intel_display.c 172 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include <linux/slab.h>
  31. #include "drmP.h"
  32. #include "intel_drv.h"
  33. #include "i915_drm.h"
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "drm_dp_helper.h"
  37. #include "drm_crtc_helper.h"
  38. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  39. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  40. static void intel_update_watermarks(struct drm_device *dev);
  41. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
  42. typedef struct {
  43. /* given values */
  44. int n;
  45. int m1, m2;
  46. int p1, p2;
  47. /* derived values */
  48. int dot;
  49. int vco;
  50. int m;
  51. int p;
  52. } intel_clock_t;
  53. typedef struct {
  54. int min, max;
  55. } intel_range_t;
  56. typedef struct {
  57. int dot_limit;
  58. int p2_slow, p2_fast;
  59. } intel_p2_t;
  60. #define INTEL_P2_NUM 2
  61. typedef struct intel_limit intel_limit_t;
  62. struct intel_limit {
  63. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  64. intel_p2_t p2;
  65. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  66. int, int, intel_clock_t *);
  67. };
  68. #define I8XX_DOT_MIN 25000
  69. #define I8XX_DOT_MAX 350000
  70. #define I8XX_VCO_MIN 930000
  71. #define I8XX_VCO_MAX 1400000
  72. #define I8XX_N_MIN 3
  73. #define I8XX_N_MAX 16
  74. #define I8XX_M_MIN 96
  75. #define I8XX_M_MAX 140
  76. #define I8XX_M1_MIN 18
  77. #define I8XX_M1_MAX 26
  78. #define I8XX_M2_MIN 6
  79. #define I8XX_M2_MAX 16
  80. #define I8XX_P_MIN 4
  81. #define I8XX_P_MAX 128
  82. #define I8XX_P1_MIN 2
  83. #define I8XX_P1_MAX 33
  84. #define I8XX_P1_LVDS_MIN 1
  85. #define I8XX_P1_LVDS_MAX 6
  86. #define I8XX_P2_SLOW 4
  87. #define I8XX_P2_FAST 2
  88. #define I8XX_P2_LVDS_SLOW 14
  89. #define I8XX_P2_LVDS_FAST 7
  90. #define I8XX_P2_SLOW_LIMIT 165000
  91. #define I9XX_DOT_MIN 20000
  92. #define I9XX_DOT_MAX 400000
  93. #define I9XX_VCO_MIN 1400000
  94. #define I9XX_VCO_MAX 2800000
  95. #define PINEVIEW_VCO_MIN 1700000
  96. #define PINEVIEW_VCO_MAX 3500000
  97. #define I9XX_N_MIN 1
  98. #define I9XX_N_MAX 6
  99. /* Pineview's Ncounter is a ring counter */
  100. #define PINEVIEW_N_MIN 3
  101. #define PINEVIEW_N_MAX 6
  102. #define I9XX_M_MIN 70
  103. #define I9XX_M_MAX 120
  104. #define PINEVIEW_M_MIN 2
  105. #define PINEVIEW_M_MAX 256
  106. #define I9XX_M1_MIN 10
  107. #define I9XX_M1_MAX 22
  108. #define I9XX_M2_MIN 5
  109. #define I9XX_M2_MAX 9
  110. /* Pineview M1 is reserved, and must be 0 */
  111. #define PINEVIEW_M1_MIN 0
  112. #define PINEVIEW_M1_MAX 0
  113. #define PINEVIEW_M2_MIN 0
  114. #define PINEVIEW_M2_MAX 254
  115. #define I9XX_P_SDVO_DAC_MIN 5
  116. #define I9XX_P_SDVO_DAC_MAX 80
  117. #define I9XX_P_LVDS_MIN 7
  118. #define I9XX_P_LVDS_MAX 98
  119. #define PINEVIEW_P_LVDS_MIN 7
  120. #define PINEVIEW_P_LVDS_MAX 112
  121. #define I9XX_P1_MIN 1
  122. #define I9XX_P1_MAX 8
  123. #define I9XX_P2_SDVO_DAC_SLOW 10
  124. #define I9XX_P2_SDVO_DAC_FAST 5
  125. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  126. #define I9XX_P2_LVDS_SLOW 14
  127. #define I9XX_P2_LVDS_FAST 7
  128. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  129. /*The parameter is for SDVO on G4x platform*/
  130. #define G4X_DOT_SDVO_MIN 25000
  131. #define G4X_DOT_SDVO_MAX 270000
  132. #define G4X_VCO_MIN 1750000
  133. #define G4X_VCO_MAX 3500000
  134. #define G4X_N_SDVO_MIN 1
  135. #define G4X_N_SDVO_MAX 4
  136. #define G4X_M_SDVO_MIN 104
  137. #define G4X_M_SDVO_MAX 138
  138. #define G4X_M1_SDVO_MIN 17
  139. #define G4X_M1_SDVO_MAX 23
  140. #define G4X_M2_SDVO_MIN 5
  141. #define G4X_M2_SDVO_MAX 11
  142. #define G4X_P_SDVO_MIN 10
  143. #define G4X_P_SDVO_MAX 30
  144. #define G4X_P1_SDVO_MIN 1
  145. #define G4X_P1_SDVO_MAX 3
  146. #define G4X_P2_SDVO_SLOW 10
  147. #define G4X_P2_SDVO_FAST 10
  148. #define G4X_P2_SDVO_LIMIT 270000
  149. /*The parameter is for HDMI_DAC on G4x platform*/
  150. #define G4X_DOT_HDMI_DAC_MIN 22000
  151. #define G4X_DOT_HDMI_DAC_MAX 400000
  152. #define G4X_N_HDMI_DAC_MIN 1
  153. #define G4X_N_HDMI_DAC_MAX 4
  154. #define G4X_M_HDMI_DAC_MIN 104
  155. #define G4X_M_HDMI_DAC_MAX 138
  156. #define G4X_M1_HDMI_DAC_MIN 16
  157. #define G4X_M1_HDMI_DAC_MAX 23
  158. #define G4X_M2_HDMI_DAC_MIN 5
  159. #define G4X_M2_HDMI_DAC_MAX 11
  160. #define G4X_P_HDMI_DAC_MIN 5
  161. #define G4X_P_HDMI_DAC_MAX 80
  162. #define G4X_P1_HDMI_DAC_MIN 1
  163. #define G4X_P1_HDMI_DAC_MAX 8
  164. #define G4X_P2_HDMI_DAC_SLOW 10
  165. #define G4X_P2_HDMI_DAC_FAST 5
  166. #define G4X_P2_HDMI_DAC_LIMIT 165000
  167. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  168. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  169. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  170. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  171. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  172. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  173. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  174. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  175. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  176. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  177. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  178. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  179. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  180. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  181. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  182. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  183. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  184. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  185. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  186. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  187. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  188. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  189. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  190. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  191. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  192. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  193. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  194. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  195. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  196. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  197. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  198. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  199. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  200. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  201. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  202. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  203. /*The parameter is for DISPLAY PORT on G4x platform*/
  204. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  205. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  206. #define G4X_N_DISPLAY_PORT_MIN 1
  207. #define G4X_N_DISPLAY_PORT_MAX 2
  208. #define G4X_M_DISPLAY_PORT_MIN 97
  209. #define G4X_M_DISPLAY_PORT_MAX 108
  210. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  211. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  212. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  213. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  214. #define G4X_P_DISPLAY_PORT_MIN 10
  215. #define G4X_P_DISPLAY_PORT_MAX 20
  216. #define G4X_P1_DISPLAY_PORT_MIN 1
  217. #define G4X_P1_DISPLAY_PORT_MAX 2
  218. #define G4X_P2_DISPLAY_PORT_SLOW 10
  219. #define G4X_P2_DISPLAY_PORT_FAST 10
  220. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  221. /* Ironlake / Sandybridge */
  222. /* as we calculate clock using (register_value + 2) for
  223. N/M1/M2, so here the range value for them is (actual_value-2).
  224. */
  225. #define IRONLAKE_DOT_MIN 25000
  226. #define IRONLAKE_DOT_MAX 350000
  227. #define IRONLAKE_VCO_MIN 1760000
  228. #define IRONLAKE_VCO_MAX 3510000
  229. #define IRONLAKE_M1_MIN 12
  230. #define IRONLAKE_M1_MAX 22
  231. #define IRONLAKE_M2_MIN 5
  232. #define IRONLAKE_M2_MAX 9
  233. #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
  234. /* We have parameter ranges for different type of outputs. */
  235. /* DAC & HDMI Refclk 120Mhz */
  236. #define IRONLAKE_DAC_N_MIN 1
  237. #define IRONLAKE_DAC_N_MAX 5
  238. #define IRONLAKE_DAC_M_MIN 79
  239. #define IRONLAKE_DAC_M_MAX 127
  240. #define IRONLAKE_DAC_P_MIN 5
  241. #define IRONLAKE_DAC_P_MAX 80
  242. #define IRONLAKE_DAC_P1_MIN 1
  243. #define IRONLAKE_DAC_P1_MAX 8
  244. #define IRONLAKE_DAC_P2_SLOW 10
  245. #define IRONLAKE_DAC_P2_FAST 5
  246. /* LVDS single-channel 120Mhz refclk */
  247. #define IRONLAKE_LVDS_S_N_MIN 1
  248. #define IRONLAKE_LVDS_S_N_MAX 3
  249. #define IRONLAKE_LVDS_S_M_MIN 79
  250. #define IRONLAKE_LVDS_S_M_MAX 118
  251. #define IRONLAKE_LVDS_S_P_MIN 28
  252. #define IRONLAKE_LVDS_S_P_MAX 112
  253. #define IRONLAKE_LVDS_S_P1_MIN 2
  254. #define IRONLAKE_LVDS_S_P1_MAX 8
  255. #define IRONLAKE_LVDS_S_P2_SLOW 14
  256. #define IRONLAKE_LVDS_S_P2_FAST 14
  257. /* LVDS dual-channel 120Mhz refclk */
  258. #define IRONLAKE_LVDS_D_N_MIN 1
  259. #define IRONLAKE_LVDS_D_N_MAX 3
  260. #define IRONLAKE_LVDS_D_M_MIN 79
  261. #define IRONLAKE_LVDS_D_M_MAX 127
  262. #define IRONLAKE_LVDS_D_P_MIN 14
  263. #define IRONLAKE_LVDS_D_P_MAX 56
  264. #define IRONLAKE_LVDS_D_P1_MIN 2
  265. #define IRONLAKE_LVDS_D_P1_MAX 8
  266. #define IRONLAKE_LVDS_D_P2_SLOW 7
  267. #define IRONLAKE_LVDS_D_P2_FAST 7
  268. /* LVDS single-channel 100Mhz refclk */
  269. #define IRONLAKE_LVDS_S_SSC_N_MIN 1
  270. #define IRONLAKE_LVDS_S_SSC_N_MAX 2
  271. #define IRONLAKE_LVDS_S_SSC_M_MIN 79
  272. #define IRONLAKE_LVDS_S_SSC_M_MAX 126
  273. #define IRONLAKE_LVDS_S_SSC_P_MIN 28
  274. #define IRONLAKE_LVDS_S_SSC_P_MAX 112
  275. #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
  276. #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
  277. #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
  278. #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
  279. /* LVDS dual-channel 100Mhz refclk */
  280. #define IRONLAKE_LVDS_D_SSC_N_MIN 1
  281. #define IRONLAKE_LVDS_D_SSC_N_MAX 3
  282. #define IRONLAKE_LVDS_D_SSC_M_MIN 79
  283. #define IRONLAKE_LVDS_D_SSC_M_MAX 126
  284. #define IRONLAKE_LVDS_D_SSC_P_MIN 14
  285. #define IRONLAKE_LVDS_D_SSC_P_MAX 42
  286. #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
  287. #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
  288. #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
  289. #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
  290. /* DisplayPort */
  291. #define IRONLAKE_DP_N_MIN 1
  292. #define IRONLAKE_DP_N_MAX 2
  293. #define IRONLAKE_DP_M_MIN 81
  294. #define IRONLAKE_DP_M_MAX 90
  295. #define IRONLAKE_DP_P_MIN 10
  296. #define IRONLAKE_DP_P_MAX 20
  297. #define IRONLAKE_DP_P2_FAST 10
  298. #define IRONLAKE_DP_P2_SLOW 10
  299. #define IRONLAKE_DP_P2_LIMIT 0
  300. #define IRONLAKE_DP_P1_MIN 1
  301. #define IRONLAKE_DP_P1_MAX 2
  302. /* FDI */
  303. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  304. static bool
  305. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  306. int target, int refclk, intel_clock_t *best_clock);
  307. static bool
  308. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  309. int target, int refclk, intel_clock_t *best_clock);
  310. static bool
  311. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  312. int target, int refclk, intel_clock_t *best_clock);
  313. static bool
  314. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  315. int target, int refclk, intel_clock_t *best_clock);
  316. static const intel_limit_t intel_limits_i8xx_dvo = {
  317. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  318. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  319. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  320. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  321. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  322. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  323. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  324. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  325. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  326. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  327. .find_pll = intel_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_i8xx_lvds = {
  330. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  331. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  332. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  333. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  334. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  335. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  336. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  337. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  338. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  339. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  340. .find_pll = intel_find_best_PLL,
  341. };
  342. static const intel_limit_t intel_limits_i9xx_sdvo = {
  343. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  344. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  345. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  346. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  347. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  348. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  349. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  350. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  351. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  352. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  353. .find_pll = intel_find_best_PLL,
  354. };
  355. static const intel_limit_t intel_limits_i9xx_lvds = {
  356. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  357. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  358. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  359. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  360. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  361. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  362. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  363. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  364. /* The single-channel range is 25-112Mhz, and dual-channel
  365. * is 80-224Mhz. Prefer single channel as much as possible.
  366. */
  367. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  368. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  369. .find_pll = intel_find_best_PLL,
  370. };
  371. /* below parameter and function is for G4X Chipset Family*/
  372. static const intel_limit_t intel_limits_g4x_sdvo = {
  373. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  374. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  375. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  376. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  377. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  378. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  379. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  380. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  381. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  382. .p2_slow = G4X_P2_SDVO_SLOW,
  383. .p2_fast = G4X_P2_SDVO_FAST
  384. },
  385. .find_pll = intel_g4x_find_best_PLL,
  386. };
  387. static const intel_limit_t intel_limits_g4x_hdmi = {
  388. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  389. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  390. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  391. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  392. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  393. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  394. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  395. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  396. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  397. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  398. .p2_fast = G4X_P2_HDMI_DAC_FAST
  399. },
  400. .find_pll = intel_g4x_find_best_PLL,
  401. };
  402. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  403. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  404. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  405. .vco = { .min = G4X_VCO_MIN,
  406. .max = G4X_VCO_MAX },
  407. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  408. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  409. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  410. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  411. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  412. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  413. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  414. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  415. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  416. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  417. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  418. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  419. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  420. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  421. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  422. },
  423. .find_pll = intel_g4x_find_best_PLL,
  424. };
  425. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  426. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  427. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  428. .vco = { .min = G4X_VCO_MIN,
  429. .max = G4X_VCO_MAX },
  430. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  431. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  432. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  433. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  434. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  435. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  436. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  437. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  438. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  439. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  440. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  441. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  442. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  443. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  444. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  445. },
  446. .find_pll = intel_g4x_find_best_PLL,
  447. };
  448. static const intel_limit_t intel_limits_g4x_display_port = {
  449. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  450. .max = G4X_DOT_DISPLAY_PORT_MAX },
  451. .vco = { .min = G4X_VCO_MIN,
  452. .max = G4X_VCO_MAX},
  453. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  454. .max = G4X_N_DISPLAY_PORT_MAX },
  455. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  456. .max = G4X_M_DISPLAY_PORT_MAX },
  457. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  458. .max = G4X_M1_DISPLAY_PORT_MAX },
  459. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  460. .max = G4X_M2_DISPLAY_PORT_MAX },
  461. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  462. .max = G4X_P_DISPLAY_PORT_MAX },
  463. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  464. .max = G4X_P1_DISPLAY_PORT_MAX},
  465. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  466. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  467. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  468. .find_pll = intel_find_pll_g4x_dp,
  469. };
  470. static const intel_limit_t intel_limits_pineview_sdvo = {
  471. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  472. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  473. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  474. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  475. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  476. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  477. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  478. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  479. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  480. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  481. .find_pll = intel_find_best_PLL,
  482. };
  483. static const intel_limit_t intel_limits_pineview_lvds = {
  484. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  485. .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
  486. .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
  487. .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
  488. .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
  489. .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
  490. .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
  491. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  492. /* Pineview only supports single-channel mode. */
  493. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  494. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  495. .find_pll = intel_find_best_PLL,
  496. };
  497. static const intel_limit_t intel_limits_ironlake_dac = {
  498. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  499. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  500. .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
  501. .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
  502. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  503. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  504. .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
  505. .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
  506. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  507. .p2_slow = IRONLAKE_DAC_P2_SLOW,
  508. .p2_fast = IRONLAKE_DAC_P2_FAST },
  509. .find_pll = intel_g4x_find_best_PLL,
  510. };
  511. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  512. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  513. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  514. .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
  515. .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
  516. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  517. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  518. .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
  519. .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
  520. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  521. .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
  522. .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
  523. .find_pll = intel_g4x_find_best_PLL,
  524. };
  525. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  526. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  527. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  528. .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
  529. .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
  530. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  531. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  532. .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
  533. .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
  534. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  535. .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
  536. .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
  537. .find_pll = intel_g4x_find_best_PLL,
  538. };
  539. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  540. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  541. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  542. .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
  543. .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
  544. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  545. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  546. .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
  547. .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
  548. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  549. .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
  550. .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
  551. .find_pll = intel_g4x_find_best_PLL,
  552. };
  553. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  554. .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
  555. .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
  556. .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
  557. .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
  558. .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
  559. .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
  560. .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
  561. .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
  562. .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
  563. .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
  564. .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
  565. .find_pll = intel_g4x_find_best_PLL,
  566. };
  567. static const intel_limit_t intel_limits_ironlake_display_port = {
  568. .dot = { .min = IRONLAKE_DOT_MIN,
  569. .max = IRONLAKE_DOT_MAX },
  570. .vco = { .min = IRONLAKE_VCO_MIN,
  571. .max = IRONLAKE_VCO_MAX},
  572. .n = { .min = IRONLAKE_DP_N_MIN,
  573. .max = IRONLAKE_DP_N_MAX },
  574. .m = { .min = IRONLAKE_DP_M_MIN,
  575. .max = IRONLAKE_DP_M_MAX },
  576. .m1 = { .min = IRONLAKE_M1_MIN,
  577. .max = IRONLAKE_M1_MAX },
  578. .m2 = { .min = IRONLAKE_M2_MIN,
  579. .max = IRONLAKE_M2_MAX },
  580. .p = { .min = IRONLAKE_DP_P_MIN,
  581. .max = IRONLAKE_DP_P_MAX },
  582. .p1 = { .min = IRONLAKE_DP_P1_MIN,
  583. .max = IRONLAKE_DP_P1_MAX},
  584. .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
  585. .p2_slow = IRONLAKE_DP_P2_SLOW,
  586. .p2_fast = IRONLAKE_DP_P2_FAST },
  587. .find_pll = intel_find_pll_ironlake_dp,
  588. };
  589. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
  590. {
  591. struct drm_device *dev = crtc->dev;
  592. struct drm_i915_private *dev_priv = dev->dev_private;
  593. const intel_limit_t *limit;
  594. int refclk = 120;
  595. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  596. if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
  597. refclk = 100;
  598. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  599. LVDS_CLKB_POWER_UP) {
  600. /* LVDS dual channel */
  601. if (refclk == 100)
  602. limit = &intel_limits_ironlake_dual_lvds_100m;
  603. else
  604. limit = &intel_limits_ironlake_dual_lvds;
  605. } else {
  606. if (refclk == 100)
  607. limit = &intel_limits_ironlake_single_lvds_100m;
  608. else
  609. limit = &intel_limits_ironlake_single_lvds;
  610. }
  611. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  612. HAS_eDP)
  613. limit = &intel_limits_ironlake_display_port;
  614. else
  615. limit = &intel_limits_ironlake_dac;
  616. return limit;
  617. }
  618. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  619. {
  620. struct drm_device *dev = crtc->dev;
  621. struct drm_i915_private *dev_priv = dev->dev_private;
  622. const intel_limit_t *limit;
  623. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  624. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  625. LVDS_CLKB_POWER_UP)
  626. /* LVDS with dual channel */
  627. limit = &intel_limits_g4x_dual_channel_lvds;
  628. else
  629. /* LVDS with dual channel */
  630. limit = &intel_limits_g4x_single_channel_lvds;
  631. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  632. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  633. limit = &intel_limits_g4x_hdmi;
  634. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  635. limit = &intel_limits_g4x_sdvo;
  636. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  637. limit = &intel_limits_g4x_display_port;
  638. } else /* The option is for other outputs */
  639. limit = &intel_limits_i9xx_sdvo;
  640. return limit;
  641. }
  642. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  643. {
  644. struct drm_device *dev = crtc->dev;
  645. const intel_limit_t *limit;
  646. if (HAS_PCH_SPLIT(dev))
  647. limit = intel_ironlake_limit(crtc);
  648. else if (IS_G4X(dev)) {
  649. limit = intel_g4x_limit(crtc);
  650. } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
  651. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  652. limit = &intel_limits_i9xx_lvds;
  653. else
  654. limit = &intel_limits_i9xx_sdvo;
  655. } else if (IS_PINEVIEW(dev)) {
  656. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  657. limit = &intel_limits_pineview_lvds;
  658. else
  659. limit = &intel_limits_pineview_sdvo;
  660. } else {
  661. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  662. limit = &intel_limits_i8xx_lvds;
  663. else
  664. limit = &intel_limits_i8xx_dvo;
  665. }
  666. return limit;
  667. }
  668. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  669. static void pineview_clock(int refclk, intel_clock_t *clock)
  670. {
  671. clock->m = clock->m2 + 2;
  672. clock->p = clock->p1 * clock->p2;
  673. clock->vco = refclk * clock->m / clock->n;
  674. clock->dot = clock->vco / clock->p;
  675. }
  676. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  677. {
  678. if (IS_PINEVIEW(dev)) {
  679. pineview_clock(refclk, clock);
  680. return;
  681. }
  682. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  683. clock->p = clock->p1 * clock->p2;
  684. clock->vco = refclk * clock->m / (clock->n + 2);
  685. clock->dot = clock->vco / clock->p;
  686. }
  687. /**
  688. * Returns whether any output on the specified pipe is of the specified type
  689. */
  690. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  691. {
  692. struct drm_device *dev = crtc->dev;
  693. struct drm_mode_config *mode_config = &dev->mode_config;
  694. struct drm_encoder *l_entry;
  695. list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
  696. if (l_entry && l_entry->crtc == crtc) {
  697. struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
  698. if (intel_encoder->type == type)
  699. return true;
  700. }
  701. }
  702. return false;
  703. }
  704. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  705. /**
  706. * Returns whether the given set of divisors are valid for a given refclk with
  707. * the given connectors.
  708. */
  709. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  710. {
  711. const intel_limit_t *limit = intel_limit (crtc);
  712. struct drm_device *dev = crtc->dev;
  713. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  714. INTELPllInvalid ("p1 out of range\n");
  715. if (clock->p < limit->p.min || limit->p.max < clock->p)
  716. INTELPllInvalid ("p out of range\n");
  717. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  718. INTELPllInvalid ("m2 out of range\n");
  719. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  720. INTELPllInvalid ("m1 out of range\n");
  721. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  722. INTELPllInvalid ("m1 <= m2\n");
  723. if (clock->m < limit->m.min || limit->m.max < clock->m)
  724. INTELPllInvalid ("m out of range\n");
  725. if (clock->n < limit->n.min || limit->n.max < clock->n)
  726. INTELPllInvalid ("n out of range\n");
  727. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  728. INTELPllInvalid ("vco out of range\n");
  729. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  730. * connector, etc., rather than just a single range.
  731. */
  732. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  733. INTELPllInvalid ("dot out of range\n");
  734. return true;
  735. }
  736. static bool
  737. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  738. int target, int refclk, intel_clock_t *best_clock)
  739. {
  740. struct drm_device *dev = crtc->dev;
  741. struct drm_i915_private *dev_priv = dev->dev_private;
  742. intel_clock_t clock;
  743. int err = target;
  744. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  745. (I915_READ(LVDS)) != 0) {
  746. /*
  747. * For LVDS, if the panel is on, just rely on its current
  748. * settings for dual-channel. We haven't figured out how to
  749. * reliably set up different single/dual channel state, if we
  750. * even can.
  751. */
  752. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  753. LVDS_CLKB_POWER_UP)
  754. clock.p2 = limit->p2.p2_fast;
  755. else
  756. clock.p2 = limit->p2.p2_slow;
  757. } else {
  758. if (target < limit->p2.dot_limit)
  759. clock.p2 = limit->p2.p2_slow;
  760. else
  761. clock.p2 = limit->p2.p2_fast;
  762. }
  763. memset (best_clock, 0, sizeof (*best_clock));
  764. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  765. clock.m1++) {
  766. for (clock.m2 = limit->m2.min;
  767. clock.m2 <= limit->m2.max; clock.m2++) {
  768. /* m1 is always 0 in Pineview */
  769. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  770. break;
  771. for (clock.n = limit->n.min;
  772. clock.n <= limit->n.max; clock.n++) {
  773. for (clock.p1 = limit->p1.min;
  774. clock.p1 <= limit->p1.max; clock.p1++) {
  775. int this_err;
  776. intel_clock(dev, refclk, &clock);
  777. if (!intel_PLL_is_valid(crtc, &clock))
  778. continue;
  779. this_err = abs(clock.dot - target);
  780. if (this_err < err) {
  781. *best_clock = clock;
  782. err = this_err;
  783. }
  784. }
  785. }
  786. }
  787. }
  788. return (err != target);
  789. }
  790. static bool
  791. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  792. int target, int refclk, intel_clock_t *best_clock)
  793. {
  794. struct drm_device *dev = crtc->dev;
  795. struct drm_i915_private *dev_priv = dev->dev_private;
  796. intel_clock_t clock;
  797. int max_n;
  798. bool found;
  799. /* approximately equals target * 0.00585 */
  800. int err_most = (target >> 8) + (target >> 9);
  801. found = false;
  802. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  803. int lvds_reg;
  804. if (HAS_PCH_SPLIT(dev))
  805. lvds_reg = PCH_LVDS;
  806. else
  807. lvds_reg = LVDS;
  808. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  809. LVDS_CLKB_POWER_UP)
  810. clock.p2 = limit->p2.p2_fast;
  811. else
  812. clock.p2 = limit->p2.p2_slow;
  813. } else {
  814. if (target < limit->p2.dot_limit)
  815. clock.p2 = limit->p2.p2_slow;
  816. else
  817. clock.p2 = limit->p2.p2_fast;
  818. }
  819. memset(best_clock, 0, sizeof(*best_clock));
  820. max_n = limit->n.max;
  821. /* based on hardware requirement, prefer smaller n to precision */
  822. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  823. /* based on hardware requirement, prefere larger m1,m2 */
  824. for (clock.m1 = limit->m1.max;
  825. clock.m1 >= limit->m1.min; clock.m1--) {
  826. for (clock.m2 = limit->m2.max;
  827. clock.m2 >= limit->m2.min; clock.m2--) {
  828. for (clock.p1 = limit->p1.max;
  829. clock.p1 >= limit->p1.min; clock.p1--) {
  830. int this_err;
  831. intel_clock(dev, refclk, &clock);
  832. if (!intel_PLL_is_valid(crtc, &clock))
  833. continue;
  834. this_err = abs(clock.dot - target) ;
  835. if (this_err < err_most) {
  836. *best_clock = clock;
  837. err_most = this_err;
  838. max_n = clock.n;
  839. found = true;
  840. }
  841. }
  842. }
  843. }
  844. }
  845. return found;
  846. }
  847. static bool
  848. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  849. int target, int refclk, intel_clock_t *best_clock)
  850. {
  851. struct drm_device *dev = crtc->dev;
  852. intel_clock_t clock;
  853. /* return directly when it is eDP */
  854. if (HAS_eDP)
  855. return true;
  856. if (target < 200000) {
  857. clock.n = 1;
  858. clock.p1 = 2;
  859. clock.p2 = 10;
  860. clock.m1 = 12;
  861. clock.m2 = 9;
  862. } else {
  863. clock.n = 2;
  864. clock.p1 = 1;
  865. clock.p2 = 10;
  866. clock.m1 = 14;
  867. clock.m2 = 8;
  868. }
  869. intel_clock(dev, refclk, &clock);
  870. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  871. return true;
  872. }
  873. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  874. static bool
  875. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  876. int target, int refclk, intel_clock_t *best_clock)
  877. {
  878. intel_clock_t clock;
  879. if (target < 200000) {
  880. clock.p1 = 2;
  881. clock.p2 = 10;
  882. clock.n = 2;
  883. clock.m1 = 23;
  884. clock.m2 = 8;
  885. } else {
  886. clock.p1 = 1;
  887. clock.p2 = 10;
  888. clock.n = 1;
  889. clock.m1 = 14;
  890. clock.m2 = 2;
  891. }
  892. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  893. clock.p = (clock.p1 * clock.p2);
  894. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  895. clock.vco = 0;
  896. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  897. return true;
  898. }
  899. void
  900. intel_wait_for_vblank(struct drm_device *dev)
  901. {
  902. /* Wait for 20ms, i.e. one cycle at 50hz. */
  903. msleep(20);
  904. }
  905. /* Parameters have changed, update FBC info */
  906. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  907. {
  908. struct drm_device *dev = crtc->dev;
  909. struct drm_i915_private *dev_priv = dev->dev_private;
  910. struct drm_framebuffer *fb = crtc->fb;
  911. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  912. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  913. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  914. int plane, i;
  915. u32 fbc_ctl, fbc_ctl2;
  916. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  917. if (fb->pitch < dev_priv->cfb_pitch)
  918. dev_priv->cfb_pitch = fb->pitch;
  919. /* FBC_CTL wants 64B units */
  920. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  921. dev_priv->cfb_fence = obj_priv->fence_reg;
  922. dev_priv->cfb_plane = intel_crtc->plane;
  923. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  924. /* Clear old tags */
  925. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  926. I915_WRITE(FBC_TAG + (i * 4), 0);
  927. /* Set it up... */
  928. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  929. if (obj_priv->tiling_mode != I915_TILING_NONE)
  930. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  931. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  932. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  933. /* enable it... */
  934. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  935. if (IS_I945GM(dev))
  936. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  937. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  938. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  939. if (obj_priv->tiling_mode != I915_TILING_NONE)
  940. fbc_ctl |= dev_priv->cfb_fence;
  941. I915_WRITE(FBC_CONTROL, fbc_ctl);
  942. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  943. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  944. }
  945. void i8xx_disable_fbc(struct drm_device *dev)
  946. {
  947. struct drm_i915_private *dev_priv = dev->dev_private;
  948. unsigned long timeout = jiffies + msecs_to_jiffies(1);
  949. u32 fbc_ctl;
  950. if (!I915_HAS_FBC(dev))
  951. return;
  952. if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
  953. return; /* Already off, just return */
  954. /* Disable compression */
  955. fbc_ctl = I915_READ(FBC_CONTROL);
  956. fbc_ctl &= ~FBC_CTL_EN;
  957. I915_WRITE(FBC_CONTROL, fbc_ctl);
  958. /* Wait for compressing bit to clear */
  959. while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
  960. if (time_after(jiffies, timeout)) {
  961. DRM_DEBUG_DRIVER("FBC idle timed out\n");
  962. break;
  963. }
  964. ; /* do nothing */
  965. }
  966. intel_wait_for_vblank(dev);
  967. DRM_DEBUG_KMS("disabled FBC\n");
  968. }
  969. static bool i8xx_fbc_enabled(struct drm_device *dev)
  970. {
  971. struct drm_i915_private *dev_priv = dev->dev_private;
  972. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  973. }
  974. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  975. {
  976. struct drm_device *dev = crtc->dev;
  977. struct drm_i915_private *dev_priv = dev->dev_private;
  978. struct drm_framebuffer *fb = crtc->fb;
  979. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  980. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  981. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  982. int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
  983. DPFC_CTL_PLANEB);
  984. unsigned long stall_watermark = 200;
  985. u32 dpfc_ctl;
  986. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  987. dev_priv->cfb_fence = obj_priv->fence_reg;
  988. dev_priv->cfb_plane = intel_crtc->plane;
  989. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  990. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  991. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  992. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  993. } else {
  994. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  995. }
  996. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  997. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  998. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  999. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1000. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1001. /* enable it... */
  1002. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1003. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1004. }
  1005. void g4x_disable_fbc(struct drm_device *dev)
  1006. {
  1007. struct drm_i915_private *dev_priv = dev->dev_private;
  1008. u32 dpfc_ctl;
  1009. /* Disable compression */
  1010. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1011. dpfc_ctl &= ~DPFC_CTL_EN;
  1012. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1013. intel_wait_for_vblank(dev);
  1014. DRM_DEBUG_KMS("disabled FBC\n");
  1015. }
  1016. static bool g4x_fbc_enabled(struct drm_device *dev)
  1017. {
  1018. struct drm_i915_private *dev_priv = dev->dev_private;
  1019. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1020. }
  1021. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1022. {
  1023. struct drm_device *dev = crtc->dev;
  1024. struct drm_i915_private *dev_priv = dev->dev_private;
  1025. struct drm_framebuffer *fb = crtc->fb;
  1026. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1027. struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
  1028. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1029. int plane = (intel_crtc->plane == 0) ? DPFC_CTL_PLANEA :
  1030. DPFC_CTL_PLANEB;
  1031. unsigned long stall_watermark = 200;
  1032. u32 dpfc_ctl;
  1033. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1034. dev_priv->cfb_fence = obj_priv->fence_reg;
  1035. dev_priv->cfb_plane = intel_crtc->plane;
  1036. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1037. dpfc_ctl &= DPFC_RESERVED;
  1038. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1039. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1040. dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
  1041. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1042. } else {
  1043. I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  1044. }
  1045. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1046. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1047. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1048. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1049. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1050. I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
  1051. /* enable it... */
  1052. I915_WRITE(ILK_DPFC_CONTROL, I915_READ(ILK_DPFC_CONTROL) |
  1053. DPFC_CTL_EN);
  1054. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1055. }
  1056. void ironlake_disable_fbc(struct drm_device *dev)
  1057. {
  1058. struct drm_i915_private *dev_priv = dev->dev_private;
  1059. u32 dpfc_ctl;
  1060. /* Disable compression */
  1061. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1062. dpfc_ctl &= ~DPFC_CTL_EN;
  1063. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1064. intel_wait_for_vblank(dev);
  1065. DRM_DEBUG_KMS("disabled FBC\n");
  1066. }
  1067. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1068. {
  1069. struct drm_i915_private *dev_priv = dev->dev_private;
  1070. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1071. }
  1072. bool intel_fbc_enabled(struct drm_device *dev)
  1073. {
  1074. struct drm_i915_private *dev_priv = dev->dev_private;
  1075. if (!dev_priv->display.fbc_enabled)
  1076. return false;
  1077. return dev_priv->display.fbc_enabled(dev);
  1078. }
  1079. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1080. {
  1081. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1082. if (!dev_priv->display.enable_fbc)
  1083. return;
  1084. dev_priv->display.enable_fbc(crtc, interval);
  1085. }
  1086. void intel_disable_fbc(struct drm_device *dev)
  1087. {
  1088. struct drm_i915_private *dev_priv = dev->dev_private;
  1089. if (!dev_priv->display.disable_fbc)
  1090. return;
  1091. dev_priv->display.disable_fbc(dev);
  1092. }
  1093. /**
  1094. * intel_update_fbc - enable/disable FBC as needed
  1095. * @crtc: CRTC to point the compressor at
  1096. * @mode: mode in use
  1097. *
  1098. * Set up the framebuffer compression hardware at mode set time. We
  1099. * enable it if possible:
  1100. * - plane A only (on pre-965)
  1101. * - no pixel mulitply/line duplication
  1102. * - no alpha buffer discard
  1103. * - no dual wide
  1104. * - framebuffer <= 2048 in width, 1536 in height
  1105. *
  1106. * We can't assume that any compression will take place (worst case),
  1107. * so the compressed buffer has to be the same size as the uncompressed
  1108. * one. It also must reside (along with the line length buffer) in
  1109. * stolen memory.
  1110. *
  1111. * We need to enable/disable FBC on a global basis.
  1112. */
  1113. static void intel_update_fbc(struct drm_crtc *crtc,
  1114. struct drm_display_mode *mode)
  1115. {
  1116. struct drm_device *dev = crtc->dev;
  1117. struct drm_i915_private *dev_priv = dev->dev_private;
  1118. struct drm_framebuffer *fb = crtc->fb;
  1119. struct intel_framebuffer *intel_fb;
  1120. struct drm_i915_gem_object *obj_priv;
  1121. struct drm_crtc *tmp_crtc;
  1122. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1123. int plane = intel_crtc->plane;
  1124. int crtcs_enabled = 0;
  1125. DRM_DEBUG_KMS("\n");
  1126. if (!i915_powersave)
  1127. return;
  1128. if (!I915_HAS_FBC(dev))
  1129. return;
  1130. if (!crtc->fb)
  1131. return;
  1132. intel_fb = to_intel_framebuffer(fb);
  1133. obj_priv = to_intel_bo(intel_fb->obj);
  1134. /*
  1135. * If FBC is already on, we just have to verify that we can
  1136. * keep it that way...
  1137. * Need to disable if:
  1138. * - more than one pipe is active
  1139. * - changing FBC params (stride, fence, mode)
  1140. * - new fb is too large to fit in compressed buffer
  1141. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1142. */
  1143. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1144. if (tmp_crtc->enabled)
  1145. crtcs_enabled++;
  1146. }
  1147. DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
  1148. if (crtcs_enabled > 1) {
  1149. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1150. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1151. goto out_disable;
  1152. }
  1153. if (intel_fb->obj->size > dev_priv->cfb_size) {
  1154. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1155. "compression\n");
  1156. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1157. goto out_disable;
  1158. }
  1159. if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  1160. (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  1161. DRM_DEBUG_KMS("mode incompatible with compression, "
  1162. "disabling\n");
  1163. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1164. goto out_disable;
  1165. }
  1166. if ((mode->hdisplay > 2048) ||
  1167. (mode->vdisplay > 1536)) {
  1168. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1169. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1170. goto out_disable;
  1171. }
  1172. if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
  1173. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1174. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1175. goto out_disable;
  1176. }
  1177. if (obj_priv->tiling_mode != I915_TILING_X) {
  1178. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1179. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1180. goto out_disable;
  1181. }
  1182. if (intel_fbc_enabled(dev)) {
  1183. /* We can re-enable it in this case, but need to update pitch */
  1184. if ((fb->pitch > dev_priv->cfb_pitch) ||
  1185. (obj_priv->fence_reg != dev_priv->cfb_fence) ||
  1186. (plane != dev_priv->cfb_plane))
  1187. intel_disable_fbc(dev);
  1188. }
  1189. /* Now try to turn it back on if possible */
  1190. if (!intel_fbc_enabled(dev))
  1191. intel_enable_fbc(crtc, 500);
  1192. return;
  1193. out_disable:
  1194. /* Multiple disables should be harmless */
  1195. if (intel_fbc_enabled(dev)) {
  1196. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1197. intel_disable_fbc(dev);
  1198. }
  1199. }
  1200. int
  1201. intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
  1202. {
  1203. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1204. u32 alignment;
  1205. int ret;
  1206. switch (obj_priv->tiling_mode) {
  1207. case I915_TILING_NONE:
  1208. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1209. alignment = 128 * 1024;
  1210. else if (IS_I965G(dev))
  1211. alignment = 4 * 1024;
  1212. else
  1213. alignment = 64 * 1024;
  1214. break;
  1215. case I915_TILING_X:
  1216. /* pin() will align the object as required by fence */
  1217. alignment = 0;
  1218. break;
  1219. case I915_TILING_Y:
  1220. /* FIXME: Is this true? */
  1221. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1222. return -EINVAL;
  1223. default:
  1224. BUG();
  1225. }
  1226. ret = i915_gem_object_pin(obj, alignment);
  1227. if (ret != 0)
  1228. return ret;
  1229. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1230. * fence, whereas 965+ only requires a fence if using
  1231. * framebuffer compression. For simplicity, we always install
  1232. * a fence as the cost is not that onerous.
  1233. */
  1234. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  1235. obj_priv->tiling_mode != I915_TILING_NONE) {
  1236. ret = i915_gem_object_get_fence_reg(obj);
  1237. if (ret != 0) {
  1238. i915_gem_object_unpin(obj);
  1239. return ret;
  1240. }
  1241. }
  1242. return 0;
  1243. }
  1244. static int
  1245. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1246. struct drm_framebuffer *old_fb)
  1247. {
  1248. struct drm_device *dev = crtc->dev;
  1249. struct drm_i915_private *dev_priv = dev->dev_private;
  1250. struct drm_i915_master_private *master_priv;
  1251. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1252. struct intel_framebuffer *intel_fb;
  1253. struct drm_i915_gem_object *obj_priv;
  1254. struct drm_gem_object *obj;
  1255. int pipe = intel_crtc->pipe;
  1256. int plane = intel_crtc->plane;
  1257. unsigned long Start, Offset;
  1258. int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
  1259. int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
  1260. int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
  1261. int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
  1262. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1263. u32 dspcntr;
  1264. int ret;
  1265. /* no fb bound */
  1266. if (!crtc->fb) {
  1267. DRM_DEBUG_KMS("No FB bound\n");
  1268. return 0;
  1269. }
  1270. switch (plane) {
  1271. case 0:
  1272. case 1:
  1273. break;
  1274. default:
  1275. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1276. return -EINVAL;
  1277. }
  1278. intel_fb = to_intel_framebuffer(crtc->fb);
  1279. obj = intel_fb->obj;
  1280. obj_priv = to_intel_bo(obj);
  1281. mutex_lock(&dev->struct_mutex);
  1282. ret = intel_pin_and_fence_fb_obj(dev, obj);
  1283. if (ret != 0) {
  1284. mutex_unlock(&dev->struct_mutex);
  1285. return ret;
  1286. }
  1287. ret = i915_gem_object_set_to_display_plane(obj);
  1288. if (ret != 0) {
  1289. i915_gem_object_unpin(obj);
  1290. mutex_unlock(&dev->struct_mutex);
  1291. return ret;
  1292. }
  1293. dspcntr = I915_READ(dspcntr_reg);
  1294. /* Mask out pixel format bits in case we change it */
  1295. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1296. switch (crtc->fb->bits_per_pixel) {
  1297. case 8:
  1298. dspcntr |= DISPPLANE_8BPP;
  1299. break;
  1300. case 16:
  1301. if (crtc->fb->depth == 15)
  1302. dspcntr |= DISPPLANE_15_16BPP;
  1303. else
  1304. dspcntr |= DISPPLANE_16BPP;
  1305. break;
  1306. case 24:
  1307. case 32:
  1308. if (crtc->fb->depth == 30)
  1309. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1310. else
  1311. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1312. break;
  1313. default:
  1314. DRM_ERROR("Unknown color depth\n");
  1315. i915_gem_object_unpin(obj);
  1316. mutex_unlock(&dev->struct_mutex);
  1317. return -EINVAL;
  1318. }
  1319. if (IS_I965G(dev)) {
  1320. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1321. dspcntr |= DISPPLANE_TILED;
  1322. else
  1323. dspcntr &= ~DISPPLANE_TILED;
  1324. }
  1325. if (HAS_PCH_SPLIT(dev))
  1326. /* must disable */
  1327. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1328. I915_WRITE(dspcntr_reg, dspcntr);
  1329. Start = obj_priv->gtt_offset;
  1330. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  1331. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1332. Start, Offset, x, y, crtc->fb->pitch);
  1333. I915_WRITE(dspstride, crtc->fb->pitch);
  1334. if (IS_I965G(dev)) {
  1335. I915_WRITE(dspbase, Offset);
  1336. I915_READ(dspbase);
  1337. I915_WRITE(dspsurf, Start);
  1338. I915_READ(dspsurf);
  1339. I915_WRITE(dsptileoff, (y << 16) | x);
  1340. } else {
  1341. I915_WRITE(dspbase, Start + Offset);
  1342. I915_READ(dspbase);
  1343. }
  1344. if ((IS_I965G(dev) || plane == 0))
  1345. intel_update_fbc(crtc, &crtc->mode);
  1346. intel_wait_for_vblank(dev);
  1347. if (old_fb) {
  1348. intel_fb = to_intel_framebuffer(old_fb);
  1349. obj_priv = to_intel_bo(intel_fb->obj);
  1350. i915_gem_object_unpin(intel_fb->obj);
  1351. }
  1352. intel_increase_pllclock(crtc, true);
  1353. mutex_unlock(&dev->struct_mutex);
  1354. if (!dev->primary->master)
  1355. return 0;
  1356. master_priv = dev->primary->master->driver_priv;
  1357. if (!master_priv->sarea_priv)
  1358. return 0;
  1359. if (pipe) {
  1360. master_priv->sarea_priv->pipeB_x = x;
  1361. master_priv->sarea_priv->pipeB_y = y;
  1362. } else {
  1363. master_priv->sarea_priv->pipeA_x = x;
  1364. master_priv->sarea_priv->pipeA_y = y;
  1365. }
  1366. return 0;
  1367. }
  1368. /* Disable the VGA plane that we never use */
  1369. static void i915_disable_vga (struct drm_device *dev)
  1370. {
  1371. struct drm_i915_private *dev_priv = dev->dev_private;
  1372. u8 sr1;
  1373. u32 vga_reg;
  1374. if (HAS_PCH_SPLIT(dev))
  1375. vga_reg = CPU_VGACNTRL;
  1376. else
  1377. vga_reg = VGACNTRL;
  1378. if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
  1379. return;
  1380. I915_WRITE8(VGA_SR_INDEX, 1);
  1381. sr1 = I915_READ8(VGA_SR_DATA);
  1382. I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
  1383. udelay(100);
  1384. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  1385. }
  1386. static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
  1387. {
  1388. struct drm_device *dev = crtc->dev;
  1389. struct drm_i915_private *dev_priv = dev->dev_private;
  1390. u32 dpa_ctl;
  1391. DRM_DEBUG_KMS("\n");
  1392. dpa_ctl = I915_READ(DP_A);
  1393. dpa_ctl &= ~DP_PLL_ENABLE;
  1394. I915_WRITE(DP_A, dpa_ctl);
  1395. }
  1396. static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
  1397. {
  1398. struct drm_device *dev = crtc->dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. u32 dpa_ctl;
  1401. dpa_ctl = I915_READ(DP_A);
  1402. dpa_ctl |= DP_PLL_ENABLE;
  1403. I915_WRITE(DP_A, dpa_ctl);
  1404. udelay(200);
  1405. }
  1406. static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
  1407. {
  1408. struct drm_device *dev = crtc->dev;
  1409. struct drm_i915_private *dev_priv = dev->dev_private;
  1410. u32 dpa_ctl;
  1411. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1412. dpa_ctl = I915_READ(DP_A);
  1413. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1414. if (clock < 200000) {
  1415. u32 temp;
  1416. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1417. /* workaround for 160Mhz:
  1418. 1) program 0x4600c bits 15:0 = 0x8124
  1419. 2) program 0x46010 bit 0 = 1
  1420. 3) program 0x46034 bit 24 = 1
  1421. 4) program 0x64000 bit 14 = 1
  1422. */
  1423. temp = I915_READ(0x4600c);
  1424. temp &= 0xffff0000;
  1425. I915_WRITE(0x4600c, temp | 0x8124);
  1426. temp = I915_READ(0x46010);
  1427. I915_WRITE(0x46010, temp | 1);
  1428. temp = I915_READ(0x46034);
  1429. I915_WRITE(0x46034, temp | (1 << 24));
  1430. } else {
  1431. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1432. }
  1433. I915_WRITE(DP_A, dpa_ctl);
  1434. udelay(500);
  1435. }
  1436. /* The FDI link training functions for ILK/Ibexpeak. */
  1437. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1438. {
  1439. struct drm_device *dev = crtc->dev;
  1440. struct drm_i915_private *dev_priv = dev->dev_private;
  1441. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1442. int pipe = intel_crtc->pipe;
  1443. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1444. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1445. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1446. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1447. u32 temp, tries = 0;
  1448. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1449. for train result */
  1450. temp = I915_READ(fdi_rx_imr_reg);
  1451. temp &= ~FDI_RX_SYMBOL_LOCK;
  1452. temp &= ~FDI_RX_BIT_LOCK;
  1453. I915_WRITE(fdi_rx_imr_reg, temp);
  1454. I915_READ(fdi_rx_imr_reg);
  1455. udelay(150);
  1456. /* enable CPU FDI TX and PCH FDI RX */
  1457. temp = I915_READ(fdi_tx_reg);
  1458. temp |= FDI_TX_ENABLE;
  1459. temp &= ~(7 << 19);
  1460. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1461. temp &= ~FDI_LINK_TRAIN_NONE;
  1462. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1463. I915_WRITE(fdi_tx_reg, temp);
  1464. I915_READ(fdi_tx_reg);
  1465. temp = I915_READ(fdi_rx_reg);
  1466. temp &= ~FDI_LINK_TRAIN_NONE;
  1467. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1468. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1469. I915_READ(fdi_rx_reg);
  1470. udelay(150);
  1471. for (tries = 0; tries < 5; tries++) {
  1472. temp = I915_READ(fdi_rx_iir_reg);
  1473. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1474. if ((temp & FDI_RX_BIT_LOCK)) {
  1475. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1476. I915_WRITE(fdi_rx_iir_reg,
  1477. temp | FDI_RX_BIT_LOCK);
  1478. break;
  1479. }
  1480. }
  1481. if (tries == 5)
  1482. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1483. /* Train 2 */
  1484. temp = I915_READ(fdi_tx_reg);
  1485. temp &= ~FDI_LINK_TRAIN_NONE;
  1486. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1487. I915_WRITE(fdi_tx_reg, temp);
  1488. temp = I915_READ(fdi_rx_reg);
  1489. temp &= ~FDI_LINK_TRAIN_NONE;
  1490. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1491. I915_WRITE(fdi_rx_reg, temp);
  1492. udelay(150);
  1493. tries = 0;
  1494. for (tries = 0; tries < 5; tries++) {
  1495. temp = I915_READ(fdi_rx_iir_reg);
  1496. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1497. if (temp & FDI_RX_SYMBOL_LOCK) {
  1498. I915_WRITE(fdi_rx_iir_reg,
  1499. temp | FDI_RX_SYMBOL_LOCK);
  1500. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1501. break;
  1502. }
  1503. }
  1504. if (tries == 5)
  1505. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1506. DRM_DEBUG_KMS("FDI train done\n");
  1507. }
  1508. static int snb_b_fdi_train_param [] = {
  1509. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1510. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1511. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1512. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1513. };
  1514. /* The FDI link training functions for SNB/Cougarpoint. */
  1515. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1516. {
  1517. struct drm_device *dev = crtc->dev;
  1518. struct drm_i915_private *dev_priv = dev->dev_private;
  1519. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1520. int pipe = intel_crtc->pipe;
  1521. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1522. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1523. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1524. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1525. u32 temp, i;
  1526. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1527. for train result */
  1528. temp = I915_READ(fdi_rx_imr_reg);
  1529. temp &= ~FDI_RX_SYMBOL_LOCK;
  1530. temp &= ~FDI_RX_BIT_LOCK;
  1531. I915_WRITE(fdi_rx_imr_reg, temp);
  1532. I915_READ(fdi_rx_imr_reg);
  1533. udelay(150);
  1534. /* enable CPU FDI TX and PCH FDI RX */
  1535. temp = I915_READ(fdi_tx_reg);
  1536. temp |= FDI_TX_ENABLE;
  1537. temp &= ~(7 << 19);
  1538. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1539. temp &= ~FDI_LINK_TRAIN_NONE;
  1540. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1541. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1542. /* SNB-B */
  1543. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1544. I915_WRITE(fdi_tx_reg, temp);
  1545. I915_READ(fdi_tx_reg);
  1546. temp = I915_READ(fdi_rx_reg);
  1547. if (HAS_PCH_CPT(dev)) {
  1548. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1549. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1550. } else {
  1551. temp &= ~FDI_LINK_TRAIN_NONE;
  1552. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1553. }
  1554. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1555. I915_READ(fdi_rx_reg);
  1556. udelay(150);
  1557. for (i = 0; i < 4; i++ ) {
  1558. temp = I915_READ(fdi_tx_reg);
  1559. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1560. temp |= snb_b_fdi_train_param[i];
  1561. I915_WRITE(fdi_tx_reg, temp);
  1562. udelay(500);
  1563. temp = I915_READ(fdi_rx_iir_reg);
  1564. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1565. if (temp & FDI_RX_BIT_LOCK) {
  1566. I915_WRITE(fdi_rx_iir_reg,
  1567. temp | FDI_RX_BIT_LOCK);
  1568. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1569. break;
  1570. }
  1571. }
  1572. if (i == 4)
  1573. DRM_DEBUG_KMS("FDI train 1 fail!\n");
  1574. /* Train 2 */
  1575. temp = I915_READ(fdi_tx_reg);
  1576. temp &= ~FDI_LINK_TRAIN_NONE;
  1577. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1578. if (IS_GEN6(dev)) {
  1579. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1580. /* SNB-B */
  1581. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1582. }
  1583. I915_WRITE(fdi_tx_reg, temp);
  1584. temp = I915_READ(fdi_rx_reg);
  1585. if (HAS_PCH_CPT(dev)) {
  1586. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1587. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1588. } else {
  1589. temp &= ~FDI_LINK_TRAIN_NONE;
  1590. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1591. }
  1592. I915_WRITE(fdi_rx_reg, temp);
  1593. udelay(150);
  1594. for (i = 0; i < 4; i++ ) {
  1595. temp = I915_READ(fdi_tx_reg);
  1596. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1597. temp |= snb_b_fdi_train_param[i];
  1598. I915_WRITE(fdi_tx_reg, temp);
  1599. udelay(500);
  1600. temp = I915_READ(fdi_rx_iir_reg);
  1601. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1602. if (temp & FDI_RX_SYMBOL_LOCK) {
  1603. I915_WRITE(fdi_rx_iir_reg,
  1604. temp | FDI_RX_SYMBOL_LOCK);
  1605. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1606. break;
  1607. }
  1608. }
  1609. if (i == 4)
  1610. DRM_DEBUG_KMS("FDI train 2 fail!\n");
  1611. DRM_DEBUG_KMS("FDI train done.\n");
  1612. }
  1613. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  1614. {
  1615. struct drm_device *dev = crtc->dev;
  1616. struct drm_i915_private *dev_priv = dev->dev_private;
  1617. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1618. int pipe = intel_crtc->pipe;
  1619. int plane = intel_crtc->plane;
  1620. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1621. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1622. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1623. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1624. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1625. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1626. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1627. int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
  1628. int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
  1629. int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
  1630. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1631. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1632. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1633. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1634. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1635. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1636. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1637. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1638. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1639. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1640. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1641. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1642. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  1643. u32 temp;
  1644. int n;
  1645. u32 pipe_bpc;
  1646. temp = I915_READ(pipeconf_reg);
  1647. pipe_bpc = temp & PIPE_BPC_MASK;
  1648. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1649. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1650. */
  1651. switch (mode) {
  1652. case DRM_MODE_DPMS_ON:
  1653. case DRM_MODE_DPMS_STANDBY:
  1654. case DRM_MODE_DPMS_SUSPEND:
  1655. DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
  1656. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1657. temp = I915_READ(PCH_LVDS);
  1658. if ((temp & LVDS_PORT_EN) == 0) {
  1659. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  1660. POSTING_READ(PCH_LVDS);
  1661. }
  1662. }
  1663. if (HAS_eDP) {
  1664. /* enable eDP PLL */
  1665. ironlake_enable_pll_edp(crtc);
  1666. } else {
  1667. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1668. temp = I915_READ(fdi_rx_reg);
  1669. /*
  1670. * make the BPC in FDI Rx be consistent with that in
  1671. * pipeconf reg.
  1672. */
  1673. temp &= ~(0x7 << 16);
  1674. temp |= (pipe_bpc << 11);
  1675. temp &= ~(7 << 19);
  1676. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1677. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  1678. I915_READ(fdi_rx_reg);
  1679. udelay(200);
  1680. /* Switch from Rawclk to PCDclk */
  1681. temp = I915_READ(fdi_rx_reg);
  1682. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  1683. I915_READ(fdi_rx_reg);
  1684. udelay(200);
  1685. /* Enable CPU FDI TX PLL, always on for Ironlake */
  1686. temp = I915_READ(fdi_tx_reg);
  1687. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1688. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1689. I915_READ(fdi_tx_reg);
  1690. udelay(100);
  1691. }
  1692. }
  1693. /* Enable panel fitting for LVDS */
  1694. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1695. temp = I915_READ(pf_ctl_reg);
  1696. I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
  1697. /* currently full aspect */
  1698. I915_WRITE(pf_win_pos, 0);
  1699. I915_WRITE(pf_win_size,
  1700. (dev_priv->panel_fixed_mode->hdisplay << 16) |
  1701. (dev_priv->panel_fixed_mode->vdisplay));
  1702. }
  1703. /* Enable CPU pipe */
  1704. temp = I915_READ(pipeconf_reg);
  1705. if ((temp & PIPEACONF_ENABLE) == 0) {
  1706. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1707. I915_READ(pipeconf_reg);
  1708. udelay(100);
  1709. }
  1710. /* configure and enable CPU plane */
  1711. temp = I915_READ(dspcntr_reg);
  1712. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1713. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1714. /* Flush the plane changes */
  1715. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1716. }
  1717. if (!HAS_eDP) {
  1718. /* For PCH output, training FDI link */
  1719. if (IS_GEN6(dev))
  1720. gen6_fdi_link_train(crtc);
  1721. else
  1722. ironlake_fdi_link_train(crtc);
  1723. /* enable PCH DPLL */
  1724. temp = I915_READ(pch_dpll_reg);
  1725. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1726. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1727. I915_READ(pch_dpll_reg);
  1728. }
  1729. udelay(200);
  1730. if (HAS_PCH_CPT(dev)) {
  1731. /* Be sure PCH DPLL SEL is set */
  1732. temp = I915_READ(PCH_DPLL_SEL);
  1733. if (trans_dpll_sel == 0 &&
  1734. (temp & TRANSA_DPLL_ENABLE) == 0)
  1735. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  1736. else if (trans_dpll_sel == 1 &&
  1737. (temp & TRANSB_DPLL_ENABLE) == 0)
  1738. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1739. I915_WRITE(PCH_DPLL_SEL, temp);
  1740. I915_READ(PCH_DPLL_SEL);
  1741. }
  1742. /* set transcoder timing */
  1743. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1744. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1745. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1746. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1747. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1748. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1749. /* enable normal train */
  1750. temp = I915_READ(fdi_tx_reg);
  1751. temp &= ~FDI_LINK_TRAIN_NONE;
  1752. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1753. FDI_TX_ENHANCE_FRAME_ENABLE);
  1754. I915_READ(fdi_tx_reg);
  1755. temp = I915_READ(fdi_rx_reg);
  1756. if (HAS_PCH_CPT(dev)) {
  1757. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1758. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1759. } else {
  1760. temp &= ~FDI_LINK_TRAIN_NONE;
  1761. temp |= FDI_LINK_TRAIN_NONE;
  1762. }
  1763. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1764. I915_READ(fdi_rx_reg);
  1765. /* wait one idle pattern time */
  1766. udelay(100);
  1767. /* For PCH DP, enable TRANS_DP_CTL */
  1768. if (HAS_PCH_CPT(dev) &&
  1769. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  1770. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1771. int reg;
  1772. reg = I915_READ(trans_dp_ctl);
  1773. reg &= ~TRANS_DP_PORT_SEL_MASK;
  1774. reg = TRANS_DP_OUTPUT_ENABLE |
  1775. TRANS_DP_ENH_FRAMING;
  1776. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  1777. reg |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  1778. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  1779. reg |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  1780. switch (intel_trans_dp_port_sel(crtc)) {
  1781. case PCH_DP_B:
  1782. reg |= TRANS_DP_PORT_SEL_B;
  1783. break;
  1784. case PCH_DP_C:
  1785. reg |= TRANS_DP_PORT_SEL_C;
  1786. break;
  1787. case PCH_DP_D:
  1788. reg |= TRANS_DP_PORT_SEL_D;
  1789. break;
  1790. default:
  1791. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  1792. reg |= TRANS_DP_PORT_SEL_B;
  1793. break;
  1794. }
  1795. I915_WRITE(trans_dp_ctl, reg);
  1796. POSTING_READ(trans_dp_ctl);
  1797. }
  1798. /* enable PCH transcoder */
  1799. temp = I915_READ(transconf_reg);
  1800. /*
  1801. * make the BPC in transcoder be consistent with
  1802. * that in pipeconf reg.
  1803. */
  1804. temp &= ~PIPE_BPC_MASK;
  1805. temp |= pipe_bpc;
  1806. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1807. I915_READ(transconf_reg);
  1808. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
  1809. ;
  1810. }
  1811. intel_crtc_load_lut(crtc);
  1812. intel_update_fbc(crtc, &crtc->mode);
  1813. break;
  1814. case DRM_MODE_DPMS_OFF:
  1815. DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
  1816. drm_vblank_off(dev, pipe);
  1817. /* Disable display plane */
  1818. temp = I915_READ(dspcntr_reg);
  1819. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1820. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1821. /* Flush the plane changes */
  1822. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1823. I915_READ(dspbase_reg);
  1824. }
  1825. if (dev_priv->cfb_plane == plane &&
  1826. dev_priv->display.disable_fbc)
  1827. dev_priv->display.disable_fbc(dev);
  1828. i915_disable_vga(dev);
  1829. /* disable cpu pipe, disable after all planes disabled */
  1830. temp = I915_READ(pipeconf_reg);
  1831. if ((temp & PIPEACONF_ENABLE) != 0) {
  1832. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1833. I915_READ(pipeconf_reg);
  1834. n = 0;
  1835. /* wait for cpu pipe off, pipe state */
  1836. while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
  1837. n++;
  1838. if (n < 60) {
  1839. udelay(500);
  1840. continue;
  1841. } else {
  1842. DRM_DEBUG_KMS("pipe %d off delay\n",
  1843. pipe);
  1844. break;
  1845. }
  1846. }
  1847. } else
  1848. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  1849. udelay(100);
  1850. /* Disable PF */
  1851. temp = I915_READ(pf_ctl_reg);
  1852. if ((temp & PF_ENABLE) != 0) {
  1853. I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
  1854. I915_READ(pf_ctl_reg);
  1855. }
  1856. I915_WRITE(pf_win_size, 0);
  1857. POSTING_READ(pf_win_size);
  1858. /* disable CPU FDI tx and PCH FDI rx */
  1859. temp = I915_READ(fdi_tx_reg);
  1860. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1861. I915_READ(fdi_tx_reg);
  1862. temp = I915_READ(fdi_rx_reg);
  1863. /* BPC in FDI rx is consistent with that in pipeconf */
  1864. temp &= ~(0x07 << 16);
  1865. temp |= (pipe_bpc << 11);
  1866. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1867. I915_READ(fdi_rx_reg);
  1868. udelay(100);
  1869. /* still set train pattern 1 */
  1870. temp = I915_READ(fdi_tx_reg);
  1871. temp &= ~FDI_LINK_TRAIN_NONE;
  1872. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1873. I915_WRITE(fdi_tx_reg, temp);
  1874. POSTING_READ(fdi_tx_reg);
  1875. temp = I915_READ(fdi_rx_reg);
  1876. if (HAS_PCH_CPT(dev)) {
  1877. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1878. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1879. } else {
  1880. temp &= ~FDI_LINK_TRAIN_NONE;
  1881. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1882. }
  1883. I915_WRITE(fdi_rx_reg, temp);
  1884. POSTING_READ(fdi_rx_reg);
  1885. udelay(100);
  1886. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1887. temp = I915_READ(PCH_LVDS);
  1888. I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
  1889. I915_READ(PCH_LVDS);
  1890. udelay(100);
  1891. }
  1892. /* disable PCH transcoder */
  1893. temp = I915_READ(transconf_reg);
  1894. if ((temp & TRANS_ENABLE) != 0) {
  1895. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1896. I915_READ(transconf_reg);
  1897. n = 0;
  1898. /* wait for PCH transcoder off, transcoder state */
  1899. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
  1900. n++;
  1901. if (n < 60) {
  1902. udelay(500);
  1903. continue;
  1904. } else {
  1905. DRM_DEBUG_KMS("transcoder %d off "
  1906. "delay\n", pipe);
  1907. break;
  1908. }
  1909. }
  1910. }
  1911. temp = I915_READ(transconf_reg);
  1912. /* BPC in transcoder is consistent with that in pipeconf */
  1913. temp &= ~PIPE_BPC_MASK;
  1914. temp |= pipe_bpc;
  1915. I915_WRITE(transconf_reg, temp);
  1916. I915_READ(transconf_reg);
  1917. udelay(100);
  1918. if (HAS_PCH_CPT(dev)) {
  1919. /* disable TRANS_DP_CTL */
  1920. int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
  1921. int reg;
  1922. reg = I915_READ(trans_dp_ctl);
  1923. reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  1924. I915_WRITE(trans_dp_ctl, reg);
  1925. POSTING_READ(trans_dp_ctl);
  1926. /* disable DPLL_SEL */
  1927. temp = I915_READ(PCH_DPLL_SEL);
  1928. if (trans_dpll_sel == 0)
  1929. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  1930. else
  1931. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  1932. I915_WRITE(PCH_DPLL_SEL, temp);
  1933. I915_READ(PCH_DPLL_SEL);
  1934. }
  1935. /* disable PCH DPLL */
  1936. temp = I915_READ(pch_dpll_reg);
  1937. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1938. I915_READ(pch_dpll_reg);
  1939. if (HAS_eDP) {
  1940. ironlake_disable_pll_edp(crtc);
  1941. }
  1942. /* Switch from PCDclk to Rawclk */
  1943. temp = I915_READ(fdi_rx_reg);
  1944. temp &= ~FDI_SEL_PCDCLK;
  1945. I915_WRITE(fdi_rx_reg, temp);
  1946. I915_READ(fdi_rx_reg);
  1947. /* Disable CPU FDI TX PLL */
  1948. temp = I915_READ(fdi_tx_reg);
  1949. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1950. I915_READ(fdi_tx_reg);
  1951. udelay(100);
  1952. temp = I915_READ(fdi_rx_reg);
  1953. temp &= ~FDI_RX_PLL_ENABLE;
  1954. I915_WRITE(fdi_rx_reg, temp);
  1955. I915_READ(fdi_rx_reg);
  1956. /* Wait for the clocks to turn off. */
  1957. udelay(100);
  1958. break;
  1959. }
  1960. }
  1961. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  1962. {
  1963. struct intel_overlay *overlay;
  1964. int ret;
  1965. if (!enable && intel_crtc->overlay) {
  1966. overlay = intel_crtc->overlay;
  1967. mutex_lock(&overlay->dev->struct_mutex);
  1968. for (;;) {
  1969. ret = intel_overlay_switch_off(overlay);
  1970. if (ret == 0)
  1971. break;
  1972. ret = intel_overlay_recover_from_interrupt(overlay, 0);
  1973. if (ret != 0) {
  1974. /* overlay doesn't react anymore. Usually
  1975. * results in a black screen and an unkillable
  1976. * X server. */
  1977. BUG();
  1978. overlay->hw_wedged = HW_WEDGED;
  1979. break;
  1980. }
  1981. }
  1982. mutex_unlock(&overlay->dev->struct_mutex);
  1983. }
  1984. /* Let userspace switch the overlay on again. In most cases userspace
  1985. * has to recompute where to put it anyway. */
  1986. return;
  1987. }
  1988. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1989. {
  1990. struct drm_device *dev = crtc->dev;
  1991. struct drm_i915_private *dev_priv = dev->dev_private;
  1992. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1993. int pipe = intel_crtc->pipe;
  1994. int plane = intel_crtc->plane;
  1995. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1996. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1997. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1998. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1999. u32 temp;
  2000. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2001. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2002. */
  2003. switch (mode) {
  2004. case DRM_MODE_DPMS_ON:
  2005. case DRM_MODE_DPMS_STANDBY:
  2006. case DRM_MODE_DPMS_SUSPEND:
  2007. intel_update_watermarks(dev);
  2008. /* Enable the DPLL */
  2009. temp = I915_READ(dpll_reg);
  2010. if ((temp & DPLL_VCO_ENABLE) == 0) {
  2011. I915_WRITE(dpll_reg, temp);
  2012. I915_READ(dpll_reg);
  2013. /* Wait for the clocks to stabilize. */
  2014. udelay(150);
  2015. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  2016. I915_READ(dpll_reg);
  2017. /* Wait for the clocks to stabilize. */
  2018. udelay(150);
  2019. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  2020. I915_READ(dpll_reg);
  2021. /* Wait for the clocks to stabilize. */
  2022. udelay(150);
  2023. }
  2024. /* Enable the pipe */
  2025. temp = I915_READ(pipeconf_reg);
  2026. if ((temp & PIPEACONF_ENABLE) == 0)
  2027. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  2028. /* Enable the plane */
  2029. temp = I915_READ(dspcntr_reg);
  2030. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  2031. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  2032. /* Flush the plane changes */
  2033. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  2034. }
  2035. intel_crtc_load_lut(crtc);
  2036. if ((IS_I965G(dev) || plane == 0))
  2037. intel_update_fbc(crtc, &crtc->mode);
  2038. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2039. intel_crtc_dpms_overlay(intel_crtc, true);
  2040. break;
  2041. case DRM_MODE_DPMS_OFF:
  2042. intel_update_watermarks(dev);
  2043. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2044. intel_crtc_dpms_overlay(intel_crtc, false);
  2045. drm_vblank_off(dev, pipe);
  2046. if (dev_priv->cfb_plane == plane &&
  2047. dev_priv->display.disable_fbc)
  2048. dev_priv->display.disable_fbc(dev);
  2049. /* Disable the VGA plane that we never use */
  2050. i915_disable_vga(dev);
  2051. /* Disable display plane */
  2052. temp = I915_READ(dspcntr_reg);
  2053. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  2054. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  2055. /* Flush the plane changes */
  2056. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  2057. I915_READ(dspbase_reg);
  2058. }
  2059. if (!IS_I9XX(dev)) {
  2060. /* Wait for vblank for the disable to take effect */
  2061. intel_wait_for_vblank(dev);
  2062. }
  2063. /* Don't disable pipe A or pipe A PLLs if needed */
  2064. if (pipeconf_reg == PIPEACONF &&
  2065. (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  2066. goto skip_pipe_off;
  2067. /* Next, disable display pipes */
  2068. temp = I915_READ(pipeconf_reg);
  2069. if ((temp & PIPEACONF_ENABLE) != 0) {
  2070. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  2071. I915_READ(pipeconf_reg);
  2072. }
  2073. /* Wait for vblank for the disable to take effect. */
  2074. intel_wait_for_vblank(dev);
  2075. temp = I915_READ(dpll_reg);
  2076. if ((temp & DPLL_VCO_ENABLE) != 0) {
  2077. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  2078. I915_READ(dpll_reg);
  2079. }
  2080. skip_pipe_off:
  2081. /* Wait for the clocks to turn off. */
  2082. udelay(150);
  2083. break;
  2084. }
  2085. }
  2086. /**
  2087. * Sets the power management mode of the pipe and plane.
  2088. *
  2089. * This code should probably grow support for turning the cursor off and back
  2090. * on appropriately at the same time as we're turning the pipe off/on.
  2091. */
  2092. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2093. {
  2094. struct drm_device *dev = crtc->dev;
  2095. struct drm_i915_private *dev_priv = dev->dev_private;
  2096. struct drm_i915_master_private *master_priv;
  2097. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2098. int pipe = intel_crtc->pipe;
  2099. bool enabled;
  2100. dev_priv->display.dpms(crtc, mode);
  2101. intel_crtc->dpms_mode = mode;
  2102. if (!dev->primary->master)
  2103. return;
  2104. master_priv = dev->primary->master->driver_priv;
  2105. if (!master_priv->sarea_priv)
  2106. return;
  2107. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2108. switch (pipe) {
  2109. case 0:
  2110. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2111. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2112. break;
  2113. case 1:
  2114. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2115. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2116. break;
  2117. default:
  2118. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  2119. break;
  2120. }
  2121. }
  2122. static void intel_crtc_prepare (struct drm_crtc *crtc)
  2123. {
  2124. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2125. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2126. }
  2127. static void intel_crtc_commit (struct drm_crtc *crtc)
  2128. {
  2129. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2130. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  2131. }
  2132. void intel_encoder_prepare (struct drm_encoder *encoder)
  2133. {
  2134. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2135. /* lvds has its own version of prepare see intel_lvds_prepare */
  2136. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2137. }
  2138. void intel_encoder_commit (struct drm_encoder *encoder)
  2139. {
  2140. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2141. /* lvds has its own version of commit see intel_lvds_commit */
  2142. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2143. }
  2144. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2145. struct drm_display_mode *mode,
  2146. struct drm_display_mode *adjusted_mode)
  2147. {
  2148. struct drm_device *dev = crtc->dev;
  2149. if (HAS_PCH_SPLIT(dev)) {
  2150. /* FDI link clock is fixed at 2.7G */
  2151. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2152. return false;
  2153. }
  2154. return true;
  2155. }
  2156. static int i945_get_display_clock_speed(struct drm_device *dev)
  2157. {
  2158. return 400000;
  2159. }
  2160. static int i915_get_display_clock_speed(struct drm_device *dev)
  2161. {
  2162. return 333000;
  2163. }
  2164. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2165. {
  2166. return 200000;
  2167. }
  2168. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2169. {
  2170. u16 gcfgc = 0;
  2171. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2172. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2173. return 133000;
  2174. else {
  2175. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2176. case GC_DISPLAY_CLOCK_333_MHZ:
  2177. return 333000;
  2178. default:
  2179. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2180. return 190000;
  2181. }
  2182. }
  2183. }
  2184. static int i865_get_display_clock_speed(struct drm_device *dev)
  2185. {
  2186. return 266000;
  2187. }
  2188. static int i855_get_display_clock_speed(struct drm_device *dev)
  2189. {
  2190. u16 hpllcc = 0;
  2191. /* Assume that the hardware is in the high speed state. This
  2192. * should be the default.
  2193. */
  2194. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2195. case GC_CLOCK_133_200:
  2196. case GC_CLOCK_100_200:
  2197. return 200000;
  2198. case GC_CLOCK_166_250:
  2199. return 250000;
  2200. case GC_CLOCK_100_133:
  2201. return 133000;
  2202. }
  2203. /* Shouldn't happen */
  2204. return 0;
  2205. }
  2206. static int i830_get_display_clock_speed(struct drm_device *dev)
  2207. {
  2208. return 133000;
  2209. }
  2210. /**
  2211. * Return the pipe currently connected to the panel fitter,
  2212. * or -1 if the panel fitter is not present or not in use
  2213. */
  2214. int intel_panel_fitter_pipe (struct drm_device *dev)
  2215. {
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. u32 pfit_control;
  2218. /* i830 doesn't have a panel fitter */
  2219. if (IS_I830(dev))
  2220. return -1;
  2221. pfit_control = I915_READ(PFIT_CONTROL);
  2222. /* See if the panel fitter is in use */
  2223. if ((pfit_control & PFIT_ENABLE) == 0)
  2224. return -1;
  2225. /* 965 can place panel fitter on either pipe */
  2226. if (IS_I965G(dev))
  2227. return (pfit_control >> 29) & 0x3;
  2228. /* older chips can only use pipe 1 */
  2229. return 1;
  2230. }
  2231. struct fdi_m_n {
  2232. u32 tu;
  2233. u32 gmch_m;
  2234. u32 gmch_n;
  2235. u32 link_m;
  2236. u32 link_n;
  2237. };
  2238. static void
  2239. fdi_reduce_ratio(u32 *num, u32 *den)
  2240. {
  2241. while (*num > 0xffffff || *den > 0xffffff) {
  2242. *num >>= 1;
  2243. *den >>= 1;
  2244. }
  2245. }
  2246. #define DATA_N 0x800000
  2247. #define LINK_N 0x80000
  2248. static void
  2249. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2250. int link_clock, struct fdi_m_n *m_n)
  2251. {
  2252. u64 temp;
  2253. m_n->tu = 64; /* default size */
  2254. temp = (u64) DATA_N * pixel_clock;
  2255. temp = div_u64(temp, link_clock);
  2256. m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
  2257. m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
  2258. m_n->gmch_n = DATA_N;
  2259. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2260. temp = (u64) LINK_N * pixel_clock;
  2261. m_n->link_m = div_u64(temp, link_clock);
  2262. m_n->link_n = LINK_N;
  2263. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2264. }
  2265. struct intel_watermark_params {
  2266. unsigned long fifo_size;
  2267. unsigned long max_wm;
  2268. unsigned long default_wm;
  2269. unsigned long guard_size;
  2270. unsigned long cacheline_size;
  2271. };
  2272. /* Pineview has different values for various configs */
  2273. static struct intel_watermark_params pineview_display_wm = {
  2274. PINEVIEW_DISPLAY_FIFO,
  2275. PINEVIEW_MAX_WM,
  2276. PINEVIEW_DFT_WM,
  2277. PINEVIEW_GUARD_WM,
  2278. PINEVIEW_FIFO_LINE_SIZE
  2279. };
  2280. static struct intel_watermark_params pineview_display_hplloff_wm = {
  2281. PINEVIEW_DISPLAY_FIFO,
  2282. PINEVIEW_MAX_WM,
  2283. PINEVIEW_DFT_HPLLOFF_WM,
  2284. PINEVIEW_GUARD_WM,
  2285. PINEVIEW_FIFO_LINE_SIZE
  2286. };
  2287. static struct intel_watermark_params pineview_cursor_wm = {
  2288. PINEVIEW_CURSOR_FIFO,
  2289. PINEVIEW_CURSOR_MAX_WM,
  2290. PINEVIEW_CURSOR_DFT_WM,
  2291. PINEVIEW_CURSOR_GUARD_WM,
  2292. PINEVIEW_FIFO_LINE_SIZE,
  2293. };
  2294. static struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2295. PINEVIEW_CURSOR_FIFO,
  2296. PINEVIEW_CURSOR_MAX_WM,
  2297. PINEVIEW_CURSOR_DFT_WM,
  2298. PINEVIEW_CURSOR_GUARD_WM,
  2299. PINEVIEW_FIFO_LINE_SIZE
  2300. };
  2301. static struct intel_watermark_params g4x_wm_info = {
  2302. G4X_FIFO_SIZE,
  2303. G4X_MAX_WM,
  2304. G4X_MAX_WM,
  2305. 2,
  2306. G4X_FIFO_LINE_SIZE,
  2307. };
  2308. static struct intel_watermark_params g4x_cursor_wm_info = {
  2309. I965_CURSOR_FIFO,
  2310. I965_CURSOR_MAX_WM,
  2311. I965_CURSOR_DFT_WM,
  2312. 2,
  2313. G4X_FIFO_LINE_SIZE,
  2314. };
  2315. static struct intel_watermark_params i965_cursor_wm_info = {
  2316. I965_CURSOR_FIFO,
  2317. I965_CURSOR_MAX_WM,
  2318. I965_CURSOR_DFT_WM,
  2319. 2,
  2320. I915_FIFO_LINE_SIZE,
  2321. };
  2322. static struct intel_watermark_params i945_wm_info = {
  2323. I945_FIFO_SIZE,
  2324. I915_MAX_WM,
  2325. 1,
  2326. 2,
  2327. I915_FIFO_LINE_SIZE
  2328. };
  2329. static struct intel_watermark_params i915_wm_info = {
  2330. I915_FIFO_SIZE,
  2331. I915_MAX_WM,
  2332. 1,
  2333. 2,
  2334. I915_FIFO_LINE_SIZE
  2335. };
  2336. static struct intel_watermark_params i855_wm_info = {
  2337. I855GM_FIFO_SIZE,
  2338. I915_MAX_WM,
  2339. 1,
  2340. 2,
  2341. I830_FIFO_LINE_SIZE
  2342. };
  2343. static struct intel_watermark_params i830_wm_info = {
  2344. I830_FIFO_SIZE,
  2345. I915_MAX_WM,
  2346. 1,
  2347. 2,
  2348. I830_FIFO_LINE_SIZE
  2349. };
  2350. static struct intel_watermark_params ironlake_display_wm_info = {
  2351. ILK_DISPLAY_FIFO,
  2352. ILK_DISPLAY_MAXWM,
  2353. ILK_DISPLAY_DFTWM,
  2354. 2,
  2355. ILK_FIFO_LINE_SIZE
  2356. };
  2357. static struct intel_watermark_params ironlake_cursor_wm_info = {
  2358. ILK_CURSOR_FIFO,
  2359. ILK_CURSOR_MAXWM,
  2360. ILK_CURSOR_DFTWM,
  2361. 2,
  2362. ILK_FIFO_LINE_SIZE
  2363. };
  2364. static struct intel_watermark_params ironlake_display_srwm_info = {
  2365. ILK_DISPLAY_SR_FIFO,
  2366. ILK_DISPLAY_MAX_SRWM,
  2367. ILK_DISPLAY_DFT_SRWM,
  2368. 2,
  2369. ILK_FIFO_LINE_SIZE
  2370. };
  2371. static struct intel_watermark_params ironlake_cursor_srwm_info = {
  2372. ILK_CURSOR_SR_FIFO,
  2373. ILK_CURSOR_MAX_SRWM,
  2374. ILK_CURSOR_DFT_SRWM,
  2375. 2,
  2376. ILK_FIFO_LINE_SIZE
  2377. };
  2378. /**
  2379. * intel_calculate_wm - calculate watermark level
  2380. * @clock_in_khz: pixel clock
  2381. * @wm: chip FIFO params
  2382. * @pixel_size: display pixel size
  2383. * @latency_ns: memory latency for the platform
  2384. *
  2385. * Calculate the watermark level (the level at which the display plane will
  2386. * start fetching from memory again). Each chip has a different display
  2387. * FIFO size and allocation, so the caller needs to figure that out and pass
  2388. * in the correct intel_watermark_params structure.
  2389. *
  2390. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  2391. * on the pixel size. When it reaches the watermark level, it'll start
  2392. * fetching FIFO line sized based chunks from memory until the FIFO fills
  2393. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  2394. * will occur, and a display engine hang could result.
  2395. */
  2396. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  2397. struct intel_watermark_params *wm,
  2398. int pixel_size,
  2399. unsigned long latency_ns)
  2400. {
  2401. long entries_required, wm_size;
  2402. /*
  2403. * Note: we need to make sure we don't overflow for various clock &
  2404. * latency values.
  2405. * clocks go from a few thousand to several hundred thousand.
  2406. * latency is usually a few thousand
  2407. */
  2408. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2409. 1000;
  2410. entries_required /= wm->cacheline_size;
  2411. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2412. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  2413. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2414. /* Don't promote wm_size to unsigned... */
  2415. if (wm_size > (long)wm->max_wm)
  2416. wm_size = wm->max_wm;
  2417. if (wm_size <= 0)
  2418. wm_size = wm->default_wm;
  2419. return wm_size;
  2420. }
  2421. struct cxsr_latency {
  2422. int is_desktop;
  2423. int is_ddr3;
  2424. unsigned long fsb_freq;
  2425. unsigned long mem_freq;
  2426. unsigned long display_sr;
  2427. unsigned long display_hpll_disable;
  2428. unsigned long cursor_sr;
  2429. unsigned long cursor_hpll_disable;
  2430. };
  2431. static struct cxsr_latency cxsr_latency_table[] = {
  2432. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2433. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2434. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2435. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  2436. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  2437. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2438. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2439. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2440. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  2441. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  2442. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2443. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2444. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2445. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  2446. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  2447. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2448. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2449. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2450. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  2451. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  2452. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2453. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2454. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2455. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  2456. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  2457. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2458. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2459. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2460. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  2461. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  2462. };
  2463. static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
  2464. int fsb, int mem)
  2465. {
  2466. int i;
  2467. struct cxsr_latency *latency;
  2468. if (fsb == 0 || mem == 0)
  2469. return NULL;
  2470. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2471. latency = &cxsr_latency_table[i];
  2472. if (is_desktop == latency->is_desktop &&
  2473. is_ddr3 == latency->is_ddr3 &&
  2474. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2475. return latency;
  2476. }
  2477. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2478. return NULL;
  2479. }
  2480. static void pineview_disable_cxsr(struct drm_device *dev)
  2481. {
  2482. struct drm_i915_private *dev_priv = dev->dev_private;
  2483. u32 reg;
  2484. /* deactivate cxsr */
  2485. reg = I915_READ(DSPFW3);
  2486. reg &= ~(PINEVIEW_SELF_REFRESH_EN);
  2487. I915_WRITE(DSPFW3, reg);
  2488. DRM_INFO("Big FIFO is disabled\n");
  2489. }
  2490. /*
  2491. * Latency for FIFO fetches is dependent on several factors:
  2492. * - memory configuration (speed, channels)
  2493. * - chipset
  2494. * - current MCH state
  2495. * It can be fairly high in some situations, so here we assume a fairly
  2496. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2497. * set this value too high, the FIFO will fetch frequently to stay full)
  2498. * and power consumption (set it too low to save power and we might see
  2499. * FIFO underruns and display "flicker").
  2500. *
  2501. * A value of 5us seems to be a good balance; safe for very low end
  2502. * platforms but not overly aggressive on lower latency configs.
  2503. */
  2504. static const int latency_ns = 5000;
  2505. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2506. {
  2507. struct drm_i915_private *dev_priv = dev->dev_private;
  2508. uint32_t dsparb = I915_READ(DSPARB);
  2509. int size;
  2510. if (plane == 0)
  2511. size = dsparb & 0x7f;
  2512. else
  2513. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
  2514. (dsparb & 0x7f);
  2515. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2516. plane ? "B" : "A", size);
  2517. return size;
  2518. }
  2519. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2520. {
  2521. struct drm_i915_private *dev_priv = dev->dev_private;
  2522. uint32_t dsparb = I915_READ(DSPARB);
  2523. int size;
  2524. if (plane == 0)
  2525. size = dsparb & 0x1ff;
  2526. else
  2527. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
  2528. (dsparb & 0x1ff);
  2529. size >>= 1; /* Convert to cachelines */
  2530. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2531. plane ? "B" : "A", size);
  2532. return size;
  2533. }
  2534. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2535. {
  2536. struct drm_i915_private *dev_priv = dev->dev_private;
  2537. uint32_t dsparb = I915_READ(DSPARB);
  2538. int size;
  2539. size = dsparb & 0x7f;
  2540. size >>= 2; /* Convert to cachelines */
  2541. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2542. plane ? "B" : "A",
  2543. size);
  2544. return size;
  2545. }
  2546. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2547. {
  2548. struct drm_i915_private *dev_priv = dev->dev_private;
  2549. uint32_t dsparb = I915_READ(DSPARB);
  2550. int size;
  2551. size = dsparb & 0x7f;
  2552. size >>= 1; /* Convert to cachelines */
  2553. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2554. plane ? "B" : "A", size);
  2555. return size;
  2556. }
  2557. static void pineview_update_wm(struct drm_device *dev, int planea_clock,
  2558. int planeb_clock, int sr_hdisplay, int unused,
  2559. int pixel_size)
  2560. {
  2561. struct drm_i915_private *dev_priv = dev->dev_private;
  2562. u32 reg;
  2563. unsigned long wm;
  2564. struct cxsr_latency *latency;
  2565. int sr_clock;
  2566. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  2567. dev_priv->fsb_freq, dev_priv->mem_freq);
  2568. if (!latency) {
  2569. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2570. pineview_disable_cxsr(dev);
  2571. return;
  2572. }
  2573. if (!planea_clock || !planeb_clock) {
  2574. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2575. /* Display SR */
  2576. wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
  2577. pixel_size, latency->display_sr);
  2578. reg = I915_READ(DSPFW1);
  2579. reg &= ~DSPFW_SR_MASK;
  2580. reg |= wm << DSPFW_SR_SHIFT;
  2581. I915_WRITE(DSPFW1, reg);
  2582. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2583. /* cursor SR */
  2584. wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
  2585. pixel_size, latency->cursor_sr);
  2586. reg = I915_READ(DSPFW3);
  2587. reg &= ~DSPFW_CURSOR_SR_MASK;
  2588. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  2589. I915_WRITE(DSPFW3, reg);
  2590. /* Display HPLL off SR */
  2591. wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
  2592. pixel_size, latency->display_hpll_disable);
  2593. reg = I915_READ(DSPFW3);
  2594. reg &= ~DSPFW_HPLL_SR_MASK;
  2595. reg |= wm & DSPFW_HPLL_SR_MASK;
  2596. I915_WRITE(DSPFW3, reg);
  2597. /* cursor HPLL off SR */
  2598. wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
  2599. pixel_size, latency->cursor_hpll_disable);
  2600. reg = I915_READ(DSPFW3);
  2601. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  2602. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  2603. I915_WRITE(DSPFW3, reg);
  2604. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2605. /* activate cxsr */
  2606. reg = I915_READ(DSPFW3);
  2607. reg |= PINEVIEW_SELF_REFRESH_EN;
  2608. I915_WRITE(DSPFW3, reg);
  2609. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  2610. } else {
  2611. pineview_disable_cxsr(dev);
  2612. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  2613. }
  2614. }
  2615. static void g4x_update_wm(struct drm_device *dev, int planea_clock,
  2616. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2617. int pixel_size)
  2618. {
  2619. struct drm_i915_private *dev_priv = dev->dev_private;
  2620. int total_size, cacheline_size;
  2621. int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
  2622. struct intel_watermark_params planea_params, planeb_params;
  2623. unsigned long line_time_us;
  2624. int sr_clock, sr_entries = 0, entries_required;
  2625. /* Create copies of the base settings for each pipe */
  2626. planea_params = planeb_params = g4x_wm_info;
  2627. /* Grab a couple of global values before we overwrite them */
  2628. total_size = planea_params.fifo_size;
  2629. cacheline_size = planea_params.cacheline_size;
  2630. /*
  2631. * Note: we need to make sure we don't overflow for various clock &
  2632. * latency values.
  2633. * clocks go from a few thousand to several hundred thousand.
  2634. * latency is usually a few thousand
  2635. */
  2636. entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
  2637. 1000;
  2638. entries_required /= G4X_FIFO_LINE_SIZE;
  2639. planea_wm = entries_required + planea_params.guard_size;
  2640. entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
  2641. 1000;
  2642. entries_required /= G4X_FIFO_LINE_SIZE;
  2643. planeb_wm = entries_required + planeb_params.guard_size;
  2644. cursora_wm = cursorb_wm = 16;
  2645. cursor_sr = 32;
  2646. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2647. /* Calc sr entries for one plane configs */
  2648. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2649. /* self-refresh has much higher latency */
  2650. static const int sr_latency_ns = 12000;
  2651. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2652. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2653. /* Use ns/us then divide to preserve precision */
  2654. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2655. pixel_size * sr_hdisplay;
  2656. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2657. entries_required = (((sr_latency_ns / line_time_us) +
  2658. 1000) / 1000) * pixel_size * 64;
  2659. entries_required = roundup(entries_required /
  2660. g4x_cursor_wm_info.cacheline_size, 1);
  2661. cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
  2662. if (cursor_sr > g4x_cursor_wm_info.max_wm)
  2663. cursor_sr = g4x_cursor_wm_info.max_wm;
  2664. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2665. "cursor %d\n", sr_entries, cursor_sr);
  2666. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2667. } else {
  2668. /* Turn off self refresh if both pipes are enabled */
  2669. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2670. & ~FW_BLC_SELF_EN);
  2671. }
  2672. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
  2673. planea_wm, planeb_wm, sr_entries);
  2674. planea_wm &= 0x3f;
  2675. planeb_wm &= 0x3f;
  2676. I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
  2677. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  2678. (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
  2679. I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  2680. (cursora_wm << DSPFW_CURSORA_SHIFT));
  2681. /* HPLL off in SR has some issues on G4x... disable it */
  2682. I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  2683. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2684. }
  2685. static void i965_update_wm(struct drm_device *dev, int planea_clock,
  2686. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2687. int pixel_size)
  2688. {
  2689. struct drm_i915_private *dev_priv = dev->dev_private;
  2690. unsigned long line_time_us;
  2691. int sr_clock, sr_entries, srwm = 1;
  2692. int cursor_sr = 16;
  2693. /* Calc sr entries for one plane configs */
  2694. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2695. /* self-refresh has much higher latency */
  2696. static const int sr_latency_ns = 12000;
  2697. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2698. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2699. /* Use ns/us then divide to preserve precision */
  2700. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2701. pixel_size * sr_hdisplay;
  2702. sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
  2703. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2704. srwm = I965_FIFO_SIZE - sr_entries;
  2705. if (srwm < 0)
  2706. srwm = 1;
  2707. srwm &= 0x1ff;
  2708. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2709. pixel_size * 64;
  2710. sr_entries = roundup(sr_entries /
  2711. i965_cursor_wm_info.cacheline_size, 1);
  2712. cursor_sr = i965_cursor_wm_info.fifo_size -
  2713. (sr_entries + i965_cursor_wm_info.guard_size);
  2714. if (cursor_sr > i965_cursor_wm_info.max_wm)
  2715. cursor_sr = i965_cursor_wm_info.max_wm;
  2716. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2717. "cursor %d\n", srwm, cursor_sr);
  2718. if (IS_I965GM(dev))
  2719. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2720. } else {
  2721. /* Turn off self refresh if both pipes are enabled */
  2722. if (IS_I965GM(dev))
  2723. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2724. & ~FW_BLC_SELF_EN);
  2725. }
  2726. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  2727. srwm);
  2728. /* 965 has limitations... */
  2729. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
  2730. (8 << 0));
  2731. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  2732. /* update cursor SR watermark */
  2733. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2734. }
  2735. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  2736. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2737. int pixel_size)
  2738. {
  2739. struct drm_i915_private *dev_priv = dev->dev_private;
  2740. uint32_t fwater_lo;
  2741. uint32_t fwater_hi;
  2742. int total_size, cacheline_size, cwm, srwm = 1;
  2743. int planea_wm, planeb_wm;
  2744. struct intel_watermark_params planea_params, planeb_params;
  2745. unsigned long line_time_us;
  2746. int sr_clock, sr_entries = 0;
  2747. /* Create copies of the base settings for each pipe */
  2748. if (IS_I965GM(dev) || IS_I945GM(dev))
  2749. planea_params = planeb_params = i945_wm_info;
  2750. else if (IS_I9XX(dev))
  2751. planea_params = planeb_params = i915_wm_info;
  2752. else
  2753. planea_params = planeb_params = i855_wm_info;
  2754. /* Grab a couple of global values before we overwrite them */
  2755. total_size = planea_params.fifo_size;
  2756. cacheline_size = planea_params.cacheline_size;
  2757. /* Update per-plane FIFO sizes */
  2758. planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2759. planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  2760. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  2761. pixel_size, latency_ns);
  2762. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  2763. pixel_size, latency_ns);
  2764. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2765. /*
  2766. * Overlay gets an aggressive default since video jitter is bad.
  2767. */
  2768. cwm = 2;
  2769. /* Calc sr entries for one plane configs */
  2770. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  2771. (!planea_clock || !planeb_clock)) {
  2772. /* self-refresh has much higher latency */
  2773. static const int sr_latency_ns = 6000;
  2774. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2775. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2776. /* Use ns/us then divide to preserve precision */
  2777. sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  2778. pixel_size * sr_hdisplay;
  2779. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2780. DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
  2781. srwm = total_size - sr_entries;
  2782. if (srwm < 0)
  2783. srwm = 1;
  2784. if (IS_I945G(dev) || IS_I945GM(dev))
  2785. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  2786. else if (IS_I915GM(dev)) {
  2787. /* 915M has a smaller SRWM field */
  2788. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  2789. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  2790. }
  2791. } else {
  2792. /* Turn off self refresh if both pipes are enabled */
  2793. if (IS_I945G(dev) || IS_I945GM(dev)) {
  2794. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  2795. & ~FW_BLC_SELF_EN);
  2796. } else if (IS_I915GM(dev)) {
  2797. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  2798. }
  2799. }
  2800. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  2801. planea_wm, planeb_wm, cwm, srwm);
  2802. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  2803. fwater_hi = (cwm & 0x1f);
  2804. /* Set request length to 8 cachelines per fetch */
  2805. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  2806. fwater_hi = fwater_hi | (1 << 8);
  2807. I915_WRITE(FW_BLC, fwater_lo);
  2808. I915_WRITE(FW_BLC2, fwater_hi);
  2809. }
  2810. static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
  2811. int unused2, int unused3, int pixel_size)
  2812. {
  2813. struct drm_i915_private *dev_priv = dev->dev_private;
  2814. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2815. int planea_wm;
  2816. i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2817. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  2818. pixel_size, latency_ns);
  2819. fwater_lo |= (3<<8) | planea_wm;
  2820. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2821. I915_WRITE(FW_BLC, fwater_lo);
  2822. }
  2823. #define ILK_LP0_PLANE_LATENCY 700
  2824. #define ILK_LP0_CURSOR_LATENCY 1300
  2825. static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
  2826. int planeb_clock, int sr_hdisplay, int sr_htotal,
  2827. int pixel_size)
  2828. {
  2829. struct drm_i915_private *dev_priv = dev->dev_private;
  2830. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  2831. int sr_wm, cursor_wm;
  2832. unsigned long line_time_us;
  2833. int sr_clock, entries_required;
  2834. u32 reg_value;
  2835. int line_count;
  2836. int planea_htotal = 0, planeb_htotal = 0;
  2837. struct drm_crtc *crtc;
  2838. struct intel_crtc *intel_crtc;
  2839. /* Need htotal for all active display plane */
  2840. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2841. intel_crtc = to_intel_crtc(crtc);
  2842. if (crtc->enabled) {
  2843. if (intel_crtc->plane == 0)
  2844. planea_htotal = crtc->mode.htotal;
  2845. else
  2846. planeb_htotal = crtc->mode.htotal;
  2847. }
  2848. }
  2849. /* Calculate and update the watermark for plane A */
  2850. if (planea_clock) {
  2851. entries_required = ((planea_clock / 1000) * pixel_size *
  2852. ILK_LP0_PLANE_LATENCY) / 1000;
  2853. entries_required = DIV_ROUND_UP(entries_required,
  2854. ironlake_display_wm_info.cacheline_size);
  2855. planea_wm = entries_required +
  2856. ironlake_display_wm_info.guard_size;
  2857. if (planea_wm > (int)ironlake_display_wm_info.max_wm)
  2858. planea_wm = ironlake_display_wm_info.max_wm;
  2859. /* Use the large buffer method to calculate cursor watermark */
  2860. line_time_us = (planea_htotal * 1000) / planea_clock;
  2861. /* Use ns/us then divide to preserve precision */
  2862. line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
  2863. /* calculate the cursor watermark for cursor A */
  2864. entries_required = line_count * 64 * pixel_size;
  2865. entries_required = DIV_ROUND_UP(entries_required,
  2866. ironlake_cursor_wm_info.cacheline_size);
  2867. cursora_wm = entries_required + ironlake_cursor_wm_info.guard_size;
  2868. if (cursora_wm > ironlake_cursor_wm_info.max_wm)
  2869. cursora_wm = ironlake_cursor_wm_info.max_wm;
  2870. reg_value = I915_READ(WM0_PIPEA_ILK);
  2871. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2872. reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
  2873. (cursora_wm & WM0_PIPE_CURSOR_MASK);
  2874. I915_WRITE(WM0_PIPEA_ILK, reg_value);
  2875. DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
  2876. "cursor: %d\n", planea_wm, cursora_wm);
  2877. }
  2878. /* Calculate and update the watermark for plane B */
  2879. if (planeb_clock) {
  2880. entries_required = ((planeb_clock / 1000) * pixel_size *
  2881. ILK_LP0_PLANE_LATENCY) / 1000;
  2882. entries_required = DIV_ROUND_UP(entries_required,
  2883. ironlake_display_wm_info.cacheline_size);
  2884. planeb_wm = entries_required +
  2885. ironlake_display_wm_info.guard_size;
  2886. if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
  2887. planeb_wm = ironlake_display_wm_info.max_wm;
  2888. /* Use the large buffer method to calculate cursor watermark */
  2889. line_time_us = (planeb_htotal * 1000) / planeb_clock;
  2890. /* Use ns/us then divide to preserve precision */
  2891. line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
  2892. /* calculate the cursor watermark for cursor B */
  2893. entries_required = line_count * 64 * pixel_size;
  2894. entries_required = DIV_ROUND_UP(entries_required,
  2895. ironlake_cursor_wm_info.cacheline_size);
  2896. cursorb_wm = entries_required + ironlake_cursor_wm_info.guard_size;
  2897. if (cursorb_wm > ironlake_cursor_wm_info.max_wm)
  2898. cursorb_wm = ironlake_cursor_wm_info.max_wm;
  2899. reg_value = I915_READ(WM0_PIPEB_ILK);
  2900. reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  2901. reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
  2902. (cursorb_wm & WM0_PIPE_CURSOR_MASK);
  2903. I915_WRITE(WM0_PIPEB_ILK, reg_value);
  2904. DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
  2905. "cursor: %d\n", planeb_wm, cursorb_wm);
  2906. }
  2907. /*
  2908. * Calculate and update the self-refresh watermark only when one
  2909. * display plane is used.
  2910. */
  2911. if (!planea_clock || !planeb_clock) {
  2912. /* Read the self-refresh latency. The unit is 0.5us */
  2913. int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
  2914. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2915. line_time_us = ((sr_htotal * 1000) / sr_clock);
  2916. /* Use ns/us then divide to preserve precision */
  2917. line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
  2918. / 1000;
  2919. /* calculate the self-refresh watermark for display plane */
  2920. entries_required = line_count * sr_hdisplay * pixel_size;
  2921. entries_required = DIV_ROUND_UP(entries_required,
  2922. ironlake_display_srwm_info.cacheline_size);
  2923. sr_wm = entries_required +
  2924. ironlake_display_srwm_info.guard_size;
  2925. /* calculate the self-refresh watermark for display cursor */
  2926. entries_required = line_count * pixel_size * 64;
  2927. entries_required = DIV_ROUND_UP(entries_required,
  2928. ironlake_cursor_srwm_info.cacheline_size);
  2929. cursor_wm = entries_required +
  2930. ironlake_cursor_srwm_info.guard_size;
  2931. /* configure watermark and enable self-refresh */
  2932. reg_value = I915_READ(WM1_LP_ILK);
  2933. reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
  2934. WM1_LP_CURSOR_MASK);
  2935. reg_value |= WM1_LP_SR_EN |
  2936. (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
  2937. (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
  2938. I915_WRITE(WM1_LP_ILK, reg_value);
  2939. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  2940. "cursor %d\n", sr_wm, cursor_wm);
  2941. } else {
  2942. /* Turn off self refresh if both pipes are enabled */
  2943. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  2944. }
  2945. }
  2946. /**
  2947. * intel_update_watermarks - update FIFO watermark values based on current modes
  2948. *
  2949. * Calculate watermark values for the various WM regs based on current mode
  2950. * and plane configuration.
  2951. *
  2952. * There are several cases to deal with here:
  2953. * - normal (i.e. non-self-refresh)
  2954. * - self-refresh (SR) mode
  2955. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2956. * - lines are small relative to FIFO size (buffer can hold more than 2
  2957. * lines), so need to account for TLB latency
  2958. *
  2959. * The normal calculation is:
  2960. * watermark = dotclock * bytes per pixel * latency
  2961. * where latency is platform & configuration dependent (we assume pessimal
  2962. * values here).
  2963. *
  2964. * The SR calculation is:
  2965. * watermark = (trunc(latency/line time)+1) * surface width *
  2966. * bytes per pixel
  2967. * where
  2968. * line time = htotal / dotclock
  2969. * surface width = hdisplay for normal plane and 64 for cursor
  2970. * and latency is assumed to be high, as above.
  2971. *
  2972. * The final value programmed to the register should always be rounded up,
  2973. * and include an extra 2 entries to account for clock crossings.
  2974. *
  2975. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2976. * to set the non-SR watermarks to 8.
  2977. */
  2978. static void intel_update_watermarks(struct drm_device *dev)
  2979. {
  2980. struct drm_i915_private *dev_priv = dev->dev_private;
  2981. struct drm_crtc *crtc;
  2982. struct intel_crtc *intel_crtc;
  2983. int sr_hdisplay = 0;
  2984. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  2985. int enabled = 0, pixel_size = 0;
  2986. int sr_htotal = 0;
  2987. if (!dev_priv->display.update_wm)
  2988. return;
  2989. /* Get the clock config from both planes */
  2990. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2991. intel_crtc = to_intel_crtc(crtc);
  2992. if (crtc->enabled) {
  2993. enabled++;
  2994. if (intel_crtc->plane == 0) {
  2995. DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
  2996. intel_crtc->pipe, crtc->mode.clock);
  2997. planea_clock = crtc->mode.clock;
  2998. } else {
  2999. DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
  3000. intel_crtc->pipe, crtc->mode.clock);
  3001. planeb_clock = crtc->mode.clock;
  3002. }
  3003. sr_hdisplay = crtc->mode.hdisplay;
  3004. sr_clock = crtc->mode.clock;
  3005. sr_htotal = crtc->mode.htotal;
  3006. if (crtc->fb)
  3007. pixel_size = crtc->fb->bits_per_pixel / 8;
  3008. else
  3009. pixel_size = 4; /* by default */
  3010. }
  3011. }
  3012. if (enabled <= 0)
  3013. return;
  3014. dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
  3015. sr_hdisplay, sr_htotal, pixel_size);
  3016. }
  3017. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  3018. struct drm_display_mode *mode,
  3019. struct drm_display_mode *adjusted_mode,
  3020. int x, int y,
  3021. struct drm_framebuffer *old_fb)
  3022. {
  3023. struct drm_device *dev = crtc->dev;
  3024. struct drm_i915_private *dev_priv = dev->dev_private;
  3025. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3026. int pipe = intel_crtc->pipe;
  3027. int plane = intel_crtc->plane;
  3028. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  3029. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3030. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  3031. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  3032. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  3033. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  3034. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  3035. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  3036. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  3037. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  3038. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  3039. int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
  3040. int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
  3041. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  3042. int refclk, num_connectors = 0;
  3043. intel_clock_t clock, reduced_clock;
  3044. u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
  3045. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  3046. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  3047. bool is_edp = false;
  3048. struct drm_mode_config *mode_config = &dev->mode_config;
  3049. struct drm_encoder *encoder;
  3050. struct intel_encoder *intel_encoder = NULL;
  3051. const intel_limit_t *limit;
  3052. int ret;
  3053. struct fdi_m_n m_n = {0};
  3054. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  3055. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  3056. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  3057. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  3058. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  3059. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  3060. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  3061. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  3062. int trans_dpll_sel = (pipe == 0) ? 0 : 1;
  3063. int lvds_reg = LVDS;
  3064. u32 temp;
  3065. int sdvo_pixel_multiply;
  3066. int target_clock;
  3067. drm_vblank_pre_modeset(dev, pipe);
  3068. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  3069. if (!encoder || encoder->crtc != crtc)
  3070. continue;
  3071. intel_encoder = enc_to_intel_encoder(encoder);
  3072. switch (intel_encoder->type) {
  3073. case INTEL_OUTPUT_LVDS:
  3074. is_lvds = true;
  3075. break;
  3076. case INTEL_OUTPUT_SDVO:
  3077. case INTEL_OUTPUT_HDMI:
  3078. is_sdvo = true;
  3079. if (intel_encoder->needs_tv_clock)
  3080. is_tv = true;
  3081. break;
  3082. case INTEL_OUTPUT_DVO:
  3083. is_dvo = true;
  3084. break;
  3085. case INTEL_OUTPUT_TVOUT:
  3086. is_tv = true;
  3087. break;
  3088. case INTEL_OUTPUT_ANALOG:
  3089. is_crt = true;
  3090. break;
  3091. case INTEL_OUTPUT_DISPLAYPORT:
  3092. is_dp = true;
  3093. break;
  3094. case INTEL_OUTPUT_EDP:
  3095. is_edp = true;
  3096. break;
  3097. }
  3098. num_connectors++;
  3099. }
  3100. if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
  3101. refclk = dev_priv->lvds_ssc_freq * 1000;
  3102. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3103. refclk / 1000);
  3104. } else if (IS_I9XX(dev)) {
  3105. refclk = 96000;
  3106. if (HAS_PCH_SPLIT(dev))
  3107. refclk = 120000; /* 120Mhz refclk */
  3108. } else {
  3109. refclk = 48000;
  3110. }
  3111. /*
  3112. * Returns a set of divisors for the desired target clock with the given
  3113. * refclk, or FALSE. The returned values represent the clock equation:
  3114. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3115. */
  3116. limit = intel_limit(crtc);
  3117. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  3118. if (!ok) {
  3119. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3120. drm_vblank_post_modeset(dev, pipe);
  3121. return -EINVAL;
  3122. }
  3123. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3124. has_reduced_clock = limit->find_pll(limit, crtc,
  3125. dev_priv->lvds_downclock,
  3126. refclk,
  3127. &reduced_clock);
  3128. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  3129. /*
  3130. * If the different P is found, it means that we can't
  3131. * switch the display clock by using the FP0/FP1.
  3132. * In such case we will disable the LVDS downclock
  3133. * feature.
  3134. */
  3135. DRM_DEBUG_KMS("Different P is found for "
  3136. "LVDS clock/downclock\n");
  3137. has_reduced_clock = 0;
  3138. }
  3139. }
  3140. /* SDVO TV has fixed PLL values depend on its clock range,
  3141. this mirrors vbios setting. */
  3142. if (is_sdvo && is_tv) {
  3143. if (adjusted_mode->clock >= 100000
  3144. && adjusted_mode->clock < 140500) {
  3145. clock.p1 = 2;
  3146. clock.p2 = 10;
  3147. clock.n = 3;
  3148. clock.m1 = 16;
  3149. clock.m2 = 8;
  3150. } else if (adjusted_mode->clock >= 140500
  3151. && adjusted_mode->clock <= 200000) {
  3152. clock.p1 = 1;
  3153. clock.p2 = 10;
  3154. clock.n = 6;
  3155. clock.m1 = 12;
  3156. clock.m2 = 8;
  3157. }
  3158. }
  3159. /* FDI link */
  3160. if (HAS_PCH_SPLIT(dev)) {
  3161. int lane = 0, link_bw, bpp;
  3162. /* eDP doesn't require FDI link, so just set DP M/N
  3163. according to current link config */
  3164. if (is_edp) {
  3165. target_clock = mode->clock;
  3166. intel_edp_link_config(intel_encoder,
  3167. &lane, &link_bw);
  3168. } else {
  3169. /* DP over FDI requires target mode clock
  3170. instead of link clock */
  3171. if (is_dp)
  3172. target_clock = mode->clock;
  3173. else
  3174. target_clock = adjusted_mode->clock;
  3175. link_bw = 270000;
  3176. }
  3177. /* determine panel color depth */
  3178. temp = I915_READ(pipeconf_reg);
  3179. temp &= ~PIPE_BPC_MASK;
  3180. if (is_lvds) {
  3181. int lvds_reg = I915_READ(PCH_LVDS);
  3182. /* the BPC will be 6 if it is 18-bit LVDS panel */
  3183. if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
  3184. temp |= PIPE_8BPC;
  3185. else
  3186. temp |= PIPE_6BPC;
  3187. } else if (is_edp || (is_dp && intel_pch_has_edp(crtc))) {
  3188. switch (dev_priv->edp_bpp/3) {
  3189. case 8:
  3190. temp |= PIPE_8BPC;
  3191. break;
  3192. case 10:
  3193. temp |= PIPE_10BPC;
  3194. break;
  3195. case 6:
  3196. temp |= PIPE_6BPC;
  3197. break;
  3198. case 12:
  3199. temp |= PIPE_12BPC;
  3200. break;
  3201. }
  3202. } else
  3203. temp |= PIPE_8BPC;
  3204. I915_WRITE(pipeconf_reg, temp);
  3205. I915_READ(pipeconf_reg);
  3206. switch (temp & PIPE_BPC_MASK) {
  3207. case PIPE_8BPC:
  3208. bpp = 24;
  3209. break;
  3210. case PIPE_10BPC:
  3211. bpp = 30;
  3212. break;
  3213. case PIPE_6BPC:
  3214. bpp = 18;
  3215. break;
  3216. case PIPE_12BPC:
  3217. bpp = 36;
  3218. break;
  3219. default:
  3220. DRM_ERROR("unknown pipe bpc value\n");
  3221. bpp = 24;
  3222. }
  3223. if (!lane) {
  3224. /*
  3225. * Account for spread spectrum to avoid
  3226. * oversubscribing the link. Max center spread
  3227. * is 2.5%; use 5% for safety's sake.
  3228. */
  3229. u32 bps = target_clock * bpp * 21 / 20;
  3230. lane = bps / (link_bw * 8) + 1;
  3231. }
  3232. intel_crtc->fdi_lanes = lane;
  3233. ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
  3234. }
  3235. /* Ironlake: try to setup display ref clock before DPLL
  3236. * enabling. This is only under driver's control after
  3237. * PCH B stepping, previous chipset stepping should be
  3238. * ignoring this setting.
  3239. */
  3240. if (HAS_PCH_SPLIT(dev)) {
  3241. temp = I915_READ(PCH_DREF_CONTROL);
  3242. /* Always enable nonspread source */
  3243. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3244. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3245. I915_WRITE(PCH_DREF_CONTROL, temp);
  3246. POSTING_READ(PCH_DREF_CONTROL);
  3247. temp &= ~DREF_SSC_SOURCE_MASK;
  3248. temp |= DREF_SSC_SOURCE_ENABLE;
  3249. I915_WRITE(PCH_DREF_CONTROL, temp);
  3250. POSTING_READ(PCH_DREF_CONTROL);
  3251. udelay(200);
  3252. if (is_edp) {
  3253. if (dev_priv->lvds_use_ssc) {
  3254. temp |= DREF_SSC1_ENABLE;
  3255. I915_WRITE(PCH_DREF_CONTROL, temp);
  3256. POSTING_READ(PCH_DREF_CONTROL);
  3257. udelay(200);
  3258. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3259. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3260. I915_WRITE(PCH_DREF_CONTROL, temp);
  3261. POSTING_READ(PCH_DREF_CONTROL);
  3262. } else {
  3263. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3264. I915_WRITE(PCH_DREF_CONTROL, temp);
  3265. POSTING_READ(PCH_DREF_CONTROL);
  3266. }
  3267. }
  3268. }
  3269. if (IS_PINEVIEW(dev)) {
  3270. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  3271. if (has_reduced_clock)
  3272. fp2 = (1 << reduced_clock.n) << 16 |
  3273. reduced_clock.m1 << 8 | reduced_clock.m2;
  3274. } else {
  3275. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3276. if (has_reduced_clock)
  3277. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3278. reduced_clock.m2;
  3279. }
  3280. if (!HAS_PCH_SPLIT(dev))
  3281. dpll = DPLL_VGA_MODE_DIS;
  3282. if (IS_I9XX(dev)) {
  3283. if (is_lvds)
  3284. dpll |= DPLLB_MODE_LVDS;
  3285. else
  3286. dpll |= DPLLB_MODE_DAC_SERIAL;
  3287. if (is_sdvo) {
  3288. dpll |= DPLL_DVO_HIGH_SPEED;
  3289. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3290. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3291. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3292. else if (HAS_PCH_SPLIT(dev))
  3293. dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  3294. }
  3295. if (is_dp)
  3296. dpll |= DPLL_DVO_HIGH_SPEED;
  3297. /* compute bitmask from p1 value */
  3298. if (IS_PINEVIEW(dev))
  3299. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3300. else {
  3301. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3302. /* also FPA1 */
  3303. if (HAS_PCH_SPLIT(dev))
  3304. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3305. if (IS_G4X(dev) && has_reduced_clock)
  3306. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3307. }
  3308. switch (clock.p2) {
  3309. case 5:
  3310. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3311. break;
  3312. case 7:
  3313. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3314. break;
  3315. case 10:
  3316. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3317. break;
  3318. case 14:
  3319. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3320. break;
  3321. }
  3322. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
  3323. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3324. } else {
  3325. if (is_lvds) {
  3326. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3327. } else {
  3328. if (clock.p1 == 2)
  3329. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3330. else
  3331. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3332. if (clock.p2 == 4)
  3333. dpll |= PLL_P2_DIVIDE_BY_4;
  3334. }
  3335. }
  3336. if (is_sdvo && is_tv)
  3337. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3338. else if (is_tv)
  3339. /* XXX: just matching BIOS for now */
  3340. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3341. dpll |= 3;
  3342. else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
  3343. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3344. else
  3345. dpll |= PLL_REF_INPUT_DREFCLK;
  3346. /* setup pipeconf */
  3347. pipeconf = I915_READ(pipeconf_reg);
  3348. /* Set up the display plane register */
  3349. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3350. /* Ironlake's plane is forced to pipe, bit 24 is to
  3351. enable color space conversion */
  3352. if (!HAS_PCH_SPLIT(dev)) {
  3353. if (pipe == 0)
  3354. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3355. else
  3356. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3357. }
  3358. if (pipe == 0 && !IS_I965G(dev)) {
  3359. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3360. * core speed.
  3361. *
  3362. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3363. * pipe == 0 check?
  3364. */
  3365. if (mode->clock >
  3366. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3367. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  3368. else
  3369. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  3370. }
  3371. dspcntr |= DISPLAY_PLANE_ENABLE;
  3372. pipeconf |= PIPEACONF_ENABLE;
  3373. dpll |= DPLL_VCO_ENABLE;
  3374. /* Disable the panel fitter if it was on our pipe */
  3375. if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
  3376. I915_WRITE(PFIT_CONTROL, 0);
  3377. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3378. drm_mode_debug_printmodeline(mode);
  3379. /* assign to Ironlake registers */
  3380. if (HAS_PCH_SPLIT(dev)) {
  3381. fp_reg = pch_fp_reg;
  3382. dpll_reg = pch_dpll_reg;
  3383. }
  3384. if (is_edp) {
  3385. ironlake_disable_pll_edp(crtc);
  3386. } else if ((dpll & DPLL_VCO_ENABLE)) {
  3387. I915_WRITE(fp_reg, fp);
  3388. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  3389. I915_READ(dpll_reg);
  3390. udelay(150);
  3391. }
  3392. /* enable transcoder DPLL */
  3393. if (HAS_PCH_CPT(dev)) {
  3394. temp = I915_READ(PCH_DPLL_SEL);
  3395. if (trans_dpll_sel == 0)
  3396. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  3397. else
  3398. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3399. I915_WRITE(PCH_DPLL_SEL, temp);
  3400. I915_READ(PCH_DPLL_SEL);
  3401. udelay(150);
  3402. }
  3403. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3404. * This is an exception to the general rule that mode_set doesn't turn
  3405. * things on.
  3406. */
  3407. if (is_lvds) {
  3408. u32 lvds;
  3409. if (HAS_PCH_SPLIT(dev))
  3410. lvds_reg = PCH_LVDS;
  3411. lvds = I915_READ(lvds_reg);
  3412. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3413. if (pipe == 1) {
  3414. if (HAS_PCH_CPT(dev))
  3415. lvds |= PORT_TRANS_B_SEL_CPT;
  3416. else
  3417. lvds |= LVDS_PIPEB_SELECT;
  3418. } else {
  3419. if (HAS_PCH_CPT(dev))
  3420. lvds &= ~PORT_TRANS_SEL_MASK;
  3421. else
  3422. lvds &= ~LVDS_PIPEB_SELECT;
  3423. }
  3424. /* set the corresponsding LVDS_BORDER bit */
  3425. lvds |= dev_priv->lvds_border_bits;
  3426. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3427. * set the DPLLs for dual-channel mode or not.
  3428. */
  3429. if (clock.p2 == 7)
  3430. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3431. else
  3432. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3433. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3434. * appropriately here, but we need to look more thoroughly into how
  3435. * panels behave in the two modes.
  3436. */
  3437. /* set the dithering flag */
  3438. if (IS_I965G(dev)) {
  3439. if (dev_priv->lvds_dither) {
  3440. if (HAS_PCH_SPLIT(dev)) {
  3441. pipeconf |= PIPE_ENABLE_DITHER;
  3442. pipeconf &= ~PIPE_DITHER_TYPE_MASK;
  3443. pipeconf |= PIPE_DITHER_TYPE_ST01;
  3444. } else
  3445. lvds |= LVDS_ENABLE_DITHER;
  3446. } else {
  3447. if (HAS_PCH_SPLIT(dev)) {
  3448. pipeconf &= ~PIPE_ENABLE_DITHER;
  3449. pipeconf &= ~PIPE_DITHER_TYPE_MASK;
  3450. } else
  3451. lvds &= ~LVDS_ENABLE_DITHER;
  3452. }
  3453. }
  3454. I915_WRITE(lvds_reg, lvds);
  3455. I915_READ(lvds_reg);
  3456. }
  3457. if (is_dp)
  3458. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3459. else if (HAS_PCH_SPLIT(dev)) {
  3460. /* For non-DP output, clear any trans DP clock recovery setting.*/
  3461. if (pipe == 0) {
  3462. I915_WRITE(TRANSA_DATA_M1, 0);
  3463. I915_WRITE(TRANSA_DATA_N1, 0);
  3464. I915_WRITE(TRANSA_DP_LINK_M1, 0);
  3465. I915_WRITE(TRANSA_DP_LINK_N1, 0);
  3466. } else {
  3467. I915_WRITE(TRANSB_DATA_M1, 0);
  3468. I915_WRITE(TRANSB_DATA_N1, 0);
  3469. I915_WRITE(TRANSB_DP_LINK_M1, 0);
  3470. I915_WRITE(TRANSB_DP_LINK_N1, 0);
  3471. }
  3472. }
  3473. if (!is_edp) {
  3474. I915_WRITE(fp_reg, fp);
  3475. I915_WRITE(dpll_reg, dpll);
  3476. I915_READ(dpll_reg);
  3477. /* Wait for the clocks to stabilize. */
  3478. udelay(150);
  3479. if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
  3480. if (is_sdvo) {
  3481. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  3482. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  3483. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  3484. } else
  3485. I915_WRITE(dpll_md_reg, 0);
  3486. } else {
  3487. /* write it again -- the BIOS does, after all */
  3488. I915_WRITE(dpll_reg, dpll);
  3489. }
  3490. I915_READ(dpll_reg);
  3491. /* Wait for the clocks to stabilize. */
  3492. udelay(150);
  3493. }
  3494. if (is_lvds && has_reduced_clock && i915_powersave) {
  3495. I915_WRITE(fp_reg + 4, fp2);
  3496. intel_crtc->lowfreq_avail = true;
  3497. if (HAS_PIPE_CXSR(dev)) {
  3498. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3499. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3500. }
  3501. } else {
  3502. I915_WRITE(fp_reg + 4, fp);
  3503. intel_crtc->lowfreq_avail = false;
  3504. if (HAS_PIPE_CXSR(dev)) {
  3505. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3506. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3507. }
  3508. }
  3509. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3510. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3511. /* the chip adds 2 halflines automatically */
  3512. adjusted_mode->crtc_vdisplay -= 1;
  3513. adjusted_mode->crtc_vtotal -= 1;
  3514. adjusted_mode->crtc_vblank_start -= 1;
  3515. adjusted_mode->crtc_vblank_end -= 1;
  3516. adjusted_mode->crtc_vsync_end -= 1;
  3517. adjusted_mode->crtc_vsync_start -= 1;
  3518. } else
  3519. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  3520. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  3521. ((adjusted_mode->crtc_htotal - 1) << 16));
  3522. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  3523. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3524. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  3525. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3526. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  3527. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3528. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  3529. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3530. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  3531. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3532. /* pipesrc and dspsize control the size that is scaled from, which should
  3533. * always be the user's requested size.
  3534. */
  3535. if (!HAS_PCH_SPLIT(dev)) {
  3536. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  3537. (mode->hdisplay - 1));
  3538. I915_WRITE(dsppos_reg, 0);
  3539. }
  3540. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3541. if (HAS_PCH_SPLIT(dev)) {
  3542. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  3543. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  3544. I915_WRITE(link_m1_reg, m_n.link_m);
  3545. I915_WRITE(link_n1_reg, m_n.link_n);
  3546. if (is_edp) {
  3547. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  3548. } else {
  3549. /* enable FDI RX PLL too */
  3550. temp = I915_READ(fdi_rx_reg);
  3551. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  3552. I915_READ(fdi_rx_reg);
  3553. udelay(200);
  3554. /* enable FDI TX PLL too */
  3555. temp = I915_READ(fdi_tx_reg);
  3556. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  3557. I915_READ(fdi_tx_reg);
  3558. /* enable FDI RX PCDCLK */
  3559. temp = I915_READ(fdi_rx_reg);
  3560. I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
  3561. I915_READ(fdi_rx_reg);
  3562. udelay(200);
  3563. }
  3564. }
  3565. I915_WRITE(pipeconf_reg, pipeconf);
  3566. I915_READ(pipeconf_reg);
  3567. intel_wait_for_vblank(dev);
  3568. if (IS_IRONLAKE(dev)) {
  3569. /* enable address swizzle for tiling buffer */
  3570. temp = I915_READ(DISP_ARB_CTL);
  3571. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  3572. }
  3573. I915_WRITE(dspcntr_reg, dspcntr);
  3574. /* Flush the plane changes */
  3575. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3576. if ((IS_I965G(dev) || plane == 0))
  3577. intel_update_fbc(crtc, &crtc->mode);
  3578. intel_update_watermarks(dev);
  3579. drm_vblank_post_modeset(dev, pipe);
  3580. return ret;
  3581. }
  3582. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  3583. void intel_crtc_load_lut(struct drm_crtc *crtc)
  3584. {
  3585. struct drm_device *dev = crtc->dev;
  3586. struct drm_i915_private *dev_priv = dev->dev_private;
  3587. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3588. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  3589. int i;
  3590. /* The clocks have to be on to load the palette. */
  3591. if (!crtc->enabled)
  3592. return;
  3593. /* use legacy palette for Ironlake */
  3594. if (HAS_PCH_SPLIT(dev))
  3595. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  3596. LGC_PALETTE_B;
  3597. for (i = 0; i < 256; i++) {
  3598. I915_WRITE(palreg + 4 * i,
  3599. (intel_crtc->lut_r[i] << 16) |
  3600. (intel_crtc->lut_g[i] << 8) |
  3601. intel_crtc->lut_b[i]);
  3602. }
  3603. }
  3604. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  3605. struct drm_file *file_priv,
  3606. uint32_t handle,
  3607. uint32_t width, uint32_t height)
  3608. {
  3609. struct drm_device *dev = crtc->dev;
  3610. struct drm_i915_private *dev_priv = dev->dev_private;
  3611. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3612. struct drm_gem_object *bo;
  3613. struct drm_i915_gem_object *obj_priv;
  3614. int pipe = intel_crtc->pipe;
  3615. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  3616. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  3617. uint32_t temp = I915_READ(control);
  3618. size_t addr;
  3619. int ret;
  3620. DRM_DEBUG_KMS("\n");
  3621. /* if we want to turn off the cursor ignore width and height */
  3622. if (!handle) {
  3623. DRM_DEBUG_KMS("cursor off\n");
  3624. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3625. temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  3626. temp |= CURSOR_MODE_DISABLE;
  3627. } else {
  3628. temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  3629. }
  3630. addr = 0;
  3631. bo = NULL;
  3632. mutex_lock(&dev->struct_mutex);
  3633. goto finish;
  3634. }
  3635. /* Currently we only support 64x64 cursors */
  3636. if (width != 64 || height != 64) {
  3637. DRM_ERROR("we currently only support 64x64 cursors\n");
  3638. return -EINVAL;
  3639. }
  3640. bo = drm_gem_object_lookup(dev, file_priv, handle);
  3641. if (!bo)
  3642. return -ENOENT;
  3643. obj_priv = to_intel_bo(bo);
  3644. if (bo->size < width * height * 4) {
  3645. DRM_ERROR("buffer is to small\n");
  3646. ret = -ENOMEM;
  3647. goto fail;
  3648. }
  3649. /* we only need to pin inside GTT if cursor is non-phy */
  3650. mutex_lock(&dev->struct_mutex);
  3651. if (!dev_priv->info->cursor_needs_physical) {
  3652. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  3653. if (ret) {
  3654. DRM_ERROR("failed to pin cursor bo\n");
  3655. goto fail_locked;
  3656. }
  3657. ret = i915_gem_object_set_to_gtt_domain(bo, 0);
  3658. if (ret) {
  3659. DRM_ERROR("failed to move cursor bo into the GTT\n");
  3660. goto fail_unpin;
  3661. }
  3662. addr = obj_priv->gtt_offset;
  3663. } else {
  3664. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  3665. if (ret) {
  3666. DRM_ERROR("failed to attach phys object\n");
  3667. goto fail_locked;
  3668. }
  3669. addr = obj_priv->phys_obj->handle->busaddr;
  3670. }
  3671. if (!IS_I9XX(dev))
  3672. I915_WRITE(CURSIZE, (height << 12) | width);
  3673. /* Hooray for CUR*CNTR differences */
  3674. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  3675. temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  3676. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  3677. temp |= (pipe << 28); /* Connect to correct pipe */
  3678. } else {
  3679. temp &= ~(CURSOR_FORMAT_MASK);
  3680. temp |= CURSOR_ENABLE;
  3681. temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
  3682. }
  3683. finish:
  3684. I915_WRITE(control, temp);
  3685. I915_WRITE(base, addr);
  3686. if (intel_crtc->cursor_bo) {
  3687. if (dev_priv->info->cursor_needs_physical) {
  3688. if (intel_crtc->cursor_bo != bo)
  3689. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  3690. } else
  3691. i915_gem_object_unpin(intel_crtc->cursor_bo);
  3692. drm_gem_object_unreference(intel_crtc->cursor_bo);
  3693. }
  3694. mutex_unlock(&dev->struct_mutex);
  3695. intel_crtc->cursor_addr = addr;
  3696. intel_crtc->cursor_bo = bo;
  3697. return 0;
  3698. fail_unpin:
  3699. i915_gem_object_unpin(bo);
  3700. fail_locked:
  3701. mutex_unlock(&dev->struct_mutex);
  3702. fail:
  3703. drm_gem_object_unreference_unlocked(bo);
  3704. return ret;
  3705. }
  3706. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  3707. {
  3708. struct drm_device *dev = crtc->dev;
  3709. struct drm_i915_private *dev_priv = dev->dev_private;
  3710. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3711. struct intel_framebuffer *intel_fb;
  3712. int pipe = intel_crtc->pipe;
  3713. uint32_t temp = 0;
  3714. uint32_t adder;
  3715. if (crtc->fb) {
  3716. intel_fb = to_intel_framebuffer(crtc->fb);
  3717. intel_mark_busy(dev, intel_fb->obj);
  3718. }
  3719. if (x < 0) {
  3720. temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  3721. x = -x;
  3722. }
  3723. if (y < 0) {
  3724. temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  3725. y = -y;
  3726. }
  3727. temp |= x << CURSOR_X_SHIFT;
  3728. temp |= y << CURSOR_Y_SHIFT;
  3729. adder = intel_crtc->cursor_addr;
  3730. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  3731. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  3732. return 0;
  3733. }
  3734. /** Sets the color ramps on behalf of RandR */
  3735. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  3736. u16 blue, int regno)
  3737. {
  3738. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3739. intel_crtc->lut_r[regno] = red >> 8;
  3740. intel_crtc->lut_g[regno] = green >> 8;
  3741. intel_crtc->lut_b[regno] = blue >> 8;
  3742. }
  3743. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  3744. u16 *blue, int regno)
  3745. {
  3746. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3747. *red = intel_crtc->lut_r[regno] << 8;
  3748. *green = intel_crtc->lut_g[regno] << 8;
  3749. *blue = intel_crtc->lut_b[regno] << 8;
  3750. }
  3751. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  3752. u16 *blue, uint32_t size)
  3753. {
  3754. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3755. int i;
  3756. if (size != 256)
  3757. return;
  3758. for (i = 0; i < 256; i++) {
  3759. intel_crtc->lut_r[i] = red[i] >> 8;
  3760. intel_crtc->lut_g[i] = green[i] >> 8;
  3761. intel_crtc->lut_b[i] = blue[i] >> 8;
  3762. }
  3763. intel_crtc_load_lut(crtc);
  3764. }
  3765. /**
  3766. * Get a pipe with a simple mode set on it for doing load-based monitor
  3767. * detection.
  3768. *
  3769. * It will be up to the load-detect code to adjust the pipe as appropriate for
  3770. * its requirements. The pipe will be connected to no other encoders.
  3771. *
  3772. * Currently this code will only succeed if there is a pipe with no encoders
  3773. * configured for it. In the future, it could choose to temporarily disable
  3774. * some outputs to free up a pipe for its use.
  3775. *
  3776. * \return crtc, or NULL if no pipes are available.
  3777. */
  3778. /* VESA 640x480x72Hz mode to set on the pipe */
  3779. static struct drm_display_mode load_detect_mode = {
  3780. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  3781. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  3782. };
  3783. struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  3784. struct drm_connector *connector,
  3785. struct drm_display_mode *mode,
  3786. int *dpms_mode)
  3787. {
  3788. struct intel_crtc *intel_crtc;
  3789. struct drm_crtc *possible_crtc;
  3790. struct drm_crtc *supported_crtc =NULL;
  3791. struct drm_encoder *encoder = &intel_encoder->enc;
  3792. struct drm_crtc *crtc = NULL;
  3793. struct drm_device *dev = encoder->dev;
  3794. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3795. struct drm_crtc_helper_funcs *crtc_funcs;
  3796. int i = -1;
  3797. /*
  3798. * Algorithm gets a little messy:
  3799. * - if the connector already has an assigned crtc, use it (but make
  3800. * sure it's on first)
  3801. * - try to find the first unused crtc that can drive this connector,
  3802. * and use that if we find one
  3803. * - if there are no unused crtcs available, try to use the first
  3804. * one we found that supports the connector
  3805. */
  3806. /* See if we already have a CRTC for this connector */
  3807. if (encoder->crtc) {
  3808. crtc = encoder->crtc;
  3809. /* Make sure the crtc and connector are running */
  3810. intel_crtc = to_intel_crtc(crtc);
  3811. *dpms_mode = intel_crtc->dpms_mode;
  3812. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3813. crtc_funcs = crtc->helper_private;
  3814. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3815. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3816. }
  3817. return crtc;
  3818. }
  3819. /* Find an unused one (if possible) */
  3820. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  3821. i++;
  3822. if (!(encoder->possible_crtcs & (1 << i)))
  3823. continue;
  3824. if (!possible_crtc->enabled) {
  3825. crtc = possible_crtc;
  3826. break;
  3827. }
  3828. if (!supported_crtc)
  3829. supported_crtc = possible_crtc;
  3830. }
  3831. /*
  3832. * If we didn't find an unused CRTC, don't use any.
  3833. */
  3834. if (!crtc) {
  3835. return NULL;
  3836. }
  3837. encoder->crtc = crtc;
  3838. connector->encoder = encoder;
  3839. intel_encoder->load_detect_temp = true;
  3840. intel_crtc = to_intel_crtc(crtc);
  3841. *dpms_mode = intel_crtc->dpms_mode;
  3842. if (!crtc->enabled) {
  3843. if (!mode)
  3844. mode = &load_detect_mode;
  3845. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  3846. } else {
  3847. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3848. crtc_funcs = crtc->helper_private;
  3849. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3850. }
  3851. /* Add this connector to the crtc */
  3852. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  3853. encoder_funcs->commit(encoder);
  3854. }
  3855. /* let the connector get through one full cycle before testing */
  3856. intel_wait_for_vblank(dev);
  3857. return crtc;
  3858. }
  3859. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  3860. struct drm_connector *connector, int dpms_mode)
  3861. {
  3862. struct drm_encoder *encoder = &intel_encoder->enc;
  3863. struct drm_device *dev = encoder->dev;
  3864. struct drm_crtc *crtc = encoder->crtc;
  3865. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3866. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3867. if (intel_encoder->load_detect_temp) {
  3868. encoder->crtc = NULL;
  3869. connector->encoder = NULL;
  3870. intel_encoder->load_detect_temp = false;
  3871. crtc->enabled = drm_helper_crtc_in_use(crtc);
  3872. drm_helper_disable_unused_functions(dev);
  3873. }
  3874. /* Switch crtc and encoder back off if necessary */
  3875. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  3876. if (encoder->crtc == crtc)
  3877. encoder_funcs->dpms(encoder, dpms_mode);
  3878. crtc_funcs->dpms(crtc, dpms_mode);
  3879. }
  3880. }
  3881. /* Returns the clock of the currently programmed mode of the given pipe. */
  3882. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  3883. {
  3884. struct drm_i915_private *dev_priv = dev->dev_private;
  3885. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3886. int pipe = intel_crtc->pipe;
  3887. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  3888. u32 fp;
  3889. intel_clock_t clock;
  3890. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  3891. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  3892. else
  3893. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  3894. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  3895. if (IS_PINEVIEW(dev)) {
  3896. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  3897. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3898. } else {
  3899. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  3900. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3901. }
  3902. if (IS_I9XX(dev)) {
  3903. if (IS_PINEVIEW(dev))
  3904. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  3905. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  3906. else
  3907. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  3908. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3909. switch (dpll & DPLL_MODE_MASK) {
  3910. case DPLLB_MODE_DAC_SERIAL:
  3911. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  3912. 5 : 10;
  3913. break;
  3914. case DPLLB_MODE_LVDS:
  3915. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  3916. 7 : 14;
  3917. break;
  3918. default:
  3919. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  3920. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  3921. return 0;
  3922. }
  3923. /* XXX: Handle the 100Mhz refclk */
  3924. intel_clock(dev, 96000, &clock);
  3925. } else {
  3926. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  3927. if (is_lvds) {
  3928. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  3929. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3930. clock.p2 = 14;
  3931. if ((dpll & PLL_REF_INPUT_MASK) ==
  3932. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  3933. /* XXX: might not be 66MHz */
  3934. intel_clock(dev, 66000, &clock);
  3935. } else
  3936. intel_clock(dev, 48000, &clock);
  3937. } else {
  3938. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  3939. clock.p1 = 2;
  3940. else {
  3941. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  3942. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  3943. }
  3944. if (dpll & PLL_P2_DIVIDE_BY_4)
  3945. clock.p2 = 4;
  3946. else
  3947. clock.p2 = 2;
  3948. intel_clock(dev, 48000, &clock);
  3949. }
  3950. }
  3951. /* XXX: It would be nice to validate the clocks, but we can't reuse
  3952. * i830PllIsValid() because it relies on the xf86_config connector
  3953. * configuration being accurate, which it isn't necessarily.
  3954. */
  3955. return clock.dot;
  3956. }
  3957. /** Returns the currently programmed mode of the given pipe. */
  3958. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  3959. struct drm_crtc *crtc)
  3960. {
  3961. struct drm_i915_private *dev_priv = dev->dev_private;
  3962. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3963. int pipe = intel_crtc->pipe;
  3964. struct drm_display_mode *mode;
  3965. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  3966. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  3967. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  3968. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  3969. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  3970. if (!mode)
  3971. return NULL;
  3972. mode->clock = intel_crtc_clock_get(dev, crtc);
  3973. mode->hdisplay = (htot & 0xffff) + 1;
  3974. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  3975. mode->hsync_start = (hsync & 0xffff) + 1;
  3976. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  3977. mode->vdisplay = (vtot & 0xffff) + 1;
  3978. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  3979. mode->vsync_start = (vsync & 0xffff) + 1;
  3980. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  3981. drm_mode_set_name(mode);
  3982. drm_mode_set_crtcinfo(mode, 0);
  3983. return mode;
  3984. }
  3985. #define GPU_IDLE_TIMEOUT 500 /* ms */
  3986. /* When this timer fires, we've been idle for awhile */
  3987. static void intel_gpu_idle_timer(unsigned long arg)
  3988. {
  3989. struct drm_device *dev = (struct drm_device *)arg;
  3990. drm_i915_private_t *dev_priv = dev->dev_private;
  3991. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3992. dev_priv->busy = false;
  3993. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3994. }
  3995. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  3996. static void intel_crtc_idle_timer(unsigned long arg)
  3997. {
  3998. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  3999. struct drm_crtc *crtc = &intel_crtc->base;
  4000. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  4001. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  4002. intel_crtc->busy = false;
  4003. queue_work(dev_priv->wq, &dev_priv->idle_work);
  4004. }
  4005. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
  4006. {
  4007. struct drm_device *dev = crtc->dev;
  4008. drm_i915_private_t *dev_priv = dev->dev_private;
  4009. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4010. int pipe = intel_crtc->pipe;
  4011. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  4012. int dpll = I915_READ(dpll_reg);
  4013. if (HAS_PCH_SPLIT(dev))
  4014. return;
  4015. if (!dev_priv->lvds_downclock_avail)
  4016. return;
  4017. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  4018. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  4019. /* Unlock panel regs */
  4020. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  4021. PANEL_UNLOCK_REGS);
  4022. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  4023. I915_WRITE(dpll_reg, dpll);
  4024. dpll = I915_READ(dpll_reg);
  4025. intel_wait_for_vblank(dev);
  4026. dpll = I915_READ(dpll_reg);
  4027. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  4028. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  4029. /* ...and lock them again */
  4030. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  4031. }
  4032. /* Schedule downclock */
  4033. if (schedule)
  4034. mod_timer(&intel_crtc->idle_timer, jiffies +
  4035. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4036. }
  4037. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  4038. {
  4039. struct drm_device *dev = crtc->dev;
  4040. drm_i915_private_t *dev_priv = dev->dev_private;
  4041. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4042. int pipe = intel_crtc->pipe;
  4043. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  4044. int dpll = I915_READ(dpll_reg);
  4045. if (HAS_PCH_SPLIT(dev))
  4046. return;
  4047. if (!dev_priv->lvds_downclock_avail)
  4048. return;
  4049. /*
  4050. * Since this is called by a timer, we should never get here in
  4051. * the manual case.
  4052. */
  4053. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  4054. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  4055. /* Unlock panel regs */
  4056. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  4057. PANEL_UNLOCK_REGS);
  4058. dpll |= DISPLAY_RATE_SELECT_FPA1;
  4059. I915_WRITE(dpll_reg, dpll);
  4060. dpll = I915_READ(dpll_reg);
  4061. intel_wait_for_vblank(dev);
  4062. dpll = I915_READ(dpll_reg);
  4063. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  4064. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  4065. /* ...and lock them again */
  4066. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  4067. }
  4068. }
  4069. /**
  4070. * intel_idle_update - adjust clocks for idleness
  4071. * @work: work struct
  4072. *
  4073. * Either the GPU or display (or both) went idle. Check the busy status
  4074. * here and adjust the CRTC and GPU clocks as necessary.
  4075. */
  4076. static void intel_idle_update(struct work_struct *work)
  4077. {
  4078. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  4079. idle_work);
  4080. struct drm_device *dev = dev_priv->dev;
  4081. struct drm_crtc *crtc;
  4082. struct intel_crtc *intel_crtc;
  4083. int enabled = 0;
  4084. if (!i915_powersave)
  4085. return;
  4086. mutex_lock(&dev->struct_mutex);
  4087. i915_update_gfx_val(dev_priv);
  4088. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4089. /* Skip inactive CRTCs */
  4090. if (!crtc->fb)
  4091. continue;
  4092. enabled++;
  4093. intel_crtc = to_intel_crtc(crtc);
  4094. if (!intel_crtc->busy)
  4095. intel_decrease_pllclock(crtc);
  4096. }
  4097. if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
  4098. DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
  4099. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  4100. }
  4101. mutex_unlock(&dev->struct_mutex);
  4102. }
  4103. /**
  4104. * intel_mark_busy - mark the GPU and possibly the display busy
  4105. * @dev: drm device
  4106. * @obj: object we're operating on
  4107. *
  4108. * Callers can use this function to indicate that the GPU is busy processing
  4109. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  4110. * buffer), we'll also mark the display as busy, so we know to increase its
  4111. * clock frequency.
  4112. */
  4113. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  4114. {
  4115. drm_i915_private_t *dev_priv = dev->dev_private;
  4116. struct drm_crtc *crtc = NULL;
  4117. struct intel_framebuffer *intel_fb;
  4118. struct intel_crtc *intel_crtc;
  4119. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4120. return;
  4121. if (!dev_priv->busy) {
  4122. if (IS_I945G(dev) || IS_I945GM(dev)) {
  4123. u32 fw_blc_self;
  4124. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4125. fw_blc_self = I915_READ(FW_BLC_SELF);
  4126. fw_blc_self &= ~FW_BLC_SELF_EN;
  4127. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4128. }
  4129. dev_priv->busy = true;
  4130. } else
  4131. mod_timer(&dev_priv->idle_timer, jiffies +
  4132. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  4133. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4134. if (!crtc->fb)
  4135. continue;
  4136. intel_crtc = to_intel_crtc(crtc);
  4137. intel_fb = to_intel_framebuffer(crtc->fb);
  4138. if (intel_fb->obj == obj) {
  4139. if (!intel_crtc->busy) {
  4140. if (IS_I945G(dev) || IS_I945GM(dev)) {
  4141. u32 fw_blc_self;
  4142. DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
  4143. fw_blc_self = I915_READ(FW_BLC_SELF);
  4144. fw_blc_self &= ~FW_BLC_SELF_EN;
  4145. I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
  4146. }
  4147. /* Non-busy -> busy, upclock */
  4148. intel_increase_pllclock(crtc, true);
  4149. intel_crtc->busy = true;
  4150. } else {
  4151. /* Busy -> busy, put off timer */
  4152. mod_timer(&intel_crtc->idle_timer, jiffies +
  4153. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  4154. }
  4155. }
  4156. }
  4157. }
  4158. static void intel_crtc_destroy(struct drm_crtc *crtc)
  4159. {
  4160. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4161. drm_crtc_cleanup(crtc);
  4162. kfree(intel_crtc);
  4163. }
  4164. struct intel_unpin_work {
  4165. struct work_struct work;
  4166. struct drm_device *dev;
  4167. struct drm_gem_object *old_fb_obj;
  4168. struct drm_gem_object *pending_flip_obj;
  4169. struct drm_pending_vblank_event *event;
  4170. int pending;
  4171. };
  4172. static void intel_unpin_work_fn(struct work_struct *__work)
  4173. {
  4174. struct intel_unpin_work *work =
  4175. container_of(__work, struct intel_unpin_work, work);
  4176. mutex_lock(&work->dev->struct_mutex);
  4177. i915_gem_object_unpin(work->old_fb_obj);
  4178. drm_gem_object_unreference(work->pending_flip_obj);
  4179. drm_gem_object_unreference(work->old_fb_obj);
  4180. mutex_unlock(&work->dev->struct_mutex);
  4181. kfree(work);
  4182. }
  4183. static void do_intel_finish_page_flip(struct drm_device *dev,
  4184. struct drm_crtc *crtc)
  4185. {
  4186. drm_i915_private_t *dev_priv = dev->dev_private;
  4187. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4188. struct intel_unpin_work *work;
  4189. struct drm_i915_gem_object *obj_priv;
  4190. struct drm_pending_vblank_event *e;
  4191. struct timeval now;
  4192. unsigned long flags;
  4193. /* Ignore early vblank irqs */
  4194. if (intel_crtc == NULL)
  4195. return;
  4196. spin_lock_irqsave(&dev->event_lock, flags);
  4197. work = intel_crtc->unpin_work;
  4198. if (work == NULL || !work->pending) {
  4199. spin_unlock_irqrestore(&dev->event_lock, flags);
  4200. return;
  4201. }
  4202. intel_crtc->unpin_work = NULL;
  4203. drm_vblank_put(dev, intel_crtc->pipe);
  4204. if (work->event) {
  4205. e = work->event;
  4206. do_gettimeofday(&now);
  4207. e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
  4208. e->event.tv_sec = now.tv_sec;
  4209. e->event.tv_usec = now.tv_usec;
  4210. list_add_tail(&e->base.link,
  4211. &e->base.file_priv->event_list);
  4212. wake_up_interruptible(&e->base.file_priv->event_wait);
  4213. }
  4214. spin_unlock_irqrestore(&dev->event_lock, flags);
  4215. obj_priv = to_intel_bo(work->pending_flip_obj);
  4216. /* Initial scanout buffer will have a 0 pending flip count */
  4217. if ((atomic_read(&obj_priv->pending_flip) == 0) ||
  4218. atomic_dec_and_test(&obj_priv->pending_flip))
  4219. DRM_WAKEUP(&dev_priv->pending_flip_queue);
  4220. schedule_work(&work->work);
  4221. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  4222. }
  4223. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  4224. {
  4225. drm_i915_private_t *dev_priv = dev->dev_private;
  4226. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  4227. do_intel_finish_page_flip(dev, crtc);
  4228. }
  4229. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  4230. {
  4231. drm_i915_private_t *dev_priv = dev->dev_private;
  4232. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  4233. do_intel_finish_page_flip(dev, crtc);
  4234. }
  4235. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  4236. {
  4237. drm_i915_private_t *dev_priv = dev->dev_private;
  4238. struct intel_crtc *intel_crtc =
  4239. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  4240. unsigned long flags;
  4241. spin_lock_irqsave(&dev->event_lock, flags);
  4242. if (intel_crtc->unpin_work) {
  4243. intel_crtc->unpin_work->pending = 1;
  4244. } else {
  4245. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  4246. }
  4247. spin_unlock_irqrestore(&dev->event_lock, flags);
  4248. }
  4249. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  4250. struct drm_framebuffer *fb,
  4251. struct drm_pending_vblank_event *event)
  4252. {
  4253. struct drm_device *dev = crtc->dev;
  4254. struct drm_i915_private *dev_priv = dev->dev_private;
  4255. struct intel_framebuffer *intel_fb;
  4256. struct drm_i915_gem_object *obj_priv;
  4257. struct drm_gem_object *obj;
  4258. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4259. struct intel_unpin_work *work;
  4260. unsigned long flags, offset;
  4261. int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
  4262. int ret, pipesrc;
  4263. u32 flip_mask;
  4264. work = kzalloc(sizeof *work, GFP_KERNEL);
  4265. if (work == NULL)
  4266. return -ENOMEM;
  4267. work->event = event;
  4268. work->dev = crtc->dev;
  4269. intel_fb = to_intel_framebuffer(crtc->fb);
  4270. work->old_fb_obj = intel_fb->obj;
  4271. INIT_WORK(&work->work, intel_unpin_work_fn);
  4272. /* We borrow the event spin lock for protecting unpin_work */
  4273. spin_lock_irqsave(&dev->event_lock, flags);
  4274. if (intel_crtc->unpin_work) {
  4275. spin_unlock_irqrestore(&dev->event_lock, flags);
  4276. kfree(work);
  4277. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  4278. return -EBUSY;
  4279. }
  4280. intel_crtc->unpin_work = work;
  4281. spin_unlock_irqrestore(&dev->event_lock, flags);
  4282. intel_fb = to_intel_framebuffer(fb);
  4283. obj = intel_fb->obj;
  4284. mutex_lock(&dev->struct_mutex);
  4285. ret = intel_pin_and_fence_fb_obj(dev, obj);
  4286. if (ret)
  4287. goto cleanup_work;
  4288. /* Reference the objects for the scheduled work. */
  4289. drm_gem_object_reference(work->old_fb_obj);
  4290. drm_gem_object_reference(obj);
  4291. crtc->fb = fb;
  4292. ret = i915_gem_object_flush_write_domain(obj);
  4293. if (ret)
  4294. goto cleanup_objs;
  4295. ret = drm_vblank_get(dev, intel_crtc->pipe);
  4296. if (ret)
  4297. goto cleanup_objs;
  4298. obj_priv = to_intel_bo(obj);
  4299. atomic_inc(&obj_priv->pending_flip);
  4300. work->pending_flip_obj = obj;
  4301. if (intel_crtc->plane)
  4302. flip_mask = I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  4303. else
  4304. flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
  4305. /* Wait for any previous flip to finish */
  4306. if (IS_GEN3(dev))
  4307. while (I915_READ(ISR) & flip_mask)
  4308. ;
  4309. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  4310. offset = obj_priv->gtt_offset;
  4311. offset += (crtc->y * fb->pitch) + (crtc->x * (fb->bits_per_pixel) / 8);
  4312. BEGIN_LP_RING(4);
  4313. if (IS_I965G(dev)) {
  4314. OUT_RING(MI_DISPLAY_FLIP |
  4315. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4316. OUT_RING(fb->pitch);
  4317. OUT_RING(offset | obj_priv->tiling_mode);
  4318. pipesrc = I915_READ(pipesrc_reg);
  4319. OUT_RING(pipesrc & 0x0fff0fff);
  4320. } else {
  4321. OUT_RING(MI_DISPLAY_FLIP_I915 |
  4322. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  4323. OUT_RING(fb->pitch);
  4324. OUT_RING(offset);
  4325. OUT_RING(MI_NOOP);
  4326. }
  4327. ADVANCE_LP_RING();
  4328. mutex_unlock(&dev->struct_mutex);
  4329. trace_i915_flip_request(intel_crtc->plane, obj);
  4330. return 0;
  4331. cleanup_objs:
  4332. drm_gem_object_unreference(work->old_fb_obj);
  4333. drm_gem_object_unreference(obj);
  4334. cleanup_work:
  4335. mutex_unlock(&dev->struct_mutex);
  4336. spin_lock_irqsave(&dev->event_lock, flags);
  4337. intel_crtc->unpin_work = NULL;
  4338. spin_unlock_irqrestore(&dev->event_lock, flags);
  4339. kfree(work);
  4340. return ret;
  4341. }
  4342. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  4343. .dpms = intel_crtc_dpms,
  4344. .mode_fixup = intel_crtc_mode_fixup,
  4345. .mode_set = intel_crtc_mode_set,
  4346. .mode_set_base = intel_pipe_set_base,
  4347. .prepare = intel_crtc_prepare,
  4348. .commit = intel_crtc_commit,
  4349. .load_lut = intel_crtc_load_lut,
  4350. };
  4351. static const struct drm_crtc_funcs intel_crtc_funcs = {
  4352. .cursor_set = intel_crtc_cursor_set,
  4353. .cursor_move = intel_crtc_cursor_move,
  4354. .gamma_set = intel_crtc_gamma_set,
  4355. .set_config = drm_crtc_helper_set_config,
  4356. .destroy = intel_crtc_destroy,
  4357. .page_flip = intel_crtc_page_flip,
  4358. };
  4359. static void intel_crtc_init(struct drm_device *dev, int pipe)
  4360. {
  4361. drm_i915_private_t *dev_priv = dev->dev_private;
  4362. struct intel_crtc *intel_crtc;
  4363. int i;
  4364. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  4365. if (intel_crtc == NULL)
  4366. return;
  4367. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  4368. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  4369. intel_crtc->pipe = pipe;
  4370. intel_crtc->plane = pipe;
  4371. for (i = 0; i < 256; i++) {
  4372. intel_crtc->lut_r[i] = i;
  4373. intel_crtc->lut_g[i] = i;
  4374. intel_crtc->lut_b[i] = i;
  4375. }
  4376. /* Swap pipes & planes for FBC on pre-965 */
  4377. intel_crtc->pipe = pipe;
  4378. intel_crtc->plane = pipe;
  4379. if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
  4380. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  4381. intel_crtc->plane = ((pipe == 0) ? 1 : 0);
  4382. }
  4383. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  4384. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  4385. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  4386. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  4387. intel_crtc->cursor_addr = 0;
  4388. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  4389. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  4390. intel_crtc->busy = false;
  4391. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  4392. (unsigned long)intel_crtc);
  4393. }
  4394. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  4395. struct drm_file *file_priv)
  4396. {
  4397. drm_i915_private_t *dev_priv = dev->dev_private;
  4398. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  4399. struct drm_mode_object *drmmode_obj;
  4400. struct intel_crtc *crtc;
  4401. if (!dev_priv) {
  4402. DRM_ERROR("called with no initialization\n");
  4403. return -EINVAL;
  4404. }
  4405. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  4406. DRM_MODE_OBJECT_CRTC);
  4407. if (!drmmode_obj) {
  4408. DRM_ERROR("no such CRTC id\n");
  4409. return -EINVAL;
  4410. }
  4411. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  4412. pipe_from_crtc_id->pipe = crtc->pipe;
  4413. return 0;
  4414. }
  4415. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  4416. {
  4417. struct drm_crtc *crtc = NULL;
  4418. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4419. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4420. if (intel_crtc->pipe == pipe)
  4421. break;
  4422. }
  4423. return crtc;
  4424. }
  4425. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  4426. {
  4427. int index_mask = 0;
  4428. struct drm_encoder *encoder;
  4429. int entry = 0;
  4430. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4431. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4432. if (type_mask & intel_encoder->clone_mask)
  4433. index_mask |= (1 << entry);
  4434. entry++;
  4435. }
  4436. return index_mask;
  4437. }
  4438. static void intel_setup_outputs(struct drm_device *dev)
  4439. {
  4440. struct drm_i915_private *dev_priv = dev->dev_private;
  4441. struct drm_encoder *encoder;
  4442. bool dpd_is_edp = false;
  4443. if (IS_MOBILE(dev) && !IS_I830(dev))
  4444. intel_lvds_init(dev);
  4445. if (HAS_PCH_SPLIT(dev)) {
  4446. dpd_is_edp = intel_dpd_is_edp(dev);
  4447. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  4448. intel_dp_init(dev, DP_A);
  4449. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  4450. intel_dp_init(dev, PCH_DP_D);
  4451. }
  4452. intel_crt_init(dev);
  4453. if (HAS_PCH_SPLIT(dev)) {
  4454. int found;
  4455. if (I915_READ(HDMIB) & PORT_DETECTED) {
  4456. /* PCH SDVOB multiplex with HDMIB */
  4457. found = intel_sdvo_init(dev, PCH_SDVOB);
  4458. if (!found)
  4459. intel_hdmi_init(dev, HDMIB);
  4460. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  4461. intel_dp_init(dev, PCH_DP_B);
  4462. }
  4463. if (I915_READ(HDMIC) & PORT_DETECTED)
  4464. intel_hdmi_init(dev, HDMIC);
  4465. if (I915_READ(HDMID) & PORT_DETECTED)
  4466. intel_hdmi_init(dev, HDMID);
  4467. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  4468. intel_dp_init(dev, PCH_DP_C);
  4469. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  4470. intel_dp_init(dev, PCH_DP_D);
  4471. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  4472. bool found = false;
  4473. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4474. DRM_DEBUG_KMS("probing SDVOB\n");
  4475. found = intel_sdvo_init(dev, SDVOB);
  4476. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  4477. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  4478. intel_hdmi_init(dev, SDVOB);
  4479. }
  4480. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  4481. DRM_DEBUG_KMS("probing DP_B\n");
  4482. intel_dp_init(dev, DP_B);
  4483. }
  4484. }
  4485. /* Before G4X SDVOC doesn't have its own detect register */
  4486. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  4487. DRM_DEBUG_KMS("probing SDVOC\n");
  4488. found = intel_sdvo_init(dev, SDVOC);
  4489. }
  4490. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  4491. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  4492. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  4493. intel_hdmi_init(dev, SDVOC);
  4494. }
  4495. if (SUPPORTS_INTEGRATED_DP(dev)) {
  4496. DRM_DEBUG_KMS("probing DP_C\n");
  4497. intel_dp_init(dev, DP_C);
  4498. }
  4499. }
  4500. if (SUPPORTS_INTEGRATED_DP(dev) &&
  4501. (I915_READ(DP_D) & DP_DETECTED)) {
  4502. DRM_DEBUG_KMS("probing DP_D\n");
  4503. intel_dp_init(dev, DP_D);
  4504. }
  4505. } else if (IS_GEN2(dev))
  4506. intel_dvo_init(dev);
  4507. if (SUPPORTS_TV(dev))
  4508. intel_tv_init(dev);
  4509. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4510. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  4511. encoder->possible_crtcs = intel_encoder->crtc_mask;
  4512. encoder->possible_clones = intel_encoder_clones(dev,
  4513. intel_encoder->clone_mask);
  4514. }
  4515. }
  4516. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  4517. {
  4518. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4519. drm_framebuffer_cleanup(fb);
  4520. drm_gem_object_unreference_unlocked(intel_fb->obj);
  4521. kfree(intel_fb);
  4522. }
  4523. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  4524. struct drm_file *file_priv,
  4525. unsigned int *handle)
  4526. {
  4527. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  4528. struct drm_gem_object *object = intel_fb->obj;
  4529. return drm_gem_handle_create(file_priv, object, handle);
  4530. }
  4531. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  4532. .destroy = intel_user_framebuffer_destroy,
  4533. .create_handle = intel_user_framebuffer_create_handle,
  4534. };
  4535. int intel_framebuffer_init(struct drm_device *dev,
  4536. struct intel_framebuffer *intel_fb,
  4537. struct drm_mode_fb_cmd *mode_cmd,
  4538. struct drm_gem_object *obj)
  4539. {
  4540. int ret;
  4541. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  4542. if (ret) {
  4543. DRM_ERROR("framebuffer init failed %d\n", ret);
  4544. return ret;
  4545. }
  4546. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  4547. intel_fb->obj = obj;
  4548. return 0;
  4549. }
  4550. static struct drm_framebuffer *
  4551. intel_user_framebuffer_create(struct drm_device *dev,
  4552. struct drm_file *filp,
  4553. struct drm_mode_fb_cmd *mode_cmd)
  4554. {
  4555. struct drm_gem_object *obj;
  4556. struct intel_framebuffer *intel_fb;
  4557. int ret;
  4558. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  4559. if (!obj)
  4560. return NULL;
  4561. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4562. if (!intel_fb)
  4563. return NULL;
  4564. ret = intel_framebuffer_init(dev, intel_fb,
  4565. mode_cmd, obj);
  4566. if (ret) {
  4567. drm_gem_object_unreference_unlocked(obj);
  4568. kfree(intel_fb);
  4569. return NULL;
  4570. }
  4571. return &intel_fb->base;
  4572. }
  4573. static const struct drm_mode_config_funcs intel_mode_funcs = {
  4574. .fb_create = intel_user_framebuffer_create,
  4575. .output_poll_changed = intel_fb_output_poll_changed,
  4576. };
  4577. static struct drm_gem_object *
  4578. intel_alloc_power_context(struct drm_device *dev)
  4579. {
  4580. struct drm_gem_object *pwrctx;
  4581. int ret;
  4582. pwrctx = i915_gem_alloc_object(dev, 4096);
  4583. if (!pwrctx) {
  4584. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  4585. return NULL;
  4586. }
  4587. mutex_lock(&dev->struct_mutex);
  4588. ret = i915_gem_object_pin(pwrctx, 4096);
  4589. if (ret) {
  4590. DRM_ERROR("failed to pin power context: %d\n", ret);
  4591. goto err_unref;
  4592. }
  4593. ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
  4594. if (ret) {
  4595. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  4596. goto err_unpin;
  4597. }
  4598. mutex_unlock(&dev->struct_mutex);
  4599. return pwrctx;
  4600. err_unpin:
  4601. i915_gem_object_unpin(pwrctx);
  4602. err_unref:
  4603. drm_gem_object_unreference(pwrctx);
  4604. mutex_unlock(&dev->struct_mutex);
  4605. return NULL;
  4606. }
  4607. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  4608. {
  4609. struct drm_i915_private *dev_priv = dev->dev_private;
  4610. u16 rgvswctl;
  4611. rgvswctl = I915_READ16(MEMSWCTL);
  4612. if (rgvswctl & MEMCTL_CMD_STS) {
  4613. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4614. return false; /* still busy with another command */
  4615. }
  4616. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4617. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4618. I915_WRITE16(MEMSWCTL, rgvswctl);
  4619. POSTING_READ16(MEMSWCTL);
  4620. rgvswctl |= MEMCTL_CMD_STS;
  4621. I915_WRITE16(MEMSWCTL, rgvswctl);
  4622. return true;
  4623. }
  4624. void ironlake_enable_drps(struct drm_device *dev)
  4625. {
  4626. struct drm_i915_private *dev_priv = dev->dev_private;
  4627. u32 rgvmodectl = I915_READ(MEMMODECTL);
  4628. u8 fmax, fmin, fstart, vstart;
  4629. int i = 0;
  4630. /* 100ms RC evaluation intervals */
  4631. I915_WRITE(RCUPEI, 100000);
  4632. I915_WRITE(RCDNEI, 100000);
  4633. /* Set max/min thresholds to 90ms and 80ms respectively */
  4634. I915_WRITE(RCBMAXAVG, 90000);
  4635. I915_WRITE(RCBMINAVG, 80000);
  4636. I915_WRITE(MEMIHYST, 1);
  4637. /* Set up min, max, and cur for interrupt handling */
  4638. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4639. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4640. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4641. MEMMODE_FSTART_SHIFT;
  4642. fstart = fmax;
  4643. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  4644. PXVFREQ_PX_SHIFT;
  4645. dev_priv->fmax = fstart; /* IPS callback will increase this */
  4646. dev_priv->fstart = fstart;
  4647. dev_priv->max_delay = fmax;
  4648. dev_priv->min_delay = fmin;
  4649. dev_priv->cur_delay = fstart;
  4650. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
  4651. fstart);
  4652. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4653. /*
  4654. * Interrupts will be enabled in ironlake_irq_postinstall
  4655. */
  4656. I915_WRITE(VIDSTART, vstart);
  4657. POSTING_READ(VIDSTART);
  4658. rgvmodectl |= MEMMODE_SWMODE_EN;
  4659. I915_WRITE(MEMMODECTL, rgvmodectl);
  4660. while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
  4661. if (i++ > 100) {
  4662. DRM_ERROR("stuck trying to change perf mode\n");
  4663. break;
  4664. }
  4665. msleep(1);
  4666. }
  4667. msleep(1);
  4668. ironlake_set_drps(dev, fstart);
  4669. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  4670. I915_READ(0x112e0);
  4671. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  4672. dev_priv->last_count2 = I915_READ(0x112f4);
  4673. getrawmonotonic(&dev_priv->last_time2);
  4674. }
  4675. void ironlake_disable_drps(struct drm_device *dev)
  4676. {
  4677. struct drm_i915_private *dev_priv = dev->dev_private;
  4678. u16 rgvswctl = I915_READ16(MEMSWCTL);
  4679. /* Ack interrupts, disable EFC interrupt */
  4680. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4681. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4682. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4683. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4684. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4685. /* Go back to the starting frequency */
  4686. ironlake_set_drps(dev, dev_priv->fstart);
  4687. msleep(1);
  4688. rgvswctl |= MEMCTL_CMD_STS;
  4689. I915_WRITE(MEMSWCTL, rgvswctl);
  4690. msleep(1);
  4691. }
  4692. static unsigned long intel_pxfreq(u32 vidfreq)
  4693. {
  4694. unsigned long freq;
  4695. int div = (vidfreq & 0x3f0000) >> 16;
  4696. int post = (vidfreq & 0x3000) >> 12;
  4697. int pre = (vidfreq & 0x7);
  4698. if (!pre)
  4699. return 0;
  4700. freq = ((div * 133333) / ((1<<post) * pre));
  4701. return freq;
  4702. }
  4703. void intel_init_emon(struct drm_device *dev)
  4704. {
  4705. struct drm_i915_private *dev_priv = dev->dev_private;
  4706. u32 lcfuse;
  4707. u8 pxw[16];
  4708. int i;
  4709. /* Disable to program */
  4710. I915_WRITE(ECR, 0);
  4711. POSTING_READ(ECR);
  4712. /* Program energy weights for various events */
  4713. I915_WRITE(SDEW, 0x15040d00);
  4714. I915_WRITE(CSIEW0, 0x007f0000);
  4715. I915_WRITE(CSIEW1, 0x1e220004);
  4716. I915_WRITE(CSIEW2, 0x04000004);
  4717. for (i = 0; i < 5; i++)
  4718. I915_WRITE(PEW + (i * 4), 0);
  4719. for (i = 0; i < 3; i++)
  4720. I915_WRITE(DEW + (i * 4), 0);
  4721. /* Program P-state weights to account for frequency power adjustment */
  4722. for (i = 0; i < 16; i++) {
  4723. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4724. unsigned long freq = intel_pxfreq(pxvidfreq);
  4725. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4726. PXVFREQ_PX_SHIFT;
  4727. unsigned long val;
  4728. val = vid * vid;
  4729. val *= (freq / 1000);
  4730. val *= 255;
  4731. val /= (127*127*900);
  4732. if (val > 0xff)
  4733. DRM_ERROR("bad pxval: %ld\n", val);
  4734. pxw[i] = val;
  4735. }
  4736. /* Render standby states get 0 weight */
  4737. pxw[14] = 0;
  4738. pxw[15] = 0;
  4739. for (i = 0; i < 4; i++) {
  4740. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4741. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4742. I915_WRITE(PXW + (i * 4), val);
  4743. }
  4744. /* Adjust magic regs to magic values (more experimental results) */
  4745. I915_WRITE(OGW0, 0);
  4746. I915_WRITE(OGW1, 0);
  4747. I915_WRITE(EG0, 0x00007f00);
  4748. I915_WRITE(EG1, 0x0000000e);
  4749. I915_WRITE(EG2, 0x000e0000);
  4750. I915_WRITE(EG3, 0x68000300);
  4751. I915_WRITE(EG4, 0x42000000);
  4752. I915_WRITE(EG5, 0x00140031);
  4753. I915_WRITE(EG6, 0);
  4754. I915_WRITE(EG7, 0);
  4755. for (i = 0; i < 8; i++)
  4756. I915_WRITE(PXWL + (i * 4), 0);
  4757. /* Enable PMON + select events */
  4758. I915_WRITE(ECR, 0x80000019);
  4759. lcfuse = I915_READ(LCFUSE02);
  4760. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  4761. }
  4762. void intel_init_clock_gating(struct drm_device *dev)
  4763. {
  4764. struct drm_i915_private *dev_priv = dev->dev_private;
  4765. /*
  4766. * Disable clock gating reported to work incorrectly according to the
  4767. * specs, but enable as much else as we can.
  4768. */
  4769. if (HAS_PCH_SPLIT(dev)) {
  4770. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  4771. if (IS_IRONLAKE(dev)) {
  4772. /* Required for FBC */
  4773. dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
  4774. /* Required for CxSR */
  4775. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  4776. I915_WRITE(PCH_3DCGDIS0,
  4777. MARIUNIT_CLOCK_GATE_DISABLE |
  4778. SVSMUNIT_CLOCK_GATE_DISABLE);
  4779. }
  4780. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  4781. /*
  4782. * According to the spec the following bits should be set in
  4783. * order to enable memory self-refresh
  4784. * The bit 22/21 of 0x42004
  4785. * The bit 5 of 0x42020
  4786. * The bit 15 of 0x45000
  4787. */
  4788. if (IS_IRONLAKE(dev)) {
  4789. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4790. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4791. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4792. I915_WRITE(ILK_DSPCLK_GATE,
  4793. (I915_READ(ILK_DSPCLK_GATE) |
  4794. ILK_DPARB_CLK_GATE));
  4795. I915_WRITE(DISP_ARB_CTL,
  4796. (I915_READ(DISP_ARB_CTL) |
  4797. DISP_FBC_WM_DIS));
  4798. }
  4799. /*
  4800. * Based on the document from hardware guys the following bits
  4801. * should be set unconditionally in order to enable FBC.
  4802. * The bit 22 of 0x42000
  4803. * The bit 22 of 0x42004
  4804. * The bit 7,8,9 of 0x42020.
  4805. */
  4806. if (IS_IRONLAKE_M(dev)) {
  4807. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4808. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4809. ILK_FBCQ_DIS);
  4810. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4811. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4812. ILK_DPARB_GATE);
  4813. I915_WRITE(ILK_DSPCLK_GATE,
  4814. I915_READ(ILK_DSPCLK_GATE) |
  4815. ILK_DPFC_DIS1 |
  4816. ILK_DPFC_DIS2 |
  4817. ILK_CLK_FBC);
  4818. }
  4819. return;
  4820. } else if (IS_G4X(dev)) {
  4821. uint32_t dspclk_gate;
  4822. I915_WRITE(RENCLK_GATE_D1, 0);
  4823. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4824. GS_UNIT_CLOCK_GATE_DISABLE |
  4825. CL_UNIT_CLOCK_GATE_DISABLE);
  4826. I915_WRITE(RAMCLK_GATE_D, 0);
  4827. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4828. OVRUNIT_CLOCK_GATE_DISABLE |
  4829. OVCUNIT_CLOCK_GATE_DISABLE;
  4830. if (IS_GM45(dev))
  4831. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4832. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4833. } else if (IS_I965GM(dev)) {
  4834. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4835. I915_WRITE(RENCLK_GATE_D2, 0);
  4836. I915_WRITE(DSPCLK_GATE_D, 0);
  4837. I915_WRITE(RAMCLK_GATE_D, 0);
  4838. I915_WRITE16(DEUC, 0);
  4839. } else if (IS_I965G(dev)) {
  4840. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4841. I965_RCC_CLOCK_GATE_DISABLE |
  4842. I965_RCPB_CLOCK_GATE_DISABLE |
  4843. I965_ISC_CLOCK_GATE_DISABLE |
  4844. I965_FBC_CLOCK_GATE_DISABLE);
  4845. I915_WRITE(RENCLK_GATE_D2, 0);
  4846. } else if (IS_I9XX(dev)) {
  4847. u32 dstate = I915_READ(D_STATE);
  4848. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4849. DSTATE_DOT_CLOCK_GATING;
  4850. I915_WRITE(D_STATE, dstate);
  4851. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  4852. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4853. } else if (IS_I830(dev)) {
  4854. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4855. }
  4856. /*
  4857. * GPU can automatically power down the render unit if given a page
  4858. * to save state.
  4859. */
  4860. if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
  4861. struct drm_i915_gem_object *obj_priv = NULL;
  4862. if (dev_priv->pwrctx) {
  4863. obj_priv = to_intel_bo(dev_priv->pwrctx);
  4864. } else {
  4865. struct drm_gem_object *pwrctx;
  4866. pwrctx = intel_alloc_power_context(dev);
  4867. if (pwrctx) {
  4868. dev_priv->pwrctx = pwrctx;
  4869. obj_priv = to_intel_bo(pwrctx);
  4870. }
  4871. }
  4872. if (obj_priv) {
  4873. I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
  4874. I915_WRITE(MCHBAR_RENDER_STANDBY,
  4875. I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
  4876. }
  4877. }
  4878. }
  4879. /* Set up chip specific display functions */
  4880. static void intel_init_display(struct drm_device *dev)
  4881. {
  4882. struct drm_i915_private *dev_priv = dev->dev_private;
  4883. /* We always want a DPMS function */
  4884. if (HAS_PCH_SPLIT(dev))
  4885. dev_priv->display.dpms = ironlake_crtc_dpms;
  4886. else
  4887. dev_priv->display.dpms = i9xx_crtc_dpms;
  4888. if (I915_HAS_FBC(dev)) {
  4889. if (IS_IRONLAKE_M(dev)) {
  4890. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4891. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  4892. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4893. } else if (IS_GM45(dev)) {
  4894. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4895. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4896. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4897. } else if (IS_I965GM(dev)) {
  4898. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4899. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4900. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4901. }
  4902. /* 855GM needs testing */
  4903. }
  4904. /* Returns the core display clock speed */
  4905. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
  4906. dev_priv->display.get_display_clock_speed =
  4907. i945_get_display_clock_speed;
  4908. else if (IS_I915G(dev))
  4909. dev_priv->display.get_display_clock_speed =
  4910. i915_get_display_clock_speed;
  4911. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  4912. dev_priv->display.get_display_clock_speed =
  4913. i9xx_misc_get_display_clock_speed;
  4914. else if (IS_I915GM(dev))
  4915. dev_priv->display.get_display_clock_speed =
  4916. i915gm_get_display_clock_speed;
  4917. else if (IS_I865G(dev))
  4918. dev_priv->display.get_display_clock_speed =
  4919. i865_get_display_clock_speed;
  4920. else if (IS_I85X(dev))
  4921. dev_priv->display.get_display_clock_speed =
  4922. i855_get_display_clock_speed;
  4923. else /* 852, 830 */
  4924. dev_priv->display.get_display_clock_speed =
  4925. i830_get_display_clock_speed;
  4926. /* For FIFO watermark updates */
  4927. if (HAS_PCH_SPLIT(dev)) {
  4928. if (IS_IRONLAKE(dev)) {
  4929. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  4930. dev_priv->display.update_wm = ironlake_update_wm;
  4931. else {
  4932. DRM_DEBUG_KMS("Failed to get proper latency. "
  4933. "Disable CxSR\n");
  4934. dev_priv->display.update_wm = NULL;
  4935. }
  4936. } else
  4937. dev_priv->display.update_wm = NULL;
  4938. } else if (IS_PINEVIEW(dev)) {
  4939. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4940. dev_priv->is_ddr3,
  4941. dev_priv->fsb_freq,
  4942. dev_priv->mem_freq)) {
  4943. DRM_INFO("failed to find known CxSR latency "
  4944. "(found ddr%s fsb freq %d, mem freq %d), "
  4945. "disabling CxSR\n",
  4946. (dev_priv->is_ddr3 == 1) ? "3": "2",
  4947. dev_priv->fsb_freq, dev_priv->mem_freq);
  4948. /* Disable CxSR and never update its watermark again */
  4949. pineview_disable_cxsr(dev);
  4950. dev_priv->display.update_wm = NULL;
  4951. } else
  4952. dev_priv->display.update_wm = pineview_update_wm;
  4953. } else if (IS_G4X(dev))
  4954. dev_priv->display.update_wm = g4x_update_wm;
  4955. else if (IS_I965G(dev))
  4956. dev_priv->display.update_wm = i965_update_wm;
  4957. else if (IS_I9XX(dev)) {
  4958. dev_priv->display.update_wm = i9xx_update_wm;
  4959. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4960. } else if (IS_I85X(dev)) {
  4961. dev_priv->display.update_wm = i9xx_update_wm;
  4962. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4963. } else {
  4964. dev_priv->display.update_wm = i830_update_wm;
  4965. if (IS_845G(dev))
  4966. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4967. else
  4968. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4969. }
  4970. }
  4971. /*
  4972. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  4973. * resume, or other times. This quirk makes sure that's the case for
  4974. * affected systems.
  4975. */
  4976. static void quirk_pipea_force (struct drm_device *dev)
  4977. {
  4978. struct drm_i915_private *dev_priv = dev->dev_private;
  4979. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  4980. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  4981. }
  4982. struct intel_quirk {
  4983. int device;
  4984. int subsystem_vendor;
  4985. int subsystem_device;
  4986. void (*hook)(struct drm_device *dev);
  4987. };
  4988. struct intel_quirk intel_quirks[] = {
  4989. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  4990. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  4991. /* HP Mini needs pipe A force quirk (LP: #322104) */
  4992. { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
  4993. /* Thinkpad R31 needs pipe A force quirk */
  4994. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  4995. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  4996. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  4997. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  4998. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  4999. /* ThinkPad X40 needs pipe A force quirk */
  5000. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  5001. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  5002. /* 855 & before need to leave pipe A & dpll A up */
  5003. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  5004. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  5005. };
  5006. static void intel_init_quirks(struct drm_device *dev)
  5007. {
  5008. struct pci_dev *d = dev->pdev;
  5009. int i;
  5010. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  5011. struct intel_quirk *q = &intel_quirks[i];
  5012. if (d->device == q->device &&
  5013. (d->subsystem_vendor == q->subsystem_vendor ||
  5014. q->subsystem_vendor == PCI_ANY_ID) &&
  5015. (d->subsystem_device == q->subsystem_device ||
  5016. q->subsystem_device == PCI_ANY_ID))
  5017. q->hook(dev);
  5018. }
  5019. }
  5020. void intel_modeset_init(struct drm_device *dev)
  5021. {
  5022. struct drm_i915_private *dev_priv = dev->dev_private;
  5023. int i;
  5024. drm_mode_config_init(dev);
  5025. dev->mode_config.min_width = 0;
  5026. dev->mode_config.min_height = 0;
  5027. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  5028. intel_init_quirks(dev);
  5029. intel_init_display(dev);
  5030. if (IS_I965G(dev)) {
  5031. dev->mode_config.max_width = 8192;
  5032. dev->mode_config.max_height = 8192;
  5033. } else if (IS_I9XX(dev)) {
  5034. dev->mode_config.max_width = 4096;
  5035. dev->mode_config.max_height = 4096;
  5036. } else {
  5037. dev->mode_config.max_width = 2048;
  5038. dev->mode_config.max_height = 2048;
  5039. }
  5040. /* set memory base */
  5041. if (IS_I9XX(dev))
  5042. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  5043. else
  5044. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  5045. if (IS_MOBILE(dev) || IS_I9XX(dev))
  5046. dev_priv->num_pipe = 2;
  5047. else
  5048. dev_priv->num_pipe = 1;
  5049. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  5050. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  5051. for (i = 0; i < dev_priv->num_pipe; i++) {
  5052. intel_crtc_init(dev, i);
  5053. }
  5054. intel_setup_outputs(dev);
  5055. intel_init_clock_gating(dev);
  5056. if (IS_IRONLAKE_M(dev)) {
  5057. ironlake_enable_drps(dev);
  5058. intel_init_emon(dev);
  5059. }
  5060. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  5061. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  5062. (unsigned long)dev);
  5063. intel_setup_overlay(dev);
  5064. }
  5065. void intel_modeset_cleanup(struct drm_device *dev)
  5066. {
  5067. struct drm_i915_private *dev_priv = dev->dev_private;
  5068. struct drm_crtc *crtc;
  5069. struct intel_crtc *intel_crtc;
  5070. mutex_lock(&dev->struct_mutex);
  5071. drm_kms_helper_poll_fini(dev);
  5072. intel_fbdev_fini(dev);
  5073. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5074. /* Skip inactive CRTCs */
  5075. if (!crtc->fb)
  5076. continue;
  5077. intel_crtc = to_intel_crtc(crtc);
  5078. intel_increase_pllclock(crtc, false);
  5079. del_timer_sync(&intel_crtc->idle_timer);
  5080. }
  5081. del_timer_sync(&dev_priv->idle_timer);
  5082. if (dev_priv->display.disable_fbc)
  5083. dev_priv->display.disable_fbc(dev);
  5084. if (dev_priv->pwrctx) {
  5085. struct drm_i915_gem_object *obj_priv;
  5086. obj_priv = to_intel_bo(dev_priv->pwrctx);
  5087. I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
  5088. I915_READ(PWRCTXA);
  5089. i915_gem_object_unpin(dev_priv->pwrctx);
  5090. drm_gem_object_unreference(dev_priv->pwrctx);
  5091. }
  5092. if (IS_IRONLAKE_M(dev))
  5093. ironlake_disable_drps(dev);
  5094. mutex_unlock(&dev->struct_mutex);
  5095. drm_mode_config_cleanup(dev);
  5096. }
  5097. /*
  5098. * Return which encoder is currently attached for connector.
  5099. */
  5100. struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
  5101. {
  5102. struct drm_mode_object *obj;
  5103. struct drm_encoder *encoder;
  5104. int i;
  5105. for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
  5106. if (connector->encoder_ids[i] == 0)
  5107. break;
  5108. obj = drm_mode_object_find(connector->dev,
  5109. connector->encoder_ids[i],
  5110. DRM_MODE_OBJECT_ENCODER);
  5111. if (!obj)
  5112. continue;
  5113. encoder = obj_to_encoder(obj);
  5114. return encoder;
  5115. }
  5116. return NULL;
  5117. }
  5118. /*
  5119. * set vga decode state - true == enable VGA decode
  5120. */
  5121. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  5122. {
  5123. struct drm_i915_private *dev_priv = dev->dev_private;
  5124. u16 gmch_ctrl;
  5125. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  5126. if (state)
  5127. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  5128. else
  5129. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  5130. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  5131. return 0;
  5132. }