ll_rw_blk.c 99 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/config.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/backing-dev.h>
  16. #include <linux/bio.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/highmem.h>
  19. #include <linux/mm.h>
  20. #include <linux/kernel_stat.h>
  21. #include <linux/string.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  24. #include <linux/completion.h>
  25. #include <linux/slab.h>
  26. #include <linux/swap.h>
  27. #include <linux/writeback.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. /*
  32. * for max sense size
  33. */
  34. #include <scsi/scsi_cmnd.h>
  35. static void blk_unplug_work(void *data);
  36. static void blk_unplug_timeout(unsigned long data);
  37. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  38. static void init_request_from_bio(struct request *req, struct bio *bio);
  39. static int __make_request(request_queue_t *q, struct bio *bio);
  40. /*
  41. * For the allocated request tables
  42. */
  43. static kmem_cache_t *request_cachep;
  44. /*
  45. * For queue allocation
  46. */
  47. static kmem_cache_t *requestq_cachep;
  48. /*
  49. * For io context allocations
  50. */
  51. static kmem_cache_t *iocontext_cachep;
  52. static wait_queue_head_t congestion_wqh[2] = {
  53. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  54. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  55. };
  56. /*
  57. * Controlling structure to kblockd
  58. */
  59. static struct workqueue_struct *kblockd_workqueue;
  60. unsigned long blk_max_low_pfn, blk_max_pfn;
  61. EXPORT_SYMBOL(blk_max_low_pfn);
  62. EXPORT_SYMBOL(blk_max_pfn);
  63. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  64. /* Amount of time in which a process may batch requests */
  65. #define BLK_BATCH_TIME (HZ/50UL)
  66. /* Number of requests a "batching" process may submit */
  67. #define BLK_BATCH_REQ 32
  68. /*
  69. * Return the threshold (number of used requests) at which the queue is
  70. * considered to be congested. It include a little hysteresis to keep the
  71. * context switch rate down.
  72. */
  73. static inline int queue_congestion_on_threshold(struct request_queue *q)
  74. {
  75. return q->nr_congestion_on;
  76. }
  77. /*
  78. * The threshold at which a queue is considered to be uncongested
  79. */
  80. static inline int queue_congestion_off_threshold(struct request_queue *q)
  81. {
  82. return q->nr_congestion_off;
  83. }
  84. static void blk_queue_congestion_threshold(struct request_queue *q)
  85. {
  86. int nr;
  87. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  88. if (nr > q->nr_requests)
  89. nr = q->nr_requests;
  90. q->nr_congestion_on = nr;
  91. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  92. if (nr < 1)
  93. nr = 1;
  94. q->nr_congestion_off = nr;
  95. }
  96. /*
  97. * A queue has just exitted congestion. Note this in the global counter of
  98. * congested queues, and wake up anyone who was waiting for requests to be
  99. * put back.
  100. */
  101. static void clear_queue_congested(request_queue_t *q, int rw)
  102. {
  103. enum bdi_state bit;
  104. wait_queue_head_t *wqh = &congestion_wqh[rw];
  105. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  106. clear_bit(bit, &q->backing_dev_info.state);
  107. smp_mb__after_clear_bit();
  108. if (waitqueue_active(wqh))
  109. wake_up(wqh);
  110. }
  111. /*
  112. * A queue has just entered congestion. Flag that in the queue's VM-visible
  113. * state flags and increment the global gounter of congested queues.
  114. */
  115. static void set_queue_congested(request_queue_t *q, int rw)
  116. {
  117. enum bdi_state bit;
  118. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  119. set_bit(bit, &q->backing_dev_info.state);
  120. }
  121. /**
  122. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  123. * @bdev: device
  124. *
  125. * Locates the passed device's request queue and returns the address of its
  126. * backing_dev_info
  127. *
  128. * Will return NULL if the request queue cannot be located.
  129. */
  130. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  131. {
  132. struct backing_dev_info *ret = NULL;
  133. request_queue_t *q = bdev_get_queue(bdev);
  134. if (q)
  135. ret = &q->backing_dev_info;
  136. return ret;
  137. }
  138. EXPORT_SYMBOL(blk_get_backing_dev_info);
  139. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  140. {
  141. q->activity_fn = fn;
  142. q->activity_data = data;
  143. }
  144. EXPORT_SYMBOL(blk_queue_activity_fn);
  145. /**
  146. * blk_queue_prep_rq - set a prepare_request function for queue
  147. * @q: queue
  148. * @pfn: prepare_request function
  149. *
  150. * It's possible for a queue to register a prepare_request callback which
  151. * is invoked before the request is handed to the request_fn. The goal of
  152. * the function is to prepare a request for I/O, it can be used to build a
  153. * cdb from the request data for instance.
  154. *
  155. */
  156. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  157. {
  158. q->prep_rq_fn = pfn;
  159. }
  160. EXPORT_SYMBOL(blk_queue_prep_rq);
  161. /**
  162. * blk_queue_merge_bvec - set a merge_bvec function for queue
  163. * @q: queue
  164. * @mbfn: merge_bvec_fn
  165. *
  166. * Usually queues have static limitations on the max sectors or segments that
  167. * we can put in a request. Stacking drivers may have some settings that
  168. * are dynamic, and thus we have to query the queue whether it is ok to
  169. * add a new bio_vec to a bio at a given offset or not. If the block device
  170. * has such limitations, it needs to register a merge_bvec_fn to control
  171. * the size of bio's sent to it. Note that a block device *must* allow a
  172. * single page to be added to an empty bio. The block device driver may want
  173. * to use the bio_split() function to deal with these bio's. By default
  174. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  175. * honored.
  176. */
  177. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  178. {
  179. q->merge_bvec_fn = mbfn;
  180. }
  181. EXPORT_SYMBOL(blk_queue_merge_bvec);
  182. void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
  183. {
  184. q->softirq_done_fn = fn;
  185. }
  186. EXPORT_SYMBOL(blk_queue_softirq_done);
  187. /**
  188. * blk_queue_make_request - define an alternate make_request function for a device
  189. * @q: the request queue for the device to be affected
  190. * @mfn: the alternate make_request function
  191. *
  192. * Description:
  193. * The normal way for &struct bios to be passed to a device
  194. * driver is for them to be collected into requests on a request
  195. * queue, and then to allow the device driver to select requests
  196. * off that queue when it is ready. This works well for many block
  197. * devices. However some block devices (typically virtual devices
  198. * such as md or lvm) do not benefit from the processing on the
  199. * request queue, and are served best by having the requests passed
  200. * directly to them. This can be achieved by providing a function
  201. * to blk_queue_make_request().
  202. *
  203. * Caveat:
  204. * The driver that does this *must* be able to deal appropriately
  205. * with buffers in "highmemory". This can be accomplished by either calling
  206. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  207. * blk_queue_bounce() to create a buffer in normal memory.
  208. **/
  209. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  210. {
  211. /*
  212. * set defaults
  213. */
  214. q->nr_requests = BLKDEV_MAX_RQ;
  215. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  216. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  217. q->make_request_fn = mfn;
  218. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  219. q->backing_dev_info.state = 0;
  220. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  221. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  222. blk_queue_hardsect_size(q, 512);
  223. blk_queue_dma_alignment(q, 511);
  224. blk_queue_congestion_threshold(q);
  225. q->nr_batching = BLK_BATCH_REQ;
  226. q->unplug_thresh = 4; /* hmm */
  227. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  228. if (q->unplug_delay == 0)
  229. q->unplug_delay = 1;
  230. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  231. q->unplug_timer.function = blk_unplug_timeout;
  232. q->unplug_timer.data = (unsigned long)q;
  233. /*
  234. * by default assume old behaviour and bounce for any highmem page
  235. */
  236. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  237. blk_queue_activity_fn(q, NULL, NULL);
  238. }
  239. EXPORT_SYMBOL(blk_queue_make_request);
  240. static inline void rq_init(request_queue_t *q, struct request *rq)
  241. {
  242. INIT_LIST_HEAD(&rq->queuelist);
  243. INIT_LIST_HEAD(&rq->donelist);
  244. rq->errors = 0;
  245. rq->rq_status = RQ_ACTIVE;
  246. rq->bio = rq->biotail = NULL;
  247. rq->ioprio = 0;
  248. rq->buffer = NULL;
  249. rq->ref_count = 1;
  250. rq->q = q;
  251. rq->waiting = NULL;
  252. rq->special = NULL;
  253. rq->data_len = 0;
  254. rq->data = NULL;
  255. rq->nr_phys_segments = 0;
  256. rq->sense = NULL;
  257. rq->end_io = NULL;
  258. rq->end_io_data = NULL;
  259. rq->completion_data = NULL;
  260. }
  261. /**
  262. * blk_queue_ordered - does this queue support ordered writes
  263. * @q: the request queue
  264. * @ordered: one of QUEUE_ORDERED_*
  265. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  266. *
  267. * Description:
  268. * For journalled file systems, doing ordered writes on a commit
  269. * block instead of explicitly doing wait_on_buffer (which is bad
  270. * for performance) can be a big win. Block drivers supporting this
  271. * feature should call this function and indicate so.
  272. *
  273. **/
  274. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  275. prepare_flush_fn *prepare_flush_fn)
  276. {
  277. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  278. prepare_flush_fn == NULL) {
  279. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  280. return -EINVAL;
  281. }
  282. if (ordered != QUEUE_ORDERED_NONE &&
  283. ordered != QUEUE_ORDERED_DRAIN &&
  284. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  285. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  286. ordered != QUEUE_ORDERED_TAG &&
  287. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  288. ordered != QUEUE_ORDERED_TAG_FUA) {
  289. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  290. return -EINVAL;
  291. }
  292. q->ordered = ordered;
  293. q->next_ordered = ordered;
  294. q->prepare_flush_fn = prepare_flush_fn;
  295. return 0;
  296. }
  297. EXPORT_SYMBOL(blk_queue_ordered);
  298. /**
  299. * blk_queue_issue_flush_fn - set function for issuing a flush
  300. * @q: the request queue
  301. * @iff: the function to be called issuing the flush
  302. *
  303. * Description:
  304. * If a driver supports issuing a flush command, the support is notified
  305. * to the block layer by defining it through this call.
  306. *
  307. **/
  308. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  309. {
  310. q->issue_flush_fn = iff;
  311. }
  312. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  313. /*
  314. * Cache flushing for ordered writes handling
  315. */
  316. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  317. {
  318. if (!q->ordseq)
  319. return 0;
  320. return 1 << ffz(q->ordseq);
  321. }
  322. unsigned blk_ordered_req_seq(struct request *rq)
  323. {
  324. request_queue_t *q = rq->q;
  325. BUG_ON(q->ordseq == 0);
  326. if (rq == &q->pre_flush_rq)
  327. return QUEUE_ORDSEQ_PREFLUSH;
  328. if (rq == &q->bar_rq)
  329. return QUEUE_ORDSEQ_BAR;
  330. if (rq == &q->post_flush_rq)
  331. return QUEUE_ORDSEQ_POSTFLUSH;
  332. if ((rq->flags & REQ_ORDERED_COLOR) ==
  333. (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
  334. return QUEUE_ORDSEQ_DRAIN;
  335. else
  336. return QUEUE_ORDSEQ_DONE;
  337. }
  338. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  339. {
  340. struct request *rq;
  341. int uptodate;
  342. if (error && !q->orderr)
  343. q->orderr = error;
  344. BUG_ON(q->ordseq & seq);
  345. q->ordseq |= seq;
  346. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  347. return;
  348. /*
  349. * Okay, sequence complete.
  350. */
  351. rq = q->orig_bar_rq;
  352. uptodate = q->orderr ? q->orderr : 1;
  353. q->ordseq = 0;
  354. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  355. end_that_request_last(rq, uptodate);
  356. }
  357. static void pre_flush_end_io(struct request *rq, int error)
  358. {
  359. elv_completed_request(rq->q, rq);
  360. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  361. }
  362. static void bar_end_io(struct request *rq, int error)
  363. {
  364. elv_completed_request(rq->q, rq);
  365. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  366. }
  367. static void post_flush_end_io(struct request *rq, int error)
  368. {
  369. elv_completed_request(rq->q, rq);
  370. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  371. }
  372. static void queue_flush(request_queue_t *q, unsigned which)
  373. {
  374. struct request *rq;
  375. rq_end_io_fn *end_io;
  376. if (which == QUEUE_ORDERED_PREFLUSH) {
  377. rq = &q->pre_flush_rq;
  378. end_io = pre_flush_end_io;
  379. } else {
  380. rq = &q->post_flush_rq;
  381. end_io = post_flush_end_io;
  382. }
  383. rq_init(q, rq);
  384. rq->flags = REQ_HARDBARRIER;
  385. rq->elevator_private = NULL;
  386. rq->rq_disk = q->bar_rq.rq_disk;
  387. rq->rl = NULL;
  388. rq->end_io = end_io;
  389. q->prepare_flush_fn(q, rq);
  390. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  391. }
  392. static inline struct request *start_ordered(request_queue_t *q,
  393. struct request *rq)
  394. {
  395. q->bi_size = 0;
  396. q->orderr = 0;
  397. q->ordered = q->next_ordered;
  398. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  399. /*
  400. * Prep proxy barrier request.
  401. */
  402. blkdev_dequeue_request(rq);
  403. q->orig_bar_rq = rq;
  404. rq = &q->bar_rq;
  405. rq_init(q, rq);
  406. rq->flags = bio_data_dir(q->orig_bar_rq->bio);
  407. rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  408. rq->elevator_private = NULL;
  409. rq->rl = NULL;
  410. init_request_from_bio(rq, q->orig_bar_rq->bio);
  411. rq->end_io = bar_end_io;
  412. /*
  413. * Queue ordered sequence. As we stack them at the head, we
  414. * need to queue in reverse order. Note that we rely on that
  415. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  416. * request gets inbetween ordered sequence.
  417. */
  418. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  419. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  420. else
  421. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  422. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  423. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  424. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  425. rq = &q->pre_flush_rq;
  426. } else
  427. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  428. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  429. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  430. else
  431. rq = NULL;
  432. return rq;
  433. }
  434. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  435. {
  436. struct request *rq = *rqp;
  437. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  438. if (!q->ordseq) {
  439. if (!is_barrier)
  440. return 1;
  441. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  442. *rqp = start_ordered(q, rq);
  443. return 1;
  444. } else {
  445. /*
  446. * This can happen when the queue switches to
  447. * ORDERED_NONE while this request is on it.
  448. */
  449. blkdev_dequeue_request(rq);
  450. end_that_request_first(rq, -EOPNOTSUPP,
  451. rq->hard_nr_sectors);
  452. end_that_request_last(rq, -EOPNOTSUPP);
  453. *rqp = NULL;
  454. return 0;
  455. }
  456. }
  457. /*
  458. * Ordered sequence in progress
  459. */
  460. /* Special requests are not subject to ordering rules. */
  461. if (!blk_fs_request(rq) &&
  462. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  463. return 1;
  464. if (q->ordered & QUEUE_ORDERED_TAG) {
  465. /* Ordered by tag. Blocking the next barrier is enough. */
  466. if (is_barrier && rq != &q->bar_rq)
  467. *rqp = NULL;
  468. } else {
  469. /* Ordered by draining. Wait for turn. */
  470. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  471. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  472. *rqp = NULL;
  473. }
  474. return 1;
  475. }
  476. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  477. {
  478. request_queue_t *q = bio->bi_private;
  479. struct bio_vec *bvec;
  480. int i;
  481. /*
  482. * This is dry run, restore bio_sector and size. We'll finish
  483. * this request again with the original bi_end_io after an
  484. * error occurs or post flush is complete.
  485. */
  486. q->bi_size += bytes;
  487. if (bio->bi_size)
  488. return 1;
  489. /* Rewind bvec's */
  490. bio->bi_idx = 0;
  491. bio_for_each_segment(bvec, bio, i) {
  492. bvec->bv_len += bvec->bv_offset;
  493. bvec->bv_offset = 0;
  494. }
  495. /* Reset bio */
  496. set_bit(BIO_UPTODATE, &bio->bi_flags);
  497. bio->bi_size = q->bi_size;
  498. bio->bi_sector -= (q->bi_size >> 9);
  499. q->bi_size = 0;
  500. return 0;
  501. }
  502. static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
  503. unsigned int nbytes, int error)
  504. {
  505. request_queue_t *q = rq->q;
  506. bio_end_io_t *endio;
  507. void *private;
  508. if (&q->bar_rq != rq)
  509. return 0;
  510. /*
  511. * Okay, this is the barrier request in progress, dry finish it.
  512. */
  513. if (error && !q->orderr)
  514. q->orderr = error;
  515. endio = bio->bi_end_io;
  516. private = bio->bi_private;
  517. bio->bi_end_io = flush_dry_bio_endio;
  518. bio->bi_private = q;
  519. bio_endio(bio, nbytes, error);
  520. bio->bi_end_io = endio;
  521. bio->bi_private = private;
  522. return 1;
  523. }
  524. /**
  525. * blk_queue_bounce_limit - set bounce buffer limit for queue
  526. * @q: the request queue for the device
  527. * @dma_addr: bus address limit
  528. *
  529. * Description:
  530. * Different hardware can have different requirements as to what pages
  531. * it can do I/O directly to. A low level driver can call
  532. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  533. * buffers for doing I/O to pages residing above @page.
  534. **/
  535. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  536. {
  537. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  538. int dma = 0;
  539. q->bounce_gfp = GFP_NOIO;
  540. #if BITS_PER_LONG == 64
  541. /* Assume anything <= 4GB can be handled by IOMMU.
  542. Actually some IOMMUs can handle everything, but I don't
  543. know of a way to test this here. */
  544. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  545. dma = 1;
  546. q->bounce_pfn = max_low_pfn;
  547. #else
  548. if (bounce_pfn < blk_max_low_pfn)
  549. dma = 1;
  550. q->bounce_pfn = bounce_pfn;
  551. #endif
  552. if (dma) {
  553. init_emergency_isa_pool();
  554. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  555. q->bounce_pfn = bounce_pfn;
  556. }
  557. }
  558. EXPORT_SYMBOL(blk_queue_bounce_limit);
  559. /**
  560. * blk_queue_max_sectors - set max sectors for a request for this queue
  561. * @q: the request queue for the device
  562. * @max_sectors: max sectors in the usual 512b unit
  563. *
  564. * Description:
  565. * Enables a low level driver to set an upper limit on the size of
  566. * received requests.
  567. **/
  568. void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
  569. {
  570. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  571. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  572. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  573. }
  574. if (BLK_DEF_MAX_SECTORS > max_sectors)
  575. q->max_hw_sectors = q->max_sectors = max_sectors;
  576. else {
  577. q->max_sectors = BLK_DEF_MAX_SECTORS;
  578. q->max_hw_sectors = max_sectors;
  579. }
  580. }
  581. EXPORT_SYMBOL(blk_queue_max_sectors);
  582. /**
  583. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  584. * @q: the request queue for the device
  585. * @max_segments: max number of segments
  586. *
  587. * Description:
  588. * Enables a low level driver to set an upper limit on the number of
  589. * physical data segments in a request. This would be the largest sized
  590. * scatter list the driver could handle.
  591. **/
  592. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  593. {
  594. if (!max_segments) {
  595. max_segments = 1;
  596. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  597. }
  598. q->max_phys_segments = max_segments;
  599. }
  600. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  601. /**
  602. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  603. * @q: the request queue for the device
  604. * @max_segments: max number of segments
  605. *
  606. * Description:
  607. * Enables a low level driver to set an upper limit on the number of
  608. * hw data segments in a request. This would be the largest number of
  609. * address/length pairs the host adapter can actually give as once
  610. * to the device.
  611. **/
  612. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  613. {
  614. if (!max_segments) {
  615. max_segments = 1;
  616. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  617. }
  618. q->max_hw_segments = max_segments;
  619. }
  620. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  621. /**
  622. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  623. * @q: the request queue for the device
  624. * @max_size: max size of segment in bytes
  625. *
  626. * Description:
  627. * Enables a low level driver to set an upper limit on the size of a
  628. * coalesced segment
  629. **/
  630. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  631. {
  632. if (max_size < PAGE_CACHE_SIZE) {
  633. max_size = PAGE_CACHE_SIZE;
  634. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  635. }
  636. q->max_segment_size = max_size;
  637. }
  638. EXPORT_SYMBOL(blk_queue_max_segment_size);
  639. /**
  640. * blk_queue_hardsect_size - set hardware sector size for the queue
  641. * @q: the request queue for the device
  642. * @size: the hardware sector size, in bytes
  643. *
  644. * Description:
  645. * This should typically be set to the lowest possible sector size
  646. * that the hardware can operate on (possible without reverting to
  647. * even internal read-modify-write operations). Usually the default
  648. * of 512 covers most hardware.
  649. **/
  650. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  651. {
  652. q->hardsect_size = size;
  653. }
  654. EXPORT_SYMBOL(blk_queue_hardsect_size);
  655. /*
  656. * Returns the minimum that is _not_ zero, unless both are zero.
  657. */
  658. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  659. /**
  660. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  661. * @t: the stacking driver (top)
  662. * @b: the underlying device (bottom)
  663. **/
  664. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  665. {
  666. /* zero is "infinity" */
  667. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  668. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  669. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  670. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  671. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  672. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  673. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  674. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  675. }
  676. EXPORT_SYMBOL(blk_queue_stack_limits);
  677. /**
  678. * blk_queue_segment_boundary - set boundary rules for segment merging
  679. * @q: the request queue for the device
  680. * @mask: the memory boundary mask
  681. **/
  682. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  683. {
  684. if (mask < PAGE_CACHE_SIZE - 1) {
  685. mask = PAGE_CACHE_SIZE - 1;
  686. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  687. }
  688. q->seg_boundary_mask = mask;
  689. }
  690. EXPORT_SYMBOL(blk_queue_segment_boundary);
  691. /**
  692. * blk_queue_dma_alignment - set dma length and memory alignment
  693. * @q: the request queue for the device
  694. * @mask: alignment mask
  695. *
  696. * description:
  697. * set required memory and length aligment for direct dma transactions.
  698. * this is used when buiding direct io requests for the queue.
  699. *
  700. **/
  701. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  702. {
  703. q->dma_alignment = mask;
  704. }
  705. EXPORT_SYMBOL(blk_queue_dma_alignment);
  706. /**
  707. * blk_queue_find_tag - find a request by its tag and queue
  708. * @q: The request queue for the device
  709. * @tag: The tag of the request
  710. *
  711. * Notes:
  712. * Should be used when a device returns a tag and you want to match
  713. * it with a request.
  714. *
  715. * no locks need be held.
  716. **/
  717. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  718. {
  719. struct blk_queue_tag *bqt = q->queue_tags;
  720. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  721. return NULL;
  722. return bqt->tag_index[tag];
  723. }
  724. EXPORT_SYMBOL(blk_queue_find_tag);
  725. /**
  726. * __blk_queue_free_tags - release tag maintenance info
  727. * @q: the request queue for the device
  728. *
  729. * Notes:
  730. * blk_cleanup_queue() will take care of calling this function, if tagging
  731. * has been used. So there's no need to call this directly.
  732. **/
  733. static void __blk_queue_free_tags(request_queue_t *q)
  734. {
  735. struct blk_queue_tag *bqt = q->queue_tags;
  736. if (!bqt)
  737. return;
  738. if (atomic_dec_and_test(&bqt->refcnt)) {
  739. BUG_ON(bqt->busy);
  740. BUG_ON(!list_empty(&bqt->busy_list));
  741. kfree(bqt->tag_index);
  742. bqt->tag_index = NULL;
  743. kfree(bqt->tag_map);
  744. bqt->tag_map = NULL;
  745. kfree(bqt);
  746. }
  747. q->queue_tags = NULL;
  748. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  749. }
  750. /**
  751. * blk_queue_free_tags - release tag maintenance info
  752. * @q: the request queue for the device
  753. *
  754. * Notes:
  755. * This is used to disabled tagged queuing to a device, yet leave
  756. * queue in function.
  757. **/
  758. void blk_queue_free_tags(request_queue_t *q)
  759. {
  760. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  761. }
  762. EXPORT_SYMBOL(blk_queue_free_tags);
  763. static int
  764. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  765. {
  766. struct request **tag_index;
  767. unsigned long *tag_map;
  768. int nr_ulongs;
  769. if (depth > q->nr_requests * 2) {
  770. depth = q->nr_requests * 2;
  771. printk(KERN_ERR "%s: adjusted depth to %d\n",
  772. __FUNCTION__, depth);
  773. }
  774. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  775. if (!tag_index)
  776. goto fail;
  777. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  778. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  779. if (!tag_map)
  780. goto fail;
  781. tags->real_max_depth = depth;
  782. tags->max_depth = depth;
  783. tags->tag_index = tag_index;
  784. tags->tag_map = tag_map;
  785. return 0;
  786. fail:
  787. kfree(tag_index);
  788. return -ENOMEM;
  789. }
  790. /**
  791. * blk_queue_init_tags - initialize the queue tag info
  792. * @q: the request queue for the device
  793. * @depth: the maximum queue depth supported
  794. * @tags: the tag to use
  795. **/
  796. int blk_queue_init_tags(request_queue_t *q, int depth,
  797. struct blk_queue_tag *tags)
  798. {
  799. int rc;
  800. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  801. if (!tags && !q->queue_tags) {
  802. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  803. if (!tags)
  804. goto fail;
  805. if (init_tag_map(q, tags, depth))
  806. goto fail;
  807. INIT_LIST_HEAD(&tags->busy_list);
  808. tags->busy = 0;
  809. atomic_set(&tags->refcnt, 1);
  810. } else if (q->queue_tags) {
  811. if ((rc = blk_queue_resize_tags(q, depth)))
  812. return rc;
  813. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  814. return 0;
  815. } else
  816. atomic_inc(&tags->refcnt);
  817. /*
  818. * assign it, all done
  819. */
  820. q->queue_tags = tags;
  821. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  822. return 0;
  823. fail:
  824. kfree(tags);
  825. return -ENOMEM;
  826. }
  827. EXPORT_SYMBOL(blk_queue_init_tags);
  828. /**
  829. * blk_queue_resize_tags - change the queueing depth
  830. * @q: the request queue for the device
  831. * @new_depth: the new max command queueing depth
  832. *
  833. * Notes:
  834. * Must be called with the queue lock held.
  835. **/
  836. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  837. {
  838. struct blk_queue_tag *bqt = q->queue_tags;
  839. struct request **tag_index;
  840. unsigned long *tag_map;
  841. int max_depth, nr_ulongs;
  842. if (!bqt)
  843. return -ENXIO;
  844. /*
  845. * if we already have large enough real_max_depth. just
  846. * adjust max_depth. *NOTE* as requests with tag value
  847. * between new_depth and real_max_depth can be in-flight, tag
  848. * map can not be shrunk blindly here.
  849. */
  850. if (new_depth <= bqt->real_max_depth) {
  851. bqt->max_depth = new_depth;
  852. return 0;
  853. }
  854. /*
  855. * save the old state info, so we can copy it back
  856. */
  857. tag_index = bqt->tag_index;
  858. tag_map = bqt->tag_map;
  859. max_depth = bqt->real_max_depth;
  860. if (init_tag_map(q, bqt, new_depth))
  861. return -ENOMEM;
  862. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  863. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  864. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  865. kfree(tag_index);
  866. kfree(tag_map);
  867. return 0;
  868. }
  869. EXPORT_SYMBOL(blk_queue_resize_tags);
  870. /**
  871. * blk_queue_end_tag - end tag operations for a request
  872. * @q: the request queue for the device
  873. * @rq: the request that has completed
  874. *
  875. * Description:
  876. * Typically called when end_that_request_first() returns 0, meaning
  877. * all transfers have been done for a request. It's important to call
  878. * this function before end_that_request_last(), as that will put the
  879. * request back on the free list thus corrupting the internal tag list.
  880. *
  881. * Notes:
  882. * queue lock must be held.
  883. **/
  884. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  885. {
  886. struct blk_queue_tag *bqt = q->queue_tags;
  887. int tag = rq->tag;
  888. BUG_ON(tag == -1);
  889. if (unlikely(tag >= bqt->real_max_depth))
  890. /*
  891. * This can happen after tag depth has been reduced.
  892. * FIXME: how about a warning or info message here?
  893. */
  894. return;
  895. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  896. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  897. __FUNCTION__, tag);
  898. return;
  899. }
  900. list_del_init(&rq->queuelist);
  901. rq->flags &= ~REQ_QUEUED;
  902. rq->tag = -1;
  903. if (unlikely(bqt->tag_index[tag] == NULL))
  904. printk(KERN_ERR "%s: tag %d is missing\n",
  905. __FUNCTION__, tag);
  906. bqt->tag_index[tag] = NULL;
  907. bqt->busy--;
  908. }
  909. EXPORT_SYMBOL(blk_queue_end_tag);
  910. /**
  911. * blk_queue_start_tag - find a free tag and assign it
  912. * @q: the request queue for the device
  913. * @rq: the block request that needs tagging
  914. *
  915. * Description:
  916. * This can either be used as a stand-alone helper, or possibly be
  917. * assigned as the queue &prep_rq_fn (in which case &struct request
  918. * automagically gets a tag assigned). Note that this function
  919. * assumes that any type of request can be queued! if this is not
  920. * true for your device, you must check the request type before
  921. * calling this function. The request will also be removed from
  922. * the request queue, so it's the drivers responsibility to readd
  923. * it if it should need to be restarted for some reason.
  924. *
  925. * Notes:
  926. * queue lock must be held.
  927. **/
  928. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  929. {
  930. struct blk_queue_tag *bqt = q->queue_tags;
  931. int tag;
  932. if (unlikely((rq->flags & REQ_QUEUED))) {
  933. printk(KERN_ERR
  934. "%s: request %p for device [%s] already tagged %d",
  935. __FUNCTION__, rq,
  936. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  937. BUG();
  938. }
  939. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  940. if (tag >= bqt->max_depth)
  941. return 1;
  942. __set_bit(tag, bqt->tag_map);
  943. rq->flags |= REQ_QUEUED;
  944. rq->tag = tag;
  945. bqt->tag_index[tag] = rq;
  946. blkdev_dequeue_request(rq);
  947. list_add(&rq->queuelist, &bqt->busy_list);
  948. bqt->busy++;
  949. return 0;
  950. }
  951. EXPORT_SYMBOL(blk_queue_start_tag);
  952. /**
  953. * blk_queue_invalidate_tags - invalidate all pending tags
  954. * @q: the request queue for the device
  955. *
  956. * Description:
  957. * Hardware conditions may dictate a need to stop all pending requests.
  958. * In this case, we will safely clear the block side of the tag queue and
  959. * readd all requests to the request queue in the right order.
  960. *
  961. * Notes:
  962. * queue lock must be held.
  963. **/
  964. void blk_queue_invalidate_tags(request_queue_t *q)
  965. {
  966. struct blk_queue_tag *bqt = q->queue_tags;
  967. struct list_head *tmp, *n;
  968. struct request *rq;
  969. list_for_each_safe(tmp, n, &bqt->busy_list) {
  970. rq = list_entry_rq(tmp);
  971. if (rq->tag == -1) {
  972. printk(KERN_ERR
  973. "%s: bad tag found on list\n", __FUNCTION__);
  974. list_del_init(&rq->queuelist);
  975. rq->flags &= ~REQ_QUEUED;
  976. } else
  977. blk_queue_end_tag(q, rq);
  978. rq->flags &= ~REQ_STARTED;
  979. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  980. }
  981. }
  982. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  983. static const char * const rq_flags[] = {
  984. "REQ_RW",
  985. "REQ_FAILFAST",
  986. "REQ_SORTED",
  987. "REQ_SOFTBARRIER",
  988. "REQ_HARDBARRIER",
  989. "REQ_FUA",
  990. "REQ_CMD",
  991. "REQ_NOMERGE",
  992. "REQ_STARTED",
  993. "REQ_DONTPREP",
  994. "REQ_QUEUED",
  995. "REQ_ELVPRIV",
  996. "REQ_PC",
  997. "REQ_BLOCK_PC",
  998. "REQ_SENSE",
  999. "REQ_FAILED",
  1000. "REQ_QUIET",
  1001. "REQ_SPECIAL",
  1002. "REQ_DRIVE_CMD",
  1003. "REQ_DRIVE_TASK",
  1004. "REQ_DRIVE_TASKFILE",
  1005. "REQ_PREEMPT",
  1006. "REQ_PM_SUSPEND",
  1007. "REQ_PM_RESUME",
  1008. "REQ_PM_SHUTDOWN",
  1009. "REQ_ORDERED_COLOR",
  1010. };
  1011. void blk_dump_rq_flags(struct request *rq, char *msg)
  1012. {
  1013. int bit;
  1014. printk("%s: dev %s: flags = ", msg,
  1015. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  1016. bit = 0;
  1017. do {
  1018. if (rq->flags & (1 << bit))
  1019. printk("%s ", rq_flags[bit]);
  1020. bit++;
  1021. } while (bit < __REQ_NR_BITS);
  1022. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1023. rq->nr_sectors,
  1024. rq->current_nr_sectors);
  1025. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1026. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  1027. printk("cdb: ");
  1028. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1029. printk("%02x ", rq->cmd[bit]);
  1030. printk("\n");
  1031. }
  1032. }
  1033. EXPORT_SYMBOL(blk_dump_rq_flags);
  1034. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1035. {
  1036. struct bio_vec *bv, *bvprv = NULL;
  1037. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1038. int high, highprv = 1;
  1039. if (unlikely(!bio->bi_io_vec))
  1040. return;
  1041. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1042. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1043. bio_for_each_segment(bv, bio, i) {
  1044. /*
  1045. * the trick here is making sure that a high page is never
  1046. * considered part of another segment, since that might
  1047. * change with the bounce page.
  1048. */
  1049. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1050. if (high || highprv)
  1051. goto new_hw_segment;
  1052. if (cluster) {
  1053. if (seg_size + bv->bv_len > q->max_segment_size)
  1054. goto new_segment;
  1055. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1056. goto new_segment;
  1057. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1058. goto new_segment;
  1059. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1060. goto new_hw_segment;
  1061. seg_size += bv->bv_len;
  1062. hw_seg_size += bv->bv_len;
  1063. bvprv = bv;
  1064. continue;
  1065. }
  1066. new_segment:
  1067. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1068. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1069. hw_seg_size += bv->bv_len;
  1070. } else {
  1071. new_hw_segment:
  1072. if (hw_seg_size > bio->bi_hw_front_size)
  1073. bio->bi_hw_front_size = hw_seg_size;
  1074. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1075. nr_hw_segs++;
  1076. }
  1077. nr_phys_segs++;
  1078. bvprv = bv;
  1079. seg_size = bv->bv_len;
  1080. highprv = high;
  1081. }
  1082. if (hw_seg_size > bio->bi_hw_back_size)
  1083. bio->bi_hw_back_size = hw_seg_size;
  1084. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1085. bio->bi_hw_front_size = hw_seg_size;
  1086. bio->bi_phys_segments = nr_phys_segs;
  1087. bio->bi_hw_segments = nr_hw_segs;
  1088. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1089. }
  1090. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1091. struct bio *nxt)
  1092. {
  1093. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1094. return 0;
  1095. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1096. return 0;
  1097. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1098. return 0;
  1099. /*
  1100. * bio and nxt are contigous in memory, check if the queue allows
  1101. * these two to be merged into one
  1102. */
  1103. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1104. return 1;
  1105. return 0;
  1106. }
  1107. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1108. struct bio *nxt)
  1109. {
  1110. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1111. blk_recount_segments(q, bio);
  1112. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1113. blk_recount_segments(q, nxt);
  1114. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1115. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1116. return 0;
  1117. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1118. return 0;
  1119. return 1;
  1120. }
  1121. /*
  1122. * map a request to scatterlist, return number of sg entries setup. Caller
  1123. * must make sure sg can hold rq->nr_phys_segments entries
  1124. */
  1125. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1126. {
  1127. struct bio_vec *bvec, *bvprv;
  1128. struct bio *bio;
  1129. int nsegs, i, cluster;
  1130. nsegs = 0;
  1131. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1132. /*
  1133. * for each bio in rq
  1134. */
  1135. bvprv = NULL;
  1136. rq_for_each_bio(bio, rq) {
  1137. /*
  1138. * for each segment in bio
  1139. */
  1140. bio_for_each_segment(bvec, bio, i) {
  1141. int nbytes = bvec->bv_len;
  1142. if (bvprv && cluster) {
  1143. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1144. goto new_segment;
  1145. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1146. goto new_segment;
  1147. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1148. goto new_segment;
  1149. sg[nsegs - 1].length += nbytes;
  1150. } else {
  1151. new_segment:
  1152. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1153. sg[nsegs].page = bvec->bv_page;
  1154. sg[nsegs].length = nbytes;
  1155. sg[nsegs].offset = bvec->bv_offset;
  1156. nsegs++;
  1157. }
  1158. bvprv = bvec;
  1159. } /* segments in bio */
  1160. } /* bios in rq */
  1161. return nsegs;
  1162. }
  1163. EXPORT_SYMBOL(blk_rq_map_sg);
  1164. /*
  1165. * the standard queue merge functions, can be overridden with device
  1166. * specific ones if so desired
  1167. */
  1168. static inline int ll_new_mergeable(request_queue_t *q,
  1169. struct request *req,
  1170. struct bio *bio)
  1171. {
  1172. int nr_phys_segs = bio_phys_segments(q, bio);
  1173. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1174. req->flags |= REQ_NOMERGE;
  1175. if (req == q->last_merge)
  1176. q->last_merge = NULL;
  1177. return 0;
  1178. }
  1179. /*
  1180. * A hw segment is just getting larger, bump just the phys
  1181. * counter.
  1182. */
  1183. req->nr_phys_segments += nr_phys_segs;
  1184. return 1;
  1185. }
  1186. static inline int ll_new_hw_segment(request_queue_t *q,
  1187. struct request *req,
  1188. struct bio *bio)
  1189. {
  1190. int nr_hw_segs = bio_hw_segments(q, bio);
  1191. int nr_phys_segs = bio_phys_segments(q, bio);
  1192. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1193. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1194. req->flags |= REQ_NOMERGE;
  1195. if (req == q->last_merge)
  1196. q->last_merge = NULL;
  1197. return 0;
  1198. }
  1199. /*
  1200. * This will form the start of a new hw segment. Bump both
  1201. * counters.
  1202. */
  1203. req->nr_hw_segments += nr_hw_segs;
  1204. req->nr_phys_segments += nr_phys_segs;
  1205. return 1;
  1206. }
  1207. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1208. struct bio *bio)
  1209. {
  1210. unsigned short max_sectors;
  1211. int len;
  1212. if (unlikely(blk_pc_request(req)))
  1213. max_sectors = q->max_hw_sectors;
  1214. else
  1215. max_sectors = q->max_sectors;
  1216. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1217. req->flags |= REQ_NOMERGE;
  1218. if (req == q->last_merge)
  1219. q->last_merge = NULL;
  1220. return 0;
  1221. }
  1222. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1223. blk_recount_segments(q, req->biotail);
  1224. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1225. blk_recount_segments(q, bio);
  1226. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1227. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1228. !BIOVEC_VIRT_OVERSIZE(len)) {
  1229. int mergeable = ll_new_mergeable(q, req, bio);
  1230. if (mergeable) {
  1231. if (req->nr_hw_segments == 1)
  1232. req->bio->bi_hw_front_size = len;
  1233. if (bio->bi_hw_segments == 1)
  1234. bio->bi_hw_back_size = len;
  1235. }
  1236. return mergeable;
  1237. }
  1238. return ll_new_hw_segment(q, req, bio);
  1239. }
  1240. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1241. struct bio *bio)
  1242. {
  1243. unsigned short max_sectors;
  1244. int len;
  1245. if (unlikely(blk_pc_request(req)))
  1246. max_sectors = q->max_hw_sectors;
  1247. else
  1248. max_sectors = q->max_sectors;
  1249. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1250. req->flags |= REQ_NOMERGE;
  1251. if (req == q->last_merge)
  1252. q->last_merge = NULL;
  1253. return 0;
  1254. }
  1255. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1256. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1257. blk_recount_segments(q, bio);
  1258. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1259. blk_recount_segments(q, req->bio);
  1260. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1261. !BIOVEC_VIRT_OVERSIZE(len)) {
  1262. int mergeable = ll_new_mergeable(q, req, bio);
  1263. if (mergeable) {
  1264. if (bio->bi_hw_segments == 1)
  1265. bio->bi_hw_front_size = len;
  1266. if (req->nr_hw_segments == 1)
  1267. req->biotail->bi_hw_back_size = len;
  1268. }
  1269. return mergeable;
  1270. }
  1271. return ll_new_hw_segment(q, req, bio);
  1272. }
  1273. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1274. struct request *next)
  1275. {
  1276. int total_phys_segments;
  1277. int total_hw_segments;
  1278. /*
  1279. * First check if the either of the requests are re-queued
  1280. * requests. Can't merge them if they are.
  1281. */
  1282. if (req->special || next->special)
  1283. return 0;
  1284. /*
  1285. * Will it become too large?
  1286. */
  1287. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1288. return 0;
  1289. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1290. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1291. total_phys_segments--;
  1292. if (total_phys_segments > q->max_phys_segments)
  1293. return 0;
  1294. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1295. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1296. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1297. /*
  1298. * propagate the combined length to the end of the requests
  1299. */
  1300. if (req->nr_hw_segments == 1)
  1301. req->bio->bi_hw_front_size = len;
  1302. if (next->nr_hw_segments == 1)
  1303. next->biotail->bi_hw_back_size = len;
  1304. total_hw_segments--;
  1305. }
  1306. if (total_hw_segments > q->max_hw_segments)
  1307. return 0;
  1308. /* Merge is OK... */
  1309. req->nr_phys_segments = total_phys_segments;
  1310. req->nr_hw_segments = total_hw_segments;
  1311. return 1;
  1312. }
  1313. /*
  1314. * "plug" the device if there are no outstanding requests: this will
  1315. * force the transfer to start only after we have put all the requests
  1316. * on the list.
  1317. *
  1318. * This is called with interrupts off and no requests on the queue and
  1319. * with the queue lock held.
  1320. */
  1321. void blk_plug_device(request_queue_t *q)
  1322. {
  1323. WARN_ON(!irqs_disabled());
  1324. /*
  1325. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1326. * which will restart the queueing
  1327. */
  1328. if (blk_queue_stopped(q))
  1329. return;
  1330. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1331. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1332. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1333. }
  1334. }
  1335. EXPORT_SYMBOL(blk_plug_device);
  1336. /*
  1337. * remove the queue from the plugged list, if present. called with
  1338. * queue lock held and interrupts disabled.
  1339. */
  1340. int blk_remove_plug(request_queue_t *q)
  1341. {
  1342. WARN_ON(!irqs_disabled());
  1343. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1344. return 0;
  1345. del_timer(&q->unplug_timer);
  1346. return 1;
  1347. }
  1348. EXPORT_SYMBOL(blk_remove_plug);
  1349. /*
  1350. * remove the plug and let it rip..
  1351. */
  1352. void __generic_unplug_device(request_queue_t *q)
  1353. {
  1354. if (unlikely(blk_queue_stopped(q)))
  1355. return;
  1356. if (!blk_remove_plug(q))
  1357. return;
  1358. q->request_fn(q);
  1359. }
  1360. EXPORT_SYMBOL(__generic_unplug_device);
  1361. /**
  1362. * generic_unplug_device - fire a request queue
  1363. * @q: The &request_queue_t in question
  1364. *
  1365. * Description:
  1366. * Linux uses plugging to build bigger requests queues before letting
  1367. * the device have at them. If a queue is plugged, the I/O scheduler
  1368. * is still adding and merging requests on the queue. Once the queue
  1369. * gets unplugged, the request_fn defined for the queue is invoked and
  1370. * transfers started.
  1371. **/
  1372. void generic_unplug_device(request_queue_t *q)
  1373. {
  1374. spin_lock_irq(q->queue_lock);
  1375. __generic_unplug_device(q);
  1376. spin_unlock_irq(q->queue_lock);
  1377. }
  1378. EXPORT_SYMBOL(generic_unplug_device);
  1379. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1380. struct page *page)
  1381. {
  1382. request_queue_t *q = bdi->unplug_io_data;
  1383. /*
  1384. * devices don't necessarily have an ->unplug_fn defined
  1385. */
  1386. if (q->unplug_fn) {
  1387. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1388. q->rq.count[READ] + q->rq.count[WRITE]);
  1389. q->unplug_fn(q);
  1390. }
  1391. }
  1392. static void blk_unplug_work(void *data)
  1393. {
  1394. request_queue_t *q = data;
  1395. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1396. q->rq.count[READ] + q->rq.count[WRITE]);
  1397. q->unplug_fn(q);
  1398. }
  1399. static void blk_unplug_timeout(unsigned long data)
  1400. {
  1401. request_queue_t *q = (request_queue_t *)data;
  1402. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1403. q->rq.count[READ] + q->rq.count[WRITE]);
  1404. kblockd_schedule_work(&q->unplug_work);
  1405. }
  1406. /**
  1407. * blk_start_queue - restart a previously stopped queue
  1408. * @q: The &request_queue_t in question
  1409. *
  1410. * Description:
  1411. * blk_start_queue() will clear the stop flag on the queue, and call
  1412. * the request_fn for the queue if it was in a stopped state when
  1413. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1414. **/
  1415. void blk_start_queue(request_queue_t *q)
  1416. {
  1417. WARN_ON(!irqs_disabled());
  1418. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1419. /*
  1420. * one level of recursion is ok and is much faster than kicking
  1421. * the unplug handling
  1422. */
  1423. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1424. q->request_fn(q);
  1425. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1426. } else {
  1427. blk_plug_device(q);
  1428. kblockd_schedule_work(&q->unplug_work);
  1429. }
  1430. }
  1431. EXPORT_SYMBOL(blk_start_queue);
  1432. /**
  1433. * blk_stop_queue - stop a queue
  1434. * @q: The &request_queue_t in question
  1435. *
  1436. * Description:
  1437. * The Linux block layer assumes that a block driver will consume all
  1438. * entries on the request queue when the request_fn strategy is called.
  1439. * Often this will not happen, because of hardware limitations (queue
  1440. * depth settings). If a device driver gets a 'queue full' response,
  1441. * or if it simply chooses not to queue more I/O at one point, it can
  1442. * call this function to prevent the request_fn from being called until
  1443. * the driver has signalled it's ready to go again. This happens by calling
  1444. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1445. **/
  1446. void blk_stop_queue(request_queue_t *q)
  1447. {
  1448. blk_remove_plug(q);
  1449. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1450. }
  1451. EXPORT_SYMBOL(blk_stop_queue);
  1452. /**
  1453. * blk_sync_queue - cancel any pending callbacks on a queue
  1454. * @q: the queue
  1455. *
  1456. * Description:
  1457. * The block layer may perform asynchronous callback activity
  1458. * on a queue, such as calling the unplug function after a timeout.
  1459. * A block device may call blk_sync_queue to ensure that any
  1460. * such activity is cancelled, thus allowing it to release resources
  1461. * the the callbacks might use. The caller must already have made sure
  1462. * that its ->make_request_fn will not re-add plugging prior to calling
  1463. * this function.
  1464. *
  1465. */
  1466. void blk_sync_queue(struct request_queue *q)
  1467. {
  1468. del_timer_sync(&q->unplug_timer);
  1469. kblockd_flush();
  1470. }
  1471. EXPORT_SYMBOL(blk_sync_queue);
  1472. /**
  1473. * blk_run_queue - run a single device queue
  1474. * @q: The queue to run
  1475. */
  1476. void blk_run_queue(struct request_queue *q)
  1477. {
  1478. unsigned long flags;
  1479. spin_lock_irqsave(q->queue_lock, flags);
  1480. blk_remove_plug(q);
  1481. /*
  1482. * Only recurse once to avoid overrunning the stack, let the unplug
  1483. * handling reinvoke the handler shortly if we already got there.
  1484. */
  1485. if (!elv_queue_empty(q)) {
  1486. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1487. q->request_fn(q);
  1488. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1489. } else {
  1490. blk_plug_device(q);
  1491. kblockd_schedule_work(&q->unplug_work);
  1492. }
  1493. }
  1494. spin_unlock_irqrestore(q->queue_lock, flags);
  1495. }
  1496. EXPORT_SYMBOL(blk_run_queue);
  1497. /**
  1498. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1499. * @kobj: the kobj belonging of the request queue to be released
  1500. *
  1501. * Description:
  1502. * blk_cleanup_queue is the pair to blk_init_queue() or
  1503. * blk_queue_make_request(). It should be called when a request queue is
  1504. * being released; typically when a block device is being de-registered.
  1505. * Currently, its primary task it to free all the &struct request
  1506. * structures that were allocated to the queue and the queue itself.
  1507. *
  1508. * Caveat:
  1509. * Hopefully the low level driver will have finished any
  1510. * outstanding requests first...
  1511. **/
  1512. static void blk_release_queue(struct kobject *kobj)
  1513. {
  1514. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  1515. struct request_list *rl = &q->rq;
  1516. blk_sync_queue(q);
  1517. if (rl->rq_pool)
  1518. mempool_destroy(rl->rq_pool);
  1519. if (q->queue_tags)
  1520. __blk_queue_free_tags(q);
  1521. if (q->blk_trace)
  1522. blk_trace_shutdown(q);
  1523. kmem_cache_free(requestq_cachep, q);
  1524. }
  1525. void blk_put_queue(request_queue_t *q)
  1526. {
  1527. kobject_put(&q->kobj);
  1528. }
  1529. EXPORT_SYMBOL(blk_put_queue);
  1530. void blk_cleanup_queue(request_queue_t * q)
  1531. {
  1532. mutex_lock(&q->sysfs_lock);
  1533. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1534. mutex_unlock(&q->sysfs_lock);
  1535. if (q->elevator)
  1536. elevator_exit(q->elevator);
  1537. blk_put_queue(q);
  1538. }
  1539. EXPORT_SYMBOL(blk_cleanup_queue);
  1540. static int blk_init_free_list(request_queue_t *q)
  1541. {
  1542. struct request_list *rl = &q->rq;
  1543. rl->count[READ] = rl->count[WRITE] = 0;
  1544. rl->starved[READ] = rl->starved[WRITE] = 0;
  1545. rl->elvpriv = 0;
  1546. init_waitqueue_head(&rl->wait[READ]);
  1547. init_waitqueue_head(&rl->wait[WRITE]);
  1548. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1549. mempool_free_slab, request_cachep, q->node);
  1550. if (!rl->rq_pool)
  1551. return -ENOMEM;
  1552. return 0;
  1553. }
  1554. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1555. {
  1556. return blk_alloc_queue_node(gfp_mask, -1);
  1557. }
  1558. EXPORT_SYMBOL(blk_alloc_queue);
  1559. static struct kobj_type queue_ktype;
  1560. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1561. {
  1562. request_queue_t *q;
  1563. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1564. if (!q)
  1565. return NULL;
  1566. memset(q, 0, sizeof(*q));
  1567. init_timer(&q->unplug_timer);
  1568. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  1569. q->kobj.ktype = &queue_ktype;
  1570. kobject_init(&q->kobj);
  1571. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1572. q->backing_dev_info.unplug_io_data = q;
  1573. mutex_init(&q->sysfs_lock);
  1574. return q;
  1575. }
  1576. EXPORT_SYMBOL(blk_alloc_queue_node);
  1577. /**
  1578. * blk_init_queue - prepare a request queue for use with a block device
  1579. * @rfn: The function to be called to process requests that have been
  1580. * placed on the queue.
  1581. * @lock: Request queue spin lock
  1582. *
  1583. * Description:
  1584. * If a block device wishes to use the standard request handling procedures,
  1585. * which sorts requests and coalesces adjacent requests, then it must
  1586. * call blk_init_queue(). The function @rfn will be called when there
  1587. * are requests on the queue that need to be processed. If the device
  1588. * supports plugging, then @rfn may not be called immediately when requests
  1589. * are available on the queue, but may be called at some time later instead.
  1590. * Plugged queues are generally unplugged when a buffer belonging to one
  1591. * of the requests on the queue is needed, or due to memory pressure.
  1592. *
  1593. * @rfn is not required, or even expected, to remove all requests off the
  1594. * queue, but only as many as it can handle at a time. If it does leave
  1595. * requests on the queue, it is responsible for arranging that the requests
  1596. * get dealt with eventually.
  1597. *
  1598. * The queue spin lock must be held while manipulating the requests on the
  1599. * request queue; this lock will be taken also from interrupt context, so irq
  1600. * disabling is needed for it.
  1601. *
  1602. * Function returns a pointer to the initialized request queue, or NULL if
  1603. * it didn't succeed.
  1604. *
  1605. * Note:
  1606. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1607. * when the block device is deactivated (such as at module unload).
  1608. **/
  1609. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1610. {
  1611. return blk_init_queue_node(rfn, lock, -1);
  1612. }
  1613. EXPORT_SYMBOL(blk_init_queue);
  1614. request_queue_t *
  1615. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1616. {
  1617. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1618. if (!q)
  1619. return NULL;
  1620. q->node = node_id;
  1621. if (blk_init_free_list(q)) {
  1622. kmem_cache_free(requestq_cachep, q);
  1623. return NULL;
  1624. }
  1625. /*
  1626. * if caller didn't supply a lock, they get per-queue locking with
  1627. * our embedded lock
  1628. */
  1629. if (!lock) {
  1630. spin_lock_init(&q->__queue_lock);
  1631. lock = &q->__queue_lock;
  1632. }
  1633. q->request_fn = rfn;
  1634. q->back_merge_fn = ll_back_merge_fn;
  1635. q->front_merge_fn = ll_front_merge_fn;
  1636. q->merge_requests_fn = ll_merge_requests_fn;
  1637. q->prep_rq_fn = NULL;
  1638. q->unplug_fn = generic_unplug_device;
  1639. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1640. q->queue_lock = lock;
  1641. blk_queue_segment_boundary(q, 0xffffffff);
  1642. blk_queue_make_request(q, __make_request);
  1643. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1644. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1645. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1646. /*
  1647. * all done
  1648. */
  1649. if (!elevator_init(q, NULL)) {
  1650. blk_queue_congestion_threshold(q);
  1651. return q;
  1652. }
  1653. blk_put_queue(q);
  1654. return NULL;
  1655. }
  1656. EXPORT_SYMBOL(blk_init_queue_node);
  1657. int blk_get_queue(request_queue_t *q)
  1658. {
  1659. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1660. kobject_get(&q->kobj);
  1661. return 0;
  1662. }
  1663. return 1;
  1664. }
  1665. EXPORT_SYMBOL(blk_get_queue);
  1666. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1667. {
  1668. if (rq->flags & REQ_ELVPRIV)
  1669. elv_put_request(q, rq);
  1670. mempool_free(rq, q->rq.rq_pool);
  1671. }
  1672. static inline struct request *
  1673. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
  1674. int priv, gfp_t gfp_mask)
  1675. {
  1676. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1677. if (!rq)
  1678. return NULL;
  1679. /*
  1680. * first three bits are identical in rq->flags and bio->bi_rw,
  1681. * see bio.h and blkdev.h
  1682. */
  1683. rq->flags = rw;
  1684. if (priv) {
  1685. if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
  1686. mempool_free(rq, q->rq.rq_pool);
  1687. return NULL;
  1688. }
  1689. rq->flags |= REQ_ELVPRIV;
  1690. }
  1691. return rq;
  1692. }
  1693. /*
  1694. * ioc_batching returns true if the ioc is a valid batching request and
  1695. * should be given priority access to a request.
  1696. */
  1697. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1698. {
  1699. if (!ioc)
  1700. return 0;
  1701. /*
  1702. * Make sure the process is able to allocate at least 1 request
  1703. * even if the batch times out, otherwise we could theoretically
  1704. * lose wakeups.
  1705. */
  1706. return ioc->nr_batch_requests == q->nr_batching ||
  1707. (ioc->nr_batch_requests > 0
  1708. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1709. }
  1710. /*
  1711. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1712. * will cause the process to be a "batcher" on all queues in the system. This
  1713. * is the behaviour we want though - once it gets a wakeup it should be given
  1714. * a nice run.
  1715. */
  1716. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1717. {
  1718. if (!ioc || ioc_batching(q, ioc))
  1719. return;
  1720. ioc->nr_batch_requests = q->nr_batching;
  1721. ioc->last_waited = jiffies;
  1722. }
  1723. static void __freed_request(request_queue_t *q, int rw)
  1724. {
  1725. struct request_list *rl = &q->rq;
  1726. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1727. clear_queue_congested(q, rw);
  1728. if (rl->count[rw] + 1 <= q->nr_requests) {
  1729. if (waitqueue_active(&rl->wait[rw]))
  1730. wake_up(&rl->wait[rw]);
  1731. blk_clear_queue_full(q, rw);
  1732. }
  1733. }
  1734. /*
  1735. * A request has just been released. Account for it, update the full and
  1736. * congestion status, wake up any waiters. Called under q->queue_lock.
  1737. */
  1738. static void freed_request(request_queue_t *q, int rw, int priv)
  1739. {
  1740. struct request_list *rl = &q->rq;
  1741. rl->count[rw]--;
  1742. if (priv)
  1743. rl->elvpriv--;
  1744. __freed_request(q, rw);
  1745. if (unlikely(rl->starved[rw ^ 1]))
  1746. __freed_request(q, rw ^ 1);
  1747. }
  1748. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1749. /*
  1750. * Get a free request, queue_lock must be held.
  1751. * Returns NULL on failure, with queue_lock held.
  1752. * Returns !NULL on success, with queue_lock *not held*.
  1753. */
  1754. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1755. gfp_t gfp_mask)
  1756. {
  1757. struct request *rq = NULL;
  1758. struct request_list *rl = &q->rq;
  1759. struct io_context *ioc = NULL;
  1760. int may_queue, priv;
  1761. may_queue = elv_may_queue(q, rw, bio);
  1762. if (may_queue == ELV_MQUEUE_NO)
  1763. goto rq_starved;
  1764. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1765. if (rl->count[rw]+1 >= q->nr_requests) {
  1766. ioc = current_io_context(GFP_ATOMIC);
  1767. /*
  1768. * The queue will fill after this allocation, so set
  1769. * it as full, and mark this process as "batching".
  1770. * This process will be allowed to complete a batch of
  1771. * requests, others will be blocked.
  1772. */
  1773. if (!blk_queue_full(q, rw)) {
  1774. ioc_set_batching(q, ioc);
  1775. blk_set_queue_full(q, rw);
  1776. } else {
  1777. if (may_queue != ELV_MQUEUE_MUST
  1778. && !ioc_batching(q, ioc)) {
  1779. /*
  1780. * The queue is full and the allocating
  1781. * process is not a "batcher", and not
  1782. * exempted by the IO scheduler
  1783. */
  1784. goto out;
  1785. }
  1786. }
  1787. }
  1788. set_queue_congested(q, rw);
  1789. }
  1790. /*
  1791. * Only allow batching queuers to allocate up to 50% over the defined
  1792. * limit of requests, otherwise we could have thousands of requests
  1793. * allocated with any setting of ->nr_requests
  1794. */
  1795. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1796. goto out;
  1797. rl->count[rw]++;
  1798. rl->starved[rw] = 0;
  1799. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1800. if (priv)
  1801. rl->elvpriv++;
  1802. spin_unlock_irq(q->queue_lock);
  1803. rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
  1804. if (unlikely(!rq)) {
  1805. /*
  1806. * Allocation failed presumably due to memory. Undo anything
  1807. * we might have messed up.
  1808. *
  1809. * Allocating task should really be put onto the front of the
  1810. * wait queue, but this is pretty rare.
  1811. */
  1812. spin_lock_irq(q->queue_lock);
  1813. freed_request(q, rw, priv);
  1814. /*
  1815. * in the very unlikely event that allocation failed and no
  1816. * requests for this direction was pending, mark us starved
  1817. * so that freeing of a request in the other direction will
  1818. * notice us. another possible fix would be to split the
  1819. * rq mempool into READ and WRITE
  1820. */
  1821. rq_starved:
  1822. if (unlikely(rl->count[rw] == 0))
  1823. rl->starved[rw] = 1;
  1824. goto out;
  1825. }
  1826. /*
  1827. * ioc may be NULL here, and ioc_batching will be false. That's
  1828. * OK, if the queue is under the request limit then requests need
  1829. * not count toward the nr_batch_requests limit. There will always
  1830. * be some limit enforced by BLK_BATCH_TIME.
  1831. */
  1832. if (ioc_batching(q, ioc))
  1833. ioc->nr_batch_requests--;
  1834. rq_init(q, rq);
  1835. rq->rl = rl;
  1836. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1837. out:
  1838. return rq;
  1839. }
  1840. /*
  1841. * No available requests for this queue, unplug the device and wait for some
  1842. * requests to become available.
  1843. *
  1844. * Called with q->queue_lock held, and returns with it unlocked.
  1845. */
  1846. static struct request *get_request_wait(request_queue_t *q, int rw,
  1847. struct bio *bio)
  1848. {
  1849. struct request *rq;
  1850. rq = get_request(q, rw, bio, GFP_NOIO);
  1851. while (!rq) {
  1852. DEFINE_WAIT(wait);
  1853. struct request_list *rl = &q->rq;
  1854. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1855. TASK_UNINTERRUPTIBLE);
  1856. rq = get_request(q, rw, bio, GFP_NOIO);
  1857. if (!rq) {
  1858. struct io_context *ioc;
  1859. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1860. __generic_unplug_device(q);
  1861. spin_unlock_irq(q->queue_lock);
  1862. io_schedule();
  1863. /*
  1864. * After sleeping, we become a "batching" process and
  1865. * will be able to allocate at least one request, and
  1866. * up to a big batch of them for a small period time.
  1867. * See ioc_batching, ioc_set_batching
  1868. */
  1869. ioc = current_io_context(GFP_NOIO);
  1870. ioc_set_batching(q, ioc);
  1871. spin_lock_irq(q->queue_lock);
  1872. }
  1873. finish_wait(&rl->wait[rw], &wait);
  1874. }
  1875. return rq;
  1876. }
  1877. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1878. {
  1879. struct request *rq;
  1880. BUG_ON(rw != READ && rw != WRITE);
  1881. spin_lock_irq(q->queue_lock);
  1882. if (gfp_mask & __GFP_WAIT) {
  1883. rq = get_request_wait(q, rw, NULL);
  1884. } else {
  1885. rq = get_request(q, rw, NULL, gfp_mask);
  1886. if (!rq)
  1887. spin_unlock_irq(q->queue_lock);
  1888. }
  1889. /* q->queue_lock is unlocked at this point */
  1890. return rq;
  1891. }
  1892. EXPORT_SYMBOL(blk_get_request);
  1893. /**
  1894. * blk_requeue_request - put a request back on queue
  1895. * @q: request queue where request should be inserted
  1896. * @rq: request to be inserted
  1897. *
  1898. * Description:
  1899. * Drivers often keep queueing requests until the hardware cannot accept
  1900. * more, when that condition happens we need to put the request back
  1901. * on the queue. Must be called with queue lock held.
  1902. */
  1903. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1904. {
  1905. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1906. if (blk_rq_tagged(rq))
  1907. blk_queue_end_tag(q, rq);
  1908. elv_requeue_request(q, rq);
  1909. }
  1910. EXPORT_SYMBOL(blk_requeue_request);
  1911. /**
  1912. * blk_insert_request - insert a special request in to a request queue
  1913. * @q: request queue where request should be inserted
  1914. * @rq: request to be inserted
  1915. * @at_head: insert request at head or tail of queue
  1916. * @data: private data
  1917. *
  1918. * Description:
  1919. * Many block devices need to execute commands asynchronously, so they don't
  1920. * block the whole kernel from preemption during request execution. This is
  1921. * accomplished normally by inserting aritficial requests tagged as
  1922. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1923. * scheduled for actual execution by the request queue.
  1924. *
  1925. * We have the option of inserting the head or the tail of the queue.
  1926. * Typically we use the tail for new ioctls and so forth. We use the head
  1927. * of the queue for things like a QUEUE_FULL message from a device, or a
  1928. * host that is unable to accept a particular command.
  1929. */
  1930. void blk_insert_request(request_queue_t *q, struct request *rq,
  1931. int at_head, void *data)
  1932. {
  1933. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1934. unsigned long flags;
  1935. /*
  1936. * tell I/O scheduler that this isn't a regular read/write (ie it
  1937. * must not attempt merges on this) and that it acts as a soft
  1938. * barrier
  1939. */
  1940. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1941. rq->special = data;
  1942. spin_lock_irqsave(q->queue_lock, flags);
  1943. /*
  1944. * If command is tagged, release the tag
  1945. */
  1946. if (blk_rq_tagged(rq))
  1947. blk_queue_end_tag(q, rq);
  1948. drive_stat_acct(rq, rq->nr_sectors, 1);
  1949. __elv_add_request(q, rq, where, 0);
  1950. if (blk_queue_plugged(q))
  1951. __generic_unplug_device(q);
  1952. else
  1953. q->request_fn(q);
  1954. spin_unlock_irqrestore(q->queue_lock, flags);
  1955. }
  1956. EXPORT_SYMBOL(blk_insert_request);
  1957. /**
  1958. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1959. * @q: request queue where request should be inserted
  1960. * @rq: request structure to fill
  1961. * @ubuf: the user buffer
  1962. * @len: length of user data
  1963. *
  1964. * Description:
  1965. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1966. * a kernel bounce buffer is used.
  1967. *
  1968. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1969. * still in process context.
  1970. *
  1971. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1972. * before being submitted to the device, as pages mapped may be out of
  1973. * reach. It's the callers responsibility to make sure this happens. The
  1974. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1975. * unmapping.
  1976. */
  1977. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1978. unsigned int len)
  1979. {
  1980. unsigned long uaddr;
  1981. struct bio *bio;
  1982. int reading;
  1983. if (len > (q->max_hw_sectors << 9))
  1984. return -EINVAL;
  1985. if (!len || !ubuf)
  1986. return -EINVAL;
  1987. reading = rq_data_dir(rq) == READ;
  1988. /*
  1989. * if alignment requirement is satisfied, map in user pages for
  1990. * direct dma. else, set up kernel bounce buffers
  1991. */
  1992. uaddr = (unsigned long) ubuf;
  1993. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1994. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1995. else
  1996. bio = bio_copy_user(q, uaddr, len, reading);
  1997. if (!IS_ERR(bio)) {
  1998. rq->bio = rq->biotail = bio;
  1999. blk_rq_bio_prep(q, rq, bio);
  2000. rq->buffer = rq->data = NULL;
  2001. rq->data_len = len;
  2002. return 0;
  2003. }
  2004. /*
  2005. * bio is the err-ptr
  2006. */
  2007. return PTR_ERR(bio);
  2008. }
  2009. EXPORT_SYMBOL(blk_rq_map_user);
  2010. /**
  2011. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2012. * @q: request queue where request should be inserted
  2013. * @rq: request to map data to
  2014. * @iov: pointer to the iovec
  2015. * @iov_count: number of elements in the iovec
  2016. *
  2017. * Description:
  2018. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2019. * a kernel bounce buffer is used.
  2020. *
  2021. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2022. * still in process context.
  2023. *
  2024. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2025. * before being submitted to the device, as pages mapped may be out of
  2026. * reach. It's the callers responsibility to make sure this happens. The
  2027. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2028. * unmapping.
  2029. */
  2030. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  2031. struct sg_iovec *iov, int iov_count)
  2032. {
  2033. struct bio *bio;
  2034. if (!iov || iov_count <= 0)
  2035. return -EINVAL;
  2036. /* we don't allow misaligned data like bio_map_user() does. If the
  2037. * user is using sg, they're expected to know the alignment constraints
  2038. * and respect them accordingly */
  2039. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2040. if (IS_ERR(bio))
  2041. return PTR_ERR(bio);
  2042. rq->bio = rq->biotail = bio;
  2043. blk_rq_bio_prep(q, rq, bio);
  2044. rq->buffer = rq->data = NULL;
  2045. rq->data_len = bio->bi_size;
  2046. return 0;
  2047. }
  2048. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2049. /**
  2050. * blk_rq_unmap_user - unmap a request with user data
  2051. * @bio: bio to be unmapped
  2052. * @ulen: length of user buffer
  2053. *
  2054. * Description:
  2055. * Unmap a bio previously mapped by blk_rq_map_user().
  2056. */
  2057. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  2058. {
  2059. int ret = 0;
  2060. if (bio) {
  2061. if (bio_flagged(bio, BIO_USER_MAPPED))
  2062. bio_unmap_user(bio);
  2063. else
  2064. ret = bio_uncopy_user(bio);
  2065. }
  2066. return 0;
  2067. }
  2068. EXPORT_SYMBOL(blk_rq_unmap_user);
  2069. /**
  2070. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2071. * @q: request queue where request should be inserted
  2072. * @rq: request to fill
  2073. * @kbuf: the kernel buffer
  2074. * @len: length of user data
  2075. * @gfp_mask: memory allocation flags
  2076. */
  2077. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2078. unsigned int len, gfp_t gfp_mask)
  2079. {
  2080. struct bio *bio;
  2081. if (len > (q->max_hw_sectors << 9))
  2082. return -EINVAL;
  2083. if (!len || !kbuf)
  2084. return -EINVAL;
  2085. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2086. if (IS_ERR(bio))
  2087. return PTR_ERR(bio);
  2088. if (rq_data_dir(rq) == WRITE)
  2089. bio->bi_rw |= (1 << BIO_RW);
  2090. rq->bio = rq->biotail = bio;
  2091. blk_rq_bio_prep(q, rq, bio);
  2092. rq->buffer = rq->data = NULL;
  2093. rq->data_len = len;
  2094. return 0;
  2095. }
  2096. EXPORT_SYMBOL(blk_rq_map_kern);
  2097. /**
  2098. * blk_execute_rq_nowait - insert a request into queue for execution
  2099. * @q: queue to insert the request in
  2100. * @bd_disk: matching gendisk
  2101. * @rq: request to insert
  2102. * @at_head: insert request at head or tail of queue
  2103. * @done: I/O completion handler
  2104. *
  2105. * Description:
  2106. * Insert a fully prepared request at the back of the io scheduler queue
  2107. * for execution. Don't wait for completion.
  2108. */
  2109. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2110. struct request *rq, int at_head,
  2111. rq_end_io_fn *done)
  2112. {
  2113. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2114. rq->rq_disk = bd_disk;
  2115. rq->flags |= REQ_NOMERGE;
  2116. rq->end_io = done;
  2117. WARN_ON(irqs_disabled());
  2118. spin_lock_irq(q->queue_lock);
  2119. __elv_add_request(q, rq, where, 1);
  2120. __generic_unplug_device(q);
  2121. spin_unlock_irq(q->queue_lock);
  2122. }
  2123. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2124. /**
  2125. * blk_execute_rq - insert a request into queue for execution
  2126. * @q: queue to insert the request in
  2127. * @bd_disk: matching gendisk
  2128. * @rq: request to insert
  2129. * @at_head: insert request at head or tail of queue
  2130. *
  2131. * Description:
  2132. * Insert a fully prepared request at the back of the io scheduler queue
  2133. * for execution and wait for completion.
  2134. */
  2135. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2136. struct request *rq, int at_head)
  2137. {
  2138. DECLARE_COMPLETION(wait);
  2139. char sense[SCSI_SENSE_BUFFERSIZE];
  2140. int err = 0;
  2141. /*
  2142. * we need an extra reference to the request, so we can look at
  2143. * it after io completion
  2144. */
  2145. rq->ref_count++;
  2146. if (!rq->sense) {
  2147. memset(sense, 0, sizeof(sense));
  2148. rq->sense = sense;
  2149. rq->sense_len = 0;
  2150. }
  2151. rq->waiting = &wait;
  2152. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2153. wait_for_completion(&wait);
  2154. rq->waiting = NULL;
  2155. if (rq->errors)
  2156. err = -EIO;
  2157. return err;
  2158. }
  2159. EXPORT_SYMBOL(blk_execute_rq);
  2160. /**
  2161. * blkdev_issue_flush - queue a flush
  2162. * @bdev: blockdev to issue flush for
  2163. * @error_sector: error sector
  2164. *
  2165. * Description:
  2166. * Issue a flush for the block device in question. Caller can supply
  2167. * room for storing the error offset in case of a flush error, if they
  2168. * wish to. Caller must run wait_for_completion() on its own.
  2169. */
  2170. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2171. {
  2172. request_queue_t *q;
  2173. if (bdev->bd_disk == NULL)
  2174. return -ENXIO;
  2175. q = bdev_get_queue(bdev);
  2176. if (!q)
  2177. return -ENXIO;
  2178. if (!q->issue_flush_fn)
  2179. return -EOPNOTSUPP;
  2180. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2181. }
  2182. EXPORT_SYMBOL(blkdev_issue_flush);
  2183. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2184. {
  2185. int rw = rq_data_dir(rq);
  2186. if (!blk_fs_request(rq) || !rq->rq_disk)
  2187. return;
  2188. if (!new_io) {
  2189. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2190. } else {
  2191. disk_round_stats(rq->rq_disk);
  2192. rq->rq_disk->in_flight++;
  2193. }
  2194. }
  2195. /*
  2196. * add-request adds a request to the linked list.
  2197. * queue lock is held and interrupts disabled, as we muck with the
  2198. * request queue list.
  2199. */
  2200. static inline void add_request(request_queue_t * q, struct request * req)
  2201. {
  2202. drive_stat_acct(req, req->nr_sectors, 1);
  2203. if (q->activity_fn)
  2204. q->activity_fn(q->activity_data, rq_data_dir(req));
  2205. /*
  2206. * elevator indicated where it wants this request to be
  2207. * inserted at elevator_merge time
  2208. */
  2209. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2210. }
  2211. /*
  2212. * disk_round_stats() - Round off the performance stats on a struct
  2213. * disk_stats.
  2214. *
  2215. * The average IO queue length and utilisation statistics are maintained
  2216. * by observing the current state of the queue length and the amount of
  2217. * time it has been in this state for.
  2218. *
  2219. * Normally, that accounting is done on IO completion, but that can result
  2220. * in more than a second's worth of IO being accounted for within any one
  2221. * second, leading to >100% utilisation. To deal with that, we call this
  2222. * function to do a round-off before returning the results when reading
  2223. * /proc/diskstats. This accounts immediately for all queue usage up to
  2224. * the current jiffies and restarts the counters again.
  2225. */
  2226. void disk_round_stats(struct gendisk *disk)
  2227. {
  2228. unsigned long now = jiffies;
  2229. if (now == disk->stamp)
  2230. return;
  2231. if (disk->in_flight) {
  2232. __disk_stat_add(disk, time_in_queue,
  2233. disk->in_flight * (now - disk->stamp));
  2234. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2235. }
  2236. disk->stamp = now;
  2237. }
  2238. EXPORT_SYMBOL_GPL(disk_round_stats);
  2239. /*
  2240. * queue lock must be held
  2241. */
  2242. void __blk_put_request(request_queue_t *q, struct request *req)
  2243. {
  2244. struct request_list *rl = req->rl;
  2245. if (unlikely(!q))
  2246. return;
  2247. if (unlikely(--req->ref_count))
  2248. return;
  2249. elv_completed_request(q, req);
  2250. req->rq_status = RQ_INACTIVE;
  2251. req->rl = NULL;
  2252. /*
  2253. * Request may not have originated from ll_rw_blk. if not,
  2254. * it didn't come out of our reserved rq pools
  2255. */
  2256. if (rl) {
  2257. int rw = rq_data_dir(req);
  2258. int priv = req->flags & REQ_ELVPRIV;
  2259. BUG_ON(!list_empty(&req->queuelist));
  2260. blk_free_request(q, req);
  2261. freed_request(q, rw, priv);
  2262. }
  2263. }
  2264. EXPORT_SYMBOL_GPL(__blk_put_request);
  2265. void blk_put_request(struct request *req)
  2266. {
  2267. unsigned long flags;
  2268. request_queue_t *q = req->q;
  2269. /*
  2270. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2271. * following if (q) test.
  2272. */
  2273. if (q) {
  2274. spin_lock_irqsave(q->queue_lock, flags);
  2275. __blk_put_request(q, req);
  2276. spin_unlock_irqrestore(q->queue_lock, flags);
  2277. }
  2278. }
  2279. EXPORT_SYMBOL(blk_put_request);
  2280. /**
  2281. * blk_end_sync_rq - executes a completion event on a request
  2282. * @rq: request to complete
  2283. * @error: end io status of the request
  2284. */
  2285. void blk_end_sync_rq(struct request *rq, int error)
  2286. {
  2287. struct completion *waiting = rq->waiting;
  2288. rq->waiting = NULL;
  2289. __blk_put_request(rq->q, rq);
  2290. /*
  2291. * complete last, if this is a stack request the process (and thus
  2292. * the rq pointer) could be invalid right after this complete()
  2293. */
  2294. complete(waiting);
  2295. }
  2296. EXPORT_SYMBOL(blk_end_sync_rq);
  2297. /**
  2298. * blk_congestion_wait - wait for a queue to become uncongested
  2299. * @rw: READ or WRITE
  2300. * @timeout: timeout in jiffies
  2301. *
  2302. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2303. * If no queues are congested then just wait for the next request to be
  2304. * returned.
  2305. */
  2306. long blk_congestion_wait(int rw, long timeout)
  2307. {
  2308. long ret;
  2309. DEFINE_WAIT(wait);
  2310. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2311. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2312. ret = io_schedule_timeout(timeout);
  2313. finish_wait(wqh, &wait);
  2314. return ret;
  2315. }
  2316. EXPORT_SYMBOL(blk_congestion_wait);
  2317. /*
  2318. * Has to be called with the request spinlock acquired
  2319. */
  2320. static int attempt_merge(request_queue_t *q, struct request *req,
  2321. struct request *next)
  2322. {
  2323. if (!rq_mergeable(req) || !rq_mergeable(next))
  2324. return 0;
  2325. /*
  2326. * not contiguous
  2327. */
  2328. if (req->sector + req->nr_sectors != next->sector)
  2329. return 0;
  2330. if (rq_data_dir(req) != rq_data_dir(next)
  2331. || req->rq_disk != next->rq_disk
  2332. || next->waiting || next->special)
  2333. return 0;
  2334. /*
  2335. * If we are allowed to merge, then append bio list
  2336. * from next to rq and release next. merge_requests_fn
  2337. * will have updated segment counts, update sector
  2338. * counts here.
  2339. */
  2340. if (!q->merge_requests_fn(q, req, next))
  2341. return 0;
  2342. /*
  2343. * At this point we have either done a back merge
  2344. * or front merge. We need the smaller start_time of
  2345. * the merged requests to be the current request
  2346. * for accounting purposes.
  2347. */
  2348. if (time_after(req->start_time, next->start_time))
  2349. req->start_time = next->start_time;
  2350. req->biotail->bi_next = next->bio;
  2351. req->biotail = next->biotail;
  2352. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2353. elv_merge_requests(q, req, next);
  2354. if (req->rq_disk) {
  2355. disk_round_stats(req->rq_disk);
  2356. req->rq_disk->in_flight--;
  2357. }
  2358. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2359. __blk_put_request(q, next);
  2360. return 1;
  2361. }
  2362. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2363. {
  2364. struct request *next = elv_latter_request(q, rq);
  2365. if (next)
  2366. return attempt_merge(q, rq, next);
  2367. return 0;
  2368. }
  2369. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2370. {
  2371. struct request *prev = elv_former_request(q, rq);
  2372. if (prev)
  2373. return attempt_merge(q, prev, rq);
  2374. return 0;
  2375. }
  2376. static void init_request_from_bio(struct request *req, struct bio *bio)
  2377. {
  2378. req->flags |= REQ_CMD;
  2379. /*
  2380. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2381. */
  2382. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2383. req->flags |= REQ_FAILFAST;
  2384. /*
  2385. * REQ_BARRIER implies no merging, but lets make it explicit
  2386. */
  2387. if (unlikely(bio_barrier(bio)))
  2388. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2389. if (bio_sync(bio))
  2390. req->flags |= REQ_RW_SYNC;
  2391. req->errors = 0;
  2392. req->hard_sector = req->sector = bio->bi_sector;
  2393. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2394. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2395. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2396. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2397. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2398. req->waiting = NULL;
  2399. req->bio = req->biotail = bio;
  2400. req->ioprio = bio_prio(bio);
  2401. req->rq_disk = bio->bi_bdev->bd_disk;
  2402. req->start_time = jiffies;
  2403. }
  2404. static int __make_request(request_queue_t *q, struct bio *bio)
  2405. {
  2406. struct request *req;
  2407. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2408. unsigned short prio;
  2409. sector_t sector;
  2410. sector = bio->bi_sector;
  2411. nr_sectors = bio_sectors(bio);
  2412. cur_nr_sectors = bio_cur_sectors(bio);
  2413. prio = bio_prio(bio);
  2414. rw = bio_data_dir(bio);
  2415. sync = bio_sync(bio);
  2416. /*
  2417. * low level driver can indicate that it wants pages above a
  2418. * certain limit bounced to low memory (ie for highmem, or even
  2419. * ISA dma in theory)
  2420. */
  2421. blk_queue_bounce(q, &bio);
  2422. spin_lock_prefetch(q->queue_lock);
  2423. barrier = bio_barrier(bio);
  2424. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2425. err = -EOPNOTSUPP;
  2426. goto end_io;
  2427. }
  2428. spin_lock_irq(q->queue_lock);
  2429. if (unlikely(barrier) || elv_queue_empty(q))
  2430. goto get_rq;
  2431. el_ret = elv_merge(q, &req, bio);
  2432. switch (el_ret) {
  2433. case ELEVATOR_BACK_MERGE:
  2434. BUG_ON(!rq_mergeable(req));
  2435. if (!q->back_merge_fn(q, req, bio))
  2436. break;
  2437. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2438. req->biotail->bi_next = bio;
  2439. req->biotail = bio;
  2440. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2441. req->ioprio = ioprio_best(req->ioprio, prio);
  2442. drive_stat_acct(req, nr_sectors, 0);
  2443. if (!attempt_back_merge(q, req))
  2444. elv_merged_request(q, req);
  2445. goto out;
  2446. case ELEVATOR_FRONT_MERGE:
  2447. BUG_ON(!rq_mergeable(req));
  2448. if (!q->front_merge_fn(q, req, bio))
  2449. break;
  2450. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2451. bio->bi_next = req->bio;
  2452. req->bio = bio;
  2453. /*
  2454. * may not be valid. if the low level driver said
  2455. * it didn't need a bounce buffer then it better
  2456. * not touch req->buffer either...
  2457. */
  2458. req->buffer = bio_data(bio);
  2459. req->current_nr_sectors = cur_nr_sectors;
  2460. req->hard_cur_sectors = cur_nr_sectors;
  2461. req->sector = req->hard_sector = sector;
  2462. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2463. req->ioprio = ioprio_best(req->ioprio, prio);
  2464. drive_stat_acct(req, nr_sectors, 0);
  2465. if (!attempt_front_merge(q, req))
  2466. elv_merged_request(q, req);
  2467. goto out;
  2468. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2469. default:
  2470. ;
  2471. }
  2472. get_rq:
  2473. /*
  2474. * Grab a free request. This is might sleep but can not fail.
  2475. * Returns with the queue unlocked.
  2476. */
  2477. req = get_request_wait(q, rw, bio);
  2478. /*
  2479. * After dropping the lock and possibly sleeping here, our request
  2480. * may now be mergeable after it had proven unmergeable (above).
  2481. * We don't worry about that case for efficiency. It won't happen
  2482. * often, and the elevators are able to handle it.
  2483. */
  2484. init_request_from_bio(req, bio);
  2485. spin_lock_irq(q->queue_lock);
  2486. if (elv_queue_empty(q))
  2487. blk_plug_device(q);
  2488. add_request(q, req);
  2489. out:
  2490. if (sync)
  2491. __generic_unplug_device(q);
  2492. spin_unlock_irq(q->queue_lock);
  2493. return 0;
  2494. end_io:
  2495. bio_endio(bio, nr_sectors << 9, err);
  2496. return 0;
  2497. }
  2498. /*
  2499. * If bio->bi_dev is a partition, remap the location
  2500. */
  2501. static inline void blk_partition_remap(struct bio *bio)
  2502. {
  2503. struct block_device *bdev = bio->bi_bdev;
  2504. if (bdev != bdev->bd_contains) {
  2505. struct hd_struct *p = bdev->bd_part;
  2506. const int rw = bio_data_dir(bio);
  2507. p->sectors[rw] += bio_sectors(bio);
  2508. p->ios[rw]++;
  2509. bio->bi_sector += p->start_sect;
  2510. bio->bi_bdev = bdev->bd_contains;
  2511. }
  2512. }
  2513. static void handle_bad_sector(struct bio *bio)
  2514. {
  2515. char b[BDEVNAME_SIZE];
  2516. printk(KERN_INFO "attempt to access beyond end of device\n");
  2517. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2518. bdevname(bio->bi_bdev, b),
  2519. bio->bi_rw,
  2520. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2521. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2522. set_bit(BIO_EOF, &bio->bi_flags);
  2523. }
  2524. /**
  2525. * generic_make_request: hand a buffer to its device driver for I/O
  2526. * @bio: The bio describing the location in memory and on the device.
  2527. *
  2528. * generic_make_request() is used to make I/O requests of block
  2529. * devices. It is passed a &struct bio, which describes the I/O that needs
  2530. * to be done.
  2531. *
  2532. * generic_make_request() does not return any status. The
  2533. * success/failure status of the request, along with notification of
  2534. * completion, is delivered asynchronously through the bio->bi_end_io
  2535. * function described (one day) else where.
  2536. *
  2537. * The caller of generic_make_request must make sure that bi_io_vec
  2538. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2539. * set to describe the device address, and the
  2540. * bi_end_io and optionally bi_private are set to describe how
  2541. * completion notification should be signaled.
  2542. *
  2543. * generic_make_request and the drivers it calls may use bi_next if this
  2544. * bio happens to be merged with someone else, and may change bi_dev and
  2545. * bi_sector for remaps as it sees fit. So the values of these fields
  2546. * should NOT be depended on after the call to generic_make_request.
  2547. */
  2548. void generic_make_request(struct bio *bio)
  2549. {
  2550. request_queue_t *q;
  2551. sector_t maxsector;
  2552. int ret, nr_sectors = bio_sectors(bio);
  2553. dev_t old_dev;
  2554. might_sleep();
  2555. /* Test device or partition size, when known. */
  2556. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2557. if (maxsector) {
  2558. sector_t sector = bio->bi_sector;
  2559. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2560. /*
  2561. * This may well happen - the kernel calls bread()
  2562. * without checking the size of the device, e.g., when
  2563. * mounting a device.
  2564. */
  2565. handle_bad_sector(bio);
  2566. goto end_io;
  2567. }
  2568. }
  2569. /*
  2570. * Resolve the mapping until finished. (drivers are
  2571. * still free to implement/resolve their own stacking
  2572. * by explicitly returning 0)
  2573. *
  2574. * NOTE: we don't repeat the blk_size check for each new device.
  2575. * Stacking drivers are expected to know what they are doing.
  2576. */
  2577. maxsector = -1;
  2578. old_dev = 0;
  2579. do {
  2580. char b[BDEVNAME_SIZE];
  2581. q = bdev_get_queue(bio->bi_bdev);
  2582. if (!q) {
  2583. printk(KERN_ERR
  2584. "generic_make_request: Trying to access "
  2585. "nonexistent block-device %s (%Lu)\n",
  2586. bdevname(bio->bi_bdev, b),
  2587. (long long) bio->bi_sector);
  2588. end_io:
  2589. bio_endio(bio, bio->bi_size, -EIO);
  2590. break;
  2591. }
  2592. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2593. printk("bio too big device %s (%u > %u)\n",
  2594. bdevname(bio->bi_bdev, b),
  2595. bio_sectors(bio),
  2596. q->max_hw_sectors);
  2597. goto end_io;
  2598. }
  2599. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2600. goto end_io;
  2601. /*
  2602. * If this device has partitions, remap block n
  2603. * of partition p to block n+start(p) of the disk.
  2604. */
  2605. blk_partition_remap(bio);
  2606. if (maxsector != -1)
  2607. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2608. maxsector);
  2609. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2610. maxsector = bio->bi_sector;
  2611. old_dev = bio->bi_bdev->bd_dev;
  2612. ret = q->make_request_fn(q, bio);
  2613. } while (ret);
  2614. }
  2615. EXPORT_SYMBOL(generic_make_request);
  2616. /**
  2617. * submit_bio: submit a bio to the block device layer for I/O
  2618. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2619. * @bio: The &struct bio which describes the I/O
  2620. *
  2621. * submit_bio() is very similar in purpose to generic_make_request(), and
  2622. * uses that function to do most of the work. Both are fairly rough
  2623. * interfaces, @bio must be presetup and ready for I/O.
  2624. *
  2625. */
  2626. void submit_bio(int rw, struct bio *bio)
  2627. {
  2628. int count = bio_sectors(bio);
  2629. BIO_BUG_ON(!bio->bi_size);
  2630. BIO_BUG_ON(!bio->bi_io_vec);
  2631. bio->bi_rw |= rw;
  2632. if (rw & WRITE)
  2633. mod_page_state(pgpgout, count);
  2634. else
  2635. mod_page_state(pgpgin, count);
  2636. if (unlikely(block_dump)) {
  2637. char b[BDEVNAME_SIZE];
  2638. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2639. current->comm, current->pid,
  2640. (rw & WRITE) ? "WRITE" : "READ",
  2641. (unsigned long long)bio->bi_sector,
  2642. bdevname(bio->bi_bdev,b));
  2643. }
  2644. generic_make_request(bio);
  2645. }
  2646. EXPORT_SYMBOL(submit_bio);
  2647. static void blk_recalc_rq_segments(struct request *rq)
  2648. {
  2649. struct bio *bio, *prevbio = NULL;
  2650. int nr_phys_segs, nr_hw_segs;
  2651. unsigned int phys_size, hw_size;
  2652. request_queue_t *q = rq->q;
  2653. if (!rq->bio)
  2654. return;
  2655. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2656. rq_for_each_bio(bio, rq) {
  2657. /* Force bio hw/phys segs to be recalculated. */
  2658. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2659. nr_phys_segs += bio_phys_segments(q, bio);
  2660. nr_hw_segs += bio_hw_segments(q, bio);
  2661. if (prevbio) {
  2662. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2663. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2664. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2665. pseg <= q->max_segment_size) {
  2666. nr_phys_segs--;
  2667. phys_size += prevbio->bi_size + bio->bi_size;
  2668. } else
  2669. phys_size = 0;
  2670. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2671. hseg <= q->max_segment_size) {
  2672. nr_hw_segs--;
  2673. hw_size += prevbio->bi_size + bio->bi_size;
  2674. } else
  2675. hw_size = 0;
  2676. }
  2677. prevbio = bio;
  2678. }
  2679. rq->nr_phys_segments = nr_phys_segs;
  2680. rq->nr_hw_segments = nr_hw_segs;
  2681. }
  2682. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2683. {
  2684. if (blk_fs_request(rq)) {
  2685. rq->hard_sector += nsect;
  2686. rq->hard_nr_sectors -= nsect;
  2687. /*
  2688. * Move the I/O submission pointers ahead if required.
  2689. */
  2690. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2691. (rq->sector <= rq->hard_sector)) {
  2692. rq->sector = rq->hard_sector;
  2693. rq->nr_sectors = rq->hard_nr_sectors;
  2694. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2695. rq->current_nr_sectors = rq->hard_cur_sectors;
  2696. rq->buffer = bio_data(rq->bio);
  2697. }
  2698. /*
  2699. * if total number of sectors is less than the first segment
  2700. * size, something has gone terribly wrong
  2701. */
  2702. if (rq->nr_sectors < rq->current_nr_sectors) {
  2703. printk("blk: request botched\n");
  2704. rq->nr_sectors = rq->current_nr_sectors;
  2705. }
  2706. }
  2707. }
  2708. static int __end_that_request_first(struct request *req, int uptodate,
  2709. int nr_bytes)
  2710. {
  2711. int total_bytes, bio_nbytes, error, next_idx = 0;
  2712. struct bio *bio;
  2713. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2714. /*
  2715. * extend uptodate bool to allow < 0 value to be direct io error
  2716. */
  2717. error = 0;
  2718. if (end_io_error(uptodate))
  2719. error = !uptodate ? -EIO : uptodate;
  2720. /*
  2721. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2722. * sense key with us all the way through
  2723. */
  2724. if (!blk_pc_request(req))
  2725. req->errors = 0;
  2726. if (!uptodate) {
  2727. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2728. printk("end_request: I/O error, dev %s, sector %llu\n",
  2729. req->rq_disk ? req->rq_disk->disk_name : "?",
  2730. (unsigned long long)req->sector);
  2731. }
  2732. if (blk_fs_request(req) && req->rq_disk) {
  2733. const int rw = rq_data_dir(req);
  2734. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2735. }
  2736. total_bytes = bio_nbytes = 0;
  2737. while ((bio = req->bio) != NULL) {
  2738. int nbytes;
  2739. if (nr_bytes >= bio->bi_size) {
  2740. req->bio = bio->bi_next;
  2741. nbytes = bio->bi_size;
  2742. if (!ordered_bio_endio(req, bio, nbytes, error))
  2743. bio_endio(bio, nbytes, error);
  2744. next_idx = 0;
  2745. bio_nbytes = 0;
  2746. } else {
  2747. int idx = bio->bi_idx + next_idx;
  2748. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2749. blk_dump_rq_flags(req, "__end_that");
  2750. printk("%s: bio idx %d >= vcnt %d\n",
  2751. __FUNCTION__,
  2752. bio->bi_idx, bio->bi_vcnt);
  2753. break;
  2754. }
  2755. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2756. BIO_BUG_ON(nbytes > bio->bi_size);
  2757. /*
  2758. * not a complete bvec done
  2759. */
  2760. if (unlikely(nbytes > nr_bytes)) {
  2761. bio_nbytes += nr_bytes;
  2762. total_bytes += nr_bytes;
  2763. break;
  2764. }
  2765. /*
  2766. * advance to the next vector
  2767. */
  2768. next_idx++;
  2769. bio_nbytes += nbytes;
  2770. }
  2771. total_bytes += nbytes;
  2772. nr_bytes -= nbytes;
  2773. if ((bio = req->bio)) {
  2774. /*
  2775. * end more in this run, or just return 'not-done'
  2776. */
  2777. if (unlikely(nr_bytes <= 0))
  2778. break;
  2779. }
  2780. }
  2781. /*
  2782. * completely done
  2783. */
  2784. if (!req->bio)
  2785. return 0;
  2786. /*
  2787. * if the request wasn't completed, update state
  2788. */
  2789. if (bio_nbytes) {
  2790. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2791. bio_endio(bio, bio_nbytes, error);
  2792. bio->bi_idx += next_idx;
  2793. bio_iovec(bio)->bv_offset += nr_bytes;
  2794. bio_iovec(bio)->bv_len -= nr_bytes;
  2795. }
  2796. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2797. blk_recalc_rq_segments(req);
  2798. return 1;
  2799. }
  2800. /**
  2801. * end_that_request_first - end I/O on a request
  2802. * @req: the request being processed
  2803. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2804. * @nr_sectors: number of sectors to end I/O on
  2805. *
  2806. * Description:
  2807. * Ends I/O on a number of sectors attached to @req, and sets it up
  2808. * for the next range of segments (if any) in the cluster.
  2809. *
  2810. * Return:
  2811. * 0 - we are done with this request, call end_that_request_last()
  2812. * 1 - still buffers pending for this request
  2813. **/
  2814. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2815. {
  2816. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2817. }
  2818. EXPORT_SYMBOL(end_that_request_first);
  2819. /**
  2820. * end_that_request_chunk - end I/O on a request
  2821. * @req: the request being processed
  2822. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2823. * @nr_bytes: number of bytes to complete
  2824. *
  2825. * Description:
  2826. * Ends I/O on a number of bytes attached to @req, and sets it up
  2827. * for the next range of segments (if any). Like end_that_request_first(),
  2828. * but deals with bytes instead of sectors.
  2829. *
  2830. * Return:
  2831. * 0 - we are done with this request, call end_that_request_last()
  2832. * 1 - still buffers pending for this request
  2833. **/
  2834. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2835. {
  2836. return __end_that_request_first(req, uptodate, nr_bytes);
  2837. }
  2838. EXPORT_SYMBOL(end_that_request_chunk);
  2839. /*
  2840. * splice the completion data to a local structure and hand off to
  2841. * process_completion_queue() to complete the requests
  2842. */
  2843. static void blk_done_softirq(struct softirq_action *h)
  2844. {
  2845. struct list_head *cpu_list, local_list;
  2846. local_irq_disable();
  2847. cpu_list = &__get_cpu_var(blk_cpu_done);
  2848. list_replace_init(cpu_list, &local_list);
  2849. local_irq_enable();
  2850. while (!list_empty(&local_list)) {
  2851. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2852. list_del_init(&rq->donelist);
  2853. rq->q->softirq_done_fn(rq);
  2854. }
  2855. }
  2856. #ifdef CONFIG_HOTPLUG_CPU
  2857. static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2858. void *hcpu)
  2859. {
  2860. /*
  2861. * If a CPU goes away, splice its entries to the current CPU
  2862. * and trigger a run of the softirq
  2863. */
  2864. if (action == CPU_DEAD) {
  2865. int cpu = (unsigned long) hcpu;
  2866. local_irq_disable();
  2867. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  2868. &__get_cpu_var(blk_cpu_done));
  2869. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2870. local_irq_enable();
  2871. }
  2872. return NOTIFY_OK;
  2873. }
  2874. static struct notifier_block blk_cpu_notifier = {
  2875. .notifier_call = blk_cpu_notify,
  2876. };
  2877. #endif /* CONFIG_HOTPLUG_CPU */
  2878. /**
  2879. * blk_complete_request - end I/O on a request
  2880. * @req: the request being processed
  2881. *
  2882. * Description:
  2883. * Ends all I/O on a request. It does not handle partial completions,
  2884. * unless the driver actually implements this in its completion callback
  2885. * through requeueing. Theh actual completion happens out-of-order,
  2886. * through a softirq handler. The user must have registered a completion
  2887. * callback through blk_queue_softirq_done().
  2888. **/
  2889. void blk_complete_request(struct request *req)
  2890. {
  2891. struct list_head *cpu_list;
  2892. unsigned long flags;
  2893. BUG_ON(!req->q->softirq_done_fn);
  2894. local_irq_save(flags);
  2895. cpu_list = &__get_cpu_var(blk_cpu_done);
  2896. list_add_tail(&req->donelist, cpu_list);
  2897. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2898. local_irq_restore(flags);
  2899. }
  2900. EXPORT_SYMBOL(blk_complete_request);
  2901. /*
  2902. * queue lock must be held
  2903. */
  2904. void end_that_request_last(struct request *req, int uptodate)
  2905. {
  2906. struct gendisk *disk = req->rq_disk;
  2907. int error;
  2908. /*
  2909. * extend uptodate bool to allow < 0 value to be direct io error
  2910. */
  2911. error = 0;
  2912. if (end_io_error(uptodate))
  2913. error = !uptodate ? -EIO : uptodate;
  2914. if (unlikely(laptop_mode) && blk_fs_request(req))
  2915. laptop_io_completion();
  2916. /*
  2917. * Account IO completion. bar_rq isn't accounted as a normal
  2918. * IO on queueing nor completion. Accounting the containing
  2919. * request is enough.
  2920. */
  2921. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  2922. unsigned long duration = jiffies - req->start_time;
  2923. const int rw = rq_data_dir(req);
  2924. __disk_stat_inc(disk, ios[rw]);
  2925. __disk_stat_add(disk, ticks[rw], duration);
  2926. disk_round_stats(disk);
  2927. disk->in_flight--;
  2928. }
  2929. if (req->end_io)
  2930. req->end_io(req, error);
  2931. else
  2932. __blk_put_request(req->q, req);
  2933. }
  2934. EXPORT_SYMBOL(end_that_request_last);
  2935. void end_request(struct request *req, int uptodate)
  2936. {
  2937. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2938. add_disk_randomness(req->rq_disk);
  2939. blkdev_dequeue_request(req);
  2940. end_that_request_last(req, uptodate);
  2941. }
  2942. }
  2943. EXPORT_SYMBOL(end_request);
  2944. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2945. {
  2946. /* first three bits are identical in rq->flags and bio->bi_rw */
  2947. rq->flags |= (bio->bi_rw & 7);
  2948. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2949. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2950. rq->current_nr_sectors = bio_cur_sectors(bio);
  2951. rq->hard_cur_sectors = rq->current_nr_sectors;
  2952. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2953. rq->buffer = bio_data(bio);
  2954. rq->bio = rq->biotail = bio;
  2955. }
  2956. EXPORT_SYMBOL(blk_rq_bio_prep);
  2957. int kblockd_schedule_work(struct work_struct *work)
  2958. {
  2959. return queue_work(kblockd_workqueue, work);
  2960. }
  2961. EXPORT_SYMBOL(kblockd_schedule_work);
  2962. void kblockd_flush(void)
  2963. {
  2964. flush_workqueue(kblockd_workqueue);
  2965. }
  2966. EXPORT_SYMBOL(kblockd_flush);
  2967. int __init blk_dev_init(void)
  2968. {
  2969. int i;
  2970. kblockd_workqueue = create_workqueue("kblockd");
  2971. if (!kblockd_workqueue)
  2972. panic("Failed to create kblockd\n");
  2973. request_cachep = kmem_cache_create("blkdev_requests",
  2974. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2975. requestq_cachep = kmem_cache_create("blkdev_queue",
  2976. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2977. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2978. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2979. for_each_possible_cpu(i)
  2980. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  2981. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  2982. #ifdef CONFIG_HOTPLUG_CPU
  2983. register_cpu_notifier(&blk_cpu_notifier);
  2984. #endif
  2985. blk_max_low_pfn = max_low_pfn;
  2986. blk_max_pfn = max_pfn;
  2987. return 0;
  2988. }
  2989. /*
  2990. * IO Context helper functions
  2991. */
  2992. void put_io_context(struct io_context *ioc)
  2993. {
  2994. if (ioc == NULL)
  2995. return;
  2996. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2997. if (atomic_dec_and_test(&ioc->refcount)) {
  2998. struct cfq_io_context *cic;
  2999. rcu_read_lock();
  3000. if (ioc->aic && ioc->aic->dtor)
  3001. ioc->aic->dtor(ioc->aic);
  3002. if (ioc->cic_root.rb_node != NULL) {
  3003. struct rb_node *n = rb_first(&ioc->cic_root);
  3004. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3005. cic->dtor(ioc);
  3006. }
  3007. rcu_read_unlock();
  3008. kmem_cache_free(iocontext_cachep, ioc);
  3009. }
  3010. }
  3011. EXPORT_SYMBOL(put_io_context);
  3012. /* Called by the exitting task */
  3013. void exit_io_context(void)
  3014. {
  3015. unsigned long flags;
  3016. struct io_context *ioc;
  3017. struct cfq_io_context *cic;
  3018. local_irq_save(flags);
  3019. task_lock(current);
  3020. ioc = current->io_context;
  3021. current->io_context = NULL;
  3022. ioc->task = NULL;
  3023. task_unlock(current);
  3024. local_irq_restore(flags);
  3025. if (ioc->aic && ioc->aic->exit)
  3026. ioc->aic->exit(ioc->aic);
  3027. if (ioc->cic_root.rb_node != NULL) {
  3028. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3029. cic->exit(ioc);
  3030. }
  3031. put_io_context(ioc);
  3032. }
  3033. /*
  3034. * If the current task has no IO context then create one and initialise it.
  3035. * Otherwise, return its existing IO context.
  3036. *
  3037. * This returned IO context doesn't have a specifically elevated refcount,
  3038. * but since the current task itself holds a reference, the context can be
  3039. * used in general code, so long as it stays within `current` context.
  3040. */
  3041. struct io_context *current_io_context(gfp_t gfp_flags)
  3042. {
  3043. struct task_struct *tsk = current;
  3044. struct io_context *ret;
  3045. ret = tsk->io_context;
  3046. if (likely(ret))
  3047. return ret;
  3048. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  3049. if (ret) {
  3050. atomic_set(&ret->refcount, 1);
  3051. ret->task = current;
  3052. ret->set_ioprio = NULL;
  3053. ret->last_waited = jiffies; /* doesn't matter... */
  3054. ret->nr_batch_requests = 0; /* because this is 0 */
  3055. ret->aic = NULL;
  3056. ret->cic_root.rb_node = NULL;
  3057. tsk->io_context = ret;
  3058. }
  3059. return ret;
  3060. }
  3061. EXPORT_SYMBOL(current_io_context);
  3062. /*
  3063. * If the current task has no IO context then create one and initialise it.
  3064. * If it does have a context, take a ref on it.
  3065. *
  3066. * This is always called in the context of the task which submitted the I/O.
  3067. */
  3068. struct io_context *get_io_context(gfp_t gfp_flags)
  3069. {
  3070. struct io_context *ret;
  3071. ret = current_io_context(gfp_flags);
  3072. if (likely(ret))
  3073. atomic_inc(&ret->refcount);
  3074. return ret;
  3075. }
  3076. EXPORT_SYMBOL(get_io_context);
  3077. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3078. {
  3079. struct io_context *src = *psrc;
  3080. struct io_context *dst = *pdst;
  3081. if (src) {
  3082. BUG_ON(atomic_read(&src->refcount) == 0);
  3083. atomic_inc(&src->refcount);
  3084. put_io_context(dst);
  3085. *pdst = src;
  3086. }
  3087. }
  3088. EXPORT_SYMBOL(copy_io_context);
  3089. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3090. {
  3091. struct io_context *temp;
  3092. temp = *ioc1;
  3093. *ioc1 = *ioc2;
  3094. *ioc2 = temp;
  3095. }
  3096. EXPORT_SYMBOL(swap_io_context);
  3097. /*
  3098. * sysfs parts below
  3099. */
  3100. struct queue_sysfs_entry {
  3101. struct attribute attr;
  3102. ssize_t (*show)(struct request_queue *, char *);
  3103. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3104. };
  3105. static ssize_t
  3106. queue_var_show(unsigned int var, char *page)
  3107. {
  3108. return sprintf(page, "%d\n", var);
  3109. }
  3110. static ssize_t
  3111. queue_var_store(unsigned long *var, const char *page, size_t count)
  3112. {
  3113. char *p = (char *) page;
  3114. *var = simple_strtoul(p, &p, 10);
  3115. return count;
  3116. }
  3117. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3118. {
  3119. return queue_var_show(q->nr_requests, (page));
  3120. }
  3121. static ssize_t
  3122. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3123. {
  3124. struct request_list *rl = &q->rq;
  3125. unsigned long nr;
  3126. int ret = queue_var_store(&nr, page, count);
  3127. if (nr < BLKDEV_MIN_RQ)
  3128. nr = BLKDEV_MIN_RQ;
  3129. spin_lock_irq(q->queue_lock);
  3130. q->nr_requests = nr;
  3131. blk_queue_congestion_threshold(q);
  3132. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3133. set_queue_congested(q, READ);
  3134. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3135. clear_queue_congested(q, READ);
  3136. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3137. set_queue_congested(q, WRITE);
  3138. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3139. clear_queue_congested(q, WRITE);
  3140. if (rl->count[READ] >= q->nr_requests) {
  3141. blk_set_queue_full(q, READ);
  3142. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3143. blk_clear_queue_full(q, READ);
  3144. wake_up(&rl->wait[READ]);
  3145. }
  3146. if (rl->count[WRITE] >= q->nr_requests) {
  3147. blk_set_queue_full(q, WRITE);
  3148. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3149. blk_clear_queue_full(q, WRITE);
  3150. wake_up(&rl->wait[WRITE]);
  3151. }
  3152. spin_unlock_irq(q->queue_lock);
  3153. return ret;
  3154. }
  3155. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3156. {
  3157. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3158. return queue_var_show(ra_kb, (page));
  3159. }
  3160. static ssize_t
  3161. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3162. {
  3163. unsigned long ra_kb;
  3164. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3165. spin_lock_irq(q->queue_lock);
  3166. if (ra_kb > (q->max_sectors >> 1))
  3167. ra_kb = (q->max_sectors >> 1);
  3168. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3169. spin_unlock_irq(q->queue_lock);
  3170. return ret;
  3171. }
  3172. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3173. {
  3174. int max_sectors_kb = q->max_sectors >> 1;
  3175. return queue_var_show(max_sectors_kb, (page));
  3176. }
  3177. static ssize_t
  3178. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3179. {
  3180. unsigned long max_sectors_kb,
  3181. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3182. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3183. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3184. int ra_kb;
  3185. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3186. return -EINVAL;
  3187. /*
  3188. * Take the queue lock to update the readahead and max_sectors
  3189. * values synchronously:
  3190. */
  3191. spin_lock_irq(q->queue_lock);
  3192. /*
  3193. * Trim readahead window as well, if necessary:
  3194. */
  3195. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3196. if (ra_kb > max_sectors_kb)
  3197. q->backing_dev_info.ra_pages =
  3198. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3199. q->max_sectors = max_sectors_kb << 1;
  3200. spin_unlock_irq(q->queue_lock);
  3201. return ret;
  3202. }
  3203. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3204. {
  3205. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3206. return queue_var_show(max_hw_sectors_kb, (page));
  3207. }
  3208. static struct queue_sysfs_entry queue_requests_entry = {
  3209. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3210. .show = queue_requests_show,
  3211. .store = queue_requests_store,
  3212. };
  3213. static struct queue_sysfs_entry queue_ra_entry = {
  3214. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3215. .show = queue_ra_show,
  3216. .store = queue_ra_store,
  3217. };
  3218. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3219. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3220. .show = queue_max_sectors_show,
  3221. .store = queue_max_sectors_store,
  3222. };
  3223. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3224. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3225. .show = queue_max_hw_sectors_show,
  3226. };
  3227. static struct queue_sysfs_entry queue_iosched_entry = {
  3228. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3229. .show = elv_iosched_show,
  3230. .store = elv_iosched_store,
  3231. };
  3232. static struct attribute *default_attrs[] = {
  3233. &queue_requests_entry.attr,
  3234. &queue_ra_entry.attr,
  3235. &queue_max_hw_sectors_entry.attr,
  3236. &queue_max_sectors_entry.attr,
  3237. &queue_iosched_entry.attr,
  3238. NULL,
  3239. };
  3240. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3241. static ssize_t
  3242. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3243. {
  3244. struct queue_sysfs_entry *entry = to_queue(attr);
  3245. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3246. ssize_t res;
  3247. if (!entry->show)
  3248. return -EIO;
  3249. mutex_lock(&q->sysfs_lock);
  3250. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3251. mutex_unlock(&q->sysfs_lock);
  3252. return -ENOENT;
  3253. }
  3254. res = entry->show(q, page);
  3255. mutex_unlock(&q->sysfs_lock);
  3256. return res;
  3257. }
  3258. static ssize_t
  3259. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3260. const char *page, size_t length)
  3261. {
  3262. struct queue_sysfs_entry *entry = to_queue(attr);
  3263. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3264. ssize_t res;
  3265. if (!entry->store)
  3266. return -EIO;
  3267. mutex_lock(&q->sysfs_lock);
  3268. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3269. mutex_unlock(&q->sysfs_lock);
  3270. return -ENOENT;
  3271. }
  3272. res = entry->store(q, page, length);
  3273. mutex_unlock(&q->sysfs_lock);
  3274. return res;
  3275. }
  3276. static struct sysfs_ops queue_sysfs_ops = {
  3277. .show = queue_attr_show,
  3278. .store = queue_attr_store,
  3279. };
  3280. static struct kobj_type queue_ktype = {
  3281. .sysfs_ops = &queue_sysfs_ops,
  3282. .default_attrs = default_attrs,
  3283. .release = blk_release_queue,
  3284. };
  3285. int blk_register_queue(struct gendisk *disk)
  3286. {
  3287. int ret;
  3288. request_queue_t *q = disk->queue;
  3289. if (!q || !q->request_fn)
  3290. return -ENXIO;
  3291. q->kobj.parent = kobject_get(&disk->kobj);
  3292. ret = kobject_add(&q->kobj);
  3293. if (ret < 0)
  3294. return ret;
  3295. kobject_uevent(&q->kobj, KOBJ_ADD);
  3296. ret = elv_register_queue(q);
  3297. if (ret) {
  3298. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3299. kobject_del(&q->kobj);
  3300. return ret;
  3301. }
  3302. return 0;
  3303. }
  3304. void blk_unregister_queue(struct gendisk *disk)
  3305. {
  3306. request_queue_t *q = disk->queue;
  3307. if (q && q->request_fn) {
  3308. elv_unregister_queue(q);
  3309. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3310. kobject_del(&q->kobj);
  3311. kobject_put(&disk->kobj);
  3312. }
  3313. }