sched.c 219 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. raw_spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. raw_spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. raw_spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_CGROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. struct cgroup_subsys_state css;
  208. #ifdef CONFIG_FAIR_GROUP_SCHED
  209. /* schedulable entities of this group on each cpu */
  210. struct sched_entity **se;
  211. /* runqueue "owned" by this group on each cpu */
  212. struct cfs_rq **cfs_rq;
  213. unsigned long shares;
  214. #endif
  215. #ifdef CONFIG_RT_GROUP_SCHED
  216. struct sched_rt_entity **rt_se;
  217. struct rt_rq **rt_rq;
  218. struct rt_bandwidth rt_bandwidth;
  219. #endif
  220. struct rcu_head rcu;
  221. struct list_head list;
  222. struct task_group *parent;
  223. struct list_head siblings;
  224. struct list_head children;
  225. };
  226. #define root_task_group init_task_group
  227. /* task_group_lock serializes add/remove of task groups and also changes to
  228. * a task group's cpu shares.
  229. */
  230. static DEFINE_SPINLOCK(task_group_lock);
  231. #ifdef CONFIG_FAIR_GROUP_SCHED
  232. #ifdef CONFIG_SMP
  233. static int root_task_group_empty(void)
  234. {
  235. return list_empty(&root_task_group.children);
  236. }
  237. #endif
  238. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  239. /*
  240. * A weight of 0 or 1 can cause arithmetics problems.
  241. * A weight of a cfs_rq is the sum of weights of which entities
  242. * are queued on this cfs_rq, so a weight of a entity should not be
  243. * too large, so as the shares value of a task group.
  244. * (The default weight is 1024 - so there's no practical
  245. * limitation from this.)
  246. */
  247. #define MIN_SHARES 2
  248. #define MAX_SHARES (1UL << 18)
  249. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  250. #endif
  251. /* Default task group.
  252. * Every task in system belong to this group at bootup.
  253. */
  254. struct task_group init_task_group;
  255. /* return group to which a task belongs */
  256. static inline struct task_group *task_group(struct task_struct *p)
  257. {
  258. struct task_group *tg;
  259. #ifdef CONFIG_CGROUP_SCHED
  260. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  261. struct task_group, css);
  262. #else
  263. tg = &init_task_group;
  264. #endif
  265. return tg;
  266. }
  267. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  268. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  269. {
  270. #ifdef CONFIG_FAIR_GROUP_SCHED
  271. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  272. p->se.parent = task_group(p)->se[cpu];
  273. #endif
  274. #ifdef CONFIG_RT_GROUP_SCHED
  275. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  276. p->rt.parent = task_group(p)->rt_se[cpu];
  277. #endif
  278. }
  279. #else
  280. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  281. static inline struct task_group *task_group(struct task_struct *p)
  282. {
  283. return NULL;
  284. }
  285. #endif /* CONFIG_CGROUP_SCHED */
  286. /* CFS-related fields in a runqueue */
  287. struct cfs_rq {
  288. struct load_weight load;
  289. unsigned long nr_running;
  290. u64 exec_clock;
  291. u64 min_vruntime;
  292. struct rb_root tasks_timeline;
  293. struct rb_node *rb_leftmost;
  294. struct list_head tasks;
  295. struct list_head *balance_iterator;
  296. /*
  297. * 'curr' points to currently running entity on this cfs_rq.
  298. * It is set to NULL otherwise (i.e when none are currently running).
  299. */
  300. struct sched_entity *curr, *next, *last;
  301. unsigned int nr_spread_over;
  302. #ifdef CONFIG_FAIR_GROUP_SCHED
  303. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  304. /*
  305. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  306. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  307. * (like users, containers etc.)
  308. *
  309. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  310. * list is used during load balance.
  311. */
  312. struct list_head leaf_cfs_rq_list;
  313. struct task_group *tg; /* group that "owns" this runqueue */
  314. #ifdef CONFIG_SMP
  315. /*
  316. * the part of load.weight contributed by tasks
  317. */
  318. unsigned long task_weight;
  319. /*
  320. * h_load = weight * f(tg)
  321. *
  322. * Where f(tg) is the recursive weight fraction assigned to
  323. * this group.
  324. */
  325. unsigned long h_load;
  326. /*
  327. * this cpu's part of tg->shares
  328. */
  329. unsigned long shares;
  330. /*
  331. * load.weight at the time we set shares
  332. */
  333. unsigned long rq_weight;
  334. #endif
  335. #endif
  336. };
  337. /* Real-Time classes' related field in a runqueue: */
  338. struct rt_rq {
  339. struct rt_prio_array active;
  340. unsigned long rt_nr_running;
  341. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  342. struct {
  343. int curr; /* highest queued rt task prio */
  344. #ifdef CONFIG_SMP
  345. int next; /* next highest */
  346. #endif
  347. } highest_prio;
  348. #endif
  349. #ifdef CONFIG_SMP
  350. unsigned long rt_nr_migratory;
  351. unsigned long rt_nr_total;
  352. int overloaded;
  353. struct plist_head pushable_tasks;
  354. #endif
  355. int rt_throttled;
  356. u64 rt_time;
  357. u64 rt_runtime;
  358. /* Nests inside the rq lock: */
  359. raw_spinlock_t rt_runtime_lock;
  360. #ifdef CONFIG_RT_GROUP_SCHED
  361. unsigned long rt_nr_boosted;
  362. struct rq *rq;
  363. struct list_head leaf_rt_rq_list;
  364. struct task_group *tg;
  365. #endif
  366. };
  367. #ifdef CONFIG_SMP
  368. /*
  369. * We add the notion of a root-domain which will be used to define per-domain
  370. * variables. Each exclusive cpuset essentially defines an island domain by
  371. * fully partitioning the member cpus from any other cpuset. Whenever a new
  372. * exclusive cpuset is created, we also create and attach a new root-domain
  373. * object.
  374. *
  375. */
  376. struct root_domain {
  377. atomic_t refcount;
  378. cpumask_var_t span;
  379. cpumask_var_t online;
  380. /*
  381. * The "RT overload" flag: it gets set if a CPU has more than
  382. * one runnable RT task.
  383. */
  384. cpumask_var_t rto_mask;
  385. atomic_t rto_count;
  386. #ifdef CONFIG_SMP
  387. struct cpupri cpupri;
  388. #endif
  389. };
  390. /*
  391. * By default the system creates a single root-domain with all cpus as
  392. * members (mimicking the global state we have today).
  393. */
  394. static struct root_domain def_root_domain;
  395. #endif
  396. /*
  397. * This is the main, per-CPU runqueue data structure.
  398. *
  399. * Locking rule: those places that want to lock multiple runqueues
  400. * (such as the load balancing or the thread migration code), lock
  401. * acquire operations must be ordered by ascending &runqueue.
  402. */
  403. struct rq {
  404. /* runqueue lock: */
  405. raw_spinlock_t lock;
  406. /*
  407. * nr_running and cpu_load should be in the same cacheline because
  408. * remote CPUs use both these fields when doing load calculation.
  409. */
  410. unsigned long nr_running;
  411. #define CPU_LOAD_IDX_MAX 5
  412. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  413. #ifdef CONFIG_NO_HZ
  414. unsigned char in_nohz_recently;
  415. #endif
  416. /* capture load from *all* tasks on this cpu: */
  417. struct load_weight load;
  418. unsigned long nr_load_updates;
  419. u64 nr_switches;
  420. struct cfs_rq cfs;
  421. struct rt_rq rt;
  422. #ifdef CONFIG_FAIR_GROUP_SCHED
  423. /* list of leaf cfs_rq on this cpu: */
  424. struct list_head leaf_cfs_rq_list;
  425. #endif
  426. #ifdef CONFIG_RT_GROUP_SCHED
  427. struct list_head leaf_rt_rq_list;
  428. #endif
  429. /*
  430. * This is part of a global counter where only the total sum
  431. * over all CPUs matters. A task can increase this counter on
  432. * one CPU and if it got migrated afterwards it may decrease
  433. * it on another CPU. Always updated under the runqueue lock:
  434. */
  435. unsigned long nr_uninterruptible;
  436. struct task_struct *curr, *idle;
  437. unsigned long next_balance;
  438. struct mm_struct *prev_mm;
  439. u64 clock;
  440. atomic_t nr_iowait;
  441. #ifdef CONFIG_SMP
  442. struct root_domain *rd;
  443. struct sched_domain *sd;
  444. unsigned char idle_at_tick;
  445. /* For active balancing */
  446. int post_schedule;
  447. int active_balance;
  448. int push_cpu;
  449. /* cpu of this runqueue: */
  450. int cpu;
  451. int online;
  452. unsigned long avg_load_per_task;
  453. struct task_struct *migration_thread;
  454. struct list_head migration_queue;
  455. u64 rt_avg;
  456. u64 age_stamp;
  457. u64 idle_stamp;
  458. u64 avg_idle;
  459. #endif
  460. /* calc_load related fields */
  461. unsigned long calc_load_update;
  462. long calc_load_active;
  463. #ifdef CONFIG_SCHED_HRTICK
  464. #ifdef CONFIG_SMP
  465. int hrtick_csd_pending;
  466. struct call_single_data hrtick_csd;
  467. #endif
  468. struct hrtimer hrtick_timer;
  469. #endif
  470. #ifdef CONFIG_SCHEDSTATS
  471. /* latency stats */
  472. struct sched_info rq_sched_info;
  473. unsigned long long rq_cpu_time;
  474. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  475. /* sys_sched_yield() stats */
  476. unsigned int yld_count;
  477. /* schedule() stats */
  478. unsigned int sched_switch;
  479. unsigned int sched_count;
  480. unsigned int sched_goidle;
  481. /* try_to_wake_up() stats */
  482. unsigned int ttwu_count;
  483. unsigned int ttwu_local;
  484. /* BKL stats */
  485. unsigned int bkl_count;
  486. #endif
  487. };
  488. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  489. static inline
  490. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  491. {
  492. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  493. }
  494. static inline int cpu_of(struct rq *rq)
  495. {
  496. #ifdef CONFIG_SMP
  497. return rq->cpu;
  498. #else
  499. return 0;
  500. #endif
  501. }
  502. #define rcu_dereference_check_sched_domain(p) \
  503. rcu_dereference_check((p), \
  504. rcu_read_lock_sched_held() || \
  505. lockdep_is_held(&sched_domains_mutex))
  506. /*
  507. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  508. * See detach_destroy_domains: synchronize_sched for details.
  509. *
  510. * The domain tree of any CPU may only be accessed from within
  511. * preempt-disabled sections.
  512. */
  513. #define for_each_domain(cpu, __sd) \
  514. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  515. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  516. #define this_rq() (&__get_cpu_var(runqueues))
  517. #define task_rq(p) cpu_rq(task_cpu(p))
  518. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  519. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  520. inline void update_rq_clock(struct rq *rq)
  521. {
  522. rq->clock = sched_clock_cpu(cpu_of(rq));
  523. }
  524. /*
  525. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  526. */
  527. #ifdef CONFIG_SCHED_DEBUG
  528. # define const_debug __read_mostly
  529. #else
  530. # define const_debug static const
  531. #endif
  532. /**
  533. * runqueue_is_locked
  534. * @cpu: the processor in question.
  535. *
  536. * Returns true if the current cpu runqueue is locked.
  537. * This interface allows printk to be called with the runqueue lock
  538. * held and know whether or not it is OK to wake up the klogd.
  539. */
  540. int runqueue_is_locked(int cpu)
  541. {
  542. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  543. }
  544. /*
  545. * Debugging: various feature bits
  546. */
  547. #define SCHED_FEAT(name, enabled) \
  548. __SCHED_FEAT_##name ,
  549. enum {
  550. #include "sched_features.h"
  551. };
  552. #undef SCHED_FEAT
  553. #define SCHED_FEAT(name, enabled) \
  554. (1UL << __SCHED_FEAT_##name) * enabled |
  555. const_debug unsigned int sysctl_sched_features =
  556. #include "sched_features.h"
  557. 0;
  558. #undef SCHED_FEAT
  559. #ifdef CONFIG_SCHED_DEBUG
  560. #define SCHED_FEAT(name, enabled) \
  561. #name ,
  562. static __read_mostly char *sched_feat_names[] = {
  563. #include "sched_features.h"
  564. NULL
  565. };
  566. #undef SCHED_FEAT
  567. static int sched_feat_show(struct seq_file *m, void *v)
  568. {
  569. int i;
  570. for (i = 0; sched_feat_names[i]; i++) {
  571. if (!(sysctl_sched_features & (1UL << i)))
  572. seq_puts(m, "NO_");
  573. seq_printf(m, "%s ", sched_feat_names[i]);
  574. }
  575. seq_puts(m, "\n");
  576. return 0;
  577. }
  578. static ssize_t
  579. sched_feat_write(struct file *filp, const char __user *ubuf,
  580. size_t cnt, loff_t *ppos)
  581. {
  582. char buf[64];
  583. char *cmp = buf;
  584. int neg = 0;
  585. int i;
  586. if (cnt > 63)
  587. cnt = 63;
  588. if (copy_from_user(&buf, ubuf, cnt))
  589. return -EFAULT;
  590. buf[cnt] = 0;
  591. if (strncmp(buf, "NO_", 3) == 0) {
  592. neg = 1;
  593. cmp += 3;
  594. }
  595. for (i = 0; sched_feat_names[i]; i++) {
  596. int len = strlen(sched_feat_names[i]);
  597. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  598. if (neg)
  599. sysctl_sched_features &= ~(1UL << i);
  600. else
  601. sysctl_sched_features |= (1UL << i);
  602. break;
  603. }
  604. }
  605. if (!sched_feat_names[i])
  606. return -EINVAL;
  607. *ppos += cnt;
  608. return cnt;
  609. }
  610. static int sched_feat_open(struct inode *inode, struct file *filp)
  611. {
  612. return single_open(filp, sched_feat_show, NULL);
  613. }
  614. static const struct file_operations sched_feat_fops = {
  615. .open = sched_feat_open,
  616. .write = sched_feat_write,
  617. .read = seq_read,
  618. .llseek = seq_lseek,
  619. .release = single_release,
  620. };
  621. static __init int sched_init_debug(void)
  622. {
  623. debugfs_create_file("sched_features", 0644, NULL, NULL,
  624. &sched_feat_fops);
  625. return 0;
  626. }
  627. late_initcall(sched_init_debug);
  628. #endif
  629. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  630. /*
  631. * Number of tasks to iterate in a single balance run.
  632. * Limited because this is done with IRQs disabled.
  633. */
  634. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  635. /*
  636. * ratelimit for updating the group shares.
  637. * default: 0.25ms
  638. */
  639. unsigned int sysctl_sched_shares_ratelimit = 250000;
  640. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  641. /*
  642. * Inject some fuzzyness into changing the per-cpu group shares
  643. * this avoids remote rq-locks at the expense of fairness.
  644. * default: 4
  645. */
  646. unsigned int sysctl_sched_shares_thresh = 4;
  647. /*
  648. * period over which we average the RT time consumption, measured
  649. * in ms.
  650. *
  651. * default: 1s
  652. */
  653. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  654. /*
  655. * period over which we measure -rt task cpu usage in us.
  656. * default: 1s
  657. */
  658. unsigned int sysctl_sched_rt_period = 1000000;
  659. static __read_mostly int scheduler_running;
  660. /*
  661. * part of the period that we allow rt tasks to run in us.
  662. * default: 0.95s
  663. */
  664. int sysctl_sched_rt_runtime = 950000;
  665. static inline u64 global_rt_period(void)
  666. {
  667. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  668. }
  669. static inline u64 global_rt_runtime(void)
  670. {
  671. if (sysctl_sched_rt_runtime < 0)
  672. return RUNTIME_INF;
  673. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  674. }
  675. #ifndef prepare_arch_switch
  676. # define prepare_arch_switch(next) do { } while (0)
  677. #endif
  678. #ifndef finish_arch_switch
  679. # define finish_arch_switch(prev) do { } while (0)
  680. #endif
  681. static inline int task_current(struct rq *rq, struct task_struct *p)
  682. {
  683. return rq->curr == p;
  684. }
  685. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  686. static inline int task_running(struct rq *rq, struct task_struct *p)
  687. {
  688. return task_current(rq, p);
  689. }
  690. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  691. {
  692. }
  693. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  694. {
  695. #ifdef CONFIG_DEBUG_SPINLOCK
  696. /* this is a valid case when another task releases the spinlock */
  697. rq->lock.owner = current;
  698. #endif
  699. /*
  700. * If we are tracking spinlock dependencies then we have to
  701. * fix up the runqueue lock - which gets 'carried over' from
  702. * prev into current:
  703. */
  704. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  705. raw_spin_unlock_irq(&rq->lock);
  706. }
  707. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  708. static inline int task_running(struct rq *rq, struct task_struct *p)
  709. {
  710. #ifdef CONFIG_SMP
  711. return p->oncpu;
  712. #else
  713. return task_current(rq, p);
  714. #endif
  715. }
  716. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  717. {
  718. #ifdef CONFIG_SMP
  719. /*
  720. * We can optimise this out completely for !SMP, because the
  721. * SMP rebalancing from interrupt is the only thing that cares
  722. * here.
  723. */
  724. next->oncpu = 1;
  725. #endif
  726. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  727. raw_spin_unlock_irq(&rq->lock);
  728. #else
  729. raw_spin_unlock(&rq->lock);
  730. #endif
  731. }
  732. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  733. {
  734. #ifdef CONFIG_SMP
  735. /*
  736. * After ->oncpu is cleared, the task can be moved to a different CPU.
  737. * We must ensure this doesn't happen until the switch is completely
  738. * finished.
  739. */
  740. smp_wmb();
  741. prev->oncpu = 0;
  742. #endif
  743. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. local_irq_enable();
  745. #endif
  746. }
  747. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  748. /*
  749. * Check whether the task is waking, we use this to synchronize against
  750. * ttwu() so that task_cpu() reports a stable number.
  751. *
  752. * We need to make an exception for PF_STARTING tasks because the fork
  753. * path might require task_rq_lock() to work, eg. it can call
  754. * set_cpus_allowed_ptr() from the cpuset clone_ns code.
  755. */
  756. static inline int task_is_waking(struct task_struct *p)
  757. {
  758. return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
  759. }
  760. /*
  761. * __task_rq_lock - lock the runqueue a given task resides on.
  762. * Must be called interrupts disabled.
  763. */
  764. static inline struct rq *__task_rq_lock(struct task_struct *p)
  765. __acquires(rq->lock)
  766. {
  767. struct rq *rq;
  768. for (;;) {
  769. while (task_is_waking(p))
  770. cpu_relax();
  771. rq = task_rq(p);
  772. raw_spin_lock(&rq->lock);
  773. if (likely(rq == task_rq(p) && !task_is_waking(p)))
  774. return rq;
  775. raw_spin_unlock(&rq->lock);
  776. }
  777. }
  778. /*
  779. * task_rq_lock - lock the runqueue a given task resides on and disable
  780. * interrupts. Note the ordering: we can safely lookup the task_rq without
  781. * explicitly disabling preemption.
  782. */
  783. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  784. __acquires(rq->lock)
  785. {
  786. struct rq *rq;
  787. for (;;) {
  788. while (task_is_waking(p))
  789. cpu_relax();
  790. local_irq_save(*flags);
  791. rq = task_rq(p);
  792. raw_spin_lock(&rq->lock);
  793. if (likely(rq == task_rq(p) && !task_is_waking(p)))
  794. return rq;
  795. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  796. }
  797. }
  798. void task_rq_unlock_wait(struct task_struct *p)
  799. {
  800. struct rq *rq = task_rq(p);
  801. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  802. raw_spin_unlock_wait(&rq->lock);
  803. }
  804. static void __task_rq_unlock(struct rq *rq)
  805. __releases(rq->lock)
  806. {
  807. raw_spin_unlock(&rq->lock);
  808. }
  809. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  810. __releases(rq->lock)
  811. {
  812. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  813. }
  814. /*
  815. * this_rq_lock - lock this runqueue and disable interrupts.
  816. */
  817. static struct rq *this_rq_lock(void)
  818. __acquires(rq->lock)
  819. {
  820. struct rq *rq;
  821. local_irq_disable();
  822. rq = this_rq();
  823. raw_spin_lock(&rq->lock);
  824. return rq;
  825. }
  826. #ifdef CONFIG_SCHED_HRTICK
  827. /*
  828. * Use HR-timers to deliver accurate preemption points.
  829. *
  830. * Its all a bit involved since we cannot program an hrt while holding the
  831. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  832. * reschedule event.
  833. *
  834. * When we get rescheduled we reprogram the hrtick_timer outside of the
  835. * rq->lock.
  836. */
  837. /*
  838. * Use hrtick when:
  839. * - enabled by features
  840. * - hrtimer is actually high res
  841. */
  842. static inline int hrtick_enabled(struct rq *rq)
  843. {
  844. if (!sched_feat(HRTICK))
  845. return 0;
  846. if (!cpu_active(cpu_of(rq)))
  847. return 0;
  848. return hrtimer_is_hres_active(&rq->hrtick_timer);
  849. }
  850. static void hrtick_clear(struct rq *rq)
  851. {
  852. if (hrtimer_active(&rq->hrtick_timer))
  853. hrtimer_cancel(&rq->hrtick_timer);
  854. }
  855. /*
  856. * High-resolution timer tick.
  857. * Runs from hardirq context with interrupts disabled.
  858. */
  859. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  860. {
  861. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  862. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  863. raw_spin_lock(&rq->lock);
  864. update_rq_clock(rq);
  865. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  866. raw_spin_unlock(&rq->lock);
  867. return HRTIMER_NORESTART;
  868. }
  869. #ifdef CONFIG_SMP
  870. /*
  871. * called from hardirq (IPI) context
  872. */
  873. static void __hrtick_start(void *arg)
  874. {
  875. struct rq *rq = arg;
  876. raw_spin_lock(&rq->lock);
  877. hrtimer_restart(&rq->hrtick_timer);
  878. rq->hrtick_csd_pending = 0;
  879. raw_spin_unlock(&rq->lock);
  880. }
  881. /*
  882. * Called to set the hrtick timer state.
  883. *
  884. * called with rq->lock held and irqs disabled
  885. */
  886. static void hrtick_start(struct rq *rq, u64 delay)
  887. {
  888. struct hrtimer *timer = &rq->hrtick_timer;
  889. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  890. hrtimer_set_expires(timer, time);
  891. if (rq == this_rq()) {
  892. hrtimer_restart(timer);
  893. } else if (!rq->hrtick_csd_pending) {
  894. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  895. rq->hrtick_csd_pending = 1;
  896. }
  897. }
  898. static int
  899. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  900. {
  901. int cpu = (int)(long)hcpu;
  902. switch (action) {
  903. case CPU_UP_CANCELED:
  904. case CPU_UP_CANCELED_FROZEN:
  905. case CPU_DOWN_PREPARE:
  906. case CPU_DOWN_PREPARE_FROZEN:
  907. case CPU_DEAD:
  908. case CPU_DEAD_FROZEN:
  909. hrtick_clear(cpu_rq(cpu));
  910. return NOTIFY_OK;
  911. }
  912. return NOTIFY_DONE;
  913. }
  914. static __init void init_hrtick(void)
  915. {
  916. hotcpu_notifier(hotplug_hrtick, 0);
  917. }
  918. #else
  919. /*
  920. * Called to set the hrtick timer state.
  921. *
  922. * called with rq->lock held and irqs disabled
  923. */
  924. static void hrtick_start(struct rq *rq, u64 delay)
  925. {
  926. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  927. HRTIMER_MODE_REL_PINNED, 0);
  928. }
  929. static inline void init_hrtick(void)
  930. {
  931. }
  932. #endif /* CONFIG_SMP */
  933. static void init_rq_hrtick(struct rq *rq)
  934. {
  935. #ifdef CONFIG_SMP
  936. rq->hrtick_csd_pending = 0;
  937. rq->hrtick_csd.flags = 0;
  938. rq->hrtick_csd.func = __hrtick_start;
  939. rq->hrtick_csd.info = rq;
  940. #endif
  941. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  942. rq->hrtick_timer.function = hrtick;
  943. }
  944. #else /* CONFIG_SCHED_HRTICK */
  945. static inline void hrtick_clear(struct rq *rq)
  946. {
  947. }
  948. static inline void init_rq_hrtick(struct rq *rq)
  949. {
  950. }
  951. static inline void init_hrtick(void)
  952. {
  953. }
  954. #endif /* CONFIG_SCHED_HRTICK */
  955. /*
  956. * resched_task - mark a task 'to be rescheduled now'.
  957. *
  958. * On UP this means the setting of the need_resched flag, on SMP it
  959. * might also involve a cross-CPU call to trigger the scheduler on
  960. * the target CPU.
  961. */
  962. #ifdef CONFIG_SMP
  963. #ifndef tsk_is_polling
  964. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  965. #endif
  966. static void resched_task(struct task_struct *p)
  967. {
  968. int cpu;
  969. assert_raw_spin_locked(&task_rq(p)->lock);
  970. if (test_tsk_need_resched(p))
  971. return;
  972. set_tsk_need_resched(p);
  973. cpu = task_cpu(p);
  974. if (cpu == smp_processor_id())
  975. return;
  976. /* NEED_RESCHED must be visible before we test polling */
  977. smp_mb();
  978. if (!tsk_is_polling(p))
  979. smp_send_reschedule(cpu);
  980. }
  981. static void resched_cpu(int cpu)
  982. {
  983. struct rq *rq = cpu_rq(cpu);
  984. unsigned long flags;
  985. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  986. return;
  987. resched_task(cpu_curr(cpu));
  988. raw_spin_unlock_irqrestore(&rq->lock, flags);
  989. }
  990. #ifdef CONFIG_NO_HZ
  991. /*
  992. * When add_timer_on() enqueues a timer into the timer wheel of an
  993. * idle CPU then this timer might expire before the next timer event
  994. * which is scheduled to wake up that CPU. In case of a completely
  995. * idle system the next event might even be infinite time into the
  996. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  997. * leaves the inner idle loop so the newly added timer is taken into
  998. * account when the CPU goes back to idle and evaluates the timer
  999. * wheel for the next timer event.
  1000. */
  1001. void wake_up_idle_cpu(int cpu)
  1002. {
  1003. struct rq *rq = cpu_rq(cpu);
  1004. if (cpu == smp_processor_id())
  1005. return;
  1006. /*
  1007. * This is safe, as this function is called with the timer
  1008. * wheel base lock of (cpu) held. When the CPU is on the way
  1009. * to idle and has not yet set rq->curr to idle then it will
  1010. * be serialized on the timer wheel base lock and take the new
  1011. * timer into account automatically.
  1012. */
  1013. if (rq->curr != rq->idle)
  1014. return;
  1015. /*
  1016. * We can set TIF_RESCHED on the idle task of the other CPU
  1017. * lockless. The worst case is that the other CPU runs the
  1018. * idle task through an additional NOOP schedule()
  1019. */
  1020. set_tsk_need_resched(rq->idle);
  1021. /* NEED_RESCHED must be visible before we test polling */
  1022. smp_mb();
  1023. if (!tsk_is_polling(rq->idle))
  1024. smp_send_reschedule(cpu);
  1025. }
  1026. #endif /* CONFIG_NO_HZ */
  1027. static u64 sched_avg_period(void)
  1028. {
  1029. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1030. }
  1031. static void sched_avg_update(struct rq *rq)
  1032. {
  1033. s64 period = sched_avg_period();
  1034. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1035. rq->age_stamp += period;
  1036. rq->rt_avg /= 2;
  1037. }
  1038. }
  1039. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1040. {
  1041. rq->rt_avg += rt_delta;
  1042. sched_avg_update(rq);
  1043. }
  1044. #else /* !CONFIG_SMP */
  1045. static void resched_task(struct task_struct *p)
  1046. {
  1047. assert_raw_spin_locked(&task_rq(p)->lock);
  1048. set_tsk_need_resched(p);
  1049. }
  1050. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1051. {
  1052. }
  1053. #endif /* CONFIG_SMP */
  1054. #if BITS_PER_LONG == 32
  1055. # define WMULT_CONST (~0UL)
  1056. #else
  1057. # define WMULT_CONST (1UL << 32)
  1058. #endif
  1059. #define WMULT_SHIFT 32
  1060. /*
  1061. * Shift right and round:
  1062. */
  1063. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1064. /*
  1065. * delta *= weight / lw
  1066. */
  1067. static unsigned long
  1068. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1069. struct load_weight *lw)
  1070. {
  1071. u64 tmp;
  1072. if (!lw->inv_weight) {
  1073. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1074. lw->inv_weight = 1;
  1075. else
  1076. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1077. / (lw->weight+1);
  1078. }
  1079. tmp = (u64)delta_exec * weight;
  1080. /*
  1081. * Check whether we'd overflow the 64-bit multiplication:
  1082. */
  1083. if (unlikely(tmp > WMULT_CONST))
  1084. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1085. WMULT_SHIFT/2);
  1086. else
  1087. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1088. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1089. }
  1090. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1091. {
  1092. lw->weight += inc;
  1093. lw->inv_weight = 0;
  1094. }
  1095. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1096. {
  1097. lw->weight -= dec;
  1098. lw->inv_weight = 0;
  1099. }
  1100. /*
  1101. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1102. * of tasks with abnormal "nice" values across CPUs the contribution that
  1103. * each task makes to its run queue's load is weighted according to its
  1104. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1105. * scaled version of the new time slice allocation that they receive on time
  1106. * slice expiry etc.
  1107. */
  1108. #define WEIGHT_IDLEPRIO 3
  1109. #define WMULT_IDLEPRIO 1431655765
  1110. /*
  1111. * Nice levels are multiplicative, with a gentle 10% change for every
  1112. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1113. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1114. * that remained on nice 0.
  1115. *
  1116. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1117. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1118. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1119. * If a task goes up by ~10% and another task goes down by ~10% then
  1120. * the relative distance between them is ~25%.)
  1121. */
  1122. static const int prio_to_weight[40] = {
  1123. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1124. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1125. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1126. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1127. /* 0 */ 1024, 820, 655, 526, 423,
  1128. /* 5 */ 335, 272, 215, 172, 137,
  1129. /* 10 */ 110, 87, 70, 56, 45,
  1130. /* 15 */ 36, 29, 23, 18, 15,
  1131. };
  1132. /*
  1133. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1134. *
  1135. * In cases where the weight does not change often, we can use the
  1136. * precalculated inverse to speed up arithmetics by turning divisions
  1137. * into multiplications:
  1138. */
  1139. static const u32 prio_to_wmult[40] = {
  1140. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1141. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1142. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1143. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1144. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1145. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1146. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1147. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1148. };
  1149. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1150. enum cpuacct_stat_index {
  1151. CPUACCT_STAT_USER, /* ... user mode */
  1152. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1153. CPUACCT_STAT_NSTATS,
  1154. };
  1155. #ifdef CONFIG_CGROUP_CPUACCT
  1156. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1157. static void cpuacct_update_stats(struct task_struct *tsk,
  1158. enum cpuacct_stat_index idx, cputime_t val);
  1159. #else
  1160. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1161. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1162. enum cpuacct_stat_index idx, cputime_t val) {}
  1163. #endif
  1164. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1165. {
  1166. update_load_add(&rq->load, load);
  1167. }
  1168. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1169. {
  1170. update_load_sub(&rq->load, load);
  1171. }
  1172. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1173. typedef int (*tg_visitor)(struct task_group *, void *);
  1174. /*
  1175. * Iterate the full tree, calling @down when first entering a node and @up when
  1176. * leaving it for the final time.
  1177. */
  1178. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1179. {
  1180. struct task_group *parent, *child;
  1181. int ret;
  1182. rcu_read_lock();
  1183. parent = &root_task_group;
  1184. down:
  1185. ret = (*down)(parent, data);
  1186. if (ret)
  1187. goto out_unlock;
  1188. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1189. parent = child;
  1190. goto down;
  1191. up:
  1192. continue;
  1193. }
  1194. ret = (*up)(parent, data);
  1195. if (ret)
  1196. goto out_unlock;
  1197. child = parent;
  1198. parent = parent->parent;
  1199. if (parent)
  1200. goto up;
  1201. out_unlock:
  1202. rcu_read_unlock();
  1203. return ret;
  1204. }
  1205. static int tg_nop(struct task_group *tg, void *data)
  1206. {
  1207. return 0;
  1208. }
  1209. #endif
  1210. #ifdef CONFIG_SMP
  1211. /* Used instead of source_load when we know the type == 0 */
  1212. static unsigned long weighted_cpuload(const int cpu)
  1213. {
  1214. return cpu_rq(cpu)->load.weight;
  1215. }
  1216. /*
  1217. * Return a low guess at the load of a migration-source cpu weighted
  1218. * according to the scheduling class and "nice" value.
  1219. *
  1220. * We want to under-estimate the load of migration sources, to
  1221. * balance conservatively.
  1222. */
  1223. static unsigned long source_load(int cpu, int type)
  1224. {
  1225. struct rq *rq = cpu_rq(cpu);
  1226. unsigned long total = weighted_cpuload(cpu);
  1227. if (type == 0 || !sched_feat(LB_BIAS))
  1228. return total;
  1229. return min(rq->cpu_load[type-1], total);
  1230. }
  1231. /*
  1232. * Return a high guess at the load of a migration-target cpu weighted
  1233. * according to the scheduling class and "nice" value.
  1234. */
  1235. static unsigned long target_load(int cpu, int type)
  1236. {
  1237. struct rq *rq = cpu_rq(cpu);
  1238. unsigned long total = weighted_cpuload(cpu);
  1239. if (type == 0 || !sched_feat(LB_BIAS))
  1240. return total;
  1241. return max(rq->cpu_load[type-1], total);
  1242. }
  1243. static struct sched_group *group_of(int cpu)
  1244. {
  1245. struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
  1246. if (!sd)
  1247. return NULL;
  1248. return sd->groups;
  1249. }
  1250. static unsigned long power_of(int cpu)
  1251. {
  1252. struct sched_group *group = group_of(cpu);
  1253. if (!group)
  1254. return SCHED_LOAD_SCALE;
  1255. return group->cpu_power;
  1256. }
  1257. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1258. static unsigned long cpu_avg_load_per_task(int cpu)
  1259. {
  1260. struct rq *rq = cpu_rq(cpu);
  1261. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1262. if (nr_running)
  1263. rq->avg_load_per_task = rq->load.weight / nr_running;
  1264. else
  1265. rq->avg_load_per_task = 0;
  1266. return rq->avg_load_per_task;
  1267. }
  1268. #ifdef CONFIG_FAIR_GROUP_SCHED
  1269. static __read_mostly unsigned long __percpu *update_shares_data;
  1270. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1271. /*
  1272. * Calculate and set the cpu's group shares.
  1273. */
  1274. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1275. unsigned long sd_shares,
  1276. unsigned long sd_rq_weight,
  1277. unsigned long *usd_rq_weight)
  1278. {
  1279. unsigned long shares, rq_weight;
  1280. int boost = 0;
  1281. rq_weight = usd_rq_weight[cpu];
  1282. if (!rq_weight) {
  1283. boost = 1;
  1284. rq_weight = NICE_0_LOAD;
  1285. }
  1286. /*
  1287. * \Sum_j shares_j * rq_weight_i
  1288. * shares_i = -----------------------------
  1289. * \Sum_j rq_weight_j
  1290. */
  1291. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1292. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1293. if (abs(shares - tg->se[cpu]->load.weight) >
  1294. sysctl_sched_shares_thresh) {
  1295. struct rq *rq = cpu_rq(cpu);
  1296. unsigned long flags;
  1297. raw_spin_lock_irqsave(&rq->lock, flags);
  1298. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1299. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1300. __set_se_shares(tg->se[cpu], shares);
  1301. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1302. }
  1303. }
  1304. /*
  1305. * Re-compute the task group their per cpu shares over the given domain.
  1306. * This needs to be done in a bottom-up fashion because the rq weight of a
  1307. * parent group depends on the shares of its child groups.
  1308. */
  1309. static int tg_shares_up(struct task_group *tg, void *data)
  1310. {
  1311. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1312. unsigned long *usd_rq_weight;
  1313. struct sched_domain *sd = data;
  1314. unsigned long flags;
  1315. int i;
  1316. if (!tg->se[0])
  1317. return 0;
  1318. local_irq_save(flags);
  1319. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1320. for_each_cpu(i, sched_domain_span(sd)) {
  1321. weight = tg->cfs_rq[i]->load.weight;
  1322. usd_rq_weight[i] = weight;
  1323. rq_weight += weight;
  1324. /*
  1325. * If there are currently no tasks on the cpu pretend there
  1326. * is one of average load so that when a new task gets to
  1327. * run here it will not get delayed by group starvation.
  1328. */
  1329. if (!weight)
  1330. weight = NICE_0_LOAD;
  1331. sum_weight += weight;
  1332. shares += tg->cfs_rq[i]->shares;
  1333. }
  1334. if (!rq_weight)
  1335. rq_weight = sum_weight;
  1336. if ((!shares && rq_weight) || shares > tg->shares)
  1337. shares = tg->shares;
  1338. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1339. shares = tg->shares;
  1340. for_each_cpu(i, sched_domain_span(sd))
  1341. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1342. local_irq_restore(flags);
  1343. return 0;
  1344. }
  1345. /*
  1346. * Compute the cpu's hierarchical load factor for each task group.
  1347. * This needs to be done in a top-down fashion because the load of a child
  1348. * group is a fraction of its parents load.
  1349. */
  1350. static int tg_load_down(struct task_group *tg, void *data)
  1351. {
  1352. unsigned long load;
  1353. long cpu = (long)data;
  1354. if (!tg->parent) {
  1355. load = cpu_rq(cpu)->load.weight;
  1356. } else {
  1357. load = tg->parent->cfs_rq[cpu]->h_load;
  1358. load *= tg->cfs_rq[cpu]->shares;
  1359. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1360. }
  1361. tg->cfs_rq[cpu]->h_load = load;
  1362. return 0;
  1363. }
  1364. static void update_shares(struct sched_domain *sd)
  1365. {
  1366. s64 elapsed;
  1367. u64 now;
  1368. if (root_task_group_empty())
  1369. return;
  1370. now = cpu_clock(raw_smp_processor_id());
  1371. elapsed = now - sd->last_update;
  1372. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1373. sd->last_update = now;
  1374. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1375. }
  1376. }
  1377. static void update_h_load(long cpu)
  1378. {
  1379. if (root_task_group_empty())
  1380. return;
  1381. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1382. }
  1383. #else
  1384. static inline void update_shares(struct sched_domain *sd)
  1385. {
  1386. }
  1387. #endif
  1388. #ifdef CONFIG_PREEMPT
  1389. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1390. /*
  1391. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1392. * way at the expense of forcing extra atomic operations in all
  1393. * invocations. This assures that the double_lock is acquired using the
  1394. * same underlying policy as the spinlock_t on this architecture, which
  1395. * reduces latency compared to the unfair variant below. However, it
  1396. * also adds more overhead and therefore may reduce throughput.
  1397. */
  1398. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1399. __releases(this_rq->lock)
  1400. __acquires(busiest->lock)
  1401. __acquires(this_rq->lock)
  1402. {
  1403. raw_spin_unlock(&this_rq->lock);
  1404. double_rq_lock(this_rq, busiest);
  1405. return 1;
  1406. }
  1407. #else
  1408. /*
  1409. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1410. * latency by eliminating extra atomic operations when the locks are
  1411. * already in proper order on entry. This favors lower cpu-ids and will
  1412. * grant the double lock to lower cpus over higher ids under contention,
  1413. * regardless of entry order into the function.
  1414. */
  1415. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1416. __releases(this_rq->lock)
  1417. __acquires(busiest->lock)
  1418. __acquires(this_rq->lock)
  1419. {
  1420. int ret = 0;
  1421. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1422. if (busiest < this_rq) {
  1423. raw_spin_unlock(&this_rq->lock);
  1424. raw_spin_lock(&busiest->lock);
  1425. raw_spin_lock_nested(&this_rq->lock,
  1426. SINGLE_DEPTH_NESTING);
  1427. ret = 1;
  1428. } else
  1429. raw_spin_lock_nested(&busiest->lock,
  1430. SINGLE_DEPTH_NESTING);
  1431. }
  1432. return ret;
  1433. }
  1434. #endif /* CONFIG_PREEMPT */
  1435. /*
  1436. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1437. */
  1438. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1439. {
  1440. if (unlikely(!irqs_disabled())) {
  1441. /* printk() doesn't work good under rq->lock */
  1442. raw_spin_unlock(&this_rq->lock);
  1443. BUG_ON(1);
  1444. }
  1445. return _double_lock_balance(this_rq, busiest);
  1446. }
  1447. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1448. __releases(busiest->lock)
  1449. {
  1450. raw_spin_unlock(&busiest->lock);
  1451. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1452. }
  1453. /*
  1454. * double_rq_lock - safely lock two runqueues
  1455. *
  1456. * Note this does not disable interrupts like task_rq_lock,
  1457. * you need to do so manually before calling.
  1458. */
  1459. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1460. __acquires(rq1->lock)
  1461. __acquires(rq2->lock)
  1462. {
  1463. BUG_ON(!irqs_disabled());
  1464. if (rq1 == rq2) {
  1465. raw_spin_lock(&rq1->lock);
  1466. __acquire(rq2->lock); /* Fake it out ;) */
  1467. } else {
  1468. if (rq1 < rq2) {
  1469. raw_spin_lock(&rq1->lock);
  1470. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1471. } else {
  1472. raw_spin_lock(&rq2->lock);
  1473. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1474. }
  1475. }
  1476. update_rq_clock(rq1);
  1477. update_rq_clock(rq2);
  1478. }
  1479. /*
  1480. * double_rq_unlock - safely unlock two runqueues
  1481. *
  1482. * Note this does not restore interrupts like task_rq_unlock,
  1483. * you need to do so manually after calling.
  1484. */
  1485. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1486. __releases(rq1->lock)
  1487. __releases(rq2->lock)
  1488. {
  1489. raw_spin_unlock(&rq1->lock);
  1490. if (rq1 != rq2)
  1491. raw_spin_unlock(&rq2->lock);
  1492. else
  1493. __release(rq2->lock);
  1494. }
  1495. #endif
  1496. #ifdef CONFIG_FAIR_GROUP_SCHED
  1497. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1498. {
  1499. #ifdef CONFIG_SMP
  1500. cfs_rq->shares = shares;
  1501. #endif
  1502. }
  1503. #endif
  1504. static void calc_load_account_active(struct rq *this_rq);
  1505. static void update_sysctl(void);
  1506. static int get_update_sysctl_factor(void);
  1507. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1508. {
  1509. set_task_rq(p, cpu);
  1510. #ifdef CONFIG_SMP
  1511. /*
  1512. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1513. * successfuly executed on another CPU. We must ensure that updates of
  1514. * per-task data have been completed by this moment.
  1515. */
  1516. smp_wmb();
  1517. task_thread_info(p)->cpu = cpu;
  1518. #endif
  1519. }
  1520. static const struct sched_class rt_sched_class;
  1521. #define sched_class_highest (&rt_sched_class)
  1522. #define for_each_class(class) \
  1523. for (class = sched_class_highest; class; class = class->next)
  1524. #include "sched_stats.h"
  1525. static void inc_nr_running(struct rq *rq)
  1526. {
  1527. rq->nr_running++;
  1528. }
  1529. static void dec_nr_running(struct rq *rq)
  1530. {
  1531. rq->nr_running--;
  1532. }
  1533. static void set_load_weight(struct task_struct *p)
  1534. {
  1535. if (task_has_rt_policy(p)) {
  1536. p->se.load.weight = prio_to_weight[0] * 2;
  1537. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1538. return;
  1539. }
  1540. /*
  1541. * SCHED_IDLE tasks get minimal weight:
  1542. */
  1543. if (p->policy == SCHED_IDLE) {
  1544. p->se.load.weight = WEIGHT_IDLEPRIO;
  1545. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1546. return;
  1547. }
  1548. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1549. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1550. }
  1551. static void update_avg(u64 *avg, u64 sample)
  1552. {
  1553. s64 diff = sample - *avg;
  1554. *avg += diff >> 3;
  1555. }
  1556. static void
  1557. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
  1558. {
  1559. if (wakeup)
  1560. p->se.start_runtime = p->se.sum_exec_runtime;
  1561. sched_info_queued(p);
  1562. p->sched_class->enqueue_task(rq, p, wakeup, head);
  1563. p->se.on_rq = 1;
  1564. }
  1565. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1566. {
  1567. if (sleep) {
  1568. if (p->se.last_wakeup) {
  1569. update_avg(&p->se.avg_overlap,
  1570. p->se.sum_exec_runtime - p->se.last_wakeup);
  1571. p->se.last_wakeup = 0;
  1572. } else {
  1573. update_avg(&p->se.avg_wakeup,
  1574. sysctl_sched_wakeup_granularity);
  1575. }
  1576. }
  1577. sched_info_dequeued(p);
  1578. p->sched_class->dequeue_task(rq, p, sleep);
  1579. p->se.on_rq = 0;
  1580. }
  1581. /*
  1582. * activate_task - move a task to the runqueue.
  1583. */
  1584. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1585. {
  1586. if (task_contributes_to_load(p))
  1587. rq->nr_uninterruptible--;
  1588. enqueue_task(rq, p, wakeup, false);
  1589. inc_nr_running(rq);
  1590. }
  1591. /*
  1592. * deactivate_task - remove a task from the runqueue.
  1593. */
  1594. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1595. {
  1596. if (task_contributes_to_load(p))
  1597. rq->nr_uninterruptible++;
  1598. dequeue_task(rq, p, sleep);
  1599. dec_nr_running(rq);
  1600. }
  1601. #include "sched_idletask.c"
  1602. #include "sched_fair.c"
  1603. #include "sched_rt.c"
  1604. #ifdef CONFIG_SCHED_DEBUG
  1605. # include "sched_debug.c"
  1606. #endif
  1607. /*
  1608. * __normal_prio - return the priority that is based on the static prio
  1609. */
  1610. static inline int __normal_prio(struct task_struct *p)
  1611. {
  1612. return p->static_prio;
  1613. }
  1614. /*
  1615. * Calculate the expected normal priority: i.e. priority
  1616. * without taking RT-inheritance into account. Might be
  1617. * boosted by interactivity modifiers. Changes upon fork,
  1618. * setprio syscalls, and whenever the interactivity
  1619. * estimator recalculates.
  1620. */
  1621. static inline int normal_prio(struct task_struct *p)
  1622. {
  1623. int prio;
  1624. if (task_has_rt_policy(p))
  1625. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1626. else
  1627. prio = __normal_prio(p);
  1628. return prio;
  1629. }
  1630. /*
  1631. * Calculate the current priority, i.e. the priority
  1632. * taken into account by the scheduler. This value might
  1633. * be boosted by RT tasks, or might be boosted by
  1634. * interactivity modifiers. Will be RT if the task got
  1635. * RT-boosted. If not then it returns p->normal_prio.
  1636. */
  1637. static int effective_prio(struct task_struct *p)
  1638. {
  1639. p->normal_prio = normal_prio(p);
  1640. /*
  1641. * If we are RT tasks or we were boosted to RT priority,
  1642. * keep the priority unchanged. Otherwise, update priority
  1643. * to the normal priority:
  1644. */
  1645. if (!rt_prio(p->prio))
  1646. return p->normal_prio;
  1647. return p->prio;
  1648. }
  1649. /**
  1650. * task_curr - is this task currently executing on a CPU?
  1651. * @p: the task in question.
  1652. */
  1653. inline int task_curr(const struct task_struct *p)
  1654. {
  1655. return cpu_curr(task_cpu(p)) == p;
  1656. }
  1657. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1658. const struct sched_class *prev_class,
  1659. int oldprio, int running)
  1660. {
  1661. if (prev_class != p->sched_class) {
  1662. if (prev_class->switched_from)
  1663. prev_class->switched_from(rq, p, running);
  1664. p->sched_class->switched_to(rq, p, running);
  1665. } else
  1666. p->sched_class->prio_changed(rq, p, oldprio, running);
  1667. }
  1668. #ifdef CONFIG_SMP
  1669. /*
  1670. * Is this task likely cache-hot:
  1671. */
  1672. static int
  1673. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1674. {
  1675. s64 delta;
  1676. if (p->sched_class != &fair_sched_class)
  1677. return 0;
  1678. /*
  1679. * Buddy candidates are cache hot:
  1680. */
  1681. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1682. (&p->se == cfs_rq_of(&p->se)->next ||
  1683. &p->se == cfs_rq_of(&p->se)->last))
  1684. return 1;
  1685. if (sysctl_sched_migration_cost == -1)
  1686. return 1;
  1687. if (sysctl_sched_migration_cost == 0)
  1688. return 0;
  1689. delta = now - p->se.exec_start;
  1690. return delta < (s64)sysctl_sched_migration_cost;
  1691. }
  1692. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1693. {
  1694. #ifdef CONFIG_SCHED_DEBUG
  1695. /*
  1696. * We should never call set_task_cpu() on a blocked task,
  1697. * ttwu() will sort out the placement.
  1698. */
  1699. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1700. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1701. #endif
  1702. trace_sched_migrate_task(p, new_cpu);
  1703. if (task_cpu(p) != new_cpu) {
  1704. p->se.nr_migrations++;
  1705. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1706. }
  1707. __set_task_cpu(p, new_cpu);
  1708. }
  1709. struct migration_req {
  1710. struct list_head list;
  1711. struct task_struct *task;
  1712. int dest_cpu;
  1713. struct completion done;
  1714. };
  1715. /*
  1716. * The task's runqueue lock must be held.
  1717. * Returns true if you have to wait for migration thread.
  1718. */
  1719. static int
  1720. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1721. {
  1722. struct rq *rq = task_rq(p);
  1723. /*
  1724. * If the task is not on a runqueue (and not running), then
  1725. * the next wake-up will properly place the task.
  1726. */
  1727. if (!p->se.on_rq && !task_running(rq, p))
  1728. return 0;
  1729. init_completion(&req->done);
  1730. req->task = p;
  1731. req->dest_cpu = dest_cpu;
  1732. list_add(&req->list, &rq->migration_queue);
  1733. return 1;
  1734. }
  1735. /*
  1736. * wait_task_context_switch - wait for a thread to complete at least one
  1737. * context switch.
  1738. *
  1739. * @p must not be current.
  1740. */
  1741. void wait_task_context_switch(struct task_struct *p)
  1742. {
  1743. unsigned long nvcsw, nivcsw, flags;
  1744. int running;
  1745. struct rq *rq;
  1746. nvcsw = p->nvcsw;
  1747. nivcsw = p->nivcsw;
  1748. for (;;) {
  1749. /*
  1750. * The runqueue is assigned before the actual context
  1751. * switch. We need to take the runqueue lock.
  1752. *
  1753. * We could check initially without the lock but it is
  1754. * very likely that we need to take the lock in every
  1755. * iteration.
  1756. */
  1757. rq = task_rq_lock(p, &flags);
  1758. running = task_running(rq, p);
  1759. task_rq_unlock(rq, &flags);
  1760. if (likely(!running))
  1761. break;
  1762. /*
  1763. * The switch count is incremented before the actual
  1764. * context switch. We thus wait for two switches to be
  1765. * sure at least one completed.
  1766. */
  1767. if ((p->nvcsw - nvcsw) > 1)
  1768. break;
  1769. if ((p->nivcsw - nivcsw) > 1)
  1770. break;
  1771. cpu_relax();
  1772. }
  1773. }
  1774. /*
  1775. * wait_task_inactive - wait for a thread to unschedule.
  1776. *
  1777. * If @match_state is nonzero, it's the @p->state value just checked and
  1778. * not expected to change. If it changes, i.e. @p might have woken up,
  1779. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1780. * we return a positive number (its total switch count). If a second call
  1781. * a short while later returns the same number, the caller can be sure that
  1782. * @p has remained unscheduled the whole time.
  1783. *
  1784. * The caller must ensure that the task *will* unschedule sometime soon,
  1785. * else this function might spin for a *long* time. This function can't
  1786. * be called with interrupts off, or it may introduce deadlock with
  1787. * smp_call_function() if an IPI is sent by the same process we are
  1788. * waiting to become inactive.
  1789. */
  1790. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1791. {
  1792. unsigned long flags;
  1793. int running, on_rq;
  1794. unsigned long ncsw;
  1795. struct rq *rq;
  1796. for (;;) {
  1797. /*
  1798. * We do the initial early heuristics without holding
  1799. * any task-queue locks at all. We'll only try to get
  1800. * the runqueue lock when things look like they will
  1801. * work out!
  1802. */
  1803. rq = task_rq(p);
  1804. /*
  1805. * If the task is actively running on another CPU
  1806. * still, just relax and busy-wait without holding
  1807. * any locks.
  1808. *
  1809. * NOTE! Since we don't hold any locks, it's not
  1810. * even sure that "rq" stays as the right runqueue!
  1811. * But we don't care, since "task_running()" will
  1812. * return false if the runqueue has changed and p
  1813. * is actually now running somewhere else!
  1814. */
  1815. while (task_running(rq, p)) {
  1816. if (match_state && unlikely(p->state != match_state))
  1817. return 0;
  1818. cpu_relax();
  1819. }
  1820. /*
  1821. * Ok, time to look more closely! We need the rq
  1822. * lock now, to be *sure*. If we're wrong, we'll
  1823. * just go back and repeat.
  1824. */
  1825. rq = task_rq_lock(p, &flags);
  1826. trace_sched_wait_task(rq, p);
  1827. running = task_running(rq, p);
  1828. on_rq = p->se.on_rq;
  1829. ncsw = 0;
  1830. if (!match_state || p->state == match_state)
  1831. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1832. task_rq_unlock(rq, &flags);
  1833. /*
  1834. * If it changed from the expected state, bail out now.
  1835. */
  1836. if (unlikely(!ncsw))
  1837. break;
  1838. /*
  1839. * Was it really running after all now that we
  1840. * checked with the proper locks actually held?
  1841. *
  1842. * Oops. Go back and try again..
  1843. */
  1844. if (unlikely(running)) {
  1845. cpu_relax();
  1846. continue;
  1847. }
  1848. /*
  1849. * It's not enough that it's not actively running,
  1850. * it must be off the runqueue _entirely_, and not
  1851. * preempted!
  1852. *
  1853. * So if it was still runnable (but just not actively
  1854. * running right now), it's preempted, and we should
  1855. * yield - it could be a while.
  1856. */
  1857. if (unlikely(on_rq)) {
  1858. schedule_timeout_uninterruptible(1);
  1859. continue;
  1860. }
  1861. /*
  1862. * Ahh, all good. It wasn't running, and it wasn't
  1863. * runnable, which means that it will never become
  1864. * running in the future either. We're all done!
  1865. */
  1866. break;
  1867. }
  1868. return ncsw;
  1869. }
  1870. /***
  1871. * kick_process - kick a running thread to enter/exit the kernel
  1872. * @p: the to-be-kicked thread
  1873. *
  1874. * Cause a process which is running on another CPU to enter
  1875. * kernel-mode, without any delay. (to get signals handled.)
  1876. *
  1877. * NOTE: this function doesnt have to take the runqueue lock,
  1878. * because all it wants to ensure is that the remote task enters
  1879. * the kernel. If the IPI races and the task has been migrated
  1880. * to another CPU then no harm is done and the purpose has been
  1881. * achieved as well.
  1882. */
  1883. void kick_process(struct task_struct *p)
  1884. {
  1885. int cpu;
  1886. preempt_disable();
  1887. cpu = task_cpu(p);
  1888. if ((cpu != smp_processor_id()) && task_curr(p))
  1889. smp_send_reschedule(cpu);
  1890. preempt_enable();
  1891. }
  1892. EXPORT_SYMBOL_GPL(kick_process);
  1893. #endif /* CONFIG_SMP */
  1894. /**
  1895. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1896. * @p: the task to evaluate
  1897. * @func: the function to be called
  1898. * @info: the function call argument
  1899. *
  1900. * Calls the function @func when the task is currently running. This might
  1901. * be on the current CPU, which just calls the function directly
  1902. */
  1903. void task_oncpu_function_call(struct task_struct *p,
  1904. void (*func) (void *info), void *info)
  1905. {
  1906. int cpu;
  1907. preempt_disable();
  1908. cpu = task_cpu(p);
  1909. if (task_curr(p))
  1910. smp_call_function_single(cpu, func, info, 1);
  1911. preempt_enable();
  1912. }
  1913. #ifdef CONFIG_SMP
  1914. static int select_fallback_rq(int cpu, struct task_struct *p)
  1915. {
  1916. int dest_cpu;
  1917. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1918. /* Look for allowed, online CPU in same node. */
  1919. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1920. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1921. return dest_cpu;
  1922. /* Any allowed, online CPU? */
  1923. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1924. if (dest_cpu < nr_cpu_ids)
  1925. return dest_cpu;
  1926. /* No more Mr. Nice Guy. */
  1927. if (dest_cpu >= nr_cpu_ids) {
  1928. rcu_read_lock();
  1929. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1930. rcu_read_unlock();
  1931. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1932. /*
  1933. * Don't tell them about moving exiting tasks or
  1934. * kernel threads (both mm NULL), since they never
  1935. * leave kernel.
  1936. */
  1937. if (p->mm && printk_ratelimit()) {
  1938. printk(KERN_INFO "process %d (%s) no "
  1939. "longer affine to cpu%d\n",
  1940. task_pid_nr(p), p->comm, cpu);
  1941. }
  1942. }
  1943. return dest_cpu;
  1944. }
  1945. /*
  1946. * Gets called from 3 sites (exec, fork, wakeup), since it is called without
  1947. * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
  1948. * by:
  1949. *
  1950. * exec: is unstable, retry loop
  1951. * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
  1952. */
  1953. static inline
  1954. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1955. {
  1956. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1957. /*
  1958. * In order not to call set_task_cpu() on a blocking task we need
  1959. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1960. * cpu.
  1961. *
  1962. * Since this is common to all placement strategies, this lives here.
  1963. *
  1964. * [ this allows ->select_task() to simply return task_cpu(p) and
  1965. * not worry about this generic constraint ]
  1966. */
  1967. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1968. !cpu_online(cpu)))
  1969. cpu = select_fallback_rq(task_cpu(p), p);
  1970. return cpu;
  1971. }
  1972. #endif
  1973. /***
  1974. * try_to_wake_up - wake up a thread
  1975. * @p: the to-be-woken-up thread
  1976. * @state: the mask of task states that can be woken
  1977. * @sync: do a synchronous wakeup?
  1978. *
  1979. * Put it on the run-queue if it's not already there. The "current"
  1980. * thread is always on the run-queue (except when the actual
  1981. * re-schedule is in progress), and as such you're allowed to do
  1982. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1983. * runnable without the overhead of this.
  1984. *
  1985. * returns failure only if the task is already active.
  1986. */
  1987. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1988. int wake_flags)
  1989. {
  1990. int cpu, orig_cpu, this_cpu, success = 0;
  1991. unsigned long flags;
  1992. struct rq *rq, *orig_rq;
  1993. if (!sched_feat(SYNC_WAKEUPS))
  1994. wake_flags &= ~WF_SYNC;
  1995. this_cpu = get_cpu();
  1996. smp_wmb();
  1997. rq = orig_rq = task_rq_lock(p, &flags);
  1998. update_rq_clock(rq);
  1999. if (!(p->state & state))
  2000. goto out;
  2001. if (p->se.on_rq)
  2002. goto out_running;
  2003. cpu = task_cpu(p);
  2004. orig_cpu = cpu;
  2005. #ifdef CONFIG_SMP
  2006. if (unlikely(task_running(rq, p)))
  2007. goto out_activate;
  2008. /*
  2009. * In order to handle concurrent wakeups and release the rq->lock
  2010. * we put the task in TASK_WAKING state.
  2011. *
  2012. * First fix up the nr_uninterruptible count:
  2013. */
  2014. if (task_contributes_to_load(p))
  2015. rq->nr_uninterruptible--;
  2016. p->state = TASK_WAKING;
  2017. if (p->sched_class->task_waking)
  2018. p->sched_class->task_waking(rq, p);
  2019. __task_rq_unlock(rq);
  2020. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2021. if (cpu != orig_cpu) {
  2022. /*
  2023. * Since we migrate the task without holding any rq->lock,
  2024. * we need to be careful with task_rq_lock(), since that
  2025. * might end up locking an invalid rq.
  2026. */
  2027. set_task_cpu(p, cpu);
  2028. }
  2029. rq = cpu_rq(cpu);
  2030. raw_spin_lock(&rq->lock);
  2031. update_rq_clock(rq);
  2032. /*
  2033. * We migrated the task without holding either rq->lock, however
  2034. * since the task is not on the task list itself, nobody else
  2035. * will try and migrate the task, hence the rq should match the
  2036. * cpu we just moved it to.
  2037. */
  2038. WARN_ON(task_cpu(p) != cpu);
  2039. WARN_ON(p->state != TASK_WAKING);
  2040. #ifdef CONFIG_SCHEDSTATS
  2041. schedstat_inc(rq, ttwu_count);
  2042. if (cpu == this_cpu)
  2043. schedstat_inc(rq, ttwu_local);
  2044. else {
  2045. struct sched_domain *sd;
  2046. for_each_domain(this_cpu, sd) {
  2047. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2048. schedstat_inc(sd, ttwu_wake_remote);
  2049. break;
  2050. }
  2051. }
  2052. }
  2053. #endif /* CONFIG_SCHEDSTATS */
  2054. out_activate:
  2055. #endif /* CONFIG_SMP */
  2056. schedstat_inc(p, se.nr_wakeups);
  2057. if (wake_flags & WF_SYNC)
  2058. schedstat_inc(p, se.nr_wakeups_sync);
  2059. if (orig_cpu != cpu)
  2060. schedstat_inc(p, se.nr_wakeups_migrate);
  2061. if (cpu == this_cpu)
  2062. schedstat_inc(p, se.nr_wakeups_local);
  2063. else
  2064. schedstat_inc(p, se.nr_wakeups_remote);
  2065. activate_task(rq, p, 1);
  2066. success = 1;
  2067. /*
  2068. * Only attribute actual wakeups done by this task.
  2069. */
  2070. if (!in_interrupt()) {
  2071. struct sched_entity *se = &current->se;
  2072. u64 sample = se->sum_exec_runtime;
  2073. if (se->last_wakeup)
  2074. sample -= se->last_wakeup;
  2075. else
  2076. sample -= se->start_runtime;
  2077. update_avg(&se->avg_wakeup, sample);
  2078. se->last_wakeup = se->sum_exec_runtime;
  2079. }
  2080. out_running:
  2081. trace_sched_wakeup(rq, p, success);
  2082. check_preempt_curr(rq, p, wake_flags);
  2083. p->state = TASK_RUNNING;
  2084. #ifdef CONFIG_SMP
  2085. if (p->sched_class->task_woken)
  2086. p->sched_class->task_woken(rq, p);
  2087. if (unlikely(rq->idle_stamp)) {
  2088. u64 delta = rq->clock - rq->idle_stamp;
  2089. u64 max = 2*sysctl_sched_migration_cost;
  2090. if (delta > max)
  2091. rq->avg_idle = max;
  2092. else
  2093. update_avg(&rq->avg_idle, delta);
  2094. rq->idle_stamp = 0;
  2095. }
  2096. #endif
  2097. out:
  2098. task_rq_unlock(rq, &flags);
  2099. put_cpu();
  2100. return success;
  2101. }
  2102. /**
  2103. * wake_up_process - Wake up a specific process
  2104. * @p: The process to be woken up.
  2105. *
  2106. * Attempt to wake up the nominated process and move it to the set of runnable
  2107. * processes. Returns 1 if the process was woken up, 0 if it was already
  2108. * running.
  2109. *
  2110. * It may be assumed that this function implies a write memory barrier before
  2111. * changing the task state if and only if any tasks are woken up.
  2112. */
  2113. int wake_up_process(struct task_struct *p)
  2114. {
  2115. return try_to_wake_up(p, TASK_ALL, 0);
  2116. }
  2117. EXPORT_SYMBOL(wake_up_process);
  2118. int wake_up_state(struct task_struct *p, unsigned int state)
  2119. {
  2120. return try_to_wake_up(p, state, 0);
  2121. }
  2122. /*
  2123. * Perform scheduler related setup for a newly forked process p.
  2124. * p is forked by current.
  2125. *
  2126. * __sched_fork() is basic setup used by init_idle() too:
  2127. */
  2128. static void __sched_fork(struct task_struct *p)
  2129. {
  2130. p->se.exec_start = 0;
  2131. p->se.sum_exec_runtime = 0;
  2132. p->se.prev_sum_exec_runtime = 0;
  2133. p->se.nr_migrations = 0;
  2134. p->se.last_wakeup = 0;
  2135. p->se.avg_overlap = 0;
  2136. p->se.start_runtime = 0;
  2137. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2138. #ifdef CONFIG_SCHEDSTATS
  2139. p->se.wait_start = 0;
  2140. p->se.wait_max = 0;
  2141. p->se.wait_count = 0;
  2142. p->se.wait_sum = 0;
  2143. p->se.sleep_start = 0;
  2144. p->se.sleep_max = 0;
  2145. p->se.sum_sleep_runtime = 0;
  2146. p->se.block_start = 0;
  2147. p->se.block_max = 0;
  2148. p->se.exec_max = 0;
  2149. p->se.slice_max = 0;
  2150. p->se.nr_migrations_cold = 0;
  2151. p->se.nr_failed_migrations_affine = 0;
  2152. p->se.nr_failed_migrations_running = 0;
  2153. p->se.nr_failed_migrations_hot = 0;
  2154. p->se.nr_forced_migrations = 0;
  2155. p->se.nr_wakeups = 0;
  2156. p->se.nr_wakeups_sync = 0;
  2157. p->se.nr_wakeups_migrate = 0;
  2158. p->se.nr_wakeups_local = 0;
  2159. p->se.nr_wakeups_remote = 0;
  2160. p->se.nr_wakeups_affine = 0;
  2161. p->se.nr_wakeups_affine_attempts = 0;
  2162. p->se.nr_wakeups_passive = 0;
  2163. p->se.nr_wakeups_idle = 0;
  2164. #endif
  2165. INIT_LIST_HEAD(&p->rt.run_list);
  2166. p->se.on_rq = 0;
  2167. INIT_LIST_HEAD(&p->se.group_node);
  2168. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2169. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2170. #endif
  2171. }
  2172. /*
  2173. * fork()/clone()-time setup:
  2174. */
  2175. void sched_fork(struct task_struct *p, int clone_flags)
  2176. {
  2177. int cpu = get_cpu();
  2178. __sched_fork(p);
  2179. /*
  2180. * We mark the process as waking here. This guarantees that
  2181. * nobody will actually run it, and a signal or other external
  2182. * event cannot wake it up and insert it on the runqueue either.
  2183. */
  2184. p->state = TASK_WAKING;
  2185. /*
  2186. * Revert to default priority/policy on fork if requested.
  2187. */
  2188. if (unlikely(p->sched_reset_on_fork)) {
  2189. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2190. p->policy = SCHED_NORMAL;
  2191. p->normal_prio = p->static_prio;
  2192. }
  2193. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2194. p->static_prio = NICE_TO_PRIO(0);
  2195. p->normal_prio = p->static_prio;
  2196. set_load_weight(p);
  2197. }
  2198. /*
  2199. * We don't need the reset flag anymore after the fork. It has
  2200. * fulfilled its duty:
  2201. */
  2202. p->sched_reset_on_fork = 0;
  2203. }
  2204. /*
  2205. * Make sure we do not leak PI boosting priority to the child.
  2206. */
  2207. p->prio = current->normal_prio;
  2208. if (!rt_prio(p->prio))
  2209. p->sched_class = &fair_sched_class;
  2210. if (p->sched_class->task_fork)
  2211. p->sched_class->task_fork(p);
  2212. set_task_cpu(p, cpu);
  2213. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2214. if (likely(sched_info_on()))
  2215. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2216. #endif
  2217. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2218. p->oncpu = 0;
  2219. #endif
  2220. #ifdef CONFIG_PREEMPT
  2221. /* Want to start with kernel preemption disabled. */
  2222. task_thread_info(p)->preempt_count = 1;
  2223. #endif
  2224. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2225. put_cpu();
  2226. }
  2227. /*
  2228. * wake_up_new_task - wake up a newly created task for the first time.
  2229. *
  2230. * This function will do some initial scheduler statistics housekeeping
  2231. * that must be done for every newly created context, then puts the task
  2232. * on the runqueue and wakes it.
  2233. */
  2234. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2235. {
  2236. unsigned long flags;
  2237. struct rq *rq;
  2238. int cpu = get_cpu();
  2239. #ifdef CONFIG_SMP
  2240. /*
  2241. * Fork balancing, do it here and not earlier because:
  2242. * - cpus_allowed can change in the fork path
  2243. * - any previously selected cpu might disappear through hotplug
  2244. *
  2245. * We still have TASK_WAKING but PF_STARTING is gone now, meaning
  2246. * ->cpus_allowed is stable, we have preemption disabled, meaning
  2247. * cpu_online_mask is stable.
  2248. */
  2249. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2250. set_task_cpu(p, cpu);
  2251. #endif
  2252. /*
  2253. * Since the task is not on the rq and we still have TASK_WAKING set
  2254. * nobody else will migrate this task.
  2255. */
  2256. rq = cpu_rq(cpu);
  2257. raw_spin_lock_irqsave(&rq->lock, flags);
  2258. BUG_ON(p->state != TASK_WAKING);
  2259. p->state = TASK_RUNNING;
  2260. update_rq_clock(rq);
  2261. activate_task(rq, p, 0);
  2262. trace_sched_wakeup_new(rq, p, 1);
  2263. check_preempt_curr(rq, p, WF_FORK);
  2264. #ifdef CONFIG_SMP
  2265. if (p->sched_class->task_woken)
  2266. p->sched_class->task_woken(rq, p);
  2267. #endif
  2268. task_rq_unlock(rq, &flags);
  2269. put_cpu();
  2270. }
  2271. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2272. /**
  2273. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2274. * @notifier: notifier struct to register
  2275. */
  2276. void preempt_notifier_register(struct preempt_notifier *notifier)
  2277. {
  2278. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2279. }
  2280. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2281. /**
  2282. * preempt_notifier_unregister - no longer interested in preemption notifications
  2283. * @notifier: notifier struct to unregister
  2284. *
  2285. * This is safe to call from within a preemption notifier.
  2286. */
  2287. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2288. {
  2289. hlist_del(&notifier->link);
  2290. }
  2291. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2292. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2293. {
  2294. struct preempt_notifier *notifier;
  2295. struct hlist_node *node;
  2296. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2297. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2298. }
  2299. static void
  2300. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2301. struct task_struct *next)
  2302. {
  2303. struct preempt_notifier *notifier;
  2304. struct hlist_node *node;
  2305. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2306. notifier->ops->sched_out(notifier, next);
  2307. }
  2308. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2309. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2310. {
  2311. }
  2312. static void
  2313. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2314. struct task_struct *next)
  2315. {
  2316. }
  2317. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2318. /**
  2319. * prepare_task_switch - prepare to switch tasks
  2320. * @rq: the runqueue preparing to switch
  2321. * @prev: the current task that is being switched out
  2322. * @next: the task we are going to switch to.
  2323. *
  2324. * This is called with the rq lock held and interrupts off. It must
  2325. * be paired with a subsequent finish_task_switch after the context
  2326. * switch.
  2327. *
  2328. * prepare_task_switch sets up locking and calls architecture specific
  2329. * hooks.
  2330. */
  2331. static inline void
  2332. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2333. struct task_struct *next)
  2334. {
  2335. fire_sched_out_preempt_notifiers(prev, next);
  2336. prepare_lock_switch(rq, next);
  2337. prepare_arch_switch(next);
  2338. }
  2339. /**
  2340. * finish_task_switch - clean up after a task-switch
  2341. * @rq: runqueue associated with task-switch
  2342. * @prev: the thread we just switched away from.
  2343. *
  2344. * finish_task_switch must be called after the context switch, paired
  2345. * with a prepare_task_switch call before the context switch.
  2346. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2347. * and do any other architecture-specific cleanup actions.
  2348. *
  2349. * Note that we may have delayed dropping an mm in context_switch(). If
  2350. * so, we finish that here outside of the runqueue lock. (Doing it
  2351. * with the lock held can cause deadlocks; see schedule() for
  2352. * details.)
  2353. */
  2354. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2355. __releases(rq->lock)
  2356. {
  2357. struct mm_struct *mm = rq->prev_mm;
  2358. long prev_state;
  2359. rq->prev_mm = NULL;
  2360. /*
  2361. * A task struct has one reference for the use as "current".
  2362. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2363. * schedule one last time. The schedule call will never return, and
  2364. * the scheduled task must drop that reference.
  2365. * The test for TASK_DEAD must occur while the runqueue locks are
  2366. * still held, otherwise prev could be scheduled on another cpu, die
  2367. * there before we look at prev->state, and then the reference would
  2368. * be dropped twice.
  2369. * Manfred Spraul <manfred@colorfullife.com>
  2370. */
  2371. prev_state = prev->state;
  2372. finish_arch_switch(prev);
  2373. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2374. local_irq_disable();
  2375. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2376. perf_event_task_sched_in(current);
  2377. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2378. local_irq_enable();
  2379. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2380. finish_lock_switch(rq, prev);
  2381. fire_sched_in_preempt_notifiers(current);
  2382. if (mm)
  2383. mmdrop(mm);
  2384. if (unlikely(prev_state == TASK_DEAD)) {
  2385. /*
  2386. * Remove function-return probe instances associated with this
  2387. * task and put them back on the free list.
  2388. */
  2389. kprobe_flush_task(prev);
  2390. put_task_struct(prev);
  2391. }
  2392. }
  2393. #ifdef CONFIG_SMP
  2394. /* assumes rq->lock is held */
  2395. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2396. {
  2397. if (prev->sched_class->pre_schedule)
  2398. prev->sched_class->pre_schedule(rq, prev);
  2399. }
  2400. /* rq->lock is NOT held, but preemption is disabled */
  2401. static inline void post_schedule(struct rq *rq)
  2402. {
  2403. if (rq->post_schedule) {
  2404. unsigned long flags;
  2405. raw_spin_lock_irqsave(&rq->lock, flags);
  2406. if (rq->curr->sched_class->post_schedule)
  2407. rq->curr->sched_class->post_schedule(rq);
  2408. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2409. rq->post_schedule = 0;
  2410. }
  2411. }
  2412. #else
  2413. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2414. {
  2415. }
  2416. static inline void post_schedule(struct rq *rq)
  2417. {
  2418. }
  2419. #endif
  2420. /**
  2421. * schedule_tail - first thing a freshly forked thread must call.
  2422. * @prev: the thread we just switched away from.
  2423. */
  2424. asmlinkage void schedule_tail(struct task_struct *prev)
  2425. __releases(rq->lock)
  2426. {
  2427. struct rq *rq = this_rq();
  2428. finish_task_switch(rq, prev);
  2429. /*
  2430. * FIXME: do we need to worry about rq being invalidated by the
  2431. * task_switch?
  2432. */
  2433. post_schedule(rq);
  2434. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2435. /* In this case, finish_task_switch does not reenable preemption */
  2436. preempt_enable();
  2437. #endif
  2438. if (current->set_child_tid)
  2439. put_user(task_pid_vnr(current), current->set_child_tid);
  2440. }
  2441. /*
  2442. * context_switch - switch to the new MM and the new
  2443. * thread's register state.
  2444. */
  2445. static inline void
  2446. context_switch(struct rq *rq, struct task_struct *prev,
  2447. struct task_struct *next)
  2448. {
  2449. struct mm_struct *mm, *oldmm;
  2450. prepare_task_switch(rq, prev, next);
  2451. trace_sched_switch(rq, prev, next);
  2452. mm = next->mm;
  2453. oldmm = prev->active_mm;
  2454. /*
  2455. * For paravirt, this is coupled with an exit in switch_to to
  2456. * combine the page table reload and the switch backend into
  2457. * one hypercall.
  2458. */
  2459. arch_start_context_switch(prev);
  2460. if (likely(!mm)) {
  2461. next->active_mm = oldmm;
  2462. atomic_inc(&oldmm->mm_count);
  2463. enter_lazy_tlb(oldmm, next);
  2464. } else
  2465. switch_mm(oldmm, mm, next);
  2466. if (likely(!prev->mm)) {
  2467. prev->active_mm = NULL;
  2468. rq->prev_mm = oldmm;
  2469. }
  2470. /*
  2471. * Since the runqueue lock will be released by the next
  2472. * task (which is an invalid locking op but in the case
  2473. * of the scheduler it's an obvious special-case), so we
  2474. * do an early lockdep release here:
  2475. */
  2476. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2477. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2478. #endif
  2479. /* Here we just switch the register state and the stack. */
  2480. switch_to(prev, next, prev);
  2481. barrier();
  2482. /*
  2483. * this_rq must be evaluated again because prev may have moved
  2484. * CPUs since it called schedule(), thus the 'rq' on its stack
  2485. * frame will be invalid.
  2486. */
  2487. finish_task_switch(this_rq(), prev);
  2488. }
  2489. /*
  2490. * nr_running, nr_uninterruptible and nr_context_switches:
  2491. *
  2492. * externally visible scheduler statistics: current number of runnable
  2493. * threads, current number of uninterruptible-sleeping threads, total
  2494. * number of context switches performed since bootup.
  2495. */
  2496. unsigned long nr_running(void)
  2497. {
  2498. unsigned long i, sum = 0;
  2499. for_each_online_cpu(i)
  2500. sum += cpu_rq(i)->nr_running;
  2501. return sum;
  2502. }
  2503. unsigned long nr_uninterruptible(void)
  2504. {
  2505. unsigned long i, sum = 0;
  2506. for_each_possible_cpu(i)
  2507. sum += cpu_rq(i)->nr_uninterruptible;
  2508. /*
  2509. * Since we read the counters lockless, it might be slightly
  2510. * inaccurate. Do not allow it to go below zero though:
  2511. */
  2512. if (unlikely((long)sum < 0))
  2513. sum = 0;
  2514. return sum;
  2515. }
  2516. unsigned long long nr_context_switches(void)
  2517. {
  2518. int i;
  2519. unsigned long long sum = 0;
  2520. for_each_possible_cpu(i)
  2521. sum += cpu_rq(i)->nr_switches;
  2522. return sum;
  2523. }
  2524. unsigned long nr_iowait(void)
  2525. {
  2526. unsigned long i, sum = 0;
  2527. for_each_possible_cpu(i)
  2528. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2529. return sum;
  2530. }
  2531. unsigned long nr_iowait_cpu(void)
  2532. {
  2533. struct rq *this = this_rq();
  2534. return atomic_read(&this->nr_iowait);
  2535. }
  2536. unsigned long this_cpu_load(void)
  2537. {
  2538. struct rq *this = this_rq();
  2539. return this->cpu_load[0];
  2540. }
  2541. /* Variables and functions for calc_load */
  2542. static atomic_long_t calc_load_tasks;
  2543. static unsigned long calc_load_update;
  2544. unsigned long avenrun[3];
  2545. EXPORT_SYMBOL(avenrun);
  2546. /**
  2547. * get_avenrun - get the load average array
  2548. * @loads: pointer to dest load array
  2549. * @offset: offset to add
  2550. * @shift: shift count to shift the result left
  2551. *
  2552. * These values are estimates at best, so no need for locking.
  2553. */
  2554. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2555. {
  2556. loads[0] = (avenrun[0] + offset) << shift;
  2557. loads[1] = (avenrun[1] + offset) << shift;
  2558. loads[2] = (avenrun[2] + offset) << shift;
  2559. }
  2560. static unsigned long
  2561. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2562. {
  2563. load *= exp;
  2564. load += active * (FIXED_1 - exp);
  2565. return load >> FSHIFT;
  2566. }
  2567. /*
  2568. * calc_load - update the avenrun load estimates 10 ticks after the
  2569. * CPUs have updated calc_load_tasks.
  2570. */
  2571. void calc_global_load(void)
  2572. {
  2573. unsigned long upd = calc_load_update + 10;
  2574. long active;
  2575. if (time_before(jiffies, upd))
  2576. return;
  2577. active = atomic_long_read(&calc_load_tasks);
  2578. active = active > 0 ? active * FIXED_1 : 0;
  2579. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2580. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2581. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2582. calc_load_update += LOAD_FREQ;
  2583. }
  2584. /*
  2585. * Either called from update_cpu_load() or from a cpu going idle
  2586. */
  2587. static void calc_load_account_active(struct rq *this_rq)
  2588. {
  2589. long nr_active, delta;
  2590. nr_active = this_rq->nr_running;
  2591. nr_active += (long) this_rq->nr_uninterruptible;
  2592. if (nr_active != this_rq->calc_load_active) {
  2593. delta = nr_active - this_rq->calc_load_active;
  2594. this_rq->calc_load_active = nr_active;
  2595. atomic_long_add(delta, &calc_load_tasks);
  2596. }
  2597. }
  2598. /*
  2599. * Update rq->cpu_load[] statistics. This function is usually called every
  2600. * scheduler tick (TICK_NSEC).
  2601. */
  2602. static void update_cpu_load(struct rq *this_rq)
  2603. {
  2604. unsigned long this_load = this_rq->load.weight;
  2605. int i, scale;
  2606. this_rq->nr_load_updates++;
  2607. /* Update our load: */
  2608. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2609. unsigned long old_load, new_load;
  2610. /* scale is effectively 1 << i now, and >> i divides by scale */
  2611. old_load = this_rq->cpu_load[i];
  2612. new_load = this_load;
  2613. /*
  2614. * Round up the averaging division if load is increasing. This
  2615. * prevents us from getting stuck on 9 if the load is 10, for
  2616. * example.
  2617. */
  2618. if (new_load > old_load)
  2619. new_load += scale-1;
  2620. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2621. }
  2622. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2623. this_rq->calc_load_update += LOAD_FREQ;
  2624. calc_load_account_active(this_rq);
  2625. }
  2626. }
  2627. #ifdef CONFIG_SMP
  2628. /*
  2629. * sched_exec - execve() is a valuable balancing opportunity, because at
  2630. * this point the task has the smallest effective memory and cache footprint.
  2631. */
  2632. void sched_exec(void)
  2633. {
  2634. struct task_struct *p = current;
  2635. struct migration_req req;
  2636. int dest_cpu, this_cpu;
  2637. unsigned long flags;
  2638. struct rq *rq;
  2639. again:
  2640. this_cpu = get_cpu();
  2641. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2642. if (dest_cpu == this_cpu) {
  2643. put_cpu();
  2644. return;
  2645. }
  2646. rq = task_rq_lock(p, &flags);
  2647. put_cpu();
  2648. /*
  2649. * select_task_rq() can race against ->cpus_allowed
  2650. */
  2651. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2652. || unlikely(!cpu_active(dest_cpu))) {
  2653. task_rq_unlock(rq, &flags);
  2654. goto again;
  2655. }
  2656. /* force the process onto the specified CPU */
  2657. if (migrate_task(p, dest_cpu, &req)) {
  2658. /* Need to wait for migration thread (might exit: take ref). */
  2659. struct task_struct *mt = rq->migration_thread;
  2660. get_task_struct(mt);
  2661. task_rq_unlock(rq, &flags);
  2662. wake_up_process(mt);
  2663. put_task_struct(mt);
  2664. wait_for_completion(&req.done);
  2665. return;
  2666. }
  2667. task_rq_unlock(rq, &flags);
  2668. }
  2669. #endif
  2670. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2671. EXPORT_PER_CPU_SYMBOL(kstat);
  2672. /*
  2673. * Return any ns on the sched_clock that have not yet been accounted in
  2674. * @p in case that task is currently running.
  2675. *
  2676. * Called with task_rq_lock() held on @rq.
  2677. */
  2678. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2679. {
  2680. u64 ns = 0;
  2681. if (task_current(rq, p)) {
  2682. update_rq_clock(rq);
  2683. ns = rq->clock - p->se.exec_start;
  2684. if ((s64)ns < 0)
  2685. ns = 0;
  2686. }
  2687. return ns;
  2688. }
  2689. unsigned long long task_delta_exec(struct task_struct *p)
  2690. {
  2691. unsigned long flags;
  2692. struct rq *rq;
  2693. u64 ns = 0;
  2694. rq = task_rq_lock(p, &flags);
  2695. ns = do_task_delta_exec(p, rq);
  2696. task_rq_unlock(rq, &flags);
  2697. return ns;
  2698. }
  2699. /*
  2700. * Return accounted runtime for the task.
  2701. * In case the task is currently running, return the runtime plus current's
  2702. * pending runtime that have not been accounted yet.
  2703. */
  2704. unsigned long long task_sched_runtime(struct task_struct *p)
  2705. {
  2706. unsigned long flags;
  2707. struct rq *rq;
  2708. u64 ns = 0;
  2709. rq = task_rq_lock(p, &flags);
  2710. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2711. task_rq_unlock(rq, &flags);
  2712. return ns;
  2713. }
  2714. /*
  2715. * Return sum_exec_runtime for the thread group.
  2716. * In case the task is currently running, return the sum plus current's
  2717. * pending runtime that have not been accounted yet.
  2718. *
  2719. * Note that the thread group might have other running tasks as well,
  2720. * so the return value not includes other pending runtime that other
  2721. * running tasks might have.
  2722. */
  2723. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2724. {
  2725. struct task_cputime totals;
  2726. unsigned long flags;
  2727. struct rq *rq;
  2728. u64 ns;
  2729. rq = task_rq_lock(p, &flags);
  2730. thread_group_cputime(p, &totals);
  2731. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2732. task_rq_unlock(rq, &flags);
  2733. return ns;
  2734. }
  2735. /*
  2736. * Account user cpu time to a process.
  2737. * @p: the process that the cpu time gets accounted to
  2738. * @cputime: the cpu time spent in user space since the last update
  2739. * @cputime_scaled: cputime scaled by cpu frequency
  2740. */
  2741. void account_user_time(struct task_struct *p, cputime_t cputime,
  2742. cputime_t cputime_scaled)
  2743. {
  2744. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2745. cputime64_t tmp;
  2746. /* Add user time to process. */
  2747. p->utime = cputime_add(p->utime, cputime);
  2748. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2749. account_group_user_time(p, cputime);
  2750. /* Add user time to cpustat. */
  2751. tmp = cputime_to_cputime64(cputime);
  2752. if (TASK_NICE(p) > 0)
  2753. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2754. else
  2755. cpustat->user = cputime64_add(cpustat->user, tmp);
  2756. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2757. /* Account for user time used */
  2758. acct_update_integrals(p);
  2759. }
  2760. /*
  2761. * Account guest cpu time to a process.
  2762. * @p: the process that the cpu time gets accounted to
  2763. * @cputime: the cpu time spent in virtual machine since the last update
  2764. * @cputime_scaled: cputime scaled by cpu frequency
  2765. */
  2766. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2767. cputime_t cputime_scaled)
  2768. {
  2769. cputime64_t tmp;
  2770. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2771. tmp = cputime_to_cputime64(cputime);
  2772. /* Add guest time to process. */
  2773. p->utime = cputime_add(p->utime, cputime);
  2774. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2775. account_group_user_time(p, cputime);
  2776. p->gtime = cputime_add(p->gtime, cputime);
  2777. /* Add guest time to cpustat. */
  2778. if (TASK_NICE(p) > 0) {
  2779. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2780. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2781. } else {
  2782. cpustat->user = cputime64_add(cpustat->user, tmp);
  2783. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2784. }
  2785. }
  2786. /*
  2787. * Account system cpu time to a process.
  2788. * @p: the process that the cpu time gets accounted to
  2789. * @hardirq_offset: the offset to subtract from hardirq_count()
  2790. * @cputime: the cpu time spent in kernel space since the last update
  2791. * @cputime_scaled: cputime scaled by cpu frequency
  2792. */
  2793. void account_system_time(struct task_struct *p, int hardirq_offset,
  2794. cputime_t cputime, cputime_t cputime_scaled)
  2795. {
  2796. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2797. cputime64_t tmp;
  2798. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2799. account_guest_time(p, cputime, cputime_scaled);
  2800. return;
  2801. }
  2802. /* Add system time to process. */
  2803. p->stime = cputime_add(p->stime, cputime);
  2804. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2805. account_group_system_time(p, cputime);
  2806. /* Add system time to cpustat. */
  2807. tmp = cputime_to_cputime64(cputime);
  2808. if (hardirq_count() - hardirq_offset)
  2809. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2810. else if (softirq_count())
  2811. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2812. else
  2813. cpustat->system = cputime64_add(cpustat->system, tmp);
  2814. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2815. /* Account for system time used */
  2816. acct_update_integrals(p);
  2817. }
  2818. /*
  2819. * Account for involuntary wait time.
  2820. * @steal: the cpu time spent in involuntary wait
  2821. */
  2822. void account_steal_time(cputime_t cputime)
  2823. {
  2824. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2825. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2826. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2827. }
  2828. /*
  2829. * Account for idle time.
  2830. * @cputime: the cpu time spent in idle wait
  2831. */
  2832. void account_idle_time(cputime_t cputime)
  2833. {
  2834. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2835. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2836. struct rq *rq = this_rq();
  2837. if (atomic_read(&rq->nr_iowait) > 0)
  2838. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2839. else
  2840. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2841. }
  2842. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2843. /*
  2844. * Account a single tick of cpu time.
  2845. * @p: the process that the cpu time gets accounted to
  2846. * @user_tick: indicates if the tick is a user or a system tick
  2847. */
  2848. void account_process_tick(struct task_struct *p, int user_tick)
  2849. {
  2850. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2851. struct rq *rq = this_rq();
  2852. if (user_tick)
  2853. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2854. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2855. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2856. one_jiffy_scaled);
  2857. else
  2858. account_idle_time(cputime_one_jiffy);
  2859. }
  2860. /*
  2861. * Account multiple ticks of steal time.
  2862. * @p: the process from which the cpu time has been stolen
  2863. * @ticks: number of stolen ticks
  2864. */
  2865. void account_steal_ticks(unsigned long ticks)
  2866. {
  2867. account_steal_time(jiffies_to_cputime(ticks));
  2868. }
  2869. /*
  2870. * Account multiple ticks of idle time.
  2871. * @ticks: number of stolen ticks
  2872. */
  2873. void account_idle_ticks(unsigned long ticks)
  2874. {
  2875. account_idle_time(jiffies_to_cputime(ticks));
  2876. }
  2877. #endif
  2878. /*
  2879. * Use precise platform statistics if available:
  2880. */
  2881. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2882. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2883. {
  2884. *ut = p->utime;
  2885. *st = p->stime;
  2886. }
  2887. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2888. {
  2889. struct task_cputime cputime;
  2890. thread_group_cputime(p, &cputime);
  2891. *ut = cputime.utime;
  2892. *st = cputime.stime;
  2893. }
  2894. #else
  2895. #ifndef nsecs_to_cputime
  2896. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2897. #endif
  2898. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2899. {
  2900. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2901. /*
  2902. * Use CFS's precise accounting:
  2903. */
  2904. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2905. if (total) {
  2906. u64 temp;
  2907. temp = (u64)(rtime * utime);
  2908. do_div(temp, total);
  2909. utime = (cputime_t)temp;
  2910. } else
  2911. utime = rtime;
  2912. /*
  2913. * Compare with previous values, to keep monotonicity:
  2914. */
  2915. p->prev_utime = max(p->prev_utime, utime);
  2916. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2917. *ut = p->prev_utime;
  2918. *st = p->prev_stime;
  2919. }
  2920. /*
  2921. * Must be called with siglock held.
  2922. */
  2923. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2924. {
  2925. struct signal_struct *sig = p->signal;
  2926. struct task_cputime cputime;
  2927. cputime_t rtime, utime, total;
  2928. thread_group_cputime(p, &cputime);
  2929. total = cputime_add(cputime.utime, cputime.stime);
  2930. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2931. if (total) {
  2932. u64 temp;
  2933. temp = (u64)(rtime * cputime.utime);
  2934. do_div(temp, total);
  2935. utime = (cputime_t)temp;
  2936. } else
  2937. utime = rtime;
  2938. sig->prev_utime = max(sig->prev_utime, utime);
  2939. sig->prev_stime = max(sig->prev_stime,
  2940. cputime_sub(rtime, sig->prev_utime));
  2941. *ut = sig->prev_utime;
  2942. *st = sig->prev_stime;
  2943. }
  2944. #endif
  2945. /*
  2946. * This function gets called by the timer code, with HZ frequency.
  2947. * We call it with interrupts disabled.
  2948. *
  2949. * It also gets called by the fork code, when changing the parent's
  2950. * timeslices.
  2951. */
  2952. void scheduler_tick(void)
  2953. {
  2954. int cpu = smp_processor_id();
  2955. struct rq *rq = cpu_rq(cpu);
  2956. struct task_struct *curr = rq->curr;
  2957. sched_clock_tick();
  2958. raw_spin_lock(&rq->lock);
  2959. update_rq_clock(rq);
  2960. update_cpu_load(rq);
  2961. curr->sched_class->task_tick(rq, curr, 0);
  2962. raw_spin_unlock(&rq->lock);
  2963. perf_event_task_tick(curr);
  2964. #ifdef CONFIG_SMP
  2965. rq->idle_at_tick = idle_cpu(cpu);
  2966. trigger_load_balance(rq, cpu);
  2967. #endif
  2968. }
  2969. notrace unsigned long get_parent_ip(unsigned long addr)
  2970. {
  2971. if (in_lock_functions(addr)) {
  2972. addr = CALLER_ADDR2;
  2973. if (in_lock_functions(addr))
  2974. addr = CALLER_ADDR3;
  2975. }
  2976. return addr;
  2977. }
  2978. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2979. defined(CONFIG_PREEMPT_TRACER))
  2980. void __kprobes add_preempt_count(int val)
  2981. {
  2982. #ifdef CONFIG_DEBUG_PREEMPT
  2983. /*
  2984. * Underflow?
  2985. */
  2986. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2987. return;
  2988. #endif
  2989. preempt_count() += val;
  2990. #ifdef CONFIG_DEBUG_PREEMPT
  2991. /*
  2992. * Spinlock count overflowing soon?
  2993. */
  2994. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2995. PREEMPT_MASK - 10);
  2996. #endif
  2997. if (preempt_count() == val)
  2998. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2999. }
  3000. EXPORT_SYMBOL(add_preempt_count);
  3001. void __kprobes sub_preempt_count(int val)
  3002. {
  3003. #ifdef CONFIG_DEBUG_PREEMPT
  3004. /*
  3005. * Underflow?
  3006. */
  3007. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3008. return;
  3009. /*
  3010. * Is the spinlock portion underflowing?
  3011. */
  3012. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3013. !(preempt_count() & PREEMPT_MASK)))
  3014. return;
  3015. #endif
  3016. if (preempt_count() == val)
  3017. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3018. preempt_count() -= val;
  3019. }
  3020. EXPORT_SYMBOL(sub_preempt_count);
  3021. #endif
  3022. /*
  3023. * Print scheduling while atomic bug:
  3024. */
  3025. static noinline void __schedule_bug(struct task_struct *prev)
  3026. {
  3027. struct pt_regs *regs = get_irq_regs();
  3028. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3029. prev->comm, prev->pid, preempt_count());
  3030. debug_show_held_locks(prev);
  3031. print_modules();
  3032. if (irqs_disabled())
  3033. print_irqtrace_events(prev);
  3034. if (regs)
  3035. show_regs(regs);
  3036. else
  3037. dump_stack();
  3038. }
  3039. /*
  3040. * Various schedule()-time debugging checks and statistics:
  3041. */
  3042. static inline void schedule_debug(struct task_struct *prev)
  3043. {
  3044. /*
  3045. * Test if we are atomic. Since do_exit() needs to call into
  3046. * schedule() atomically, we ignore that path for now.
  3047. * Otherwise, whine if we are scheduling when we should not be.
  3048. */
  3049. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3050. __schedule_bug(prev);
  3051. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3052. schedstat_inc(this_rq(), sched_count);
  3053. #ifdef CONFIG_SCHEDSTATS
  3054. if (unlikely(prev->lock_depth >= 0)) {
  3055. schedstat_inc(this_rq(), bkl_count);
  3056. schedstat_inc(prev, sched_info.bkl_count);
  3057. }
  3058. #endif
  3059. }
  3060. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3061. {
  3062. if (prev->state == TASK_RUNNING) {
  3063. u64 runtime = prev->se.sum_exec_runtime;
  3064. runtime -= prev->se.prev_sum_exec_runtime;
  3065. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  3066. /*
  3067. * In order to avoid avg_overlap growing stale when we are
  3068. * indeed overlapping and hence not getting put to sleep, grow
  3069. * the avg_overlap on preemption.
  3070. *
  3071. * We use the average preemption runtime because that
  3072. * correlates to the amount of cache footprint a task can
  3073. * build up.
  3074. */
  3075. update_avg(&prev->se.avg_overlap, runtime);
  3076. }
  3077. prev->sched_class->put_prev_task(rq, prev);
  3078. }
  3079. /*
  3080. * Pick up the highest-prio task:
  3081. */
  3082. static inline struct task_struct *
  3083. pick_next_task(struct rq *rq)
  3084. {
  3085. const struct sched_class *class;
  3086. struct task_struct *p;
  3087. /*
  3088. * Optimization: we know that if all tasks are in
  3089. * the fair class we can call that function directly:
  3090. */
  3091. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3092. p = fair_sched_class.pick_next_task(rq);
  3093. if (likely(p))
  3094. return p;
  3095. }
  3096. class = sched_class_highest;
  3097. for ( ; ; ) {
  3098. p = class->pick_next_task(rq);
  3099. if (p)
  3100. return p;
  3101. /*
  3102. * Will never be NULL as the idle class always
  3103. * returns a non-NULL p:
  3104. */
  3105. class = class->next;
  3106. }
  3107. }
  3108. /*
  3109. * schedule() is the main scheduler function.
  3110. */
  3111. asmlinkage void __sched schedule(void)
  3112. {
  3113. struct task_struct *prev, *next;
  3114. unsigned long *switch_count;
  3115. struct rq *rq;
  3116. int cpu;
  3117. need_resched:
  3118. preempt_disable();
  3119. cpu = smp_processor_id();
  3120. rq = cpu_rq(cpu);
  3121. rcu_sched_qs(cpu);
  3122. prev = rq->curr;
  3123. switch_count = &prev->nivcsw;
  3124. release_kernel_lock(prev);
  3125. need_resched_nonpreemptible:
  3126. schedule_debug(prev);
  3127. if (sched_feat(HRTICK))
  3128. hrtick_clear(rq);
  3129. raw_spin_lock_irq(&rq->lock);
  3130. update_rq_clock(rq);
  3131. clear_tsk_need_resched(prev);
  3132. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3133. if (unlikely(signal_pending_state(prev->state, prev)))
  3134. prev->state = TASK_RUNNING;
  3135. else
  3136. deactivate_task(rq, prev, 1);
  3137. switch_count = &prev->nvcsw;
  3138. }
  3139. pre_schedule(rq, prev);
  3140. if (unlikely(!rq->nr_running))
  3141. idle_balance(cpu, rq);
  3142. put_prev_task(rq, prev);
  3143. next = pick_next_task(rq);
  3144. if (likely(prev != next)) {
  3145. sched_info_switch(prev, next);
  3146. perf_event_task_sched_out(prev, next);
  3147. rq->nr_switches++;
  3148. rq->curr = next;
  3149. ++*switch_count;
  3150. context_switch(rq, prev, next); /* unlocks the rq */
  3151. /*
  3152. * the context switch might have flipped the stack from under
  3153. * us, hence refresh the local variables.
  3154. */
  3155. cpu = smp_processor_id();
  3156. rq = cpu_rq(cpu);
  3157. } else
  3158. raw_spin_unlock_irq(&rq->lock);
  3159. post_schedule(rq);
  3160. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3161. prev = rq->curr;
  3162. switch_count = &prev->nivcsw;
  3163. goto need_resched_nonpreemptible;
  3164. }
  3165. preempt_enable_no_resched();
  3166. if (need_resched())
  3167. goto need_resched;
  3168. }
  3169. EXPORT_SYMBOL(schedule);
  3170. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3171. /*
  3172. * Look out! "owner" is an entirely speculative pointer
  3173. * access and not reliable.
  3174. */
  3175. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3176. {
  3177. unsigned int cpu;
  3178. struct rq *rq;
  3179. if (!sched_feat(OWNER_SPIN))
  3180. return 0;
  3181. #ifdef CONFIG_DEBUG_PAGEALLOC
  3182. /*
  3183. * Need to access the cpu field knowing that
  3184. * DEBUG_PAGEALLOC could have unmapped it if
  3185. * the mutex owner just released it and exited.
  3186. */
  3187. if (probe_kernel_address(&owner->cpu, cpu))
  3188. goto out;
  3189. #else
  3190. cpu = owner->cpu;
  3191. #endif
  3192. /*
  3193. * Even if the access succeeded (likely case),
  3194. * the cpu field may no longer be valid.
  3195. */
  3196. if (cpu >= nr_cpumask_bits)
  3197. goto out;
  3198. /*
  3199. * We need to validate that we can do a
  3200. * get_cpu() and that we have the percpu area.
  3201. */
  3202. if (!cpu_online(cpu))
  3203. goto out;
  3204. rq = cpu_rq(cpu);
  3205. for (;;) {
  3206. /*
  3207. * Owner changed, break to re-assess state.
  3208. */
  3209. if (lock->owner != owner)
  3210. break;
  3211. /*
  3212. * Is that owner really running on that cpu?
  3213. */
  3214. if (task_thread_info(rq->curr) != owner || need_resched())
  3215. return 0;
  3216. cpu_relax();
  3217. }
  3218. out:
  3219. return 1;
  3220. }
  3221. #endif
  3222. #ifdef CONFIG_PREEMPT
  3223. /*
  3224. * this is the entry point to schedule() from in-kernel preemption
  3225. * off of preempt_enable. Kernel preemptions off return from interrupt
  3226. * occur there and call schedule directly.
  3227. */
  3228. asmlinkage void __sched preempt_schedule(void)
  3229. {
  3230. struct thread_info *ti = current_thread_info();
  3231. /*
  3232. * If there is a non-zero preempt_count or interrupts are disabled,
  3233. * we do not want to preempt the current task. Just return..
  3234. */
  3235. if (likely(ti->preempt_count || irqs_disabled()))
  3236. return;
  3237. do {
  3238. add_preempt_count(PREEMPT_ACTIVE);
  3239. schedule();
  3240. sub_preempt_count(PREEMPT_ACTIVE);
  3241. /*
  3242. * Check again in case we missed a preemption opportunity
  3243. * between schedule and now.
  3244. */
  3245. barrier();
  3246. } while (need_resched());
  3247. }
  3248. EXPORT_SYMBOL(preempt_schedule);
  3249. /*
  3250. * this is the entry point to schedule() from kernel preemption
  3251. * off of irq context.
  3252. * Note, that this is called and return with irqs disabled. This will
  3253. * protect us against recursive calling from irq.
  3254. */
  3255. asmlinkage void __sched preempt_schedule_irq(void)
  3256. {
  3257. struct thread_info *ti = current_thread_info();
  3258. /* Catch callers which need to be fixed */
  3259. BUG_ON(ti->preempt_count || !irqs_disabled());
  3260. do {
  3261. add_preempt_count(PREEMPT_ACTIVE);
  3262. local_irq_enable();
  3263. schedule();
  3264. local_irq_disable();
  3265. sub_preempt_count(PREEMPT_ACTIVE);
  3266. /*
  3267. * Check again in case we missed a preemption opportunity
  3268. * between schedule and now.
  3269. */
  3270. barrier();
  3271. } while (need_resched());
  3272. }
  3273. #endif /* CONFIG_PREEMPT */
  3274. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3275. void *key)
  3276. {
  3277. return try_to_wake_up(curr->private, mode, wake_flags);
  3278. }
  3279. EXPORT_SYMBOL(default_wake_function);
  3280. /*
  3281. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3282. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3283. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3284. *
  3285. * There are circumstances in which we can try to wake a task which has already
  3286. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3287. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3288. */
  3289. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3290. int nr_exclusive, int wake_flags, void *key)
  3291. {
  3292. wait_queue_t *curr, *next;
  3293. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3294. unsigned flags = curr->flags;
  3295. if (curr->func(curr, mode, wake_flags, key) &&
  3296. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3297. break;
  3298. }
  3299. }
  3300. /**
  3301. * __wake_up - wake up threads blocked on a waitqueue.
  3302. * @q: the waitqueue
  3303. * @mode: which threads
  3304. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3305. * @key: is directly passed to the wakeup function
  3306. *
  3307. * It may be assumed that this function implies a write memory barrier before
  3308. * changing the task state if and only if any tasks are woken up.
  3309. */
  3310. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3311. int nr_exclusive, void *key)
  3312. {
  3313. unsigned long flags;
  3314. spin_lock_irqsave(&q->lock, flags);
  3315. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3316. spin_unlock_irqrestore(&q->lock, flags);
  3317. }
  3318. EXPORT_SYMBOL(__wake_up);
  3319. /*
  3320. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3321. */
  3322. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3323. {
  3324. __wake_up_common(q, mode, 1, 0, NULL);
  3325. }
  3326. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3327. {
  3328. __wake_up_common(q, mode, 1, 0, key);
  3329. }
  3330. /**
  3331. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3332. * @q: the waitqueue
  3333. * @mode: which threads
  3334. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3335. * @key: opaque value to be passed to wakeup targets
  3336. *
  3337. * The sync wakeup differs that the waker knows that it will schedule
  3338. * away soon, so while the target thread will be woken up, it will not
  3339. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3340. * with each other. This can prevent needless bouncing between CPUs.
  3341. *
  3342. * On UP it can prevent extra preemption.
  3343. *
  3344. * It may be assumed that this function implies a write memory barrier before
  3345. * changing the task state if and only if any tasks are woken up.
  3346. */
  3347. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3348. int nr_exclusive, void *key)
  3349. {
  3350. unsigned long flags;
  3351. int wake_flags = WF_SYNC;
  3352. if (unlikely(!q))
  3353. return;
  3354. if (unlikely(!nr_exclusive))
  3355. wake_flags = 0;
  3356. spin_lock_irqsave(&q->lock, flags);
  3357. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3358. spin_unlock_irqrestore(&q->lock, flags);
  3359. }
  3360. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3361. /*
  3362. * __wake_up_sync - see __wake_up_sync_key()
  3363. */
  3364. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3365. {
  3366. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3367. }
  3368. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3369. /**
  3370. * complete: - signals a single thread waiting on this completion
  3371. * @x: holds the state of this particular completion
  3372. *
  3373. * This will wake up a single thread waiting on this completion. Threads will be
  3374. * awakened in the same order in which they were queued.
  3375. *
  3376. * See also complete_all(), wait_for_completion() and related routines.
  3377. *
  3378. * It may be assumed that this function implies a write memory barrier before
  3379. * changing the task state if and only if any tasks are woken up.
  3380. */
  3381. void complete(struct completion *x)
  3382. {
  3383. unsigned long flags;
  3384. spin_lock_irqsave(&x->wait.lock, flags);
  3385. x->done++;
  3386. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3387. spin_unlock_irqrestore(&x->wait.lock, flags);
  3388. }
  3389. EXPORT_SYMBOL(complete);
  3390. /**
  3391. * complete_all: - signals all threads waiting on this completion
  3392. * @x: holds the state of this particular completion
  3393. *
  3394. * This will wake up all threads waiting on this particular completion event.
  3395. *
  3396. * It may be assumed that this function implies a write memory barrier before
  3397. * changing the task state if and only if any tasks are woken up.
  3398. */
  3399. void complete_all(struct completion *x)
  3400. {
  3401. unsigned long flags;
  3402. spin_lock_irqsave(&x->wait.lock, flags);
  3403. x->done += UINT_MAX/2;
  3404. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3405. spin_unlock_irqrestore(&x->wait.lock, flags);
  3406. }
  3407. EXPORT_SYMBOL(complete_all);
  3408. static inline long __sched
  3409. do_wait_for_common(struct completion *x, long timeout, int state)
  3410. {
  3411. if (!x->done) {
  3412. DECLARE_WAITQUEUE(wait, current);
  3413. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3414. __add_wait_queue_tail(&x->wait, &wait);
  3415. do {
  3416. if (signal_pending_state(state, current)) {
  3417. timeout = -ERESTARTSYS;
  3418. break;
  3419. }
  3420. __set_current_state(state);
  3421. spin_unlock_irq(&x->wait.lock);
  3422. timeout = schedule_timeout(timeout);
  3423. spin_lock_irq(&x->wait.lock);
  3424. } while (!x->done && timeout);
  3425. __remove_wait_queue(&x->wait, &wait);
  3426. if (!x->done)
  3427. return timeout;
  3428. }
  3429. x->done--;
  3430. return timeout ?: 1;
  3431. }
  3432. static long __sched
  3433. wait_for_common(struct completion *x, long timeout, int state)
  3434. {
  3435. might_sleep();
  3436. spin_lock_irq(&x->wait.lock);
  3437. timeout = do_wait_for_common(x, timeout, state);
  3438. spin_unlock_irq(&x->wait.lock);
  3439. return timeout;
  3440. }
  3441. /**
  3442. * wait_for_completion: - waits for completion of a task
  3443. * @x: holds the state of this particular completion
  3444. *
  3445. * This waits to be signaled for completion of a specific task. It is NOT
  3446. * interruptible and there is no timeout.
  3447. *
  3448. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3449. * and interrupt capability. Also see complete().
  3450. */
  3451. void __sched wait_for_completion(struct completion *x)
  3452. {
  3453. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3454. }
  3455. EXPORT_SYMBOL(wait_for_completion);
  3456. /**
  3457. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3458. * @x: holds the state of this particular completion
  3459. * @timeout: timeout value in jiffies
  3460. *
  3461. * This waits for either a completion of a specific task to be signaled or for a
  3462. * specified timeout to expire. The timeout is in jiffies. It is not
  3463. * interruptible.
  3464. */
  3465. unsigned long __sched
  3466. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3467. {
  3468. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3469. }
  3470. EXPORT_SYMBOL(wait_for_completion_timeout);
  3471. /**
  3472. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3473. * @x: holds the state of this particular completion
  3474. *
  3475. * This waits for completion of a specific task to be signaled. It is
  3476. * interruptible.
  3477. */
  3478. int __sched wait_for_completion_interruptible(struct completion *x)
  3479. {
  3480. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3481. if (t == -ERESTARTSYS)
  3482. return t;
  3483. return 0;
  3484. }
  3485. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3486. /**
  3487. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3488. * @x: holds the state of this particular completion
  3489. * @timeout: timeout value in jiffies
  3490. *
  3491. * This waits for either a completion of a specific task to be signaled or for a
  3492. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3493. */
  3494. unsigned long __sched
  3495. wait_for_completion_interruptible_timeout(struct completion *x,
  3496. unsigned long timeout)
  3497. {
  3498. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3499. }
  3500. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3501. /**
  3502. * wait_for_completion_killable: - waits for completion of a task (killable)
  3503. * @x: holds the state of this particular completion
  3504. *
  3505. * This waits to be signaled for completion of a specific task. It can be
  3506. * interrupted by a kill signal.
  3507. */
  3508. int __sched wait_for_completion_killable(struct completion *x)
  3509. {
  3510. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3511. if (t == -ERESTARTSYS)
  3512. return t;
  3513. return 0;
  3514. }
  3515. EXPORT_SYMBOL(wait_for_completion_killable);
  3516. /**
  3517. * try_wait_for_completion - try to decrement a completion without blocking
  3518. * @x: completion structure
  3519. *
  3520. * Returns: 0 if a decrement cannot be done without blocking
  3521. * 1 if a decrement succeeded.
  3522. *
  3523. * If a completion is being used as a counting completion,
  3524. * attempt to decrement the counter without blocking. This
  3525. * enables us to avoid waiting if the resource the completion
  3526. * is protecting is not available.
  3527. */
  3528. bool try_wait_for_completion(struct completion *x)
  3529. {
  3530. unsigned long flags;
  3531. int ret = 1;
  3532. spin_lock_irqsave(&x->wait.lock, flags);
  3533. if (!x->done)
  3534. ret = 0;
  3535. else
  3536. x->done--;
  3537. spin_unlock_irqrestore(&x->wait.lock, flags);
  3538. return ret;
  3539. }
  3540. EXPORT_SYMBOL(try_wait_for_completion);
  3541. /**
  3542. * completion_done - Test to see if a completion has any waiters
  3543. * @x: completion structure
  3544. *
  3545. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3546. * 1 if there are no waiters.
  3547. *
  3548. */
  3549. bool completion_done(struct completion *x)
  3550. {
  3551. unsigned long flags;
  3552. int ret = 1;
  3553. spin_lock_irqsave(&x->wait.lock, flags);
  3554. if (!x->done)
  3555. ret = 0;
  3556. spin_unlock_irqrestore(&x->wait.lock, flags);
  3557. return ret;
  3558. }
  3559. EXPORT_SYMBOL(completion_done);
  3560. static long __sched
  3561. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3562. {
  3563. unsigned long flags;
  3564. wait_queue_t wait;
  3565. init_waitqueue_entry(&wait, current);
  3566. __set_current_state(state);
  3567. spin_lock_irqsave(&q->lock, flags);
  3568. __add_wait_queue(q, &wait);
  3569. spin_unlock(&q->lock);
  3570. timeout = schedule_timeout(timeout);
  3571. spin_lock_irq(&q->lock);
  3572. __remove_wait_queue(q, &wait);
  3573. spin_unlock_irqrestore(&q->lock, flags);
  3574. return timeout;
  3575. }
  3576. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3577. {
  3578. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3579. }
  3580. EXPORT_SYMBOL(interruptible_sleep_on);
  3581. long __sched
  3582. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3583. {
  3584. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3585. }
  3586. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3587. void __sched sleep_on(wait_queue_head_t *q)
  3588. {
  3589. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3590. }
  3591. EXPORT_SYMBOL(sleep_on);
  3592. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3593. {
  3594. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3595. }
  3596. EXPORT_SYMBOL(sleep_on_timeout);
  3597. #ifdef CONFIG_RT_MUTEXES
  3598. /*
  3599. * rt_mutex_setprio - set the current priority of a task
  3600. * @p: task
  3601. * @prio: prio value (kernel-internal form)
  3602. *
  3603. * This function changes the 'effective' priority of a task. It does
  3604. * not touch ->normal_prio like __setscheduler().
  3605. *
  3606. * Used by the rt_mutex code to implement priority inheritance logic.
  3607. */
  3608. void rt_mutex_setprio(struct task_struct *p, int prio)
  3609. {
  3610. unsigned long flags;
  3611. int oldprio, on_rq, running;
  3612. struct rq *rq;
  3613. const struct sched_class *prev_class;
  3614. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3615. rq = task_rq_lock(p, &flags);
  3616. update_rq_clock(rq);
  3617. oldprio = p->prio;
  3618. prev_class = p->sched_class;
  3619. on_rq = p->se.on_rq;
  3620. running = task_current(rq, p);
  3621. if (on_rq)
  3622. dequeue_task(rq, p, 0);
  3623. if (running)
  3624. p->sched_class->put_prev_task(rq, p);
  3625. if (rt_prio(prio))
  3626. p->sched_class = &rt_sched_class;
  3627. else
  3628. p->sched_class = &fair_sched_class;
  3629. p->prio = prio;
  3630. if (running)
  3631. p->sched_class->set_curr_task(rq);
  3632. if (on_rq) {
  3633. enqueue_task(rq, p, 0, oldprio < prio);
  3634. check_class_changed(rq, p, prev_class, oldprio, running);
  3635. }
  3636. task_rq_unlock(rq, &flags);
  3637. }
  3638. #endif
  3639. void set_user_nice(struct task_struct *p, long nice)
  3640. {
  3641. int old_prio, delta, on_rq;
  3642. unsigned long flags;
  3643. struct rq *rq;
  3644. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3645. return;
  3646. /*
  3647. * We have to be careful, if called from sys_setpriority(),
  3648. * the task might be in the middle of scheduling on another CPU.
  3649. */
  3650. rq = task_rq_lock(p, &flags);
  3651. update_rq_clock(rq);
  3652. /*
  3653. * The RT priorities are set via sched_setscheduler(), but we still
  3654. * allow the 'normal' nice value to be set - but as expected
  3655. * it wont have any effect on scheduling until the task is
  3656. * SCHED_FIFO/SCHED_RR:
  3657. */
  3658. if (task_has_rt_policy(p)) {
  3659. p->static_prio = NICE_TO_PRIO(nice);
  3660. goto out_unlock;
  3661. }
  3662. on_rq = p->se.on_rq;
  3663. if (on_rq)
  3664. dequeue_task(rq, p, 0);
  3665. p->static_prio = NICE_TO_PRIO(nice);
  3666. set_load_weight(p);
  3667. old_prio = p->prio;
  3668. p->prio = effective_prio(p);
  3669. delta = p->prio - old_prio;
  3670. if (on_rq) {
  3671. enqueue_task(rq, p, 0, false);
  3672. /*
  3673. * If the task increased its priority or is running and
  3674. * lowered its priority, then reschedule its CPU:
  3675. */
  3676. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3677. resched_task(rq->curr);
  3678. }
  3679. out_unlock:
  3680. task_rq_unlock(rq, &flags);
  3681. }
  3682. EXPORT_SYMBOL(set_user_nice);
  3683. /*
  3684. * can_nice - check if a task can reduce its nice value
  3685. * @p: task
  3686. * @nice: nice value
  3687. */
  3688. int can_nice(const struct task_struct *p, const int nice)
  3689. {
  3690. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3691. int nice_rlim = 20 - nice;
  3692. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3693. capable(CAP_SYS_NICE));
  3694. }
  3695. #ifdef __ARCH_WANT_SYS_NICE
  3696. /*
  3697. * sys_nice - change the priority of the current process.
  3698. * @increment: priority increment
  3699. *
  3700. * sys_setpriority is a more generic, but much slower function that
  3701. * does similar things.
  3702. */
  3703. SYSCALL_DEFINE1(nice, int, increment)
  3704. {
  3705. long nice, retval;
  3706. /*
  3707. * Setpriority might change our priority at the same moment.
  3708. * We don't have to worry. Conceptually one call occurs first
  3709. * and we have a single winner.
  3710. */
  3711. if (increment < -40)
  3712. increment = -40;
  3713. if (increment > 40)
  3714. increment = 40;
  3715. nice = TASK_NICE(current) + increment;
  3716. if (nice < -20)
  3717. nice = -20;
  3718. if (nice > 19)
  3719. nice = 19;
  3720. if (increment < 0 && !can_nice(current, nice))
  3721. return -EPERM;
  3722. retval = security_task_setnice(current, nice);
  3723. if (retval)
  3724. return retval;
  3725. set_user_nice(current, nice);
  3726. return 0;
  3727. }
  3728. #endif
  3729. /**
  3730. * task_prio - return the priority value of a given task.
  3731. * @p: the task in question.
  3732. *
  3733. * This is the priority value as seen by users in /proc.
  3734. * RT tasks are offset by -200. Normal tasks are centered
  3735. * around 0, value goes from -16 to +15.
  3736. */
  3737. int task_prio(const struct task_struct *p)
  3738. {
  3739. return p->prio - MAX_RT_PRIO;
  3740. }
  3741. /**
  3742. * task_nice - return the nice value of a given task.
  3743. * @p: the task in question.
  3744. */
  3745. int task_nice(const struct task_struct *p)
  3746. {
  3747. return TASK_NICE(p);
  3748. }
  3749. EXPORT_SYMBOL(task_nice);
  3750. /**
  3751. * idle_cpu - is a given cpu idle currently?
  3752. * @cpu: the processor in question.
  3753. */
  3754. int idle_cpu(int cpu)
  3755. {
  3756. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3757. }
  3758. /**
  3759. * idle_task - return the idle task for a given cpu.
  3760. * @cpu: the processor in question.
  3761. */
  3762. struct task_struct *idle_task(int cpu)
  3763. {
  3764. return cpu_rq(cpu)->idle;
  3765. }
  3766. /**
  3767. * find_process_by_pid - find a process with a matching PID value.
  3768. * @pid: the pid in question.
  3769. */
  3770. static struct task_struct *find_process_by_pid(pid_t pid)
  3771. {
  3772. return pid ? find_task_by_vpid(pid) : current;
  3773. }
  3774. /* Actually do priority change: must hold rq lock. */
  3775. static void
  3776. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3777. {
  3778. BUG_ON(p->se.on_rq);
  3779. p->policy = policy;
  3780. p->rt_priority = prio;
  3781. p->normal_prio = normal_prio(p);
  3782. /* we are holding p->pi_lock already */
  3783. p->prio = rt_mutex_getprio(p);
  3784. if (rt_prio(p->prio))
  3785. p->sched_class = &rt_sched_class;
  3786. else
  3787. p->sched_class = &fair_sched_class;
  3788. set_load_weight(p);
  3789. }
  3790. /*
  3791. * check the target process has a UID that matches the current process's
  3792. */
  3793. static bool check_same_owner(struct task_struct *p)
  3794. {
  3795. const struct cred *cred = current_cred(), *pcred;
  3796. bool match;
  3797. rcu_read_lock();
  3798. pcred = __task_cred(p);
  3799. match = (cred->euid == pcred->euid ||
  3800. cred->euid == pcred->uid);
  3801. rcu_read_unlock();
  3802. return match;
  3803. }
  3804. static int __sched_setscheduler(struct task_struct *p, int policy,
  3805. struct sched_param *param, bool user)
  3806. {
  3807. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3808. unsigned long flags;
  3809. const struct sched_class *prev_class;
  3810. struct rq *rq;
  3811. int reset_on_fork;
  3812. /* may grab non-irq protected spin_locks */
  3813. BUG_ON(in_interrupt());
  3814. recheck:
  3815. /* double check policy once rq lock held */
  3816. if (policy < 0) {
  3817. reset_on_fork = p->sched_reset_on_fork;
  3818. policy = oldpolicy = p->policy;
  3819. } else {
  3820. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3821. policy &= ~SCHED_RESET_ON_FORK;
  3822. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3823. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3824. policy != SCHED_IDLE)
  3825. return -EINVAL;
  3826. }
  3827. /*
  3828. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3829. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3830. * SCHED_BATCH and SCHED_IDLE is 0.
  3831. */
  3832. if (param->sched_priority < 0 ||
  3833. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3834. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3835. return -EINVAL;
  3836. if (rt_policy(policy) != (param->sched_priority != 0))
  3837. return -EINVAL;
  3838. /*
  3839. * Allow unprivileged RT tasks to decrease priority:
  3840. */
  3841. if (user && !capable(CAP_SYS_NICE)) {
  3842. if (rt_policy(policy)) {
  3843. unsigned long rlim_rtprio;
  3844. if (!lock_task_sighand(p, &flags))
  3845. return -ESRCH;
  3846. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3847. unlock_task_sighand(p, &flags);
  3848. /* can't set/change the rt policy */
  3849. if (policy != p->policy && !rlim_rtprio)
  3850. return -EPERM;
  3851. /* can't increase priority */
  3852. if (param->sched_priority > p->rt_priority &&
  3853. param->sched_priority > rlim_rtprio)
  3854. return -EPERM;
  3855. }
  3856. /*
  3857. * Like positive nice levels, dont allow tasks to
  3858. * move out of SCHED_IDLE either:
  3859. */
  3860. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3861. return -EPERM;
  3862. /* can't change other user's priorities */
  3863. if (!check_same_owner(p))
  3864. return -EPERM;
  3865. /* Normal users shall not reset the sched_reset_on_fork flag */
  3866. if (p->sched_reset_on_fork && !reset_on_fork)
  3867. return -EPERM;
  3868. }
  3869. if (user) {
  3870. #ifdef CONFIG_RT_GROUP_SCHED
  3871. /*
  3872. * Do not allow realtime tasks into groups that have no runtime
  3873. * assigned.
  3874. */
  3875. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3876. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3877. return -EPERM;
  3878. #endif
  3879. retval = security_task_setscheduler(p, policy, param);
  3880. if (retval)
  3881. return retval;
  3882. }
  3883. /*
  3884. * make sure no PI-waiters arrive (or leave) while we are
  3885. * changing the priority of the task:
  3886. */
  3887. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3888. /*
  3889. * To be able to change p->policy safely, the apropriate
  3890. * runqueue lock must be held.
  3891. */
  3892. rq = __task_rq_lock(p);
  3893. /* recheck policy now with rq lock held */
  3894. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3895. policy = oldpolicy = -1;
  3896. __task_rq_unlock(rq);
  3897. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3898. goto recheck;
  3899. }
  3900. update_rq_clock(rq);
  3901. on_rq = p->se.on_rq;
  3902. running = task_current(rq, p);
  3903. if (on_rq)
  3904. deactivate_task(rq, p, 0);
  3905. if (running)
  3906. p->sched_class->put_prev_task(rq, p);
  3907. p->sched_reset_on_fork = reset_on_fork;
  3908. oldprio = p->prio;
  3909. prev_class = p->sched_class;
  3910. __setscheduler(rq, p, policy, param->sched_priority);
  3911. if (running)
  3912. p->sched_class->set_curr_task(rq);
  3913. if (on_rq) {
  3914. activate_task(rq, p, 0);
  3915. check_class_changed(rq, p, prev_class, oldprio, running);
  3916. }
  3917. __task_rq_unlock(rq);
  3918. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3919. rt_mutex_adjust_pi(p);
  3920. return 0;
  3921. }
  3922. /**
  3923. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3924. * @p: the task in question.
  3925. * @policy: new policy.
  3926. * @param: structure containing the new RT priority.
  3927. *
  3928. * NOTE that the task may be already dead.
  3929. */
  3930. int sched_setscheduler(struct task_struct *p, int policy,
  3931. struct sched_param *param)
  3932. {
  3933. return __sched_setscheduler(p, policy, param, true);
  3934. }
  3935. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3936. /**
  3937. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3938. * @p: the task in question.
  3939. * @policy: new policy.
  3940. * @param: structure containing the new RT priority.
  3941. *
  3942. * Just like sched_setscheduler, only don't bother checking if the
  3943. * current context has permission. For example, this is needed in
  3944. * stop_machine(): we create temporary high priority worker threads,
  3945. * but our caller might not have that capability.
  3946. */
  3947. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3948. struct sched_param *param)
  3949. {
  3950. return __sched_setscheduler(p, policy, param, false);
  3951. }
  3952. static int
  3953. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3954. {
  3955. struct sched_param lparam;
  3956. struct task_struct *p;
  3957. int retval;
  3958. if (!param || pid < 0)
  3959. return -EINVAL;
  3960. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3961. return -EFAULT;
  3962. rcu_read_lock();
  3963. retval = -ESRCH;
  3964. p = find_process_by_pid(pid);
  3965. if (p != NULL)
  3966. retval = sched_setscheduler(p, policy, &lparam);
  3967. rcu_read_unlock();
  3968. return retval;
  3969. }
  3970. /**
  3971. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3972. * @pid: the pid in question.
  3973. * @policy: new policy.
  3974. * @param: structure containing the new RT priority.
  3975. */
  3976. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3977. struct sched_param __user *, param)
  3978. {
  3979. /* negative values for policy are not valid */
  3980. if (policy < 0)
  3981. return -EINVAL;
  3982. return do_sched_setscheduler(pid, policy, param);
  3983. }
  3984. /**
  3985. * sys_sched_setparam - set/change the RT priority of a thread
  3986. * @pid: the pid in question.
  3987. * @param: structure containing the new RT priority.
  3988. */
  3989. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3990. {
  3991. return do_sched_setscheduler(pid, -1, param);
  3992. }
  3993. /**
  3994. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3995. * @pid: the pid in question.
  3996. */
  3997. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3998. {
  3999. struct task_struct *p;
  4000. int retval;
  4001. if (pid < 0)
  4002. return -EINVAL;
  4003. retval = -ESRCH;
  4004. rcu_read_lock();
  4005. p = find_process_by_pid(pid);
  4006. if (p) {
  4007. retval = security_task_getscheduler(p);
  4008. if (!retval)
  4009. retval = p->policy
  4010. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4011. }
  4012. rcu_read_unlock();
  4013. return retval;
  4014. }
  4015. /**
  4016. * sys_sched_getparam - get the RT priority of a thread
  4017. * @pid: the pid in question.
  4018. * @param: structure containing the RT priority.
  4019. */
  4020. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4021. {
  4022. struct sched_param lp;
  4023. struct task_struct *p;
  4024. int retval;
  4025. if (!param || pid < 0)
  4026. return -EINVAL;
  4027. rcu_read_lock();
  4028. p = find_process_by_pid(pid);
  4029. retval = -ESRCH;
  4030. if (!p)
  4031. goto out_unlock;
  4032. retval = security_task_getscheduler(p);
  4033. if (retval)
  4034. goto out_unlock;
  4035. lp.sched_priority = p->rt_priority;
  4036. rcu_read_unlock();
  4037. /*
  4038. * This one might sleep, we cannot do it with a spinlock held ...
  4039. */
  4040. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4041. return retval;
  4042. out_unlock:
  4043. rcu_read_unlock();
  4044. return retval;
  4045. }
  4046. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4047. {
  4048. cpumask_var_t cpus_allowed, new_mask;
  4049. struct task_struct *p;
  4050. int retval;
  4051. get_online_cpus();
  4052. rcu_read_lock();
  4053. p = find_process_by_pid(pid);
  4054. if (!p) {
  4055. rcu_read_unlock();
  4056. put_online_cpus();
  4057. return -ESRCH;
  4058. }
  4059. /* Prevent p going away */
  4060. get_task_struct(p);
  4061. rcu_read_unlock();
  4062. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4063. retval = -ENOMEM;
  4064. goto out_put_task;
  4065. }
  4066. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4067. retval = -ENOMEM;
  4068. goto out_free_cpus_allowed;
  4069. }
  4070. retval = -EPERM;
  4071. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4072. goto out_unlock;
  4073. retval = security_task_setscheduler(p, 0, NULL);
  4074. if (retval)
  4075. goto out_unlock;
  4076. cpuset_cpus_allowed(p, cpus_allowed);
  4077. cpumask_and(new_mask, in_mask, cpus_allowed);
  4078. again:
  4079. retval = set_cpus_allowed_ptr(p, new_mask);
  4080. if (!retval) {
  4081. cpuset_cpus_allowed(p, cpus_allowed);
  4082. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4083. /*
  4084. * We must have raced with a concurrent cpuset
  4085. * update. Just reset the cpus_allowed to the
  4086. * cpuset's cpus_allowed
  4087. */
  4088. cpumask_copy(new_mask, cpus_allowed);
  4089. goto again;
  4090. }
  4091. }
  4092. out_unlock:
  4093. free_cpumask_var(new_mask);
  4094. out_free_cpus_allowed:
  4095. free_cpumask_var(cpus_allowed);
  4096. out_put_task:
  4097. put_task_struct(p);
  4098. put_online_cpus();
  4099. return retval;
  4100. }
  4101. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4102. struct cpumask *new_mask)
  4103. {
  4104. if (len < cpumask_size())
  4105. cpumask_clear(new_mask);
  4106. else if (len > cpumask_size())
  4107. len = cpumask_size();
  4108. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4109. }
  4110. /**
  4111. * sys_sched_setaffinity - set the cpu affinity of a process
  4112. * @pid: pid of the process
  4113. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4114. * @user_mask_ptr: user-space pointer to the new cpu mask
  4115. */
  4116. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4117. unsigned long __user *, user_mask_ptr)
  4118. {
  4119. cpumask_var_t new_mask;
  4120. int retval;
  4121. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4122. return -ENOMEM;
  4123. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4124. if (retval == 0)
  4125. retval = sched_setaffinity(pid, new_mask);
  4126. free_cpumask_var(new_mask);
  4127. return retval;
  4128. }
  4129. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4130. {
  4131. struct task_struct *p;
  4132. unsigned long flags;
  4133. struct rq *rq;
  4134. int retval;
  4135. get_online_cpus();
  4136. rcu_read_lock();
  4137. retval = -ESRCH;
  4138. p = find_process_by_pid(pid);
  4139. if (!p)
  4140. goto out_unlock;
  4141. retval = security_task_getscheduler(p);
  4142. if (retval)
  4143. goto out_unlock;
  4144. rq = task_rq_lock(p, &flags);
  4145. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4146. task_rq_unlock(rq, &flags);
  4147. out_unlock:
  4148. rcu_read_unlock();
  4149. put_online_cpus();
  4150. return retval;
  4151. }
  4152. /**
  4153. * sys_sched_getaffinity - get the cpu affinity of a process
  4154. * @pid: pid of the process
  4155. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4156. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4157. */
  4158. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4159. unsigned long __user *, user_mask_ptr)
  4160. {
  4161. int ret;
  4162. cpumask_var_t mask;
  4163. if (len < cpumask_size())
  4164. return -EINVAL;
  4165. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4166. return -ENOMEM;
  4167. ret = sched_getaffinity(pid, mask);
  4168. if (ret == 0) {
  4169. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  4170. ret = -EFAULT;
  4171. else
  4172. ret = cpumask_size();
  4173. }
  4174. free_cpumask_var(mask);
  4175. return ret;
  4176. }
  4177. /**
  4178. * sys_sched_yield - yield the current processor to other threads.
  4179. *
  4180. * This function yields the current CPU to other tasks. If there are no
  4181. * other threads running on this CPU then this function will return.
  4182. */
  4183. SYSCALL_DEFINE0(sched_yield)
  4184. {
  4185. struct rq *rq = this_rq_lock();
  4186. schedstat_inc(rq, yld_count);
  4187. current->sched_class->yield_task(rq);
  4188. /*
  4189. * Since we are going to call schedule() anyway, there's
  4190. * no need to preempt or enable interrupts:
  4191. */
  4192. __release(rq->lock);
  4193. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4194. do_raw_spin_unlock(&rq->lock);
  4195. preempt_enable_no_resched();
  4196. schedule();
  4197. return 0;
  4198. }
  4199. static inline int should_resched(void)
  4200. {
  4201. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4202. }
  4203. static void __cond_resched(void)
  4204. {
  4205. add_preempt_count(PREEMPT_ACTIVE);
  4206. schedule();
  4207. sub_preempt_count(PREEMPT_ACTIVE);
  4208. }
  4209. int __sched _cond_resched(void)
  4210. {
  4211. if (should_resched()) {
  4212. __cond_resched();
  4213. return 1;
  4214. }
  4215. return 0;
  4216. }
  4217. EXPORT_SYMBOL(_cond_resched);
  4218. /*
  4219. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4220. * call schedule, and on return reacquire the lock.
  4221. *
  4222. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4223. * operations here to prevent schedule() from being called twice (once via
  4224. * spin_unlock(), once by hand).
  4225. */
  4226. int __cond_resched_lock(spinlock_t *lock)
  4227. {
  4228. int resched = should_resched();
  4229. int ret = 0;
  4230. lockdep_assert_held(lock);
  4231. if (spin_needbreak(lock) || resched) {
  4232. spin_unlock(lock);
  4233. if (resched)
  4234. __cond_resched();
  4235. else
  4236. cpu_relax();
  4237. ret = 1;
  4238. spin_lock(lock);
  4239. }
  4240. return ret;
  4241. }
  4242. EXPORT_SYMBOL(__cond_resched_lock);
  4243. int __sched __cond_resched_softirq(void)
  4244. {
  4245. BUG_ON(!in_softirq());
  4246. if (should_resched()) {
  4247. local_bh_enable();
  4248. __cond_resched();
  4249. local_bh_disable();
  4250. return 1;
  4251. }
  4252. return 0;
  4253. }
  4254. EXPORT_SYMBOL(__cond_resched_softirq);
  4255. /**
  4256. * yield - yield the current processor to other threads.
  4257. *
  4258. * This is a shortcut for kernel-space yielding - it marks the
  4259. * thread runnable and calls sys_sched_yield().
  4260. */
  4261. void __sched yield(void)
  4262. {
  4263. set_current_state(TASK_RUNNING);
  4264. sys_sched_yield();
  4265. }
  4266. EXPORT_SYMBOL(yield);
  4267. /*
  4268. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4269. * that process accounting knows that this is a task in IO wait state.
  4270. */
  4271. void __sched io_schedule(void)
  4272. {
  4273. struct rq *rq = raw_rq();
  4274. delayacct_blkio_start();
  4275. atomic_inc(&rq->nr_iowait);
  4276. current->in_iowait = 1;
  4277. schedule();
  4278. current->in_iowait = 0;
  4279. atomic_dec(&rq->nr_iowait);
  4280. delayacct_blkio_end();
  4281. }
  4282. EXPORT_SYMBOL(io_schedule);
  4283. long __sched io_schedule_timeout(long timeout)
  4284. {
  4285. struct rq *rq = raw_rq();
  4286. long ret;
  4287. delayacct_blkio_start();
  4288. atomic_inc(&rq->nr_iowait);
  4289. current->in_iowait = 1;
  4290. ret = schedule_timeout(timeout);
  4291. current->in_iowait = 0;
  4292. atomic_dec(&rq->nr_iowait);
  4293. delayacct_blkio_end();
  4294. return ret;
  4295. }
  4296. /**
  4297. * sys_sched_get_priority_max - return maximum RT priority.
  4298. * @policy: scheduling class.
  4299. *
  4300. * this syscall returns the maximum rt_priority that can be used
  4301. * by a given scheduling class.
  4302. */
  4303. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4304. {
  4305. int ret = -EINVAL;
  4306. switch (policy) {
  4307. case SCHED_FIFO:
  4308. case SCHED_RR:
  4309. ret = MAX_USER_RT_PRIO-1;
  4310. break;
  4311. case SCHED_NORMAL:
  4312. case SCHED_BATCH:
  4313. case SCHED_IDLE:
  4314. ret = 0;
  4315. break;
  4316. }
  4317. return ret;
  4318. }
  4319. /**
  4320. * sys_sched_get_priority_min - return minimum RT priority.
  4321. * @policy: scheduling class.
  4322. *
  4323. * this syscall returns the minimum rt_priority that can be used
  4324. * by a given scheduling class.
  4325. */
  4326. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4327. {
  4328. int ret = -EINVAL;
  4329. switch (policy) {
  4330. case SCHED_FIFO:
  4331. case SCHED_RR:
  4332. ret = 1;
  4333. break;
  4334. case SCHED_NORMAL:
  4335. case SCHED_BATCH:
  4336. case SCHED_IDLE:
  4337. ret = 0;
  4338. }
  4339. return ret;
  4340. }
  4341. /**
  4342. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4343. * @pid: pid of the process.
  4344. * @interval: userspace pointer to the timeslice value.
  4345. *
  4346. * this syscall writes the default timeslice value of a given process
  4347. * into the user-space timespec buffer. A value of '0' means infinity.
  4348. */
  4349. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4350. struct timespec __user *, interval)
  4351. {
  4352. struct task_struct *p;
  4353. unsigned int time_slice;
  4354. unsigned long flags;
  4355. struct rq *rq;
  4356. int retval;
  4357. struct timespec t;
  4358. if (pid < 0)
  4359. return -EINVAL;
  4360. retval = -ESRCH;
  4361. rcu_read_lock();
  4362. p = find_process_by_pid(pid);
  4363. if (!p)
  4364. goto out_unlock;
  4365. retval = security_task_getscheduler(p);
  4366. if (retval)
  4367. goto out_unlock;
  4368. rq = task_rq_lock(p, &flags);
  4369. time_slice = p->sched_class->get_rr_interval(rq, p);
  4370. task_rq_unlock(rq, &flags);
  4371. rcu_read_unlock();
  4372. jiffies_to_timespec(time_slice, &t);
  4373. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4374. return retval;
  4375. out_unlock:
  4376. rcu_read_unlock();
  4377. return retval;
  4378. }
  4379. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4380. void sched_show_task(struct task_struct *p)
  4381. {
  4382. unsigned long free = 0;
  4383. unsigned state;
  4384. state = p->state ? __ffs(p->state) + 1 : 0;
  4385. printk(KERN_INFO "%-13.13s %c", p->comm,
  4386. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4387. #if BITS_PER_LONG == 32
  4388. if (state == TASK_RUNNING)
  4389. printk(KERN_CONT " running ");
  4390. else
  4391. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4392. #else
  4393. if (state == TASK_RUNNING)
  4394. printk(KERN_CONT " running task ");
  4395. else
  4396. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4397. #endif
  4398. #ifdef CONFIG_DEBUG_STACK_USAGE
  4399. free = stack_not_used(p);
  4400. #endif
  4401. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4402. task_pid_nr(p), task_pid_nr(p->real_parent),
  4403. (unsigned long)task_thread_info(p)->flags);
  4404. show_stack(p, NULL);
  4405. }
  4406. void show_state_filter(unsigned long state_filter)
  4407. {
  4408. struct task_struct *g, *p;
  4409. #if BITS_PER_LONG == 32
  4410. printk(KERN_INFO
  4411. " task PC stack pid father\n");
  4412. #else
  4413. printk(KERN_INFO
  4414. " task PC stack pid father\n");
  4415. #endif
  4416. read_lock(&tasklist_lock);
  4417. do_each_thread(g, p) {
  4418. /*
  4419. * reset the NMI-timeout, listing all files on a slow
  4420. * console might take alot of time:
  4421. */
  4422. touch_nmi_watchdog();
  4423. if (!state_filter || (p->state & state_filter))
  4424. sched_show_task(p);
  4425. } while_each_thread(g, p);
  4426. touch_all_softlockup_watchdogs();
  4427. #ifdef CONFIG_SCHED_DEBUG
  4428. sysrq_sched_debug_show();
  4429. #endif
  4430. read_unlock(&tasklist_lock);
  4431. /*
  4432. * Only show locks if all tasks are dumped:
  4433. */
  4434. if (!state_filter)
  4435. debug_show_all_locks();
  4436. }
  4437. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4438. {
  4439. idle->sched_class = &idle_sched_class;
  4440. }
  4441. /**
  4442. * init_idle - set up an idle thread for a given CPU
  4443. * @idle: task in question
  4444. * @cpu: cpu the idle task belongs to
  4445. *
  4446. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4447. * flag, to make booting more robust.
  4448. */
  4449. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4450. {
  4451. struct rq *rq = cpu_rq(cpu);
  4452. unsigned long flags;
  4453. raw_spin_lock_irqsave(&rq->lock, flags);
  4454. __sched_fork(idle);
  4455. idle->state = TASK_RUNNING;
  4456. idle->se.exec_start = sched_clock();
  4457. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4458. __set_task_cpu(idle, cpu);
  4459. rq->curr = rq->idle = idle;
  4460. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4461. idle->oncpu = 1;
  4462. #endif
  4463. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4464. /* Set the preempt count _outside_ the spinlocks! */
  4465. #if defined(CONFIG_PREEMPT)
  4466. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4467. #else
  4468. task_thread_info(idle)->preempt_count = 0;
  4469. #endif
  4470. /*
  4471. * The idle tasks have their own, simple scheduling class:
  4472. */
  4473. idle->sched_class = &idle_sched_class;
  4474. ftrace_graph_init_task(idle);
  4475. }
  4476. /*
  4477. * In a system that switches off the HZ timer nohz_cpu_mask
  4478. * indicates which cpus entered this state. This is used
  4479. * in the rcu update to wait only for active cpus. For system
  4480. * which do not switch off the HZ timer nohz_cpu_mask should
  4481. * always be CPU_BITS_NONE.
  4482. */
  4483. cpumask_var_t nohz_cpu_mask;
  4484. /*
  4485. * Increase the granularity value when there are more CPUs,
  4486. * because with more CPUs the 'effective latency' as visible
  4487. * to users decreases. But the relationship is not linear,
  4488. * so pick a second-best guess by going with the log2 of the
  4489. * number of CPUs.
  4490. *
  4491. * This idea comes from the SD scheduler of Con Kolivas:
  4492. */
  4493. static int get_update_sysctl_factor(void)
  4494. {
  4495. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4496. unsigned int factor;
  4497. switch (sysctl_sched_tunable_scaling) {
  4498. case SCHED_TUNABLESCALING_NONE:
  4499. factor = 1;
  4500. break;
  4501. case SCHED_TUNABLESCALING_LINEAR:
  4502. factor = cpus;
  4503. break;
  4504. case SCHED_TUNABLESCALING_LOG:
  4505. default:
  4506. factor = 1 + ilog2(cpus);
  4507. break;
  4508. }
  4509. return factor;
  4510. }
  4511. static void update_sysctl(void)
  4512. {
  4513. unsigned int factor = get_update_sysctl_factor();
  4514. #define SET_SYSCTL(name) \
  4515. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4516. SET_SYSCTL(sched_min_granularity);
  4517. SET_SYSCTL(sched_latency);
  4518. SET_SYSCTL(sched_wakeup_granularity);
  4519. SET_SYSCTL(sched_shares_ratelimit);
  4520. #undef SET_SYSCTL
  4521. }
  4522. static inline void sched_init_granularity(void)
  4523. {
  4524. update_sysctl();
  4525. }
  4526. #ifdef CONFIG_SMP
  4527. /*
  4528. * This is how migration works:
  4529. *
  4530. * 1) we queue a struct migration_req structure in the source CPU's
  4531. * runqueue and wake up that CPU's migration thread.
  4532. * 2) we down() the locked semaphore => thread blocks.
  4533. * 3) migration thread wakes up (implicitly it forces the migrated
  4534. * thread off the CPU)
  4535. * 4) it gets the migration request and checks whether the migrated
  4536. * task is still in the wrong runqueue.
  4537. * 5) if it's in the wrong runqueue then the migration thread removes
  4538. * it and puts it into the right queue.
  4539. * 6) migration thread up()s the semaphore.
  4540. * 7) we wake up and the migration is done.
  4541. */
  4542. /*
  4543. * Change a given task's CPU affinity. Migrate the thread to a
  4544. * proper CPU and schedule it away if the CPU it's executing on
  4545. * is removed from the allowed bitmask.
  4546. *
  4547. * NOTE: the caller must have a valid reference to the task, the
  4548. * task must not exit() & deallocate itself prematurely. The
  4549. * call is not atomic; no spinlocks may be held.
  4550. */
  4551. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4552. {
  4553. struct migration_req req;
  4554. unsigned long flags;
  4555. struct rq *rq;
  4556. int ret = 0;
  4557. rq = task_rq_lock(p, &flags);
  4558. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4559. ret = -EINVAL;
  4560. goto out;
  4561. }
  4562. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4563. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4564. ret = -EINVAL;
  4565. goto out;
  4566. }
  4567. if (p->sched_class->set_cpus_allowed)
  4568. p->sched_class->set_cpus_allowed(p, new_mask);
  4569. else {
  4570. cpumask_copy(&p->cpus_allowed, new_mask);
  4571. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4572. }
  4573. /* Can the task run on the task's current CPU? If so, we're done */
  4574. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4575. goto out;
  4576. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  4577. /* Need help from migration thread: drop lock and wait. */
  4578. struct task_struct *mt = rq->migration_thread;
  4579. get_task_struct(mt);
  4580. task_rq_unlock(rq, &flags);
  4581. wake_up_process(rq->migration_thread);
  4582. put_task_struct(mt);
  4583. wait_for_completion(&req.done);
  4584. tlb_migrate_finish(p->mm);
  4585. return 0;
  4586. }
  4587. out:
  4588. task_rq_unlock(rq, &flags);
  4589. return ret;
  4590. }
  4591. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4592. /*
  4593. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4594. * this because either it can't run here any more (set_cpus_allowed()
  4595. * away from this CPU, or CPU going down), or because we're
  4596. * attempting to rebalance this task on exec (sched_exec).
  4597. *
  4598. * So we race with normal scheduler movements, but that's OK, as long
  4599. * as the task is no longer on this CPU.
  4600. *
  4601. * Returns non-zero if task was successfully migrated.
  4602. */
  4603. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4604. {
  4605. struct rq *rq_dest, *rq_src;
  4606. int ret = 0;
  4607. if (unlikely(!cpu_active(dest_cpu)))
  4608. return ret;
  4609. rq_src = cpu_rq(src_cpu);
  4610. rq_dest = cpu_rq(dest_cpu);
  4611. double_rq_lock(rq_src, rq_dest);
  4612. /* Already moved. */
  4613. if (task_cpu(p) != src_cpu)
  4614. goto done;
  4615. /* Affinity changed (again). */
  4616. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4617. goto fail;
  4618. /*
  4619. * If we're not on a rq, the next wake-up will ensure we're
  4620. * placed properly.
  4621. */
  4622. if (p->se.on_rq) {
  4623. deactivate_task(rq_src, p, 0);
  4624. set_task_cpu(p, dest_cpu);
  4625. activate_task(rq_dest, p, 0);
  4626. check_preempt_curr(rq_dest, p, 0);
  4627. }
  4628. done:
  4629. ret = 1;
  4630. fail:
  4631. double_rq_unlock(rq_src, rq_dest);
  4632. return ret;
  4633. }
  4634. #define RCU_MIGRATION_IDLE 0
  4635. #define RCU_MIGRATION_NEED_QS 1
  4636. #define RCU_MIGRATION_GOT_QS 2
  4637. #define RCU_MIGRATION_MUST_SYNC 3
  4638. /*
  4639. * migration_thread - this is a highprio system thread that performs
  4640. * thread migration by bumping thread off CPU then 'pushing' onto
  4641. * another runqueue.
  4642. */
  4643. static int migration_thread(void *data)
  4644. {
  4645. int badcpu;
  4646. int cpu = (long)data;
  4647. struct rq *rq;
  4648. rq = cpu_rq(cpu);
  4649. BUG_ON(rq->migration_thread != current);
  4650. set_current_state(TASK_INTERRUPTIBLE);
  4651. while (!kthread_should_stop()) {
  4652. struct migration_req *req;
  4653. struct list_head *head;
  4654. raw_spin_lock_irq(&rq->lock);
  4655. if (cpu_is_offline(cpu)) {
  4656. raw_spin_unlock_irq(&rq->lock);
  4657. break;
  4658. }
  4659. if (rq->active_balance) {
  4660. active_load_balance(rq, cpu);
  4661. rq->active_balance = 0;
  4662. }
  4663. head = &rq->migration_queue;
  4664. if (list_empty(head)) {
  4665. raw_spin_unlock_irq(&rq->lock);
  4666. schedule();
  4667. set_current_state(TASK_INTERRUPTIBLE);
  4668. continue;
  4669. }
  4670. req = list_entry(head->next, struct migration_req, list);
  4671. list_del_init(head->next);
  4672. if (req->task != NULL) {
  4673. raw_spin_unlock(&rq->lock);
  4674. __migrate_task(req->task, cpu, req->dest_cpu);
  4675. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  4676. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  4677. raw_spin_unlock(&rq->lock);
  4678. } else {
  4679. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  4680. raw_spin_unlock(&rq->lock);
  4681. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  4682. }
  4683. local_irq_enable();
  4684. complete(&req->done);
  4685. }
  4686. __set_current_state(TASK_RUNNING);
  4687. return 0;
  4688. }
  4689. #ifdef CONFIG_HOTPLUG_CPU
  4690. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4691. {
  4692. int ret;
  4693. local_irq_disable();
  4694. ret = __migrate_task(p, src_cpu, dest_cpu);
  4695. local_irq_enable();
  4696. return ret;
  4697. }
  4698. /*
  4699. * Figure out where task on dead CPU should go, use force if necessary.
  4700. */
  4701. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4702. {
  4703. int dest_cpu;
  4704. again:
  4705. dest_cpu = select_fallback_rq(dead_cpu, p);
  4706. /* It can have affinity changed while we were choosing. */
  4707. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  4708. goto again;
  4709. }
  4710. /*
  4711. * While a dead CPU has no uninterruptible tasks queued at this point,
  4712. * it might still have a nonzero ->nr_uninterruptible counter, because
  4713. * for performance reasons the counter is not stricly tracking tasks to
  4714. * their home CPUs. So we just add the counter to another CPU's counter,
  4715. * to keep the global sum constant after CPU-down:
  4716. */
  4717. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4718. {
  4719. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4720. unsigned long flags;
  4721. local_irq_save(flags);
  4722. double_rq_lock(rq_src, rq_dest);
  4723. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4724. rq_src->nr_uninterruptible = 0;
  4725. double_rq_unlock(rq_src, rq_dest);
  4726. local_irq_restore(flags);
  4727. }
  4728. /* Run through task list and migrate tasks from the dead cpu. */
  4729. static void migrate_live_tasks(int src_cpu)
  4730. {
  4731. struct task_struct *p, *t;
  4732. read_lock(&tasklist_lock);
  4733. do_each_thread(t, p) {
  4734. if (p == current)
  4735. continue;
  4736. if (task_cpu(p) == src_cpu)
  4737. move_task_off_dead_cpu(src_cpu, p);
  4738. } while_each_thread(t, p);
  4739. read_unlock(&tasklist_lock);
  4740. }
  4741. /*
  4742. * Schedules idle task to be the next runnable task on current CPU.
  4743. * It does so by boosting its priority to highest possible.
  4744. * Used by CPU offline code.
  4745. */
  4746. void sched_idle_next(void)
  4747. {
  4748. int this_cpu = smp_processor_id();
  4749. struct rq *rq = cpu_rq(this_cpu);
  4750. struct task_struct *p = rq->idle;
  4751. unsigned long flags;
  4752. /* cpu has to be offline */
  4753. BUG_ON(cpu_online(this_cpu));
  4754. /*
  4755. * Strictly not necessary since rest of the CPUs are stopped by now
  4756. * and interrupts disabled on the current cpu.
  4757. */
  4758. raw_spin_lock_irqsave(&rq->lock, flags);
  4759. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4760. update_rq_clock(rq);
  4761. activate_task(rq, p, 0);
  4762. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4763. }
  4764. /*
  4765. * Ensures that the idle task is using init_mm right before its cpu goes
  4766. * offline.
  4767. */
  4768. void idle_task_exit(void)
  4769. {
  4770. struct mm_struct *mm = current->active_mm;
  4771. BUG_ON(cpu_online(smp_processor_id()));
  4772. if (mm != &init_mm)
  4773. switch_mm(mm, &init_mm, current);
  4774. mmdrop(mm);
  4775. }
  4776. /* called under rq->lock with disabled interrupts */
  4777. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4778. {
  4779. struct rq *rq = cpu_rq(dead_cpu);
  4780. /* Must be exiting, otherwise would be on tasklist. */
  4781. BUG_ON(!p->exit_state);
  4782. /* Cannot have done final schedule yet: would have vanished. */
  4783. BUG_ON(p->state == TASK_DEAD);
  4784. get_task_struct(p);
  4785. /*
  4786. * Drop lock around migration; if someone else moves it,
  4787. * that's OK. No task can be added to this CPU, so iteration is
  4788. * fine.
  4789. */
  4790. raw_spin_unlock_irq(&rq->lock);
  4791. move_task_off_dead_cpu(dead_cpu, p);
  4792. raw_spin_lock_irq(&rq->lock);
  4793. put_task_struct(p);
  4794. }
  4795. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4796. static void migrate_dead_tasks(unsigned int dead_cpu)
  4797. {
  4798. struct rq *rq = cpu_rq(dead_cpu);
  4799. struct task_struct *next;
  4800. for ( ; ; ) {
  4801. if (!rq->nr_running)
  4802. break;
  4803. update_rq_clock(rq);
  4804. next = pick_next_task(rq);
  4805. if (!next)
  4806. break;
  4807. next->sched_class->put_prev_task(rq, next);
  4808. migrate_dead(dead_cpu, next);
  4809. }
  4810. }
  4811. /*
  4812. * remove the tasks which were accounted by rq from calc_load_tasks.
  4813. */
  4814. static void calc_global_load_remove(struct rq *rq)
  4815. {
  4816. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4817. rq->calc_load_active = 0;
  4818. }
  4819. #endif /* CONFIG_HOTPLUG_CPU */
  4820. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4821. static struct ctl_table sd_ctl_dir[] = {
  4822. {
  4823. .procname = "sched_domain",
  4824. .mode = 0555,
  4825. },
  4826. {}
  4827. };
  4828. static struct ctl_table sd_ctl_root[] = {
  4829. {
  4830. .procname = "kernel",
  4831. .mode = 0555,
  4832. .child = sd_ctl_dir,
  4833. },
  4834. {}
  4835. };
  4836. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4837. {
  4838. struct ctl_table *entry =
  4839. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4840. return entry;
  4841. }
  4842. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4843. {
  4844. struct ctl_table *entry;
  4845. /*
  4846. * In the intermediate directories, both the child directory and
  4847. * procname are dynamically allocated and could fail but the mode
  4848. * will always be set. In the lowest directory the names are
  4849. * static strings and all have proc handlers.
  4850. */
  4851. for (entry = *tablep; entry->mode; entry++) {
  4852. if (entry->child)
  4853. sd_free_ctl_entry(&entry->child);
  4854. if (entry->proc_handler == NULL)
  4855. kfree(entry->procname);
  4856. }
  4857. kfree(*tablep);
  4858. *tablep = NULL;
  4859. }
  4860. static void
  4861. set_table_entry(struct ctl_table *entry,
  4862. const char *procname, void *data, int maxlen,
  4863. mode_t mode, proc_handler *proc_handler)
  4864. {
  4865. entry->procname = procname;
  4866. entry->data = data;
  4867. entry->maxlen = maxlen;
  4868. entry->mode = mode;
  4869. entry->proc_handler = proc_handler;
  4870. }
  4871. static struct ctl_table *
  4872. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4873. {
  4874. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4875. if (table == NULL)
  4876. return NULL;
  4877. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4878. sizeof(long), 0644, proc_doulongvec_minmax);
  4879. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4880. sizeof(long), 0644, proc_doulongvec_minmax);
  4881. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4882. sizeof(int), 0644, proc_dointvec_minmax);
  4883. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4884. sizeof(int), 0644, proc_dointvec_minmax);
  4885. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4886. sizeof(int), 0644, proc_dointvec_minmax);
  4887. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4888. sizeof(int), 0644, proc_dointvec_minmax);
  4889. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4890. sizeof(int), 0644, proc_dointvec_minmax);
  4891. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4892. sizeof(int), 0644, proc_dointvec_minmax);
  4893. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4894. sizeof(int), 0644, proc_dointvec_minmax);
  4895. set_table_entry(&table[9], "cache_nice_tries",
  4896. &sd->cache_nice_tries,
  4897. sizeof(int), 0644, proc_dointvec_minmax);
  4898. set_table_entry(&table[10], "flags", &sd->flags,
  4899. sizeof(int), 0644, proc_dointvec_minmax);
  4900. set_table_entry(&table[11], "name", sd->name,
  4901. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4902. /* &table[12] is terminator */
  4903. return table;
  4904. }
  4905. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4906. {
  4907. struct ctl_table *entry, *table;
  4908. struct sched_domain *sd;
  4909. int domain_num = 0, i;
  4910. char buf[32];
  4911. for_each_domain(cpu, sd)
  4912. domain_num++;
  4913. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4914. if (table == NULL)
  4915. return NULL;
  4916. i = 0;
  4917. for_each_domain(cpu, sd) {
  4918. snprintf(buf, 32, "domain%d", i);
  4919. entry->procname = kstrdup(buf, GFP_KERNEL);
  4920. entry->mode = 0555;
  4921. entry->child = sd_alloc_ctl_domain_table(sd);
  4922. entry++;
  4923. i++;
  4924. }
  4925. return table;
  4926. }
  4927. static struct ctl_table_header *sd_sysctl_header;
  4928. static void register_sched_domain_sysctl(void)
  4929. {
  4930. int i, cpu_num = num_possible_cpus();
  4931. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4932. char buf[32];
  4933. WARN_ON(sd_ctl_dir[0].child);
  4934. sd_ctl_dir[0].child = entry;
  4935. if (entry == NULL)
  4936. return;
  4937. for_each_possible_cpu(i) {
  4938. snprintf(buf, 32, "cpu%d", i);
  4939. entry->procname = kstrdup(buf, GFP_KERNEL);
  4940. entry->mode = 0555;
  4941. entry->child = sd_alloc_ctl_cpu_table(i);
  4942. entry++;
  4943. }
  4944. WARN_ON(sd_sysctl_header);
  4945. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4946. }
  4947. /* may be called multiple times per register */
  4948. static void unregister_sched_domain_sysctl(void)
  4949. {
  4950. if (sd_sysctl_header)
  4951. unregister_sysctl_table(sd_sysctl_header);
  4952. sd_sysctl_header = NULL;
  4953. if (sd_ctl_dir[0].child)
  4954. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4955. }
  4956. #else
  4957. static void register_sched_domain_sysctl(void)
  4958. {
  4959. }
  4960. static void unregister_sched_domain_sysctl(void)
  4961. {
  4962. }
  4963. #endif
  4964. static void set_rq_online(struct rq *rq)
  4965. {
  4966. if (!rq->online) {
  4967. const struct sched_class *class;
  4968. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4969. rq->online = 1;
  4970. for_each_class(class) {
  4971. if (class->rq_online)
  4972. class->rq_online(rq);
  4973. }
  4974. }
  4975. }
  4976. static void set_rq_offline(struct rq *rq)
  4977. {
  4978. if (rq->online) {
  4979. const struct sched_class *class;
  4980. for_each_class(class) {
  4981. if (class->rq_offline)
  4982. class->rq_offline(rq);
  4983. }
  4984. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4985. rq->online = 0;
  4986. }
  4987. }
  4988. /*
  4989. * migration_call - callback that gets triggered when a CPU is added.
  4990. * Here we can start up the necessary migration thread for the new CPU.
  4991. */
  4992. static int __cpuinit
  4993. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4994. {
  4995. struct task_struct *p;
  4996. int cpu = (long)hcpu;
  4997. unsigned long flags;
  4998. struct rq *rq;
  4999. switch (action) {
  5000. case CPU_UP_PREPARE:
  5001. case CPU_UP_PREPARE_FROZEN:
  5002. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5003. if (IS_ERR(p))
  5004. return NOTIFY_BAD;
  5005. kthread_bind(p, cpu);
  5006. /* Must be high prio: stop_machine expects to yield to it. */
  5007. rq = task_rq_lock(p, &flags);
  5008. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5009. task_rq_unlock(rq, &flags);
  5010. get_task_struct(p);
  5011. cpu_rq(cpu)->migration_thread = p;
  5012. rq->calc_load_update = calc_load_update;
  5013. break;
  5014. case CPU_ONLINE:
  5015. case CPU_ONLINE_FROZEN:
  5016. /* Strictly unnecessary, as first user will wake it. */
  5017. wake_up_process(cpu_rq(cpu)->migration_thread);
  5018. /* Update our root-domain */
  5019. rq = cpu_rq(cpu);
  5020. raw_spin_lock_irqsave(&rq->lock, flags);
  5021. if (rq->rd) {
  5022. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5023. set_rq_online(rq);
  5024. }
  5025. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5026. break;
  5027. #ifdef CONFIG_HOTPLUG_CPU
  5028. case CPU_UP_CANCELED:
  5029. case CPU_UP_CANCELED_FROZEN:
  5030. if (!cpu_rq(cpu)->migration_thread)
  5031. break;
  5032. /* Unbind it from offline cpu so it can run. Fall thru. */
  5033. kthread_bind(cpu_rq(cpu)->migration_thread,
  5034. cpumask_any(cpu_online_mask));
  5035. kthread_stop(cpu_rq(cpu)->migration_thread);
  5036. put_task_struct(cpu_rq(cpu)->migration_thread);
  5037. cpu_rq(cpu)->migration_thread = NULL;
  5038. break;
  5039. case CPU_DEAD:
  5040. case CPU_DEAD_FROZEN:
  5041. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5042. migrate_live_tasks(cpu);
  5043. rq = cpu_rq(cpu);
  5044. kthread_stop(rq->migration_thread);
  5045. put_task_struct(rq->migration_thread);
  5046. rq->migration_thread = NULL;
  5047. /* Idle task back to normal (off runqueue, low prio) */
  5048. raw_spin_lock_irq(&rq->lock);
  5049. update_rq_clock(rq);
  5050. deactivate_task(rq, rq->idle, 0);
  5051. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5052. rq->idle->sched_class = &idle_sched_class;
  5053. migrate_dead_tasks(cpu);
  5054. raw_spin_unlock_irq(&rq->lock);
  5055. cpuset_unlock();
  5056. migrate_nr_uninterruptible(rq);
  5057. BUG_ON(rq->nr_running != 0);
  5058. calc_global_load_remove(rq);
  5059. /*
  5060. * No need to migrate the tasks: it was best-effort if
  5061. * they didn't take sched_hotcpu_mutex. Just wake up
  5062. * the requestors.
  5063. */
  5064. raw_spin_lock_irq(&rq->lock);
  5065. while (!list_empty(&rq->migration_queue)) {
  5066. struct migration_req *req;
  5067. req = list_entry(rq->migration_queue.next,
  5068. struct migration_req, list);
  5069. list_del_init(&req->list);
  5070. raw_spin_unlock_irq(&rq->lock);
  5071. complete(&req->done);
  5072. raw_spin_lock_irq(&rq->lock);
  5073. }
  5074. raw_spin_unlock_irq(&rq->lock);
  5075. break;
  5076. case CPU_DYING:
  5077. case CPU_DYING_FROZEN:
  5078. /* Update our root-domain */
  5079. rq = cpu_rq(cpu);
  5080. raw_spin_lock_irqsave(&rq->lock, flags);
  5081. if (rq->rd) {
  5082. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5083. set_rq_offline(rq);
  5084. }
  5085. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5086. break;
  5087. #endif
  5088. }
  5089. return NOTIFY_OK;
  5090. }
  5091. /*
  5092. * Register at high priority so that task migration (migrate_all_tasks)
  5093. * happens before everything else. This has to be lower priority than
  5094. * the notifier in the perf_event subsystem, though.
  5095. */
  5096. static struct notifier_block __cpuinitdata migration_notifier = {
  5097. .notifier_call = migration_call,
  5098. .priority = 10
  5099. };
  5100. static int __init migration_init(void)
  5101. {
  5102. void *cpu = (void *)(long)smp_processor_id();
  5103. int err;
  5104. /* Start one for the boot CPU: */
  5105. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5106. BUG_ON(err == NOTIFY_BAD);
  5107. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5108. register_cpu_notifier(&migration_notifier);
  5109. return 0;
  5110. }
  5111. early_initcall(migration_init);
  5112. #endif
  5113. #ifdef CONFIG_SMP
  5114. #ifdef CONFIG_SCHED_DEBUG
  5115. static __read_mostly int sched_domain_debug_enabled;
  5116. static int __init sched_domain_debug_setup(char *str)
  5117. {
  5118. sched_domain_debug_enabled = 1;
  5119. return 0;
  5120. }
  5121. early_param("sched_debug", sched_domain_debug_setup);
  5122. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5123. struct cpumask *groupmask)
  5124. {
  5125. struct sched_group *group = sd->groups;
  5126. char str[256];
  5127. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5128. cpumask_clear(groupmask);
  5129. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5130. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5131. printk("does not load-balance\n");
  5132. if (sd->parent)
  5133. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5134. " has parent");
  5135. return -1;
  5136. }
  5137. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5138. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5139. printk(KERN_ERR "ERROR: domain->span does not contain "
  5140. "CPU%d\n", cpu);
  5141. }
  5142. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5143. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5144. " CPU%d\n", cpu);
  5145. }
  5146. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5147. do {
  5148. if (!group) {
  5149. printk("\n");
  5150. printk(KERN_ERR "ERROR: group is NULL\n");
  5151. break;
  5152. }
  5153. if (!group->cpu_power) {
  5154. printk(KERN_CONT "\n");
  5155. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5156. "set\n");
  5157. break;
  5158. }
  5159. if (!cpumask_weight(sched_group_cpus(group))) {
  5160. printk(KERN_CONT "\n");
  5161. printk(KERN_ERR "ERROR: empty group\n");
  5162. break;
  5163. }
  5164. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5165. printk(KERN_CONT "\n");
  5166. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5167. break;
  5168. }
  5169. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5170. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5171. printk(KERN_CONT " %s", str);
  5172. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5173. printk(KERN_CONT " (cpu_power = %d)",
  5174. group->cpu_power);
  5175. }
  5176. group = group->next;
  5177. } while (group != sd->groups);
  5178. printk(KERN_CONT "\n");
  5179. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5180. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5181. if (sd->parent &&
  5182. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5183. printk(KERN_ERR "ERROR: parent span is not a superset "
  5184. "of domain->span\n");
  5185. return 0;
  5186. }
  5187. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5188. {
  5189. cpumask_var_t groupmask;
  5190. int level = 0;
  5191. if (!sched_domain_debug_enabled)
  5192. return;
  5193. if (!sd) {
  5194. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5195. return;
  5196. }
  5197. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5198. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5199. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5200. return;
  5201. }
  5202. for (;;) {
  5203. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5204. break;
  5205. level++;
  5206. sd = sd->parent;
  5207. if (!sd)
  5208. break;
  5209. }
  5210. free_cpumask_var(groupmask);
  5211. }
  5212. #else /* !CONFIG_SCHED_DEBUG */
  5213. # define sched_domain_debug(sd, cpu) do { } while (0)
  5214. #endif /* CONFIG_SCHED_DEBUG */
  5215. static int sd_degenerate(struct sched_domain *sd)
  5216. {
  5217. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5218. return 1;
  5219. /* Following flags need at least 2 groups */
  5220. if (sd->flags & (SD_LOAD_BALANCE |
  5221. SD_BALANCE_NEWIDLE |
  5222. SD_BALANCE_FORK |
  5223. SD_BALANCE_EXEC |
  5224. SD_SHARE_CPUPOWER |
  5225. SD_SHARE_PKG_RESOURCES)) {
  5226. if (sd->groups != sd->groups->next)
  5227. return 0;
  5228. }
  5229. /* Following flags don't use groups */
  5230. if (sd->flags & (SD_WAKE_AFFINE))
  5231. return 0;
  5232. return 1;
  5233. }
  5234. static int
  5235. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5236. {
  5237. unsigned long cflags = sd->flags, pflags = parent->flags;
  5238. if (sd_degenerate(parent))
  5239. return 1;
  5240. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5241. return 0;
  5242. /* Flags needing groups don't count if only 1 group in parent */
  5243. if (parent->groups == parent->groups->next) {
  5244. pflags &= ~(SD_LOAD_BALANCE |
  5245. SD_BALANCE_NEWIDLE |
  5246. SD_BALANCE_FORK |
  5247. SD_BALANCE_EXEC |
  5248. SD_SHARE_CPUPOWER |
  5249. SD_SHARE_PKG_RESOURCES);
  5250. if (nr_node_ids == 1)
  5251. pflags &= ~SD_SERIALIZE;
  5252. }
  5253. if (~cflags & pflags)
  5254. return 0;
  5255. return 1;
  5256. }
  5257. static void free_rootdomain(struct root_domain *rd)
  5258. {
  5259. synchronize_sched();
  5260. cpupri_cleanup(&rd->cpupri);
  5261. free_cpumask_var(rd->rto_mask);
  5262. free_cpumask_var(rd->online);
  5263. free_cpumask_var(rd->span);
  5264. kfree(rd);
  5265. }
  5266. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5267. {
  5268. struct root_domain *old_rd = NULL;
  5269. unsigned long flags;
  5270. raw_spin_lock_irqsave(&rq->lock, flags);
  5271. if (rq->rd) {
  5272. old_rd = rq->rd;
  5273. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5274. set_rq_offline(rq);
  5275. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5276. /*
  5277. * If we dont want to free the old_rt yet then
  5278. * set old_rd to NULL to skip the freeing later
  5279. * in this function:
  5280. */
  5281. if (!atomic_dec_and_test(&old_rd->refcount))
  5282. old_rd = NULL;
  5283. }
  5284. atomic_inc(&rd->refcount);
  5285. rq->rd = rd;
  5286. cpumask_set_cpu(rq->cpu, rd->span);
  5287. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5288. set_rq_online(rq);
  5289. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5290. if (old_rd)
  5291. free_rootdomain(old_rd);
  5292. }
  5293. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5294. {
  5295. gfp_t gfp = GFP_KERNEL;
  5296. memset(rd, 0, sizeof(*rd));
  5297. if (bootmem)
  5298. gfp = GFP_NOWAIT;
  5299. if (!alloc_cpumask_var(&rd->span, gfp))
  5300. goto out;
  5301. if (!alloc_cpumask_var(&rd->online, gfp))
  5302. goto free_span;
  5303. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5304. goto free_online;
  5305. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5306. goto free_rto_mask;
  5307. return 0;
  5308. free_rto_mask:
  5309. free_cpumask_var(rd->rto_mask);
  5310. free_online:
  5311. free_cpumask_var(rd->online);
  5312. free_span:
  5313. free_cpumask_var(rd->span);
  5314. out:
  5315. return -ENOMEM;
  5316. }
  5317. static void init_defrootdomain(void)
  5318. {
  5319. init_rootdomain(&def_root_domain, true);
  5320. atomic_set(&def_root_domain.refcount, 1);
  5321. }
  5322. static struct root_domain *alloc_rootdomain(void)
  5323. {
  5324. struct root_domain *rd;
  5325. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5326. if (!rd)
  5327. return NULL;
  5328. if (init_rootdomain(rd, false) != 0) {
  5329. kfree(rd);
  5330. return NULL;
  5331. }
  5332. return rd;
  5333. }
  5334. /*
  5335. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5336. * hold the hotplug lock.
  5337. */
  5338. static void
  5339. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5340. {
  5341. struct rq *rq = cpu_rq(cpu);
  5342. struct sched_domain *tmp;
  5343. /* Remove the sched domains which do not contribute to scheduling. */
  5344. for (tmp = sd; tmp; ) {
  5345. struct sched_domain *parent = tmp->parent;
  5346. if (!parent)
  5347. break;
  5348. if (sd_parent_degenerate(tmp, parent)) {
  5349. tmp->parent = parent->parent;
  5350. if (parent->parent)
  5351. parent->parent->child = tmp;
  5352. } else
  5353. tmp = tmp->parent;
  5354. }
  5355. if (sd && sd_degenerate(sd)) {
  5356. sd = sd->parent;
  5357. if (sd)
  5358. sd->child = NULL;
  5359. }
  5360. sched_domain_debug(sd, cpu);
  5361. rq_attach_root(rq, rd);
  5362. rcu_assign_pointer(rq->sd, sd);
  5363. }
  5364. /* cpus with isolated domains */
  5365. static cpumask_var_t cpu_isolated_map;
  5366. /* Setup the mask of cpus configured for isolated domains */
  5367. static int __init isolated_cpu_setup(char *str)
  5368. {
  5369. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5370. cpulist_parse(str, cpu_isolated_map);
  5371. return 1;
  5372. }
  5373. __setup("isolcpus=", isolated_cpu_setup);
  5374. /*
  5375. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5376. * to a function which identifies what group(along with sched group) a CPU
  5377. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5378. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5379. *
  5380. * init_sched_build_groups will build a circular linked list of the groups
  5381. * covered by the given span, and will set each group's ->cpumask correctly,
  5382. * and ->cpu_power to 0.
  5383. */
  5384. static void
  5385. init_sched_build_groups(const struct cpumask *span,
  5386. const struct cpumask *cpu_map,
  5387. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5388. struct sched_group **sg,
  5389. struct cpumask *tmpmask),
  5390. struct cpumask *covered, struct cpumask *tmpmask)
  5391. {
  5392. struct sched_group *first = NULL, *last = NULL;
  5393. int i;
  5394. cpumask_clear(covered);
  5395. for_each_cpu(i, span) {
  5396. struct sched_group *sg;
  5397. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5398. int j;
  5399. if (cpumask_test_cpu(i, covered))
  5400. continue;
  5401. cpumask_clear(sched_group_cpus(sg));
  5402. sg->cpu_power = 0;
  5403. for_each_cpu(j, span) {
  5404. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5405. continue;
  5406. cpumask_set_cpu(j, covered);
  5407. cpumask_set_cpu(j, sched_group_cpus(sg));
  5408. }
  5409. if (!first)
  5410. first = sg;
  5411. if (last)
  5412. last->next = sg;
  5413. last = sg;
  5414. }
  5415. last->next = first;
  5416. }
  5417. #define SD_NODES_PER_DOMAIN 16
  5418. #ifdef CONFIG_NUMA
  5419. /**
  5420. * find_next_best_node - find the next node to include in a sched_domain
  5421. * @node: node whose sched_domain we're building
  5422. * @used_nodes: nodes already in the sched_domain
  5423. *
  5424. * Find the next node to include in a given scheduling domain. Simply
  5425. * finds the closest node not already in the @used_nodes map.
  5426. *
  5427. * Should use nodemask_t.
  5428. */
  5429. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5430. {
  5431. int i, n, val, min_val, best_node = 0;
  5432. min_val = INT_MAX;
  5433. for (i = 0; i < nr_node_ids; i++) {
  5434. /* Start at @node */
  5435. n = (node + i) % nr_node_ids;
  5436. if (!nr_cpus_node(n))
  5437. continue;
  5438. /* Skip already used nodes */
  5439. if (node_isset(n, *used_nodes))
  5440. continue;
  5441. /* Simple min distance search */
  5442. val = node_distance(node, n);
  5443. if (val < min_val) {
  5444. min_val = val;
  5445. best_node = n;
  5446. }
  5447. }
  5448. node_set(best_node, *used_nodes);
  5449. return best_node;
  5450. }
  5451. /**
  5452. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5453. * @node: node whose cpumask we're constructing
  5454. * @span: resulting cpumask
  5455. *
  5456. * Given a node, construct a good cpumask for its sched_domain to span. It
  5457. * should be one that prevents unnecessary balancing, but also spreads tasks
  5458. * out optimally.
  5459. */
  5460. static void sched_domain_node_span(int node, struct cpumask *span)
  5461. {
  5462. nodemask_t used_nodes;
  5463. int i;
  5464. cpumask_clear(span);
  5465. nodes_clear(used_nodes);
  5466. cpumask_or(span, span, cpumask_of_node(node));
  5467. node_set(node, used_nodes);
  5468. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5469. int next_node = find_next_best_node(node, &used_nodes);
  5470. cpumask_or(span, span, cpumask_of_node(next_node));
  5471. }
  5472. }
  5473. #endif /* CONFIG_NUMA */
  5474. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5475. /*
  5476. * The cpus mask in sched_group and sched_domain hangs off the end.
  5477. *
  5478. * ( See the the comments in include/linux/sched.h:struct sched_group
  5479. * and struct sched_domain. )
  5480. */
  5481. struct static_sched_group {
  5482. struct sched_group sg;
  5483. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5484. };
  5485. struct static_sched_domain {
  5486. struct sched_domain sd;
  5487. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5488. };
  5489. struct s_data {
  5490. #ifdef CONFIG_NUMA
  5491. int sd_allnodes;
  5492. cpumask_var_t domainspan;
  5493. cpumask_var_t covered;
  5494. cpumask_var_t notcovered;
  5495. #endif
  5496. cpumask_var_t nodemask;
  5497. cpumask_var_t this_sibling_map;
  5498. cpumask_var_t this_core_map;
  5499. cpumask_var_t send_covered;
  5500. cpumask_var_t tmpmask;
  5501. struct sched_group **sched_group_nodes;
  5502. struct root_domain *rd;
  5503. };
  5504. enum s_alloc {
  5505. sa_sched_groups = 0,
  5506. sa_rootdomain,
  5507. sa_tmpmask,
  5508. sa_send_covered,
  5509. sa_this_core_map,
  5510. sa_this_sibling_map,
  5511. sa_nodemask,
  5512. sa_sched_group_nodes,
  5513. #ifdef CONFIG_NUMA
  5514. sa_notcovered,
  5515. sa_covered,
  5516. sa_domainspan,
  5517. #endif
  5518. sa_none,
  5519. };
  5520. /*
  5521. * SMT sched-domains:
  5522. */
  5523. #ifdef CONFIG_SCHED_SMT
  5524. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5525. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5526. static int
  5527. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5528. struct sched_group **sg, struct cpumask *unused)
  5529. {
  5530. if (sg)
  5531. *sg = &per_cpu(sched_groups, cpu).sg;
  5532. return cpu;
  5533. }
  5534. #endif /* CONFIG_SCHED_SMT */
  5535. /*
  5536. * multi-core sched-domains:
  5537. */
  5538. #ifdef CONFIG_SCHED_MC
  5539. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5540. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5541. #endif /* CONFIG_SCHED_MC */
  5542. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5543. static int
  5544. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5545. struct sched_group **sg, struct cpumask *mask)
  5546. {
  5547. int group;
  5548. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5549. group = cpumask_first(mask);
  5550. if (sg)
  5551. *sg = &per_cpu(sched_group_core, group).sg;
  5552. return group;
  5553. }
  5554. #elif defined(CONFIG_SCHED_MC)
  5555. static int
  5556. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5557. struct sched_group **sg, struct cpumask *unused)
  5558. {
  5559. if (sg)
  5560. *sg = &per_cpu(sched_group_core, cpu).sg;
  5561. return cpu;
  5562. }
  5563. #endif
  5564. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5565. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5566. static int
  5567. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5568. struct sched_group **sg, struct cpumask *mask)
  5569. {
  5570. int group;
  5571. #ifdef CONFIG_SCHED_MC
  5572. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5573. group = cpumask_first(mask);
  5574. #elif defined(CONFIG_SCHED_SMT)
  5575. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5576. group = cpumask_first(mask);
  5577. #else
  5578. group = cpu;
  5579. #endif
  5580. if (sg)
  5581. *sg = &per_cpu(sched_group_phys, group).sg;
  5582. return group;
  5583. }
  5584. #ifdef CONFIG_NUMA
  5585. /*
  5586. * The init_sched_build_groups can't handle what we want to do with node
  5587. * groups, so roll our own. Now each node has its own list of groups which
  5588. * gets dynamically allocated.
  5589. */
  5590. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5591. static struct sched_group ***sched_group_nodes_bycpu;
  5592. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5593. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5594. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5595. struct sched_group **sg,
  5596. struct cpumask *nodemask)
  5597. {
  5598. int group;
  5599. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5600. group = cpumask_first(nodemask);
  5601. if (sg)
  5602. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5603. return group;
  5604. }
  5605. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5606. {
  5607. struct sched_group *sg = group_head;
  5608. int j;
  5609. if (!sg)
  5610. return;
  5611. do {
  5612. for_each_cpu(j, sched_group_cpus(sg)) {
  5613. struct sched_domain *sd;
  5614. sd = &per_cpu(phys_domains, j).sd;
  5615. if (j != group_first_cpu(sd->groups)) {
  5616. /*
  5617. * Only add "power" once for each
  5618. * physical package.
  5619. */
  5620. continue;
  5621. }
  5622. sg->cpu_power += sd->groups->cpu_power;
  5623. }
  5624. sg = sg->next;
  5625. } while (sg != group_head);
  5626. }
  5627. static int build_numa_sched_groups(struct s_data *d,
  5628. const struct cpumask *cpu_map, int num)
  5629. {
  5630. struct sched_domain *sd;
  5631. struct sched_group *sg, *prev;
  5632. int n, j;
  5633. cpumask_clear(d->covered);
  5634. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5635. if (cpumask_empty(d->nodemask)) {
  5636. d->sched_group_nodes[num] = NULL;
  5637. goto out;
  5638. }
  5639. sched_domain_node_span(num, d->domainspan);
  5640. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5641. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5642. GFP_KERNEL, num);
  5643. if (!sg) {
  5644. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5645. num);
  5646. return -ENOMEM;
  5647. }
  5648. d->sched_group_nodes[num] = sg;
  5649. for_each_cpu(j, d->nodemask) {
  5650. sd = &per_cpu(node_domains, j).sd;
  5651. sd->groups = sg;
  5652. }
  5653. sg->cpu_power = 0;
  5654. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5655. sg->next = sg;
  5656. cpumask_or(d->covered, d->covered, d->nodemask);
  5657. prev = sg;
  5658. for (j = 0; j < nr_node_ids; j++) {
  5659. n = (num + j) % nr_node_ids;
  5660. cpumask_complement(d->notcovered, d->covered);
  5661. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5662. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5663. if (cpumask_empty(d->tmpmask))
  5664. break;
  5665. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5666. if (cpumask_empty(d->tmpmask))
  5667. continue;
  5668. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5669. GFP_KERNEL, num);
  5670. if (!sg) {
  5671. printk(KERN_WARNING
  5672. "Can not alloc domain group for node %d\n", j);
  5673. return -ENOMEM;
  5674. }
  5675. sg->cpu_power = 0;
  5676. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5677. sg->next = prev->next;
  5678. cpumask_or(d->covered, d->covered, d->tmpmask);
  5679. prev->next = sg;
  5680. prev = sg;
  5681. }
  5682. out:
  5683. return 0;
  5684. }
  5685. #endif /* CONFIG_NUMA */
  5686. #ifdef CONFIG_NUMA
  5687. /* Free memory allocated for various sched_group structures */
  5688. static void free_sched_groups(const struct cpumask *cpu_map,
  5689. struct cpumask *nodemask)
  5690. {
  5691. int cpu, i;
  5692. for_each_cpu(cpu, cpu_map) {
  5693. struct sched_group **sched_group_nodes
  5694. = sched_group_nodes_bycpu[cpu];
  5695. if (!sched_group_nodes)
  5696. continue;
  5697. for (i = 0; i < nr_node_ids; i++) {
  5698. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5699. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5700. if (cpumask_empty(nodemask))
  5701. continue;
  5702. if (sg == NULL)
  5703. continue;
  5704. sg = sg->next;
  5705. next_sg:
  5706. oldsg = sg;
  5707. sg = sg->next;
  5708. kfree(oldsg);
  5709. if (oldsg != sched_group_nodes[i])
  5710. goto next_sg;
  5711. }
  5712. kfree(sched_group_nodes);
  5713. sched_group_nodes_bycpu[cpu] = NULL;
  5714. }
  5715. }
  5716. #else /* !CONFIG_NUMA */
  5717. static void free_sched_groups(const struct cpumask *cpu_map,
  5718. struct cpumask *nodemask)
  5719. {
  5720. }
  5721. #endif /* CONFIG_NUMA */
  5722. /*
  5723. * Initialize sched groups cpu_power.
  5724. *
  5725. * cpu_power indicates the capacity of sched group, which is used while
  5726. * distributing the load between different sched groups in a sched domain.
  5727. * Typically cpu_power for all the groups in a sched domain will be same unless
  5728. * there are asymmetries in the topology. If there are asymmetries, group
  5729. * having more cpu_power will pickup more load compared to the group having
  5730. * less cpu_power.
  5731. */
  5732. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5733. {
  5734. struct sched_domain *child;
  5735. struct sched_group *group;
  5736. long power;
  5737. int weight;
  5738. WARN_ON(!sd || !sd->groups);
  5739. if (cpu != group_first_cpu(sd->groups))
  5740. return;
  5741. child = sd->child;
  5742. sd->groups->cpu_power = 0;
  5743. if (!child) {
  5744. power = SCHED_LOAD_SCALE;
  5745. weight = cpumask_weight(sched_domain_span(sd));
  5746. /*
  5747. * SMT siblings share the power of a single core.
  5748. * Usually multiple threads get a better yield out of
  5749. * that one core than a single thread would have,
  5750. * reflect that in sd->smt_gain.
  5751. */
  5752. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5753. power *= sd->smt_gain;
  5754. power /= weight;
  5755. power >>= SCHED_LOAD_SHIFT;
  5756. }
  5757. sd->groups->cpu_power += power;
  5758. return;
  5759. }
  5760. /*
  5761. * Add cpu_power of each child group to this groups cpu_power.
  5762. */
  5763. group = child->groups;
  5764. do {
  5765. sd->groups->cpu_power += group->cpu_power;
  5766. group = group->next;
  5767. } while (group != child->groups);
  5768. }
  5769. /*
  5770. * Initializers for schedule domains
  5771. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5772. */
  5773. #ifdef CONFIG_SCHED_DEBUG
  5774. # define SD_INIT_NAME(sd, type) sd->name = #type
  5775. #else
  5776. # define SD_INIT_NAME(sd, type) do { } while (0)
  5777. #endif
  5778. #define SD_INIT(sd, type) sd_init_##type(sd)
  5779. #define SD_INIT_FUNC(type) \
  5780. static noinline void sd_init_##type(struct sched_domain *sd) \
  5781. { \
  5782. memset(sd, 0, sizeof(*sd)); \
  5783. *sd = SD_##type##_INIT; \
  5784. sd->level = SD_LV_##type; \
  5785. SD_INIT_NAME(sd, type); \
  5786. }
  5787. SD_INIT_FUNC(CPU)
  5788. #ifdef CONFIG_NUMA
  5789. SD_INIT_FUNC(ALLNODES)
  5790. SD_INIT_FUNC(NODE)
  5791. #endif
  5792. #ifdef CONFIG_SCHED_SMT
  5793. SD_INIT_FUNC(SIBLING)
  5794. #endif
  5795. #ifdef CONFIG_SCHED_MC
  5796. SD_INIT_FUNC(MC)
  5797. #endif
  5798. static int default_relax_domain_level = -1;
  5799. static int __init setup_relax_domain_level(char *str)
  5800. {
  5801. unsigned long val;
  5802. val = simple_strtoul(str, NULL, 0);
  5803. if (val < SD_LV_MAX)
  5804. default_relax_domain_level = val;
  5805. return 1;
  5806. }
  5807. __setup("relax_domain_level=", setup_relax_domain_level);
  5808. static void set_domain_attribute(struct sched_domain *sd,
  5809. struct sched_domain_attr *attr)
  5810. {
  5811. int request;
  5812. if (!attr || attr->relax_domain_level < 0) {
  5813. if (default_relax_domain_level < 0)
  5814. return;
  5815. else
  5816. request = default_relax_domain_level;
  5817. } else
  5818. request = attr->relax_domain_level;
  5819. if (request < sd->level) {
  5820. /* turn off idle balance on this domain */
  5821. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5822. } else {
  5823. /* turn on idle balance on this domain */
  5824. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5825. }
  5826. }
  5827. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5828. const struct cpumask *cpu_map)
  5829. {
  5830. switch (what) {
  5831. case sa_sched_groups:
  5832. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5833. d->sched_group_nodes = NULL;
  5834. case sa_rootdomain:
  5835. free_rootdomain(d->rd); /* fall through */
  5836. case sa_tmpmask:
  5837. free_cpumask_var(d->tmpmask); /* fall through */
  5838. case sa_send_covered:
  5839. free_cpumask_var(d->send_covered); /* fall through */
  5840. case sa_this_core_map:
  5841. free_cpumask_var(d->this_core_map); /* fall through */
  5842. case sa_this_sibling_map:
  5843. free_cpumask_var(d->this_sibling_map); /* fall through */
  5844. case sa_nodemask:
  5845. free_cpumask_var(d->nodemask); /* fall through */
  5846. case sa_sched_group_nodes:
  5847. #ifdef CONFIG_NUMA
  5848. kfree(d->sched_group_nodes); /* fall through */
  5849. case sa_notcovered:
  5850. free_cpumask_var(d->notcovered); /* fall through */
  5851. case sa_covered:
  5852. free_cpumask_var(d->covered); /* fall through */
  5853. case sa_domainspan:
  5854. free_cpumask_var(d->domainspan); /* fall through */
  5855. #endif
  5856. case sa_none:
  5857. break;
  5858. }
  5859. }
  5860. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5861. const struct cpumask *cpu_map)
  5862. {
  5863. #ifdef CONFIG_NUMA
  5864. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5865. return sa_none;
  5866. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5867. return sa_domainspan;
  5868. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5869. return sa_covered;
  5870. /* Allocate the per-node list of sched groups */
  5871. d->sched_group_nodes = kcalloc(nr_node_ids,
  5872. sizeof(struct sched_group *), GFP_KERNEL);
  5873. if (!d->sched_group_nodes) {
  5874. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5875. return sa_notcovered;
  5876. }
  5877. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5878. #endif
  5879. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5880. return sa_sched_group_nodes;
  5881. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5882. return sa_nodemask;
  5883. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5884. return sa_this_sibling_map;
  5885. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5886. return sa_this_core_map;
  5887. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5888. return sa_send_covered;
  5889. d->rd = alloc_rootdomain();
  5890. if (!d->rd) {
  5891. printk(KERN_WARNING "Cannot alloc root domain\n");
  5892. return sa_tmpmask;
  5893. }
  5894. return sa_rootdomain;
  5895. }
  5896. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5897. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5898. {
  5899. struct sched_domain *sd = NULL;
  5900. #ifdef CONFIG_NUMA
  5901. struct sched_domain *parent;
  5902. d->sd_allnodes = 0;
  5903. if (cpumask_weight(cpu_map) >
  5904. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5905. sd = &per_cpu(allnodes_domains, i).sd;
  5906. SD_INIT(sd, ALLNODES);
  5907. set_domain_attribute(sd, attr);
  5908. cpumask_copy(sched_domain_span(sd), cpu_map);
  5909. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5910. d->sd_allnodes = 1;
  5911. }
  5912. parent = sd;
  5913. sd = &per_cpu(node_domains, i).sd;
  5914. SD_INIT(sd, NODE);
  5915. set_domain_attribute(sd, attr);
  5916. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5917. sd->parent = parent;
  5918. if (parent)
  5919. parent->child = sd;
  5920. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5921. #endif
  5922. return sd;
  5923. }
  5924. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5925. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5926. struct sched_domain *parent, int i)
  5927. {
  5928. struct sched_domain *sd;
  5929. sd = &per_cpu(phys_domains, i).sd;
  5930. SD_INIT(sd, CPU);
  5931. set_domain_attribute(sd, attr);
  5932. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5933. sd->parent = parent;
  5934. if (parent)
  5935. parent->child = sd;
  5936. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5937. return sd;
  5938. }
  5939. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5940. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5941. struct sched_domain *parent, int i)
  5942. {
  5943. struct sched_domain *sd = parent;
  5944. #ifdef CONFIG_SCHED_MC
  5945. sd = &per_cpu(core_domains, i).sd;
  5946. SD_INIT(sd, MC);
  5947. set_domain_attribute(sd, attr);
  5948. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5949. sd->parent = parent;
  5950. parent->child = sd;
  5951. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5952. #endif
  5953. return sd;
  5954. }
  5955. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5956. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5957. struct sched_domain *parent, int i)
  5958. {
  5959. struct sched_domain *sd = parent;
  5960. #ifdef CONFIG_SCHED_SMT
  5961. sd = &per_cpu(cpu_domains, i).sd;
  5962. SD_INIT(sd, SIBLING);
  5963. set_domain_attribute(sd, attr);
  5964. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5965. sd->parent = parent;
  5966. parent->child = sd;
  5967. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5968. #endif
  5969. return sd;
  5970. }
  5971. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5972. const struct cpumask *cpu_map, int cpu)
  5973. {
  5974. switch (l) {
  5975. #ifdef CONFIG_SCHED_SMT
  5976. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5977. cpumask_and(d->this_sibling_map, cpu_map,
  5978. topology_thread_cpumask(cpu));
  5979. if (cpu == cpumask_first(d->this_sibling_map))
  5980. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5981. &cpu_to_cpu_group,
  5982. d->send_covered, d->tmpmask);
  5983. break;
  5984. #endif
  5985. #ifdef CONFIG_SCHED_MC
  5986. case SD_LV_MC: /* set up multi-core groups */
  5987. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5988. if (cpu == cpumask_first(d->this_core_map))
  5989. init_sched_build_groups(d->this_core_map, cpu_map,
  5990. &cpu_to_core_group,
  5991. d->send_covered, d->tmpmask);
  5992. break;
  5993. #endif
  5994. case SD_LV_CPU: /* set up physical groups */
  5995. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5996. if (!cpumask_empty(d->nodemask))
  5997. init_sched_build_groups(d->nodemask, cpu_map,
  5998. &cpu_to_phys_group,
  5999. d->send_covered, d->tmpmask);
  6000. break;
  6001. #ifdef CONFIG_NUMA
  6002. case SD_LV_ALLNODES:
  6003. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6004. d->send_covered, d->tmpmask);
  6005. break;
  6006. #endif
  6007. default:
  6008. break;
  6009. }
  6010. }
  6011. /*
  6012. * Build sched domains for a given set of cpus and attach the sched domains
  6013. * to the individual cpus
  6014. */
  6015. static int __build_sched_domains(const struct cpumask *cpu_map,
  6016. struct sched_domain_attr *attr)
  6017. {
  6018. enum s_alloc alloc_state = sa_none;
  6019. struct s_data d;
  6020. struct sched_domain *sd;
  6021. int i;
  6022. #ifdef CONFIG_NUMA
  6023. d.sd_allnodes = 0;
  6024. #endif
  6025. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6026. if (alloc_state != sa_rootdomain)
  6027. goto error;
  6028. alloc_state = sa_sched_groups;
  6029. /*
  6030. * Set up domains for cpus specified by the cpu_map.
  6031. */
  6032. for_each_cpu(i, cpu_map) {
  6033. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6034. cpu_map);
  6035. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6036. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6037. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6038. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6039. }
  6040. for_each_cpu(i, cpu_map) {
  6041. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6042. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6043. }
  6044. /* Set up physical groups */
  6045. for (i = 0; i < nr_node_ids; i++)
  6046. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6047. #ifdef CONFIG_NUMA
  6048. /* Set up node groups */
  6049. if (d.sd_allnodes)
  6050. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6051. for (i = 0; i < nr_node_ids; i++)
  6052. if (build_numa_sched_groups(&d, cpu_map, i))
  6053. goto error;
  6054. #endif
  6055. /* Calculate CPU power for physical packages and nodes */
  6056. #ifdef CONFIG_SCHED_SMT
  6057. for_each_cpu(i, cpu_map) {
  6058. sd = &per_cpu(cpu_domains, i).sd;
  6059. init_sched_groups_power(i, sd);
  6060. }
  6061. #endif
  6062. #ifdef CONFIG_SCHED_MC
  6063. for_each_cpu(i, cpu_map) {
  6064. sd = &per_cpu(core_domains, i).sd;
  6065. init_sched_groups_power(i, sd);
  6066. }
  6067. #endif
  6068. for_each_cpu(i, cpu_map) {
  6069. sd = &per_cpu(phys_domains, i).sd;
  6070. init_sched_groups_power(i, sd);
  6071. }
  6072. #ifdef CONFIG_NUMA
  6073. for (i = 0; i < nr_node_ids; i++)
  6074. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6075. if (d.sd_allnodes) {
  6076. struct sched_group *sg;
  6077. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6078. d.tmpmask);
  6079. init_numa_sched_groups_power(sg);
  6080. }
  6081. #endif
  6082. /* Attach the domains */
  6083. for_each_cpu(i, cpu_map) {
  6084. #ifdef CONFIG_SCHED_SMT
  6085. sd = &per_cpu(cpu_domains, i).sd;
  6086. #elif defined(CONFIG_SCHED_MC)
  6087. sd = &per_cpu(core_domains, i).sd;
  6088. #else
  6089. sd = &per_cpu(phys_domains, i).sd;
  6090. #endif
  6091. cpu_attach_domain(sd, d.rd, i);
  6092. }
  6093. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6094. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6095. return 0;
  6096. error:
  6097. __free_domain_allocs(&d, alloc_state, cpu_map);
  6098. return -ENOMEM;
  6099. }
  6100. static int build_sched_domains(const struct cpumask *cpu_map)
  6101. {
  6102. return __build_sched_domains(cpu_map, NULL);
  6103. }
  6104. static cpumask_var_t *doms_cur; /* current sched domains */
  6105. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6106. static struct sched_domain_attr *dattr_cur;
  6107. /* attribues of custom domains in 'doms_cur' */
  6108. /*
  6109. * Special case: If a kmalloc of a doms_cur partition (array of
  6110. * cpumask) fails, then fallback to a single sched domain,
  6111. * as determined by the single cpumask fallback_doms.
  6112. */
  6113. static cpumask_var_t fallback_doms;
  6114. /*
  6115. * arch_update_cpu_topology lets virtualized architectures update the
  6116. * cpu core maps. It is supposed to return 1 if the topology changed
  6117. * or 0 if it stayed the same.
  6118. */
  6119. int __attribute__((weak)) arch_update_cpu_topology(void)
  6120. {
  6121. return 0;
  6122. }
  6123. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6124. {
  6125. int i;
  6126. cpumask_var_t *doms;
  6127. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6128. if (!doms)
  6129. return NULL;
  6130. for (i = 0; i < ndoms; i++) {
  6131. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6132. free_sched_domains(doms, i);
  6133. return NULL;
  6134. }
  6135. }
  6136. return doms;
  6137. }
  6138. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6139. {
  6140. unsigned int i;
  6141. for (i = 0; i < ndoms; i++)
  6142. free_cpumask_var(doms[i]);
  6143. kfree(doms);
  6144. }
  6145. /*
  6146. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6147. * For now this just excludes isolated cpus, but could be used to
  6148. * exclude other special cases in the future.
  6149. */
  6150. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6151. {
  6152. int err;
  6153. arch_update_cpu_topology();
  6154. ndoms_cur = 1;
  6155. doms_cur = alloc_sched_domains(ndoms_cur);
  6156. if (!doms_cur)
  6157. doms_cur = &fallback_doms;
  6158. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6159. dattr_cur = NULL;
  6160. err = build_sched_domains(doms_cur[0]);
  6161. register_sched_domain_sysctl();
  6162. return err;
  6163. }
  6164. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6165. struct cpumask *tmpmask)
  6166. {
  6167. free_sched_groups(cpu_map, tmpmask);
  6168. }
  6169. /*
  6170. * Detach sched domains from a group of cpus specified in cpu_map
  6171. * These cpus will now be attached to the NULL domain
  6172. */
  6173. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6174. {
  6175. /* Save because hotplug lock held. */
  6176. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6177. int i;
  6178. for_each_cpu(i, cpu_map)
  6179. cpu_attach_domain(NULL, &def_root_domain, i);
  6180. synchronize_sched();
  6181. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6182. }
  6183. /* handle null as "default" */
  6184. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6185. struct sched_domain_attr *new, int idx_new)
  6186. {
  6187. struct sched_domain_attr tmp;
  6188. /* fast path */
  6189. if (!new && !cur)
  6190. return 1;
  6191. tmp = SD_ATTR_INIT;
  6192. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6193. new ? (new + idx_new) : &tmp,
  6194. sizeof(struct sched_domain_attr));
  6195. }
  6196. /*
  6197. * Partition sched domains as specified by the 'ndoms_new'
  6198. * cpumasks in the array doms_new[] of cpumasks. This compares
  6199. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6200. * It destroys each deleted domain and builds each new domain.
  6201. *
  6202. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6203. * The masks don't intersect (don't overlap.) We should setup one
  6204. * sched domain for each mask. CPUs not in any of the cpumasks will
  6205. * not be load balanced. If the same cpumask appears both in the
  6206. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6207. * it as it is.
  6208. *
  6209. * The passed in 'doms_new' should be allocated using
  6210. * alloc_sched_domains. This routine takes ownership of it and will
  6211. * free_sched_domains it when done with it. If the caller failed the
  6212. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6213. * and partition_sched_domains() will fallback to the single partition
  6214. * 'fallback_doms', it also forces the domains to be rebuilt.
  6215. *
  6216. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6217. * ndoms_new == 0 is a special case for destroying existing domains,
  6218. * and it will not create the default domain.
  6219. *
  6220. * Call with hotplug lock held
  6221. */
  6222. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6223. struct sched_domain_attr *dattr_new)
  6224. {
  6225. int i, j, n;
  6226. int new_topology;
  6227. mutex_lock(&sched_domains_mutex);
  6228. /* always unregister in case we don't destroy any domains */
  6229. unregister_sched_domain_sysctl();
  6230. /* Let architecture update cpu core mappings. */
  6231. new_topology = arch_update_cpu_topology();
  6232. n = doms_new ? ndoms_new : 0;
  6233. /* Destroy deleted domains */
  6234. for (i = 0; i < ndoms_cur; i++) {
  6235. for (j = 0; j < n && !new_topology; j++) {
  6236. if (cpumask_equal(doms_cur[i], doms_new[j])
  6237. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6238. goto match1;
  6239. }
  6240. /* no match - a current sched domain not in new doms_new[] */
  6241. detach_destroy_domains(doms_cur[i]);
  6242. match1:
  6243. ;
  6244. }
  6245. if (doms_new == NULL) {
  6246. ndoms_cur = 0;
  6247. doms_new = &fallback_doms;
  6248. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6249. WARN_ON_ONCE(dattr_new);
  6250. }
  6251. /* Build new domains */
  6252. for (i = 0; i < ndoms_new; i++) {
  6253. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6254. if (cpumask_equal(doms_new[i], doms_cur[j])
  6255. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6256. goto match2;
  6257. }
  6258. /* no match - add a new doms_new */
  6259. __build_sched_domains(doms_new[i],
  6260. dattr_new ? dattr_new + i : NULL);
  6261. match2:
  6262. ;
  6263. }
  6264. /* Remember the new sched domains */
  6265. if (doms_cur != &fallback_doms)
  6266. free_sched_domains(doms_cur, ndoms_cur);
  6267. kfree(dattr_cur); /* kfree(NULL) is safe */
  6268. doms_cur = doms_new;
  6269. dattr_cur = dattr_new;
  6270. ndoms_cur = ndoms_new;
  6271. register_sched_domain_sysctl();
  6272. mutex_unlock(&sched_domains_mutex);
  6273. }
  6274. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6275. static void arch_reinit_sched_domains(void)
  6276. {
  6277. get_online_cpus();
  6278. /* Destroy domains first to force the rebuild */
  6279. partition_sched_domains(0, NULL, NULL);
  6280. rebuild_sched_domains();
  6281. put_online_cpus();
  6282. }
  6283. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6284. {
  6285. unsigned int level = 0;
  6286. if (sscanf(buf, "%u", &level) != 1)
  6287. return -EINVAL;
  6288. /*
  6289. * level is always be positive so don't check for
  6290. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6291. * What happens on 0 or 1 byte write,
  6292. * need to check for count as well?
  6293. */
  6294. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6295. return -EINVAL;
  6296. if (smt)
  6297. sched_smt_power_savings = level;
  6298. else
  6299. sched_mc_power_savings = level;
  6300. arch_reinit_sched_domains();
  6301. return count;
  6302. }
  6303. #ifdef CONFIG_SCHED_MC
  6304. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6305. struct sysdev_class_attribute *attr,
  6306. char *page)
  6307. {
  6308. return sprintf(page, "%u\n", sched_mc_power_savings);
  6309. }
  6310. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6311. struct sysdev_class_attribute *attr,
  6312. const char *buf, size_t count)
  6313. {
  6314. return sched_power_savings_store(buf, count, 0);
  6315. }
  6316. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6317. sched_mc_power_savings_show,
  6318. sched_mc_power_savings_store);
  6319. #endif
  6320. #ifdef CONFIG_SCHED_SMT
  6321. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6322. struct sysdev_class_attribute *attr,
  6323. char *page)
  6324. {
  6325. return sprintf(page, "%u\n", sched_smt_power_savings);
  6326. }
  6327. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6328. struct sysdev_class_attribute *attr,
  6329. const char *buf, size_t count)
  6330. {
  6331. return sched_power_savings_store(buf, count, 1);
  6332. }
  6333. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6334. sched_smt_power_savings_show,
  6335. sched_smt_power_savings_store);
  6336. #endif
  6337. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6338. {
  6339. int err = 0;
  6340. #ifdef CONFIG_SCHED_SMT
  6341. if (smt_capable())
  6342. err = sysfs_create_file(&cls->kset.kobj,
  6343. &attr_sched_smt_power_savings.attr);
  6344. #endif
  6345. #ifdef CONFIG_SCHED_MC
  6346. if (!err && mc_capable())
  6347. err = sysfs_create_file(&cls->kset.kobj,
  6348. &attr_sched_mc_power_savings.attr);
  6349. #endif
  6350. return err;
  6351. }
  6352. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6353. #ifndef CONFIG_CPUSETS
  6354. /*
  6355. * Add online and remove offline CPUs from the scheduler domains.
  6356. * When cpusets are enabled they take over this function.
  6357. */
  6358. static int update_sched_domains(struct notifier_block *nfb,
  6359. unsigned long action, void *hcpu)
  6360. {
  6361. switch (action) {
  6362. case CPU_ONLINE:
  6363. case CPU_ONLINE_FROZEN:
  6364. case CPU_DOWN_PREPARE:
  6365. case CPU_DOWN_PREPARE_FROZEN:
  6366. case CPU_DOWN_FAILED:
  6367. case CPU_DOWN_FAILED_FROZEN:
  6368. partition_sched_domains(1, NULL, NULL);
  6369. return NOTIFY_OK;
  6370. default:
  6371. return NOTIFY_DONE;
  6372. }
  6373. }
  6374. #endif
  6375. static int update_runtime(struct notifier_block *nfb,
  6376. unsigned long action, void *hcpu)
  6377. {
  6378. int cpu = (int)(long)hcpu;
  6379. switch (action) {
  6380. case CPU_DOWN_PREPARE:
  6381. case CPU_DOWN_PREPARE_FROZEN:
  6382. disable_runtime(cpu_rq(cpu));
  6383. return NOTIFY_OK;
  6384. case CPU_DOWN_FAILED:
  6385. case CPU_DOWN_FAILED_FROZEN:
  6386. case CPU_ONLINE:
  6387. case CPU_ONLINE_FROZEN:
  6388. enable_runtime(cpu_rq(cpu));
  6389. return NOTIFY_OK;
  6390. default:
  6391. return NOTIFY_DONE;
  6392. }
  6393. }
  6394. void __init sched_init_smp(void)
  6395. {
  6396. cpumask_var_t non_isolated_cpus;
  6397. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6398. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6399. #if defined(CONFIG_NUMA)
  6400. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6401. GFP_KERNEL);
  6402. BUG_ON(sched_group_nodes_bycpu == NULL);
  6403. #endif
  6404. get_online_cpus();
  6405. mutex_lock(&sched_domains_mutex);
  6406. arch_init_sched_domains(cpu_active_mask);
  6407. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6408. if (cpumask_empty(non_isolated_cpus))
  6409. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6410. mutex_unlock(&sched_domains_mutex);
  6411. put_online_cpus();
  6412. #ifndef CONFIG_CPUSETS
  6413. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6414. hotcpu_notifier(update_sched_domains, 0);
  6415. #endif
  6416. /* RT runtime code needs to handle some hotplug events */
  6417. hotcpu_notifier(update_runtime, 0);
  6418. init_hrtick();
  6419. /* Move init over to a non-isolated CPU */
  6420. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6421. BUG();
  6422. sched_init_granularity();
  6423. free_cpumask_var(non_isolated_cpus);
  6424. init_sched_rt_class();
  6425. }
  6426. #else
  6427. void __init sched_init_smp(void)
  6428. {
  6429. sched_init_granularity();
  6430. }
  6431. #endif /* CONFIG_SMP */
  6432. const_debug unsigned int sysctl_timer_migration = 1;
  6433. int in_sched_functions(unsigned long addr)
  6434. {
  6435. return in_lock_functions(addr) ||
  6436. (addr >= (unsigned long)__sched_text_start
  6437. && addr < (unsigned long)__sched_text_end);
  6438. }
  6439. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6440. {
  6441. cfs_rq->tasks_timeline = RB_ROOT;
  6442. INIT_LIST_HEAD(&cfs_rq->tasks);
  6443. #ifdef CONFIG_FAIR_GROUP_SCHED
  6444. cfs_rq->rq = rq;
  6445. #endif
  6446. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6447. }
  6448. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6449. {
  6450. struct rt_prio_array *array;
  6451. int i;
  6452. array = &rt_rq->active;
  6453. for (i = 0; i < MAX_RT_PRIO; i++) {
  6454. INIT_LIST_HEAD(array->queue + i);
  6455. __clear_bit(i, array->bitmap);
  6456. }
  6457. /* delimiter for bitsearch: */
  6458. __set_bit(MAX_RT_PRIO, array->bitmap);
  6459. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6460. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6461. #ifdef CONFIG_SMP
  6462. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6463. #endif
  6464. #endif
  6465. #ifdef CONFIG_SMP
  6466. rt_rq->rt_nr_migratory = 0;
  6467. rt_rq->overloaded = 0;
  6468. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6469. #endif
  6470. rt_rq->rt_time = 0;
  6471. rt_rq->rt_throttled = 0;
  6472. rt_rq->rt_runtime = 0;
  6473. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6474. #ifdef CONFIG_RT_GROUP_SCHED
  6475. rt_rq->rt_nr_boosted = 0;
  6476. rt_rq->rq = rq;
  6477. #endif
  6478. }
  6479. #ifdef CONFIG_FAIR_GROUP_SCHED
  6480. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6481. struct sched_entity *se, int cpu, int add,
  6482. struct sched_entity *parent)
  6483. {
  6484. struct rq *rq = cpu_rq(cpu);
  6485. tg->cfs_rq[cpu] = cfs_rq;
  6486. init_cfs_rq(cfs_rq, rq);
  6487. cfs_rq->tg = tg;
  6488. if (add)
  6489. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6490. tg->se[cpu] = se;
  6491. /* se could be NULL for init_task_group */
  6492. if (!se)
  6493. return;
  6494. if (!parent)
  6495. se->cfs_rq = &rq->cfs;
  6496. else
  6497. se->cfs_rq = parent->my_q;
  6498. se->my_q = cfs_rq;
  6499. se->load.weight = tg->shares;
  6500. se->load.inv_weight = 0;
  6501. se->parent = parent;
  6502. }
  6503. #endif
  6504. #ifdef CONFIG_RT_GROUP_SCHED
  6505. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6506. struct sched_rt_entity *rt_se, int cpu, int add,
  6507. struct sched_rt_entity *parent)
  6508. {
  6509. struct rq *rq = cpu_rq(cpu);
  6510. tg->rt_rq[cpu] = rt_rq;
  6511. init_rt_rq(rt_rq, rq);
  6512. rt_rq->tg = tg;
  6513. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6514. if (add)
  6515. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6516. tg->rt_se[cpu] = rt_se;
  6517. if (!rt_se)
  6518. return;
  6519. if (!parent)
  6520. rt_se->rt_rq = &rq->rt;
  6521. else
  6522. rt_se->rt_rq = parent->my_q;
  6523. rt_se->my_q = rt_rq;
  6524. rt_se->parent = parent;
  6525. INIT_LIST_HEAD(&rt_se->run_list);
  6526. }
  6527. #endif
  6528. void __init sched_init(void)
  6529. {
  6530. int i, j;
  6531. unsigned long alloc_size = 0, ptr;
  6532. #ifdef CONFIG_FAIR_GROUP_SCHED
  6533. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6534. #endif
  6535. #ifdef CONFIG_RT_GROUP_SCHED
  6536. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6537. #endif
  6538. #ifdef CONFIG_CPUMASK_OFFSTACK
  6539. alloc_size += num_possible_cpus() * cpumask_size();
  6540. #endif
  6541. if (alloc_size) {
  6542. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6543. #ifdef CONFIG_FAIR_GROUP_SCHED
  6544. init_task_group.se = (struct sched_entity **)ptr;
  6545. ptr += nr_cpu_ids * sizeof(void **);
  6546. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6547. ptr += nr_cpu_ids * sizeof(void **);
  6548. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6549. #ifdef CONFIG_RT_GROUP_SCHED
  6550. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6551. ptr += nr_cpu_ids * sizeof(void **);
  6552. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6553. ptr += nr_cpu_ids * sizeof(void **);
  6554. #endif /* CONFIG_RT_GROUP_SCHED */
  6555. #ifdef CONFIG_CPUMASK_OFFSTACK
  6556. for_each_possible_cpu(i) {
  6557. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6558. ptr += cpumask_size();
  6559. }
  6560. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6561. }
  6562. #ifdef CONFIG_SMP
  6563. init_defrootdomain();
  6564. #endif
  6565. init_rt_bandwidth(&def_rt_bandwidth,
  6566. global_rt_period(), global_rt_runtime());
  6567. #ifdef CONFIG_RT_GROUP_SCHED
  6568. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6569. global_rt_period(), global_rt_runtime());
  6570. #endif /* CONFIG_RT_GROUP_SCHED */
  6571. #ifdef CONFIG_CGROUP_SCHED
  6572. list_add(&init_task_group.list, &task_groups);
  6573. INIT_LIST_HEAD(&init_task_group.children);
  6574. #endif /* CONFIG_CGROUP_SCHED */
  6575. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6576. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6577. __alignof__(unsigned long));
  6578. #endif
  6579. for_each_possible_cpu(i) {
  6580. struct rq *rq;
  6581. rq = cpu_rq(i);
  6582. raw_spin_lock_init(&rq->lock);
  6583. rq->nr_running = 0;
  6584. rq->calc_load_active = 0;
  6585. rq->calc_load_update = jiffies + LOAD_FREQ;
  6586. init_cfs_rq(&rq->cfs, rq);
  6587. init_rt_rq(&rq->rt, rq);
  6588. #ifdef CONFIG_FAIR_GROUP_SCHED
  6589. init_task_group.shares = init_task_group_load;
  6590. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6591. #ifdef CONFIG_CGROUP_SCHED
  6592. /*
  6593. * How much cpu bandwidth does init_task_group get?
  6594. *
  6595. * In case of task-groups formed thr' the cgroup filesystem, it
  6596. * gets 100% of the cpu resources in the system. This overall
  6597. * system cpu resource is divided among the tasks of
  6598. * init_task_group and its child task-groups in a fair manner,
  6599. * based on each entity's (task or task-group's) weight
  6600. * (se->load.weight).
  6601. *
  6602. * In other words, if init_task_group has 10 tasks of weight
  6603. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6604. * then A0's share of the cpu resource is:
  6605. *
  6606. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6607. *
  6608. * We achieve this by letting init_task_group's tasks sit
  6609. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6610. */
  6611. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6612. #endif
  6613. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6614. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6615. #ifdef CONFIG_RT_GROUP_SCHED
  6616. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6617. #ifdef CONFIG_CGROUP_SCHED
  6618. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6619. #endif
  6620. #endif
  6621. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6622. rq->cpu_load[j] = 0;
  6623. #ifdef CONFIG_SMP
  6624. rq->sd = NULL;
  6625. rq->rd = NULL;
  6626. rq->post_schedule = 0;
  6627. rq->active_balance = 0;
  6628. rq->next_balance = jiffies;
  6629. rq->push_cpu = 0;
  6630. rq->cpu = i;
  6631. rq->online = 0;
  6632. rq->migration_thread = NULL;
  6633. rq->idle_stamp = 0;
  6634. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6635. INIT_LIST_HEAD(&rq->migration_queue);
  6636. rq_attach_root(rq, &def_root_domain);
  6637. #endif
  6638. init_rq_hrtick(rq);
  6639. atomic_set(&rq->nr_iowait, 0);
  6640. }
  6641. set_load_weight(&init_task);
  6642. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6643. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6644. #endif
  6645. #ifdef CONFIG_SMP
  6646. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6647. #endif
  6648. #ifdef CONFIG_RT_MUTEXES
  6649. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6650. #endif
  6651. /*
  6652. * The boot idle thread does lazy MMU switching as well:
  6653. */
  6654. atomic_inc(&init_mm.mm_count);
  6655. enter_lazy_tlb(&init_mm, current);
  6656. /*
  6657. * Make us the idle thread. Technically, schedule() should not be
  6658. * called from this thread, however somewhere below it might be,
  6659. * but because we are the idle thread, we just pick up running again
  6660. * when this runqueue becomes "idle".
  6661. */
  6662. init_idle(current, smp_processor_id());
  6663. calc_load_update = jiffies + LOAD_FREQ;
  6664. /*
  6665. * During early bootup we pretend to be a normal task:
  6666. */
  6667. current->sched_class = &fair_sched_class;
  6668. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6669. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6670. #ifdef CONFIG_SMP
  6671. #ifdef CONFIG_NO_HZ
  6672. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6673. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6674. #endif
  6675. /* May be allocated at isolcpus cmdline parse time */
  6676. if (cpu_isolated_map == NULL)
  6677. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6678. #endif /* SMP */
  6679. perf_event_init();
  6680. scheduler_running = 1;
  6681. }
  6682. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6683. static inline int preempt_count_equals(int preempt_offset)
  6684. {
  6685. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6686. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6687. }
  6688. void __might_sleep(const char *file, int line, int preempt_offset)
  6689. {
  6690. #ifdef in_atomic
  6691. static unsigned long prev_jiffy; /* ratelimiting */
  6692. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6693. system_state != SYSTEM_RUNNING || oops_in_progress)
  6694. return;
  6695. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6696. return;
  6697. prev_jiffy = jiffies;
  6698. printk(KERN_ERR
  6699. "BUG: sleeping function called from invalid context at %s:%d\n",
  6700. file, line);
  6701. printk(KERN_ERR
  6702. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6703. in_atomic(), irqs_disabled(),
  6704. current->pid, current->comm);
  6705. debug_show_held_locks(current);
  6706. if (irqs_disabled())
  6707. print_irqtrace_events(current);
  6708. dump_stack();
  6709. #endif
  6710. }
  6711. EXPORT_SYMBOL(__might_sleep);
  6712. #endif
  6713. #ifdef CONFIG_MAGIC_SYSRQ
  6714. static void normalize_task(struct rq *rq, struct task_struct *p)
  6715. {
  6716. int on_rq;
  6717. update_rq_clock(rq);
  6718. on_rq = p->se.on_rq;
  6719. if (on_rq)
  6720. deactivate_task(rq, p, 0);
  6721. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6722. if (on_rq) {
  6723. activate_task(rq, p, 0);
  6724. resched_task(rq->curr);
  6725. }
  6726. }
  6727. void normalize_rt_tasks(void)
  6728. {
  6729. struct task_struct *g, *p;
  6730. unsigned long flags;
  6731. struct rq *rq;
  6732. read_lock_irqsave(&tasklist_lock, flags);
  6733. do_each_thread(g, p) {
  6734. /*
  6735. * Only normalize user tasks:
  6736. */
  6737. if (!p->mm)
  6738. continue;
  6739. p->se.exec_start = 0;
  6740. #ifdef CONFIG_SCHEDSTATS
  6741. p->se.wait_start = 0;
  6742. p->se.sleep_start = 0;
  6743. p->se.block_start = 0;
  6744. #endif
  6745. if (!rt_task(p)) {
  6746. /*
  6747. * Renice negative nice level userspace
  6748. * tasks back to 0:
  6749. */
  6750. if (TASK_NICE(p) < 0 && p->mm)
  6751. set_user_nice(p, 0);
  6752. continue;
  6753. }
  6754. raw_spin_lock(&p->pi_lock);
  6755. rq = __task_rq_lock(p);
  6756. normalize_task(rq, p);
  6757. __task_rq_unlock(rq);
  6758. raw_spin_unlock(&p->pi_lock);
  6759. } while_each_thread(g, p);
  6760. read_unlock_irqrestore(&tasklist_lock, flags);
  6761. }
  6762. #endif /* CONFIG_MAGIC_SYSRQ */
  6763. #ifdef CONFIG_IA64
  6764. /*
  6765. * These functions are only useful for the IA64 MCA handling.
  6766. *
  6767. * They can only be called when the whole system has been
  6768. * stopped - every CPU needs to be quiescent, and no scheduling
  6769. * activity can take place. Using them for anything else would
  6770. * be a serious bug, and as a result, they aren't even visible
  6771. * under any other configuration.
  6772. */
  6773. /**
  6774. * curr_task - return the current task for a given cpu.
  6775. * @cpu: the processor in question.
  6776. *
  6777. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6778. */
  6779. struct task_struct *curr_task(int cpu)
  6780. {
  6781. return cpu_curr(cpu);
  6782. }
  6783. /**
  6784. * set_curr_task - set the current task for a given cpu.
  6785. * @cpu: the processor in question.
  6786. * @p: the task pointer to set.
  6787. *
  6788. * Description: This function must only be used when non-maskable interrupts
  6789. * are serviced on a separate stack. It allows the architecture to switch the
  6790. * notion of the current task on a cpu in a non-blocking manner. This function
  6791. * must be called with all CPU's synchronized, and interrupts disabled, the
  6792. * and caller must save the original value of the current task (see
  6793. * curr_task() above) and restore that value before reenabling interrupts and
  6794. * re-starting the system.
  6795. *
  6796. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6797. */
  6798. void set_curr_task(int cpu, struct task_struct *p)
  6799. {
  6800. cpu_curr(cpu) = p;
  6801. }
  6802. #endif
  6803. #ifdef CONFIG_FAIR_GROUP_SCHED
  6804. static void free_fair_sched_group(struct task_group *tg)
  6805. {
  6806. int i;
  6807. for_each_possible_cpu(i) {
  6808. if (tg->cfs_rq)
  6809. kfree(tg->cfs_rq[i]);
  6810. if (tg->se)
  6811. kfree(tg->se[i]);
  6812. }
  6813. kfree(tg->cfs_rq);
  6814. kfree(tg->se);
  6815. }
  6816. static
  6817. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6818. {
  6819. struct cfs_rq *cfs_rq;
  6820. struct sched_entity *se;
  6821. struct rq *rq;
  6822. int i;
  6823. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6824. if (!tg->cfs_rq)
  6825. goto err;
  6826. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6827. if (!tg->se)
  6828. goto err;
  6829. tg->shares = NICE_0_LOAD;
  6830. for_each_possible_cpu(i) {
  6831. rq = cpu_rq(i);
  6832. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6833. GFP_KERNEL, cpu_to_node(i));
  6834. if (!cfs_rq)
  6835. goto err;
  6836. se = kzalloc_node(sizeof(struct sched_entity),
  6837. GFP_KERNEL, cpu_to_node(i));
  6838. if (!se)
  6839. goto err_free_rq;
  6840. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6841. }
  6842. return 1;
  6843. err_free_rq:
  6844. kfree(cfs_rq);
  6845. err:
  6846. return 0;
  6847. }
  6848. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6849. {
  6850. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6851. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6852. }
  6853. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6854. {
  6855. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6856. }
  6857. #else /* !CONFG_FAIR_GROUP_SCHED */
  6858. static inline void free_fair_sched_group(struct task_group *tg)
  6859. {
  6860. }
  6861. static inline
  6862. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6863. {
  6864. return 1;
  6865. }
  6866. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6867. {
  6868. }
  6869. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6870. {
  6871. }
  6872. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6873. #ifdef CONFIG_RT_GROUP_SCHED
  6874. static void free_rt_sched_group(struct task_group *tg)
  6875. {
  6876. int i;
  6877. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6878. for_each_possible_cpu(i) {
  6879. if (tg->rt_rq)
  6880. kfree(tg->rt_rq[i]);
  6881. if (tg->rt_se)
  6882. kfree(tg->rt_se[i]);
  6883. }
  6884. kfree(tg->rt_rq);
  6885. kfree(tg->rt_se);
  6886. }
  6887. static
  6888. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6889. {
  6890. struct rt_rq *rt_rq;
  6891. struct sched_rt_entity *rt_se;
  6892. struct rq *rq;
  6893. int i;
  6894. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6895. if (!tg->rt_rq)
  6896. goto err;
  6897. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6898. if (!tg->rt_se)
  6899. goto err;
  6900. init_rt_bandwidth(&tg->rt_bandwidth,
  6901. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6902. for_each_possible_cpu(i) {
  6903. rq = cpu_rq(i);
  6904. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6905. GFP_KERNEL, cpu_to_node(i));
  6906. if (!rt_rq)
  6907. goto err;
  6908. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6909. GFP_KERNEL, cpu_to_node(i));
  6910. if (!rt_se)
  6911. goto err_free_rq;
  6912. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6913. }
  6914. return 1;
  6915. err_free_rq:
  6916. kfree(rt_rq);
  6917. err:
  6918. return 0;
  6919. }
  6920. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6921. {
  6922. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6923. &cpu_rq(cpu)->leaf_rt_rq_list);
  6924. }
  6925. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6926. {
  6927. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6928. }
  6929. #else /* !CONFIG_RT_GROUP_SCHED */
  6930. static inline void free_rt_sched_group(struct task_group *tg)
  6931. {
  6932. }
  6933. static inline
  6934. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6935. {
  6936. return 1;
  6937. }
  6938. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6939. {
  6940. }
  6941. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6942. {
  6943. }
  6944. #endif /* CONFIG_RT_GROUP_SCHED */
  6945. #ifdef CONFIG_CGROUP_SCHED
  6946. static void free_sched_group(struct task_group *tg)
  6947. {
  6948. free_fair_sched_group(tg);
  6949. free_rt_sched_group(tg);
  6950. kfree(tg);
  6951. }
  6952. /* allocate runqueue etc for a new task group */
  6953. struct task_group *sched_create_group(struct task_group *parent)
  6954. {
  6955. struct task_group *tg;
  6956. unsigned long flags;
  6957. int i;
  6958. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6959. if (!tg)
  6960. return ERR_PTR(-ENOMEM);
  6961. if (!alloc_fair_sched_group(tg, parent))
  6962. goto err;
  6963. if (!alloc_rt_sched_group(tg, parent))
  6964. goto err;
  6965. spin_lock_irqsave(&task_group_lock, flags);
  6966. for_each_possible_cpu(i) {
  6967. register_fair_sched_group(tg, i);
  6968. register_rt_sched_group(tg, i);
  6969. }
  6970. list_add_rcu(&tg->list, &task_groups);
  6971. WARN_ON(!parent); /* root should already exist */
  6972. tg->parent = parent;
  6973. INIT_LIST_HEAD(&tg->children);
  6974. list_add_rcu(&tg->siblings, &parent->children);
  6975. spin_unlock_irqrestore(&task_group_lock, flags);
  6976. return tg;
  6977. err:
  6978. free_sched_group(tg);
  6979. return ERR_PTR(-ENOMEM);
  6980. }
  6981. /* rcu callback to free various structures associated with a task group */
  6982. static void free_sched_group_rcu(struct rcu_head *rhp)
  6983. {
  6984. /* now it should be safe to free those cfs_rqs */
  6985. free_sched_group(container_of(rhp, struct task_group, rcu));
  6986. }
  6987. /* Destroy runqueue etc associated with a task group */
  6988. void sched_destroy_group(struct task_group *tg)
  6989. {
  6990. unsigned long flags;
  6991. int i;
  6992. spin_lock_irqsave(&task_group_lock, flags);
  6993. for_each_possible_cpu(i) {
  6994. unregister_fair_sched_group(tg, i);
  6995. unregister_rt_sched_group(tg, i);
  6996. }
  6997. list_del_rcu(&tg->list);
  6998. list_del_rcu(&tg->siblings);
  6999. spin_unlock_irqrestore(&task_group_lock, flags);
  7000. /* wait for possible concurrent references to cfs_rqs complete */
  7001. call_rcu(&tg->rcu, free_sched_group_rcu);
  7002. }
  7003. /* change task's runqueue when it moves between groups.
  7004. * The caller of this function should have put the task in its new group
  7005. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7006. * reflect its new group.
  7007. */
  7008. void sched_move_task(struct task_struct *tsk)
  7009. {
  7010. int on_rq, running;
  7011. unsigned long flags;
  7012. struct rq *rq;
  7013. rq = task_rq_lock(tsk, &flags);
  7014. update_rq_clock(rq);
  7015. running = task_current(rq, tsk);
  7016. on_rq = tsk->se.on_rq;
  7017. if (on_rq)
  7018. dequeue_task(rq, tsk, 0);
  7019. if (unlikely(running))
  7020. tsk->sched_class->put_prev_task(rq, tsk);
  7021. set_task_rq(tsk, task_cpu(tsk));
  7022. #ifdef CONFIG_FAIR_GROUP_SCHED
  7023. if (tsk->sched_class->moved_group)
  7024. tsk->sched_class->moved_group(tsk, on_rq);
  7025. #endif
  7026. if (unlikely(running))
  7027. tsk->sched_class->set_curr_task(rq);
  7028. if (on_rq)
  7029. enqueue_task(rq, tsk, 0, false);
  7030. task_rq_unlock(rq, &flags);
  7031. }
  7032. #endif /* CONFIG_CGROUP_SCHED */
  7033. #ifdef CONFIG_FAIR_GROUP_SCHED
  7034. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7035. {
  7036. struct cfs_rq *cfs_rq = se->cfs_rq;
  7037. int on_rq;
  7038. on_rq = se->on_rq;
  7039. if (on_rq)
  7040. dequeue_entity(cfs_rq, se, 0);
  7041. se->load.weight = shares;
  7042. se->load.inv_weight = 0;
  7043. if (on_rq)
  7044. enqueue_entity(cfs_rq, se, 0);
  7045. }
  7046. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7047. {
  7048. struct cfs_rq *cfs_rq = se->cfs_rq;
  7049. struct rq *rq = cfs_rq->rq;
  7050. unsigned long flags;
  7051. raw_spin_lock_irqsave(&rq->lock, flags);
  7052. __set_se_shares(se, shares);
  7053. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7054. }
  7055. static DEFINE_MUTEX(shares_mutex);
  7056. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7057. {
  7058. int i;
  7059. unsigned long flags;
  7060. /*
  7061. * We can't change the weight of the root cgroup.
  7062. */
  7063. if (!tg->se[0])
  7064. return -EINVAL;
  7065. if (shares < MIN_SHARES)
  7066. shares = MIN_SHARES;
  7067. else if (shares > MAX_SHARES)
  7068. shares = MAX_SHARES;
  7069. mutex_lock(&shares_mutex);
  7070. if (tg->shares == shares)
  7071. goto done;
  7072. spin_lock_irqsave(&task_group_lock, flags);
  7073. for_each_possible_cpu(i)
  7074. unregister_fair_sched_group(tg, i);
  7075. list_del_rcu(&tg->siblings);
  7076. spin_unlock_irqrestore(&task_group_lock, flags);
  7077. /* wait for any ongoing reference to this group to finish */
  7078. synchronize_sched();
  7079. /*
  7080. * Now we are free to modify the group's share on each cpu
  7081. * w/o tripping rebalance_share or load_balance_fair.
  7082. */
  7083. tg->shares = shares;
  7084. for_each_possible_cpu(i) {
  7085. /*
  7086. * force a rebalance
  7087. */
  7088. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7089. set_se_shares(tg->se[i], shares);
  7090. }
  7091. /*
  7092. * Enable load balance activity on this group, by inserting it back on
  7093. * each cpu's rq->leaf_cfs_rq_list.
  7094. */
  7095. spin_lock_irqsave(&task_group_lock, flags);
  7096. for_each_possible_cpu(i)
  7097. register_fair_sched_group(tg, i);
  7098. list_add_rcu(&tg->siblings, &tg->parent->children);
  7099. spin_unlock_irqrestore(&task_group_lock, flags);
  7100. done:
  7101. mutex_unlock(&shares_mutex);
  7102. return 0;
  7103. }
  7104. unsigned long sched_group_shares(struct task_group *tg)
  7105. {
  7106. return tg->shares;
  7107. }
  7108. #endif
  7109. #ifdef CONFIG_RT_GROUP_SCHED
  7110. /*
  7111. * Ensure that the real time constraints are schedulable.
  7112. */
  7113. static DEFINE_MUTEX(rt_constraints_mutex);
  7114. static unsigned long to_ratio(u64 period, u64 runtime)
  7115. {
  7116. if (runtime == RUNTIME_INF)
  7117. return 1ULL << 20;
  7118. return div64_u64(runtime << 20, period);
  7119. }
  7120. /* Must be called with tasklist_lock held */
  7121. static inline int tg_has_rt_tasks(struct task_group *tg)
  7122. {
  7123. struct task_struct *g, *p;
  7124. do_each_thread(g, p) {
  7125. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7126. return 1;
  7127. } while_each_thread(g, p);
  7128. return 0;
  7129. }
  7130. struct rt_schedulable_data {
  7131. struct task_group *tg;
  7132. u64 rt_period;
  7133. u64 rt_runtime;
  7134. };
  7135. static int tg_schedulable(struct task_group *tg, void *data)
  7136. {
  7137. struct rt_schedulable_data *d = data;
  7138. struct task_group *child;
  7139. unsigned long total, sum = 0;
  7140. u64 period, runtime;
  7141. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7142. runtime = tg->rt_bandwidth.rt_runtime;
  7143. if (tg == d->tg) {
  7144. period = d->rt_period;
  7145. runtime = d->rt_runtime;
  7146. }
  7147. /*
  7148. * Cannot have more runtime than the period.
  7149. */
  7150. if (runtime > period && runtime != RUNTIME_INF)
  7151. return -EINVAL;
  7152. /*
  7153. * Ensure we don't starve existing RT tasks.
  7154. */
  7155. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7156. return -EBUSY;
  7157. total = to_ratio(period, runtime);
  7158. /*
  7159. * Nobody can have more than the global setting allows.
  7160. */
  7161. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7162. return -EINVAL;
  7163. /*
  7164. * The sum of our children's runtime should not exceed our own.
  7165. */
  7166. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7167. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7168. runtime = child->rt_bandwidth.rt_runtime;
  7169. if (child == d->tg) {
  7170. period = d->rt_period;
  7171. runtime = d->rt_runtime;
  7172. }
  7173. sum += to_ratio(period, runtime);
  7174. }
  7175. if (sum > total)
  7176. return -EINVAL;
  7177. return 0;
  7178. }
  7179. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7180. {
  7181. struct rt_schedulable_data data = {
  7182. .tg = tg,
  7183. .rt_period = period,
  7184. .rt_runtime = runtime,
  7185. };
  7186. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7187. }
  7188. static int tg_set_bandwidth(struct task_group *tg,
  7189. u64 rt_period, u64 rt_runtime)
  7190. {
  7191. int i, err = 0;
  7192. mutex_lock(&rt_constraints_mutex);
  7193. read_lock(&tasklist_lock);
  7194. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7195. if (err)
  7196. goto unlock;
  7197. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7198. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7199. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7200. for_each_possible_cpu(i) {
  7201. struct rt_rq *rt_rq = tg->rt_rq[i];
  7202. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7203. rt_rq->rt_runtime = rt_runtime;
  7204. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7205. }
  7206. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7207. unlock:
  7208. read_unlock(&tasklist_lock);
  7209. mutex_unlock(&rt_constraints_mutex);
  7210. return err;
  7211. }
  7212. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7213. {
  7214. u64 rt_runtime, rt_period;
  7215. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7216. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7217. if (rt_runtime_us < 0)
  7218. rt_runtime = RUNTIME_INF;
  7219. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7220. }
  7221. long sched_group_rt_runtime(struct task_group *tg)
  7222. {
  7223. u64 rt_runtime_us;
  7224. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7225. return -1;
  7226. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7227. do_div(rt_runtime_us, NSEC_PER_USEC);
  7228. return rt_runtime_us;
  7229. }
  7230. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7231. {
  7232. u64 rt_runtime, rt_period;
  7233. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7234. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7235. if (rt_period == 0)
  7236. return -EINVAL;
  7237. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7238. }
  7239. long sched_group_rt_period(struct task_group *tg)
  7240. {
  7241. u64 rt_period_us;
  7242. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7243. do_div(rt_period_us, NSEC_PER_USEC);
  7244. return rt_period_us;
  7245. }
  7246. static int sched_rt_global_constraints(void)
  7247. {
  7248. u64 runtime, period;
  7249. int ret = 0;
  7250. if (sysctl_sched_rt_period <= 0)
  7251. return -EINVAL;
  7252. runtime = global_rt_runtime();
  7253. period = global_rt_period();
  7254. /*
  7255. * Sanity check on the sysctl variables.
  7256. */
  7257. if (runtime > period && runtime != RUNTIME_INF)
  7258. return -EINVAL;
  7259. mutex_lock(&rt_constraints_mutex);
  7260. read_lock(&tasklist_lock);
  7261. ret = __rt_schedulable(NULL, 0, 0);
  7262. read_unlock(&tasklist_lock);
  7263. mutex_unlock(&rt_constraints_mutex);
  7264. return ret;
  7265. }
  7266. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7267. {
  7268. /* Don't accept realtime tasks when there is no way for them to run */
  7269. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7270. return 0;
  7271. return 1;
  7272. }
  7273. #else /* !CONFIG_RT_GROUP_SCHED */
  7274. static int sched_rt_global_constraints(void)
  7275. {
  7276. unsigned long flags;
  7277. int i;
  7278. if (sysctl_sched_rt_period <= 0)
  7279. return -EINVAL;
  7280. /*
  7281. * There's always some RT tasks in the root group
  7282. * -- migration, kstopmachine etc..
  7283. */
  7284. if (sysctl_sched_rt_runtime == 0)
  7285. return -EBUSY;
  7286. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7287. for_each_possible_cpu(i) {
  7288. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7289. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7290. rt_rq->rt_runtime = global_rt_runtime();
  7291. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7292. }
  7293. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7294. return 0;
  7295. }
  7296. #endif /* CONFIG_RT_GROUP_SCHED */
  7297. int sched_rt_handler(struct ctl_table *table, int write,
  7298. void __user *buffer, size_t *lenp,
  7299. loff_t *ppos)
  7300. {
  7301. int ret;
  7302. int old_period, old_runtime;
  7303. static DEFINE_MUTEX(mutex);
  7304. mutex_lock(&mutex);
  7305. old_period = sysctl_sched_rt_period;
  7306. old_runtime = sysctl_sched_rt_runtime;
  7307. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7308. if (!ret && write) {
  7309. ret = sched_rt_global_constraints();
  7310. if (ret) {
  7311. sysctl_sched_rt_period = old_period;
  7312. sysctl_sched_rt_runtime = old_runtime;
  7313. } else {
  7314. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7315. def_rt_bandwidth.rt_period =
  7316. ns_to_ktime(global_rt_period());
  7317. }
  7318. }
  7319. mutex_unlock(&mutex);
  7320. return ret;
  7321. }
  7322. #ifdef CONFIG_CGROUP_SCHED
  7323. /* return corresponding task_group object of a cgroup */
  7324. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7325. {
  7326. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7327. struct task_group, css);
  7328. }
  7329. static struct cgroup_subsys_state *
  7330. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7331. {
  7332. struct task_group *tg, *parent;
  7333. if (!cgrp->parent) {
  7334. /* This is early initialization for the top cgroup */
  7335. return &init_task_group.css;
  7336. }
  7337. parent = cgroup_tg(cgrp->parent);
  7338. tg = sched_create_group(parent);
  7339. if (IS_ERR(tg))
  7340. return ERR_PTR(-ENOMEM);
  7341. return &tg->css;
  7342. }
  7343. static void
  7344. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7345. {
  7346. struct task_group *tg = cgroup_tg(cgrp);
  7347. sched_destroy_group(tg);
  7348. }
  7349. static int
  7350. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7351. {
  7352. #ifdef CONFIG_RT_GROUP_SCHED
  7353. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7354. return -EINVAL;
  7355. #else
  7356. /* We don't support RT-tasks being in separate groups */
  7357. if (tsk->sched_class != &fair_sched_class)
  7358. return -EINVAL;
  7359. #endif
  7360. return 0;
  7361. }
  7362. static int
  7363. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7364. struct task_struct *tsk, bool threadgroup)
  7365. {
  7366. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7367. if (retval)
  7368. return retval;
  7369. if (threadgroup) {
  7370. struct task_struct *c;
  7371. rcu_read_lock();
  7372. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7373. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7374. if (retval) {
  7375. rcu_read_unlock();
  7376. return retval;
  7377. }
  7378. }
  7379. rcu_read_unlock();
  7380. }
  7381. return 0;
  7382. }
  7383. static void
  7384. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7385. struct cgroup *old_cont, struct task_struct *tsk,
  7386. bool threadgroup)
  7387. {
  7388. sched_move_task(tsk);
  7389. if (threadgroup) {
  7390. struct task_struct *c;
  7391. rcu_read_lock();
  7392. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7393. sched_move_task(c);
  7394. }
  7395. rcu_read_unlock();
  7396. }
  7397. }
  7398. #ifdef CONFIG_FAIR_GROUP_SCHED
  7399. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7400. u64 shareval)
  7401. {
  7402. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7403. }
  7404. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7405. {
  7406. struct task_group *tg = cgroup_tg(cgrp);
  7407. return (u64) tg->shares;
  7408. }
  7409. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7410. #ifdef CONFIG_RT_GROUP_SCHED
  7411. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7412. s64 val)
  7413. {
  7414. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7415. }
  7416. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7417. {
  7418. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7419. }
  7420. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7421. u64 rt_period_us)
  7422. {
  7423. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7424. }
  7425. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7426. {
  7427. return sched_group_rt_period(cgroup_tg(cgrp));
  7428. }
  7429. #endif /* CONFIG_RT_GROUP_SCHED */
  7430. static struct cftype cpu_files[] = {
  7431. #ifdef CONFIG_FAIR_GROUP_SCHED
  7432. {
  7433. .name = "shares",
  7434. .read_u64 = cpu_shares_read_u64,
  7435. .write_u64 = cpu_shares_write_u64,
  7436. },
  7437. #endif
  7438. #ifdef CONFIG_RT_GROUP_SCHED
  7439. {
  7440. .name = "rt_runtime_us",
  7441. .read_s64 = cpu_rt_runtime_read,
  7442. .write_s64 = cpu_rt_runtime_write,
  7443. },
  7444. {
  7445. .name = "rt_period_us",
  7446. .read_u64 = cpu_rt_period_read_uint,
  7447. .write_u64 = cpu_rt_period_write_uint,
  7448. },
  7449. #endif
  7450. };
  7451. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7452. {
  7453. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7454. }
  7455. struct cgroup_subsys cpu_cgroup_subsys = {
  7456. .name = "cpu",
  7457. .create = cpu_cgroup_create,
  7458. .destroy = cpu_cgroup_destroy,
  7459. .can_attach = cpu_cgroup_can_attach,
  7460. .attach = cpu_cgroup_attach,
  7461. .populate = cpu_cgroup_populate,
  7462. .subsys_id = cpu_cgroup_subsys_id,
  7463. .early_init = 1,
  7464. };
  7465. #endif /* CONFIG_CGROUP_SCHED */
  7466. #ifdef CONFIG_CGROUP_CPUACCT
  7467. /*
  7468. * CPU accounting code for task groups.
  7469. *
  7470. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7471. * (balbir@in.ibm.com).
  7472. */
  7473. /* track cpu usage of a group of tasks and its child groups */
  7474. struct cpuacct {
  7475. struct cgroup_subsys_state css;
  7476. /* cpuusage holds pointer to a u64-type object on every cpu */
  7477. u64 __percpu *cpuusage;
  7478. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7479. struct cpuacct *parent;
  7480. };
  7481. struct cgroup_subsys cpuacct_subsys;
  7482. /* return cpu accounting group corresponding to this container */
  7483. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7484. {
  7485. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7486. struct cpuacct, css);
  7487. }
  7488. /* return cpu accounting group to which this task belongs */
  7489. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7490. {
  7491. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7492. struct cpuacct, css);
  7493. }
  7494. /* create a new cpu accounting group */
  7495. static struct cgroup_subsys_state *cpuacct_create(
  7496. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7497. {
  7498. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7499. int i;
  7500. if (!ca)
  7501. goto out;
  7502. ca->cpuusage = alloc_percpu(u64);
  7503. if (!ca->cpuusage)
  7504. goto out_free_ca;
  7505. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7506. if (percpu_counter_init(&ca->cpustat[i], 0))
  7507. goto out_free_counters;
  7508. if (cgrp->parent)
  7509. ca->parent = cgroup_ca(cgrp->parent);
  7510. return &ca->css;
  7511. out_free_counters:
  7512. while (--i >= 0)
  7513. percpu_counter_destroy(&ca->cpustat[i]);
  7514. free_percpu(ca->cpuusage);
  7515. out_free_ca:
  7516. kfree(ca);
  7517. out:
  7518. return ERR_PTR(-ENOMEM);
  7519. }
  7520. /* destroy an existing cpu accounting group */
  7521. static void
  7522. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7523. {
  7524. struct cpuacct *ca = cgroup_ca(cgrp);
  7525. int i;
  7526. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7527. percpu_counter_destroy(&ca->cpustat[i]);
  7528. free_percpu(ca->cpuusage);
  7529. kfree(ca);
  7530. }
  7531. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7532. {
  7533. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7534. u64 data;
  7535. #ifndef CONFIG_64BIT
  7536. /*
  7537. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7538. */
  7539. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7540. data = *cpuusage;
  7541. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7542. #else
  7543. data = *cpuusage;
  7544. #endif
  7545. return data;
  7546. }
  7547. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7548. {
  7549. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7550. #ifndef CONFIG_64BIT
  7551. /*
  7552. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7553. */
  7554. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7555. *cpuusage = val;
  7556. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7557. #else
  7558. *cpuusage = val;
  7559. #endif
  7560. }
  7561. /* return total cpu usage (in nanoseconds) of a group */
  7562. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7563. {
  7564. struct cpuacct *ca = cgroup_ca(cgrp);
  7565. u64 totalcpuusage = 0;
  7566. int i;
  7567. for_each_present_cpu(i)
  7568. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7569. return totalcpuusage;
  7570. }
  7571. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7572. u64 reset)
  7573. {
  7574. struct cpuacct *ca = cgroup_ca(cgrp);
  7575. int err = 0;
  7576. int i;
  7577. if (reset) {
  7578. err = -EINVAL;
  7579. goto out;
  7580. }
  7581. for_each_present_cpu(i)
  7582. cpuacct_cpuusage_write(ca, i, 0);
  7583. out:
  7584. return err;
  7585. }
  7586. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7587. struct seq_file *m)
  7588. {
  7589. struct cpuacct *ca = cgroup_ca(cgroup);
  7590. u64 percpu;
  7591. int i;
  7592. for_each_present_cpu(i) {
  7593. percpu = cpuacct_cpuusage_read(ca, i);
  7594. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7595. }
  7596. seq_printf(m, "\n");
  7597. return 0;
  7598. }
  7599. static const char *cpuacct_stat_desc[] = {
  7600. [CPUACCT_STAT_USER] = "user",
  7601. [CPUACCT_STAT_SYSTEM] = "system",
  7602. };
  7603. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7604. struct cgroup_map_cb *cb)
  7605. {
  7606. struct cpuacct *ca = cgroup_ca(cgrp);
  7607. int i;
  7608. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7609. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7610. val = cputime64_to_clock_t(val);
  7611. cb->fill(cb, cpuacct_stat_desc[i], val);
  7612. }
  7613. return 0;
  7614. }
  7615. static struct cftype files[] = {
  7616. {
  7617. .name = "usage",
  7618. .read_u64 = cpuusage_read,
  7619. .write_u64 = cpuusage_write,
  7620. },
  7621. {
  7622. .name = "usage_percpu",
  7623. .read_seq_string = cpuacct_percpu_seq_read,
  7624. },
  7625. {
  7626. .name = "stat",
  7627. .read_map = cpuacct_stats_show,
  7628. },
  7629. };
  7630. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7631. {
  7632. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7633. }
  7634. /*
  7635. * charge this task's execution time to its accounting group.
  7636. *
  7637. * called with rq->lock held.
  7638. */
  7639. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7640. {
  7641. struct cpuacct *ca;
  7642. int cpu;
  7643. if (unlikely(!cpuacct_subsys.active))
  7644. return;
  7645. cpu = task_cpu(tsk);
  7646. rcu_read_lock();
  7647. ca = task_ca(tsk);
  7648. for (; ca; ca = ca->parent) {
  7649. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7650. *cpuusage += cputime;
  7651. }
  7652. rcu_read_unlock();
  7653. }
  7654. /*
  7655. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7656. * in cputime_t units. As a result, cpuacct_update_stats calls
  7657. * percpu_counter_add with values large enough to always overflow the
  7658. * per cpu batch limit causing bad SMP scalability.
  7659. *
  7660. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7661. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7662. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7663. */
  7664. #ifdef CONFIG_SMP
  7665. #define CPUACCT_BATCH \
  7666. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7667. #else
  7668. #define CPUACCT_BATCH 0
  7669. #endif
  7670. /*
  7671. * Charge the system/user time to the task's accounting group.
  7672. */
  7673. static void cpuacct_update_stats(struct task_struct *tsk,
  7674. enum cpuacct_stat_index idx, cputime_t val)
  7675. {
  7676. struct cpuacct *ca;
  7677. int batch = CPUACCT_BATCH;
  7678. if (unlikely(!cpuacct_subsys.active))
  7679. return;
  7680. rcu_read_lock();
  7681. ca = task_ca(tsk);
  7682. do {
  7683. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7684. ca = ca->parent;
  7685. } while (ca);
  7686. rcu_read_unlock();
  7687. }
  7688. struct cgroup_subsys cpuacct_subsys = {
  7689. .name = "cpuacct",
  7690. .create = cpuacct_create,
  7691. .destroy = cpuacct_destroy,
  7692. .populate = cpuacct_populate,
  7693. .subsys_id = cpuacct_subsys_id,
  7694. };
  7695. #endif /* CONFIG_CGROUP_CPUACCT */
  7696. #ifndef CONFIG_SMP
  7697. int rcu_expedited_torture_stats(char *page)
  7698. {
  7699. return 0;
  7700. }
  7701. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7702. void synchronize_sched_expedited(void)
  7703. {
  7704. }
  7705. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7706. #else /* #ifndef CONFIG_SMP */
  7707. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  7708. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  7709. #define RCU_EXPEDITED_STATE_POST -2
  7710. #define RCU_EXPEDITED_STATE_IDLE -1
  7711. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7712. int rcu_expedited_torture_stats(char *page)
  7713. {
  7714. int cnt = 0;
  7715. int cpu;
  7716. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  7717. for_each_online_cpu(cpu) {
  7718. cnt += sprintf(&page[cnt], " %d:%d",
  7719. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  7720. }
  7721. cnt += sprintf(&page[cnt], "\n");
  7722. return cnt;
  7723. }
  7724. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7725. static long synchronize_sched_expedited_count;
  7726. /*
  7727. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7728. * approach to force grace period to end quickly. This consumes
  7729. * significant time on all CPUs, and is thus not recommended for
  7730. * any sort of common-case code.
  7731. *
  7732. * Note that it is illegal to call this function while holding any
  7733. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7734. * observe this restriction will result in deadlock.
  7735. */
  7736. void synchronize_sched_expedited(void)
  7737. {
  7738. int cpu;
  7739. unsigned long flags;
  7740. bool need_full_sync = 0;
  7741. struct rq *rq;
  7742. struct migration_req *req;
  7743. long snap;
  7744. int trycount = 0;
  7745. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7746. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  7747. get_online_cpus();
  7748. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  7749. put_online_cpus();
  7750. if (trycount++ < 10)
  7751. udelay(trycount * num_online_cpus());
  7752. else {
  7753. synchronize_sched();
  7754. return;
  7755. }
  7756. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  7757. smp_mb(); /* ensure test happens before caller kfree */
  7758. return;
  7759. }
  7760. get_online_cpus();
  7761. }
  7762. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  7763. for_each_online_cpu(cpu) {
  7764. rq = cpu_rq(cpu);
  7765. req = &per_cpu(rcu_migration_req, cpu);
  7766. init_completion(&req->done);
  7767. req->task = NULL;
  7768. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  7769. raw_spin_lock_irqsave(&rq->lock, flags);
  7770. list_add(&req->list, &rq->migration_queue);
  7771. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7772. wake_up_process(rq->migration_thread);
  7773. }
  7774. for_each_online_cpu(cpu) {
  7775. rcu_expedited_state = cpu;
  7776. req = &per_cpu(rcu_migration_req, cpu);
  7777. rq = cpu_rq(cpu);
  7778. wait_for_completion(&req->done);
  7779. raw_spin_lock_irqsave(&rq->lock, flags);
  7780. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  7781. need_full_sync = 1;
  7782. req->dest_cpu = RCU_MIGRATION_IDLE;
  7783. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7784. }
  7785. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7786. synchronize_sched_expedited_count++;
  7787. mutex_unlock(&rcu_sched_expedited_mutex);
  7788. put_online_cpus();
  7789. if (need_full_sync)
  7790. synchronize_sched();
  7791. }
  7792. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7793. #endif /* #else #ifndef CONFIG_SMP */