj = intel_fb->obj;
  1824. reg = DSPCNTR(plane);
  1825. dspcntr = I915_READ(reg);
  1826. /* Mask out pixel format bits in case we change it */
  1827. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1828. switch (fb->pixel_format) {
  1829. case DRM_FORMAT_C8:
  1830. dspcntr |= DISPPLANE_8BPP;
  1831. break;
  1832. case DRM_FORMAT_RGB565:
  1833. dspcntr |= DISPPLANE_BGRX565;
  1834. break;
  1835. case DRM_FORMAT_XRGB8888:
  1836. case DRM_FORMAT_ARGB8888:
  1837. dspcntr |= DISPPLANE_BGRX888;
  1838. break;
  1839. case DRM_FORMAT_XBGR8888:
  1840. case DRM_FORMAT_ABGR8888:
  1841. dspcntr |= DISPPLANE_RGBX888;
  1842. break;
  1843. case DRM_FORMAT_XRGB2101010:
  1844. case DRM_FORMAT_ARGB2101010:
  1845. dspcntr |= DISPPLANE_BGRX101010;
  1846. break;
  1847. case DRM_FORMAT_XBGR2101010:
  1848. case DRM_FORMAT_ABGR2101010:
  1849. dspcntr |= DISPPLANE_RGBX101010;
  1850. break;
  1851. default:
  1852. BUG();
  1853. }
  1854. if (obj->tiling_mode != I915_TILING_NONE)
  1855. dspcntr |= DISPPLANE_TILED;
  1856. else
  1857. dspcntr &= ~DISPPLANE_TILED;
  1858. if (IS_HASWELL(dev))
  1859. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1860. else
  1861. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1862. I915_WRITE(reg, dspcntr);
  1863. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1864. intel_crtc->dspaddr_offset =
  1865. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1866. fb->bits_per_pixel / 8,
  1867. fb->pitches[0]);
  1868. linear_offset -= intel_crtc->dspaddr_offset;
  1869. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1870. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1871. fb->pitches[0]);
  1872. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1873. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1874. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1875. if (IS_HASWELL(dev)) {
  1876. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1877. } else {
  1878. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1879. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1880. }
  1881. POSTING_READ(reg);
  1882. return 0;
  1883. }
  1884. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1885. static int
  1886. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1887. int x, int y, enum mode_set_atomic state)
  1888. {
  1889. struct drm_device *dev = crtc->dev;
  1890. struct drm_i915_private *dev_priv = dev->dev_private;
  1891. if (dev_priv->display.disable_fbc)
  1892. dev_priv->display.disable_fbc(dev);
  1893. intel_increase_pllclock(crtc);
  1894. return dev_priv->display.update_plane(crtc, fb, x, y);
  1895. }
  1896. void intel_display_handle_reset(struct drm_device *dev)
  1897. {
  1898. struct drm_i915_private *dev_priv = dev->dev_private;
  1899. struct drm_crtc *crtc;
  1900. /*
  1901. * Flips in the rings have been nuked by the reset,
  1902. * so complete all pending flips so that user space
  1903. * will get its events and not get stuck.
  1904. *
  1905. * Also update the base address of all primary
  1906. * planes to the the last fb to make sure we're
  1907. * showing the correct fb after a reset.
  1908. *
  1909. * Need to make two loops over the crtcs so that we
  1910. * don't try to grab a crtc mutex before the
  1911. * pending_flip_queue really got woken up.
  1912. */
  1913. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1914. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1915. enum plane plane = intel_crtc->plane;
  1916. intel_prepare_page_flip(dev, plane);
  1917. intel_finish_page_flip_plane(dev, plane);
  1918. }
  1919. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1920. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1921. mutex_lock(&crtc->mutex);
  1922. if (intel_crtc->active)
  1923. dev_priv->display.update_plane(crtc, crtc->fb,
  1924. crtc->x, crtc->y);
  1925. mutex_unlock(&crtc->mutex);
  1926. }
  1927. }
  1928. static int
  1929. intel_finish_fb(struct drm_framebuffer *old_fb)
  1930. {
  1931. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1932. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1933. bool was_interruptible = dev_priv->mm.interruptible;
  1934. int ret;
  1935. /* Big Hammer, we also need to ensure that any pending
  1936. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1937. * current scanout is retired before unpinning the old
  1938. * framebuffer.
  1939. *
  1940. * This should only fail upon a hung GPU, in which case we
  1941. * can safely continue.
  1942. */
  1943. dev_priv->mm.interruptible = false;
  1944. ret = i915_gem_object_finish_gpu(obj);
  1945. dev_priv->mm.interruptible = was_interruptible;
  1946. return ret;
  1947. }
  1948. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1949. {
  1950. struct drm_device *dev = crtc->dev;
  1951. struct drm_i915_master_private *master_priv;
  1952. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1953. if (!dev->primary->master)
  1954. return;
  1955. master_priv = dev->primary->master->driver_priv;
  1956. if (!master_priv->sarea_priv)
  1957. return;
  1958. switch (intel_crtc->pipe) {
  1959. case 0:
  1960. master_priv->sarea_priv->pipeA_x = x;
  1961. master_priv->sarea_priv->pipeA_y = y;
  1962. break;
  1963. case 1:
  1964. master_priv->sarea_priv->pipeB_x = x;
  1965. master_priv->sarea_priv->pipeB_y = y;
  1966. break;
  1967. default:
  1968. break;
  1969. }
  1970. }
  1971. static int
  1972. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1973. struct drm_framebuffer *fb)
  1974. {
  1975. struct drm_device *dev = crtc->dev;
  1976. struct drm_i915_private *dev_priv = dev->dev_private;
  1977. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1978. struct drm_framebuffer *old_fb;
  1979. int ret;
  1980. /* no fb bound */
  1981. if (!fb) {
  1982. DRM_ERROR("No FB bound\n");
  1983. return 0;
  1984. }
  1985. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1986. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1987. plane_name(intel_crtc->plane),
  1988. INTEL_INFO(dev)->num_pipes);
  1989. return -EINVAL;
  1990. }
  1991. mutex_lock(&dev->struct_mutex);
  1992. ret = intel_pin_and_fence_fb_obj(dev,
  1993. to_intel_framebuffer(fb)->obj,
  1994. NULL);
  1995. if (ret != 0) {
  1996. mutex_unlock(&dev->struct_mutex);
  1997. DRM_ERROR("pin & fence failed\n");
  1998. return ret;
  1999. }
  2000. /* Update pipe size and adjust fitter if needed */
  2001. if (i915_fastboot) {
  2002. I915_WRITE(PIPESRC(intel_crtc->pipe),
  2003. ((crtc->mode.hdisplay - 1) << 16) |
  2004. (crtc->mode.vdisplay - 1));
  2005. if (!intel_crtc->config.pch_pfit.size &&
  2006. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2007. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2008. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2009. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2010. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2011. }
  2012. }
  2013. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2014. if (ret) {
  2015. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2016. mutex_unlock(&dev->struct_mutex);
  2017. DRM_ERROR("failed to update base address\n");
  2018. return ret;
  2019. }
  2020. old_fb = crtc->fb;
  2021. crtc->fb = fb;
  2022. crtc->x = x;
  2023. crtc->y = y;
  2024. if (old_fb) {
  2025. if (intel_crtc->active && old_fb != fb)
  2026. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2027. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2028. }
  2029. intel_update_fbc(dev);
  2030. intel_edp_psr_update(dev);
  2031. mutex_unlock(&dev->struct_mutex);
  2032. intel_crtc_update_sarea_pos(crtc, x, y);
  2033. return 0;
  2034. }
  2035. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2036. {
  2037. struct drm_device *dev = crtc->dev;
  2038. struct drm_i915_private *dev_priv = dev->dev_private;
  2039. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2040. int pipe = intel_crtc->pipe;
  2041. u32 reg, temp;
  2042. /* enable normal train */
  2043. reg = FDI_TX_CTL(pipe);
  2044. temp = I915_READ(reg);
  2045. if (IS_IVYBRIDGE(dev)) {
  2046. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2047. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2048. } else {
  2049. temp &= ~FDI_LINK_TRAIN_NONE;
  2050. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2051. }
  2052. I915_WRITE(reg, temp);
  2053. reg = FDI_RX_CTL(pipe);
  2054. temp = I915_READ(reg);
  2055. if (HAS_PCH_CPT(dev)) {
  2056. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2057. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2058. } else {
  2059. temp &= ~FDI_LINK_TRAIN_NONE;
  2060. temp |= FDI_LINK_TRAIN_NONE;
  2061. }
  2062. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2063. /* wait one idle pattern time */
  2064. POSTING_READ(reg);
  2065. udelay(1000);
  2066. /* IVB wants error correction enabled */
  2067. if (IS_IVYBRIDGE(dev))
  2068. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2069. FDI_FE_ERRC_ENABLE);
  2070. }
  2071. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2072. {
  2073. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2074. }
  2075. static void ivb_modeset_global_resources(struct drm_device *dev)
  2076. {
  2077. struct drm_i915_private *dev_priv = dev->dev_private;
  2078. struct intel_crtc *pipe_B_crtc =
  2079. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2080. struct intel_crtc *pipe_C_crtc =
  2081. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2082. uint32_t temp;
  2083. /*
  2084. * When everything is off disable fdi C so that we could enable fdi B
  2085. * with all lanes. Note that we don't care about enabled pipes without
  2086. * an enabled pch encoder.
  2087. */
  2088. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2089. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2090. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2091. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2092. temp = I915_READ(SOUTH_CHICKEN1);
  2093. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2094. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2095. I915_WRITE(SOUTH_CHICKEN1, temp);
  2096. }
  2097. }
  2098. /* The FDI link training functions for ILK/Ibexpeak. */
  2099. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2100. {
  2101. struct drm_device *dev = crtc->dev;
  2102. struct drm_i915_private *dev_priv = dev->dev_private;
  2103. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2104. int pipe = intel_crtc->pipe;
  2105. int plane = intel_crtc->plane;
  2106. u32 reg, temp, tries;
  2107. /* FDI needs bits from pipe & plane first */
  2108. assert_pipe_enabled(dev_priv, pipe);
  2109. assert_plane_enabled(dev_priv, plane);
  2110. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2111. for train result */
  2112. reg = FDI_RX_IMR(pipe);
  2113. temp = I915_READ(reg);
  2114. temp &= ~FDI_RX_SYMBOL_LOCK;
  2115. temp &= ~FDI_RX_BIT_LOCK;
  2116. I915_WRITE(reg, temp);
  2117. I915_READ(reg);
  2118. udelay(150);
  2119. /* enable CPU FDI TX and PCH FDI RX */
  2120. reg = FDI_TX_CTL(pipe);
  2121. temp = I915_READ(reg);
  2122. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2123. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2124. temp &= ~FDI_LINK_TRAIN_NONE;
  2125. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2126. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2127. reg = FDI_RX_CTL(pipe);
  2128. temp = I915_READ(reg);
  2129. temp &= ~FDI_LINK_TRAIN_NONE;
  2130. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2131. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2132. POSTING_READ(reg);
  2133. udelay(150);
  2134. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2135. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2136. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2137. FDI_RX_PHASE_SYNC_POINTER_EN);
  2138. reg = FDI_RX_IIR(pipe);
  2139. for (tries = 0; tries < 5; tries++) {
  2140. temp = I915_READ(reg);
  2141. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2142. if ((temp & FDI_RX_BIT_LOCK)) {
  2143. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2144. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2145. break;
  2146. }
  2147. }
  2148. if (tries == 5)
  2149. DRM_ERROR("FDI train 1 fail!\n");
  2150. /* Train 2 */
  2151. reg = FDI_TX_CTL(pipe);
  2152. temp = I915_READ(reg);
  2153. temp &= ~FDI_LINK_TRAIN_NONE;
  2154. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2155. I915_WRITE(reg, temp);
  2156. reg = FDI_RX_CTL(pipe);
  2157. temp = I915_READ(reg);
  2158. temp &= ~FDI_LINK_TRAIN_NONE;
  2159. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2160. I915_WRITE(reg, temp);
  2161. POSTING_READ(reg);
  2162. udelay(150);
  2163. reg = FDI_RX_IIR(pipe);
  2164. for (tries = 0; tries < 5; tries++) {
  2165. temp = I915_READ(reg);
  2166. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2167. if (temp & FDI_RX_SYMBOL_LOCK) {
  2168. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2169. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2170. break;
  2171. }
  2172. }
  2173. if (tries == 5)
  2174. DRM_ERROR("FDI train 2 fail!\n");
  2175. DRM_DEBUG_KMS("FDI train done\n");
  2176. }
  2177. static const int snb_b_fdi_train_param[] = {
  2178. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2179. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2180. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2181. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2182. };
  2183. /* The FDI link training functions for SNB/Cougarpoint. */
  2184. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2185. {
  2186. struct drm_device *dev = crtc->dev;
  2187. struct drm_i915_private *dev_priv = dev->dev_private;
  2188. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2189. int pipe = intel_crtc->pipe;
  2190. u32 reg, temp, i, retry;
  2191. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2192. for train result */
  2193. reg = FDI_RX_IMR(pipe);
  2194. temp = I915_READ(reg);
  2195. temp &= ~FDI_RX_SYMBOL_LOCK;
  2196. temp &= ~FDI_RX_BIT_LOCK;
  2197. I915_WRITE(reg, temp);
  2198. POSTING_READ(reg);
  2199. udelay(150);
  2200. /* enable CPU FDI TX and PCH FDI RX */
  2201. reg = FDI_TX_CTL(pipe);
  2202. temp = I915_READ(reg);
  2203. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2204. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2205. temp &= ~FDI_LINK_TRAIN_NONE;
  2206. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2207. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2208. /* SNB-B */
  2209. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2210. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2211. I915_WRITE(FDI_RX_MISC(pipe),
  2212. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2213. reg = FDI_RX_CTL(pipe);
  2214. temp = I915_READ(reg);
  2215. if (HAS_PCH_CPT(dev)) {
  2216. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2218. } else {
  2219. temp &= ~FDI_LINK_TRAIN_NONE;
  2220. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2221. }
  2222. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2223. POSTING_READ(reg);
  2224. udelay(150);
  2225. for (i = 0; i < 4; i++) {
  2226. reg = FDI_TX_CTL(pipe);
  2227. temp = I915_READ(reg);
  2228. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2229. temp |= snb_b_fdi_train_param[i];
  2230. I915_WRITE(reg, temp);
  2231. POSTING_READ(reg);
  2232. udelay(500);
  2233. for (retry = 0; retry < 5; retry++) {
  2234. reg = FDI_RX_IIR(pipe);
  2235. temp = I915_READ(reg);
  2236. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2237. if (temp & FDI_RX_BIT_LOCK) {
  2238. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2239. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2240. break;
  2241. }
  2242. udelay(50);
  2243. }
  2244. if (retry < 5)
  2245. break;
  2246. }
  2247. if (i == 4)
  2248. DRM_ERROR("FDI train 1 fail!\n");
  2249. /* Train 2 */
  2250. reg = FDI_TX_CTL(pipe);
  2251. temp = I915_READ(reg);
  2252. temp &= ~FDI_LINK_TRAIN_NONE;
  2253. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2254. if (IS_GEN6(dev)) {
  2255. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2256. /* SNB-B */
  2257. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2258. }
  2259. I915_WRITE(reg, temp);
  2260. reg = FDI_RX_CTL(pipe);
  2261. temp = I915_READ(reg);
  2262. if (HAS_PCH_CPT(dev)) {
  2263. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2264. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2265. } else {
  2266. temp &= ~FDI_LINK_TRAIN_NONE;
  2267. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2268. }
  2269. I915_WRITE(reg, temp);
  2270. POSTING_READ(reg);
  2271. udelay(150);
  2272. for (i = 0; i < 4; i++) {
  2273. reg = FDI_TX_CTL(pipe);
  2274. temp = I915_READ(reg);
  2275. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2276. temp |= snb_b_fdi_train_param[i];
  2277. I915_WRITE(reg, temp);
  2278. POSTING_READ(reg);
  2279. udelay(500);
  2280. for (retry = 0; retry < 5; retry++) {
  2281. reg = FDI_RX_IIR(pipe);
  2282. temp = I915_READ(reg);
  2283. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2284. if (temp & FDI_RX_SYMBOL_LOCK) {
  2285. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2286. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2287. break;
  2288. }
  2289. udelay(50);
  2290. }
  2291. if (retry < 5)
  2292. break;
  2293. }
  2294. if (i == 4)
  2295. DRM_ERROR("FDI train 2 fail!\n");
  2296. DRM_DEBUG_KMS("FDI train done.\n");
  2297. }
  2298. /* Manual link training for Ivy Bridge A0 parts */
  2299. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2300. {
  2301. struct drm_device *dev = crtc->dev;
  2302. struct drm_i915_private *dev_priv = dev->dev_private;
  2303. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2304. int pipe = intel_crtc->pipe;
  2305. u32 reg, temp, i, j;
  2306. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2307. for train result */
  2308. reg = FDI_RX_IMR(pipe);
  2309. temp = I915_READ(reg);
  2310. temp &= ~FDI_RX_SYMBOL_LOCK;
  2311. temp &= ~FDI_RX_BIT_LOCK;
  2312. I915_WRITE(reg, temp);
  2313. POSTING_READ(reg);
  2314. udelay(150);
  2315. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2316. I915_READ(FDI_RX_IIR(pipe)));
  2317. /* Try each vswing and preemphasis setting twice before moving on */
  2318. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2319. /* disable first in case we need to retry */
  2320. reg = FDI_TX_CTL(pipe);
  2321. temp = I915_READ(reg);
  2322. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2323. temp &= ~FDI_TX_ENABLE;
  2324. I915_WRITE(reg, temp);
  2325. reg = FDI_RX_CTL(pipe);
  2326. temp = I915_READ(reg);
  2327. temp &= ~FDI_LINK_TRAIN_AUTO;
  2328. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2329. temp &= ~FDI_RX_ENABLE;
  2330. I915_WRITE(reg, temp);
  2331. /* enable CPU FDI TX and PCH FDI RX */
  2332. reg = FDI_TX_CTL(pipe);
  2333. temp = I915_READ(reg);
  2334. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2335. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2336. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2337. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2338. temp |= snb_b_fdi_train_param[j/2];
  2339. temp |= FDI_COMPOSITE_SYNC;
  2340. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2341. I915_WRITE(FDI_RX_MISC(pipe),
  2342. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2343. reg = FDI_RX_CTL(pipe);
  2344. temp = I915_READ(reg);
  2345. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2346. temp |= FDI_COMPOSITE_SYNC;
  2347. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2348. POSTING_READ(reg);
  2349. udelay(1); /* should be 0.5us */
  2350. for (i = 0; i < 4; i++) {
  2351. reg = FDI_RX_IIR(pipe);
  2352. temp = I915_READ(reg);
  2353. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2354. if (temp & FDI_RX_BIT_LOCK ||
  2355. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2356. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2357. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2358. i);
  2359. break;
  2360. }
  2361. udelay(1); /* should be 0.5us */
  2362. }
  2363. if (i == 4) {
  2364. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2365. continue;
  2366. }
  2367. /* Train 2 */
  2368. reg = FDI_TX_CTL(pipe);
  2369. temp = I915_READ(reg);
  2370. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2371. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2372. I915_WRITE(reg, temp);
  2373. reg = FDI_RX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2376. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2377. I915_WRITE(reg, temp);
  2378. POSTING_READ(reg);
  2379. udelay(2); /* should be 1.5us */
  2380. for (i = 0; i < 4; i++) {
  2381. reg = FDI_RX_IIR(pipe);
  2382. temp = I915_READ(reg);
  2383. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2384. if (temp & FDI_RX_SYMBOL_LOCK ||
  2385. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2386. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2387. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2388. i);
  2389. goto train_done;
  2390. }
  2391. udelay(2); /* should be 1.5us */
  2392. }
  2393. if (i == 4)
  2394. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2395. }
  2396. train_done:
  2397. DRM_DEBUG_KMS("FDI train done.\n");
  2398. }
  2399. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2400. {
  2401. struct drm_device *dev = intel_crtc->base.dev;
  2402. struct drm_i915_private *dev_priv = dev->dev_private;
  2403. int pipe = intel_crtc->pipe;
  2404. u32 reg, temp;
  2405. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2406. reg = FDI_RX_CTL(pipe);
  2407. temp = I915_READ(reg);
  2408. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2409. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2410. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2411. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2412. POSTING_READ(reg);
  2413. udelay(200);
  2414. /* Switch from Rawclk to PCDclk */
  2415. temp = I915_READ(reg);
  2416. I915_WRITE(reg, temp | FDI_PCDCLK);
  2417. POSTING_READ(reg);
  2418. udelay(200);
  2419. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2420. reg = FDI_TX_CTL(pipe);
  2421. temp = I915_READ(reg);
  2422. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2423. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2424. POSTING_READ(reg);
  2425. udelay(100);
  2426. }
  2427. }
  2428. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2429. {
  2430. struct drm_device *dev = intel_crtc->base.dev;
  2431. struct drm_i915_private *dev_priv = dev->dev_private;
  2432. int pipe = intel_crtc->pipe;
  2433. u32 reg, temp;
  2434. /* Switch from PCDclk to Rawclk */
  2435. reg = FDI_RX_CTL(pipe);
  2436. temp = I915_READ(reg);
  2437. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2438. /* Disable CPU FDI TX PLL */
  2439. reg = FDI_TX_CTL(pipe);
  2440. temp = I915_READ(reg);
  2441. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2442. POSTING_READ(reg);
  2443. udelay(100);
  2444. reg = FDI_RX_CTL(pipe);
  2445. temp = I915_READ(reg);
  2446. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2447. /* Wait for the clocks to turn off. */
  2448. POSTING_READ(reg);
  2449. udelay(100);
  2450. }
  2451. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2452. {
  2453. struct drm_device *dev = crtc->dev;
  2454. struct drm_i915_private *dev_priv = dev->dev_private;
  2455. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2456. int pipe = intel_crtc->pipe;
  2457. u32 reg, temp;
  2458. /* disable CPU FDI tx and PCH FDI rx */
  2459. reg = FDI_TX_CTL(pipe);
  2460. temp = I915_READ(reg);
  2461. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2462. POSTING_READ(reg);
  2463. reg = FDI_RX_CTL(pipe);
  2464. temp = I915_READ(reg);
  2465. temp &= ~(0x7 << 16);
  2466. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2467. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2468. POSTING_READ(reg);
  2469. udelay(100);
  2470. /* Ironlake workaround, disable clock pointer after downing FDI */
  2471. if (HAS_PCH_IBX(dev)) {
  2472. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2473. }
  2474. /* still set train pattern 1 */
  2475. reg = FDI_TX_CTL(pipe);
  2476. temp = I915_READ(reg);
  2477. temp &= ~FDI_LINK_TRAIN_NONE;
  2478. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2479. I915_WRITE(reg, temp);
  2480. reg = FDI_RX_CTL(pipe);
  2481. temp = I915_READ(reg);
  2482. if (HAS_PCH_CPT(dev)) {
  2483. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2484. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2485. } else {
  2486. temp &= ~FDI_LINK_TRAIN_NONE;
  2487. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2488. }
  2489. /* BPC in FDI rx is consistent with that in PIPECONF */
  2490. temp &= ~(0x07 << 16);
  2491. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2492. I915_WRITE(reg, temp);
  2493. POSTING_READ(reg);
  2494. udelay(100);
  2495. }
  2496. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2497. {
  2498. struct drm_device *dev = crtc->dev;
  2499. struct drm_i915_private *dev_priv = dev->dev_private;
  2500. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2501. unsigned long flags;
  2502. bool pending;
  2503. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2504. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2505. return false;
  2506. spin_lock_irqsave(&dev->event_lock, flags);
  2507. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2508. spin_unlock_irqrestore(&dev->event_lock, flags);
  2509. return pending;
  2510. }
  2511. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2512. {
  2513. struct drm_device *dev = crtc->dev;
  2514. struct drm_i915_private *dev_priv = dev->dev_private;
  2515. if (crtc->fb == NULL)
  2516. return;
  2517. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2518. wait_event(dev_priv->pending_flip_queue,
  2519. !intel_crtc_has_pending_flip(crtc));
  2520. mutex_lock(&dev->struct_mutex);
  2521. intel_finish_fb(crtc->fb);
  2522. mutex_unlock(&dev->struct_mutex);
  2523. }
  2524. /* Program iCLKIP clock to the desired frequency */
  2525. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2526. {
  2527. struct drm_device *dev = crtc->dev;
  2528. struct drm_i915_private *dev_priv = dev->dev_private;
  2529. int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
  2530. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2531. u32 temp;
  2532. mutex_lock(&dev_priv->dpio_lock);
  2533. /* It is necessary to ungate the pixclk gate prior to programming
  2534. * the divisors, and gate it back when it is done.
  2535. */
  2536. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2537. /* Disable SSCCTL */
  2538. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2539. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2540. SBI_SSCCTL_DISABLE,
  2541. SBI_ICLK);
  2542. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2543. if (clock == 20000) {
  2544. auxdiv = 1;
  2545. divsel = 0x41;
  2546. phaseinc = 0x20;
  2547. } else {
  2548. /* The iCLK virtual clock root frequency is in MHz,
  2549. * but the adjusted_mode->clock in in KHz. To get the divisors,
  2550. * it is necessary to divide one by another, so we
  2551. * convert the virtual clock precision to KHz here for higher
  2552. * precision.
  2553. */
  2554. u32 iclk_virtual_root_freq = 172800 * 1000;
  2555. u32 iclk_pi_range = 64;
  2556. u32 desired_divisor, msb_divisor_value, pi_value;
  2557. desired_divisor = (iclk_virtual_root_freq / clock);
  2558. msb_divisor_value = desired_divisor / iclk_pi_range;
  2559. pi_value = desired_divisor % iclk_pi_range;
  2560. auxdiv = 0;
  2561. divsel = msb_divisor_value - 2;
  2562. phaseinc = pi_value;
  2563. }
  2564. /* This should not happen with any sane values */
  2565. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2566. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2567. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2568. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2569. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2570. clock,
  2571. auxdiv,
  2572. divsel,
  2573. phasedir,
  2574. phaseinc);
  2575. /* Program SSCDIVINTPHASE6 */
  2576. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2577. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2578. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2579. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2580. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2581. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2582. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2583. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2584. /* Program SSCAUXDIV */
  2585. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2586. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2587. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2588. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2589. /* Enable modulator and associated divider */
  2590. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2591. temp &= ~SBI_SSCCTL_DISABLE;
  2592. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2593. /* Wait for initialization time */
  2594. udelay(24);
  2595. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2596. mutex_unlock(&dev_priv->dpio_lock);
  2597. }
  2598. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2599. enum pipe pch_transcoder)
  2600. {
  2601. struct drm_device *dev = crtc->base.dev;
  2602. struct drm_i915_private *dev_priv = dev->dev_private;
  2603. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2604. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2605. I915_READ(HTOTAL(cpu_transcoder)));
  2606. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2607. I915_READ(HBLANK(cpu_transcoder)));
  2608. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2609. I915_READ(HSYNC(cpu_transcoder)));
  2610. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2611. I915_READ(VTOTAL(cpu_transcoder)));
  2612. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2613. I915_READ(VBLANK(cpu_transcoder)));
  2614. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2615. I915_READ(VSYNC(cpu_transcoder)));
  2616. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2617. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2618. }
  2619. /*
  2620. * Enable PCH resources required for PCH ports:
  2621. * - PCH PLLs
  2622. * - FDI training & RX/TX
  2623. * - update transcoder timings
  2624. * - DP transcoding bits
  2625. * - transcoder
  2626. */
  2627. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2628. {
  2629. struct drm_device *dev = crtc->dev;
  2630. struct drm_i915_private *dev_priv = dev->dev_private;
  2631. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2632. int pipe = intel_crtc->pipe;
  2633. u32 reg, temp;
  2634. assert_pch_transcoder_disabled(dev_priv, pipe);
  2635. /* Write the TU size bits before fdi link training, so that error
  2636. * detection works. */
  2637. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2638. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2639. /* For PCH output, training FDI link */
  2640. dev_priv->display.fdi_link_train(crtc);
  2641. /* We need to program the right clock selection before writing the pixel
  2642. * mutliplier into the DPLL. */
  2643. if (HAS_PCH_CPT(dev)) {
  2644. u32 sel;
  2645. temp = I915_READ(PCH_DPLL_SEL);
  2646. temp |= TRANS_DPLL_ENABLE(pipe);
  2647. sel = TRANS_DPLLB_SEL(pipe);
  2648. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2649. temp |= sel;
  2650. else
  2651. temp &= ~sel;
  2652. I915_WRITE(PCH_DPLL_SEL, temp);
  2653. }
  2654. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2655. * transcoder, and we actually should do this to not upset any PCH
  2656. * transcoder that already use the clock when we share it.
  2657. *
  2658. * Note that enable_shared_dpll tries to do the right thing, but
  2659. * get_shared_dpll unconditionally resets the pll - we need that to have
  2660. * the right LVDS enable sequence. */
  2661. ironlake_enable_shared_dpll(intel_crtc);
  2662. /* set transcoder timing, panel must allow it */
  2663. assert_panel_unlocked(dev_priv, pipe);
  2664. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2665. intel_fdi_normal_train(crtc);
  2666. /* For PCH DP, enable TRANS_DP_CTL */
  2667. if (HAS_PCH_CPT(dev) &&
  2668. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2669. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2670. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2671. reg = TRANS_DP_CTL(pipe);
  2672. temp = I915_READ(reg);
  2673. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2674. TRANS_DP_SYNC_MASK |
  2675. TRANS_DP_BPC_MASK);
  2676. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2677. TRANS_DP_ENH_FRAMING);
  2678. temp |= bpc << 9; /* same format but at 11:9 */
  2679. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2680. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2681. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2682. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2683. switch (intel_trans_dp_port_sel(crtc)) {
  2684. case PCH_DP_B:
  2685. temp |= TRANS_DP_PORT_SEL_B;
  2686. break;
  2687. case PCH_DP_C:
  2688. temp |= TRANS_DP_PORT_SEL_C;
  2689. break;
  2690. case PCH_DP_D:
  2691. temp |= TRANS_DP_PORT_SEL_D;
  2692. break;
  2693. default:
  2694. BUG();
  2695. }
  2696. I915_WRITE(reg, temp);
  2697. }
  2698. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2699. }
  2700. static void lpt_pch_enable(struct drm_crtc *crtc)
  2701. {
  2702. struct drm_device *dev = crtc->dev;
  2703. struct drm_i915_private *dev_priv = dev->dev_private;
  2704. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2705. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2706. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2707. lpt_program_iclkip(crtc);
  2708. /* Set transcoder timing. */
  2709. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2710. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2711. }
  2712. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2713. {
  2714. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2715. if (pll == NULL)
  2716. return;
  2717. if (pll->refcount == 0) {
  2718. WARN(1, "bad %s refcount\n", pll->name);
  2719. return;
  2720. }
  2721. if (--pll->refcount == 0) {
  2722. WARN_ON(pll->on);
  2723. WARN_ON(pll->active);
  2724. }
  2725. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2726. }
  2727. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2728. {
  2729. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2730. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2731. enum intel_dpll_id i;
  2732. if (pll) {
  2733. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2734. crtc->base.base.id, pll->name);
  2735. intel_put_shared_dpll(crtc);
  2736. }
  2737. if (HAS_PCH_IBX(dev_priv->dev)) {
  2738. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2739. i = (enum intel_dpll_id) crtc->pipe;
  2740. pll = &dev_priv->shared_dplls[i];
  2741. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2742. crtc->base.base.id, pll->name);
  2743. goto found;
  2744. }
  2745. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2746. pll = &dev_priv->shared_dplls[i];
  2747. /* Only want to check enabled timings first */
  2748. if (pll->refcount == 0)
  2749. continue;
  2750. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2751. sizeof(pll->hw_state)) == 0) {
  2752. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2753. crtc->base.base.id,
  2754. pll->name, pll->refcount, pll->active);
  2755. goto found;
  2756. }
  2757. }
  2758. /* Ok no matching timings, maybe there's a free one? */
  2759. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2760. pll = &dev_priv->shared_dplls[i];
  2761. if (pll->refcount == 0) {
  2762. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2763. crtc->base.base.id, pll->name);
  2764. goto found;
  2765. }
  2766. }
  2767. return NULL;
  2768. found:
  2769. crtc->config.shared_dpll = i;
  2770. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2771. pipe_name(crtc->pipe));
  2772. if (pll->active == 0) {
  2773. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2774. sizeof(pll->hw_state));
  2775. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2776. WARN_ON(pll->on);
  2777. assert_shared_dpll_disabled(dev_priv, pll);
  2778. pll->mode_set(dev_priv, pll);
  2779. }
  2780. pll->refcount++;
  2781. return pll;
  2782. }
  2783. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2784. {
  2785. struct drm_i915_private *dev_priv = dev->dev_private;
  2786. int dslreg = PIPEDSL(pipe);
  2787. u32 temp;
  2788. temp = I915_READ(dslreg);
  2789. udelay(500);
  2790. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2791. if (wait_for(I915_READ(dslreg) != temp, 5))
  2792. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2793. }
  2794. }
  2795. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2796. {
  2797. struct drm_device *dev = crtc->base.dev;
  2798. struct drm_i915_private *dev_priv = dev->dev_private;
  2799. int pipe = crtc->pipe;
  2800. if (crtc->config.pch_pfit.size) {
  2801. /* Force use of hard-coded filter coefficients
  2802. * as some pre-programmed values are broken,
  2803. * e.g. x201.
  2804. */
  2805. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2806. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2807. PF_PIPE_SEL_IVB(pipe));
  2808. else
  2809. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2810. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2811. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2812. }
  2813. }
  2814. static void intel_enable_planes(struct drm_crtc *crtc)
  2815. {
  2816. struct drm_device *dev = crtc->dev;
  2817. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2818. struct intel_plane *intel_plane;
  2819. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2820. if (intel_plane->pipe == pipe)
  2821. intel_plane_restore(&intel_plane->base);
  2822. }
  2823. static void intel_disable_planes(struct drm_crtc *crtc)
  2824. {
  2825. struct drm_device *dev = crtc->dev;
  2826. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2827. struct intel_plane *intel_plane;
  2828. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2829. if (intel_plane->pipe == pipe)
  2830. intel_plane_disable(&intel_plane->base);
  2831. }
  2832. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2833. {
  2834. struct drm_device *dev = crtc->dev;
  2835. struct drm_i915_private *dev_priv = dev->dev_private;
  2836. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2837. struct intel_encoder *encoder;
  2838. int pipe = intel_crtc->pipe;
  2839. int plane = intel_crtc->plane;
  2840. WARN_ON(!crtc->enabled);
  2841. if (intel_crtc->active)
  2842. return;
  2843. intel_crtc->active = true;
  2844. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2845. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2846. for_each_encoder_on_crtc(dev, crtc, encoder)
  2847. if (encoder->pre_enable)
  2848. encoder->pre_enable(encoder);
  2849. if (intel_crtc->config.has_pch_encoder) {
  2850. /* Note: FDI PLL enabling _must_ be done before we enable the
  2851. * cpu pipes, hence this is separate from all the other fdi/pch
  2852. * enabling. */
  2853. ironlake_fdi_pll_enable(intel_crtc);
  2854. } else {
  2855. assert_fdi_tx_disabled(dev_priv, pipe);
  2856. assert_fdi_rx_disabled(dev_priv, pipe);
  2857. }
  2858. ironlake_pfit_enable(intel_crtc);
  2859. /*
  2860. * On ILK+ LUT must be loaded before the pipe is running but with
  2861. * clocks enabled
  2862. */
  2863. intel_crtc_load_lut(crtc);
  2864. intel_update_watermarks(crtc);
  2865. intel_enable_pipe(dev_priv, pipe,
  2866. intel_crtc->config.has_pch_encoder, false);
  2867. intel_enable_plane(dev_priv, plane, pipe);
  2868. intel_enable_planes(crtc);
  2869. intel_crtc_update_cursor(crtc, true);
  2870. if (intel_crtc->config.has_pch_encoder)
  2871. ironlake_pch_enable(crtc);
  2872. mutex_lock(&dev->struct_mutex);
  2873. intel_update_fbc(dev);
  2874. mutex_unlock(&dev->struct_mutex);
  2875. for_each_encoder_on_crtc(dev, crtc, encoder)
  2876. encoder->enable(encoder);
  2877. if (HAS_PCH_CPT(dev))
  2878. cpt_verify_modeset(dev, intel_crtc->pipe);
  2879. /*
  2880. * There seems to be a race in PCH platform hw (at least on some
  2881. * outputs) where an enabled pipe still completes any pageflip right
  2882. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2883. * as the first vblank happend, everything works as expected. Hence just
  2884. * wait for one vblank before returning to avoid strange things
  2885. * happening.
  2886. */
  2887. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2888. }
  2889. /* IPS only exists on ULT machines and is tied to pipe A. */
  2890. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2891. {
  2892. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2893. }
  2894. static void hsw_enable_ips(struct intel_crtc *crtc)
  2895. {
  2896. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2897. if (!crtc->config.ips_enabled)
  2898. return;
  2899. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2900. * We guarantee that the plane is enabled by calling intel_enable_ips
  2901. * only after intel_enable_plane. And intel_enable_plane already waits
  2902. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2903. assert_plane_enabled(dev_priv, crtc->plane);
  2904. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2905. }
  2906. static void hsw_disable_ips(struct intel_crtc *crtc)
  2907. {
  2908. struct drm_device *dev = crtc->base.dev;
  2909. struct drm_i915_private *dev_priv = dev->dev_private;
  2910. if (!crtc->config.ips_enabled)
  2911. return;
  2912. assert_plane_enabled(dev_priv, crtc->plane);
  2913. I915_WRITE(IPS_CTL, 0);
  2914. /* We need to wait for a vblank before we can disable the plane. */
  2915. intel_wait_for_vblank(dev, crtc->pipe);
  2916. }
  2917. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2918. {
  2919. struct drm_device *dev = crtc->dev;
  2920. struct drm_i915_private *dev_priv = dev->dev_private;
  2921. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2922. struct intel_encoder *encoder;
  2923. int pipe = intel_crtc->pipe;
  2924. int plane = intel_crtc->plane;
  2925. WARN_ON(!crtc->enabled);
  2926. if (intel_crtc->active)
  2927. return;
  2928. intel_crtc->active = true;
  2929. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2930. if (intel_crtc->config.has_pch_encoder)
  2931. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2932. if (intel_crtc->config.has_pch_encoder)
  2933. dev_priv->display.fdi_link_train(crtc);
  2934. for_each_encoder_on_crtc(dev, crtc, encoder)
  2935. if (encoder->pre_enable)
  2936. encoder->pre_enable(encoder);
  2937. intel_ddi_enable_pipe_clock(intel_crtc);
  2938. ironlake_pfit_enable(intel_crtc);
  2939. /*
  2940. * On ILK+ LUT must be loaded before the pipe is running but with
  2941. * clocks enabled
  2942. */
  2943. intel_crtc_load_lut(crtc);
  2944. intel_ddi_set_pipe_settings(crtc);
  2945. intel_ddi_enable_transcoder_func(crtc);
  2946. intel_update_watermarks(crtc);
  2947. intel_enable_pipe(dev_priv, pipe,
  2948. intel_crtc->config.has_pch_encoder, false);
  2949. intel_enable_plane(dev_priv, plane, pipe);
  2950. intel_enable_planes(crtc);
  2951. intel_crtc_update_cursor(crtc, true);
  2952. hsw_enable_ips(intel_crtc);
  2953. if (intel_crtc->config.has_pch_encoder)
  2954. lpt_pch_enable(crtc);
  2955. mutex_lock(&dev->struct_mutex);
  2956. intel_update_fbc(dev);
  2957. mutex_unlock(&dev->struct_mutex);
  2958. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2959. encoder->enable(encoder);
  2960. intel_opregion_notify_encoder(encoder, true);
  2961. }
  2962. /*
  2963. * There seems to be a race in PCH platform hw (at least on some
  2964. * outputs) where an enabled pipe still completes any pageflip right
  2965. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2966. * as the first vblank happend, everything works as expected. Hence just
  2967. * wait for one vblank before returning to avoid strange things
  2968. * happening.
  2969. */
  2970. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2971. }
  2972. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2973. {
  2974. struct drm_device *dev = crtc->base.dev;
  2975. struct drm_i915_private *dev_priv = dev->dev_private;
  2976. int pipe = crtc->pipe;
  2977. /* To avoid upsetting the power well on haswell only disable the pfit if
  2978. * it's in use. The hw state code will make sure we get this right. */
  2979. if (crtc->config.pch_pfit.size) {
  2980. I915_WRITE(PF_CTL(pipe), 0);
  2981. I915_WRITE(PF_WIN_POS(pipe), 0);
  2982. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2983. }
  2984. }
  2985. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2986. {
  2987. struct drm_device *dev = crtc->dev;
  2988. struct drm_i915_private *dev_priv = dev->dev_private;
  2989. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2990. struct intel_encoder *encoder;
  2991. int pipe = intel_crtc->pipe;
  2992. int plane = intel_crtc->plane;
  2993. u32 reg, temp;
  2994. if (!intel_crtc->active)
  2995. return;
  2996. for_each_encoder_on_crtc(dev, crtc, encoder)
  2997. encoder->disable(encoder);
  2998. intel_crtc_wait_for_pending_flips(crtc);
  2999. drm_vblank_off(dev, pipe);
  3000. if (dev_priv->fbc.plane == plane)
  3001. intel_disable_fbc(dev);
  3002. intel_crtc_update_cursor(crtc, false);
  3003. intel_disable_planes(crtc);
  3004. intel_disable_plane(dev_priv, plane, pipe);
  3005. if (intel_crtc->config.has_pch_encoder)
  3006. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3007. intel_disable_pipe(dev_priv, pipe);
  3008. ironlake_pfit_disable(intel_crtc);
  3009. for_each_encoder_on_crtc(dev, crtc, encoder)
  3010. if (encoder->post_disable)
  3011. encoder->post_disable(encoder);
  3012. if (intel_crtc->config.has_pch_encoder) {
  3013. ironlake_fdi_disable(crtc);
  3014. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3015. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3016. if (HAS_PCH_CPT(dev)) {
  3017. /* disable TRANS_DP_CTL */
  3018. reg = TRANS_DP_CTL(pipe);
  3019. temp = I915_READ(reg);
  3020. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3021. TRANS_DP_PORT_SEL_MASK);
  3022. temp |= TRANS_DP_PORT_SEL_NONE;
  3023. I915_WRITE(reg, temp);
  3024. /* disable DPLL_SEL */
  3025. temp = I915_READ(PCH_DPLL_SEL);
  3026. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3027. I915_WRITE(PCH_DPLL_SEL, temp);
  3028. }
  3029. /* disable PCH DPLL */
  3030. intel_disable_shared_dpll(intel_crtc);
  3031. ironlake_fdi_pll_disable(intel_crtc);
  3032. }
  3033. intel_crtc->active = false;
  3034. intel_update_watermarks(crtc);
  3035. mutex_lock(&dev->struct_mutex);
  3036. intel_update_fbc(dev);
  3037. mutex_unlock(&dev->struct_mutex);
  3038. }
  3039. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3040. {
  3041. struct drm_device *dev = crtc->dev;
  3042. struct drm_i915_private *dev_priv = dev->dev_private;
  3043. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3044. struct intel_encoder *encoder;
  3045. int pipe = intel_crtc->pipe;
  3046. int plane = intel_crtc->plane;
  3047. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3048. if (!intel_crtc->active)
  3049. return;
  3050. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3051. intel_opregion_notify_encoder(encoder, false);
  3052. encoder->disable(encoder);
  3053. }
  3054. intel_crtc_wait_for_pending_flips(crtc);
  3055. drm_vblank_off(dev, pipe);
  3056. /* FBC must be disabled before disabling the plane on HSW. */
  3057. if (dev_priv->fbc.plane == plane)
  3058. intel_disable_fbc(dev);
  3059. hsw_disable_ips(intel_crtc);
  3060. intel_crtc_update_cursor(crtc, false);
  3061. intel_disable_planes(crtc);
  3062. intel_disable_plane(dev_priv, plane, pipe);
  3063. if (intel_crtc->config.has_pch_encoder)
  3064. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3065. intel_disable_pipe(dev_priv, pipe);
  3066. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3067. ironlake_pfit_disable(intel_crtc);
  3068. intel_ddi_disable_pipe_clock(intel_crtc);
  3069. for_each_encoder_on_crtc(dev, crtc, encoder)
  3070. if (encoder->post_disable)
  3071. encoder->post_disable(encoder);
  3072. if (intel_crtc->config.has_pch_encoder) {
  3073. lpt_disable_pch_transcoder(dev_priv);
  3074. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3075. intel_ddi_fdi_disable(crtc);
  3076. }
  3077. intel_crtc->active = false;
  3078. intel_update_watermarks(crtc);
  3079. mutex_lock(&dev->struct_mutex);
  3080. intel_update_fbc(dev);
  3081. mutex_unlock(&dev->struct_mutex);
  3082. }
  3083. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3084. {
  3085. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3086. intel_put_shared_dpll(intel_crtc);
  3087. }
  3088. static void haswell_crtc_off(struct drm_crtc *crtc)
  3089. {
  3090. intel_ddi_put_crtc_pll(crtc);
  3091. }
  3092. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3093. {
  3094. if (!enable && intel_crtc->overlay) {
  3095. struct drm_device *dev = intel_crtc->base.dev;
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. mutex_lock(&dev->struct_mutex);
  3098. dev_priv->mm.interruptible = false;
  3099. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3100. dev_priv->mm.interruptible = true;
  3101. mutex_unlock(&dev->struct_mutex);
  3102. }
  3103. /* Let userspace switch the overlay on again. In most cases userspace
  3104. * has to recompute where to put it anyway.
  3105. */
  3106. }
  3107. /**
  3108. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3109. * cursor plane briefly if not already running after enabling the display
  3110. * plane.
  3111. * This workaround avoids occasional blank screens when self refresh is
  3112. * enabled.
  3113. */
  3114. static void
  3115. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3116. {
  3117. u32 cntl = I915_READ(CURCNTR(pipe));
  3118. if ((cntl & CURSOR_MODE) == 0) {
  3119. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3120. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3121. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3122. intel_wait_for_vblank(dev_priv->dev, pipe);
  3123. I915_WRITE(CURCNTR(pipe), cntl);
  3124. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3125. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3126. }
  3127. }
  3128. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3129. {
  3130. struct drm_device *dev = crtc->base.dev;
  3131. struct drm_i915_private *dev_priv = dev->dev_private;
  3132. struct intel_crtc_config *pipe_config = &crtc->config;
  3133. if (!crtc->config.gmch_pfit.control)
  3134. return;
  3135. /*
  3136. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3137. * according to register description and PRM.
  3138. */
  3139. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3140. assert_pipe_disabled(dev_priv, crtc->pipe);
  3141. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3142. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3143. /* Border color in case we don't scale up to the full screen. Black by
  3144. * default, change to something else for debugging. */
  3145. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3146. }
  3147. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3148. {
  3149. struct drm_device *dev = crtc->dev;
  3150. struct drm_i915_private *dev_priv = dev->dev_private;
  3151. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3152. struct intel_encoder *encoder;
  3153. int pipe = intel_crtc->pipe;
  3154. int plane = intel_crtc->plane;
  3155. bool is_dsi;
  3156. WARN_ON(!crtc->enabled);
  3157. if (intel_crtc->active)
  3158. return;
  3159. intel_crtc->active = true;
  3160. for_each_encoder_on_crtc(dev, crtc, encoder)
  3161. if (encoder->pre_pll_enable)
  3162. encoder->pre_pll_enable(encoder);
  3163. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3164. if (!is_dsi)
  3165. vlv_enable_pll(intel_crtc);
  3166. for_each_encoder_on_crtc(dev, crtc, encoder)
  3167. if (encoder->pre_enable)
  3168. encoder->pre_enable(encoder);
  3169. i9xx_pfit_enable(intel_crtc);
  3170. intel_crtc_load_lut(crtc);
  3171. intel_update_watermarks(crtc);
  3172. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3173. intel_enable_plane(dev_priv, plane, pipe);
  3174. intel_enable_planes(crtc);
  3175. intel_crtc_update_cursor(crtc, true);
  3176. intel_update_fbc(dev);
  3177. for_each_encoder_on_crtc(dev, crtc, encoder)
  3178. encoder->enable(encoder);
  3179. }
  3180. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3181. {
  3182. struct drm_device *dev = crtc->dev;
  3183. struct drm_i915_private *dev_priv = dev->dev_private;
  3184. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3185. struct intel_encoder *encoder;
  3186. int pipe = intel_crtc->pipe;
  3187. int plane = intel_crtc->plane;
  3188. WARN_ON(!crtc->enabled);
  3189. if (intel_crtc->active)
  3190. return;
  3191. intel_crtc->active = true;
  3192. for_each_encoder_on_crtc(dev, crtc, encoder)
  3193. if (encoder->pre_enable)
  3194. encoder->pre_enable(encoder);
  3195. i9xx_enable_pll(intel_crtc);
  3196. i9xx_pfit_enable(intel_crtc);
  3197. intel_crtc_load_lut(crtc);
  3198. intel_update_watermarks(crtc);
  3199. intel_enable_pipe(dev_priv, pipe, false, false);
  3200. intel_enable_plane(dev_priv, plane, pipe);
  3201. intel_enable_planes(crtc);
  3202. /* The fixup needs to happen before cursor is enabled */
  3203. if (IS_G4X(dev))
  3204. g4x_fixup_plane(dev_priv, pipe);
  3205. intel_crtc_update_cursor(crtc, true);
  3206. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3207. intel_crtc_dpms_overlay(intel_crtc, true);
  3208. intel_update_fbc(dev);
  3209. for_each_encoder_on_crtc(dev, crtc, encoder)
  3210. encoder->enable(encoder);
  3211. }
  3212. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3213. {
  3214. struct drm_device *dev = crtc->base.dev;
  3215. struct drm_i915_private *dev_priv = dev->dev_private;
  3216. if (!crtc->config.gmch_pfit.control)
  3217. return;
  3218. assert_pipe_disabled(dev_priv, crtc->pipe);
  3219. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3220. I915_READ(PFIT_CONTROL));
  3221. I915_WRITE(PFIT_CONTROL, 0);
  3222. }
  3223. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3224. {
  3225. struct drm_device *dev = crtc->dev;
  3226. struct drm_i915_private *dev_priv = dev->dev_private;
  3227. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3228. struct intel_encoder *encoder;
  3229. int pipe = intel_crtc->pipe;
  3230. int plane = intel_crtc->plane;
  3231. if (!intel_crtc->active)
  3232. return;
  3233. for_each_encoder_on_crtc(dev, crtc, encoder)
  3234. encoder->disable(encoder);
  3235. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3236. intel_crtc_wait_for_pending_flips(crtc);
  3237. drm_vblank_off(dev, pipe);
  3238. if (dev_priv->fbc.plane == plane)
  3239. intel_disable_fbc(dev);
  3240. intel_crtc_dpms_overlay(intel_crtc, false);
  3241. intel_crtc_update_cursor(crtc, false);
  3242. intel_disable_planes(crtc);
  3243. intel_disable_plane(dev_priv, plane, pipe);
  3244. intel_disable_pipe(dev_priv, pipe);
  3245. i9xx_pfit_disable(intel_crtc);
  3246. for_each_encoder_on_crtc(dev, crtc, encoder)
  3247. if (encoder->post_disable)
  3248. encoder->post_disable(encoder);
  3249. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3250. i9xx_disable_pll(dev_priv, pipe);
  3251. intel_crtc->active = false;
  3252. intel_update_watermarks(crtc);
  3253. intel_update_fbc(dev);
  3254. }
  3255. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3256. {
  3257. }
  3258. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3259. bool enabled)
  3260. {
  3261. struct drm_device *dev = crtc->dev;
  3262. struct drm_i915_master_private *master_priv;
  3263. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3264. int pipe = intel_crtc->pipe;
  3265. if (!dev->primary->master)
  3266. return;
  3267. master_priv = dev->primary->master->driver_priv;
  3268. if (!master_priv->sarea_priv)
  3269. return;
  3270. switch (pipe) {
  3271. case 0:
  3272. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3273. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3274. break;
  3275. case 1:
  3276. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3277. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3278. break;
  3279. default:
  3280. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3281. break;
  3282. }
  3283. }
  3284. /**
  3285. * Sets the power management mode of the pipe and plane.
  3286. */
  3287. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3288. {
  3289. struct drm_device *dev = crtc->dev;
  3290. struct drm_i915_private *dev_priv = dev->dev_private;
  3291. struct intel_encoder *intel_encoder;
  3292. bool enable = false;
  3293. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3294. enable |= intel_encoder->connectors_active;
  3295. if (enable)
  3296. dev_priv->display.crtc_enable(crtc);
  3297. else
  3298. dev_priv->display.crtc_disable(crtc);
  3299. intel_crtc_update_sarea(crtc, enable);
  3300. }
  3301. static void intel_crtc_disable(struct drm_crtc *crtc)
  3302. {
  3303. struct drm_device *dev = crtc->dev;
  3304. struct drm_connector *connector;
  3305. struct drm_i915_private *dev_priv = dev->dev_private;
  3306. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3307. /* crtc should still be enabled when we disable it. */
  3308. WARN_ON(!crtc->enabled);
  3309. dev_priv->display.crtc_disable(crtc);
  3310. intel_crtc->eld_vld = false;
  3311. intel_crtc_update_sarea(crtc, false);
  3312. dev_priv->display.off(crtc);
  3313. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3314. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3315. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3316. if (crtc->fb) {
  3317. mutex_lock(&dev->struct_mutex);
  3318. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3319. mutex_unlock(&dev->struct_mutex);
  3320. crtc->fb = NULL;
  3321. }
  3322. /* Update computed state. */
  3323. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3324. if (!connector->encoder || !connector->encoder->crtc)
  3325. continue;
  3326. if (connector->encoder->crtc != crtc)
  3327. continue;
  3328. connector->dpms = DRM_MODE_DPMS_OFF;
  3329. to_intel_encoder(connector->encoder)->connectors_active = false;
  3330. }
  3331. }
  3332. void intel_encoder_destroy(struct drm_encoder *encoder)
  3333. {
  3334. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3335. drm_encoder_cleanup(encoder);
  3336. kfree(intel_encoder);
  3337. }
  3338. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3339. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3340. * state of the entire output pipe. */
  3341. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3342. {
  3343. if (mode == DRM_MODE_DPMS_ON) {
  3344. encoder->connectors_active = true;
  3345. intel_crtc_update_dpms(encoder->base.crtc);
  3346. } else {
  3347. encoder->connectors_active = false;
  3348. intel_crtc_update_dpms(encoder->base.crtc);
  3349. }
  3350. }
  3351. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3352. * internal consistency). */
  3353. static void intel_connector_check_state(struct intel_connector *connector)
  3354. {
  3355. if (connector->get_hw_state(connector)) {
  3356. struct intel_encoder *encoder = connector->encoder;
  3357. struct drm_crtc *crtc;
  3358. bool encoder_enabled;
  3359. enum pipe pipe;
  3360. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3361. connector->base.base.id,
  3362. drm_get_connector_name(&connector->base));
  3363. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3364. "wrong connector dpms state\n");
  3365. WARN(connector->base.encoder != &encoder->base,
  3366. "active connector not linked to encoder\n");
  3367. WARN(!encoder->connectors_active,
  3368. "encoder->connectors_active not set\n");
  3369. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3370. WARN(!encoder_enabled, "encoder not enabled\n");
  3371. if (WARN_ON(!encoder->base.crtc))
  3372. return;
  3373. crtc = encoder->base.crtc;
  3374. WARN(!crtc->enabled, "crtc not enabled\n");
  3375. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3376. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3377. "encoder active on the wrong pipe\n");
  3378. }
  3379. }
  3380. /* Even simpler default implementation, if there's really no special case to
  3381. * consider. */
  3382. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3383. {
  3384. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3385. /* All the simple cases only support two dpms states. */
  3386. if (mode != DRM_MODE_DPMS_ON)
  3387. mode = DRM_MODE_DPMS_OFF;
  3388. if (mode == connector->dpms)
  3389. return;
  3390. connector->dpms = mode;
  3391. /* Only need to change hw state when actually enabled */
  3392. if (encoder->base.crtc)
  3393. intel_encoder_dpms(encoder, mode);
  3394. else
  3395. WARN_ON(encoder->connectors_active != false);
  3396. intel_modeset_check_state(connector->dev);
  3397. }
  3398. /* Simple connector->get_hw_state implementation for encoders that support only
  3399. * one connector and no cloning and hence the encoder state determines the state
  3400. * of the connector. */
  3401. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3402. {
  3403. enum pipe pipe = 0;
  3404. struct intel_encoder *encoder = connector->encoder;
  3405. return encoder->get_hw_state(encoder, &pipe);
  3406. }
  3407. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3408. struct intel_crtc_config *pipe_config)
  3409. {
  3410. struct drm_i915_private *dev_priv = dev->dev_private;
  3411. struct intel_crtc *pipe_B_crtc =
  3412. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3413. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3414. pipe_name(pipe), pipe_config->fdi_lanes);
  3415. if (pipe_config->fdi_lanes > 4) {
  3416. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3417. pipe_name(pipe), pipe_config->fdi_lanes);
  3418. return false;
  3419. }
  3420. if (IS_HASWELL(dev)) {
  3421. if (pipe_config->fdi_lanes > 2) {
  3422. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3423. pipe_config->fdi_lanes);
  3424. return false;
  3425. } else {
  3426. return true;
  3427. }
  3428. }
  3429. if (INTEL_INFO(dev)->num_pipes == 2)
  3430. return true;
  3431. /* Ivybridge 3 pipe is really complicated */
  3432. switch (pipe) {
  3433. case PIPE_A:
  3434. return true;
  3435. case PIPE_B:
  3436. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3437. pipe_config->fdi_lanes > 2) {
  3438. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3439. pipe_name(pipe), pipe_config->fdi_lanes);
  3440. return false;
  3441. }
  3442. return true;
  3443. case PIPE_C:
  3444. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3445. pipe_B_crtc->config.fdi_lanes <= 2) {
  3446. if (pipe_config->fdi_lanes > 2) {
  3447. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3448. pipe_name(pipe), pipe_config->fdi_lanes);
  3449. return false;
  3450. }
  3451. } else {
  3452. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3453. return false;
  3454. }
  3455. return true;
  3456. default:
  3457. BUG();
  3458. }
  3459. }
  3460. #define RETRY 1
  3461. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3462. struct intel_crtc_config *pipe_config)
  3463. {
  3464. struct drm_device *dev = intel_crtc->base.dev;
  3465. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3466. int lane, link_bw, fdi_dotclock;
  3467. bool setup_ok, needs_recompute = false;
  3468. retry:
  3469. /* FDI is a binary signal running at ~2.7GHz, encoding
  3470. * each output octet as 10 bits. The actual frequency
  3471. * is stored as a divider into a 100MHz clock, and the
  3472. * mode pixel clock is stored in units of 1KHz.
  3473. * Hence the bw of each lane in terms of the mode signal
  3474. * is:
  3475. */
  3476. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3477. fdi_dotclock = adjusted_mode->clock;
  3478. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3479. pipe_config->pipe_bpp);
  3480. pipe_config->fdi_lanes = lane;
  3481. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3482. link_bw, &pipe_config->fdi_m_n);
  3483. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3484. intel_crtc->pipe, pipe_config);
  3485. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3486. pipe_config->pipe_bpp -= 2*3;
  3487. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3488. pipe_config->pipe_bpp);
  3489. needs_recompute = true;
  3490. pipe_config->bw_constrained = true;
  3491. goto retry;
  3492. }
  3493. if (needs_recompute)
  3494. return RETRY;
  3495. return setup_ok ? 0 : -EINVAL;
  3496. }
  3497. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3498. struct intel_crtc_config *pipe_config)
  3499. {
  3500. pipe_config->ips_enabled = i915_enable_ips &&
  3501. hsw_crtc_supports_ips(crtc) &&
  3502. pipe_config->pipe_bpp <= 24;
  3503. }
  3504. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3505. struct intel_crtc_config *pipe_config)
  3506. {
  3507. struct drm_device *dev = crtc->base.dev;
  3508. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3509. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3510. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3511. */
  3512. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3513. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3514. return -EINVAL;
  3515. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3516. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3517. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3518. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3519. * for lvds. */
  3520. pipe_config->pipe_bpp = 8*3;
  3521. }
  3522. if (HAS_IPS(dev))
  3523. hsw_compute_ips_config(crtc, pipe_config);
  3524. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3525. * clock survives for now. */
  3526. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3527. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3528. if (pipe_config->has_pch_encoder)
  3529. return ironlake_fdi_compute_config(crtc, pipe_config);
  3530. return 0;
  3531. }
  3532. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3533. {
  3534. return 400000; /* FIXME */
  3535. }
  3536. static int i945_get_display_clock_speed(struct drm_device *dev)
  3537. {
  3538. return 400000;
  3539. }
  3540. static int i915_get_display_clock_speed(struct drm_device *dev)
  3541. {
  3542. return 333000;
  3543. }
  3544. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3545. {
  3546. return 200000;
  3547. }
  3548. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3549. {
  3550. u16 gcfgc = 0;
  3551. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3552. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3553. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3554. return 267000;
  3555. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3556. return 333000;
  3557. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3558. return 444000;
  3559. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3560. return 200000;
  3561. default:
  3562. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3563. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3564. return 133000;
  3565. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3566. return 167000;
  3567. }
  3568. }
  3569. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3570. {
  3571. u16 gcfgc = 0;
  3572. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3573. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3574. return 133000;
  3575. else {
  3576. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3577. case GC_DISPLAY_CLOCK_333_MHZ:
  3578. return 333000;
  3579. default:
  3580. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3581. return 190000;
  3582. }
  3583. }
  3584. }
  3585. static int i865_get_display_clock_speed(struct drm_device *dev)
  3586. {
  3587. return 266000;
  3588. }
  3589. static int i855_get_display_clock_speed(struct drm_device *dev)
  3590. {
  3591. u16 hpllcc = 0;
  3592. /* Assume that the hardware is in the high speed state. This
  3593. * should be the default.
  3594. */
  3595. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3596. case GC_CLOCK_133_200:
  3597. case GC_CLOCK_100_200:
  3598. return 200000;
  3599. case GC_CLOCK_166_250:
  3600. return 250000;
  3601. case GC_CLOCK_100_133:
  3602. return 133000;
  3603. }
  3604. /* Shouldn't happen */
  3605. return 0;
  3606. }
  3607. static int i830_get_display_clock_speed(struct drm_device *dev)
  3608. {
  3609. return 133000;
  3610. }
  3611. static void
  3612. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3613. {
  3614. while (*num > DATA_LINK_M_N_MASK ||
  3615. *den > DATA_LINK_M_N_MASK) {
  3616. *num >>= 1;
  3617. *den >>= 1;
  3618. }
  3619. }
  3620. static void compute_m_n(unsigned int m, unsigned int n,
  3621. uint32_t *ret_m, uint32_t *ret_n)
  3622. {
  3623. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3624. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3625. intel_reduce_m_n_ratio(ret_m, ret_n);
  3626. }
  3627. void
  3628. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3629. int pixel_clock, int link_clock,
  3630. struct intel_link_m_n *m_n)
  3631. {
  3632. m_n->tu = 64;
  3633. compute_m_n(bits_per_pixel * pixel_clock,
  3634. link_clock * nlanes * 8,
  3635. &m_n->gmch_m, &m_n->gmch_n);
  3636. compute_m_n(pixel_clock, link_clock,
  3637. &m_n->link_m, &m_n->link_n);
  3638. }
  3639. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3640. {
  3641. if (i915_panel_use_ssc >= 0)
  3642. return i915_panel_use_ssc != 0;
  3643. return dev_priv->vbt.lvds_use_ssc
  3644. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3645. }
  3646. static int vlv_get_refclk(struct drm_crtc *crtc)
  3647. {
  3648. struct drm_device *dev = crtc->dev;
  3649. struct drm_i915_private *dev_priv = dev->dev_private;
  3650. int refclk = 27000; /* for DP & HDMI */
  3651. return 100000; /* only one validated so far */
  3652. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3653. refclk = 96000;
  3654. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3655. if (intel_panel_use_ssc(dev_priv))
  3656. refclk = 100000;
  3657. else
  3658. refclk = 96000;
  3659. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3660. refclk = 100000;
  3661. }
  3662. return refclk;
  3663. }
  3664. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3665. {
  3666. struct drm_device *dev = crtc->dev;
  3667. struct drm_i915_private *dev_priv = dev->dev_private;
  3668. int refclk;
  3669. if (IS_VALLEYVIEW(dev)) {
  3670. refclk = vlv_get_refclk(crtc);
  3671. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3672. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3673. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3674. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3675. refclk / 1000);
  3676. } else if (!IS_GEN2(dev)) {
  3677. refclk = 96000;
  3678. } else {
  3679. refclk = 48000;
  3680. }
  3681. return refclk;
  3682. }
  3683. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3684. {
  3685. return (1 << dpll->n) << 16 | dpll->m2;
  3686. }
  3687. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3688. {
  3689. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3690. }
  3691. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3692. intel_clock_t *reduced_clock)
  3693. {
  3694. struct drm_device *dev = crtc->base.dev;
  3695. struct drm_i915_private *dev_priv = dev->dev_private;
  3696. int pipe = crtc->pipe;
  3697. u32 fp, fp2 = 0;
  3698. if (IS_PINEVIEW(dev)) {
  3699. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3700. if (reduced_clock)
  3701. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3702. } else {
  3703. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3704. if (reduced_clock)
  3705. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3706. }
  3707. I915_WRITE(FP0(pipe), fp);
  3708. crtc->config.dpll_hw_state.fp0 = fp;
  3709. crtc->lowfreq_avail = false;
  3710. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3711. reduced_clock && i915_powersave) {
  3712. I915_WRITE(FP1(pipe), fp2);
  3713. crtc->config.dpll_hw_state.fp1 = fp2;
  3714. crtc->lowfreq_avail = true;
  3715. } else {
  3716. I915_WRITE(FP1(pipe), fp);
  3717. crtc->config.dpll_hw_state.fp1 = fp;
  3718. }
  3719. }
  3720. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3721. pipe)
  3722. {
  3723. u32 reg_val;
  3724. /*
  3725. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3726. * and set it to a reasonable value instead.
  3727. */
  3728. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3729. reg_val &= 0xffffff00;
  3730. reg_val |= 0x00000030;
  3731. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3732. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3733. reg_val &= 0x8cffffff;
  3734. reg_val = 0x8c000000;
  3735. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3736. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3737. reg_val &= 0xffffff00;
  3738. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3739. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3740. reg_val &= 0x00ffffff;
  3741. reg_val |= 0xb0000000;
  3742. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3743. }
  3744. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3745. struct intel_link_m_n *m_n)
  3746. {
  3747. struct drm_device *dev = crtc->base.dev;
  3748. struct drm_i915_private *dev_priv = dev->dev_private;
  3749. int pipe = crtc->pipe;
  3750. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3751. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3752. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3753. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3754. }
  3755. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3756. struct intel_link_m_n *m_n)
  3757. {
  3758. struct drm_device *dev = crtc->base.dev;
  3759. struct drm_i915_private *dev_priv = dev->dev_private;
  3760. int pipe = crtc->pipe;
  3761. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3762. if (INTEL_INFO(dev)->gen >= 5) {
  3763. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3764. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3765. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3766. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3767. } else {
  3768. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3769. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3770. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3771. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3772. }
  3773. }
  3774. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3775. {
  3776. if (crtc->config.has_pch_encoder)
  3777. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3778. else
  3779. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3780. }
  3781. static void vlv_update_pll(struct intel_crtc *crtc)
  3782. {
  3783. struct drm_device *dev = crtc->base.dev;
  3784. struct drm_i915_private *dev_priv = dev->dev_private;
  3785. int pipe = crtc->pipe;
  3786. u32 dpll, mdiv;
  3787. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3788. u32 coreclk, reg_val, dpll_md;
  3789. mutex_lock(&dev_priv->dpio_lock);
  3790. bestn = crtc->config.dpll.n;
  3791. bestm1 = crtc->config.dpll.m1;
  3792. bestm2 = crtc->config.dpll.m2;
  3793. bestp1 = crtc->config.dpll.p1;
  3794. bestp2 = crtc->config.dpll.p2;
  3795. /* See eDP HDMI DPIO driver vbios notes doc */
  3796. /* PLL B needs special handling */
  3797. if (pipe)
  3798. vlv_pllb_recal_opamp(dev_priv, pipe);
  3799. /* Set up Tx target for periodic Rcomp update */
  3800. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3801. /* Disable target IRef on PLL */
  3802. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3803. reg_val &= 0x00ffffff;
  3804. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3805. /* Disable fast lock */
  3806. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3807. /* Set idtafcrecal before PLL is enabled */
  3808. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3809. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3810. mdiv |= ((bestn << DPIO_N_SHIFT));
  3811. mdiv |= (1 << DPIO_K_SHIFT);
  3812. /*
  3813. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3814. * but we don't support that).
  3815. * Note: don't use the DAC post divider as it seems unstable.
  3816. */
  3817. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3818. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3819. mdiv |= DPIO_ENABLE_CALIBRATION;
  3820. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3821. /* Set HBR and RBR LPF coefficients */
  3822. if (crtc->config.port_clock == 162000 ||
  3823. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3824. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3825. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3826. 0x009f0003);
  3827. else
  3828. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3829. 0x00d0000f);
  3830. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3831. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3832. /* Use SSC source */
  3833. if (!pipe)
  3834. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3835. 0x0df40000);
  3836. else
  3837. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3838. 0x0df70000);
  3839. } else { /* HDMI or VGA */
  3840. /* Use bend source */
  3841. if (!pipe)
  3842. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3843. 0x0df70000);
  3844. else
  3845. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3846. 0x0df40000);
  3847. }
  3848. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3849. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3850. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3851. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3852. coreclk |= 0x01000000;
  3853. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3854. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3855. /* Enable DPIO clock input */
  3856. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3857. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3858. if (pipe)
  3859. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3860. dpll |= DPLL_VCO_ENABLE;
  3861. crtc->config.dpll_hw_state.dpll = dpll;
  3862. dpll_md = (crtc->config.pixel_multiplier - 1)
  3863. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3864. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3865. if (crtc->config.has_dp_encoder)
  3866. intel_dp_set_m_n(crtc);
  3867. mutex_unlock(&dev_priv->dpio_lock);
  3868. }
  3869. static void i9xx_update_pll(struct intel_crtc *crtc,
  3870. intel_clock_t *reduced_clock,
  3871. int num_connectors)
  3872. {
  3873. struct drm_device *dev = crtc->base.dev;
  3874. struct drm_i915_private *dev_priv = dev->dev_private;
  3875. u32 dpll;
  3876. bool is_sdvo;
  3877. struct dpll *clock = &crtc->config.dpll;
  3878. i9xx_update_pll_dividers(crtc, reduced_clock);
  3879. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3880. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3881. dpll = DPLL_VGA_MODE_DIS;
  3882. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3883. dpll |= DPLLB_MODE_LVDS;
  3884. else
  3885. dpll |= DPLLB_MODE_DAC_SERIAL;
  3886. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3887. dpll |= (crtc->config.pixel_multiplier - 1)
  3888. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3889. }
  3890. if (is_sdvo)
  3891. dpll |= DPLL_SDVO_HIGH_SPEED;
  3892. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3893. dpll |= DPLL_SDVO_HIGH_SPEED;
  3894. /* compute bitmask from p1 value */
  3895. if (IS_PINEVIEW(dev))
  3896. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3897. else {
  3898. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3899. if (IS_G4X(dev) && reduced_clock)
  3900. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3901. }
  3902. switch (clock->p2) {
  3903. case 5:
  3904. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3905. break;
  3906. case 7:
  3907. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3908. break;
  3909. case 10:
  3910. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3911. break;
  3912. case 14:
  3913. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3914. break;
  3915. }
  3916. if (INTEL_INFO(dev)->gen >= 4)
  3917. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3918. if (crtc->config.sdvo_tv_clock)
  3919. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3920. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3921. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3922. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3923. else
  3924. dpll |= PLL_REF_INPUT_DREFCLK;
  3925. dpll |= DPLL_VCO_ENABLE;
  3926. crtc->config.dpll_hw_state.dpll = dpll;
  3927. if (INTEL_INFO(dev)->gen >= 4) {
  3928. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3929. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3930. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3931. }
  3932. if (crtc->config.has_dp_encoder)
  3933. intel_dp_set_m_n(crtc);
  3934. }
  3935. static void i8xx_update_pll(struct intel_crtc *crtc,
  3936. intel_clock_t *reduced_clock,
  3937. int num_connectors)
  3938. {
  3939. struct drm_device *dev = crtc->base.dev;
  3940. struct drm_i915_private *dev_priv = dev->dev_private;
  3941. u32 dpll;
  3942. struct dpll *clock = &crtc->config.dpll;
  3943. i9xx_update_pll_dividers(crtc, reduced_clock);
  3944. dpll = DPLL_VGA_MODE_DIS;
  3945. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3946. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3947. } else {
  3948. if (clock->p1 == 2)
  3949. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3950. else
  3951. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3952. if (clock->p2 == 4)
  3953. dpll |= PLL_P2_DIVIDE_BY_4;
  3954. }
  3955. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3956. dpll |= DPLL_DVO_2X_MODE;
  3957. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3958. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3959. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3960. else
  3961. dpll |= PLL_REF_INPUT_DREFCLK;
  3962. dpll |= DPLL_VCO_ENABLE;
  3963. crtc->config.dpll_hw_state.dpll = dpll;
  3964. }
  3965. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3966. {
  3967. struct drm_device *dev = intel_crtc->base.dev;
  3968. struct drm_i915_private *dev_priv = dev->dev_private;
  3969. enum pipe pipe = intel_crtc->pipe;
  3970. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3971. struct drm_display_mode *adjusted_mode =
  3972. &intel_crtc->config.adjusted_mode;
  3973. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3974. /* We need to be careful not to changed the adjusted mode, for otherwise
  3975. * the hw state checker will get angry at the mismatch. */
  3976. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3977. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3978. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3979. /* the chip adds 2 halflines automatically */
  3980. crtc_vtotal -= 1;
  3981. crtc_vblank_end -= 1;
  3982. vsyncshift = adjusted_mode->crtc_hsync_start
  3983. - adjusted_mode->crtc_htotal / 2;
  3984. } else {
  3985. vsyncshift = 0;
  3986. }
  3987. if (INTEL_INFO(dev)->gen > 3)
  3988. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3989. I915_WRITE(HTOTAL(cpu_transcoder),
  3990. (adjusted_mode->crtc_hdisplay - 1) |
  3991. ((adjusted_mode->crtc_htotal - 1) << 16));
  3992. I915_WRITE(HBLANK(cpu_transcoder),
  3993. (adjusted_mode->crtc_hblank_start - 1) |
  3994. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3995. I915_WRITE(HSYNC(cpu_transcoder),
  3996. (adjusted_mode->crtc_hsync_start - 1) |
  3997. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3998. I915_WRITE(VTOTAL(cpu_transcoder),
  3999. (adjusted_mode->crtc_vdisplay - 1) |
  4000. ((crtc_vtotal - 1) << 16));
  4001. I915_WRITE(VBLANK(cpu_transcoder),
  4002. (adjusted_mode->crtc_vblank_start - 1) |
  4003. ((crtc_vblank_end - 1) << 16));
  4004. I915_WRITE(VSYNC(cpu_transcoder),
  4005. (adjusted_mode->crtc_vsync_start - 1) |
  4006. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4007. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4008. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4009. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4010. * bits. */
  4011. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4012. (pipe == PIPE_B || pipe == PIPE_C))
  4013. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4014. /* pipesrc controls the size that is scaled from, which should
  4015. * always be the user's requested size.
  4016. */
  4017. I915_WRITE(PIPESRC(pipe),
  4018. ((intel_crtc->config.pipe_src_w - 1) << 16) |
  4019. (intel_crtc->config.pipe_src_h - 1));
  4020. }
  4021. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4022. struct intel_crtc_config *pipe_config)
  4023. {
  4024. struct drm_device *dev = crtc->base.dev;
  4025. struct drm_i915_private *dev_priv = dev->dev_private;
  4026. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4027. uint32_t tmp;
  4028. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4029. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4030. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4031. tmp = I915_READ(HBLANK(cpu_transcoder));
  4032. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4033. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4034. tmp = I915_READ(HSYNC(cpu_transcoder));
  4035. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4036. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4037. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4038. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4039. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4040. tmp = I915_READ(VBLANK(cpu_transcoder));
  4041. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4042. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4043. tmp = I915_READ(VSYNC(cpu_transcoder));
  4044. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4045. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4046. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4047. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4048. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4049. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4050. }
  4051. tmp = I915_READ(PIPESRC(crtc->pipe));
  4052. pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  4053. pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  4054. pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
  4055. pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
  4056. }
  4057. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4058. struct intel_crtc_config *pipe_config)
  4059. {
  4060. struct drm_crtc *crtc = &intel_crtc->base;
  4061. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4062. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4063. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4064. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4065. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4066. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4067. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4068. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4069. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4070. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4071. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4072. }
  4073. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4074. {
  4075. struct drm_device *dev = intel_crtc->base.dev;
  4076. struct drm_i915_private *dev_priv = dev->dev_private;
  4077. uint32_t pipeconf;
  4078. pipeconf = 0;
  4079. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4080. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4081. * core speed.
  4082. *
  4083. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4084. * pipe == 0 check?
  4085. */
  4086. if (intel_crtc->config.adjusted_mode.clock >
  4087. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4088. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4089. }
  4090. /* only g4x and later have fancy bpc/dither controls */
  4091. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4092. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4093. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4094. pipeconf |= PIPECONF_DITHER_EN |
  4095. PIPECONF_DITHER_TYPE_SP;
  4096. switch (intel_crtc->config.pipe_bpp) {
  4097. case 18:
  4098. pipeconf |= PIPECONF_6BPC;
  4099. break;
  4100. case 24:
  4101. pipeconf |= PIPECONF_8BPC;
  4102. break;
  4103. case 30:
  4104. pipeconf |= PIPECONF_10BPC;
  4105. break;
  4106. default:
  4107. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4108. BUG();
  4109. }
  4110. }
  4111. if (HAS_PIPE_CXSR(dev)) {
  4112. if (intel_crtc->lowfreq_avail) {
  4113. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4114. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4115. } else {
  4116. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4117. }
  4118. }
  4119. if (!IS_GEN2(dev) &&
  4120. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4121. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4122. else
  4123. pipeconf |= PIPECONF_PROGRESSIVE;
  4124. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4125. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4126. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4127. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4128. }
  4129. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4130. int x, int y,
  4131. struct drm_framebuffer *fb)
  4132. {
  4133. struct drm_device *dev = crtc->dev;
  4134. struct drm_i915_private *dev_priv = dev->dev_private;
  4135. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4136. int pipe = intel_crtc->pipe;
  4137. int plane = intel_crtc->plane;
  4138. int refclk, num_connectors = 0;
  4139. intel_clock_t clock, reduced_clock;
  4140. u32 dspcntr;
  4141. bool ok, has_reduced_clock = false;
  4142. bool is_lvds = false, is_dsi = false;
  4143. struct intel_encoder *encoder;
  4144. const intel_limit_t *limit;
  4145. int ret;
  4146. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4147. switch (encoder->type) {
  4148. case INTEL_OUTPUT_LVDS:
  4149. is_lvds = true;
  4150. break;
  4151. case INTEL_OUTPUT_DSI:
  4152. is_dsi = true;
  4153. break;
  4154. }
  4155. num_connectors++;
  4156. }
  4157. refclk = i9xx_get_refclk(crtc, num_connectors);
  4158. if (!is_dsi && !intel_crtc->config.clock_set) {
  4159. /*
  4160. * Returns a set of divisors for the desired target clock with
  4161. * the given refclk, or FALSE. The returned values represent
  4162. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4163. * 2) / p1 / p2.
  4164. */
  4165. limit = intel_limit(crtc, refclk);
  4166. ok = dev_priv->display.find_dpll(limit, crtc,
  4167. intel_crtc->config.port_clock,
  4168. refclk, NULL, &clock);
  4169. if (!ok && !intel_crtc->config.clock_set) {
  4170. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4171. return -EINVAL;
  4172. }
  4173. }
  4174. /* Ensure that the cursor is valid for the new mode before changing... */
  4175. intel_crtc_update_cursor(crtc, true);
  4176. if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
  4177. /*
  4178. * Ensure we match the reduced clock's P to the target clock.
  4179. * If the clocks don't match, we can't switch the display clock
  4180. * by using the FP0/FP1. In such case we will disable the LVDS
  4181. * downclock feature.
  4182. */
  4183. limit = intel_limit(crtc, refclk);
  4184. has_reduced_clock =
  4185. dev_priv->display.find_dpll(limit, crtc,
  4186. dev_priv->lvds_downclock,
  4187. refclk, &clock,
  4188. &reduced_clock);
  4189. }
  4190. /* Compat-code for transition, will disappear. */
  4191. if (!intel_crtc->config.clock_set) {
  4192. intel_crtc->config.dpll.n = clock.n;
  4193. intel_crtc->config.dpll.m1 = clock.m1;
  4194. intel_crtc->config.dpll.m2 = clock.m2;
  4195. intel_crtc->config.dpll.p1 = clock.p1;
  4196. intel_crtc->config.dpll.p2 = clock.p2;
  4197. }
  4198. if (IS_GEN2(dev)) {
  4199. i8xx_update_pll(intel_crtc,
  4200. has_reduced_clock ? &reduced_clock : NULL,
  4201. num_connectors);
  4202. } else if (IS_VALLEYVIEW(dev)) {
  4203. if (!is_dsi)
  4204. vlv_update_pll(intel_crtc);
  4205. } else {
  4206. i9xx_update_pll(intel_crtc,
  4207. has_reduced_clock ? &reduced_clock : NULL,
  4208. num_connectors);
  4209. }
  4210. /* Set up the display plane register */
  4211. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4212. if (!IS_VALLEYVIEW(dev)) {
  4213. if (pipe == 0)
  4214. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4215. else
  4216. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4217. }
  4218. intel_set_pipe_timings(intel_crtc);
  4219. /* pipesrc and dspsize control the size that is scaled from,
  4220. * which should always be the user's requested size.
  4221. */
  4222. I915_WRITE(DSPSIZE(plane),
  4223. ((intel_crtc->config.pipe_src_h - 1) << 16) |
  4224. (intel_crtc->config.pipe_src_w - 1));
  4225. I915_WRITE(DSPPOS(plane), 0);
  4226. i9xx_set_pipeconf(intel_crtc);
  4227. I915_WRITE(DSPCNTR(plane), dspcntr);
  4228. POSTING_READ(DSPCNTR(plane));
  4229. ret = intel_pipe_set_base(crtc, x, y, fb);
  4230. return ret;
  4231. }
  4232. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4233. struct intel_crtc_config *pipe_config)
  4234. {
  4235. struct drm_device *dev = crtc->base.dev;
  4236. struct drm_i915_private *dev_priv = dev->dev_private;
  4237. uint32_t tmp;
  4238. tmp = I915_READ(PFIT_CONTROL);
  4239. if (!(tmp & PFIT_ENABLE))
  4240. return;
  4241. /* Check whether the pfit is attached to our pipe. */
  4242. if (INTEL_INFO(dev)->gen < 4) {
  4243. if (crtc->pipe != PIPE_B)
  4244. return;
  4245. } else {
  4246. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4247. return;
  4248. }
  4249. pipe_config->gmch_pfit.control = tmp;
  4250. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4251. if (INTEL_INFO(dev)->gen < 5)
  4252. pipe_config->gmch_pfit.lvds_border_bits =
  4253. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4254. }
  4255. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4256. struct intel_crtc_config *pipe_config)
  4257. {
  4258. struct drm_device *dev = crtc->base.dev;
  4259. struct drm_i915_private *dev_priv = dev->dev_private;
  4260. uint32_t tmp;
  4261. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4262. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4263. tmp = I915_READ(PIPECONF(crtc->pipe));
  4264. if (!(tmp & PIPECONF_ENABLE))
  4265. return false;
  4266. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4267. switch (tmp & PIPECONF_BPC_MASK) {
  4268. case PIPECONF_6BPC:
  4269. pipe_config->pipe_bpp = 18;
  4270. break;
  4271. case PIPECONF_8BPC:
  4272. pipe_config->pipe_bpp = 24;
  4273. break;
  4274. case PIPECONF_10BPC:
  4275. pipe_config->pipe_bpp = 30;
  4276. break;
  4277. default:
  4278. break;
  4279. }
  4280. }
  4281. intel_get_pipe_timings(crtc, pipe_config);
  4282. i9xx_get_pfit_config(crtc, pipe_config);
  4283. if (INTEL_INFO(dev)->gen >= 4) {
  4284. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4285. pipe_config->pixel_multiplier =
  4286. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4287. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4288. pipe_config->dpll_hw_state.dpll_md = tmp;
  4289. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4290. tmp = I915_READ(DPLL(crtc->pipe));
  4291. pipe_config->pixel_multiplier =
  4292. ((tmp & SDVO_MULTIPLIER_MASK)
  4293. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4294. } else {
  4295. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4296. * port and will be fixed up in the encoder->get_config
  4297. * function. */
  4298. pipe_config->pixel_multiplier = 1;
  4299. }
  4300. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4301. if (!IS_VALLEYVIEW(dev)) {
  4302. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4303. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4304. } else {
  4305. /* Mask out read-only status bits. */
  4306. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4307. DPLL_PORTC_READY_MASK |
  4308. DPLL_PORTB_READY_MASK);
  4309. }
  4310. i9xx_crtc_clock_get(crtc, pipe_config);
  4311. return true;
  4312. }
  4313. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4314. {
  4315. struct drm_i915_private *dev_priv = dev->dev_private;
  4316. struct drm_mode_config *mode_config = &dev->mode_config;
  4317. struct intel_encoder *encoder;
  4318. u32 val, final;
  4319. bool has_lvds = false;
  4320. bool has_cpu_edp = false;
  4321. bool has_panel = false;
  4322. bool has_ck505 = false;
  4323. bool can_ssc = false;
  4324. /* We need to take the global config into account */
  4325. list_for_each_entry(encoder, &mode_config->encoder_list,
  4326. base.head) {
  4327. switch (encoder->type) {
  4328. case INTEL_OUTPUT_LVDS:
  4329. has_panel = true;
  4330. has_lvds = true;
  4331. break;
  4332. case INTEL_OUTPUT_EDP:
  4333. has_panel = true;
  4334. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4335. has_cpu_edp = true;
  4336. break;
  4337. }
  4338. }
  4339. if (HAS_PCH_IBX(dev)) {
  4340. has_ck505 = dev_priv->vbt.display_clock_mode;
  4341. can_ssc = has_ck505;
  4342. } else {
  4343. has_ck505 = false;
  4344. can_ssc = true;
  4345. }
  4346. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4347. has_panel, has_lvds, has_ck505);
  4348. /* Ironlake: try to setup display ref clock before DPLL
  4349. * enabling. This is only under driver's control after
  4350. * PCH B stepping, previous chipset stepping should be
  4351. * ignoring this setting.
  4352. */
  4353. val = I915_READ(PCH_DREF_CONTROL);
  4354. /* As we must carefully and slowly disable/enable each source in turn,
  4355. * compute the final state we want first and check if we need to
  4356. * make any changes at all.
  4357. */
  4358. final = val;
  4359. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4360. if (has_ck505)
  4361. final |= DREF_NONSPREAD_CK505_ENABLE;
  4362. else
  4363. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4364. final &= ~DREF_SSC_SOURCE_MASK;
  4365. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4366. final &= ~DREF_SSC1_ENABLE;
  4367. if (has_panel) {
  4368. final |= DREF_SSC_SOURCE_ENABLE;
  4369. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4370. final |= DREF_SSC1_ENABLE;
  4371. if (has_cpu_edp) {
  4372. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4373. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4374. else
  4375. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4376. } else
  4377. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4378. } else {
  4379. final |= DREF_SSC_SOURCE_DISABLE;
  4380. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4381. }
  4382. if (final == val)
  4383. return;
  4384. /* Always enable nonspread source */
  4385. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4386. if (has_ck505)
  4387. val |= DREF_NONSPREAD_CK505_ENABLE;
  4388. else
  4389. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4390. if (has_panel) {
  4391. val &= ~DREF_SSC_SOURCE_MASK;
  4392. val |= DREF_SSC_SOURCE_ENABLE;
  4393. /* SSC must be turned on before enabling the CPU output */
  4394. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4395. DRM_DEBUG_KMS("Using SSC on panel\n");
  4396. val |= DREF_SSC1_ENABLE;
  4397. } else
  4398. val &= ~DREF_SSC1_ENABLE;
  4399. /* Get SSC going before enabling the outputs */
  4400. I915_WRITE(PCH_DREF_CONTROL, val);
  4401. POSTING_READ(PCH_DREF_CONTROL);
  4402. udelay(200);
  4403. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4404. /* Enable CPU source on CPU attached eDP */
  4405. if (has_cpu_edp) {
  4406. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4407. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4408. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4409. }
  4410. else
  4411. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4412. } else
  4413. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4414. I915_WRITE(PCH_DREF_CONTROL, val);
  4415. POSTING_READ(PCH_DREF_CONTROL);
  4416. udelay(200);
  4417. } else {
  4418. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4419. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4420. /* Turn off CPU output */
  4421. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4422. I915_WRITE(PCH_DREF_CONTROL, val);
  4423. POSTING_READ(PCH_DREF_CONTROL);
  4424. udelay(200);
  4425. /* Turn off the SSC source */
  4426. val &= ~DREF_SSC_SOURCE_MASK;
  4427. val |= DREF_SSC_SOURCE_DISABLE;
  4428. /* Turn off SSC1 */
  4429. val &= ~DREF_SSC1_ENABLE;
  4430. I915_WRITE(PCH_DREF_CONTROL, val);
  4431. POSTING_READ(PCH_DREF_CONTROL);
  4432. udelay(200);
  4433. }
  4434. BUG_ON(val != final);
  4435. }
  4436. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4437. {
  4438. uint32_t tmp;
  4439. tmp = I915_READ(SOUTH_CHICKEN2);
  4440. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4441. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4442. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4443. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4444. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4445. tmp = I915_READ(SOUTH_CHICKEN2);
  4446. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4447. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4448. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4449. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4450. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4451. }
  4452. /* WaMPhyProgramming:hsw */
  4453. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4454. {
  4455. uint32_t tmp;
  4456. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4457. tmp &= ~(0xFF << 24);
  4458. tmp |= (0x12 << 24);
  4459. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4460. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4461. tmp |= (1 << 11);
  4462. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4463. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4464. tmp |= (1 << 11);
  4465. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4466. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4467. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4468. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4469. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4470. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4471. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4472. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4473. tmp &= ~(7 << 13);
  4474. tmp |= (5 << 13);
  4475. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4476. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4477. tmp &= ~(7 << 13);
  4478. tmp |= (5 << 13);
  4479. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4480. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4481. tmp &= ~0xFF;
  4482. tmp |= 0x1C;
  4483. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4484. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4485. tmp &= ~0xFF;
  4486. tmp |= 0x1C;
  4487. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4488. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4489. tmp &= ~(0xFF << 16);
  4490. tmp |= (0x1C << 16);
  4491. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4492. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4493. tmp &= ~(0xFF << 16);
  4494. tmp |= (0x1C << 16);
  4495. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4496. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4497. tmp |= (1 << 27);
  4498. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4499. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4500. tmp |= (1 << 27);
  4501. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4502. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4503. tmp &= ~(0xF << 28);
  4504. tmp |= (4 << 28);
  4505. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4506. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4507. tmp &= ~(0xF << 28);
  4508. tmp |= (4 << 28);
  4509. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4510. }
  4511. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4512. * Programming" based on the parameters passed:
  4513. * - Sequence to enable CLKOUT_DP
  4514. * - Sequence to enable CLKOUT_DP without spread
  4515. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4516. */
  4517. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4518. bool with_fdi)
  4519. {
  4520. struct drm_i915_private *dev_priv = dev->dev_private;
  4521. uint32_t reg, tmp;
  4522. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4523. with_spread = true;
  4524. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4525. with_fdi, "LP PCH doesn't have FDI\n"))
  4526. with_fdi = false;
  4527. mutex_lock(&dev_priv->dpio_lock);
  4528. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4529. tmp &= ~SBI_SSCCTL_DISABLE;
  4530. tmp |= SBI_SSCCTL_PATHALT;
  4531. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4532. udelay(24);
  4533. if (with_spread) {
  4534. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4535. tmp &= ~SBI_SSCCTL_PATHALT;
  4536. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4537. if (with_fdi) {
  4538. lpt_reset_fdi_mphy(dev_priv);
  4539. lpt_program_fdi_mphy(dev_priv);
  4540. }
  4541. }
  4542. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4543. SBI_GEN0 : SBI_DBUFF0;
  4544. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4545. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4546. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4547. mutex_unlock(&dev_priv->dpio_lock);
  4548. }
  4549. /* Sequence to disable CLKOUT_DP */
  4550. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4551. {
  4552. struct drm_i915_private *dev_priv = dev->dev_private;
  4553. uint32_t reg, tmp;
  4554. mutex_lock(&dev_priv->dpio_lock);
  4555. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4556. SBI_GEN0 : SBI_DBUFF0;
  4557. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4558. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4559. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4560. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4561. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4562. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4563. tmp |= SBI_SSCCTL_PATHALT;
  4564. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4565. udelay(32);
  4566. }
  4567. tmp |= SBI_SSCCTL_DISABLE;
  4568. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4569. }
  4570. mutex_unlock(&dev_priv->dpio_lock);
  4571. }
  4572. static void lpt_init_pch_refclk(struct drm_device *dev)
  4573. {
  4574. struct drm_mode_config *mode_config = &dev->mode_config;
  4575. struct intel_encoder *encoder;
  4576. bool has_vga = false;
  4577. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4578. switch (encoder->type) {
  4579. case INTEL_OUTPUT_ANALOG:
  4580. has_vga = true;
  4581. break;
  4582. }
  4583. }
  4584. if (has_vga)
  4585. lpt_enable_clkout_dp(dev, true, true);
  4586. else
  4587. lpt_disable_clkout_dp(dev);
  4588. }
  4589. /*
  4590. * Initialize reference clocks when the driver loads
  4591. */
  4592. void intel_init_pch_refclk(struct drm_device *dev)
  4593. {
  4594. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4595. ironlake_init_pch_refclk(dev);
  4596. else if (HAS_PCH_LPT(dev))
  4597. lpt_init_pch_refclk(dev);
  4598. }
  4599. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4600. {
  4601. struct drm_device *dev = crtc->dev;
  4602. struct drm_i915_private *dev_priv = dev->dev_private;
  4603. struct intel_encoder *encoder;
  4604. int num_connectors = 0;
  4605. bool is_lvds = false;
  4606. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4607. switch (encoder->type) {
  4608. case INTEL_OUTPUT_LVDS:
  4609. is_lvds = true;
  4610. break;
  4611. }
  4612. num_connectors++;
  4613. }
  4614. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4615. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4616. dev_priv->vbt.lvds_ssc_freq);
  4617. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4618. }
  4619. return 120000;
  4620. }
  4621. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4622. {
  4623. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4624. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4625. int pipe = intel_crtc->pipe;
  4626. uint32_t val;
  4627. val = 0;
  4628. switch (intel_crtc->config.pipe_bpp) {
  4629. case 18:
  4630. val |= PIPECONF_6BPC;
  4631. break;
  4632. case 24:
  4633. val |= PIPECONF_8BPC;
  4634. break;
  4635. case 30:
  4636. val |= PIPECONF_10BPC;
  4637. break;
  4638. case 36:
  4639. val |= PIPECONF_12BPC;
  4640. break;
  4641. default:
  4642. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4643. BUG();
  4644. }
  4645. if (intel_crtc->config.dither)
  4646. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4647. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4648. val |= PIPECONF_INTERLACED_ILK;
  4649. else
  4650. val |= PIPECONF_PROGRESSIVE;
  4651. if (intel_crtc->config.limited_color_range)
  4652. val |= PIPECONF_COLOR_RANGE_SELECT;
  4653. I915_WRITE(PIPECONF(pipe), val);
  4654. POSTING_READ(PIPECONF(pipe));
  4655. }
  4656. /*
  4657. * Set up the pipe CSC unit.
  4658. *
  4659. * Currently only full range RGB to limited range RGB conversion
  4660. * is supported, but eventually this should handle various
  4661. * RGB<->YCbCr scenarios as well.
  4662. */
  4663. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4664. {
  4665. struct drm_device *dev = crtc->dev;
  4666. struct drm_i915_private *dev_priv = dev->dev_private;
  4667. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4668. int pipe = intel_crtc->pipe;
  4669. uint16_t coeff = 0x7800; /* 1.0 */
  4670. /*
  4671. * TODO: Check what kind of values actually come out of the pipe
  4672. * with these coeff/postoff values and adjust to get the best
  4673. * accuracy. Perhaps we even need to take the bpc value into
  4674. * consideration.
  4675. */
  4676. if (intel_crtc->config.limited_color_range)
  4677. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4678. /*
  4679. * GY/GU and RY/RU should be the other way around according
  4680. * to BSpec, but reality doesn't agree. Just set them up in
  4681. * a way that results in the correct picture.
  4682. */
  4683. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4684. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4685. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4686. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4687. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4688. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4689. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4690. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4691. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4692. if (INTEL_INFO(dev)->gen > 6) {
  4693. uint16_t postoff = 0;
  4694. if (intel_crtc->config.limited_color_range)
  4695. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4696. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4697. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4698. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4699. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4700. } else {
  4701. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4702. if (intel_crtc->config.limited_color_range)
  4703. mode |= CSC_BLACK_SCREEN_OFFSET;
  4704. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4705. }
  4706. }
  4707. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4708. {
  4709. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4710. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4711. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4712. uint32_t val;
  4713. val = 0;
  4714. if (intel_crtc->config.dither)
  4715. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4716. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4717. val |= PIPECONF_INTERLACED_ILK;
  4718. else
  4719. val |= PIPECONF_PROGRESSIVE;
  4720. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4721. POSTING_READ(PIPECONF(cpu_transcoder));
  4722. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4723. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4724. }
  4725. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4726. intel_clock_t *clock,
  4727. bool *has_reduced_clock,
  4728. intel_clock_t *reduced_clock)
  4729. {
  4730. struct drm_device *dev = crtc->dev;
  4731. struct drm_i915_private *dev_priv = dev->dev_private;
  4732. struct intel_encoder *intel_encoder;
  4733. int refclk;
  4734. const intel_limit_t *limit;
  4735. bool ret, is_lvds = false;
  4736. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4737. switch (intel_encoder->type) {
  4738. case INTEL_OUTPUT_LVDS:
  4739. is_lvds = true;
  4740. break;
  4741. }
  4742. }
  4743. refclk = ironlake_get_refclk(crtc);
  4744. /*
  4745. * Returns a set of divisors for the desired target clock with the given
  4746. * refclk, or FALSE. The returned values represent the clock equation:
  4747. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4748. */
  4749. limit = intel_limit(crtc, refclk);
  4750. ret = dev_priv->display.find_dpll(limit, crtc,
  4751. to_intel_crtc(crtc)->config.port_clock,
  4752. refclk, NULL, clock);
  4753. if (!ret)
  4754. return false;
  4755. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4756. /*
  4757. * Ensure we match the reduced clock's P to the target clock.
  4758. * If the clocks don't match, we can't switch the display clock
  4759. * by using the FP0/FP1. In such case we will disable the LVDS
  4760. * downclock feature.
  4761. */
  4762. *has_reduced_clock =
  4763. dev_priv->display.find_dpll(limit, crtc,
  4764. dev_priv->lvds_downclock,
  4765. refclk, clock,
  4766. reduced_clock);
  4767. }
  4768. return true;
  4769. }
  4770. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4771. {
  4772. struct drm_i915_private *dev_priv = dev->dev_private;
  4773. uint32_t temp;
  4774. temp = I915_READ(SOUTH_CHICKEN1);
  4775. if (temp & FDI_BC_BIFURCATION_SELECT)
  4776. return;
  4777. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4778. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4779. temp |= FDI_BC_BIFURCATION_SELECT;
  4780. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4781. I915_WRITE(SOUTH_CHICKEN1, temp);
  4782. POSTING_READ(SOUTH_CHICKEN1);
  4783. }
  4784. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4785. {
  4786. struct drm_device *dev = intel_crtc->base.dev;
  4787. struct drm_i915_private *dev_priv = dev->dev_private;
  4788. switch (intel_crtc->pipe) {
  4789. case PIPE_A:
  4790. break;
  4791. case PIPE_B:
  4792. if (intel_crtc->config.fdi_lanes > 2)
  4793. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4794. else
  4795. cpt_enable_fdi_bc_bifurcation(dev);
  4796. break;
  4797. case PIPE_C:
  4798. cpt_enable_fdi_bc_bifurcation(dev);
  4799. break;
  4800. default:
  4801. BUG();
  4802. }
  4803. }
  4804. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4805. {
  4806. /*
  4807. * Account for spread spectrum to avoid
  4808. * oversubscribing the link. Max center spread
  4809. * is 2.5%; use 5% for safety's sake.
  4810. */
  4811. u32 bps = target_clock * bpp * 21 / 20;
  4812. return bps / (link_bw * 8) + 1;
  4813. }
  4814. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4815. {
  4816. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4817. }
  4818. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4819. u32 *fp,
  4820. intel_clock_t *reduced_clock, u32 *fp2)
  4821. {
  4822. struct drm_crtc *crtc = &intel_crtc->base;
  4823. struct drm_device *dev = crtc->dev;
  4824. struct drm_i915_private *dev_priv = dev->dev_private;
  4825. struct intel_encoder *intel_encoder;
  4826. uint32_t dpll;
  4827. int factor, num_connectors = 0;
  4828. bool is_lvds = false, is_sdvo = false;
  4829. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4830. switch (intel_encoder->type) {
  4831. case INTEL_OUTPUT_LVDS:
  4832. is_lvds = true;
  4833. break;
  4834. case INTEL_OUTPUT_SDVO:
  4835. case INTEL_OUTPUT_HDMI:
  4836. is_sdvo = true;
  4837. break;
  4838. }
  4839. num_connectors++;
  4840. }
  4841. /* Enable autotuning of the PLL clock (if permissible) */
  4842. factor = 21;
  4843. if (is_lvds) {
  4844. if ((intel_panel_use_ssc(dev_priv) &&
  4845. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4846. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4847. factor = 25;
  4848. } else if (intel_crtc->config.sdvo_tv_clock)
  4849. factor = 20;
  4850. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4851. *fp |= FP_CB_TUNE;
  4852. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4853. *fp2 |= FP_CB_TUNE;
  4854. dpll = 0;
  4855. if (is_lvds)
  4856. dpll |= DPLLB_MODE_LVDS;
  4857. else
  4858. dpll |= DPLLB_MODE_DAC_SERIAL;
  4859. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4860. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4861. if (is_sdvo)
  4862. dpll |= DPLL_SDVO_HIGH_SPEED;
  4863. if (intel_crtc->config.has_dp_encoder)
  4864. dpll |= DPLL_SDVO_HIGH_SPEED;
  4865. /* compute bitmask from p1 value */
  4866. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4867. /* also FPA1 */
  4868. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4869. switch (intel_crtc->config.dpll.p2) {
  4870. case 5:
  4871. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4872. break;
  4873. case 7:
  4874. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4875. break;
  4876. case 10:
  4877. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4878. break;
  4879. case 14:
  4880. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4881. break;
  4882. }
  4883. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4884. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4885. else
  4886. dpll |= PLL_REF_INPUT_DREFCLK;
  4887. return dpll | DPLL_VCO_ENABLE;
  4888. }
  4889. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4890. int x, int y,
  4891. struct drm_framebuffer *fb)
  4892. {
  4893. struct drm_device *dev = crtc->dev;
  4894. struct drm_i915_private *dev_priv = dev->dev_private;
  4895. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4896. int pipe = intel_crtc->pipe;
  4897. int plane = intel_crtc->plane;
  4898. int num_connectors = 0;
  4899. intel_clock_t clock, reduced_clock;
  4900. u32 dpll = 0, fp = 0, fp2 = 0;
  4901. bool ok, has_reduced_clock = false;
  4902. bool is_lvds = false;
  4903. struct intel_encoder *encoder;
  4904. struct intel_shared_dpll *pll;
  4905. int ret;
  4906. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4907. switch (encoder->type) {
  4908. case INTEL_OUTPUT_LVDS:
  4909. is_lvds = true;
  4910. break;
  4911. }
  4912. num_connectors++;
  4913. }
  4914. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4915. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4916. ok = ironlake_compute_clocks(crtc, &clock,
  4917. &has_reduced_clock, &reduced_clock);
  4918. if (!ok && !intel_crtc->config.clock_set) {
  4919. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4920. return -EINVAL;
  4921. }
  4922. /* Compat-code for transition, will disappear. */
  4923. if (!intel_crtc->config.clock_set) {
  4924. intel_crtc->config.dpll.n = clock.n;
  4925. intel_crtc->config.dpll.m1 = clock.m1;
  4926. intel_crtc->config.dpll.m2 = clock.m2;
  4927. intel_crtc->config.dpll.p1 = clock.p1;
  4928. intel_crtc->config.dpll.p2 = clock.p2;
  4929. }
  4930. /* Ensure that the cursor is valid for the new mode before changing... */
  4931. intel_crtc_update_cursor(crtc, true);
  4932. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4933. if (intel_crtc->config.has_pch_encoder) {
  4934. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4935. if (has_reduced_clock)
  4936. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4937. dpll = ironlake_compute_dpll(intel_crtc,
  4938. &fp, &reduced_clock,
  4939. has_reduced_clock ? &fp2 : NULL);
  4940. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4941. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4942. if (has_reduced_clock)
  4943. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4944. else
  4945. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4946. pll = intel_get_shared_dpll(intel_crtc);
  4947. if (pll == NULL) {
  4948. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4949. pipe_name(pipe));
  4950. return -EINVAL;
  4951. }
  4952. } else
  4953. intel_put_shared_dpll(intel_crtc);
  4954. if (intel_crtc->config.has_dp_encoder)
  4955. intel_dp_set_m_n(intel_crtc);
  4956. if (is_lvds && has_reduced_clock && i915_powersave)
  4957. intel_crtc->lowfreq_avail = true;
  4958. else
  4959. intel_crtc->lowfreq_avail = false;
  4960. if (intel_crtc->config.has_pch_encoder) {
  4961. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4962. }
  4963. intel_set_pipe_timings(intel_crtc);
  4964. if (intel_crtc->config.has_pch_encoder) {
  4965. intel_cpu_transcoder_set_m_n(intel_crtc,
  4966. &intel_crtc->config.fdi_m_n);
  4967. }
  4968. if (IS_IVYBRIDGE(dev))
  4969. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4970. ironlake_set_pipeconf(crtc);
  4971. /* Set up the display plane register */
  4972. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4973. POSTING_READ(DSPCNTR(plane));
  4974. ret = intel_pipe_set_base(crtc, x, y, fb);
  4975. return ret;
  4976. }
  4977. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  4978. struct intel_link_m_n *m_n)
  4979. {
  4980. struct drm_device *dev = crtc->base.dev;
  4981. struct drm_i915_private *dev_priv = dev->dev_private;
  4982. enum pipe pipe = crtc->pipe;
  4983. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  4984. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  4985. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  4986. & ~TU_SIZE_MASK;
  4987. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  4988. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  4989. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4990. }
  4991. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  4992. enum transcoder transcoder,
  4993. struct intel_link_m_n *m_n)
  4994. {
  4995. struct drm_device *dev = crtc->base.dev;
  4996. struct drm_i915_private *dev_priv = dev->dev_private;
  4997. enum pipe pipe = crtc->pipe;
  4998. if (INTEL_INFO(dev)->gen >= 5) {
  4999. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  5000. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  5001. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  5002. & ~TU_SIZE_MASK;
  5003. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  5004. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  5005. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5006. } else {
  5007. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  5008. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  5009. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  5010. & ~TU_SIZE_MASK;
  5011. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  5012. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  5013. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5014. }
  5015. }
  5016. void intel_dp_get_m_n(struct intel_crtc *crtc,
  5017. struct intel_crtc_config *pipe_config)
  5018. {
  5019. if (crtc->config.has_pch_encoder)
  5020. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5021. else
  5022. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5023. &pipe_config->dp_m_n);
  5024. }
  5025. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5026. struct intel_crtc_config *pipe_config)
  5027. {
  5028. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5029. &pipe_config->fdi_m_n);
  5030. }
  5031. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5032. struct intel_crtc_config *pipe_config)
  5033. {
  5034. struct drm_device *dev = crtc->base.dev;
  5035. struct drm_i915_private *dev_priv = dev->dev_private;
  5036. uint32_t tmp;
  5037. tmp = I915_READ(PF_CTL(crtc->pipe));
  5038. if (tmp & PF_ENABLE) {
  5039. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5040. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5041. /* We currently do not free assignements of panel fitters on
  5042. * ivb/hsw (since we don't use the higher upscaling modes which
  5043. * differentiates them) so just WARN about this case for now. */
  5044. if (IS_GEN7(dev)) {
  5045. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5046. PF_PIPE_SEL_IVB(crtc->pipe));
  5047. }
  5048. }
  5049. }
  5050. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5051. struct intel_crtc_config *pipe_config)
  5052. {
  5053. struct drm_device *dev = crtc->base.dev;
  5054. struct drm_i915_private *dev_priv = dev->dev_private;
  5055. uint32_t tmp;
  5056. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5057. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5058. tmp = I915_READ(PIPECONF(crtc->pipe));
  5059. if (!(tmp & PIPECONF_ENABLE))
  5060. return false;
  5061. switch (tmp & PIPECONF_BPC_MASK) {
  5062. case PIPECONF_6BPC:
  5063. pipe_config->pipe_bpp = 18;
  5064. break;
  5065. case PIPECONF_8BPC:
  5066. pipe_config->pipe_bpp = 24;
  5067. break;
  5068. case PIPECONF_10BPC:
  5069. pipe_config->pipe_bpp = 30;
  5070. break;
  5071. case PIPECONF_12BPC:
  5072. pipe_config->pipe_bpp = 36;
  5073. break;
  5074. default:
  5075. break;
  5076. }
  5077. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5078. struct intel_shared_dpll *pll;
  5079. pipe_config->has_pch_encoder = true;
  5080. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5081. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5082. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5083. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5084. if (HAS_PCH_IBX(dev_priv->dev)) {
  5085. pipe_config->shared_dpll =
  5086. (enum intel_dpll_id) crtc->pipe;
  5087. } else {
  5088. tmp = I915_READ(PCH_DPLL_SEL);
  5089. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5090. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5091. else
  5092. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5093. }
  5094. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5095. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5096. &pipe_config->dpll_hw_state));
  5097. tmp = pipe_config->dpll_hw_state.dpll;
  5098. pipe_config->pixel_multiplier =
  5099. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5100. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5101. ironlake_pch_clock_get(crtc, pipe_config);
  5102. } else {
  5103. pipe_config->pixel_multiplier = 1;
  5104. }
  5105. intel_get_pipe_timings(crtc, pipe_config);
  5106. ironlake_get_pfit_config(crtc, pipe_config);
  5107. return true;
  5108. }
  5109. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5110. {
  5111. struct drm_device *dev = dev_priv->dev;
  5112. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5113. struct intel_crtc *crtc;
  5114. unsigned long irqflags;
  5115. uint32_t val;
  5116. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5117. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5118. pipe_name(crtc->pipe));
  5119. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5120. WARN(plls->spll_refcount, "SPLL enabled\n");
  5121. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5122. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5123. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5124. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5125. "CPU PWM1 enabled\n");
  5126. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5127. "CPU PWM2 enabled\n");
  5128. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5129. "PCH PWM1 enabled\n");
  5130. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5131. "Utility pin enabled\n");
  5132. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5133. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5134. val = I915_READ(DEIMR);
  5135. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5136. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5137. val = I915_READ(SDEIMR);
  5138. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5139. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5140. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5141. }
  5142. /*
  5143. * This function implements pieces of two sequences from BSpec:
  5144. * - Sequence for display software to disable LCPLL
  5145. * - Sequence for display software to allow package C8+
  5146. * The steps implemented here are just the steps that actually touch the LCPLL
  5147. * register. Callers should take care of disabling all the display engine
  5148. * functions, doing the mode unset, fixing interrupts, etc.
  5149. */
  5150. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5151. bool switch_to_fclk, bool allow_power_down)
  5152. {
  5153. uint32_t val;
  5154. assert_can_disable_lcpll(dev_priv);
  5155. val = I915_READ(LCPLL_CTL);
  5156. if (switch_to_fclk) {
  5157. val |= LCPLL_CD_SOURCE_FCLK;
  5158. I915_WRITE(LCPLL_CTL, val);
  5159. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5160. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5161. DRM_ERROR("Switching to FCLK failed\n");
  5162. val = I915_READ(LCPLL_CTL);
  5163. }
  5164. val |= LCPLL_PLL_DISABLE;
  5165. I915_WRITE(LCPLL_CTL, val);
  5166. POSTING_READ(LCPLL_CTL);
  5167. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5168. DRM_ERROR("LCPLL still locked\n");
  5169. val = I915_READ(D_COMP);
  5170. val |= D_COMP_COMP_DISABLE;
  5171. I915_WRITE(D_COMP, val);
  5172. POSTING_READ(D_COMP);
  5173. ndelay(100);
  5174. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5175. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5176. if (allow_power_down) {
  5177. val = I915_READ(LCPLL_CTL);
  5178. val |= LCPLL_POWER_DOWN_ALLOW;
  5179. I915_WRITE(LCPLL_CTL, val);
  5180. POSTING_READ(LCPLL_CTL);
  5181. }
  5182. }
  5183. /*
  5184. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5185. * source.
  5186. */
  5187. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5188. {
  5189. uint32_t val;
  5190. val = I915_READ(LCPLL_CTL);
  5191. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5192. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5193. return;
  5194. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5195. * we'll hang the machine! */
  5196. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5197. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5198. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5199. I915_WRITE(LCPLL_CTL, val);
  5200. POSTING_READ(LCPLL_CTL);
  5201. }
  5202. val = I915_READ(D_COMP);
  5203. val |= D_COMP_COMP_FORCE;
  5204. val &= ~D_COMP_COMP_DISABLE;
  5205. I915_WRITE(D_COMP, val);
  5206. POSTING_READ(D_COMP);
  5207. val = I915_READ(LCPLL_CTL);
  5208. val &= ~LCPLL_PLL_DISABLE;
  5209. I915_WRITE(LCPLL_CTL, val);
  5210. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5211. DRM_ERROR("LCPLL not locked yet\n");
  5212. if (val & LCPLL_CD_SOURCE_FCLK) {
  5213. val = I915_READ(LCPLL_CTL);
  5214. val &= ~LCPLL_CD_SOURCE_FCLK;
  5215. I915_WRITE(LCPLL_CTL, val);
  5216. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5217. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5218. DRM_ERROR("Switching back to LCPLL failed\n");
  5219. }
  5220. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5221. }
  5222. void hsw_enable_pc8_work(struct work_struct *__work)
  5223. {
  5224. struct drm_i915_private *dev_priv =
  5225. container_of(to_delayed_work(__work), struct drm_i915_private,
  5226. pc8.enable_work);
  5227. struct drm_device *dev = dev_priv->dev;
  5228. uint32_t val;
  5229. if (dev_priv->pc8.enabled)
  5230. return;
  5231. DRM_DEBUG_KMS("Enabling package C8+\n");
  5232. dev_priv->pc8.enabled = true;
  5233. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5234. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5235. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5236. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5237. }
  5238. lpt_disable_clkout_dp(dev);
  5239. hsw_pc8_disable_interrupts(dev);
  5240. hsw_disable_lcpll(dev_priv, true, true);
  5241. }
  5242. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5243. {
  5244. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5245. WARN(dev_priv->pc8.disable_count < 1,
  5246. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5247. dev_priv->pc8.disable_count--;
  5248. if (dev_priv->pc8.disable_count != 0)
  5249. return;
  5250. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5251. msecs_to_jiffies(i915_pc8_timeout));
  5252. }
  5253. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5254. {
  5255. struct drm_device *dev = dev_priv->dev;
  5256. uint32_t val;
  5257. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5258. WARN(dev_priv->pc8.disable_count < 0,
  5259. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5260. dev_priv->pc8.disable_count++;
  5261. if (dev_priv->pc8.disable_count != 1)
  5262. return;
  5263. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5264. if (!dev_priv->pc8.enabled)
  5265. return;
  5266. DRM_DEBUG_KMS("Disabling package C8+\n");
  5267. hsw_restore_lcpll(dev_priv);
  5268. hsw_pc8_restore_interrupts(dev);
  5269. lpt_init_pch_refclk(dev);
  5270. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5271. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5272. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5273. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5274. }
  5275. intel_prepare_ddi(dev);
  5276. i915_gem_init_swizzling(dev);
  5277. mutex_lock(&dev_priv->rps.hw_lock);
  5278. gen6_update_ring_freq(dev);
  5279. mutex_unlock(&dev_priv->rps.hw_lock);
  5280. dev_priv->pc8.enabled = false;
  5281. }
  5282. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5283. {
  5284. mutex_lock(&dev_priv->pc8.lock);
  5285. __hsw_enable_package_c8(dev_priv);
  5286. mutex_unlock(&dev_priv->pc8.lock);
  5287. }
  5288. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5289. {
  5290. mutex_lock(&dev_priv->pc8.lock);
  5291. __hsw_disable_package_c8(dev_priv);
  5292. mutex_unlock(&dev_priv->pc8.lock);
  5293. }
  5294. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5295. {
  5296. struct drm_device *dev = dev_priv->dev;
  5297. struct intel_crtc *crtc;
  5298. uint32_t val;
  5299. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5300. if (crtc->base.enabled)
  5301. return false;
  5302. /* This case is still possible since we have the i915.disable_power_well
  5303. * parameter and also the KVMr or something else might be requesting the
  5304. * power well. */
  5305. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5306. if (val != 0) {
  5307. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5308. return false;
  5309. }
  5310. return true;
  5311. }
  5312. /* Since we're called from modeset_global_resources there's no way to
  5313. * symmetrically increase and decrease the refcount, so we use
  5314. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5315. * or not.
  5316. */
  5317. static void hsw_update_package_c8(struct drm_device *dev)
  5318. {
  5319. struct drm_i915_private *dev_priv = dev->dev_private;
  5320. bool allow;
  5321. if (!i915_enable_pc8)
  5322. return;
  5323. mutex_lock(&dev_priv->pc8.lock);
  5324. allow = hsw_can_enable_package_c8(dev_priv);
  5325. if (allow == dev_priv->pc8.requirements_met)
  5326. goto done;
  5327. dev_priv->pc8.requirements_met = allow;
  5328. if (allow)
  5329. __hsw_enable_package_c8(dev_priv);
  5330. else
  5331. __hsw_disable_package_c8(dev_priv);
  5332. done:
  5333. mutex_unlock(&dev_priv->pc8.lock);
  5334. }
  5335. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5336. {
  5337. if (!dev_priv->pc8.gpu_idle) {
  5338. dev_priv->pc8.gpu_idle = true;
  5339. hsw_enable_package_c8(dev_priv);
  5340. }
  5341. }
  5342. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5343. {
  5344. if (dev_priv->pc8.gpu_idle) {
  5345. dev_priv->pc8.gpu_idle = false;
  5346. hsw_disable_package_c8(dev_priv);
  5347. }
  5348. }
  5349. static void haswell_modeset_global_resources(struct drm_device *dev)
  5350. {
  5351. bool enable = false;
  5352. struct intel_crtc *crtc;
  5353. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5354. if (!crtc->base.enabled)
  5355. continue;
  5356. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  5357. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5358. enable = true;
  5359. }
  5360. intel_set_power_well(dev, enable);
  5361. hsw_update_package_c8(dev);
  5362. }
  5363. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5364. int x, int y,
  5365. struct drm_framebuffer *fb)
  5366. {
  5367. struct drm_device *dev = crtc->dev;
  5368. struct drm_i915_private *dev_priv = dev->dev_private;
  5369. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5370. int plane = intel_crtc->plane;
  5371. int ret;
  5372. if (!intel_ddi_pll_mode_set(crtc))
  5373. return -EINVAL;
  5374. /* Ensure that the cursor is valid for the new mode before changing... */
  5375. intel_crtc_update_cursor(crtc, true);
  5376. if (intel_crtc->config.has_dp_encoder)
  5377. intel_dp_set_m_n(intel_crtc);
  5378. intel_crtc->lowfreq_avail = false;
  5379. intel_set_pipe_timings(intel_crtc);
  5380. if (intel_crtc->config.has_pch_encoder) {
  5381. intel_cpu_transcoder_set_m_n(intel_crtc,
  5382. &intel_crtc->config.fdi_m_n);
  5383. }
  5384. haswell_set_pipeconf(crtc);
  5385. intel_set_pipe_csc(crtc);
  5386. /* Set up the display plane register */
  5387. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5388. POSTING_READ(DSPCNTR(plane));
  5389. ret = intel_pipe_set_base(crtc, x, y, fb);
  5390. return ret;
  5391. }
  5392. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5393. struct intel_crtc_config *pipe_config)
  5394. {
  5395. struct drm_device *dev = crtc->base.dev;
  5396. struct drm_i915_private *dev_priv = dev->dev_private;
  5397. enum intel_display_power_domain pfit_domain;
  5398. uint32_t tmp;
  5399. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5400. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5401. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5402. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5403. enum pipe trans_edp_pipe;
  5404. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5405. default:
  5406. WARN(1, "unknown pipe linked to edp transcoder\n");
  5407. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5408. case TRANS_DDI_EDP_INPUT_A_ON:
  5409. trans_edp_pipe = PIPE_A;
  5410. break;
  5411. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5412. trans_edp_pipe = PIPE_B;
  5413. break;
  5414. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5415. trans_edp_pipe = PIPE_C;
  5416. break;
  5417. }
  5418. if (trans_edp_pipe == crtc->pipe)
  5419. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5420. }
  5421. if (!intel_display_power_enabled(dev,
  5422. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5423. return false;
  5424. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5425. if (!(tmp & PIPECONF_ENABLE))
  5426. return false;
  5427. /*
  5428. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5429. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5430. * the PCH transcoder is on.
  5431. */
  5432. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5433. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5434. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5435. pipe_config->has_pch_encoder = true;
  5436. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5437. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5438. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5439. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5440. }
  5441. intel_get_pipe_timings(crtc, pipe_config);
  5442. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5443. if (intel_display_power_enabled(dev, pfit_domain))
  5444. ironlake_get_pfit_config(crtc, pipe_config);
  5445. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5446. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5447. pipe_config->pixel_multiplier = 1;
  5448. return true;
  5449. }
  5450. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5451. int x, int y,
  5452. struct drm_framebuffer *fb)
  5453. {
  5454. struct drm_device *dev = crtc->dev;
  5455. struct drm_i915_private *dev_priv = dev->dev_private;
  5456. struct intel_encoder *encoder;
  5457. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5458. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5459. int pipe = intel_crtc->pipe;
  5460. int ret;
  5461. drm_vblank_pre_modeset(dev, pipe);
  5462. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5463. drm_vblank_post_modeset(dev, pipe);
  5464. if (ret != 0)
  5465. return ret;
  5466. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5467. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5468. encoder->base.base.id,
  5469. drm_get_encoder_name(&encoder->base),
  5470. mode->base.id, mode->name);
  5471. encoder->mode_set(encoder);
  5472. }
  5473. return 0;
  5474. }
  5475. static bool intel_eld_uptodate(struct drm_connector *connector,
  5476. int reg_eldv, uint32_t bits_eldv,
  5477. int reg_elda, uint32_t bits_elda,
  5478. int reg_edid)
  5479. {
  5480. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5481. uint8_t *eld = connector->eld;
  5482. uint32_t i;
  5483. i = I915_READ(reg_eldv);
  5484. i &= bits_eldv;
  5485. if (!eld[0])
  5486. return !i;
  5487. if (!i)
  5488. return false;
  5489. i = I915_READ(reg_elda);
  5490. i &= ~bits_elda;
  5491. I915_WRITE(reg_elda, i);
  5492. for (i = 0; i < eld[2]; i++)
  5493. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5494. return false;
  5495. return true;
  5496. }
  5497. static void g4x_write_eld(struct drm_connector *connector,
  5498. struct drm_crtc *crtc)
  5499. {
  5500. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5501. uint8_t *eld = connector->eld;
  5502. uint32_t eldv;
  5503. uint32_t len;
  5504. uint32_t i;
  5505. i = I915_READ(G4X_AUD_VID_DID);
  5506. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5507. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5508. else
  5509. eldv = G4X_ELDV_DEVCTG;
  5510. if (intel_eld_uptodate(connector,
  5511. G4X_AUD_CNTL_ST, eldv,
  5512. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5513. G4X_HDMIW_HDMIEDID))
  5514. return;
  5515. i = I915_READ(G4X_AUD_CNTL_ST);
  5516. i &= ~(eldv | G4X_ELD_ADDR);
  5517. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5518. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5519. if (!eld[0])
  5520. return;
  5521. len = min_t(uint8_t, eld[2], len);
  5522. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5523. for (i = 0; i < len; i++)
  5524. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5525. i = I915_READ(G4X_AUD_CNTL_ST);
  5526. i |= eldv;
  5527. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5528. }
  5529. static void haswell_write_eld(struct drm_connector *connector,
  5530. struct drm_crtc *crtc)
  5531. {
  5532. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5533. uint8_t *eld = connector->eld;
  5534. struct drm_device *dev = crtc->dev;
  5535. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5536. uint32_t eldv;
  5537. uint32_t i;
  5538. int len;
  5539. int pipe = to_intel_crtc(crtc)->pipe;
  5540. int tmp;
  5541. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5542. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5543. int aud_config = HSW_AUD_CFG(pipe);
  5544. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5545. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5546. /* Audio output enable */
  5547. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5548. tmp = I915_READ(aud_cntrl_st2);
  5549. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5550. I915_WRITE(aud_cntrl_st2, tmp);
  5551. /* Wait for 1 vertical blank */
  5552. intel_wait_for_vblank(dev, pipe);
  5553. /* Set ELD valid state */
  5554. tmp = I915_READ(aud_cntrl_st2);
  5555. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5556. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5557. I915_WRITE(aud_cntrl_st2, tmp);
  5558. tmp = I915_READ(aud_cntrl_st2);
  5559. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5560. /* Enable HDMI mode */
  5561. tmp = I915_READ(aud_config);
  5562. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5563. /* clear N_programing_enable and N_value_index */
  5564. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5565. I915_WRITE(aud_config, tmp);
  5566. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5567. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5568. intel_crtc->eld_vld = true;
  5569. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5570. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5571. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5572. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5573. } else
  5574. I915_WRITE(aud_config, 0);
  5575. if (intel_eld_uptodate(connector,
  5576. aud_cntrl_st2, eldv,
  5577. aud_cntl_st, IBX_ELD_ADDRESS,
  5578. hdmiw_hdmiedid))
  5579. return;
  5580. i = I915_READ(aud_cntrl_st2);
  5581. i &= ~eldv;
  5582. I915_WRITE(aud_cntrl_st2, i);
  5583. if (!eld[0])
  5584. return;
  5585. i = I915_READ(aud_cntl_st);
  5586. i &= ~IBX_ELD_ADDRESS;
  5587. I915_WRITE(aud_cntl_st, i);
  5588. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5589. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5590. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5591. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5592. for (i = 0; i < len; i++)
  5593. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5594. i = I915_READ(aud_cntrl_st2);
  5595. i |= eldv;
  5596. I915_WRITE(aud_cntrl_st2, i);
  5597. }
  5598. static void ironlake_write_eld(struct drm_connector *connector,
  5599. struct drm_crtc *crtc)
  5600. {
  5601. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5602. uint8_t *eld = connector->eld;
  5603. uint32_t eldv;
  5604. uint32_t i;
  5605. int len;
  5606. int hdmiw_hdmiedid;
  5607. int aud_config;
  5608. int aud_cntl_st;
  5609. int aud_cntrl_st2;
  5610. int pipe = to_intel_crtc(crtc)->pipe;
  5611. if (HAS_PCH_IBX(connector->dev)) {
  5612. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5613. aud_config = IBX_AUD_CFG(pipe);
  5614. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5615. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5616. } else {
  5617. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5618. aud_config = CPT_AUD_CFG(pipe);
  5619. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5620. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5621. }
  5622. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5623. i = I915_READ(aud_cntl_st);
  5624. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5625. if (!i) {
  5626. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5627. /* operate blindly on all ports */
  5628. eldv = IBX_ELD_VALIDB;
  5629. eldv |= IBX_ELD_VALIDB << 4;
  5630. eldv |= IBX_ELD_VALIDB << 8;
  5631. } else {
  5632. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5633. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5634. }
  5635. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5636. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5637. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5638. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5639. } else
  5640. I915_WRITE(aud_config, 0);
  5641. if (intel_eld_uptodate(connector,
  5642. aud_cntrl_st2, eldv,
  5643. aud_cntl_st, IBX_ELD_ADDRESS,
  5644. hdmiw_hdmiedid))
  5645. return;
  5646. i = I915_READ(aud_cntrl_st2);
  5647. i &= ~eldv;
  5648. I915_WRITE(aud_cntrl_st2, i);
  5649. if (!eld[0])
  5650. return;
  5651. i = I915_READ(aud_cntl_st);
  5652. i &= ~IBX_ELD_ADDRESS;
  5653. I915_WRITE(aud_cntl_st, i);
  5654. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5655. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5656. for (i = 0; i < len; i++)
  5657. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5658. i = I915_READ(aud_cntrl_st2);
  5659. i |= eldv;
  5660. I915_WRITE(aud_cntrl_st2, i);
  5661. }
  5662. void intel_write_eld(struct drm_encoder *encoder,
  5663. struct drm_display_mode *mode)
  5664. {
  5665. struct drm_crtc *crtc = encoder->crtc;
  5666. struct drm_connector *connector;
  5667. struct drm_device *dev = encoder->dev;
  5668. struct drm_i915_private *dev_priv = dev->dev_private;
  5669. connector = drm_select_eld(encoder, mode);
  5670. if (!connector)
  5671. return;
  5672. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5673. connector->base.id,
  5674. drm_get_connector_name(connector),
  5675. connector->encoder->base.id,
  5676. drm_get_encoder_name(connector->encoder));
  5677. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5678. if (dev_priv->display.write_eld)
  5679. dev_priv->display.write_eld(connector, crtc);
  5680. }
  5681. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5682. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5683. {
  5684. struct drm_device *dev = crtc->dev;
  5685. struct drm_i915_private *dev_priv = dev->dev_private;
  5686. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5687. enum pipe pipe = intel_crtc->pipe;
  5688. int palreg = PALETTE(pipe);
  5689. int i;
  5690. bool reenable_ips = false;
  5691. /* The clocks have to be on to load the palette. */
  5692. if (!crtc->enabled || !intel_crtc->active)
  5693. return;
  5694. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  5695. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  5696. assert_dsi_pll_enabled(dev_priv);
  5697. else
  5698. assert_pll_enabled(dev_priv, pipe);
  5699. }
  5700. /* use legacy palette for Ironlake */
  5701. if (HAS_PCH_SPLIT(dev))
  5702. palreg = LGC_PALETTE(pipe);
  5703. /* Workaround : Do not read or write the pipe palette/gamma data while
  5704. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5705. */
  5706. if (intel_crtc->config.ips_enabled &&
  5707. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5708. GAMMA_MODE_MODE_SPLIT)) {
  5709. hsw_disable_ips(intel_crtc);
  5710. reenable_ips = true;
  5711. }
  5712. for (i = 0; i < 256; i++) {
  5713. I915_WRITE(palreg + 4 * i,
  5714. (intel_crtc->lut_r[i] << 16) |
  5715. (intel_crtc->lut_g[i] << 8) |
  5716. intel_crtc->lut_b[i]);
  5717. }
  5718. if (reenable_ips)
  5719. hsw_enable_ips(intel_crtc);
  5720. }
  5721. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5722. {
  5723. struct drm_device *dev = crtc->dev;
  5724. struct drm_i915_private *dev_priv = dev->dev_private;
  5725. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5726. bool visible = base != 0;
  5727. u32 cntl;
  5728. if (intel_crtc->cursor_visible == visible)
  5729. return;
  5730. cntl = I915_READ(_CURACNTR);
  5731. if (visible) {
  5732. /* On these chipsets we can only modify the base whilst
  5733. * the cursor is disabled.
  5734. */
  5735. I915_WRITE(_CURABASE, base);
  5736. cntl &= ~(CURSOR_FORMAT_MASK);
  5737. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5738. cntl |= CURSOR_ENABLE |
  5739. CURSOR_GAMMA_ENABLE |
  5740. CURSOR_FORMAT_ARGB;
  5741. } else
  5742. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5743. I915_WRITE(_CURACNTR, cntl);
  5744. intel_crtc->cursor_visible = visible;
  5745. }
  5746. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5747. {
  5748. struct drm_device *dev = crtc->dev;
  5749. struct drm_i915_private *dev_priv = dev->dev_private;
  5750. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5751. int pipe = intel_crtc->pipe;
  5752. bool visible = base != 0;
  5753. if (intel_crtc->cursor_visible != visible) {
  5754. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5755. if (base) {
  5756. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5757. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5758. cntl |= pipe << 28; /* Connect to correct pipe */
  5759. } else {
  5760. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5761. cntl |= CURSOR_MODE_DISABLE;
  5762. }
  5763. I915_WRITE(CURCNTR(pipe), cntl);
  5764. intel_crtc->cursor_visible = visible;
  5765. }
  5766. /* and commit changes on next vblank */
  5767. I915_WRITE(CURBASE(pipe), base);
  5768. }
  5769. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5770. {
  5771. struct drm_device *dev = crtc->dev;
  5772. struct drm_i915_private *dev_priv = dev->dev_private;
  5773. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5774. int pipe = intel_crtc->pipe;
  5775. bool visible = base != 0;
  5776. if (intel_crtc->cursor_visible != visible) {
  5777. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5778. if (base) {
  5779. cntl &= ~CURSOR_MODE;
  5780. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5781. } else {
  5782. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5783. cntl |= CURSOR_MODE_DISABLE;
  5784. }
  5785. if (IS_HASWELL(dev)) {
  5786. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5787. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5788. }
  5789. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5790. intel_crtc->cursor_visible = visible;
  5791. }
  5792. /* and commit changes on next vblank */
  5793. I915_WRITE(CURBASE_IVB(pipe), base);
  5794. }
  5795. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5796. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5797. bool on)
  5798. {
  5799. struct drm_device *dev = crtc->dev;
  5800. struct drm_i915_private *dev_priv = dev->dev_private;
  5801. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5802. int pipe = intel_crtc->pipe;
  5803. int x = intel_crtc->cursor_x;
  5804. int y = intel_crtc->cursor_y;
  5805. u32 base = 0, pos = 0;
  5806. bool visible;
  5807. if (on)
  5808. base = intel_crtc->cursor_addr;
  5809. if (x >= intel_crtc->config.pipe_src_w)
  5810. base = 0;
  5811. if (y >= intel_crtc->config.pipe_src_h)
  5812. base = 0;
  5813. if (x < 0) {
  5814. if (x + intel_crtc->cursor_width <= 0)
  5815. base = 0;
  5816. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5817. x = -x;
  5818. }
  5819. pos |= x << CURSOR_X_SHIFT;
  5820. if (y < 0) {
  5821. if (y + intel_crtc->cursor_height <= 0)
  5822. base = 0;
  5823. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5824. y = -y;
  5825. }
  5826. pos |= y << CURSOR_Y_SHIFT;
  5827. visible = base != 0;
  5828. if (!visible && !intel_crtc->cursor_visible)
  5829. return;
  5830. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5831. I915_WRITE(CURPOS_IVB(pipe), pos);
  5832. ivb_update_cursor(crtc, base);
  5833. } else {
  5834. I915_WRITE(CURPOS(pipe), pos);
  5835. if (IS_845G(dev) || IS_I865G(dev))
  5836. i845_update_cursor(crtc, base);
  5837. else
  5838. i9xx_update_cursor(crtc, base);
  5839. }
  5840. }
  5841. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5842. struct drm_file *file,
  5843. uint32_t handle,
  5844. uint32_t width, uint32_t height)
  5845. {
  5846. struct drm_device *dev = crtc->dev;
  5847. struct drm_i915_private *dev_priv = dev->dev_private;
  5848. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5849. struct drm_i915_gem_object *obj;
  5850. uint32_t addr;
  5851. int ret;
  5852. /* if we want to turn off the cursor ignore width and height */
  5853. if (!handle) {
  5854. DRM_DEBUG_KMS("cursor off\n");
  5855. addr = 0;
  5856. obj = NULL;
  5857. mutex_lock(&dev->struct_mutex);
  5858. goto finish;
  5859. }
  5860. /* Currently we only support 64x64 cursors */
  5861. if (width != 64 || height != 64) {
  5862. DRM_ERROR("we currently only support 64x64 cursors\n");
  5863. return -EINVAL;
  5864. }
  5865. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5866. if (&obj->base == NULL)
  5867. return -ENOENT;
  5868. if (obj->base.size < width * height * 4) {
  5869. DRM_ERROR("buffer is to small\n");
  5870. ret = -ENOMEM;
  5871. goto fail;
  5872. }
  5873. /* we only need to pin inside GTT if cursor is non-phy */
  5874. mutex_lock(&dev->struct_mutex);
  5875. if (!dev_priv->info->cursor_needs_physical) {
  5876. unsigned alignment;
  5877. if (obj->tiling_mode) {
  5878. DRM_ERROR("cursor cannot be tiled\n");
  5879. ret = -EINVAL;
  5880. goto fail_locked;
  5881. }
  5882. /* Note that the w/a also requires 2 PTE of padding following
  5883. * the bo. We currently fill all unused PTE with the shadow
  5884. * page and so we should always have valid PTE following the
  5885. * cursor preventing the VT-d warning.
  5886. */
  5887. alignment = 0;
  5888. if (need_vtd_wa(dev))
  5889. alignment = 64*1024;
  5890. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5891. if (ret) {
  5892. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5893. goto fail_locked;
  5894. }
  5895. ret = i915_gem_object_put_fence(obj);
  5896. if (ret) {
  5897. DRM_ERROR("failed to release fence for cursor");
  5898. goto fail_unpin;
  5899. }
  5900. addr = i915_gem_obj_ggtt_offset(obj);
  5901. } else {
  5902. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5903. ret = i915_gem_attach_phys_object(dev, obj,
  5904. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5905. align);
  5906. if (ret) {
  5907. DRM_ERROR("failed to attach phys object\n");
  5908. goto fail_locked;
  5909. }
  5910. addr = obj->phys_obj->handle->busaddr;
  5911. }
  5912. if (IS_GEN2(dev))
  5913. I915_WRITE(CURSIZE, (height << 12) | width);
  5914. finish:
  5915. if (intel_crtc->cursor_bo) {
  5916. if (dev_priv->info->cursor_needs_physical) {
  5917. if (intel_crtc->cursor_bo != obj)
  5918. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5919. } else
  5920. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5921. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5922. }
  5923. mutex_unlock(&dev->struct_mutex);
  5924. intel_crtc->cursor_addr = addr;
  5925. intel_crtc->cursor_bo = obj;
  5926. intel_crtc->cursor_width = width;
  5927. intel_crtc->cursor_height = height;
  5928. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5929. return 0;
  5930. fail_unpin:
  5931. i915_gem_object_unpin_from_display_plane(obj);
  5932. fail_locked:
  5933. mutex_unlock(&dev->struct_mutex);
  5934. fail:
  5935. drm_gem_object_unreference_unlocked(&obj->base);
  5936. return ret;
  5937. }
  5938. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5939. {
  5940. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5941. intel_crtc->cursor_x = x;
  5942. intel_crtc->cursor_y = y;
  5943. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5944. return 0;
  5945. }
  5946. /** Sets the color ramps on behalf of RandR */
  5947. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5948. u16 blue, int regno)
  5949. {
  5950. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5951. intel_crtc->lut_r[regno] = red >> 8;
  5952. intel_crtc->lut_g[regno] = green >> 8;
  5953. intel_crtc->lut_b[regno] = blue >> 8;
  5954. }
  5955. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5956. u16 *blue, int regno)
  5957. {
  5958. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5959. *red = intel_crtc->lut_r[regno] << 8;
  5960. *green = intel_crtc->lut_g[regno] << 8;
  5961. *blue = intel_crtc->lut_b[regno] << 8;
  5962. }
  5963. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5964. u16 *blue, uint32_t start, uint32_t size)
  5965. {
  5966. int end = (start + size > 256) ? 256 : start + size, i;
  5967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5968. for (i = start; i < end; i++) {
  5969. intel_crtc->lut_r[i] = red[i] >> 8;
  5970. intel_crtc->lut_g[i] = green[i] >> 8;
  5971. intel_crtc->lut_b[i] = blue[i] >> 8;
  5972. }
  5973. intel_crtc_load_lut(crtc);
  5974. }
  5975. /* VESA 640x480x72Hz mode to set on the pipe */
  5976. static struct drm_display_mode load_detect_mode = {
  5977. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5978. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5979. };
  5980. static struct drm_framebuffer *
  5981. intel_framebuffer_create(struct drm_device *dev,
  5982. struct drm_mode_fb_cmd2 *mode_cmd,
  5983. struct drm_i915_gem_object *obj)
  5984. {
  5985. struct intel_framebuffer *intel_fb;
  5986. int ret;
  5987. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5988. if (!intel_fb) {
  5989. drm_gem_object_unreference_unlocked(&obj->base);
  5990. return ERR_PTR(-ENOMEM);
  5991. }
  5992. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5993. if (ret) {
  5994. drm_gem_object_unreference_unlocked(&obj->base);
  5995. kfree(intel_fb);
  5996. return ERR_PTR(ret);
  5997. }
  5998. return &intel_fb->base;
  5999. }
  6000. static u32
  6001. intel_framebuffer_pitch_for_width(int width, int bpp)
  6002. {
  6003. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6004. return ALIGN(pitch, 64);
  6005. }
  6006. static u32
  6007. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6008. {
  6009. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6010. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6011. }
  6012. static struct drm_framebuffer *
  6013. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6014. struct drm_display_mode *mode,
  6015. int depth, int bpp)
  6016. {
  6017. struct drm_i915_gem_object *obj;
  6018. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6019. obj = i915_gem_alloc_object(dev,
  6020. intel_framebuffer_size_for_mode(mode, bpp));
  6021. if (obj == NULL)
  6022. return ERR_PTR(-ENOMEM);
  6023. mode_cmd.width = mode->hdisplay;
  6024. mode_cmd.height = mode->vdisplay;
  6025. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6026. bpp);
  6027. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6028. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6029. }
  6030. static struct drm_framebuffer *
  6031. mode_fits_in_fbdev(struct drm_device *dev,
  6032. struct drm_display_mode *mode)
  6033. {
  6034. struct drm_i915_private *dev_priv = dev->dev_private;
  6035. struct drm_i915_gem_object *obj;
  6036. struct drm_framebuffer *fb;
  6037. if (dev_priv->fbdev == NULL)
  6038. return NULL;
  6039. obj = dev_priv->fbdev->ifb.obj;
  6040. if (obj == NULL)
  6041. return NULL;
  6042. fb = &dev_priv->fbdev->ifb.base;
  6043. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6044. fb->bits_per_pixel))
  6045. return NULL;
  6046. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6047. return NULL;
  6048. return fb;
  6049. }
  6050. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6051. struct drm_display_mode *mode,
  6052. struct intel_load_detect_pipe *old)
  6053. {
  6054. struct intel_crtc *intel_crtc;
  6055. struct intel_encoder *intel_encoder =
  6056. intel_attached_encoder(connector);
  6057. struct drm_crtc *possible_crtc;
  6058. struct drm_encoder *encoder = &intel_encoder->base;
  6059. struct drm_crtc *crtc = NULL;
  6060. struct drm_device *dev = encoder->dev;
  6061. struct drm_framebuffer *fb;
  6062. int i = -1;
  6063. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6064. connector->base.id, drm_get_connector_name(connector),
  6065. encoder->base.id, drm_get_encoder_name(encoder));
  6066. /*
  6067. * Algorithm gets a little messy:
  6068. *
  6069. * - if the connector already has an assigned crtc, use it (but make
  6070. * sure it's on first)
  6071. *
  6072. * - try to find the first unused crtc that can drive this connector,
  6073. * and use that if we find one
  6074. */
  6075. /* See if we already have a CRTC for this connector */
  6076. if (encoder->crtc) {
  6077. crtc = encoder->crtc;
  6078. mutex_lock(&crtc->mutex);
  6079. old->dpms_mode = connector->dpms;
  6080. old->load_detect_temp = false;
  6081. /* Make sure the crtc and connector are running */
  6082. if (connector->dpms != DRM_MODE_DPMS_ON)
  6083. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6084. return true;
  6085. }
  6086. /* Find an unused one (if possible) */
  6087. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6088. i++;
  6089. if (!(encoder->possible_crtcs & (1 << i)))
  6090. continue;
  6091. if (!possible_crtc->enabled) {
  6092. crtc = possible_crtc;
  6093. break;
  6094. }
  6095. }
  6096. /*
  6097. * If we didn't find an unused CRTC, don't use any.
  6098. */
  6099. if (!crtc) {
  6100. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6101. return false;
  6102. }
  6103. mutex_lock(&crtc->mutex);
  6104. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6105. to_intel_connector(connector)->new_encoder = intel_encoder;
  6106. intel_crtc = to_intel_crtc(crtc);
  6107. old->dpms_mode = connector->dpms;
  6108. old->load_detect_temp = true;
  6109. old->release_fb = NULL;
  6110. if (!mode)
  6111. mode = &load_detect_mode;
  6112. /* We need a framebuffer large enough to accommodate all accesses
  6113. * that the plane may generate whilst we perform load detection.
  6114. * We can not rely on the fbcon either being present (we get called
  6115. * during its initialisation to detect all boot displays, or it may
  6116. * not even exist) or that it is large enough to satisfy the
  6117. * requested mode.
  6118. */
  6119. fb = mode_fits_in_fbdev(dev, mode);
  6120. if (fb == NULL) {
  6121. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6122. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6123. old->release_fb = fb;
  6124. } else
  6125. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6126. if (IS_ERR(fb)) {
  6127. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6128. mutex_unlock(&crtc->mutex);
  6129. return false;
  6130. }
  6131. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6132. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6133. if (old->release_fb)
  6134. old->release_fb->funcs->destroy(old->release_fb);
  6135. mutex_unlock(&crtc->mutex);
  6136. return false;
  6137. }
  6138. /* let the connector get through one full cycle before testing */
  6139. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6140. return true;
  6141. }
  6142. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6143. struct intel_load_detect_pipe *old)
  6144. {
  6145. struct intel_encoder *intel_encoder =
  6146. intel_attached_encoder(connector);
  6147. struct drm_encoder *encoder = &intel_encoder->base;
  6148. struct drm_crtc *crtc = encoder->crtc;
  6149. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6150. connector->base.id, drm_get_connector_name(connector),
  6151. encoder->base.id, drm_get_encoder_name(encoder));
  6152. if (old->load_detect_temp) {
  6153. to_intel_connector(connector)->new_encoder = NULL;
  6154. intel_encoder->new_crtc = NULL;
  6155. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6156. if (old->release_fb) {
  6157. drm_framebuffer_unregister_private(old->release_fb);
  6158. drm_framebuffer_unreference(old->release_fb);
  6159. }
  6160. mutex_unlock(&crtc->mutex);
  6161. return;
  6162. }
  6163. /* Switch crtc and encoder back off if necessary */
  6164. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6165. connector->funcs->dpms(connector, old->dpms_mode);
  6166. mutex_unlock(&crtc->mutex);
  6167. }
  6168. static int i9xx_pll_refclk(struct drm_device *dev,
  6169. const struct intel_crtc_config *pipe_config)
  6170. {
  6171. struct drm_i915_private *dev_priv = dev->dev_private;
  6172. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6173. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6174. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6175. else if (HAS_PCH_SPLIT(dev))
  6176. return 120000;
  6177. else if (!IS_GEN2(dev))
  6178. return 96000;
  6179. else
  6180. return 48000;
  6181. }
  6182. /* Returns the clock of the currently programmed mode of the given pipe. */
  6183. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6184. struct intel_crtc_config *pipe_config)
  6185. {
  6186. struct drm_device *dev = crtc->base.dev;
  6187. struct drm_i915_private *dev_priv = dev->dev_private;
  6188. int pipe = pipe_config->cpu_transcoder;
  6189. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6190. u32 fp;
  6191. intel_clock_t clock;
  6192. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6193. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6194. fp = pipe_config->dpll_hw_state.fp0;
  6195. else
  6196. fp = pipe_config->dpll_hw_state.fp1;
  6197. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6198. if (IS_PINEVIEW(dev)) {
  6199. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6200. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6201. } else {
  6202. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6203. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6204. }
  6205. if (!IS_GEN2(dev)) {
  6206. if (IS_PINEVIEW(dev))
  6207. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6208. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6209. else
  6210. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6211. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6212. switch (dpll & DPLL_MODE_MASK) {
  6213. case DPLLB_MODE_DAC_SERIAL:
  6214. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6215. 5 : 10;
  6216. break;
  6217. case DPLLB_MODE_LVDS:
  6218. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6219. 7 : 14;
  6220. break;
  6221. default:
  6222. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6223. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6224. return;
  6225. }
  6226. if (IS_PINEVIEW(dev))
  6227. pineview_clock(refclk, &clock);
  6228. else
  6229. i9xx_clock(refclk, &clock);
  6230. } else {
  6231. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6232. if (is_lvds) {
  6233. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6234. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6235. clock.p2 = 14;
  6236. } else {
  6237. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6238. clock.p1 = 2;
  6239. else {
  6240. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6241. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6242. }
  6243. if (dpll & PLL_P2_DIVIDE_BY_4)
  6244. clock.p2 = 4;
  6245. else
  6246. clock.p2 = 2;
  6247. }
  6248. i9xx_clock(refclk, &clock);
  6249. }
  6250. /*
  6251. * This value includes pixel_multiplier. We will use
  6252. * port_clock to compute adjusted_mode.clock in the
  6253. * encoder's get_config() function.
  6254. */
  6255. pipe_config->port_clock = clock.dot;
  6256. }
  6257. int intel_dotclock_calculate(int link_freq,
  6258. const struct intel_link_m_n *m_n)
  6259. {
  6260. /*
  6261. * The calculation for the data clock is:
  6262. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6263. * But we want to avoid losing precison if possible, so:
  6264. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6265. *
  6266. * and the link clock is simpler:
  6267. * link_clock = (m * link_clock) / n
  6268. */
  6269. if (!m_n->link_n)
  6270. return 0;
  6271. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6272. }
  6273. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6274. struct intel_crtc_config *pipe_config)
  6275. {
  6276. struct drm_device *dev = crtc->base.dev;
  6277. /* read out port_clock from the DPLL */
  6278. i9xx_crtc_clock_get(crtc, pipe_config);
  6279. /*
  6280. * This value does not include pixel_multiplier.
  6281. * We will check that port_clock and adjusted_mode.clock
  6282. * agree once we know their relationship in the encoder's
  6283. * get_config() function.
  6284. */
  6285. pipe_config->adjusted_mode.clock =
  6286. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6287. &pipe_config->fdi_m_n);
  6288. }
  6289. /** Returns the currently programmed mode of the given pipe. */
  6290. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6291. struct drm_crtc *crtc)
  6292. {
  6293. struct drm_i915_private *dev_priv = dev->dev_private;
  6294. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6295. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6296. struct drm_display_mode *mode;
  6297. struct intel_crtc_config pipe_config;
  6298. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6299. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6300. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6301. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6302. enum pipe pipe = intel_crtc->pipe;
  6303. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6304. if (!mode)
  6305. return NULL;
  6306. /*
  6307. * Construct a pipe_config sufficient for getting the clock info
  6308. * back out of crtc_clock_get.
  6309. *
  6310. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6311. * to use a real value here instead.
  6312. */
  6313. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6314. pipe_config.pixel_multiplier = 1;
  6315. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6316. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6317. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6318. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6319. mode->clock = pipe_config.adjusted_mode.clock;
  6320. mode->hdisplay = (htot & 0xffff) + 1;
  6321. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6322. mode->hsync_start = (hsync & 0xffff) + 1;
  6323. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6324. mode->vdisplay = (vtot & 0xffff) + 1;
  6325. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6326. mode->vsync_start = (vsync & 0xffff) + 1;
  6327. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6328. drm_mode_set_name(mode);
  6329. return mode;
  6330. }
  6331. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6332. {
  6333. struct drm_device *dev = crtc->dev;
  6334. drm_i915_private_t *dev_priv = dev->dev_private;
  6335. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6336. int pipe = intel_crtc->pipe;
  6337. int dpll_reg = DPLL(pipe);
  6338. int dpll;
  6339. if (HAS_PCH_SPLIT(dev))
  6340. return;
  6341. if (!dev_priv->lvds_downclock_avail)
  6342. return;
  6343. dpll = I915_READ(dpll_reg);
  6344. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6345. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6346. assert_panel_unlocked(dev_priv, pipe);
  6347. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6348. I915_WRITE(dpll_reg, dpll);
  6349. intel_wait_for_vblank(dev, pipe);
  6350. dpll = I915_READ(dpll_reg);
  6351. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6352. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6353. }
  6354. }
  6355. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6356. {
  6357. struct drm_device *dev = crtc->dev;
  6358. drm_i915_private_t *dev_priv = dev->dev_private;
  6359. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6360. if (HAS_PCH_SPLIT(dev))
  6361. return;
  6362. if (!dev_priv->lvds_downclock_avail)
  6363. return;
  6364. /*
  6365. * Since this is called by a timer, we should never get here in
  6366. * the manual case.
  6367. */
  6368. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6369. int pipe = intel_crtc->pipe;
  6370. int dpll_reg = DPLL(pipe);
  6371. int dpll;
  6372. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6373. assert_panel_unlocked(dev_priv, pipe);
  6374. dpll = I915_READ(dpll_reg);
  6375. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6376. I915_WRITE(dpll_reg, dpll);
  6377. intel_wait_for_vblank(dev, pipe);
  6378. dpll = I915_READ(dpll_reg);
  6379. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6380. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6381. }
  6382. }
  6383. void intel_mark_busy(struct drm_device *dev)
  6384. {
  6385. struct drm_i915_private *dev_priv = dev->dev_private;
  6386. hsw_package_c8_gpu_busy(dev_priv);
  6387. i915_update_gfx_val(dev_priv);
  6388. }
  6389. void intel_mark_idle(struct drm_device *dev)
  6390. {
  6391. struct drm_i915_private *dev_priv = dev->dev_private;
  6392. struct drm_crtc *crtc;
  6393. hsw_package_c8_gpu_idle(dev_priv);
  6394. if (!i915_powersave)
  6395. return;
  6396. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6397. if (!crtc->fb)
  6398. continue;
  6399. intel_decrease_pllclock(crtc);
  6400. }
  6401. }
  6402. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6403. struct intel_ring_buffer *ring)
  6404. {
  6405. struct drm_device *dev = obj->base.dev;
  6406. struct drm_crtc *crtc;
  6407. if (!i915_powersave)
  6408. return;
  6409. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6410. if (!crtc->fb)
  6411. continue;
  6412. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6413. continue;
  6414. intel_increase_pllclock(crtc);
  6415. if (ring && intel_fbc_enabled(dev))
  6416. ring->fbc_dirty = true;
  6417. }
  6418. }
  6419. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6420. {
  6421. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6422. struct drm_device *dev = crtc->dev;
  6423. struct intel_unpin_work *work;
  6424. unsigned long flags;
  6425. spin_lock_irqsave(&dev->event_lock, flags);
  6426. work = intel_crtc->unpin_work;
  6427. intel_crtc->unpin_work = NULL;
  6428. spin_unlock_irqrestore(&dev->event_lock, flags);
  6429. if (work) {
  6430. cancel_work_sync(&work->work);
  6431. kfree(work);
  6432. }
  6433. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6434. drm_crtc_cleanup(crtc);
  6435. kfree(intel_crtc);
  6436. }
  6437. static void intel_unpin_work_fn(struct work_struct *__work)
  6438. {
  6439. struct intel_unpin_work *work =
  6440. container_of(__work, struct intel_unpin_work, work);
  6441. struct drm_device *dev = work->crtc->dev;
  6442. mutex_lock(&dev->struct_mutex);
  6443. intel_unpin_fb_obj(work->old_fb_obj);
  6444. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6445. drm_gem_object_unreference(&work->old_fb_obj->base);
  6446. intel_update_fbc(dev);
  6447. mutex_unlock(&dev->struct_mutex);
  6448. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6449. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6450. kfree(work);
  6451. }
  6452. static void do_intel_finish_page_flip(struct drm_device *dev,
  6453. struct drm_crtc *crtc)
  6454. {
  6455. drm_i915_private_t *dev_priv = dev->dev_private;
  6456. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6457. struct intel_unpin_work *work;
  6458. unsigned long flags;
  6459. /* Ignore early vblank irqs */
  6460. if (intel_crtc == NULL)
  6461. return;
  6462. spin_lock_irqsave(&dev->event_lock, flags);
  6463. work = intel_crtc->unpin_work;
  6464. /* Ensure we don't miss a work->pending update ... */
  6465. smp_rmb();
  6466. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6467. spin_unlock_irqrestore(&dev->event_lock, flags);
  6468. return;
  6469. }
  6470. /* and that the unpin work is consistent wrt ->pending. */
  6471. smp_rmb();
  6472. intel_crtc->unpin_work = NULL;
  6473. if (work->event)
  6474. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6475. drm_vblank_put(dev, intel_crtc->pipe);
  6476. spin_unlock_irqrestore(&dev->event_lock, flags);
  6477. wake_up_all(&dev_priv->pending_flip_queue);
  6478. queue_work(dev_priv->wq, &work->work);
  6479. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6480. }
  6481. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6482. {
  6483. drm_i915_private_t *dev_priv = dev->dev_private;
  6484. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6485. do_intel_finish_page_flip(dev, crtc);
  6486. }
  6487. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6488. {
  6489. drm_i915_private_t *dev_priv = dev->dev_private;
  6490. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6491. do_intel_finish_page_flip(dev, crtc);
  6492. }
  6493. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6494. {
  6495. drm_i915_private_t *dev_priv = dev->dev_private;
  6496. struct intel_crtc *intel_crtc =
  6497. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6498. unsigned long flags;
  6499. /* NB: An MMIO update of the plane base pointer will also
  6500. * generate a page-flip completion irq, i.e. every modeset
  6501. * is also accompanied by a spurious intel_prepare_page_flip().
  6502. */
  6503. spin_lock_irqsave(&dev->event_lock, flags);
  6504. if (intel_crtc->unpin_work)
  6505. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6506. spin_unlock_irqrestore(&dev->event_lock, flags);
  6507. }
  6508. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6509. {
  6510. /* Ensure that the work item is consistent when activating it ... */
  6511. smp_wmb();
  6512. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6513. /* and that it is marked active as soon as the irq could fire. */
  6514. smp_wmb();
  6515. }
  6516. static int intel_gen2_queue_flip(struct drm_device *dev,
  6517. struct drm_crtc *crtc,
  6518. struct drm_framebuffer *fb,
  6519. struct drm_i915_gem_object *obj,
  6520. uint32_t flags)
  6521. {
  6522. struct drm_i915_private *dev_priv = dev->dev_private;
  6523. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6524. u32 flip_mask;
  6525. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6526. int ret;
  6527. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6528. if (ret)
  6529. goto err;
  6530. ret = intel_ring_begin(ring, 6);
  6531. if (ret)
  6532. goto err_unpin;
  6533. /* Can't queue multiple flips, so wait for the previous
  6534. * one to finish before executing the next.
  6535. */
  6536. if (intel_crtc->plane)
  6537. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6538. else
  6539. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6540. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6541. intel_ring_emit(ring, MI_NOOP);
  6542. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6543. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6544. intel_ring_emit(ring, fb->pitches[0]);
  6545. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6546. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6547. intel_mark_page_flip_active(intel_crtc);
  6548. __intel_ring_advance(ring);
  6549. return 0;
  6550. err_unpin:
  6551. intel_unpin_fb_obj(obj);
  6552. err:
  6553. return ret;
  6554. }
  6555. static int intel_gen3_queue_flip(struct drm_device *dev,
  6556. struct drm_crtc *crtc,
  6557. struct drm_framebuffer *fb,
  6558. struct drm_i915_gem_object *obj,
  6559. uint32_t flags)
  6560. {
  6561. struct drm_i915_private *dev_priv = dev->dev_private;
  6562. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6563. u32 flip_mask;
  6564. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6565. int ret;
  6566. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6567. if (ret)
  6568. goto err;
  6569. ret = intel_ring_begin(ring, 6);
  6570. if (ret)
  6571. goto err_unpin;
  6572. if (intel_crtc->plane)
  6573. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6574. else
  6575. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6576. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6577. intel_ring_emit(ring, MI_NOOP);
  6578. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6579. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6580. intel_ring_emit(ring, fb->pitches[0]);
  6581. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6582. intel_ring_emit(ring, MI_NOOP);
  6583. intel_mark_page_flip_active(intel_crtc);
  6584. __intel_ring_advance(ring);
  6585. return 0;
  6586. err_unpin:
  6587. intel_unpin_fb_obj(obj);
  6588. err:
  6589. return ret;
  6590. }
  6591. static int intel_gen4_queue_flip(struct drm_device *dev,
  6592. struct drm_crtc *crtc,
  6593. struct drm_framebuffer *fb,
  6594. struct drm_i915_gem_object *obj,
  6595. uint32_t flags)
  6596. {
  6597. struct drm_i915_private *dev_priv = dev->dev_private;
  6598. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6599. uint32_t pf, pipesrc;
  6600. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6601. int ret;
  6602. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6603. if (ret)
  6604. goto err;
  6605. ret = intel_ring_begin(ring, 4);
  6606. if (ret)
  6607. goto err_unpin;
  6608. /* i965+ uses the linear or tiled offsets from the
  6609. * Display Registers (which do not change across a page-flip)
  6610. * so we need only reprogram the base address.
  6611. */
  6612. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6613. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6614. intel_ring_emit(ring, fb->pitches[0]);
  6615. intel_ring_emit(ring,
  6616. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6617. obj->tiling_mode);
  6618. /* XXX Enabling the panel-fitter across page-flip is so far
  6619. * untested on non-native modes, so ignore it for now.
  6620. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6621. */
  6622. pf = 0;
  6623. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6624. intel_ring_emit(ring, pf | pipesrc);
  6625. intel_mark_page_flip_active(intel_crtc);
  6626. __intel_ring_advance(ring);
  6627. return 0;
  6628. err_unpin:
  6629. intel_unpin_fb_obj(obj);
  6630. err:
  6631. return ret;
  6632. }
  6633. static int intel_gen6_queue_flip(struct drm_device *dev,
  6634. struct drm_crtc *crtc,
  6635. struct drm_framebuffer *fb,
  6636. struct drm_i915_gem_object *obj,
  6637. uint32_t flags)
  6638. {
  6639. struct drm_i915_private *dev_priv = dev->dev_private;
  6640. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6641. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6642. uint32_t pf, pipesrc;
  6643. int ret;
  6644. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6645. if (ret)
  6646. goto err;
  6647. ret = intel_ring_begin(ring, 4);
  6648. if (ret)
  6649. goto err_unpin;
  6650. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6651. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6652. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6653. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6654. /* Contrary to the suggestions in the documentation,
  6655. * "Enable Panel Fitter" does not seem to be required when page
  6656. * flipping with a non-native mode, and worse causes a normal
  6657. * modeset to fail.
  6658. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6659. */
  6660. pf = 0;
  6661. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6662. intel_ring_emit(ring, pf | pipesrc);
  6663. intel_mark_page_flip_active(intel_crtc);
  6664. __intel_ring_advance(ring);
  6665. return 0;
  6666. err_unpin:
  6667. intel_unpin_fb_obj(obj);
  6668. err:
  6669. return ret;
  6670. }
  6671. static int intel_gen7_queue_flip(struct drm_device *dev,
  6672. struct drm_crtc *crtc,
  6673. struct drm_framebuffer *fb,
  6674. struct drm_i915_gem_object *obj,
  6675. uint32_t flags)
  6676. {
  6677. struct drm_i915_private *dev_priv = dev->dev_private;
  6678. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6679. struct intel_ring_buffer *ring;
  6680. uint32_t plane_bit = 0;
  6681. int len, ret;
  6682. ring = obj->ring;
  6683. if (ring == NULL || ring->id != RCS)
  6684. ring = &dev_priv->ring[BCS];
  6685. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6686. if (ret)
  6687. goto err;
  6688. switch(intel_crtc->plane) {
  6689. case PLANE_A:
  6690. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6691. break;
  6692. case PLANE_B:
  6693. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6694. break;
  6695. case PLANE_C:
  6696. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6697. break;
  6698. default:
  6699. WARN_ONCE(1, "unknown plane in flip command\n");
  6700. ret = -ENODEV;
  6701. goto err_unpin;
  6702. }
  6703. len = 4;
  6704. if (ring->id == RCS)
  6705. len += 6;
  6706. ret = intel_ring_begin(ring, len);
  6707. if (ret)
  6708. goto err_unpin;
  6709. /* Unmask the flip-done completion message. Note that the bspec says that
  6710. * we should do this for both the BCS and RCS, and that we must not unmask
  6711. * more than one flip event at any time (or ensure that one flip message
  6712. * can be sent by waiting for flip-done prior to queueing new flips).
  6713. * Experimentation says that BCS works despite DERRMR masking all
  6714. * flip-done completion events and that unmasking all planes at once
  6715. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6716. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6717. */
  6718. if (ring->id == RCS) {
  6719. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6720. intel_ring_emit(ring, DERRMR);
  6721. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6722. DERRMR_PIPEB_PRI_FLIP_DONE |
  6723. DERRMR_PIPEC_PRI_FLIP_DONE));
  6724. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6725. intel_ring_emit(ring, DERRMR);
  6726. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6727. }
  6728. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6729. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6730. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6731. intel_ring_emit(ring, (MI_NOOP));
  6732. intel_mark_page_flip_active(intel_crtc);
  6733. __intel_ring_advance(ring);
  6734. return 0;
  6735. err_unpin:
  6736. intel_unpin_fb_obj(obj);
  6737. err:
  6738. return ret;
  6739. }
  6740. static int intel_default_queue_flip(struct drm_device *dev,
  6741. struct drm_crtc *crtc,
  6742. struct drm_framebuffer *fb,
  6743. struct drm_i915_gem_object *obj,
  6744. uint32_t flags)
  6745. {
  6746. return -ENODEV;
  6747. }
  6748. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6749. struct drm_framebuffer *fb,
  6750. struct drm_pending_vblank_event *event,
  6751. uint32_t page_flip_flags)
  6752. {
  6753. struct drm_device *dev = crtc->dev;
  6754. struct drm_i915_private *dev_priv = dev->dev_private;
  6755. struct drm_framebuffer *old_fb = crtc->fb;
  6756. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6757. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6758. struct intel_unpin_work *work;
  6759. unsigned long flags;
  6760. int ret;
  6761. /* Can't change pixel format via MI display flips. */
  6762. if (fb->pixel_format != crtc->fb->pixel_format)
  6763. return -EINVAL;
  6764. /*
  6765. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6766. * Note that pitch changes could also affect these register.
  6767. */
  6768. if (INTEL_INFO(dev)->gen > 3 &&
  6769. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6770. fb->pitches[0] != crtc->fb->pitches[0]))
  6771. return -EINVAL;
  6772. work = kzalloc(sizeof *work, GFP_KERNEL);
  6773. if (work == NULL)
  6774. return -ENOMEM;
  6775. work->event = event;
  6776. work->crtc = crtc;
  6777. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6778. INIT_WORK(&work->work, intel_unpin_work_fn);
  6779. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6780. if (ret)
  6781. goto free_work;
  6782. /* We borrow the event spin lock for protecting unpin_work */
  6783. spin_lock_irqsave(&dev->event_lock, flags);
  6784. if (intel_crtc->unpin_work) {
  6785. spin_unlock_irqrestore(&dev->event_lock, flags);
  6786. kfree(work);
  6787. drm_vblank_put(dev, intel_crtc->pipe);
  6788. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6789. return -EBUSY;
  6790. }
  6791. intel_crtc->unpin_work = work;
  6792. spin_unlock_irqrestore(&dev->event_lock, flags);
  6793. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6794. flush_workqueue(dev_priv->wq);
  6795. ret = i915_mutex_lock_interruptible(dev);
  6796. if (ret)
  6797. goto cleanup;
  6798. /* Reference the objects for the scheduled work. */
  6799. drm_gem_object_reference(&work->old_fb_obj->base);
  6800. drm_gem_object_reference(&obj->base);
  6801. crtc->fb = fb;
  6802. work->pending_flip_obj = obj;
  6803. work->enable_stall_check = true;
  6804. atomic_inc(&intel_crtc->unpin_work_count);
  6805. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6806. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6807. if (ret)
  6808. goto cleanup_pending;
  6809. intel_disable_fbc(dev);
  6810. intel_mark_fb_busy(obj, NULL);
  6811. mutex_unlock(&dev->struct_mutex);
  6812. trace_i915_flip_request(intel_crtc->plane, obj);
  6813. return 0;
  6814. cleanup_pending:
  6815. atomic_dec(&intel_crtc->unpin_work_count);
  6816. crtc->fb = old_fb;
  6817. drm_gem_object_unreference(&work->old_fb_obj->base);
  6818. drm_gem_object_unreference(&obj->base);
  6819. mutex_unlock(&dev->struct_mutex);
  6820. cleanup:
  6821. spin_lock_irqsave(&dev->event_lock, flags);
  6822. intel_crtc->unpin_work = NULL;
  6823. spin_unlock_irqrestore(&dev->event_lock, flags);
  6824. drm_vblank_put(dev, intel_crtc->pipe);
  6825. free_work:
  6826. kfree(work);
  6827. return ret;
  6828. }
  6829. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6830. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6831. .load_lut = intel_crtc_load_lut,
  6832. };
  6833. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6834. struct drm_crtc *crtc)
  6835. {
  6836. struct drm_device *dev;
  6837. struct drm_crtc *tmp;
  6838. int crtc_mask = 1;
  6839. WARN(!crtc, "checking null crtc?\n");
  6840. dev = crtc->dev;
  6841. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6842. if (tmp == crtc)
  6843. break;
  6844. crtc_mask <<= 1;
  6845. }
  6846. if (encoder->possible_crtcs & crtc_mask)
  6847. return true;
  6848. return false;
  6849. }
  6850. /**
  6851. * intel_modeset_update_staged_output_state
  6852. *
  6853. * Updates the staged output configuration state, e.g. after we've read out the
  6854. * current hw state.
  6855. */
  6856. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6857. {
  6858. struct intel_encoder *encoder;
  6859. struct intel_connector *connector;
  6860. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6861. base.head) {
  6862. connector->new_encoder =
  6863. to_intel_encoder(connector->base.encoder);
  6864. }
  6865. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6866. base.head) {
  6867. encoder->new_crtc =
  6868. to_intel_crtc(encoder->base.crtc);
  6869. }
  6870. }
  6871. /**
  6872. * intel_modeset_commit_output_state
  6873. *
  6874. * This function copies the stage display pipe configuration to the real one.
  6875. */
  6876. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6877. {
  6878. struct intel_encoder *encoder;
  6879. struct intel_connector *connector;
  6880. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6881. base.head) {
  6882. connector->base.encoder = &connector->new_encoder->base;
  6883. }
  6884. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6885. base.head) {
  6886. encoder->base.crtc = &encoder->new_crtc->base;
  6887. }
  6888. }
  6889. static void
  6890. connected_sink_compute_bpp(struct intel_connector * connector,
  6891. struct intel_crtc_config *pipe_config)
  6892. {
  6893. int bpp = pipe_config->pipe_bpp;
  6894. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6895. connector->base.base.id,
  6896. drm_get_connector_name(&connector->base));
  6897. /* Don't use an invalid EDID bpc value */
  6898. if (connector->base.display_info.bpc &&
  6899. connector->base.display_info.bpc * 3 < bpp) {
  6900. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6901. bpp, connector->base.display_info.bpc*3);
  6902. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6903. }
  6904. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6905. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6906. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6907. bpp);
  6908. pipe_config->pipe_bpp = 24;
  6909. }
  6910. }
  6911. static int
  6912. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6913. struct drm_framebuffer *fb,
  6914. struct intel_crtc_config *pipe_config)
  6915. {
  6916. struct drm_device *dev = crtc->base.dev;
  6917. struct intel_connector *connector;
  6918. int bpp;
  6919. switch (fb->pixel_format) {
  6920. case DRM_FORMAT_C8:
  6921. bpp = 8*3; /* since we go through a colormap */
  6922. break;
  6923. case DRM_FORMAT_XRGB1555:
  6924. case DRM_FORMAT_ARGB1555:
  6925. /* checked in intel_framebuffer_init already */
  6926. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6927. return -EINVAL;
  6928. case DRM_FORMAT_RGB565:
  6929. bpp = 6*3; /* min is 18bpp */
  6930. break;
  6931. case DRM_FORMAT_XBGR8888:
  6932. case DRM_FORMAT_ABGR8888:
  6933. /* checked in intel_framebuffer_init already */
  6934. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6935. return -EINVAL;
  6936. case DRM_FORMAT_XRGB8888:
  6937. case DRM_FORMAT_ARGB8888:
  6938. bpp = 8*3;
  6939. break;
  6940. case DRM_FORMAT_XRGB2101010:
  6941. case DRM_FORMAT_ARGB2101010:
  6942. case DRM_FORMAT_XBGR2101010:
  6943. case DRM_FORMAT_ABGR2101010:
  6944. /* checked in intel_framebuffer_init already */
  6945. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6946. return -EINVAL;
  6947. bpp = 10*3;
  6948. break;
  6949. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6950. default:
  6951. DRM_DEBUG_KMS("unsupported depth\n");
  6952. return -EINVAL;
  6953. }
  6954. pipe_config->pipe_bpp = bpp;
  6955. /* Clamp display bpp to EDID value */
  6956. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6957. base.head) {
  6958. if (!connector->new_encoder ||
  6959. connector->new_encoder->new_crtc != crtc)
  6960. continue;
  6961. connected_sink_compute_bpp(connector, pipe_config);
  6962. }
  6963. return bpp;
  6964. }
  6965. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6966. struct intel_crtc_config *pipe_config,
  6967. const char *context)
  6968. {
  6969. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6970. context, pipe_name(crtc->pipe));
  6971. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6972. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6973. pipe_config->pipe_bpp, pipe_config->dither);
  6974. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6975. pipe_config->has_pch_encoder,
  6976. pipe_config->fdi_lanes,
  6977. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6978. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6979. pipe_config->fdi_m_n.tu);
  6980. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6981. pipe_config->has_dp_encoder,
  6982. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  6983. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  6984. pipe_config->dp_m_n.tu);
  6985. DRM_DEBUG_KMS("requested mode:\n");
  6986. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6987. DRM_DEBUG_KMS("adjusted mode:\n");
  6988. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6989. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  6990. DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  6991. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  6992. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6993. pipe_config->gmch_pfit.control,
  6994. pipe_config->gmch_pfit.pgm_ratios,
  6995. pipe_config->gmch_pfit.lvds_border_bits);
  6996. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6997. pipe_config->pch_pfit.pos,
  6998. pipe_config->pch_pfit.size);
  6999. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  7000. }
  7001. static bool check_encoder_cloning(struct drm_crtc *crtc)
  7002. {
  7003. int num_encoders = 0;
  7004. bool uncloneable_encoders = false;
  7005. struct intel_encoder *encoder;
  7006. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  7007. base.head) {
  7008. if (&encoder->new_crtc->base != crtc)
  7009. continue;
  7010. num_encoders++;
  7011. if (!encoder->cloneable)
  7012. uncloneable_encoders = true;
  7013. }
  7014. return !(num_encoders > 1 && uncloneable_encoders);
  7015. }
  7016. static struct intel_crtc_config *
  7017. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7018. struct drm_framebuffer *fb,
  7019. struct drm_display_mode *mode)
  7020. {
  7021. struct drm_device *dev = crtc->dev;
  7022. struct intel_encoder *encoder;
  7023. struct intel_crtc_config *pipe_config;
  7024. int plane_bpp, ret = -EINVAL;
  7025. bool retry = true;
  7026. if (!check_encoder_cloning(crtc)) {
  7027. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7028. return ERR_PTR(-EINVAL);
  7029. }
  7030. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7031. if (!pipe_config)
  7032. return ERR_PTR(-ENOMEM);
  7033. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7034. drm_mode_copy(&pipe_config->requested_mode, mode);
  7035. pipe_config->pipe_src_w = mode->hdisplay;
  7036. pipe_config->pipe_src_h = mode->vdisplay;
  7037. pipe_config->cpu_transcoder =
  7038. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7039. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7040. /*
  7041. * Sanitize sync polarity flags based on requested ones. If neither
  7042. * positive or negative polarity is requested, treat this as meaning
  7043. * negative polarity.
  7044. */
  7045. if (!(pipe_config->adjusted_mode.flags &
  7046. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7047. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7048. if (!(pipe_config->adjusted_mode.flags &
  7049. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7050. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7051. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7052. * plane pixel format and any sink constraints into account. Returns the
  7053. * source plane bpp so that dithering can be selected on mismatches
  7054. * after encoders and crtc also have had their say. */
  7055. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7056. fb, pipe_config);
  7057. if (plane_bpp < 0)
  7058. goto fail;
  7059. encoder_retry:
  7060. /* Ensure the port clock defaults are reset when retrying. */
  7061. pipe_config->port_clock = 0;
  7062. pipe_config->pixel_multiplier = 1;
  7063. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7064. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  7065. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7066. * adjust it according to limitations or connector properties, and also
  7067. * a chance to reject the mode entirely.
  7068. */
  7069. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7070. base.head) {
  7071. if (&encoder->new_crtc->base != crtc)
  7072. continue;
  7073. if (!(encoder->compute_config(encoder, pipe_config))) {
  7074. DRM_DEBUG_KMS("Encoder config failure\n");
  7075. goto fail;
  7076. }
  7077. }
  7078. /* Set default port clock if not overwritten by the encoder. Needs to be
  7079. * done afterwards in case the encoder adjusts the mode. */
  7080. if (!pipe_config->port_clock)
  7081. pipe_config->port_clock = pipe_config->adjusted_mode.clock *
  7082. pipe_config->pixel_multiplier;
  7083. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7084. if (ret < 0) {
  7085. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7086. goto fail;
  7087. }
  7088. if (ret == RETRY) {
  7089. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7090. ret = -EINVAL;
  7091. goto fail;
  7092. }
  7093. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7094. retry = false;
  7095. goto encoder_retry;
  7096. }
  7097. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7098. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7099. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7100. return pipe_config;
  7101. fail:
  7102. kfree(pipe_config);
  7103. return ERR_PTR(ret);
  7104. }
  7105. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7106. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7107. static void
  7108. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7109. unsigned *prepare_pipes, unsigned *disable_pipes)
  7110. {
  7111. struct intel_crtc *intel_crtc;
  7112. struct drm_device *dev = crtc->dev;
  7113. struct intel_encoder *encoder;
  7114. struct intel_connector *connector;
  7115. struct drm_crtc *tmp_crtc;
  7116. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7117. /* Check which crtcs have changed outputs connected to them, these need
  7118. * to be part of the prepare_pipes mask. We don't (yet) support global
  7119. * modeset across multiple crtcs, so modeset_pipes will only have one
  7120. * bit set at most. */
  7121. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7122. base.head) {
  7123. if (connector->base.encoder == &connector->new_encoder->base)
  7124. continue;
  7125. if (connector->base.encoder) {
  7126. tmp_crtc = connector->base.encoder->crtc;
  7127. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7128. }
  7129. if (connector->new_encoder)
  7130. *prepare_pipes |=
  7131. 1 << connector->new_encoder->new_crtc->pipe;
  7132. }
  7133. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7134. base.head) {
  7135. if (encoder->base.crtc == &encoder->new_crtc->base)
  7136. continue;
  7137. if (encoder->base.crtc) {
  7138. tmp_crtc = encoder->base.crtc;
  7139. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7140. }
  7141. if (encoder->new_crtc)
  7142. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7143. }
  7144. /* Check for any pipes that will be fully disabled ... */
  7145. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7146. base.head) {
  7147. bool used = false;
  7148. /* Don't try to disable disabled crtcs. */
  7149. if (!intel_crtc->base.enabled)
  7150. continue;
  7151. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7152. base.head) {
  7153. if (encoder->new_crtc == intel_crtc)
  7154. used = true;
  7155. }
  7156. if (!used)
  7157. *disable_pipes |= 1 << intel_crtc->pipe;
  7158. }
  7159. /* set_mode is also used to update properties on life display pipes. */
  7160. intel_crtc = to_intel_crtc(crtc);
  7161. if (crtc->enabled)
  7162. *prepare_pipes |= 1 << intel_crtc->pipe;
  7163. /*
  7164. * For simplicity do a full modeset on any pipe where the output routing
  7165. * changed. We could be more clever, but that would require us to be
  7166. * more careful with calling the relevant encoder->mode_set functions.
  7167. */
  7168. if (*prepare_pipes)
  7169. *modeset_pipes = *prepare_pipes;
  7170. /* ... and mask these out. */
  7171. *modeset_pipes &= ~(*disable_pipes);
  7172. *prepare_pipes &= ~(*disable_pipes);
  7173. /*
  7174. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7175. * obies this rule, but the modeset restore mode of
  7176. * intel_modeset_setup_hw_state does not.
  7177. */
  7178. *modeset_pipes &= 1 << intel_crtc->pipe;
  7179. *prepare_pipes &= 1 << intel_crtc->pipe;
  7180. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7181. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7182. }
  7183. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7184. {
  7185. struct drm_encoder *encoder;
  7186. struct drm_device *dev = crtc->dev;
  7187. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7188. if (encoder->crtc == crtc)
  7189. return true;
  7190. return false;
  7191. }
  7192. static void
  7193. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7194. {
  7195. struct intel_encoder *intel_encoder;
  7196. struct intel_crtc *intel_crtc;
  7197. struct drm_connector *connector;
  7198. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7199. base.head) {
  7200. if (!intel_encoder->base.crtc)
  7201. continue;
  7202. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7203. if (prepare_pipes & (1 << intel_crtc->pipe))
  7204. intel_encoder->connectors_active = false;
  7205. }
  7206. intel_modeset_commit_output_state(dev);
  7207. /* Update computed state. */
  7208. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7209. base.head) {
  7210. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7211. }
  7212. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7213. if (!connector->encoder || !connector->encoder->crtc)
  7214. continue;
  7215. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7216. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7217. struct drm_property *dpms_property =
  7218. dev->mode_config.dpms_property;
  7219. connector->dpms = DRM_MODE_DPMS_ON;
  7220. drm_object_property_set_value(&connector->base,
  7221. dpms_property,
  7222. DRM_MODE_DPMS_ON);
  7223. intel_encoder = to_intel_encoder(connector->encoder);
  7224. intel_encoder->connectors_active = true;
  7225. }
  7226. }
  7227. }
  7228. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7229. {
  7230. int diff;
  7231. if (clock1 == clock2)
  7232. return true;
  7233. if (!clock1 || !clock2)
  7234. return false;
  7235. diff = abs(clock1 - clock2);
  7236. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7237. return true;
  7238. return false;
  7239. }
  7240. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7241. list_for_each_entry((intel_crtc), \
  7242. &(dev)->mode_config.crtc_list, \
  7243. base.head) \
  7244. if (mask & (1 <<(intel_crtc)->pipe))
  7245. static bool
  7246. intel_pipe_config_compare(struct drm_device *dev,
  7247. struct intel_crtc_config *current_config,
  7248. struct intel_crtc_config *pipe_config)
  7249. {
  7250. #define PIPE_CONF_CHECK_X(name) \
  7251. if (current_config->name != pipe_config->name) { \
  7252. DRM_ERROR("mismatch in " #name " " \
  7253. "(expected 0x%08x, found 0x%08x)\n", \
  7254. current_config->name, \
  7255. pipe_config->name); \
  7256. return false; \
  7257. }
  7258. #define PIPE_CONF_CHECK_I(name) \
  7259. if (current_config->name != pipe_config->name) { \
  7260. DRM_ERROR("mismatch in " #name " " \
  7261. "(expected %i, found %i)\n", \
  7262. current_config->name, \
  7263. pipe_config->name); \
  7264. return false; \
  7265. }
  7266. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7267. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7268. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7269. "(expected %i, found %i)\n", \
  7270. current_config->name & (mask), \
  7271. pipe_config->name & (mask)); \
  7272. return false; \
  7273. }
  7274. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7275. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7276. DRM_ERROR("mismatch in " #name " " \
  7277. "(expected %i, found %i)\n", \
  7278. current_config->name, \
  7279. pipe_config->name); \
  7280. return false; \
  7281. }
  7282. #define PIPE_CONF_QUIRK(quirk) \
  7283. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7284. PIPE_CONF_CHECK_I(cpu_transcoder);
  7285. PIPE_CONF_CHECK_I(has_pch_encoder);
  7286. PIPE_CONF_CHECK_I(fdi_lanes);
  7287. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7288. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7289. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7290. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7291. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7292. PIPE_CONF_CHECK_I(has_dp_encoder);
  7293. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7294. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7295. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7296. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7297. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7298. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7299. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7300. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7301. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7302. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7303. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7304. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7305. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7306. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7307. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7308. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7309. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7310. PIPE_CONF_CHECK_I(pixel_multiplier);
  7311. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7312. DRM_MODE_FLAG_INTERLACE);
  7313. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7314. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7315. DRM_MODE_FLAG_PHSYNC);
  7316. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7317. DRM_MODE_FLAG_NHSYNC);
  7318. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7319. DRM_MODE_FLAG_PVSYNC);
  7320. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7321. DRM_MODE_FLAG_NVSYNC);
  7322. }
  7323. PIPE_CONF_CHECK_I(pipe_src_w);
  7324. PIPE_CONF_CHECK_I(pipe_src_h);
  7325. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7326. /* pfit ratios are autocomputed by the hw on gen4+ */
  7327. if (INTEL_INFO(dev)->gen < 4)
  7328. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7329. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7330. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7331. PIPE_CONF_CHECK_I(pch_pfit.size);
  7332. PIPE_CONF_CHECK_I(ips_enabled);
  7333. PIPE_CONF_CHECK_I(shared_dpll);
  7334. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7335. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7336. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7337. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7338. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7339. PIPE_CONF_CHECK_I(pipe_bpp);
  7340. if (!IS_HASWELL(dev)) {
  7341. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
  7342. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7343. }
  7344. #undef PIPE_CONF_CHECK_X
  7345. #undef PIPE_CONF_CHECK_I
  7346. #undef PIPE_CONF_CHECK_FLAGS
  7347. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7348. #undef PIPE_CONF_QUIRK
  7349. return true;
  7350. }
  7351. static void
  7352. check_connector_state(struct drm_device *dev)
  7353. {
  7354. struct intel_connector *connector;
  7355. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7356. base.head) {
  7357. /* This also checks the encoder/connector hw state with the
  7358. * ->get_hw_state callbacks. */
  7359. intel_connector_check_state(connector);
  7360. WARN(&connector->new_encoder->base != connector->base.encoder,
  7361. "connector's staged encoder doesn't match current encoder\n");
  7362. }
  7363. }
  7364. static void
  7365. check_encoder_state(struct drm_device *dev)
  7366. {
  7367. struct intel_encoder *encoder;
  7368. struct intel_connector *connector;
  7369. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7370. base.head) {
  7371. bool enabled = false;
  7372. bool active = false;
  7373. enum pipe pipe, tracked_pipe;
  7374. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7375. encoder->base.base.id,
  7376. drm_get_encoder_name(&encoder->base));
  7377. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7378. "encoder's stage crtc doesn't match current crtc\n");
  7379. WARN(encoder->connectors_active && !encoder->base.crtc,
  7380. "encoder's active_connectors set, but no crtc\n");
  7381. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7382. base.head) {
  7383. if (connector->base.encoder != &encoder->base)
  7384. continue;
  7385. enabled = true;
  7386. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7387. active = true;
  7388. }
  7389. WARN(!!encoder->base.crtc != enabled,
  7390. "encoder's enabled state mismatch "
  7391. "(expected %i, found %i)\n",
  7392. !!encoder->base.crtc, enabled);
  7393. WARN(active && !encoder->base.crtc,
  7394. "active encoder with no crtc\n");
  7395. WARN(encoder->connectors_active != active,
  7396. "encoder's computed active state doesn't match tracked active state "
  7397. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7398. active = encoder->get_hw_state(encoder, &pipe);
  7399. WARN(active != encoder->connectors_active,
  7400. "encoder's hw state doesn't match sw tracking "
  7401. "(expected %i, found %i)\n",
  7402. encoder->connectors_active, active);
  7403. if (!encoder->base.crtc)
  7404. continue;
  7405. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7406. WARN(active && pipe != tracked_pipe,
  7407. "active encoder's pipe doesn't match"
  7408. "(expected %i, found %i)\n",
  7409. tracked_pipe, pipe);
  7410. }
  7411. }
  7412. static void
  7413. check_crtc_state(struct drm_device *dev)
  7414. {
  7415. drm_i915_private_t *dev_priv = dev->dev_private;
  7416. struct intel_crtc *crtc;
  7417. struct intel_encoder *encoder;
  7418. struct intel_crtc_config pipe_config;
  7419. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7420. base.head) {
  7421. bool enabled = false;
  7422. bool active = false;
  7423. memset(&pipe_config, 0, sizeof(pipe_config));
  7424. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7425. crtc->base.base.id);
  7426. WARN(crtc->active && !crtc->base.enabled,
  7427. "active crtc, but not enabled in sw tracking\n");
  7428. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7429. base.head) {
  7430. if (encoder->base.crtc != &crtc->base)
  7431. continue;
  7432. enabled = true;
  7433. if (encoder->connectors_active)
  7434. active = true;
  7435. }
  7436. WARN(active != crtc->active,
  7437. "crtc's computed active state doesn't match tracked active state "
  7438. "(expected %i, found %i)\n", active, crtc->active);
  7439. WARN(enabled != crtc->base.enabled,
  7440. "crtc's computed enabled state doesn't match tracked enabled state "
  7441. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7442. active = dev_priv->display.get_pipe_config(crtc,
  7443. &pipe_config);
  7444. /* hw state is inconsistent with the pipe A quirk */
  7445. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7446. active = crtc->active;
  7447. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7448. base.head) {
  7449. enum pipe pipe;
  7450. if (encoder->base.crtc != &crtc->base)
  7451. continue;
  7452. if (encoder->get_config &&
  7453. encoder->get_hw_state(encoder, &pipe))
  7454. encoder->get_config(encoder, &pipe_config);
  7455. }
  7456. WARN(crtc->active != active,
  7457. "crtc active state doesn't match with hw state "
  7458. "(expected %i, found %i)\n", crtc->active, active);
  7459. if (active &&
  7460. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7461. WARN(1, "pipe state doesn't match!\n");
  7462. intel_dump_pipe_config(crtc, &pipe_config,
  7463. "[hw state]");
  7464. intel_dump_pipe_config(crtc, &crtc->config,
  7465. "[sw state]");
  7466. }
  7467. }
  7468. }
  7469. static void
  7470. check_shared_dpll_state(struct drm_device *dev)
  7471. {
  7472. drm_i915_private_t *dev_priv = dev->dev_private;
  7473. struct intel_crtc *crtc;
  7474. struct intel_dpll_hw_state dpll_hw_state;
  7475. int i;
  7476. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7477. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7478. int enabled_crtcs = 0, active_crtcs = 0;
  7479. bool active;
  7480. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7481. DRM_DEBUG_KMS("%s\n", pll->name);
  7482. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7483. WARN(pll->active > pll->refcount,
  7484. "more active pll users than references: %i vs %i\n",
  7485. pll->active, pll->refcount);
  7486. WARN(pll->active && !pll->on,
  7487. "pll in active use but not on in sw tracking\n");
  7488. WARN(pll->on && !pll->active,
  7489. "pll in on but not on in use in sw tracking\n");
  7490. WARN(pll->on != active,
  7491. "pll on state mismatch (expected %i, found %i)\n",
  7492. pll->on, active);
  7493. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7494. base.head) {
  7495. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7496. enabled_crtcs++;
  7497. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7498. active_crtcs++;
  7499. }
  7500. WARN(pll->active != active_crtcs,
  7501. "pll active crtcs mismatch (expected %i, found %i)\n",
  7502. pll->active, active_crtcs);
  7503. WARN(pll->refcount != enabled_crtcs,
  7504. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7505. pll->refcount, enabled_crtcs);
  7506. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7507. sizeof(dpll_hw_state)),
  7508. "pll hw state mismatch\n");
  7509. }
  7510. }
  7511. void
  7512. intel_modeset_check_state(struct drm_device *dev)
  7513. {
  7514. check_connector_state(dev);
  7515. check_encoder_state(dev);
  7516. check_crtc_state(dev);
  7517. check_shared_dpll_state(dev);
  7518. }
  7519. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7520. int dotclock)
  7521. {
  7522. /*
  7523. * FDI already provided one idea for the dotclock.
  7524. * Yell if the encoder disagrees.
  7525. */
  7526. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
  7527. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7528. pipe_config->adjusted_mode.clock, dotclock);
  7529. }
  7530. static int __intel_set_mode(struct drm_crtc *crtc,
  7531. struct drm_display_mode *mode,
  7532. int x, int y, struct drm_framebuffer *fb)
  7533. {
  7534. struct drm_device *dev = crtc->dev;
  7535. drm_i915_private_t *dev_priv = dev->dev_private;
  7536. struct drm_display_mode *saved_mode, *saved_hwmode;
  7537. struct intel_crtc_config *pipe_config = NULL;
  7538. struct intel_crtc *intel_crtc;
  7539. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7540. int ret = 0;
  7541. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7542. if (!saved_mode)
  7543. return -ENOMEM;
  7544. saved_hwmode = saved_mode + 1;
  7545. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7546. &prepare_pipes, &disable_pipes);
  7547. *saved_hwmode = crtc->hwmode;
  7548. *saved_mode = crtc->mode;
  7549. /* Hack: Because we don't (yet) support global modeset on multiple
  7550. * crtcs, we don't keep track of the new mode for more than one crtc.
  7551. * Hence simply check whether any bit is set in modeset_pipes in all the
  7552. * pieces of code that are not yet converted to deal with mutliple crtcs
  7553. * changing their mode at the same time. */
  7554. if (modeset_pipes) {
  7555. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7556. if (IS_ERR(pipe_config)) {
  7557. ret = PTR_ERR(pipe_config);
  7558. pipe_config = NULL;
  7559. goto out;
  7560. }
  7561. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7562. "[modeset]");
  7563. }
  7564. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7565. intel_crtc_disable(&intel_crtc->base);
  7566. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7567. if (intel_crtc->base.enabled)
  7568. dev_priv->display.crtc_disable(&intel_crtc->base);
  7569. }
  7570. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7571. * to set it here already despite that we pass it down the callchain.
  7572. */
  7573. if (modeset_pipes) {
  7574. crtc->mode = *mode;
  7575. /* mode_set/enable/disable functions rely on a correct pipe
  7576. * config. */
  7577. to_intel_crtc(crtc)->config = *pipe_config;
  7578. }
  7579. /* Only after disabling all output pipelines that will be changed can we
  7580. * update the the output configuration. */
  7581. intel_modeset_update_state(dev, prepare_pipes);
  7582. if (dev_priv->display.modeset_global_resources)
  7583. dev_priv->display.modeset_global_resources(dev);
  7584. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7585. * on the DPLL.
  7586. */
  7587. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7588. ret = intel_crtc_mode_set(&intel_crtc->base,
  7589. x, y, fb);
  7590. if (ret)
  7591. goto done;
  7592. }
  7593. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7594. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7595. dev_priv->display.crtc_enable(&intel_crtc->base);
  7596. if (modeset_pipes) {
  7597. /* Store real post-adjustment hardware mode. */
  7598. crtc->hwmode = pipe_config->adjusted_mode;
  7599. /* Calculate and store various constants which
  7600. * are later needed by vblank and swap-completion
  7601. * timestamping. They are derived from true hwmode.
  7602. */
  7603. drm_calc_timestamping_constants(crtc);
  7604. }
  7605. /* FIXME: add subpixel order */
  7606. done:
  7607. if (ret && crtc->enabled) {
  7608. crtc->hwmode = *saved_hwmode;
  7609. crtc->mode = *saved_mode;
  7610. }
  7611. out:
  7612. kfree(pipe_config);
  7613. kfree(saved_mode);
  7614. return ret;
  7615. }
  7616. static int intel_set_mode(struct drm_crtc *crtc,
  7617. struct drm_display_mode *mode,
  7618. int x, int y, struct drm_framebuffer *fb)
  7619. {
  7620. int ret;
  7621. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7622. if (ret == 0)
  7623. intel_modeset_check_state(crtc->dev);
  7624. return ret;
  7625. }
  7626. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7627. {
  7628. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7629. }
  7630. #undef for_each_intel_crtc_masked
  7631. static void intel_set_config_free(struct intel_set_config *config)
  7632. {
  7633. if (!config)
  7634. return;
  7635. kfree(config->save_connector_encoders);
  7636. kfree(config->save_encoder_crtcs);
  7637. kfree(config);
  7638. }
  7639. static int intel_set_config_save_state(struct drm_device *dev,
  7640. struct intel_set_config *config)
  7641. {
  7642. struct drm_encoder *encoder;
  7643. struct drm_connector *connector;
  7644. int count;
  7645. config->save_encoder_crtcs =
  7646. kcalloc(dev->mode_config.num_encoder,
  7647. sizeof(struct drm_crtc *), GFP_KERNEL);
  7648. if (!config->save_encoder_crtcs)
  7649. return -ENOMEM;
  7650. config->save_connector_encoders =
  7651. kcalloc(dev->mode_config.num_connector,
  7652. sizeof(struct drm_encoder *), GFP_KERNEL);
  7653. if (!config->save_connector_encoders)
  7654. return -ENOMEM;
  7655. /* Copy data. Note that driver private data is not affected.
  7656. * Should anything bad happen only the expected state is
  7657. * restored, not the drivers personal bookkeeping.
  7658. */
  7659. count = 0;
  7660. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7661. config->save_encoder_crtcs[count++] = encoder->crtc;
  7662. }
  7663. count = 0;
  7664. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7665. config->save_connector_encoders[count++] = connector->encoder;
  7666. }
  7667. return 0;
  7668. }
  7669. static void intel_set_config_restore_state(struct drm_device *dev,
  7670. struct intel_set_config *config)
  7671. {
  7672. struct intel_encoder *encoder;
  7673. struct intel_connector *connector;
  7674. int count;
  7675. count = 0;
  7676. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7677. encoder->new_crtc =
  7678. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7679. }
  7680. count = 0;
  7681. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7682. connector->new_encoder =
  7683. to_intel_encoder(config->save_connector_encoders[count++]);
  7684. }
  7685. }
  7686. static bool
  7687. is_crtc_connector_off(struct drm_mode_set *set)
  7688. {
  7689. int i;
  7690. if (set->num_connectors == 0)
  7691. return false;
  7692. if (WARN_ON(set->connectors == NULL))
  7693. return false;
  7694. for (i = 0; i < set->num_connectors; i++)
  7695. if (set->connectors[i]->encoder &&
  7696. set->connectors[i]->encoder->crtc == set->crtc &&
  7697. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7698. return true;
  7699. return false;
  7700. }
  7701. static void
  7702. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7703. struct intel_set_config *config)
  7704. {
  7705. /* We should be able to check here if the fb has the same properties
  7706. * and then just flip_or_move it */
  7707. if (is_crtc_connector_off(set)) {
  7708. config->mode_changed = true;
  7709. } else if (set->crtc->fb != set->fb) {
  7710. /* If we have no fb then treat it as a full mode set */
  7711. if (set->crtc->fb == NULL) {
  7712. struct intel_crtc *intel_crtc =
  7713. to_intel_crtc(set->crtc);
  7714. if (intel_crtc->active && i915_fastboot) {
  7715. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7716. config->fb_changed = true;
  7717. } else {
  7718. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7719. config->mode_changed = true;
  7720. }
  7721. } else if (set->fb == NULL) {
  7722. config->mode_changed = true;
  7723. } else if (set->fb->pixel_format !=
  7724. set->crtc->fb->pixel_format) {
  7725. config->mode_changed = true;
  7726. } else {
  7727. config->fb_changed = true;
  7728. }
  7729. }
  7730. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7731. config->fb_changed = true;
  7732. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7733. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7734. drm_mode_debug_printmodeline(&set->crtc->mode);
  7735. drm_mode_debug_printmodeline(set->mode);
  7736. config->mode_changed = true;
  7737. }
  7738. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7739. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7740. }
  7741. static int
  7742. intel_modeset_stage_output_state(struct drm_device *dev,
  7743. struct drm_mode_set *set,
  7744. struct intel_set_config *config)
  7745. {
  7746. struct drm_crtc *new_crtc;
  7747. struct intel_connector *connector;
  7748. struct intel_encoder *encoder;
  7749. int ro;
  7750. /* The upper layers ensure that we either disable a crtc or have a list
  7751. * of connectors. For paranoia, double-check this. */
  7752. WARN_ON(!set->fb && (set->num_connectors != 0));
  7753. WARN_ON(set->fb && (set->num_connectors == 0));
  7754. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7755. base.head) {
  7756. /* Otherwise traverse passed in connector list and get encoders
  7757. * for them. */
  7758. for (ro = 0; ro < set->num_connectors; ro++) {
  7759. if (set->connectors[ro] == &connector->base) {
  7760. connector->new_encoder = connector->encoder;
  7761. break;
  7762. }
  7763. }
  7764. /* If we disable the crtc, disable all its connectors. Also, if
  7765. * the connector is on the changing crtc but not on the new
  7766. * connector list, disable it. */
  7767. if ((!set->fb || ro == set->num_connectors) &&
  7768. connector->base.encoder &&
  7769. connector->base.encoder->crtc == set->crtc) {
  7770. connector->new_encoder = NULL;
  7771. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7772. connector->base.base.id,
  7773. drm_get_connector_name(&connector->base));
  7774. }
  7775. if (&connector->new_encoder->base != connector->base.encoder) {
  7776. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7777. config->mode_changed = true;
  7778. }
  7779. }
  7780. /* connector->new_encoder is now updated for all connectors. */
  7781. /* Update crtc of enabled connectors. */
  7782. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7783. base.head) {
  7784. if (!connector->new_encoder)
  7785. continue;
  7786. new_crtc = connector->new_encoder->base.crtc;
  7787. for (ro = 0; ro < set->num_connectors; ro++) {
  7788. if (set->connectors[ro] == &connector->base)
  7789. new_crtc = set->crtc;
  7790. }
  7791. /* Make sure the new CRTC will work with the encoder */
  7792. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7793. new_crtc)) {
  7794. return -EINVAL;
  7795. }
  7796. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7797. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7798. connector->base.base.id,
  7799. drm_get_connector_name(&connector->base),
  7800. new_crtc->base.id);
  7801. }
  7802. /* Check for any encoders that needs to be disabled. */
  7803. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7804. base.head) {
  7805. list_for_each_entry(connector,
  7806. &dev->mode_config.connector_list,
  7807. base.head) {
  7808. if (connector->new_encoder == encoder) {
  7809. WARN_ON(!connector->new_encoder->new_crtc);
  7810. goto next_encoder;
  7811. }
  7812. }
  7813. encoder->new_crtc = NULL;
  7814. next_encoder:
  7815. /* Only now check for crtc changes so we don't miss encoders
  7816. * that will be disabled. */
  7817. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7818. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7819. config->mode_changed = true;
  7820. }
  7821. }
  7822. /* Now we've also updated encoder->new_crtc for all encoders. */
  7823. return 0;
  7824. }
  7825. static int intel_crtc_set_config(struct drm_mode_set *set)
  7826. {
  7827. struct drm_device *dev;
  7828. struct drm_mode_set save_set;
  7829. struct intel_set_config *config;
  7830. int ret;
  7831. BUG_ON(!set);
  7832. BUG_ON(!set->crtc);
  7833. BUG_ON(!set->crtc->helper_private);
  7834. /* Enforce sane interface api - has been abused by the fb helper. */
  7835. BUG_ON(!set->mode && set->fb);
  7836. BUG_ON(set->fb && set->num_connectors == 0);
  7837. if (set->fb) {
  7838. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7839. set->crtc->base.id, set->fb->base.id,
  7840. (int)set->num_connectors, set->x, set->y);
  7841. } else {
  7842. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7843. }
  7844. dev = set->crtc->dev;
  7845. ret = -ENOMEM;
  7846. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7847. if (!config)
  7848. goto out_config;
  7849. ret = intel_set_config_save_state(dev, config);
  7850. if (ret)
  7851. goto out_config;
  7852. save_set.crtc = set->crtc;
  7853. save_set.mode = &set->crtc->mode;
  7854. save_set.x = set->crtc->x;
  7855. save_set.y = set->crtc->y;
  7856. save_set.fb = set->crtc->fb;
  7857. /* Compute whether we need a full modeset, only an fb base update or no
  7858. * change at all. In the future we might also check whether only the
  7859. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7860. * such cases. */
  7861. intel_set_config_compute_mode_changes(set, config);
  7862. ret = intel_modeset_stage_output_state(dev, set, config);
  7863. if (ret)
  7864. goto fail;
  7865. if (config->mode_changed) {
  7866. ret = intel_set_mode(set->crtc, set->mode,
  7867. set->x, set->y, set->fb);
  7868. } else if (config->fb_changed) {
  7869. intel_crtc_wait_for_pending_flips(set->crtc);
  7870. ret = intel_pipe_set_base(set->crtc,
  7871. set->x, set->y, set->fb);
  7872. }
  7873. if (ret) {
  7874. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7875. set->crtc->base.id, ret);
  7876. fail:
  7877. intel_set_config_restore_state(dev, config);
  7878. /* Try to restore the config */
  7879. if (config->mode_changed &&
  7880. intel_set_mode(save_set.crtc, save_set.mode,
  7881. save_set.x, save_set.y, save_set.fb))
  7882. DRM_ERROR("failed to restore config after modeset failure\n");
  7883. }
  7884. out_config:
  7885. intel_set_config_free(config);
  7886. return ret;
  7887. }
  7888. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7889. .cursor_set = intel_crtc_cursor_set,
  7890. .cursor_move = intel_crtc_cursor_move,
  7891. .gamma_set = intel_crtc_gamma_set,
  7892. .set_config = intel_crtc_set_config,
  7893. .destroy = intel_crtc_destroy,
  7894. .page_flip = intel_crtc_page_flip,
  7895. };
  7896. static void intel_cpu_pll_init(struct drm_device *dev)
  7897. {
  7898. if (HAS_DDI(dev))
  7899. intel_ddi_pll_init(dev);
  7900. }
  7901. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7902. struct intel_shared_dpll *pll,
  7903. struct intel_dpll_hw_state *hw_state)
  7904. {
  7905. uint32_t val;
  7906. val = I915_READ(PCH_DPLL(pll->id));
  7907. hw_state->dpll = val;
  7908. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7909. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7910. return val & DPLL_VCO_ENABLE;
  7911. }
  7912. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7913. struct intel_shared_dpll *pll)
  7914. {
  7915. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7916. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7917. }
  7918. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7919. struct intel_shared_dpll *pll)
  7920. {
  7921. /* PCH refclock must be enabled first */
  7922. assert_pch_refclk_enabled(dev_priv);
  7923. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7924. /* Wait for the clocks to stabilize. */
  7925. POSTING_READ(PCH_DPLL(pll->id));
  7926. udelay(150);
  7927. /* The pixel multiplier can only be updated once the
  7928. * DPLL is enabled and the clocks are stable.
  7929. *
  7930. * So write it again.
  7931. */
  7932. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7933. POSTING_READ(PCH_DPLL(pll->id));
  7934. udelay(200);
  7935. }
  7936. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7937. struct intel_shared_dpll *pll)
  7938. {
  7939. struct drm_device *dev = dev_priv->dev;
  7940. struct intel_crtc *crtc;
  7941. /* Make sure no transcoder isn't still depending on us. */
  7942. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7943. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7944. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7945. }
  7946. I915_WRITE(PCH_DPLL(pll->id), 0);
  7947. POSTING_READ(PCH_DPLL(pll->id));
  7948. udelay(200);
  7949. }
  7950. static char *ibx_pch_dpll_names[] = {
  7951. "PCH DPLL A",
  7952. "PCH DPLL B",
  7953. };
  7954. static void ibx_pch_dpll_init(struct drm_device *dev)
  7955. {
  7956. struct drm_i915_private *dev_priv = dev->dev_private;
  7957. int i;
  7958. dev_priv->num_shared_dpll = 2;
  7959. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7960. dev_priv->shared_dplls[i].id = i;
  7961. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7962. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7963. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7964. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7965. dev_priv->shared_dplls[i].get_hw_state =
  7966. ibx_pch_dpll_get_hw_state;
  7967. }
  7968. }
  7969. static void intel_shared_dpll_init(struct drm_device *dev)
  7970. {
  7971. struct drm_i915_private *dev_priv = dev->dev_private;
  7972. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7973. ibx_pch_dpll_init(dev);
  7974. else
  7975. dev_priv->num_shared_dpll = 0;
  7976. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7977. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7978. dev_priv->num_shared_dpll);
  7979. }
  7980. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7981. {
  7982. drm_i915_private_t *dev_priv = dev->dev_private;
  7983. struct intel_crtc *intel_crtc;
  7984. int i;
  7985. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7986. if (intel_crtc == NULL)
  7987. return;
  7988. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7989. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7990. for (i = 0; i < 256; i++) {
  7991. intel_crtc->lut_r[i] = i;
  7992. intel_crtc->lut_g[i] = i;
  7993. intel_crtc->lut_b[i] = i;
  7994. }
  7995. /* Swap pipes & planes for FBC on pre-965 */
  7996. intel_crtc->pipe = pipe;
  7997. intel_crtc->plane = pipe;
  7998. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7999. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  8000. intel_crtc->plane = !pipe;
  8001. }
  8002. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  8003. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  8004. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  8005. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  8006. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  8007. }
  8008. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  8009. struct drm_file *file)
  8010. {
  8011. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  8012. struct drm_mode_object *drmmode_obj;
  8013. struct intel_crtc *crtc;
  8014. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  8015. return -ENODEV;
  8016. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  8017. DRM_MODE_OBJECT_CRTC);
  8018. if (!drmmode_obj) {
  8019. DRM_ERROR("no such CRTC id\n");
  8020. return -EINVAL;
  8021. }
  8022. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8023. pipe_from_crtc_id->pipe = crtc->pipe;
  8024. return 0;
  8025. }
  8026. static int intel_encoder_clones(struct intel_encoder *encoder)
  8027. {
  8028. struct drm_device *dev = encoder->base.dev;
  8029. struct intel_encoder *source_encoder;
  8030. int index_mask = 0;
  8031. int entry = 0;
  8032. list_for_each_entry(source_encoder,
  8033. &dev->mode_config.encoder_list, base.head) {
  8034. if (encoder == source_encoder)
  8035. index_mask |= (1 << entry);
  8036. /* Intel hw has only one MUX where enocoders could be cloned. */
  8037. if (encoder->cloneable && source_encoder->cloneable)
  8038. index_mask |= (1 << entry);
  8039. entry++;
  8040. }
  8041. return index_mask;
  8042. }
  8043. static bool has_edp_a(struct drm_device *dev)
  8044. {
  8045. struct drm_i915_private *dev_priv = dev->dev_private;
  8046. if (!IS_MOBILE(dev))
  8047. return false;
  8048. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8049. return false;
  8050. if (IS_GEN5(dev) &&
  8051. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8052. return false;
  8053. return true;
  8054. }
  8055. static void intel_setup_outputs(struct drm_device *dev)
  8056. {
  8057. struct drm_i915_private *dev_priv = dev->dev_private;
  8058. struct intel_encoder *encoder;
  8059. bool dpd_is_edp = false;
  8060. intel_lvds_init(dev);
  8061. if (!IS_ULT(dev))
  8062. intel_crt_init(dev);
  8063. if (HAS_DDI(dev)) {
  8064. int found;
  8065. /* Haswell uses DDI functions to detect digital outputs */
  8066. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8067. /* DDI A only supports eDP */
  8068. if (found)
  8069. intel_ddi_init(dev, PORT_A);
  8070. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8071. * register */
  8072. found = I915_READ(SFUSE_STRAP);
  8073. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8074. intel_ddi_init(dev, PORT_B);
  8075. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8076. intel_ddi_init(dev, PORT_C);
  8077. if (found & SFUSE_STRAP_DDID_DETECTED)
  8078. intel_ddi_init(dev, PORT_D);
  8079. } else if (HAS_PCH_SPLIT(dev)) {
  8080. int found;
  8081. dpd_is_edp = intel_dpd_is_edp(dev);
  8082. if (has_edp_a(dev))
  8083. intel_dp_init(dev, DP_A, PORT_A);
  8084. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8085. /* PCH SDVOB multiplex with HDMIB */
  8086. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8087. if (!found)
  8088. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8089. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8090. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8091. }
  8092. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8093. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8094. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8095. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8096. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8097. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8098. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8099. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8100. } else if (IS_VALLEYVIEW(dev)) {
  8101. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8102. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8103. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8104. PORT_C);
  8105. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8106. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8107. PORT_C);
  8108. }
  8109. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8110. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8111. PORT_B);
  8112. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8113. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8114. }
  8115. intel_dsi_init(dev);
  8116. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8117. bool found = false;
  8118. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8119. DRM_DEBUG_KMS("probing SDVOB\n");
  8120. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8121. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8122. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8123. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8124. }
  8125. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8126. intel_dp_init(dev, DP_B, PORT_B);
  8127. }
  8128. /* Before G4X SDVOC doesn't have its own detect register */
  8129. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8130. DRM_DEBUG_KMS("probing SDVOC\n");
  8131. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8132. }
  8133. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8134. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8135. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8136. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8137. }
  8138. if (SUPPORTS_INTEGRATED_DP(dev))
  8139. intel_dp_init(dev, DP_C, PORT_C);
  8140. }
  8141. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8142. (I915_READ(DP_D) & DP_DETECTED))
  8143. intel_dp_init(dev, DP_D, PORT_D);
  8144. } else if (IS_GEN2(dev))
  8145. intel_dvo_init(dev);
  8146. if (SUPPORTS_TV(dev))
  8147. intel_tv_init(dev);
  8148. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8149. encoder->base.possible_crtcs = encoder->crtc_mask;
  8150. encoder->base.possible_clones =
  8151. intel_encoder_clones(encoder);
  8152. }
  8153. intel_init_pch_refclk(dev);
  8154. drm_helper_move_panel_connectors_to_head(dev);
  8155. }
  8156. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8157. {
  8158. drm_framebuffer_cleanup(&fb->base);
  8159. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8160. }
  8161. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8162. {
  8163. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8164. intel_framebuffer_fini(intel_fb);
  8165. kfree(intel_fb);
  8166. }
  8167. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8168. struct drm_file *file,
  8169. unsigned int *handle)
  8170. {
  8171. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8172. struct drm_i915_gem_object *obj = intel_fb->obj;
  8173. return drm_gem_handle_create(file, &obj->base, handle);
  8174. }
  8175. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8176. .destroy = intel_user_framebuffer_destroy,
  8177. .create_handle = intel_user_framebuffer_create_handle,
  8178. };
  8179. int intel_framebuffer_init(struct drm_device *dev,
  8180. struct intel_framebuffer *intel_fb,
  8181. struct drm_mode_fb_cmd2 *mode_cmd,
  8182. struct drm_i915_gem_object *obj)
  8183. {
  8184. int pitch_limit;
  8185. int ret;
  8186. if (obj->tiling_mode == I915_TILING_Y) {
  8187. DRM_DEBUG("hardware does not support tiling Y\n");
  8188. return -EINVAL;
  8189. }
  8190. if (mode_cmd->pitches[0] & 63) {
  8191. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8192. mode_cmd->pitches[0]);
  8193. return -EINVAL;
  8194. }
  8195. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8196. pitch_limit = 32*1024;
  8197. } else if (INTEL_INFO(dev)->gen >= 4) {
  8198. if (obj->tiling_mode)
  8199. pitch_limit = 16*1024;
  8200. else
  8201. pitch_limit = 32*1024;
  8202. } else if (INTEL_INFO(dev)->gen >= 3) {
  8203. if (obj->tiling_mode)
  8204. pitch_limit = 8*1024;
  8205. else
  8206. pitch_limit = 16*1024;
  8207. } else
  8208. /* XXX DSPC is limited to 4k tiled */
  8209. pitch_limit = 8*1024;
  8210. if (mode_cmd->pitches[0] > pitch_limit) {
  8211. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8212. obj->tiling_mode ? "tiled" : "linear",
  8213. mode_cmd->pitches[0], pitch_limit);
  8214. return -EINVAL;
  8215. }
  8216. if (obj->tiling_mode != I915_TILING_NONE &&
  8217. mode_cmd->pitches[0] != obj->stride) {
  8218. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8219. mode_cmd->pitches[0], obj->stride);
  8220. return -EINVAL;
  8221. }
  8222. /* Reject formats not supported by any plane early. */
  8223. switch (mode_cmd->pixel_format) {
  8224. case DRM_FORMAT_C8:
  8225. case DRM_FORMAT_RGB565:
  8226. case DRM_FORMAT_XRGB8888:
  8227. case DRM_FORMAT_ARGB8888:
  8228. break;
  8229. case DRM_FORMAT_XRGB1555:
  8230. case DRM_FORMAT_ARGB1555:
  8231. if (INTEL_INFO(dev)->gen > 3) {
  8232. DRM_DEBUG("unsupported pixel format: %s\n",
  8233. drm_get_format_name(mode_cmd->pixel_format));
  8234. return -EINVAL;
  8235. }
  8236. break;
  8237. case DRM_FORMAT_XBGR8888:
  8238. case DRM_FORMAT_ABGR8888:
  8239. case DRM_FORMAT_XRGB2101010:
  8240. case DRM_FORMAT_ARGB2101010:
  8241. case DRM_FORMAT_XBGR2101010:
  8242. case DRM_FORMAT_ABGR2101010:
  8243. if (INTEL_INFO(dev)->gen < 4) {
  8244. DRM_DEBUG("unsupported pixel format: %s\n",
  8245. drm_get_format_name(mode_cmd->pixel_format));
  8246. return -EINVAL;
  8247. }
  8248. break;
  8249. case DRM_FORMAT_YUYV:
  8250. case DRM_FORMAT_UYVY:
  8251. case DRM_FORMAT_YVYU:
  8252. case DRM_FORMAT_VYUY:
  8253. if (INTEL_INFO(dev)->gen < 5) {
  8254. DRM_DEBUG("unsupported pixel format: %s\n",
  8255. drm_get_format_name(mode_cmd->pixel_format));
  8256. return -EINVAL;
  8257. }
  8258. break;
  8259. default:
  8260. DRM_DEBUG("unsupported pixel format: %s\n",
  8261. drm_get_format_name(mode_cmd->pixel_format));
  8262. return -EINVAL;
  8263. }
  8264. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8265. if (mode_cmd->offsets[0] != 0)
  8266. return -EINVAL;
  8267. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8268. intel_fb->obj = obj;
  8269. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8270. if (ret) {
  8271. DRM_ERROR("framebuffer init failed %d\n", ret);
  8272. return ret;
  8273. }
  8274. return 0;
  8275. }
  8276. static struct drm_framebuffer *
  8277. intel_user_framebuffer_create(struct drm_device *dev,
  8278. struct drm_file *filp,
  8279. struct drm_mode_fb_cmd2 *mode_cmd)
  8280. {
  8281. struct drm_i915_gem_object *obj;
  8282. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8283. mode_cmd->handles[0]));
  8284. if (&obj->base == NULL)
  8285. return ERR_PTR(-ENOENT);
  8286. return intel_framebuffer_create(dev, mode_cmd, obj);
  8287. }
  8288. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8289. .fb_create = intel_user_framebuffer_create,
  8290. .output_poll_changed = intel_fb_output_poll_changed,
  8291. };
  8292. /* Set up chip specific display functions */
  8293. static void intel_init_display(struct drm_device *dev)
  8294. {
  8295. struct drm_i915_private *dev_priv = dev->dev_private;
  8296. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8297. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8298. else if (IS_VALLEYVIEW(dev))
  8299. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8300. else if (IS_PINEVIEW(dev))
  8301. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8302. else
  8303. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8304. if (HAS_DDI(dev)) {
  8305. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8306. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8307. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8308. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8309. dev_priv->display.off = haswell_crtc_off;
  8310. dev_priv->display.update_plane = ironlake_update_plane;
  8311. } else if (HAS_PCH_SPLIT(dev)) {
  8312. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8313. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8314. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8315. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8316. dev_priv->display.off = ironlake_crtc_off;
  8317. dev_priv->display.update_plane = ironlake_update_plane;
  8318. } else if (IS_VALLEYVIEW(dev)) {
  8319. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8320. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8321. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8322. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8323. dev_priv->display.off = i9xx_crtc_off;
  8324. dev_priv->display.update_plane = i9xx_update_plane;
  8325. } else {
  8326. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8327. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8328. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8329. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8330. dev_priv->display.off = i9xx_crtc_off;
  8331. dev_priv->display.update_plane = i9xx_update_plane;
  8332. }
  8333. /* Returns the core display clock speed */
  8334. if (IS_VALLEYVIEW(dev))
  8335. dev_priv->display.get_display_clock_speed =
  8336. valleyview_get_display_clock_speed;
  8337. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8338. dev_priv->display.get_display_clock_speed =
  8339. i945_get_display_clock_speed;
  8340. else if (IS_I915G(dev))
  8341. dev_priv->display.get_display_clock_speed =
  8342. i915_get_display_clock_speed;
  8343. else if (IS_I945GM(dev) || IS_845G(dev))
  8344. dev_priv->display.get_display_clock_speed =
  8345. i9xx_misc_get_display_clock_speed;
  8346. else if (IS_PINEVIEW(dev))
  8347. dev_priv->display.get_display_clock_speed =
  8348. pnv_get_display_clock_speed;
  8349. else if (IS_I915GM(dev))
  8350. dev_priv->display.get_display_clock_speed =
  8351. i915gm_get_display_clock_speed;
  8352. else if (IS_I865G(dev))
  8353. dev_priv->display.get_display_clock_speed =
  8354. i865_get_display_clock_speed;
  8355. else if (IS_I85X(dev))
  8356. dev_priv->display.get_display_clock_speed =
  8357. i855_get_display_clock_speed;
  8358. else /* 852, 830 */
  8359. dev_priv->display.get_display_clock_speed =
  8360. i830_get_display_clock_speed;
  8361. if (HAS_PCH_SPLIT(dev)) {
  8362. if (IS_GEN5(dev)) {
  8363. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8364. dev_priv->display.write_eld = ironlake_write_eld;
  8365. } else if (IS_GEN6(dev)) {
  8366. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8367. dev_priv->display.write_eld = ironlake_write_eld;
  8368. } else if (IS_IVYBRIDGE(dev)) {
  8369. /* FIXME: detect B0+ stepping and use auto training */
  8370. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8371. dev_priv->display.write_eld = ironlake_write_eld;
  8372. dev_priv->display.modeset_global_resources =
  8373. ivb_modeset_global_resources;
  8374. } else if (IS_HASWELL(dev)) {
  8375. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8376. dev_priv->display.write_eld = haswell_write_eld;
  8377. dev_priv->display.modeset_global_resources =
  8378. haswell_modeset_global_resources;
  8379. }
  8380. } else if (IS_G4X(dev)) {
  8381. dev_priv->display.write_eld = g4x_write_eld;
  8382. }
  8383. /* Default just returns -ENODEV to indicate unsupported */
  8384. dev_priv->display.queue_flip = intel_default_queue_flip;
  8385. switch (INTEL_INFO(dev)->gen) {
  8386. case 2:
  8387. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8388. break;
  8389. case 3:
  8390. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8391. break;
  8392. case 4:
  8393. case 5:
  8394. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8395. break;
  8396. case 6:
  8397. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8398. break;
  8399. case 7:
  8400. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8401. break;
  8402. }
  8403. }
  8404. /*
  8405. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8406. * resume, or other times. This quirk makes sure that's the case for
  8407. * affected systems.
  8408. */
  8409. static void quirk_pipea_force(struct drm_device *dev)
  8410. {
  8411. struct drm_i915_private *dev_priv = dev->dev_private;
  8412. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8413. DRM_INFO("applying pipe a force quirk\n");
  8414. }
  8415. /*
  8416. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8417. */
  8418. static void quirk_ssc_force_disable(struct drm_device *dev)
  8419. {
  8420. struct drm_i915_private *dev_priv = dev->dev_private;
  8421. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8422. DRM_INFO("applying lvds SSC disable quirk\n");
  8423. }
  8424. /*
  8425. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8426. * brightness value
  8427. */
  8428. static void quirk_invert_brightness(struct drm_device *dev)
  8429. {
  8430. struct drm_i915_private *dev_priv = dev->dev_private;
  8431. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8432. DRM_INFO("applying inverted panel brightness quirk\n");
  8433. }
  8434. /*
  8435. * Some machines (Dell XPS13) suffer broken backlight controls if
  8436. * BLM_PCH_PWM_ENABLE is set.
  8437. */
  8438. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8439. {
  8440. struct drm_i915_private *dev_priv = dev->dev_private;
  8441. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8442. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8443. }
  8444. struct intel_quirk {
  8445. int device;
  8446. int subsystem_vendor;
  8447. int subsystem_device;
  8448. void (*hook)(struct drm_device *dev);
  8449. };
  8450. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8451. struct intel_dmi_quirk {
  8452. void (*hook)(struct drm_device *dev);
  8453. const struct dmi_system_id (*dmi_id_list)[];
  8454. };
  8455. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8456. {
  8457. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8458. return 1;
  8459. }
  8460. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8461. {
  8462. .dmi_id_list = &(const struct dmi_system_id[]) {
  8463. {
  8464. .callback = intel_dmi_reverse_brightness,
  8465. .ident = "NCR Corporation",
  8466. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8467. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8468. },
  8469. },
  8470. { } /* terminating entry */
  8471. },
  8472. .hook = quirk_invert_brightness,
  8473. },
  8474. };
  8475. static struct intel_quirk intel_quirks[] = {
  8476. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8477. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8478. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8479. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8480. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8481. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8482. /* 830/845 need to leave pipe A & dpll A up */
  8483. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8484. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8485. /* Lenovo U160 cannot use SSC on LVDS */
  8486. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8487. /* Sony Vaio Y cannot use SSC on LVDS */
  8488. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8489. /* Acer Aspire 5734Z must invert backlight brightness */
  8490. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8491. /* Acer/eMachines G725 */
  8492. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8493. /* Acer/eMachines e725 */
  8494. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8495. /* Acer/Packard Bell NCL20 */
  8496. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8497. /* Acer Aspire 4736Z */
  8498. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8499. /* Dell XPS13 HD Sandy Bridge */
  8500. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8501. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8502. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8503. };
  8504. static void intel_init_quirks(struct drm_device *dev)
  8505. {
  8506. struct pci_dev *d = dev->pdev;
  8507. int i;
  8508. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8509. struct intel_quirk *q = &intel_quirks[i];
  8510. if (d->device == q->device &&
  8511. (d->subsystem_vendor == q->subsystem_vendor ||
  8512. q->subsystem_vendor == PCI_ANY_ID) &&
  8513. (d->subsystem_device == q->subsystem_device ||
  8514. q->subsystem_device == PCI_ANY_ID))
  8515. q->hook(dev);
  8516. }
  8517. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8518. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8519. intel_dmi_quirks[i].hook(dev);
  8520. }
  8521. }
  8522. /* Disable the VGA plane that we never use */
  8523. static void i915_disable_vga(struct drm_device *dev)
  8524. {
  8525. struct drm_i915_private *dev_priv = dev->dev_private;
  8526. u8 sr1;
  8527. u32 vga_reg = i915_vgacntrl_reg(dev);
  8528. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8529. outb(SR01, VGA_SR_INDEX);
  8530. sr1 = inb(VGA_SR_DATA);
  8531. outb(sr1 | 1<<5, VGA_SR_DATA);
  8532. /* Disable VGA memory on Intel HD */
  8533. if (HAS_PCH_SPLIT(dev)) {
  8534. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8535. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8536. VGA_RSRC_NORMAL_IO |
  8537. VGA_RSRC_NORMAL_MEM);
  8538. }
  8539. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8540. udelay(300);
  8541. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8542. POSTING_READ(vga_reg);
  8543. }
  8544. static void i915_enable_vga(struct drm_device *dev)
  8545. {
  8546. /* Enable VGA memory on Intel HD */
  8547. if (HAS_PCH_SPLIT(dev)) {
  8548. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8549. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8550. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8551. VGA_RSRC_LEGACY_MEM |
  8552. VGA_RSRC_NORMAL_IO |
  8553. VGA_RSRC_NORMAL_MEM);
  8554. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8555. }
  8556. }
  8557. void intel_modeset_init_hw(struct drm_device *dev)
  8558. {
  8559. intel_init_power_well(dev);
  8560. intel_prepare_ddi(dev);
  8561. intel_init_clock_gating(dev);
  8562. mutex_lock(&dev->struct_mutex);
  8563. intel_enable_gt_powersave(dev);
  8564. mutex_unlock(&dev->struct_mutex);
  8565. }
  8566. void intel_modeset_suspend_hw(struct drm_device *dev)
  8567. {
  8568. intel_suspend_hw(dev);
  8569. }
  8570. void intel_modeset_init(struct drm_device *dev)
  8571. {
  8572. struct drm_i915_private *dev_priv = dev->dev_private;
  8573. int i, j, ret;
  8574. drm_mode_config_init(dev);
  8575. dev->mode_config.min_width = 0;
  8576. dev->mode_config.min_height = 0;
  8577. dev->mode_config.preferred_depth = 24;
  8578. dev->mode_config.prefer_shadow = 1;
  8579. dev->mode_config.funcs = &intel_mode_funcs;
  8580. intel_init_quirks(dev);
  8581. intel_init_pm(dev);
  8582. if (INTEL_INFO(dev)->num_pipes == 0)
  8583. return;
  8584. intel_init_display(dev);
  8585. if (IS_GEN2(dev)) {
  8586. dev->mode_config.max_width = 2048;
  8587. dev->mode_config.max_height = 2048;
  8588. } else if (IS_GEN3(dev)) {
  8589. dev->mode_config.max_width = 4096;
  8590. dev->mode_config.max_height = 4096;
  8591. } else {
  8592. dev->mode_config.max_width = 8192;
  8593. dev->mode_config.max_height = 8192;
  8594. }
  8595. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8596. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8597. INTEL_INFO(dev)->num_pipes,
  8598. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8599. for_each_pipe(i) {
  8600. intel_crtc_init(dev, i);
  8601. for (j = 0; j < dev_priv->num_plane; j++) {
  8602. ret = intel_plane_init(dev, i, j);
  8603. if (ret)
  8604. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8605. pipe_name(i), sprite_name(i, j), ret);
  8606. }
  8607. }
  8608. intel_cpu_pll_init(dev);
  8609. intel_shared_dpll_init(dev);
  8610. /* Just disable it once at startup */
  8611. i915_disable_vga(dev);
  8612. intel_setup_outputs(dev);
  8613. /* Just in case the BIOS is doing something questionable. */
  8614. intel_disable_fbc(dev);
  8615. }
  8616. static void
  8617. intel_connector_break_all_links(struct intel_connector *connector)
  8618. {
  8619. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8620. connector->base.encoder = NULL;
  8621. connector->encoder->connectors_active = false;
  8622. connector->encoder->base.crtc = NULL;
  8623. }
  8624. static void intel_enable_pipe_a(struct drm_device *dev)
  8625. {
  8626. struct intel_connector *connector;
  8627. struct drm_connector *crt = NULL;
  8628. struct intel_load_detect_pipe load_detect_temp;
  8629. /* We can't just switch on the pipe A, we need to set things up with a
  8630. * proper mode and output configuration. As a gross hack, enable pipe A
  8631. * by enabling the load detect pipe once. */
  8632. list_for_each_entry(connector,
  8633. &dev->mode_config.connector_list,
  8634. base.head) {
  8635. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8636. crt = &connector->base;
  8637. break;
  8638. }
  8639. }
  8640. if (!crt)
  8641. return;
  8642. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8643. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8644. }
  8645. static bool
  8646. intel_check_plane_mapping(struct intel_crtc *crtc)
  8647. {
  8648. struct drm_device *dev = crtc->base.dev;
  8649. struct drm_i915_private *dev_priv = dev->dev_private;
  8650. u32 reg, val;
  8651. if (INTEL_INFO(dev)->num_pipes == 1)
  8652. return true;
  8653. reg = DSPCNTR(!crtc->plane);
  8654. val = I915_READ(reg);
  8655. if ((val & DISPLAY_PLANE_ENABLE) &&
  8656. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8657. return false;
  8658. return true;
  8659. }
  8660. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8661. {
  8662. struct drm_device *dev = crtc->base.dev;
  8663. struct drm_i915_private *dev_priv = dev->dev_private;
  8664. u32 reg;
  8665. /* Clear any frame start delays used for debugging left by the BIOS */
  8666. reg = PIPECONF(crtc->config.cpu_transcoder);
  8667. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8668. /* We need to sanitize the plane -> pipe mapping first because this will
  8669. * disable the crtc (and hence change the state) if it is wrong. Note
  8670. * that gen4+ has a fixed plane -> pipe mapping. */
  8671. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8672. struct intel_connector *connector;
  8673. bool plane;
  8674. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8675. crtc->base.base.id);
  8676. /* Pipe has the wrong plane attached and the plane is active.
  8677. * Temporarily change the plane mapping and disable everything
  8678. * ... */
  8679. plane = crtc->plane;
  8680. crtc->plane = !plane;
  8681. dev_priv->display.crtc_disable(&crtc->base);
  8682. crtc->plane = plane;
  8683. /* ... and break all links. */
  8684. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8685. base.head) {
  8686. if (connector->encoder->base.crtc != &crtc->base)
  8687. continue;
  8688. intel_connector_break_all_links(connector);
  8689. }
  8690. WARN_ON(crtc->active);
  8691. crtc->base.enabled = false;
  8692. }
  8693. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8694. crtc->pipe == PIPE_A && !crtc->active) {
  8695. /* BIOS forgot to enable pipe A, this mostly happens after
  8696. * resume. Force-enable the pipe to fix this, the update_dpms
  8697. * call below we restore the pipe to the right state, but leave
  8698. * the required bits on. */
  8699. intel_enable_pipe_a(dev);
  8700. }
  8701. /* Adjust the state of the output pipe according to whether we
  8702. * have active connectors/encoders. */
  8703. intel_crtc_update_dpms(&crtc->base);
  8704. if (crtc->active != crtc->base.enabled) {
  8705. struct intel_encoder *encoder;
  8706. /* This can happen either due to bugs in the get_hw_state
  8707. * functions or because the pipe is force-enabled due to the
  8708. * pipe A quirk. */
  8709. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8710. crtc->base.base.id,
  8711. crtc->base.enabled ? "enabled" : "disabled",
  8712. crtc->active ? "enabled" : "disabled");
  8713. crtc->base.enabled = crtc->active;
  8714. /* Because we only establish the connector -> encoder ->
  8715. * crtc links if something is active, this means the
  8716. * crtc is now deactivated. Break the links. connector
  8717. * -> encoder links are only establish when things are
  8718. * actually up, hence no need to break them. */
  8719. WARN_ON(crtc->active);
  8720. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8721. WARN_ON(encoder->connectors_active);
  8722. encoder->base.crtc = NULL;
  8723. }
  8724. }
  8725. }
  8726. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8727. {
  8728. struct intel_connector *connector;
  8729. struct drm_device *dev = encoder->base.dev;
  8730. /* We need to check both for a crtc link (meaning that the
  8731. * encoder is active and trying to read from a pipe) and the
  8732. * pipe itself being active. */
  8733. bool has_active_crtc = encoder->base.crtc &&
  8734. to_intel_crtc(encoder->base.crtc)->active;
  8735. if (encoder->connectors_active && !has_active_crtc) {
  8736. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8737. encoder->base.base.id,
  8738. drm_get_encoder_name(&encoder->base));
  8739. /* Connector is active, but has no active pipe. This is
  8740. * fallout from our resume register restoring. Disable
  8741. * the encoder manually again. */
  8742. if (encoder->base.crtc) {
  8743. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8744. encoder->base.base.id,
  8745. drm_get_encoder_name(&encoder->base));
  8746. encoder->disable(encoder);
  8747. }
  8748. /* Inconsistent output/port/pipe state happens presumably due to
  8749. * a bug in one of the get_hw_state functions. Or someplace else
  8750. * in our code, like the register restore mess on resume. Clamp
  8751. * things to off as a safer default. */
  8752. list_for_each_entry(connector,
  8753. &dev->mode_config.connector_list,
  8754. base.head) {
  8755. if (connector->encoder != encoder)
  8756. continue;
  8757. intel_connector_break_all_links(connector);
  8758. }
  8759. }
  8760. /* Enabled encoders without active connectors will be fixed in
  8761. * the crtc fixup. */
  8762. }
  8763. void i915_redisable_vga(struct drm_device *dev)
  8764. {
  8765. struct drm_i915_private *dev_priv = dev->dev_private;
  8766. u32 vga_reg = i915_vgacntrl_reg(dev);
  8767. /* This function can be called both from intel_modeset_setup_hw_state or
  8768. * at a very early point in our resume sequence, where the power well
  8769. * structures are not yet restored. Since this function is at a very
  8770. * paranoid "someone might have enabled VGA while we were not looking"
  8771. * level, just check if the power well is enabled instead of trying to
  8772. * follow the "don't touch the power well if we don't need it" policy
  8773. * the rest of the driver uses. */
  8774. if (HAS_POWER_WELL(dev) &&
  8775. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8776. return;
  8777. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8778. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8779. i915_disable_vga(dev);
  8780. }
  8781. }
  8782. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8783. {
  8784. struct drm_i915_private *dev_priv = dev->dev_private;
  8785. enum pipe pipe;
  8786. struct intel_crtc *crtc;
  8787. struct intel_encoder *encoder;
  8788. struct intel_connector *connector;
  8789. int i;
  8790. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8791. base.head) {
  8792. memset(&crtc->config, 0, sizeof(crtc->config));
  8793. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8794. &crtc->config);
  8795. crtc->base.enabled = crtc->active;
  8796. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8797. crtc->base.base.id,
  8798. crtc->active ? "enabled" : "disabled");
  8799. }
  8800. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8801. if (HAS_DDI(dev))
  8802. intel_ddi_setup_hw_pll_state(dev);
  8803. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8804. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8805. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8806. pll->active = 0;
  8807. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8808. base.head) {
  8809. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8810. pll->active++;
  8811. }
  8812. pll->refcount = pll->active;
  8813. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8814. pll->name, pll->refcount, pll->on);
  8815. }
  8816. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8817. base.head) {
  8818. pipe = 0;
  8819. if (encoder->get_hw_state(encoder, &pipe)) {
  8820. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8821. encoder->base.crtc = &crtc->base;
  8822. if (encoder->get_config)
  8823. encoder->get_config(encoder, &crtc->config);
  8824. } else {
  8825. encoder->base.crtc = NULL;
  8826. }
  8827. encoder->connectors_active = false;
  8828. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8829. encoder->base.base.id,
  8830. drm_get_encoder_name(&encoder->base),
  8831. encoder->base.crtc ? "enabled" : "disabled",
  8832. pipe);
  8833. }
  8834. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8835. base.head) {
  8836. if (connector->get_hw_state(connector)) {
  8837. connector->base.dpms = DRM_MODE_DPMS_ON;
  8838. connector->encoder->connectors_active = true;
  8839. connector->base.encoder = &connector->encoder->base;
  8840. } else {
  8841. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8842. connector->base.encoder = NULL;
  8843. }
  8844. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8845. connector->base.base.id,
  8846. drm_get_connector_name(&connector->base),
  8847. connector->base.encoder ? "enabled" : "disabled");
  8848. }
  8849. }
  8850. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8851. * and i915 state tracking structures. */
  8852. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8853. bool force_restore)
  8854. {
  8855. struct drm_i915_private *dev_priv = dev->dev_private;
  8856. enum pipe pipe;
  8857. struct drm_plane *plane;
  8858. struct intel_crtc *crtc;
  8859. struct intel_encoder *encoder;
  8860. int i;
  8861. intel_modeset_readout_hw_state(dev);
  8862. /*
  8863. * Now that we have the config, copy it to each CRTC struct
  8864. * Note that this could go away if we move to using crtc_config
  8865. * checking everywhere.
  8866. */
  8867. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8868. base.head) {
  8869. if (crtc->active && i915_fastboot) {
  8870. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8871. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8872. crtc->base.base.id);
  8873. drm_mode_debug_printmodeline(&crtc->base.mode);
  8874. }
  8875. }
  8876. /* HW state is read out, now we need to sanitize this mess. */
  8877. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8878. base.head) {
  8879. intel_sanitize_encoder(encoder);
  8880. }
  8881. for_each_pipe(pipe) {
  8882. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8883. intel_sanitize_crtc(crtc);
  8884. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8885. }
  8886. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8887. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8888. if (!pll->on || pll->active)
  8889. continue;
  8890. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8891. pll->disable(dev_priv, pll);
  8892. pll->on = false;
  8893. }
  8894. if (force_restore) {
  8895. /*
  8896. * We need to use raw interfaces for restoring state to avoid
  8897. * checking (bogus) intermediate states.
  8898. */
  8899. for_each_pipe(pipe) {
  8900. struct drm_crtc *crtc =
  8901. dev_priv->pipe_to_crtc_mapping[pipe];
  8902. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8903. crtc->fb);
  8904. }
  8905. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8906. intel_plane_restore(plane);
  8907. i915_redisable_vga(dev);
  8908. } else {
  8909. intel_modeset_update_staged_output_state(dev);
  8910. }
  8911. intel_modeset_check_state(dev);
  8912. drm_mode_config_reset(dev);
  8913. }
  8914. void intel_modeset_gem_init(struct drm_device *dev)
  8915. {
  8916. intel_modeset_init_hw(dev);
  8917. intel_setup_overlay(dev);
  8918. intel_modeset_setup_hw_state(dev, false);
  8919. }
  8920. void intel_modeset_cleanup(struct drm_device *dev)
  8921. {
  8922. struct drm_i915_private *dev_priv = dev->dev_private;
  8923. struct drm_crtc *crtc;
  8924. /*
  8925. * Interrupts and polling as the first thing to avoid creating havoc.
  8926. * Too much stuff here (turning of rps, connectors, ...) would
  8927. * experience fancy races otherwise.
  8928. */
  8929. drm_irq_uninstall(dev);
  8930. cancel_work_sync(&dev_priv->hotplug_work);
  8931. /*
  8932. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8933. * poll handlers. Hence disable polling after hpd handling is shut down.
  8934. */
  8935. drm_kms_helper_poll_fini(dev);
  8936. mutex_lock(&dev->struct_mutex);
  8937. intel_unregister_dsm_handler();
  8938. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8939. /* Skip inactive CRTCs */
  8940. if (!crtc->fb)
  8941. continue;
  8942. intel_increase_pllclock(crtc);
  8943. }
  8944. intel_disable_fbc(dev);
  8945. i915_enable_vga(dev);
  8946. intel_disable_gt_powersave(dev);
  8947. ironlake_teardown_rc6(dev);
  8948. mutex_unlock(&dev->struct_mutex);
  8949. /* flush any delayed tasks or pending work */
  8950. flush_scheduled_work();
  8951. /* destroy backlight, if any, before the connectors */
  8952. intel_panel_destroy_backlight(dev);
  8953. drm_mode_config_cleanup(dev);
  8954. intel_cleanup_overlay(dev);
  8955. }
  8956. /*
  8957. * Return which encoder is currently attached for connector.
  8958. */
  8959. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8960. {
  8961. return &intel_attached_encoder(connector)->base;
  8962. }
  8963. void intel_connector_attach_encoder(struct intel_connector *connector,
  8964. struct intel_encoder *encoder)
  8965. {
  8966. connector->encoder = encoder;
  8967. drm_mode_connector_attach_encoder(&connector->base,
  8968. &encoder->base);
  8969. }
  8970. /*
  8971. * set vga decode state - true == enable VGA decode
  8972. */
  8973. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8974. {
  8975. struct drm_i915_private *dev_priv = dev->dev_private;
  8976. u16 gmch_ctrl;
  8977. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8978. if (state)
  8979. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8980. else
  8981. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8982. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8983. return 0;
  8984. }
  8985. struct intel_display_error_state {
  8986. u32 power_well_driver;
  8987. int num_transcoders;
  8988. struct intel_cursor_error_state {
  8989. u32 control;
  8990. u32 position;
  8991. u32 base;
  8992. u32 size;
  8993. } cursor[I915_MAX_PIPES];
  8994. struct intel_pipe_error_state {
  8995. u32 source;
  8996. } pipe[I915_MAX_PIPES];
  8997. struct intel_plane_error_state {
  8998. u32 control;
  8999. u32 stride;
  9000. u32 size;
  9001. u32 pos;
  9002. u32 addr;
  9003. u32 surface;
  9004. u32 tile_offset;
  9005. } plane[I915_MAX_PIPES];
  9006. struct intel_transcoder_error_state {
  9007. enum transcoder cpu_transcoder;
  9008. u32 conf;
  9009. u32 htotal;
  9010. u32 hblank;
  9011. u32 hsync;
  9012. u32 vtotal;
  9013. u32 vblank;
  9014. u32 vsync;
  9015. } transcoder[4];
  9016. };
  9017. struct intel_display_error_state *
  9018. intel_display_capture_error_state(struct drm_device *dev)
  9019. {
  9020. drm_i915_private_t *dev_priv = dev->dev_private;
  9021. struct intel_display_error_state *error;
  9022. int transcoders[] = {
  9023. TRANSCODER_A,
  9024. TRANSCODER_B,
  9025. TRANSCODER_C,
  9026. TRANSCODER_EDP,
  9027. };
  9028. int i;
  9029. if (INTEL_INFO(dev)->num_pipes == 0)
  9030. return NULL;
  9031. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  9032. if (error == NULL)
  9033. return NULL;
  9034. if (HAS_POWER_WELL(dev))
  9035. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9036. for_each_pipe(i) {
  9037. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9038. error->cursor[i].control = I915_READ(CURCNTR(i));
  9039. error->cursor[i].position = I915_READ(CURPOS(i));
  9040. error->cursor[i].base = I915_READ(CURBASE(i));
  9041. } else {
  9042. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9043. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9044. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9045. }
  9046. error->plane[i].control = I915_READ(DSPCNTR(i));
  9047. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9048. if (INTEL_INFO(dev)->gen <= 3) {
  9049. error->plane[i].size = I915_READ(DSPSIZE(i));
  9050. error->plane[i].pos = I915_READ(DSPPOS(i));
  9051. }
  9052. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9053. error->plane[i].addr = I915_READ(DSPADDR(i));
  9054. if (INTEL_INFO(dev)->gen >= 4) {
  9055. error->plane[i].surface = I915_READ(DSPSURF(i));
  9056. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9057. }
  9058. error->pipe[i].source = I915_READ(PIPESRC(i));
  9059. }
  9060. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9061. if (HAS_DDI(dev_priv->dev))
  9062. error->num_transcoders++; /* Account for eDP. */
  9063. for (i = 0; i < error->num_transcoders; i++) {
  9064. enum transcoder cpu_transcoder = transcoders[i];
  9065. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9066. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9067. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9068. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9069. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9070. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9071. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9072. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9073. }
  9074. /* In the code above we read the registers without checking if the power
  9075. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9076. * prevent the next I915_WRITE from detecting it and printing an error
  9077. * message. */
  9078. intel_uncore_clear_errors(dev);
  9079. return error;
  9080. }
  9081. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9082. void
  9083. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9084. struct drm_device *dev,
  9085. struct intel_display_error_state *error)
  9086. {
  9087. int i;
  9088. if (!error)
  9089. return;
  9090. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9091. if (HAS_POWER_WELL(dev))
  9092. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9093. error->power_well_driver);
  9094. for_each_pipe(i) {
  9095. err_printf(m, "Pipe [%d]:\n", i);
  9096. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9097. err_printf(m, "Plane [%d]:\n", i);
  9098. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9099. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9100. if (INTEL_INFO(dev)->gen <= 3) {
  9101. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9102. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9103. }
  9104. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9105. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9106. if (INTEL_INFO(dev)->gen >= 4) {
  9107. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9108. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9109. }
  9110. err_printf(m, "Cursor [%d]:\n", i);
  9111. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9112. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9113. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9114. }
  9115. for (i = 0; i < error->num_transcoders; i++) {
  9116. err_printf(m, " CPU transcoder: %c\n",
  9117. transcoder_name(error->transcoder[i].cpu_transcoder));
  9118. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9119. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9120. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9121. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9122. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9123. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9124. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9125. }
  9126. }