sched_rt.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_RT_GROUP_SCHED
  6. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  7. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  8. {
  9. #ifdef CONFIG_SCHED_DEBUG
  10. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  11. #endif
  12. return container_of(rt_se, struct task_struct, rt);
  13. }
  14. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  15. {
  16. return rt_rq->rq;
  17. }
  18. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  19. {
  20. return rt_se->rt_rq;
  21. }
  22. #else /* CONFIG_RT_GROUP_SCHED */
  23. #define rt_entity_is_task(rt_se) (1)
  24. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  25. {
  26. return container_of(rt_se, struct task_struct, rt);
  27. }
  28. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  29. {
  30. return container_of(rt_rq, struct rq, rt);
  31. }
  32. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  33. {
  34. struct task_struct *p = rt_task_of(rt_se);
  35. struct rq *rq = task_rq(p);
  36. return &rq->rt;
  37. }
  38. #endif /* CONFIG_RT_GROUP_SCHED */
  39. #ifdef CONFIG_SMP
  40. static inline int rt_overloaded(struct rq *rq)
  41. {
  42. return atomic_read(&rq->rd->rto_count);
  43. }
  44. static inline void rt_set_overload(struct rq *rq)
  45. {
  46. if (!rq->online)
  47. return;
  48. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  49. /*
  50. * Make sure the mask is visible before we set
  51. * the overload count. That is checked to determine
  52. * if we should look at the mask. It would be a shame
  53. * if we looked at the mask, but the mask was not
  54. * updated yet.
  55. */
  56. wmb();
  57. atomic_inc(&rq->rd->rto_count);
  58. }
  59. static inline void rt_clear_overload(struct rq *rq)
  60. {
  61. if (!rq->online)
  62. return;
  63. /* the order here really doesn't matter */
  64. atomic_dec(&rq->rd->rto_count);
  65. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  66. }
  67. static void update_rt_migration(struct rt_rq *rt_rq)
  68. {
  69. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  70. if (!rt_rq->overloaded) {
  71. rt_set_overload(rq_of_rt_rq(rt_rq));
  72. rt_rq->overloaded = 1;
  73. }
  74. } else if (rt_rq->overloaded) {
  75. rt_clear_overload(rq_of_rt_rq(rt_rq));
  76. rt_rq->overloaded = 0;
  77. }
  78. }
  79. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  80. {
  81. if (!rt_entity_is_task(rt_se))
  82. return;
  83. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  84. rt_rq->rt_nr_total++;
  85. if (rt_se->nr_cpus_allowed > 1)
  86. rt_rq->rt_nr_migratory++;
  87. update_rt_migration(rt_rq);
  88. }
  89. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  90. {
  91. if (!rt_entity_is_task(rt_se))
  92. return;
  93. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  94. rt_rq->rt_nr_total--;
  95. if (rt_se->nr_cpus_allowed > 1)
  96. rt_rq->rt_nr_migratory--;
  97. update_rt_migration(rt_rq);
  98. }
  99. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  100. {
  101. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  102. plist_node_init(&p->pushable_tasks, p->prio);
  103. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  104. }
  105. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  106. {
  107. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  108. }
  109. static inline int has_pushable_tasks(struct rq *rq)
  110. {
  111. return !plist_head_empty(&rq->rt.pushable_tasks);
  112. }
  113. #else
  114. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  115. {
  116. }
  117. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  118. {
  119. }
  120. static inline
  121. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  122. {
  123. }
  124. static inline
  125. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  126. {
  127. }
  128. #endif /* CONFIG_SMP */
  129. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  130. {
  131. return !list_empty(&rt_se->run_list);
  132. }
  133. #ifdef CONFIG_RT_GROUP_SCHED
  134. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  135. {
  136. if (!rt_rq->tg)
  137. return RUNTIME_INF;
  138. return rt_rq->rt_runtime;
  139. }
  140. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  141. {
  142. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  143. }
  144. #define for_each_leaf_rt_rq(rt_rq, rq) \
  145. list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  146. #define for_each_sched_rt_entity(rt_se) \
  147. for (; rt_se; rt_se = rt_se->parent)
  148. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  149. {
  150. return rt_se->my_q;
  151. }
  152. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
  153. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  154. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  155. {
  156. int this_cpu = smp_processor_id();
  157. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  158. struct sched_rt_entity *rt_se;
  159. rt_se = rt_rq->tg->rt_se[this_cpu];
  160. if (rt_rq->rt_nr_running) {
  161. if (rt_se && !on_rt_rq(rt_se))
  162. enqueue_rt_entity(rt_se, false);
  163. if (rt_rq->highest_prio.curr < curr->prio)
  164. resched_task(curr);
  165. }
  166. }
  167. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  168. {
  169. int this_cpu = smp_processor_id();
  170. struct sched_rt_entity *rt_se;
  171. rt_se = rt_rq->tg->rt_se[this_cpu];
  172. if (rt_se && on_rt_rq(rt_se))
  173. dequeue_rt_entity(rt_se);
  174. }
  175. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  176. {
  177. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  178. }
  179. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  180. {
  181. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  182. struct task_struct *p;
  183. if (rt_rq)
  184. return !!rt_rq->rt_nr_boosted;
  185. p = rt_task_of(rt_se);
  186. return p->prio != p->normal_prio;
  187. }
  188. #ifdef CONFIG_SMP
  189. static inline const struct cpumask *sched_rt_period_mask(void)
  190. {
  191. return cpu_rq(smp_processor_id())->rd->span;
  192. }
  193. #else
  194. static inline const struct cpumask *sched_rt_period_mask(void)
  195. {
  196. return cpu_online_mask;
  197. }
  198. #endif
  199. static inline
  200. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  201. {
  202. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  203. }
  204. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  205. {
  206. return &rt_rq->tg->rt_bandwidth;
  207. }
  208. #else /* !CONFIG_RT_GROUP_SCHED */
  209. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  210. {
  211. return rt_rq->rt_runtime;
  212. }
  213. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  214. {
  215. return ktime_to_ns(def_rt_bandwidth.rt_period);
  216. }
  217. #define for_each_leaf_rt_rq(rt_rq, rq) \
  218. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  219. #define for_each_sched_rt_entity(rt_se) \
  220. for (; rt_se; rt_se = NULL)
  221. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  222. {
  223. return NULL;
  224. }
  225. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  226. {
  227. if (rt_rq->rt_nr_running)
  228. resched_task(rq_of_rt_rq(rt_rq)->curr);
  229. }
  230. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  231. {
  232. }
  233. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  234. {
  235. return rt_rq->rt_throttled;
  236. }
  237. static inline const struct cpumask *sched_rt_period_mask(void)
  238. {
  239. return cpu_online_mask;
  240. }
  241. static inline
  242. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  243. {
  244. return &cpu_rq(cpu)->rt;
  245. }
  246. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  247. {
  248. return &def_rt_bandwidth;
  249. }
  250. #endif /* CONFIG_RT_GROUP_SCHED */
  251. #ifdef CONFIG_SMP
  252. /*
  253. * We ran out of runtime, see if we can borrow some from our neighbours.
  254. */
  255. static int do_balance_runtime(struct rt_rq *rt_rq)
  256. {
  257. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  258. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  259. int i, weight, more = 0;
  260. u64 rt_period;
  261. weight = cpumask_weight(rd->span);
  262. raw_spin_lock(&rt_b->rt_runtime_lock);
  263. rt_period = ktime_to_ns(rt_b->rt_period);
  264. for_each_cpu(i, rd->span) {
  265. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  266. s64 diff;
  267. if (iter == rt_rq)
  268. continue;
  269. raw_spin_lock(&iter->rt_runtime_lock);
  270. /*
  271. * Either all rqs have inf runtime and there's nothing to steal
  272. * or __disable_runtime() below sets a specific rq to inf to
  273. * indicate its been disabled and disalow stealing.
  274. */
  275. if (iter->rt_runtime == RUNTIME_INF)
  276. goto next;
  277. /*
  278. * From runqueues with spare time, take 1/n part of their
  279. * spare time, but no more than our period.
  280. */
  281. diff = iter->rt_runtime - iter->rt_time;
  282. if (diff > 0) {
  283. diff = div_u64((u64)diff, weight);
  284. if (rt_rq->rt_runtime + diff > rt_period)
  285. diff = rt_period - rt_rq->rt_runtime;
  286. iter->rt_runtime -= diff;
  287. rt_rq->rt_runtime += diff;
  288. more = 1;
  289. if (rt_rq->rt_runtime == rt_period) {
  290. raw_spin_unlock(&iter->rt_runtime_lock);
  291. break;
  292. }
  293. }
  294. next:
  295. raw_spin_unlock(&iter->rt_runtime_lock);
  296. }
  297. raw_spin_unlock(&rt_b->rt_runtime_lock);
  298. return more;
  299. }
  300. /*
  301. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  302. */
  303. static void __disable_runtime(struct rq *rq)
  304. {
  305. struct root_domain *rd = rq->rd;
  306. struct rt_rq *rt_rq;
  307. if (unlikely(!scheduler_running))
  308. return;
  309. for_each_leaf_rt_rq(rt_rq, rq) {
  310. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  311. s64 want;
  312. int i;
  313. raw_spin_lock(&rt_b->rt_runtime_lock);
  314. raw_spin_lock(&rt_rq->rt_runtime_lock);
  315. /*
  316. * Either we're all inf and nobody needs to borrow, or we're
  317. * already disabled and thus have nothing to do, or we have
  318. * exactly the right amount of runtime to take out.
  319. */
  320. if (rt_rq->rt_runtime == RUNTIME_INF ||
  321. rt_rq->rt_runtime == rt_b->rt_runtime)
  322. goto balanced;
  323. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  324. /*
  325. * Calculate the difference between what we started out with
  326. * and what we current have, that's the amount of runtime
  327. * we lend and now have to reclaim.
  328. */
  329. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  330. /*
  331. * Greedy reclaim, take back as much as we can.
  332. */
  333. for_each_cpu(i, rd->span) {
  334. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  335. s64 diff;
  336. /*
  337. * Can't reclaim from ourselves or disabled runqueues.
  338. */
  339. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  340. continue;
  341. raw_spin_lock(&iter->rt_runtime_lock);
  342. if (want > 0) {
  343. diff = min_t(s64, iter->rt_runtime, want);
  344. iter->rt_runtime -= diff;
  345. want -= diff;
  346. } else {
  347. iter->rt_runtime -= want;
  348. want -= want;
  349. }
  350. raw_spin_unlock(&iter->rt_runtime_lock);
  351. if (!want)
  352. break;
  353. }
  354. raw_spin_lock(&rt_rq->rt_runtime_lock);
  355. /*
  356. * We cannot be left wanting - that would mean some runtime
  357. * leaked out of the system.
  358. */
  359. BUG_ON(want);
  360. balanced:
  361. /*
  362. * Disable all the borrow logic by pretending we have inf
  363. * runtime - in which case borrowing doesn't make sense.
  364. */
  365. rt_rq->rt_runtime = RUNTIME_INF;
  366. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  367. raw_spin_unlock(&rt_b->rt_runtime_lock);
  368. }
  369. }
  370. static void disable_runtime(struct rq *rq)
  371. {
  372. unsigned long flags;
  373. raw_spin_lock_irqsave(&rq->lock, flags);
  374. __disable_runtime(rq);
  375. raw_spin_unlock_irqrestore(&rq->lock, flags);
  376. }
  377. static void __enable_runtime(struct rq *rq)
  378. {
  379. struct rt_rq *rt_rq;
  380. if (unlikely(!scheduler_running))
  381. return;
  382. /*
  383. * Reset each runqueue's bandwidth settings
  384. */
  385. for_each_leaf_rt_rq(rt_rq, rq) {
  386. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  387. raw_spin_lock(&rt_b->rt_runtime_lock);
  388. raw_spin_lock(&rt_rq->rt_runtime_lock);
  389. rt_rq->rt_runtime = rt_b->rt_runtime;
  390. rt_rq->rt_time = 0;
  391. rt_rq->rt_throttled = 0;
  392. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  393. raw_spin_unlock(&rt_b->rt_runtime_lock);
  394. }
  395. }
  396. static void enable_runtime(struct rq *rq)
  397. {
  398. unsigned long flags;
  399. raw_spin_lock_irqsave(&rq->lock, flags);
  400. __enable_runtime(rq);
  401. raw_spin_unlock_irqrestore(&rq->lock, flags);
  402. }
  403. static int balance_runtime(struct rt_rq *rt_rq)
  404. {
  405. int more = 0;
  406. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  407. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  408. more = do_balance_runtime(rt_rq);
  409. raw_spin_lock(&rt_rq->rt_runtime_lock);
  410. }
  411. return more;
  412. }
  413. #else /* !CONFIG_SMP */
  414. static inline int balance_runtime(struct rt_rq *rt_rq)
  415. {
  416. return 0;
  417. }
  418. #endif /* CONFIG_SMP */
  419. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  420. {
  421. int i, idle = 1;
  422. const struct cpumask *span;
  423. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  424. return 1;
  425. span = sched_rt_period_mask();
  426. for_each_cpu(i, span) {
  427. int enqueue = 0;
  428. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  429. struct rq *rq = rq_of_rt_rq(rt_rq);
  430. raw_spin_lock(&rq->lock);
  431. if (rt_rq->rt_time) {
  432. u64 runtime;
  433. raw_spin_lock(&rt_rq->rt_runtime_lock);
  434. if (rt_rq->rt_throttled)
  435. balance_runtime(rt_rq);
  436. runtime = rt_rq->rt_runtime;
  437. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  438. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  439. rt_rq->rt_throttled = 0;
  440. enqueue = 1;
  441. }
  442. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  443. idle = 0;
  444. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  445. } else if (rt_rq->rt_nr_running)
  446. idle = 0;
  447. if (enqueue)
  448. sched_rt_rq_enqueue(rt_rq);
  449. raw_spin_unlock(&rq->lock);
  450. }
  451. return idle;
  452. }
  453. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  454. {
  455. #ifdef CONFIG_RT_GROUP_SCHED
  456. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  457. if (rt_rq)
  458. return rt_rq->highest_prio.curr;
  459. #endif
  460. return rt_task_of(rt_se)->prio;
  461. }
  462. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  463. {
  464. u64 runtime = sched_rt_runtime(rt_rq);
  465. if (rt_rq->rt_throttled)
  466. return rt_rq_throttled(rt_rq);
  467. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  468. return 0;
  469. balance_runtime(rt_rq);
  470. runtime = sched_rt_runtime(rt_rq);
  471. if (runtime == RUNTIME_INF)
  472. return 0;
  473. if (rt_rq->rt_time > runtime) {
  474. rt_rq->rt_throttled = 1;
  475. if (rt_rq_throttled(rt_rq)) {
  476. sched_rt_rq_dequeue(rt_rq);
  477. return 1;
  478. }
  479. }
  480. return 0;
  481. }
  482. /*
  483. * Update the current task's runtime statistics. Skip current tasks that
  484. * are not in our scheduling class.
  485. */
  486. static void update_curr_rt(struct rq *rq)
  487. {
  488. struct task_struct *curr = rq->curr;
  489. struct sched_rt_entity *rt_se = &curr->rt;
  490. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  491. u64 delta_exec;
  492. if (!task_has_rt_policy(curr))
  493. return;
  494. delta_exec = rq->clock - curr->se.exec_start;
  495. if (unlikely((s64)delta_exec < 0))
  496. delta_exec = 0;
  497. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  498. curr->se.sum_exec_runtime += delta_exec;
  499. account_group_exec_runtime(curr, delta_exec);
  500. curr->se.exec_start = rq->clock;
  501. cpuacct_charge(curr, delta_exec);
  502. sched_rt_avg_update(rq, delta_exec);
  503. if (!rt_bandwidth_enabled())
  504. return;
  505. for_each_sched_rt_entity(rt_se) {
  506. rt_rq = rt_rq_of_se(rt_se);
  507. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  508. raw_spin_lock(&rt_rq->rt_runtime_lock);
  509. rt_rq->rt_time += delta_exec;
  510. if (sched_rt_runtime_exceeded(rt_rq))
  511. resched_task(curr);
  512. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  513. }
  514. }
  515. }
  516. #if defined CONFIG_SMP
  517. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
  518. static inline int next_prio(struct rq *rq)
  519. {
  520. struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
  521. if (next && rt_prio(next->prio))
  522. return next->prio;
  523. else
  524. return MAX_RT_PRIO;
  525. }
  526. static void
  527. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  528. {
  529. struct rq *rq = rq_of_rt_rq(rt_rq);
  530. if (prio < prev_prio) {
  531. /*
  532. * If the new task is higher in priority than anything on the
  533. * run-queue, we know that the previous high becomes our
  534. * next-highest.
  535. */
  536. rt_rq->highest_prio.next = prev_prio;
  537. if (rq->online)
  538. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  539. } else if (prio == rt_rq->highest_prio.curr)
  540. /*
  541. * If the next task is equal in priority to the highest on
  542. * the run-queue, then we implicitly know that the next highest
  543. * task cannot be any lower than current
  544. */
  545. rt_rq->highest_prio.next = prio;
  546. else if (prio < rt_rq->highest_prio.next)
  547. /*
  548. * Otherwise, we need to recompute next-highest
  549. */
  550. rt_rq->highest_prio.next = next_prio(rq);
  551. }
  552. static void
  553. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  554. {
  555. struct rq *rq = rq_of_rt_rq(rt_rq);
  556. if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
  557. rt_rq->highest_prio.next = next_prio(rq);
  558. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  559. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  560. }
  561. #else /* CONFIG_SMP */
  562. static inline
  563. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  564. static inline
  565. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  566. #endif /* CONFIG_SMP */
  567. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  568. static void
  569. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  570. {
  571. int prev_prio = rt_rq->highest_prio.curr;
  572. if (prio < prev_prio)
  573. rt_rq->highest_prio.curr = prio;
  574. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  575. }
  576. static void
  577. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  578. {
  579. int prev_prio = rt_rq->highest_prio.curr;
  580. if (rt_rq->rt_nr_running) {
  581. WARN_ON(prio < prev_prio);
  582. /*
  583. * This may have been our highest task, and therefore
  584. * we may have some recomputation to do
  585. */
  586. if (prio == prev_prio) {
  587. struct rt_prio_array *array = &rt_rq->active;
  588. rt_rq->highest_prio.curr =
  589. sched_find_first_bit(array->bitmap);
  590. }
  591. } else
  592. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  593. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  594. }
  595. #else
  596. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  597. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  598. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  599. #ifdef CONFIG_RT_GROUP_SCHED
  600. static void
  601. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  602. {
  603. if (rt_se_boosted(rt_se))
  604. rt_rq->rt_nr_boosted++;
  605. if (rt_rq->tg)
  606. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  607. }
  608. static void
  609. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  610. {
  611. if (rt_se_boosted(rt_se))
  612. rt_rq->rt_nr_boosted--;
  613. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  614. }
  615. #else /* CONFIG_RT_GROUP_SCHED */
  616. static void
  617. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  618. {
  619. start_rt_bandwidth(&def_rt_bandwidth);
  620. }
  621. static inline
  622. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  623. #endif /* CONFIG_RT_GROUP_SCHED */
  624. static inline
  625. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  626. {
  627. int prio = rt_se_prio(rt_se);
  628. WARN_ON(!rt_prio(prio));
  629. rt_rq->rt_nr_running++;
  630. inc_rt_prio(rt_rq, prio);
  631. inc_rt_migration(rt_se, rt_rq);
  632. inc_rt_group(rt_se, rt_rq);
  633. }
  634. static inline
  635. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  636. {
  637. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  638. WARN_ON(!rt_rq->rt_nr_running);
  639. rt_rq->rt_nr_running--;
  640. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  641. dec_rt_migration(rt_se, rt_rq);
  642. dec_rt_group(rt_se, rt_rq);
  643. }
  644. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  645. {
  646. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  647. struct rt_prio_array *array = &rt_rq->active;
  648. struct rt_rq *group_rq = group_rt_rq(rt_se);
  649. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  650. /*
  651. * Don't enqueue the group if its throttled, or when empty.
  652. * The latter is a consequence of the former when a child group
  653. * get throttled and the current group doesn't have any other
  654. * active members.
  655. */
  656. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  657. return;
  658. if (head)
  659. list_add(&rt_se->run_list, queue);
  660. else
  661. list_add_tail(&rt_se->run_list, queue);
  662. __set_bit(rt_se_prio(rt_se), array->bitmap);
  663. inc_rt_tasks(rt_se, rt_rq);
  664. }
  665. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  666. {
  667. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  668. struct rt_prio_array *array = &rt_rq->active;
  669. list_del_init(&rt_se->run_list);
  670. if (list_empty(array->queue + rt_se_prio(rt_se)))
  671. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  672. dec_rt_tasks(rt_se, rt_rq);
  673. }
  674. /*
  675. * Because the prio of an upper entry depends on the lower
  676. * entries, we must remove entries top - down.
  677. */
  678. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  679. {
  680. struct sched_rt_entity *back = NULL;
  681. for_each_sched_rt_entity(rt_se) {
  682. rt_se->back = back;
  683. back = rt_se;
  684. }
  685. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  686. if (on_rt_rq(rt_se))
  687. __dequeue_rt_entity(rt_se);
  688. }
  689. }
  690. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  691. {
  692. dequeue_rt_stack(rt_se);
  693. for_each_sched_rt_entity(rt_se)
  694. __enqueue_rt_entity(rt_se, head);
  695. }
  696. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  697. {
  698. dequeue_rt_stack(rt_se);
  699. for_each_sched_rt_entity(rt_se) {
  700. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  701. if (rt_rq && rt_rq->rt_nr_running)
  702. __enqueue_rt_entity(rt_se, false);
  703. }
  704. }
  705. /*
  706. * Adding/removing a task to/from a priority array:
  707. */
  708. static void
  709. enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head)
  710. {
  711. struct sched_rt_entity *rt_se = &p->rt;
  712. if (wakeup)
  713. rt_se->timeout = 0;
  714. enqueue_rt_entity(rt_se, head);
  715. if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
  716. enqueue_pushable_task(rq, p);
  717. }
  718. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  719. {
  720. struct sched_rt_entity *rt_se = &p->rt;
  721. update_curr_rt(rq);
  722. dequeue_rt_entity(rt_se);
  723. dequeue_pushable_task(rq, p);
  724. }
  725. /*
  726. * Put task to the end of the run list without the overhead of dequeue
  727. * followed by enqueue.
  728. */
  729. static void
  730. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  731. {
  732. if (on_rt_rq(rt_se)) {
  733. struct rt_prio_array *array = &rt_rq->active;
  734. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  735. if (head)
  736. list_move(&rt_se->run_list, queue);
  737. else
  738. list_move_tail(&rt_se->run_list, queue);
  739. }
  740. }
  741. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  742. {
  743. struct sched_rt_entity *rt_se = &p->rt;
  744. struct rt_rq *rt_rq;
  745. for_each_sched_rt_entity(rt_se) {
  746. rt_rq = rt_rq_of_se(rt_se);
  747. requeue_rt_entity(rt_rq, rt_se, head);
  748. }
  749. }
  750. static void yield_task_rt(struct rq *rq)
  751. {
  752. requeue_task_rt(rq, rq->curr, 0);
  753. }
  754. #ifdef CONFIG_SMP
  755. static int find_lowest_rq(struct task_struct *task);
  756. static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
  757. {
  758. struct rq *rq = task_rq(p);
  759. if (sd_flag != SD_BALANCE_WAKE)
  760. return smp_processor_id();
  761. /*
  762. * If the current task is an RT task, then
  763. * try to see if we can wake this RT task up on another
  764. * runqueue. Otherwise simply start this RT task
  765. * on its current runqueue.
  766. *
  767. * We want to avoid overloading runqueues. Even if
  768. * the RT task is of higher priority than the current RT task.
  769. * RT tasks behave differently than other tasks. If
  770. * one gets preempted, we try to push it off to another queue.
  771. * So trying to keep a preempting RT task on the same
  772. * cache hot CPU will force the running RT task to
  773. * a cold CPU. So we waste all the cache for the lower
  774. * RT task in hopes of saving some of a RT task
  775. * that is just being woken and probably will have
  776. * cold cache anyway.
  777. */
  778. if (unlikely(rt_task(rq->curr)) &&
  779. (p->rt.nr_cpus_allowed > 1)) {
  780. int cpu = find_lowest_rq(p);
  781. return (cpu == -1) ? task_cpu(p) : cpu;
  782. }
  783. /*
  784. * Otherwise, just let it ride on the affined RQ and the
  785. * post-schedule router will push the preempted task away
  786. */
  787. return task_cpu(p);
  788. }
  789. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  790. {
  791. if (rq->curr->rt.nr_cpus_allowed == 1)
  792. return;
  793. if (p->rt.nr_cpus_allowed != 1
  794. && cpupri_find(&rq->rd->cpupri, p, NULL))
  795. return;
  796. if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  797. return;
  798. /*
  799. * There appears to be other cpus that can accept
  800. * current and none to run 'p', so lets reschedule
  801. * to try and push current away:
  802. */
  803. requeue_task_rt(rq, p, 1);
  804. resched_task(rq->curr);
  805. }
  806. #endif /* CONFIG_SMP */
  807. /*
  808. * Preempt the current task with a newly woken task if needed:
  809. */
  810. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  811. {
  812. if (p->prio < rq->curr->prio) {
  813. resched_task(rq->curr);
  814. return;
  815. }
  816. #ifdef CONFIG_SMP
  817. /*
  818. * If:
  819. *
  820. * - the newly woken task is of equal priority to the current task
  821. * - the newly woken task is non-migratable while current is migratable
  822. * - current will be preempted on the next reschedule
  823. *
  824. * we should check to see if current can readily move to a different
  825. * cpu. If so, we will reschedule to allow the push logic to try
  826. * to move current somewhere else, making room for our non-migratable
  827. * task.
  828. */
  829. if (p->prio == rq->curr->prio && !need_resched())
  830. check_preempt_equal_prio(rq, p);
  831. #endif
  832. }
  833. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  834. struct rt_rq *rt_rq)
  835. {
  836. struct rt_prio_array *array = &rt_rq->active;
  837. struct sched_rt_entity *next = NULL;
  838. struct list_head *queue;
  839. int idx;
  840. idx = sched_find_first_bit(array->bitmap);
  841. BUG_ON(idx >= MAX_RT_PRIO);
  842. queue = array->queue + idx;
  843. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  844. return next;
  845. }
  846. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  847. {
  848. struct sched_rt_entity *rt_se;
  849. struct task_struct *p;
  850. struct rt_rq *rt_rq;
  851. rt_rq = &rq->rt;
  852. if (unlikely(!rt_rq->rt_nr_running))
  853. return NULL;
  854. if (rt_rq_throttled(rt_rq))
  855. return NULL;
  856. do {
  857. rt_se = pick_next_rt_entity(rq, rt_rq);
  858. BUG_ON(!rt_se);
  859. rt_rq = group_rt_rq(rt_se);
  860. } while (rt_rq);
  861. p = rt_task_of(rt_se);
  862. p->se.exec_start = rq->clock;
  863. return p;
  864. }
  865. static struct task_struct *pick_next_task_rt(struct rq *rq)
  866. {
  867. struct task_struct *p = _pick_next_task_rt(rq);
  868. /* The running task is never eligible for pushing */
  869. if (p)
  870. dequeue_pushable_task(rq, p);
  871. #ifdef CONFIG_SMP
  872. /*
  873. * We detect this state here so that we can avoid taking the RQ
  874. * lock again later if there is no need to push
  875. */
  876. rq->post_schedule = has_pushable_tasks(rq);
  877. #endif
  878. return p;
  879. }
  880. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  881. {
  882. update_curr_rt(rq);
  883. p->se.exec_start = 0;
  884. /*
  885. * The previous task needs to be made eligible for pushing
  886. * if it is still active
  887. */
  888. if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
  889. enqueue_pushable_task(rq, p);
  890. }
  891. #ifdef CONFIG_SMP
  892. /* Only try algorithms three times */
  893. #define RT_MAX_TRIES 3
  894. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  895. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  896. {
  897. if (!task_running(rq, p) &&
  898. (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
  899. (p->rt.nr_cpus_allowed > 1))
  900. return 1;
  901. return 0;
  902. }
  903. /* Return the second highest RT task, NULL otherwise */
  904. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  905. {
  906. struct task_struct *next = NULL;
  907. struct sched_rt_entity *rt_se;
  908. struct rt_prio_array *array;
  909. struct rt_rq *rt_rq;
  910. int idx;
  911. for_each_leaf_rt_rq(rt_rq, rq) {
  912. array = &rt_rq->active;
  913. idx = sched_find_first_bit(array->bitmap);
  914. next_idx:
  915. if (idx >= MAX_RT_PRIO)
  916. continue;
  917. if (next && next->prio < idx)
  918. continue;
  919. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  920. struct task_struct *p = rt_task_of(rt_se);
  921. if (pick_rt_task(rq, p, cpu)) {
  922. next = p;
  923. break;
  924. }
  925. }
  926. if (!next) {
  927. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  928. goto next_idx;
  929. }
  930. }
  931. return next;
  932. }
  933. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  934. static int find_lowest_rq(struct task_struct *task)
  935. {
  936. struct sched_domain *sd;
  937. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  938. int this_cpu = smp_processor_id();
  939. int cpu = task_cpu(task);
  940. if (task->rt.nr_cpus_allowed == 1)
  941. return -1; /* No other targets possible */
  942. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  943. return -1; /* No targets found */
  944. /*
  945. * At this point we have built a mask of cpus representing the
  946. * lowest priority tasks in the system. Now we want to elect
  947. * the best one based on our affinity and topology.
  948. *
  949. * We prioritize the last cpu that the task executed on since
  950. * it is most likely cache-hot in that location.
  951. */
  952. if (cpumask_test_cpu(cpu, lowest_mask))
  953. return cpu;
  954. /*
  955. * Otherwise, we consult the sched_domains span maps to figure
  956. * out which cpu is logically closest to our hot cache data.
  957. */
  958. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  959. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  960. for_each_domain(cpu, sd) {
  961. if (sd->flags & SD_WAKE_AFFINE) {
  962. int best_cpu;
  963. /*
  964. * "this_cpu" is cheaper to preempt than a
  965. * remote processor.
  966. */
  967. if (this_cpu != -1 &&
  968. cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
  969. return this_cpu;
  970. best_cpu = cpumask_first_and(lowest_mask,
  971. sched_domain_span(sd));
  972. if (best_cpu < nr_cpu_ids)
  973. return best_cpu;
  974. }
  975. }
  976. /*
  977. * And finally, if there were no matches within the domains
  978. * just give the caller *something* to work with from the compatible
  979. * locations.
  980. */
  981. if (this_cpu != -1)
  982. return this_cpu;
  983. cpu = cpumask_any(lowest_mask);
  984. if (cpu < nr_cpu_ids)
  985. return cpu;
  986. return -1;
  987. }
  988. /* Will lock the rq it finds */
  989. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  990. {
  991. struct rq *lowest_rq = NULL;
  992. int tries;
  993. int cpu;
  994. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  995. cpu = find_lowest_rq(task);
  996. if ((cpu == -1) || (cpu == rq->cpu))
  997. break;
  998. lowest_rq = cpu_rq(cpu);
  999. /* if the prio of this runqueue changed, try again */
  1000. if (double_lock_balance(rq, lowest_rq)) {
  1001. /*
  1002. * We had to unlock the run queue. In
  1003. * the mean time, task could have
  1004. * migrated already or had its affinity changed.
  1005. * Also make sure that it wasn't scheduled on its rq.
  1006. */
  1007. if (unlikely(task_rq(task) != rq ||
  1008. !cpumask_test_cpu(lowest_rq->cpu,
  1009. &task->cpus_allowed) ||
  1010. task_running(rq, task) ||
  1011. !task->se.on_rq)) {
  1012. raw_spin_unlock(&lowest_rq->lock);
  1013. lowest_rq = NULL;
  1014. break;
  1015. }
  1016. }
  1017. /* If this rq is still suitable use it. */
  1018. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1019. break;
  1020. /* try again */
  1021. double_unlock_balance(rq, lowest_rq);
  1022. lowest_rq = NULL;
  1023. }
  1024. return lowest_rq;
  1025. }
  1026. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1027. {
  1028. struct task_struct *p;
  1029. if (!has_pushable_tasks(rq))
  1030. return NULL;
  1031. p = plist_first_entry(&rq->rt.pushable_tasks,
  1032. struct task_struct, pushable_tasks);
  1033. BUG_ON(rq->cpu != task_cpu(p));
  1034. BUG_ON(task_current(rq, p));
  1035. BUG_ON(p->rt.nr_cpus_allowed <= 1);
  1036. BUG_ON(!p->se.on_rq);
  1037. BUG_ON(!rt_task(p));
  1038. return p;
  1039. }
  1040. /*
  1041. * If the current CPU has more than one RT task, see if the non
  1042. * running task can migrate over to a CPU that is running a task
  1043. * of lesser priority.
  1044. */
  1045. static int push_rt_task(struct rq *rq)
  1046. {
  1047. struct task_struct *next_task;
  1048. struct rq *lowest_rq;
  1049. if (!rq->rt.overloaded)
  1050. return 0;
  1051. next_task = pick_next_pushable_task(rq);
  1052. if (!next_task)
  1053. return 0;
  1054. retry:
  1055. if (unlikely(next_task == rq->curr)) {
  1056. WARN_ON(1);
  1057. return 0;
  1058. }
  1059. /*
  1060. * It's possible that the next_task slipped in of
  1061. * higher priority than current. If that's the case
  1062. * just reschedule current.
  1063. */
  1064. if (unlikely(next_task->prio < rq->curr->prio)) {
  1065. resched_task(rq->curr);
  1066. return 0;
  1067. }
  1068. /* We might release rq lock */
  1069. get_task_struct(next_task);
  1070. /* find_lock_lowest_rq locks the rq if found */
  1071. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1072. if (!lowest_rq) {
  1073. struct task_struct *task;
  1074. /*
  1075. * find lock_lowest_rq releases rq->lock
  1076. * so it is possible that next_task has migrated.
  1077. *
  1078. * We need to make sure that the task is still on the same
  1079. * run-queue and is also still the next task eligible for
  1080. * pushing.
  1081. */
  1082. task = pick_next_pushable_task(rq);
  1083. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1084. /*
  1085. * If we get here, the task hasnt moved at all, but
  1086. * it has failed to push. We will not try again,
  1087. * since the other cpus will pull from us when they
  1088. * are ready.
  1089. */
  1090. dequeue_pushable_task(rq, next_task);
  1091. goto out;
  1092. }
  1093. if (!task)
  1094. /* No more tasks, just exit */
  1095. goto out;
  1096. /*
  1097. * Something has shifted, try again.
  1098. */
  1099. put_task_struct(next_task);
  1100. next_task = task;
  1101. goto retry;
  1102. }
  1103. deactivate_task(rq, next_task, 0);
  1104. set_task_cpu(next_task, lowest_rq->cpu);
  1105. activate_task(lowest_rq, next_task, 0);
  1106. resched_task(lowest_rq->curr);
  1107. double_unlock_balance(rq, lowest_rq);
  1108. out:
  1109. put_task_struct(next_task);
  1110. return 1;
  1111. }
  1112. static void push_rt_tasks(struct rq *rq)
  1113. {
  1114. /* push_rt_task will return true if it moved an RT */
  1115. while (push_rt_task(rq))
  1116. ;
  1117. }
  1118. static int pull_rt_task(struct rq *this_rq)
  1119. {
  1120. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1121. struct task_struct *p;
  1122. struct rq *src_rq;
  1123. if (likely(!rt_overloaded(this_rq)))
  1124. return 0;
  1125. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1126. if (this_cpu == cpu)
  1127. continue;
  1128. src_rq = cpu_rq(cpu);
  1129. /*
  1130. * Don't bother taking the src_rq->lock if the next highest
  1131. * task is known to be lower-priority than our current task.
  1132. * This may look racy, but if this value is about to go
  1133. * logically higher, the src_rq will push this task away.
  1134. * And if its going logically lower, we do not care
  1135. */
  1136. if (src_rq->rt.highest_prio.next >=
  1137. this_rq->rt.highest_prio.curr)
  1138. continue;
  1139. /*
  1140. * We can potentially drop this_rq's lock in
  1141. * double_lock_balance, and another CPU could
  1142. * alter this_rq
  1143. */
  1144. double_lock_balance(this_rq, src_rq);
  1145. /*
  1146. * Are there still pullable RT tasks?
  1147. */
  1148. if (src_rq->rt.rt_nr_running <= 1)
  1149. goto skip;
  1150. p = pick_next_highest_task_rt(src_rq, this_cpu);
  1151. /*
  1152. * Do we have an RT task that preempts
  1153. * the to-be-scheduled task?
  1154. */
  1155. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1156. WARN_ON(p == src_rq->curr);
  1157. WARN_ON(!p->se.on_rq);
  1158. /*
  1159. * There's a chance that p is higher in priority
  1160. * than what's currently running on its cpu.
  1161. * This is just that p is wakeing up and hasn't
  1162. * had a chance to schedule. We only pull
  1163. * p if it is lower in priority than the
  1164. * current task on the run queue
  1165. */
  1166. if (p->prio < src_rq->curr->prio)
  1167. goto skip;
  1168. ret = 1;
  1169. deactivate_task(src_rq, p, 0);
  1170. set_task_cpu(p, this_cpu);
  1171. activate_task(this_rq, p, 0);
  1172. /*
  1173. * We continue with the search, just in
  1174. * case there's an even higher prio task
  1175. * in another runqueue. (low likelyhood
  1176. * but possible)
  1177. */
  1178. }
  1179. skip:
  1180. double_unlock_balance(this_rq, src_rq);
  1181. }
  1182. return ret;
  1183. }
  1184. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1185. {
  1186. /* Try to pull RT tasks here if we lower this rq's prio */
  1187. if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
  1188. pull_rt_task(rq);
  1189. }
  1190. static void post_schedule_rt(struct rq *rq)
  1191. {
  1192. push_rt_tasks(rq);
  1193. }
  1194. /*
  1195. * If we are not running and we are not going to reschedule soon, we should
  1196. * try to push tasks away now
  1197. */
  1198. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1199. {
  1200. if (!task_running(rq, p) &&
  1201. !test_tsk_need_resched(rq->curr) &&
  1202. has_pushable_tasks(rq) &&
  1203. p->rt.nr_cpus_allowed > 1)
  1204. push_rt_tasks(rq);
  1205. }
  1206. static void set_cpus_allowed_rt(struct task_struct *p,
  1207. const struct cpumask *new_mask)
  1208. {
  1209. int weight = cpumask_weight(new_mask);
  1210. BUG_ON(!rt_task(p));
  1211. /*
  1212. * Update the migration status of the RQ if we have an RT task
  1213. * which is running AND changing its weight value.
  1214. */
  1215. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1216. struct rq *rq = task_rq(p);
  1217. if (!task_current(rq, p)) {
  1218. /*
  1219. * Make sure we dequeue this task from the pushable list
  1220. * before going further. It will either remain off of
  1221. * the list because we are no longer pushable, or it
  1222. * will be requeued.
  1223. */
  1224. if (p->rt.nr_cpus_allowed > 1)
  1225. dequeue_pushable_task(rq, p);
  1226. /*
  1227. * Requeue if our weight is changing and still > 1
  1228. */
  1229. if (weight > 1)
  1230. enqueue_pushable_task(rq, p);
  1231. }
  1232. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1233. rq->rt.rt_nr_migratory++;
  1234. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1235. BUG_ON(!rq->rt.rt_nr_migratory);
  1236. rq->rt.rt_nr_migratory--;
  1237. }
  1238. update_rt_migration(&rq->rt);
  1239. }
  1240. cpumask_copy(&p->cpus_allowed, new_mask);
  1241. p->rt.nr_cpus_allowed = weight;
  1242. }
  1243. /* Assumes rq->lock is held */
  1244. static void rq_online_rt(struct rq *rq)
  1245. {
  1246. if (rq->rt.overloaded)
  1247. rt_set_overload(rq);
  1248. __enable_runtime(rq);
  1249. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1250. }
  1251. /* Assumes rq->lock is held */
  1252. static void rq_offline_rt(struct rq *rq)
  1253. {
  1254. if (rq->rt.overloaded)
  1255. rt_clear_overload(rq);
  1256. __disable_runtime(rq);
  1257. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1258. }
  1259. /*
  1260. * When switch from the rt queue, we bring ourselves to a position
  1261. * that we might want to pull RT tasks from other runqueues.
  1262. */
  1263. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1264. int running)
  1265. {
  1266. /*
  1267. * If there are other RT tasks then we will reschedule
  1268. * and the scheduling of the other RT tasks will handle
  1269. * the balancing. But if we are the last RT task
  1270. * we may need to handle the pulling of RT tasks
  1271. * now.
  1272. */
  1273. if (!rq->rt.rt_nr_running)
  1274. pull_rt_task(rq);
  1275. }
  1276. static inline void init_sched_rt_class(void)
  1277. {
  1278. unsigned int i;
  1279. for_each_possible_cpu(i)
  1280. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1281. GFP_KERNEL, cpu_to_node(i));
  1282. }
  1283. #endif /* CONFIG_SMP */
  1284. /*
  1285. * When switching a task to RT, we may overload the runqueue
  1286. * with RT tasks. In this case we try to push them off to
  1287. * other runqueues.
  1288. */
  1289. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1290. int running)
  1291. {
  1292. int check_resched = 1;
  1293. /*
  1294. * If we are already running, then there's nothing
  1295. * that needs to be done. But if we are not running
  1296. * we may need to preempt the current running task.
  1297. * If that current running task is also an RT task
  1298. * then see if we can move to another run queue.
  1299. */
  1300. if (!running) {
  1301. #ifdef CONFIG_SMP
  1302. if (rq->rt.overloaded && push_rt_task(rq) &&
  1303. /* Don't resched if we changed runqueues */
  1304. rq != task_rq(p))
  1305. check_resched = 0;
  1306. #endif /* CONFIG_SMP */
  1307. if (check_resched && p->prio < rq->curr->prio)
  1308. resched_task(rq->curr);
  1309. }
  1310. }
  1311. /*
  1312. * Priority of the task has changed. This may cause
  1313. * us to initiate a push or pull.
  1314. */
  1315. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1316. int oldprio, int running)
  1317. {
  1318. if (running) {
  1319. #ifdef CONFIG_SMP
  1320. /*
  1321. * If our priority decreases while running, we
  1322. * may need to pull tasks to this runqueue.
  1323. */
  1324. if (oldprio < p->prio)
  1325. pull_rt_task(rq);
  1326. /*
  1327. * If there's a higher priority task waiting to run
  1328. * then reschedule. Note, the above pull_rt_task
  1329. * can release the rq lock and p could migrate.
  1330. * Only reschedule if p is still on the same runqueue.
  1331. */
  1332. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1333. resched_task(p);
  1334. #else
  1335. /* For UP simply resched on drop of prio */
  1336. if (oldprio < p->prio)
  1337. resched_task(p);
  1338. #endif /* CONFIG_SMP */
  1339. } else {
  1340. /*
  1341. * This task is not running, but if it is
  1342. * greater than the current running task
  1343. * then reschedule.
  1344. */
  1345. if (p->prio < rq->curr->prio)
  1346. resched_task(rq->curr);
  1347. }
  1348. }
  1349. static void watchdog(struct rq *rq, struct task_struct *p)
  1350. {
  1351. unsigned long soft, hard;
  1352. if (!p->signal)
  1353. return;
  1354. /* max may change after cur was read, this will be fixed next tick */
  1355. soft = task_rlimit(p, RLIMIT_RTTIME);
  1356. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1357. if (soft != RLIM_INFINITY) {
  1358. unsigned long next;
  1359. p->rt.timeout++;
  1360. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1361. if (p->rt.timeout > next)
  1362. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1363. }
  1364. }
  1365. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1366. {
  1367. update_curr_rt(rq);
  1368. watchdog(rq, p);
  1369. /*
  1370. * RR tasks need a special form of timeslice management.
  1371. * FIFO tasks have no timeslices.
  1372. */
  1373. if (p->policy != SCHED_RR)
  1374. return;
  1375. if (--p->rt.time_slice)
  1376. return;
  1377. p->rt.time_slice = DEF_TIMESLICE;
  1378. /*
  1379. * Requeue to the end of queue if we are not the only element
  1380. * on the queue:
  1381. */
  1382. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1383. requeue_task_rt(rq, p, 0);
  1384. set_tsk_need_resched(p);
  1385. }
  1386. }
  1387. static void set_curr_task_rt(struct rq *rq)
  1388. {
  1389. struct task_struct *p = rq->curr;
  1390. p->se.exec_start = rq->clock;
  1391. /* The running task is never eligible for pushing */
  1392. dequeue_pushable_task(rq, p);
  1393. }
  1394. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1395. {
  1396. /*
  1397. * Time slice is 0 for SCHED_FIFO tasks
  1398. */
  1399. if (task->policy == SCHED_RR)
  1400. return DEF_TIMESLICE;
  1401. else
  1402. return 0;
  1403. }
  1404. static const struct sched_class rt_sched_class = {
  1405. .next = &fair_sched_class,
  1406. .enqueue_task = enqueue_task_rt,
  1407. .dequeue_task = dequeue_task_rt,
  1408. .yield_task = yield_task_rt,
  1409. .check_preempt_curr = check_preempt_curr_rt,
  1410. .pick_next_task = pick_next_task_rt,
  1411. .put_prev_task = put_prev_task_rt,
  1412. #ifdef CONFIG_SMP
  1413. .select_task_rq = select_task_rq_rt,
  1414. .set_cpus_allowed = set_cpus_allowed_rt,
  1415. .rq_online = rq_online_rt,
  1416. .rq_offline = rq_offline_rt,
  1417. .pre_schedule = pre_schedule_rt,
  1418. .post_schedule = post_schedule_rt,
  1419. .task_woken = task_woken_rt,
  1420. .switched_from = switched_from_rt,
  1421. #endif
  1422. .set_curr_task = set_curr_task_rt,
  1423. .task_tick = task_tick_rt,
  1424. .get_rr_interval = get_rr_interval_rt,
  1425. .prio_changed = prio_changed_rt,
  1426. .switched_to = switched_to_rt,
  1427. };
  1428. #ifdef CONFIG_SCHED_DEBUG
  1429. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1430. static void print_rt_stats(struct seq_file *m, int cpu)
  1431. {
  1432. struct rt_rq *rt_rq;
  1433. rcu_read_lock();
  1434. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1435. print_rt_rq(m, cpu, rt_rq);
  1436. rcu_read_unlock();
  1437. }
  1438. #endif /* CONFIG_SCHED_DEBUG */