s3c-hsotg.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271
  1. /* linux/drivers/usb/gadget/s3c-hsotg.c
  2. *
  3. * Copyright 2008 Openmoko, Inc.
  4. * Copyright 2008 Simtec Electronics
  5. * Ben Dooks <ben@simtec.co.uk>
  6. * http://armlinux.simtec.co.uk/
  7. *
  8. * S3C USB2.0 High-speed / OtG driver
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/debugfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/delay.h>
  23. #include <linux/io.h>
  24. #include <linux/usb/ch9.h>
  25. #include <linux/usb/gadget.h>
  26. #include <mach/map.h>
  27. #include <plat/regs-usb-hsotg-phy.h>
  28. #include <plat/regs-usb-hsotg.h>
  29. #include <plat/regs-sys.h>
  30. #include <plat/udc-hs.h>
  31. #define DMA_ADDR_INVALID (~((dma_addr_t)0))
  32. /* EP0_MPS_LIMIT
  33. *
  34. * Unfortunately there seems to be a limit of the amount of data that can
  35. * be transfered by IN transactions on EP0. This is either 127 bytes or 3
  36. * packets (which practially means 1 packet and 63 bytes of data) when the
  37. * MPS is set to 64.
  38. *
  39. * This means if we are wanting to move >127 bytes of data, we need to
  40. * split the transactions up, but just doing one packet at a time does
  41. * not work (this may be an implicit DATA0 PID on first packet of the
  42. * transaction) and doing 2 packets is outside the controller's limits.
  43. *
  44. * If we try to lower the MPS size for EP0, then no transfers work properly
  45. * for EP0, and the system will fail basic enumeration. As no cause for this
  46. * has currently been found, we cannot support any large IN transfers for
  47. * EP0.
  48. */
  49. #define EP0_MPS_LIMIT 64
  50. struct s3c_hsotg;
  51. struct s3c_hsotg_req;
  52. /**
  53. * struct s3c_hsotg_ep - driver endpoint definition.
  54. * @ep: The gadget layer representation of the endpoint.
  55. * @name: The driver generated name for the endpoint.
  56. * @queue: Queue of requests for this endpoint.
  57. * @parent: Reference back to the parent device structure.
  58. * @req: The current request that the endpoint is processing. This is
  59. * used to indicate an request has been loaded onto the endpoint
  60. * and has yet to be completed (maybe due to data move, or simply
  61. * awaiting an ack from the core all the data has been completed).
  62. * @debugfs: File entry for debugfs file for this endpoint.
  63. * @lock: State lock to protect contents of endpoint.
  64. * @dir_in: Set to true if this endpoint is of the IN direction, which
  65. * means that it is sending data to the Host.
  66. * @index: The index for the endpoint registers.
  67. * @name: The name array passed to the USB core.
  68. * @halted: Set if the endpoint has been halted.
  69. * @periodic: Set if this is a periodic ep, such as Interrupt
  70. * @sent_zlp: Set if we've sent a zero-length packet.
  71. * @total_data: The total number of data bytes done.
  72. * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  73. * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  74. * @last_load: The offset of data for the last start of request.
  75. * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  76. *
  77. * This is the driver's state for each registered enpoint, allowing it
  78. * to keep track of transactions that need doing. Each endpoint has a
  79. * lock to protect the state, to try and avoid using an overall lock
  80. * for the host controller as much as possible.
  81. *
  82. * For periodic IN endpoints, we have fifo_size and fifo_load to try
  83. * and keep track of the amount of data in the periodic FIFO for each
  84. * of these as we don't have a status register that tells us how much
  85. * is in each of them.
  86. */
  87. struct s3c_hsotg_ep {
  88. struct usb_ep ep;
  89. struct list_head queue;
  90. struct s3c_hsotg *parent;
  91. struct s3c_hsotg_req *req;
  92. struct dentry *debugfs;
  93. spinlock_t lock;
  94. unsigned long total_data;
  95. unsigned int size_loaded;
  96. unsigned int last_load;
  97. unsigned int fifo_load;
  98. unsigned short fifo_size;
  99. unsigned char dir_in;
  100. unsigned char index;
  101. unsigned int halted:1;
  102. unsigned int periodic:1;
  103. unsigned int sent_zlp:1;
  104. char name[10];
  105. };
  106. #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
  107. /**
  108. * struct s3c_hsotg - driver state.
  109. * @dev: The parent device supplied to the probe function
  110. * @driver: USB gadget driver
  111. * @plat: The platform specific configuration data.
  112. * @regs: The memory area mapped for accessing registers.
  113. * @regs_res: The resource that was allocated when claiming register space.
  114. * @irq: The IRQ number we are using
  115. * @debug_root: root directrory for debugfs.
  116. * @debug_file: main status file for debugfs.
  117. * @debug_fifo: FIFO status file for debugfs.
  118. * @ep0_reply: Request used for ep0 reply.
  119. * @ep0_buff: Buffer for EP0 reply data, if needed.
  120. * @ctrl_buff: Buffer for EP0 control requests.
  121. * @ctrl_req: Request for EP0 control packets.
  122. * @eps: The endpoints being supplied to the gadget framework
  123. */
  124. struct s3c_hsotg {
  125. struct device *dev;
  126. struct usb_gadget_driver *driver;
  127. struct s3c_hsotg_plat *plat;
  128. void __iomem *regs;
  129. struct resource *regs_res;
  130. int irq;
  131. struct dentry *debug_root;
  132. struct dentry *debug_file;
  133. struct dentry *debug_fifo;
  134. struct usb_request *ep0_reply;
  135. struct usb_request *ctrl_req;
  136. u8 ep0_buff[8];
  137. u8 ctrl_buff[8];
  138. struct usb_gadget gadget;
  139. struct s3c_hsotg_ep eps[];
  140. };
  141. /**
  142. * struct s3c_hsotg_req - data transfer request
  143. * @req: The USB gadget request
  144. * @queue: The list of requests for the endpoint this is queued for.
  145. * @in_progress: Has already had size/packets written to core
  146. * @mapped: DMA buffer for this request has been mapped via dma_map_single().
  147. */
  148. struct s3c_hsotg_req {
  149. struct usb_request req;
  150. struct list_head queue;
  151. unsigned char in_progress;
  152. unsigned char mapped;
  153. };
  154. /* conversion functions */
  155. static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
  156. {
  157. return container_of(req, struct s3c_hsotg_req, req);
  158. }
  159. static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
  160. {
  161. return container_of(ep, struct s3c_hsotg_ep, ep);
  162. }
  163. static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
  164. {
  165. return container_of(gadget, struct s3c_hsotg, gadget);
  166. }
  167. static inline void __orr32(void __iomem *ptr, u32 val)
  168. {
  169. writel(readl(ptr) | val, ptr);
  170. }
  171. static inline void __bic32(void __iomem *ptr, u32 val)
  172. {
  173. writel(readl(ptr) & ~val, ptr);
  174. }
  175. /* forward decleration of functions */
  176. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
  177. /**
  178. * using_dma - return the DMA status of the driver.
  179. * @hsotg: The driver state.
  180. *
  181. * Return true if we're using DMA.
  182. *
  183. * Currently, we have the DMA support code worked into everywhere
  184. * that needs it, but the AMBA DMA implementation in the hardware can
  185. * only DMA from 32bit aligned addresses. This means that gadgets such
  186. * as the CDC Ethernet cannot work as they often pass packets which are
  187. * not 32bit aligned.
  188. *
  189. * Unfortunately the choice to use DMA or not is global to the controller
  190. * and seems to be only settable when the controller is being put through
  191. * a core reset. This means we either need to fix the gadgets to take
  192. * account of DMA alignment, or add bounce buffers (yuerk).
  193. *
  194. * Until this issue is sorted out, we always return 'false'.
  195. */
  196. static inline bool using_dma(struct s3c_hsotg *hsotg)
  197. {
  198. return false; /* support is not complete */
  199. }
  200. /**
  201. * s3c_hsotg_en_gsint - enable one or more of the general interrupt
  202. * @hsotg: The device state
  203. * @ints: A bitmask of the interrupts to enable
  204. */
  205. static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
  206. {
  207. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  208. u32 new_gsintmsk;
  209. new_gsintmsk = gsintmsk | ints;
  210. if (new_gsintmsk != gsintmsk) {
  211. dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
  212. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  213. }
  214. }
  215. /**
  216. * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
  217. * @hsotg: The device state
  218. * @ints: A bitmask of the interrupts to enable
  219. */
  220. static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
  221. {
  222. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  223. u32 new_gsintmsk;
  224. new_gsintmsk = gsintmsk & ~ints;
  225. if (new_gsintmsk != gsintmsk)
  226. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  227. }
  228. /**
  229. * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
  230. * @hsotg: The device state
  231. * @ep: The endpoint index
  232. * @dir_in: True if direction is in.
  233. * @en: The enable value, true to enable
  234. *
  235. * Set or clear the mask for an individual endpoint's interrupt
  236. * request.
  237. */
  238. static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
  239. unsigned int ep, unsigned int dir_in,
  240. unsigned int en)
  241. {
  242. unsigned long flags;
  243. u32 bit = 1 << ep;
  244. u32 daint;
  245. if (!dir_in)
  246. bit <<= 16;
  247. local_irq_save(flags);
  248. daint = readl(hsotg->regs + S3C_DAINTMSK);
  249. if (en)
  250. daint |= bit;
  251. else
  252. daint &= ~bit;
  253. writel(daint, hsotg->regs + S3C_DAINTMSK);
  254. local_irq_restore(flags);
  255. }
  256. /**
  257. * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
  258. * @hsotg: The device instance.
  259. */
  260. static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
  261. {
  262. /* the ryu 2.6.24 release ahs
  263. writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
  264. writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
  265. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  266. hsotg->regs + S3C_GNPTXFSIZ);
  267. */
  268. /* set FIFO sizes to 2048/0x1C0 */
  269. writel(2048, hsotg->regs + S3C_GRXFSIZ);
  270. writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
  271. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  272. hsotg->regs + S3C_GNPTXFSIZ);
  273. }
  274. /**
  275. * @ep: USB endpoint to allocate request for.
  276. * @flags: Allocation flags
  277. *
  278. * Allocate a new USB request structure appropriate for the specified endpoint
  279. */
  280. static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
  281. gfp_t flags)
  282. {
  283. struct s3c_hsotg_req *req;
  284. req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
  285. if (!req)
  286. return NULL;
  287. INIT_LIST_HEAD(&req->queue);
  288. req->req.dma = DMA_ADDR_INVALID;
  289. return &req->req;
  290. }
  291. /**
  292. * is_ep_periodic - return true if the endpoint is in periodic mode.
  293. * @hs_ep: The endpoint to query.
  294. *
  295. * Returns true if the endpoint is in periodic mode, meaning it is being
  296. * used for an Interrupt or ISO transfer.
  297. */
  298. static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
  299. {
  300. return hs_ep->periodic;
  301. }
  302. /**
  303. * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
  304. * @hsotg: The device state.
  305. * @hs_ep: The endpoint for the request
  306. * @hs_req: The request being processed.
  307. *
  308. * This is the reverse of s3c_hsotg_map_dma(), called for the completion
  309. * of a request to ensure the buffer is ready for access by the caller.
  310. */
  311. static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
  312. struct s3c_hsotg_ep *hs_ep,
  313. struct s3c_hsotg_req *hs_req)
  314. {
  315. struct usb_request *req = &hs_req->req;
  316. enum dma_data_direction dir;
  317. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  318. /* ignore this if we're not moving any data */
  319. if (hs_req->req.length == 0)
  320. return;
  321. if (hs_req->mapped) {
  322. /* we mapped this, so unmap and remove the dma */
  323. dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
  324. req->dma = DMA_ADDR_INVALID;
  325. hs_req->mapped = 0;
  326. } else {
  327. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  328. }
  329. }
  330. /**
  331. * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
  332. * @hsotg: The controller state.
  333. * @hs_ep: The endpoint we're going to write for.
  334. * @hs_req: The request to write data for.
  335. *
  336. * This is called when the TxFIFO has some space in it to hold a new
  337. * transmission and we have something to give it. The actual setup of
  338. * the data size is done elsewhere, so all we have to do is to actually
  339. * write the data.
  340. *
  341. * The return value is zero if there is more space (or nothing was done)
  342. * otherwise -ENOSPC is returned if the FIFO space was used up.
  343. *
  344. * This routine is only needed for PIO
  345. */
  346. static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
  347. struct s3c_hsotg_ep *hs_ep,
  348. struct s3c_hsotg_req *hs_req)
  349. {
  350. bool periodic = is_ep_periodic(hs_ep);
  351. u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
  352. int buf_pos = hs_req->req.actual;
  353. int to_write = hs_ep->size_loaded;
  354. void *data;
  355. int can_write;
  356. int pkt_round;
  357. to_write -= (buf_pos - hs_ep->last_load);
  358. /* if there's nothing to write, get out early */
  359. if (to_write == 0)
  360. return 0;
  361. if (periodic) {
  362. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  363. int size_left;
  364. int size_done;
  365. /* work out how much data was loaded so we can calculate
  366. * how much data is left in the fifo. */
  367. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  368. dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
  369. __func__, size_left,
  370. hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
  371. /* how much of the data has moved */
  372. size_done = hs_ep->size_loaded - size_left;
  373. /* how much data is left in the fifo */
  374. can_write = hs_ep->fifo_load - size_done;
  375. dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
  376. __func__, can_write);
  377. can_write = hs_ep->fifo_size - can_write;
  378. dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
  379. __func__, can_write);
  380. if (can_write <= 0) {
  381. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  382. return -ENOSPC;
  383. }
  384. } else {
  385. if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
  386. dev_dbg(hsotg->dev,
  387. "%s: no queue slots available (0x%08x)\n",
  388. __func__, gnptxsts);
  389. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  390. return -ENOSPC;
  391. }
  392. can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
  393. }
  394. dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
  395. __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
  396. /* limit to 512 bytes of data, it seems at least on the non-periodic
  397. * FIFO, requests of >512 cause the endpoint to get stuck with a
  398. * fragment of the end of the transfer in it.
  399. */
  400. if (can_write > 512)
  401. can_write = 512;
  402. /* see if we can write data */
  403. if (to_write > can_write) {
  404. to_write = can_write;
  405. pkt_round = to_write % hs_ep->ep.maxpacket;
  406. /* Not sure, but we probably shouldn't be writing partial
  407. * packets into the FIFO, so round the write down to an
  408. * exact number of packets.
  409. *
  410. * Note, we do not currently check to see if we can ever
  411. * write a full packet or not to the FIFO.
  412. */
  413. if (pkt_round)
  414. to_write -= pkt_round;
  415. /* enable correct FIFO interrupt to alert us when there
  416. * is more room left. */
  417. s3c_hsotg_en_gsint(hsotg,
  418. periodic ? S3C_GINTSTS_PTxFEmp :
  419. S3C_GINTSTS_NPTxFEmp);
  420. }
  421. dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
  422. to_write, hs_req->req.length, can_write, buf_pos);
  423. if (to_write <= 0)
  424. return -ENOSPC;
  425. hs_req->req.actual = buf_pos + to_write;
  426. hs_ep->total_data += to_write;
  427. if (periodic)
  428. hs_ep->fifo_load += to_write;
  429. to_write = DIV_ROUND_UP(to_write, 4);
  430. data = hs_req->req.buf + buf_pos;
  431. writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
  432. return (to_write >= can_write) ? -ENOSPC : 0;
  433. }
  434. /**
  435. * get_ep_limit - get the maximum data legnth for this endpoint
  436. * @hs_ep: The endpoint
  437. *
  438. * Return the maximum data that can be queued in one go on a given endpoint
  439. * so that transfers that are too long can be split.
  440. */
  441. static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
  442. {
  443. int index = hs_ep->index;
  444. unsigned maxsize;
  445. unsigned maxpkt;
  446. if (index != 0) {
  447. maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
  448. maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
  449. } else {
  450. if (hs_ep->dir_in) {
  451. /* maxsize = S3C_DIEPTSIZ0_XferSize_LIMIT + 1; */
  452. maxsize = 64+64+1;
  453. maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
  454. } else {
  455. maxsize = 0x3f;
  456. maxpkt = 2;
  457. }
  458. }
  459. /* we made the constant loading easier above by using +1 */
  460. maxpkt--;
  461. maxsize--;
  462. /* constrain by packet count if maxpkts*pktsize is greater
  463. * than the length register size. */
  464. if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
  465. maxsize = maxpkt * hs_ep->ep.maxpacket;
  466. return maxsize;
  467. }
  468. /**
  469. * s3c_hsotg_start_req - start a USB request from an endpoint's queue
  470. * @hsotg: The controller state.
  471. * @hs_ep: The endpoint to process a request for
  472. * @hs_req: The request to start.
  473. * @continuing: True if we are doing more for the current request.
  474. *
  475. * Start the given request running by setting the endpoint registers
  476. * appropriately, and writing any data to the FIFOs.
  477. */
  478. static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
  479. struct s3c_hsotg_ep *hs_ep,
  480. struct s3c_hsotg_req *hs_req,
  481. bool continuing)
  482. {
  483. struct usb_request *ureq = &hs_req->req;
  484. int index = hs_ep->index;
  485. int dir_in = hs_ep->dir_in;
  486. u32 epctrl_reg;
  487. u32 epsize_reg;
  488. u32 epsize;
  489. u32 ctrl;
  490. unsigned length;
  491. unsigned packets;
  492. unsigned maxreq;
  493. if (index != 0) {
  494. if (hs_ep->req && !continuing) {
  495. dev_err(hsotg->dev, "%s: active request\n", __func__);
  496. WARN_ON(1);
  497. return;
  498. } else if (hs_ep->req != hs_req && continuing) {
  499. dev_err(hsotg->dev,
  500. "%s: continue different req\n", __func__);
  501. WARN_ON(1);
  502. return;
  503. }
  504. }
  505. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  506. epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
  507. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
  508. __func__, readl(hsotg->regs + epctrl_reg), index,
  509. hs_ep->dir_in ? "in" : "out");
  510. length = ureq->length - ureq->actual;
  511. if (0)
  512. dev_dbg(hsotg->dev,
  513. "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
  514. ureq->buf, length, ureq->dma,
  515. ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
  516. maxreq = get_ep_limit(hs_ep);
  517. if (length > maxreq) {
  518. int round = maxreq % hs_ep->ep.maxpacket;
  519. dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
  520. __func__, length, maxreq, round);
  521. /* round down to multiple of packets */
  522. if (round)
  523. maxreq -= round;
  524. length = maxreq;
  525. }
  526. if (length)
  527. packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
  528. else
  529. packets = 1; /* send one packet if length is zero. */
  530. if (dir_in && index != 0)
  531. epsize = S3C_DxEPTSIZ_MC(1);
  532. else
  533. epsize = 0;
  534. if (index != 0 && ureq->zero) {
  535. /* test for the packets being exactly right for the
  536. * transfer */
  537. if (length == (packets * hs_ep->ep.maxpacket))
  538. packets++;
  539. }
  540. epsize |= S3C_DxEPTSIZ_PktCnt(packets);
  541. epsize |= S3C_DxEPTSIZ_XferSize(length);
  542. dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
  543. __func__, packets, length, ureq->length, epsize, epsize_reg);
  544. /* store the request as the current one we're doing */
  545. hs_ep->req = hs_req;
  546. /* write size / packets */
  547. writel(epsize, hsotg->regs + epsize_reg);
  548. ctrl = readl(hsotg->regs + epctrl_reg);
  549. if (ctrl & S3C_DxEPCTL_Stall) {
  550. dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
  551. /* not sure what we can do here, if it is EP0 then we should
  552. * get this cleared once the endpoint has transmitted the
  553. * STALL packet, otherwise it needs to be cleared by the
  554. * host.
  555. */
  556. }
  557. if (using_dma(hsotg)) {
  558. unsigned int dma_reg;
  559. /* write DMA address to control register, buffer already
  560. * synced by s3c_hsotg_ep_queue(). */
  561. dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
  562. writel(ureq->dma, hsotg->regs + dma_reg);
  563. dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
  564. __func__, ureq->dma, dma_reg);
  565. }
  566. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  567. ctrl |= S3C_DxEPCTL_USBActEp;
  568. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  569. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  570. writel(ctrl, hsotg->regs + epctrl_reg);
  571. /* set these, it seems that DMA support increments past the end
  572. * of the packet buffer so we need to calculate the length from
  573. * this information. */
  574. hs_ep->size_loaded = length;
  575. hs_ep->last_load = ureq->actual;
  576. if (dir_in && !using_dma(hsotg)) {
  577. /* set these anyway, we may need them for non-periodic in */
  578. hs_ep->fifo_load = 0;
  579. s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  580. }
  581. /* clear the INTknTXFEmpMsk when we start request, more as a aide
  582. * to debugging to see what is going on. */
  583. if (dir_in)
  584. writel(S3C_DIEPMSK_INTknTXFEmpMsk,
  585. hsotg->regs + S3C_DIEPINT(index));
  586. /* Note, trying to clear the NAK here causes problems with transmit
  587. * on the S3C6400 ending up with the TXFIFO becomming full. */
  588. /* check ep is enabled */
  589. if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
  590. dev_warn(hsotg->dev,
  591. "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
  592. index, readl(hsotg->regs + epctrl_reg));
  593. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
  594. __func__, readl(hsotg->regs + epctrl_reg));
  595. }
  596. /**
  597. * s3c_hsotg_map_dma - map the DMA memory being used for the request
  598. * @hsotg: The device state.
  599. * @hs_ep: The endpoint the request is on.
  600. * @req: The request being processed.
  601. *
  602. * We've been asked to queue a request, so ensure that the memory buffer
  603. * is correctly setup for DMA. If we've been passed an extant DMA address
  604. * then ensure the buffer has been synced to memory. If our buffer has no
  605. * DMA memory, then we map the memory and mark our request to allow us to
  606. * cleanup on completion.
  607. */
  608. static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
  609. struct s3c_hsotg_ep *hs_ep,
  610. struct usb_request *req)
  611. {
  612. enum dma_data_direction dir;
  613. struct s3c_hsotg_req *hs_req = our_req(req);
  614. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  615. /* if the length is zero, ignore the DMA data */
  616. if (hs_req->req.length == 0)
  617. return 0;
  618. if (req->dma == DMA_ADDR_INVALID) {
  619. dma_addr_t dma;
  620. dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
  621. if (unlikely(dma_mapping_error(hsotg->dev, dma)))
  622. goto dma_error;
  623. if (dma & 3) {
  624. dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
  625. __func__);
  626. dma_unmap_single(hsotg->dev, dma, req->length, dir);
  627. return -EINVAL;
  628. }
  629. hs_req->mapped = 1;
  630. req->dma = dma;
  631. } else {
  632. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  633. hs_req->mapped = 0;
  634. }
  635. return 0;
  636. dma_error:
  637. dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
  638. __func__, req->buf, req->length);
  639. return -EIO;
  640. }
  641. static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
  642. gfp_t gfp_flags)
  643. {
  644. struct s3c_hsotg_req *hs_req = our_req(req);
  645. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  646. struct s3c_hsotg *hs = hs_ep->parent;
  647. unsigned long irqflags;
  648. bool first;
  649. dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
  650. ep->name, req, req->length, req->buf, req->no_interrupt,
  651. req->zero, req->short_not_ok);
  652. /* initialise status of the request */
  653. INIT_LIST_HEAD(&hs_req->queue);
  654. req->actual = 0;
  655. req->status = -EINPROGRESS;
  656. /* if we're using DMA, sync the buffers as necessary */
  657. if (using_dma(hs)) {
  658. int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
  659. if (ret)
  660. return ret;
  661. }
  662. spin_lock_irqsave(&hs_ep->lock, irqflags);
  663. first = list_empty(&hs_ep->queue);
  664. list_add_tail(&hs_req->queue, &hs_ep->queue);
  665. if (first)
  666. s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
  667. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  668. return 0;
  669. }
  670. static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
  671. struct usb_request *req)
  672. {
  673. struct s3c_hsotg_req *hs_req = our_req(req);
  674. kfree(hs_req);
  675. }
  676. /**
  677. * s3c_hsotg_complete_oursetup - setup completion callback
  678. * @ep: The endpoint the request was on.
  679. * @req: The request completed.
  680. *
  681. * Called on completion of any requests the driver itself
  682. * submitted that need cleaning up.
  683. */
  684. static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
  685. struct usb_request *req)
  686. {
  687. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  688. struct s3c_hsotg *hsotg = hs_ep->parent;
  689. dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
  690. s3c_hsotg_ep_free_request(ep, req);
  691. }
  692. /**
  693. * ep_from_windex - convert control wIndex value to endpoint
  694. * @hsotg: The driver state.
  695. * @windex: The control request wIndex field (in host order).
  696. *
  697. * Convert the given wIndex into a pointer to an driver endpoint
  698. * structure, or return NULL if it is not a valid endpoint.
  699. */
  700. static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
  701. u32 windex)
  702. {
  703. struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
  704. int dir = (windex & USB_DIR_IN) ? 1 : 0;
  705. int idx = windex & 0x7F;
  706. if (windex >= 0x100)
  707. return NULL;
  708. if (idx > S3C_HSOTG_EPS)
  709. return NULL;
  710. if (idx && ep->dir_in != dir)
  711. return NULL;
  712. return ep;
  713. }
  714. /**
  715. * s3c_hsotg_send_reply - send reply to control request
  716. * @hsotg: The device state
  717. * @ep: Endpoint 0
  718. * @buff: Buffer for request
  719. * @length: Length of reply.
  720. *
  721. * Create a request and queue it on the given endpoint. This is useful as
  722. * an internal method of sending replies to certain control requests, etc.
  723. */
  724. static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
  725. struct s3c_hsotg_ep *ep,
  726. void *buff,
  727. int length)
  728. {
  729. struct usb_request *req;
  730. int ret;
  731. dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
  732. req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
  733. hsotg->ep0_reply = req;
  734. if (!req) {
  735. dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
  736. return -ENOMEM;
  737. }
  738. req->buf = hsotg->ep0_buff;
  739. req->length = length;
  740. req->zero = 1; /* always do zero-length final transfer */
  741. req->complete = s3c_hsotg_complete_oursetup;
  742. if (length)
  743. memcpy(req->buf, buff, length);
  744. else
  745. ep->sent_zlp = 1;
  746. ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
  747. if (ret) {
  748. dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
  749. return ret;
  750. }
  751. return 0;
  752. }
  753. /**
  754. * s3c_hsotg_process_req_status - process request GET_STATUS
  755. * @hsotg: The device state
  756. * @ctrl: USB control request
  757. */
  758. static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
  759. struct usb_ctrlrequest *ctrl)
  760. {
  761. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  762. struct s3c_hsotg_ep *ep;
  763. __le16 reply;
  764. int ret;
  765. dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
  766. if (!ep0->dir_in) {
  767. dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
  768. return -EINVAL;
  769. }
  770. switch (ctrl->bRequestType & USB_RECIP_MASK) {
  771. case USB_RECIP_DEVICE:
  772. reply = cpu_to_le16(0); /* bit 0 => self powered,
  773. * bit 1 => remote wakeup */
  774. break;
  775. case USB_RECIP_INTERFACE:
  776. /* currently, the data result should be zero */
  777. reply = cpu_to_le16(0);
  778. break;
  779. case USB_RECIP_ENDPOINT:
  780. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  781. if (!ep)
  782. return -ENOENT;
  783. reply = cpu_to_le16(ep->halted ? 1 : 0);
  784. break;
  785. default:
  786. return 0;
  787. }
  788. if (le16_to_cpu(ctrl->wLength) != 2)
  789. return -EINVAL;
  790. ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
  791. if (ret) {
  792. dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
  793. return ret;
  794. }
  795. return 1;
  796. }
  797. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
  798. /**
  799. * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
  800. * @hsotg: The device state
  801. * @ctrl: USB control request
  802. */
  803. static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
  804. struct usb_ctrlrequest *ctrl)
  805. {
  806. bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
  807. struct s3c_hsotg_ep *ep;
  808. dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
  809. __func__, set ? "SET" : "CLEAR");
  810. if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
  811. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  812. if (!ep) {
  813. dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
  814. __func__, le16_to_cpu(ctrl->wIndex));
  815. return -ENOENT;
  816. }
  817. switch (le16_to_cpu(ctrl->wValue)) {
  818. case USB_ENDPOINT_HALT:
  819. s3c_hsotg_ep_sethalt(&ep->ep, set);
  820. break;
  821. default:
  822. return -ENOENT;
  823. }
  824. } else
  825. return -ENOENT; /* currently only deal with endpoint */
  826. return 1;
  827. }
  828. /**
  829. * s3c_hsotg_process_control - process a control request
  830. * @hsotg: The device state
  831. * @ctrl: The control request received
  832. *
  833. * The controller has received the SETUP phase of a control request, and
  834. * needs to work out what to do next (and whether to pass it on to the
  835. * gadget driver).
  836. */
  837. static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
  838. struct usb_ctrlrequest *ctrl)
  839. {
  840. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  841. int ret = 0;
  842. u32 dcfg;
  843. ep0->sent_zlp = 0;
  844. dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
  845. ctrl->bRequest, ctrl->bRequestType,
  846. ctrl->wValue, ctrl->wLength);
  847. /* record the direction of the request, for later use when enquing
  848. * packets onto EP0. */
  849. ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
  850. dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
  851. /* if we've no data with this request, then the last part of the
  852. * transaction is going to implicitly be IN. */
  853. if (ctrl->wLength == 0)
  854. ep0->dir_in = 1;
  855. if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  856. switch (ctrl->bRequest) {
  857. case USB_REQ_SET_ADDRESS:
  858. dcfg = readl(hsotg->regs + S3C_DCFG);
  859. dcfg &= ~S3C_DCFG_DevAddr_MASK;
  860. dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
  861. writel(dcfg, hsotg->regs + S3C_DCFG);
  862. dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
  863. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  864. return;
  865. case USB_REQ_GET_STATUS:
  866. ret = s3c_hsotg_process_req_status(hsotg, ctrl);
  867. break;
  868. case USB_REQ_CLEAR_FEATURE:
  869. case USB_REQ_SET_FEATURE:
  870. ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
  871. break;
  872. }
  873. }
  874. /* as a fallback, try delivering it to the driver to deal with */
  875. if (ret == 0 && hsotg->driver) {
  876. ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
  877. if (ret < 0)
  878. dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
  879. }
  880. if (ret > 0) {
  881. if (!ep0->dir_in) {
  882. /* need to generate zlp in reply or take data */
  883. /* todo - deal with any data we might be sent? */
  884. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  885. }
  886. }
  887. /* the request is either unhandlable, or is not formatted correctly
  888. * so respond with a STALL for the status stage to indicate failure.
  889. */
  890. if (ret < 0) {
  891. u32 reg;
  892. u32 ctrl;
  893. dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
  894. reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
  895. /* S3C_DxEPCTL_Stall will be cleared by EP once it has
  896. * taken effect, so no need to clear later. */
  897. ctrl = readl(hsotg->regs + reg);
  898. ctrl |= S3C_DxEPCTL_Stall;
  899. ctrl |= S3C_DxEPCTL_CNAK;
  900. writel(ctrl, hsotg->regs + reg);
  901. dev_dbg(hsotg->dev,
  902. "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
  903. ctrl, reg, readl(hsotg->regs + reg));
  904. /* don't belive we need to anything more to get the EP
  905. * to reply with a STALL packet */
  906. }
  907. }
  908. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
  909. /**
  910. * s3c_hsotg_complete_setup - completion of a setup transfer
  911. * @ep: The endpoint the request was on.
  912. * @req: The request completed.
  913. *
  914. * Called on completion of any requests the driver itself submitted for
  915. * EP0 setup packets
  916. */
  917. static void s3c_hsotg_complete_setup(struct usb_ep *ep,
  918. struct usb_request *req)
  919. {
  920. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  921. struct s3c_hsotg *hsotg = hs_ep->parent;
  922. if (req->status < 0) {
  923. dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
  924. return;
  925. }
  926. if (req->actual == 0)
  927. s3c_hsotg_enqueue_setup(hsotg);
  928. else
  929. s3c_hsotg_process_control(hsotg, req->buf);
  930. }
  931. /**
  932. * s3c_hsotg_enqueue_setup - start a request for EP0 packets
  933. * @hsotg: The device state.
  934. *
  935. * Enqueue a request on EP0 if necessary to received any SETUP packets
  936. * received from the host.
  937. */
  938. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
  939. {
  940. struct usb_request *req = hsotg->ctrl_req;
  941. struct s3c_hsotg_req *hs_req = our_req(req);
  942. int ret;
  943. dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
  944. req->zero = 0;
  945. req->length = 8;
  946. req->buf = hsotg->ctrl_buff;
  947. req->complete = s3c_hsotg_complete_setup;
  948. if (!list_empty(&hs_req->queue)) {
  949. dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
  950. return;
  951. }
  952. hsotg->eps[0].dir_in = 0;
  953. ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
  954. if (ret < 0) {
  955. dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
  956. /* Don't think there's much we can do other than watch the
  957. * driver fail. */
  958. }
  959. }
  960. /**
  961. * get_ep_head - return the first request on the endpoint
  962. * @hs_ep: The controller endpoint to get
  963. *
  964. * Get the first request on the endpoint.
  965. */
  966. static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
  967. {
  968. if (list_empty(&hs_ep->queue))
  969. return NULL;
  970. return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
  971. }
  972. /**
  973. * s3c_hsotg_complete_request - complete a request given to us
  974. * @hsotg: The device state.
  975. * @hs_ep: The endpoint the request was on.
  976. * @hs_req: The request to complete.
  977. * @result: The result code (0 => Ok, otherwise errno)
  978. *
  979. * The given request has finished, so call the necessary completion
  980. * if it has one and then look to see if we can start a new request
  981. * on the endpoint.
  982. *
  983. * Note, expects the ep to already be locked as appropriate.
  984. */
  985. static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
  986. struct s3c_hsotg_ep *hs_ep,
  987. struct s3c_hsotg_req *hs_req,
  988. int result)
  989. {
  990. bool restart;
  991. if (!hs_req) {
  992. dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
  993. return;
  994. }
  995. dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
  996. hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
  997. /* only replace the status if we've not already set an error
  998. * from a previous transaction */
  999. if (hs_req->req.status == -EINPROGRESS)
  1000. hs_req->req.status = result;
  1001. hs_ep->req = NULL;
  1002. list_del_init(&hs_req->queue);
  1003. if (using_dma(hsotg))
  1004. s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
  1005. /* call the complete request with the locks off, just in case the
  1006. * request tries to queue more work for this endpoint. */
  1007. if (hs_req->req.complete) {
  1008. spin_unlock(&hs_ep->lock);
  1009. hs_req->req.complete(&hs_ep->ep, &hs_req->req);
  1010. spin_lock(&hs_ep->lock);
  1011. }
  1012. /* Look to see if there is anything else to do. Note, the completion
  1013. * of the previous request may have caused a new request to be started
  1014. * so be careful when doing this. */
  1015. if (!hs_ep->req && result >= 0) {
  1016. restart = !list_empty(&hs_ep->queue);
  1017. if (restart) {
  1018. hs_req = get_ep_head(hs_ep);
  1019. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
  1020. }
  1021. }
  1022. }
  1023. /**
  1024. * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
  1025. * @hsotg: The device state.
  1026. * @hs_ep: The endpoint the request was on.
  1027. * @hs_req: The request to complete.
  1028. * @result: The result code (0 => Ok, otherwise errno)
  1029. *
  1030. * See s3c_hsotg_complete_request(), but called with the endpoint's
  1031. * lock held.
  1032. */
  1033. static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
  1034. struct s3c_hsotg_ep *hs_ep,
  1035. struct s3c_hsotg_req *hs_req,
  1036. int result)
  1037. {
  1038. unsigned long flags;
  1039. spin_lock_irqsave(&hs_ep->lock, flags);
  1040. s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
  1041. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1042. }
  1043. /**
  1044. * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
  1045. * @hsotg: The device state.
  1046. * @ep_idx: The endpoint index for the data
  1047. * @size: The size of data in the fifo, in bytes
  1048. *
  1049. * The FIFO status shows there is data to read from the FIFO for a given
  1050. * endpoint, so sort out whether we need to read the data into a request
  1051. * that has been made for that endpoint.
  1052. */
  1053. static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
  1054. {
  1055. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
  1056. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1057. void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
  1058. int to_read;
  1059. int max_req;
  1060. int read_ptr;
  1061. if (!hs_req) {
  1062. u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
  1063. int ptr;
  1064. dev_warn(hsotg->dev,
  1065. "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
  1066. __func__, size, ep_idx, epctl);
  1067. /* dump the data from the FIFO, we've nothing we can do */
  1068. for (ptr = 0; ptr < size; ptr += 4)
  1069. (void)readl(fifo);
  1070. return;
  1071. }
  1072. spin_lock(&hs_ep->lock);
  1073. to_read = size;
  1074. read_ptr = hs_req->req.actual;
  1075. max_req = hs_req->req.length - read_ptr;
  1076. if (to_read > max_req) {
  1077. /* more data appeared than we where willing
  1078. * to deal with in this request.
  1079. */
  1080. /* currently we don't deal this */
  1081. WARN_ON_ONCE(1);
  1082. }
  1083. dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
  1084. __func__, to_read, max_req, read_ptr, hs_req->req.length);
  1085. hs_ep->total_data += to_read;
  1086. hs_req->req.actual += to_read;
  1087. to_read = DIV_ROUND_UP(to_read, 4);
  1088. /* note, we might over-write the buffer end by 3 bytes depending on
  1089. * alignment of the data. */
  1090. readsl(fifo, hs_req->req.buf + read_ptr, to_read);
  1091. spin_unlock(&hs_ep->lock);
  1092. }
  1093. /**
  1094. * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
  1095. * @hsotg: The device instance
  1096. * @req: The request currently on this endpoint
  1097. *
  1098. * Generate a zero-length IN packet request for terminating a SETUP
  1099. * transaction.
  1100. *
  1101. * Note, since we don't write any data to the TxFIFO, then it is
  1102. * currently belived that we do not need to wait for any space in
  1103. * the TxFIFO.
  1104. */
  1105. static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
  1106. struct s3c_hsotg_req *req)
  1107. {
  1108. u32 ctrl;
  1109. if (!req) {
  1110. dev_warn(hsotg->dev, "%s: no request?\n", __func__);
  1111. return;
  1112. }
  1113. if (req->req.length == 0) {
  1114. hsotg->eps[0].sent_zlp = 1;
  1115. s3c_hsotg_enqueue_setup(hsotg);
  1116. return;
  1117. }
  1118. hsotg->eps[0].dir_in = 1;
  1119. hsotg->eps[0].sent_zlp = 1;
  1120. dev_dbg(hsotg->dev, "sending zero-length packet\n");
  1121. /* issue a zero-sized packet to terminate this */
  1122. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  1123. S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
  1124. ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
  1125. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  1126. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  1127. ctrl |= S3C_DxEPCTL_USBActEp;
  1128. writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
  1129. }
  1130. /**
  1131. * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
  1132. * @hsotg: The device instance
  1133. * @epnum: The endpoint received from
  1134. * @was_setup: Set if processing a SetupDone event.
  1135. *
  1136. * The RXFIFO has delivered an OutDone event, which means that the data
  1137. * transfer for an OUT endpoint has been completed, either by a short
  1138. * packet or by the finish of a transfer.
  1139. */
  1140. static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
  1141. int epnum, bool was_setup)
  1142. {
  1143. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
  1144. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1145. struct usb_request *req = &hs_req->req;
  1146. int result = 0;
  1147. if (!hs_req) {
  1148. dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
  1149. return;
  1150. }
  1151. if (using_dma(hsotg)) {
  1152. u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
  1153. unsigned size_done;
  1154. unsigned size_left;
  1155. /* Calculate the size of the transfer by checking how much
  1156. * is left in the endpoint size register and then working it
  1157. * out from the amount we loaded for the transfer.
  1158. *
  1159. * We need to do this as DMA pointers are always 32bit aligned
  1160. * so may overshoot/undershoot the transfer.
  1161. */
  1162. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1163. size_done = hs_ep->size_loaded - size_left;
  1164. size_done += hs_ep->last_load;
  1165. req->actual = size_done;
  1166. }
  1167. if (req->actual < req->length && req->short_not_ok) {
  1168. dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
  1169. __func__, req->actual, req->length);
  1170. /* todo - what should we return here? there's no one else
  1171. * even bothering to check the status. */
  1172. }
  1173. if (epnum == 0) {
  1174. if (!was_setup && req->complete != s3c_hsotg_complete_setup)
  1175. s3c_hsotg_send_zlp(hsotg, hs_req);
  1176. }
  1177. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
  1178. }
  1179. /**
  1180. * s3c_hsotg_read_frameno - read current frame number
  1181. * @hsotg: The device instance
  1182. *
  1183. * Return the current frame number
  1184. */
  1185. static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
  1186. {
  1187. u32 dsts;
  1188. dsts = readl(hsotg->regs + S3C_DSTS);
  1189. dsts &= S3C_DSTS_SOFFN_MASK;
  1190. dsts >>= S3C_DSTS_SOFFN_SHIFT;
  1191. return dsts;
  1192. }
  1193. /**
  1194. * s3c_hsotg_handle_rx - RX FIFO has data
  1195. * @hsotg: The device instance
  1196. *
  1197. * The IRQ handler has detected that the RX FIFO has some data in it
  1198. * that requires processing, so find out what is in there and do the
  1199. * appropriate read.
  1200. *
  1201. * The RXFIFO is a true FIFO, the packets comming out are still in packet
  1202. * chunks, so if you have x packets received on an endpoint you'll get x
  1203. * FIFO events delivered, each with a packet's worth of data in it.
  1204. *
  1205. * When using DMA, we should not be processing events from the RXFIFO
  1206. * as the actual data should be sent to the memory directly and we turn
  1207. * on the completion interrupts to get notifications of transfer completion.
  1208. */
  1209. static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
  1210. {
  1211. u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
  1212. u32 epnum, status, size;
  1213. WARN_ON(using_dma(hsotg));
  1214. epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
  1215. status = grxstsr & S3C_GRXSTS_PktSts_MASK;
  1216. size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
  1217. size >>= S3C_GRXSTS_ByteCnt_SHIFT;
  1218. if (1)
  1219. dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
  1220. __func__, grxstsr, size, epnum);
  1221. #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
  1222. switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
  1223. case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
  1224. dev_dbg(hsotg->dev, "GlobalOutNAK\n");
  1225. break;
  1226. case __status(S3C_GRXSTS_PktSts_OutDone):
  1227. dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
  1228. s3c_hsotg_read_frameno(hsotg));
  1229. if (!using_dma(hsotg))
  1230. s3c_hsotg_handle_outdone(hsotg, epnum, false);
  1231. break;
  1232. case __status(S3C_GRXSTS_PktSts_SetupDone):
  1233. dev_dbg(hsotg->dev,
  1234. "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1235. s3c_hsotg_read_frameno(hsotg),
  1236. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1237. s3c_hsotg_handle_outdone(hsotg, epnum, true);
  1238. break;
  1239. case __status(S3C_GRXSTS_PktSts_OutRX):
  1240. s3c_hsotg_rx_data(hsotg, epnum, size);
  1241. break;
  1242. case __status(S3C_GRXSTS_PktSts_SetupRX):
  1243. dev_dbg(hsotg->dev,
  1244. "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1245. s3c_hsotg_read_frameno(hsotg),
  1246. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1247. s3c_hsotg_rx_data(hsotg, epnum, size);
  1248. break;
  1249. default:
  1250. dev_warn(hsotg->dev, "%s: unknown status %08x\n",
  1251. __func__, grxstsr);
  1252. s3c_hsotg_dump(hsotg);
  1253. break;
  1254. }
  1255. }
  1256. /**
  1257. * s3c_hsotg_ep0_mps - turn max packet size into register setting
  1258. * @mps: The maximum packet size in bytes.
  1259. */
  1260. static u32 s3c_hsotg_ep0_mps(unsigned int mps)
  1261. {
  1262. switch (mps) {
  1263. case 64:
  1264. return S3C_D0EPCTL_MPS_64;
  1265. case 32:
  1266. return S3C_D0EPCTL_MPS_32;
  1267. case 16:
  1268. return S3C_D0EPCTL_MPS_16;
  1269. case 8:
  1270. return S3C_D0EPCTL_MPS_8;
  1271. }
  1272. /* bad max packet size, warn and return invalid result */
  1273. WARN_ON(1);
  1274. return (u32)-1;
  1275. }
  1276. /**
  1277. * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
  1278. * @hsotg: The driver state.
  1279. * @ep: The index number of the endpoint
  1280. * @mps: The maximum packet size in bytes
  1281. *
  1282. * Configure the maximum packet size for the given endpoint, updating
  1283. * the hardware control registers to reflect this.
  1284. */
  1285. static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
  1286. unsigned int ep, unsigned int mps)
  1287. {
  1288. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
  1289. void __iomem *regs = hsotg->regs;
  1290. u32 mpsval;
  1291. u32 reg;
  1292. if (ep == 0) {
  1293. /* EP0 is a special case */
  1294. mpsval = s3c_hsotg_ep0_mps(mps);
  1295. if (mpsval > 3)
  1296. goto bad_mps;
  1297. } else {
  1298. if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
  1299. goto bad_mps;
  1300. mpsval = mps;
  1301. }
  1302. hs_ep->ep.maxpacket = mps;
  1303. /* update both the in and out endpoint controldir_ registers, even
  1304. * if one of the directions may not be in use. */
  1305. reg = readl(regs + S3C_DIEPCTL(ep));
  1306. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1307. reg |= mpsval;
  1308. writel(reg, regs + S3C_DIEPCTL(ep));
  1309. reg = readl(regs + S3C_DOEPCTL(ep));
  1310. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1311. reg |= mpsval;
  1312. writel(reg, regs + S3C_DOEPCTL(ep));
  1313. return;
  1314. bad_mps:
  1315. dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
  1316. }
  1317. /**
  1318. * s3c_hsotg_trytx - check to see if anything needs transmitting
  1319. * @hsotg: The driver state
  1320. * @hs_ep: The driver endpoint to check.
  1321. *
  1322. * Check to see if there is a request that has data to send, and if so
  1323. * make an attempt to write data into the FIFO.
  1324. */
  1325. static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
  1326. struct s3c_hsotg_ep *hs_ep)
  1327. {
  1328. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1329. if (!hs_ep->dir_in || !hs_req)
  1330. return 0;
  1331. if (hs_req->req.actual < hs_req->req.length) {
  1332. dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
  1333. hs_ep->index);
  1334. return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  1335. }
  1336. return 0;
  1337. }
  1338. /**
  1339. * s3c_hsotg_complete_in - complete IN transfer
  1340. * @hsotg: The device state.
  1341. * @hs_ep: The endpoint that has just completed.
  1342. *
  1343. * An IN transfer has been completed, update the transfer's state and then
  1344. * call the relevant completion routines.
  1345. */
  1346. static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
  1347. struct s3c_hsotg_ep *hs_ep)
  1348. {
  1349. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1350. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  1351. int size_left, size_done;
  1352. if (!hs_req) {
  1353. dev_dbg(hsotg->dev, "XferCompl but no req\n");
  1354. return;
  1355. }
  1356. /* Calculate the size of the transfer by checking how much is left
  1357. * in the endpoint size register and then working it out from
  1358. * the amount we loaded for the transfer.
  1359. *
  1360. * We do this even for DMA, as the transfer may have incremented
  1361. * past the end of the buffer (DMA transfers are always 32bit
  1362. * aligned).
  1363. */
  1364. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1365. size_done = hs_ep->size_loaded - size_left;
  1366. size_done += hs_ep->last_load;
  1367. if (hs_req->req.actual != size_done)
  1368. dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
  1369. __func__, hs_req->req.actual, size_done);
  1370. hs_req->req.actual = size_done;
  1371. /* if we did all of the transfer, and there is more data left
  1372. * around, then try restarting the rest of the request */
  1373. if (!size_left && hs_req->req.actual < hs_req->req.length) {
  1374. dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
  1375. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1376. } else
  1377. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
  1378. }
  1379. /**
  1380. * s3c_hsotg_epint - handle an in/out endpoint interrupt
  1381. * @hsotg: The driver state
  1382. * @idx: The index for the endpoint (0..15)
  1383. * @dir_in: Set if this is an IN endpoint
  1384. *
  1385. * Process and clear any interrupt pending for an individual endpoint
  1386. */
  1387. static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
  1388. int dir_in)
  1389. {
  1390. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
  1391. u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
  1392. u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
  1393. u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
  1394. u32 ints;
  1395. u32 clear = 0;
  1396. ints = readl(hsotg->regs + epint_reg);
  1397. dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
  1398. __func__, idx, dir_in ? "in" : "out", ints);
  1399. if (ints & S3C_DxEPINT_XferCompl) {
  1400. dev_dbg(hsotg->dev,
  1401. "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
  1402. __func__, readl(hsotg->regs + epctl_reg),
  1403. readl(hsotg->regs + epsiz_reg));
  1404. /* we get OutDone from the FIFO, so we only need to look
  1405. * at completing IN requests here */
  1406. if (dir_in) {
  1407. s3c_hsotg_complete_in(hsotg, hs_ep);
  1408. if (idx == 0)
  1409. s3c_hsotg_enqueue_setup(hsotg);
  1410. } else if (using_dma(hsotg)) {
  1411. /* We're using DMA, we need to fire an OutDone here
  1412. * as we ignore the RXFIFO. */
  1413. s3c_hsotg_handle_outdone(hsotg, idx, false);
  1414. }
  1415. clear |= S3C_DxEPINT_XferCompl;
  1416. }
  1417. if (ints & S3C_DxEPINT_EPDisbld) {
  1418. dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
  1419. clear |= S3C_DxEPINT_EPDisbld;
  1420. }
  1421. if (ints & S3C_DxEPINT_AHBErr) {
  1422. dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
  1423. clear |= S3C_DxEPINT_AHBErr;
  1424. }
  1425. if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
  1426. dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
  1427. if (using_dma(hsotg) && idx == 0) {
  1428. /* this is the notification we've received a
  1429. * setup packet. In non-DMA mode we'd get this
  1430. * from the RXFIFO, instead we need to process
  1431. * the setup here. */
  1432. if (dir_in)
  1433. WARN_ON_ONCE(1);
  1434. else
  1435. s3c_hsotg_handle_outdone(hsotg, 0, true);
  1436. }
  1437. clear |= S3C_DxEPINT_Setup;
  1438. }
  1439. if (ints & S3C_DxEPINT_Back2BackSetup) {
  1440. dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
  1441. clear |= S3C_DxEPINT_Back2BackSetup;
  1442. }
  1443. if (dir_in) {
  1444. /* not sure if this is important, but we'll clear it anyway
  1445. */
  1446. if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
  1447. dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
  1448. __func__, idx);
  1449. clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
  1450. }
  1451. /* this probably means something bad is happening */
  1452. if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
  1453. dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
  1454. __func__, idx);
  1455. clear |= S3C_DIEPMSK_INTknEPMisMsk;
  1456. }
  1457. }
  1458. writel(clear, hsotg->regs + epint_reg);
  1459. }
  1460. /**
  1461. * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
  1462. * @hsotg: The device state.
  1463. *
  1464. * Handle updating the device settings after the enumeration phase has
  1465. * been completed.
  1466. */
  1467. static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
  1468. {
  1469. u32 dsts = readl(hsotg->regs + S3C_DSTS);
  1470. int ep0_mps = 0, ep_mps;
  1471. /* This should signal the finish of the enumeration phase
  1472. * of the USB handshaking, so we should now know what rate
  1473. * we connected at. */
  1474. dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
  1475. /* note, since we're limited by the size of transfer on EP0, and
  1476. * it seems IN transfers must be a even number of packets we do
  1477. * not advertise a 64byte MPS on EP0. */
  1478. /* catch both EnumSpd_FS and EnumSpd_FS48 */
  1479. switch (dsts & S3C_DSTS_EnumSpd_MASK) {
  1480. case S3C_DSTS_EnumSpd_FS:
  1481. case S3C_DSTS_EnumSpd_FS48:
  1482. hsotg->gadget.speed = USB_SPEED_FULL;
  1483. dev_info(hsotg->dev, "new device is full-speed\n");
  1484. ep0_mps = EP0_MPS_LIMIT;
  1485. ep_mps = 64;
  1486. break;
  1487. case S3C_DSTS_EnumSpd_HS:
  1488. dev_info(hsotg->dev, "new device is high-speed\n");
  1489. hsotg->gadget.speed = USB_SPEED_HIGH;
  1490. ep0_mps = EP0_MPS_LIMIT;
  1491. ep_mps = 512;
  1492. break;
  1493. case S3C_DSTS_EnumSpd_LS:
  1494. hsotg->gadget.speed = USB_SPEED_LOW;
  1495. dev_info(hsotg->dev, "new device is low-speed\n");
  1496. /* note, we don't actually support LS in this driver at the
  1497. * moment, and the documentation seems to imply that it isn't
  1498. * supported by the PHYs on some of the devices.
  1499. */
  1500. break;
  1501. }
  1502. /* we should now know the maximum packet size for an
  1503. * endpoint, so set the endpoints to a default value. */
  1504. if (ep0_mps) {
  1505. int i;
  1506. s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
  1507. for (i = 1; i < S3C_HSOTG_EPS; i++)
  1508. s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
  1509. }
  1510. /* ensure after enumeration our EP0 is active */
  1511. s3c_hsotg_enqueue_setup(hsotg);
  1512. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  1513. readl(hsotg->regs + S3C_DIEPCTL0),
  1514. readl(hsotg->regs + S3C_DOEPCTL0));
  1515. }
  1516. /**
  1517. * kill_all_requests - remove all requests from the endpoint's queue
  1518. * @hsotg: The device state.
  1519. * @ep: The endpoint the requests may be on.
  1520. * @result: The result code to use.
  1521. * @force: Force removal of any current requests
  1522. *
  1523. * Go through the requests on the given endpoint and mark them
  1524. * completed with the given result code.
  1525. */
  1526. static void kill_all_requests(struct s3c_hsotg *hsotg,
  1527. struct s3c_hsotg_ep *ep,
  1528. int result, bool force)
  1529. {
  1530. struct s3c_hsotg_req *req, *treq;
  1531. unsigned long flags;
  1532. spin_lock_irqsave(&ep->lock, flags);
  1533. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1534. /* currently, we can't do much about an already
  1535. * running request on an in endpoint */
  1536. if (ep->req == req && ep->dir_in && !force)
  1537. continue;
  1538. s3c_hsotg_complete_request(hsotg, ep, req,
  1539. result);
  1540. }
  1541. spin_unlock_irqrestore(&ep->lock, flags);
  1542. }
  1543. #define call_gadget(_hs, _entry) \
  1544. if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
  1545. (_hs)->driver && (_hs)->driver->_entry) \
  1546. (_hs)->driver->_entry(&(_hs)->gadget);
  1547. /**
  1548. * s3c_hsotg_disconnect_irq - disconnect irq service
  1549. * @hsotg: The device state.
  1550. *
  1551. * A disconnect IRQ has been received, meaning that the host has
  1552. * lost contact with the bus. Remove all current transactions
  1553. * and signal the gadget driver that this has happened.
  1554. */
  1555. static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
  1556. {
  1557. unsigned ep;
  1558. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  1559. kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
  1560. call_gadget(hsotg, disconnect);
  1561. }
  1562. /**
  1563. * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
  1564. * @hsotg: The device state:
  1565. * @periodic: True if this is a periodic FIFO interrupt
  1566. */
  1567. static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
  1568. {
  1569. struct s3c_hsotg_ep *ep;
  1570. int epno, ret;
  1571. /* look through for any more data to transmit */
  1572. for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
  1573. ep = &hsotg->eps[epno];
  1574. if (!ep->dir_in)
  1575. continue;
  1576. if ((periodic && !ep->periodic) ||
  1577. (!periodic && ep->periodic))
  1578. continue;
  1579. ret = s3c_hsotg_trytx(hsotg, ep);
  1580. if (ret < 0)
  1581. break;
  1582. }
  1583. }
  1584. static struct s3c_hsotg *our_hsotg;
  1585. /* IRQ flags which will trigger a retry around the IRQ loop */
  1586. #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
  1587. S3C_GINTSTS_PTxFEmp | \
  1588. S3C_GINTSTS_RxFLvl)
  1589. /**
  1590. * s3c_hsotg_irq - handle device interrupt
  1591. * @irq: The IRQ number triggered
  1592. * @pw: The pw value when registered the handler.
  1593. */
  1594. static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
  1595. {
  1596. struct s3c_hsotg *hsotg = pw;
  1597. int retry_count = 8;
  1598. u32 gintsts;
  1599. u32 gintmsk;
  1600. irq_retry:
  1601. gintsts = readl(hsotg->regs + S3C_GINTSTS);
  1602. gintmsk = readl(hsotg->regs + S3C_GINTMSK);
  1603. dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
  1604. __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
  1605. gintsts &= gintmsk;
  1606. if (gintsts & S3C_GINTSTS_OTGInt) {
  1607. u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
  1608. dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
  1609. writel(otgint, hsotg->regs + S3C_GOTGINT);
  1610. writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
  1611. }
  1612. if (gintsts & S3C_GINTSTS_DisconnInt) {
  1613. dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
  1614. writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
  1615. s3c_hsotg_disconnect_irq(hsotg);
  1616. }
  1617. if (gintsts & S3C_GINTSTS_SessReqInt) {
  1618. dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
  1619. writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
  1620. }
  1621. if (gintsts & S3C_GINTSTS_EnumDone) {
  1622. s3c_hsotg_irq_enumdone(hsotg);
  1623. writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
  1624. }
  1625. if (gintsts & S3C_GINTSTS_ConIDStsChng) {
  1626. dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
  1627. readl(hsotg->regs + S3C_DSTS),
  1628. readl(hsotg->regs + S3C_GOTGCTL));
  1629. writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
  1630. }
  1631. if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
  1632. u32 daint = readl(hsotg->regs + S3C_DAINT);
  1633. u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
  1634. u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
  1635. int ep;
  1636. dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
  1637. for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
  1638. if (daint_out & 1)
  1639. s3c_hsotg_epint(hsotg, ep, 0);
  1640. }
  1641. for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
  1642. if (daint_in & 1)
  1643. s3c_hsotg_epint(hsotg, ep, 1);
  1644. }
  1645. writel(daint, hsotg->regs + S3C_DAINT);
  1646. writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
  1647. hsotg->regs + S3C_GINTSTS);
  1648. }
  1649. if (gintsts & S3C_GINTSTS_USBRst) {
  1650. dev_info(hsotg->dev, "%s: USBRst\n", __func__);
  1651. dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
  1652. readl(hsotg->regs + S3C_GNPTXSTS));
  1653. kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
  1654. /* it seems after a reset we can end up with a situation
  1655. * where the TXFIFO still has data in it... try flushing
  1656. * it to remove anything that may still be in it.
  1657. */
  1658. if (1) {
  1659. writel(S3C_GRSTCTL_TxFNum(0) | S3C_GRSTCTL_TxFFlsh,
  1660. hsotg->regs + S3C_GRSTCTL);
  1661. dev_info(hsotg->dev, "GNPTXSTS=%08x\n",
  1662. readl(hsotg->regs + S3C_GNPTXSTS));
  1663. }
  1664. s3c_hsotg_enqueue_setup(hsotg);
  1665. writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
  1666. }
  1667. /* check both FIFOs */
  1668. if (gintsts & S3C_GINTSTS_NPTxFEmp) {
  1669. dev_dbg(hsotg->dev, "NPTxFEmp\n");
  1670. /* Disable the interrupt to stop it happening again
  1671. * unless one of these endpoint routines decides that
  1672. * it needs re-enabling */
  1673. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  1674. s3c_hsotg_irq_fifoempty(hsotg, false);
  1675. writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
  1676. }
  1677. if (gintsts & S3C_GINTSTS_PTxFEmp) {
  1678. dev_dbg(hsotg->dev, "PTxFEmp\n");
  1679. /* See note in S3C_GINTSTS_NPTxFEmp */
  1680. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  1681. s3c_hsotg_irq_fifoempty(hsotg, true);
  1682. writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
  1683. }
  1684. if (gintsts & S3C_GINTSTS_RxFLvl) {
  1685. /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
  1686. * we need to retry s3c_hsotg_handle_rx if this is still
  1687. * set. */
  1688. s3c_hsotg_handle_rx(hsotg);
  1689. writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
  1690. }
  1691. if (gintsts & S3C_GINTSTS_ModeMis) {
  1692. dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
  1693. writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
  1694. }
  1695. if (gintsts & S3C_GINTSTS_USBSusp) {
  1696. dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
  1697. writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
  1698. call_gadget(hsotg, suspend);
  1699. }
  1700. if (gintsts & S3C_GINTSTS_WkUpInt) {
  1701. dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
  1702. writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
  1703. call_gadget(hsotg, resume);
  1704. }
  1705. if (gintsts & S3C_GINTSTS_ErlySusp) {
  1706. dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
  1707. writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
  1708. }
  1709. /* these next two seem to crop-up occasionally causing the core
  1710. * to shutdown the USB transfer, so try clearing them and logging
  1711. * the occurence. */
  1712. if (gintsts & S3C_GINTSTS_GOUTNakEff) {
  1713. dev_info(hsotg->dev, "GOUTNakEff triggered\n");
  1714. s3c_hsotg_dump(hsotg);
  1715. writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
  1716. writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
  1717. }
  1718. if (gintsts & S3C_GINTSTS_GINNakEff) {
  1719. dev_info(hsotg->dev, "GINNakEff triggered\n");
  1720. s3c_hsotg_dump(hsotg);
  1721. writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
  1722. writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
  1723. }
  1724. /* if we've had fifo events, we should try and go around the
  1725. * loop again to see if there's any point in returning yet. */
  1726. if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
  1727. goto irq_retry;
  1728. return IRQ_HANDLED;
  1729. }
  1730. /**
  1731. * s3c_hsotg_ep_enable - enable the given endpoint
  1732. * @ep: The USB endpint to configure
  1733. * @desc: The USB endpoint descriptor to configure with.
  1734. *
  1735. * This is called from the USB gadget code's usb_ep_enable().
  1736. */
  1737. static int s3c_hsotg_ep_enable(struct usb_ep *ep,
  1738. const struct usb_endpoint_descriptor *desc)
  1739. {
  1740. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1741. struct s3c_hsotg *hsotg = hs_ep->parent;
  1742. unsigned long flags;
  1743. int index = hs_ep->index;
  1744. u32 epctrl_reg;
  1745. u32 epctrl;
  1746. u32 mps;
  1747. int dir_in;
  1748. dev_dbg(hsotg->dev,
  1749. "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
  1750. __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
  1751. desc->wMaxPacketSize, desc->bInterval);
  1752. /* not to be called for EP0 */
  1753. WARN_ON(index == 0);
  1754. dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
  1755. if (dir_in != hs_ep->dir_in) {
  1756. dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
  1757. return -EINVAL;
  1758. }
  1759. mps = le16_to_cpu(desc->wMaxPacketSize);
  1760. /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
  1761. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1762. epctrl = readl(hsotg->regs + epctrl_reg);
  1763. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
  1764. __func__, epctrl, epctrl_reg);
  1765. spin_lock_irqsave(&hs_ep->lock, flags);
  1766. epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
  1767. epctrl |= S3C_DxEPCTL_MPS(mps);
  1768. /* mark the endpoint as active, otherwise the core may ignore
  1769. * transactions entirely for this endpoint */
  1770. epctrl |= S3C_DxEPCTL_USBActEp;
  1771. /* set the NAK status on the endpoint, otherwise we might try and
  1772. * do something with data that we've yet got a request to process
  1773. * since the RXFIFO will take data for an endpoint even if the
  1774. * size register hasn't been set.
  1775. */
  1776. epctrl |= S3C_DxEPCTL_SNAK;
  1777. /* update the endpoint state */
  1778. hs_ep->ep.maxpacket = mps;
  1779. /* default, set to non-periodic */
  1780. hs_ep->periodic = 0;
  1781. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  1782. case USB_ENDPOINT_XFER_ISOC:
  1783. dev_err(hsotg->dev, "no current ISOC support\n");
  1784. return -EINVAL;
  1785. case USB_ENDPOINT_XFER_BULK:
  1786. epctrl |= S3C_DxEPCTL_EPType_Bulk;
  1787. break;
  1788. case USB_ENDPOINT_XFER_INT:
  1789. if (dir_in) {
  1790. /* Allocate our TxFNum by simply using the index
  1791. * of the endpoint for the moment. We could do
  1792. * something better if the host indicates how
  1793. * many FIFOs we are expecting to use. */
  1794. hs_ep->periodic = 1;
  1795. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1796. }
  1797. epctrl |= S3C_DxEPCTL_EPType_Intterupt;
  1798. break;
  1799. case USB_ENDPOINT_XFER_CONTROL:
  1800. epctrl |= S3C_DxEPCTL_EPType_Control;
  1801. break;
  1802. }
  1803. /* for non control endpoints, set PID to D0 */
  1804. if (index)
  1805. epctrl |= S3C_DxEPCTL_SetD0PID;
  1806. dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
  1807. __func__, epctrl);
  1808. writel(epctrl, hsotg->regs + epctrl_reg);
  1809. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
  1810. __func__, readl(hsotg->regs + epctrl_reg));
  1811. /* enable the endpoint interrupt */
  1812. s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
  1813. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1814. return 0;
  1815. }
  1816. static int s3c_hsotg_ep_disable(struct usb_ep *ep)
  1817. {
  1818. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1819. struct s3c_hsotg *hsotg = hs_ep->parent;
  1820. int dir_in = hs_ep->dir_in;
  1821. int index = hs_ep->index;
  1822. unsigned long flags;
  1823. u32 epctrl_reg;
  1824. u32 ctrl;
  1825. dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
  1826. if (ep == &hsotg->eps[0].ep) {
  1827. dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
  1828. return -EINVAL;
  1829. }
  1830. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1831. /* terminate all requests with shutdown */
  1832. kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
  1833. spin_lock_irqsave(&hs_ep->lock, flags);
  1834. ctrl = readl(hsotg->regs + epctrl_reg);
  1835. ctrl &= ~S3C_DxEPCTL_EPEna;
  1836. ctrl &= ~S3C_DxEPCTL_USBActEp;
  1837. ctrl |= S3C_DxEPCTL_SNAK;
  1838. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  1839. writel(ctrl, hsotg->regs + epctrl_reg);
  1840. /* disable endpoint interrupts */
  1841. s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
  1842. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1843. return 0;
  1844. }
  1845. /**
  1846. * on_list - check request is on the given endpoint
  1847. * @ep: The endpoint to check.
  1848. * @test: The request to test if it is on the endpoint.
  1849. */
  1850. static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
  1851. {
  1852. struct s3c_hsotg_req *req, *treq;
  1853. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1854. if (req == test)
  1855. return true;
  1856. }
  1857. return false;
  1858. }
  1859. static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  1860. {
  1861. struct s3c_hsotg_req *hs_req = our_req(req);
  1862. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1863. struct s3c_hsotg *hs = hs_ep->parent;
  1864. unsigned long flags;
  1865. dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
  1866. if (hs_req == hs_ep->req) {
  1867. dev_dbg(hs->dev, "%s: already in progress\n", __func__);
  1868. return -EINPROGRESS;
  1869. }
  1870. spin_lock_irqsave(&hs_ep->lock, flags);
  1871. if (!on_list(hs_ep, hs_req)) {
  1872. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1873. return -EINVAL;
  1874. }
  1875. s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
  1876. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1877. return 0;
  1878. }
  1879. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
  1880. {
  1881. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1882. struct s3c_hsotg *hs = hs_ep->parent;
  1883. int index = hs_ep->index;
  1884. unsigned long irqflags;
  1885. u32 epreg;
  1886. u32 epctl;
  1887. dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
  1888. spin_lock_irqsave(&hs_ep->lock, irqflags);
  1889. /* write both IN and OUT control registers */
  1890. epreg = S3C_DIEPCTL(index);
  1891. epctl = readl(hs->regs + epreg);
  1892. if (value)
  1893. epctl |= S3C_DxEPCTL_Stall;
  1894. else
  1895. epctl &= ~S3C_DxEPCTL_Stall;
  1896. writel(epctl, hs->regs + epreg);
  1897. epreg = S3C_DOEPCTL(index);
  1898. epctl = readl(hs->regs + epreg);
  1899. if (value)
  1900. epctl |= S3C_DxEPCTL_Stall;
  1901. else
  1902. epctl &= ~S3C_DxEPCTL_Stall;
  1903. writel(epctl, hs->regs + epreg);
  1904. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  1905. return 0;
  1906. }
  1907. static struct usb_ep_ops s3c_hsotg_ep_ops = {
  1908. .enable = s3c_hsotg_ep_enable,
  1909. .disable = s3c_hsotg_ep_disable,
  1910. .alloc_request = s3c_hsotg_ep_alloc_request,
  1911. .free_request = s3c_hsotg_ep_free_request,
  1912. .queue = s3c_hsotg_ep_queue,
  1913. .dequeue = s3c_hsotg_ep_dequeue,
  1914. .set_halt = s3c_hsotg_ep_sethalt,
  1915. /* note, don't belive we have any call for the fifo routines */
  1916. };
  1917. /**
  1918. * s3c_hsotg_corereset - issue softreset to the core
  1919. * @hsotg: The device state
  1920. *
  1921. * Issue a soft reset to the core, and await the core finishing it.
  1922. */
  1923. static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
  1924. {
  1925. int timeout;
  1926. u32 grstctl;
  1927. dev_dbg(hsotg->dev, "resetting core\n");
  1928. /* issue soft reset */
  1929. writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
  1930. timeout = 1000;
  1931. do {
  1932. grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  1933. } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
  1934. if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
  1935. dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
  1936. return -EINVAL;
  1937. }
  1938. timeout = 1000;
  1939. while (1) {
  1940. u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  1941. if (timeout-- < 0) {
  1942. dev_info(hsotg->dev,
  1943. "%s: reset failed, GRSTCTL=%08x\n",
  1944. __func__, grstctl);
  1945. return -ETIMEDOUT;
  1946. }
  1947. if (grstctl & S3C_GRSTCTL_CSftRst)
  1948. continue;
  1949. if (!(grstctl & S3C_GRSTCTL_AHBIdle))
  1950. continue;
  1951. break; /* reset done */
  1952. }
  1953. dev_dbg(hsotg->dev, "reset successful\n");
  1954. return 0;
  1955. }
  1956. int usb_gadget_register_driver(struct usb_gadget_driver *driver)
  1957. {
  1958. struct s3c_hsotg *hsotg = our_hsotg;
  1959. int ret;
  1960. if (!hsotg) {
  1961. printk(KERN_ERR "%s: called with no device\n", __func__);
  1962. return -ENODEV;
  1963. }
  1964. if (!driver) {
  1965. dev_err(hsotg->dev, "%s: no driver\n", __func__);
  1966. return -EINVAL;
  1967. }
  1968. if (driver->speed != USB_SPEED_HIGH &&
  1969. driver->speed != USB_SPEED_FULL) {
  1970. dev_err(hsotg->dev, "%s: bad speed\n", __func__);
  1971. }
  1972. if (!driver->bind || !driver->setup) {
  1973. dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
  1974. return -EINVAL;
  1975. }
  1976. WARN_ON(hsotg->driver);
  1977. driver->driver.bus = NULL;
  1978. hsotg->driver = driver;
  1979. hsotg->gadget.dev.driver = &driver->driver;
  1980. hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
  1981. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  1982. ret = device_add(&hsotg->gadget.dev);
  1983. if (ret) {
  1984. dev_err(hsotg->dev, "failed to register gadget device\n");
  1985. goto err;
  1986. }
  1987. ret = driver->bind(&hsotg->gadget);
  1988. if (ret) {
  1989. dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
  1990. hsotg->gadget.dev.driver = NULL;
  1991. hsotg->driver = NULL;
  1992. goto err;
  1993. }
  1994. /* we must now enable ep0 ready for host detection and then
  1995. * set configuration. */
  1996. s3c_hsotg_corereset(hsotg);
  1997. /* set the PLL on, remove the HNP/SRP and set the PHY */
  1998. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
  1999. (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
  2000. /* looks like soft-reset changes state of FIFOs */
  2001. s3c_hsotg_init_fifo(hsotg);
  2002. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2003. writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
  2004. writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
  2005. S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
  2006. S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
  2007. S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
  2008. S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
  2009. S3C_GINTSTS_ErlySusp,
  2010. hsotg->regs + S3C_GINTMSK);
  2011. if (using_dma(hsotg))
  2012. writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
  2013. S3C_GAHBCFG_HBstLen_Incr4,
  2014. hsotg->regs + S3C_GAHBCFG);
  2015. else
  2016. writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
  2017. /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
  2018. * up being flooded with interrupts if the host is polling the
  2019. * endpoint to try and read data. */
  2020. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2021. S3C_DIEPMSK_INTknEPMisMsk |
  2022. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2023. hsotg->regs + S3C_DIEPMSK);
  2024. /* don't need XferCompl, we get that from RXFIFO in slave mode. In
  2025. * DMA mode we may need this. */
  2026. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2027. S3C_DOEPMSK_EPDisbldMsk |
  2028. (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
  2029. S3C_DIEPMSK_TimeOUTMsk) : 0),
  2030. hsotg->regs + S3C_DOEPMSK);
  2031. writel(0, hsotg->regs + S3C_DAINTMSK);
  2032. dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2033. readl(hsotg->regs + S3C_DIEPCTL0),
  2034. readl(hsotg->regs + S3C_DOEPCTL0));
  2035. /* enable in and out endpoint interrupts */
  2036. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
  2037. /* Enable the RXFIFO when in slave mode, as this is how we collect
  2038. * the data. In DMA mode, we get events from the FIFO but also
  2039. * things we cannot process, so do not use it. */
  2040. if (!using_dma(hsotg))
  2041. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
  2042. /* Enable interrupts for EP0 in and out */
  2043. s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
  2044. s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
  2045. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2046. udelay(10); /* see openiboot */
  2047. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2048. dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
  2049. /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
  2050. writing to the EPCTL register.. */
  2051. /* set to read 1 8byte packet */
  2052. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  2053. S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
  2054. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2055. S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
  2056. S3C_DxEPCTL_USBActEp,
  2057. hsotg->regs + S3C_DOEPCTL0);
  2058. /* enable, but don't activate EP0in */
  2059. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2060. S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
  2061. s3c_hsotg_enqueue_setup(hsotg);
  2062. dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2063. readl(hsotg->regs + S3C_DIEPCTL0),
  2064. readl(hsotg->regs + S3C_DOEPCTL0));
  2065. /* clear global NAKs */
  2066. writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
  2067. hsotg->regs + S3C_DCTL);
  2068. /* remove the soft-disconnect and let's go */
  2069. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2070. /* report to the user, and return */
  2071. dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
  2072. return 0;
  2073. err:
  2074. hsotg->driver = NULL;
  2075. hsotg->gadget.dev.driver = NULL;
  2076. return ret;
  2077. }
  2078. EXPORT_SYMBOL(usb_gadget_register_driver);
  2079. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  2080. {
  2081. struct s3c_hsotg *hsotg = our_hsotg;
  2082. int ep;
  2083. if (!hsotg)
  2084. return -ENODEV;
  2085. if (!driver || driver != hsotg->driver || !driver->unbind)
  2086. return -EINVAL;
  2087. /* all endpoints should be shutdown */
  2088. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  2089. s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
  2090. call_gadget(hsotg, disconnect);
  2091. driver->unbind(&hsotg->gadget);
  2092. hsotg->driver = NULL;
  2093. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2094. device_del(&hsotg->gadget.dev);
  2095. dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
  2096. driver->driver.name);
  2097. return 0;
  2098. }
  2099. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  2100. static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
  2101. {
  2102. return s3c_hsotg_read_frameno(to_hsotg(gadget));
  2103. }
  2104. static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
  2105. .get_frame = s3c_hsotg_gadget_getframe,
  2106. };
  2107. /**
  2108. * s3c_hsotg_initep - initialise a single endpoint
  2109. * @hsotg: The device state.
  2110. * @hs_ep: The endpoint to be initialised.
  2111. * @epnum: The endpoint number
  2112. *
  2113. * Initialise the given endpoint (as part of the probe and device state
  2114. * creation) to give to the gadget driver. Setup the endpoint name, any
  2115. * direction information and other state that may be required.
  2116. */
  2117. static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
  2118. struct s3c_hsotg_ep *hs_ep,
  2119. int epnum)
  2120. {
  2121. u32 ptxfifo;
  2122. char *dir;
  2123. if (epnum == 0)
  2124. dir = "";
  2125. else if ((epnum % 2) == 0) {
  2126. dir = "out";
  2127. } else {
  2128. dir = "in";
  2129. hs_ep->dir_in = 1;
  2130. }
  2131. hs_ep->index = epnum;
  2132. snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
  2133. INIT_LIST_HEAD(&hs_ep->queue);
  2134. INIT_LIST_HEAD(&hs_ep->ep.ep_list);
  2135. spin_lock_init(&hs_ep->lock);
  2136. /* add to the list of endpoints known by the gadget driver */
  2137. if (epnum)
  2138. list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
  2139. hs_ep->parent = hsotg;
  2140. hs_ep->ep.name = hs_ep->name;
  2141. hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
  2142. hs_ep->ep.ops = &s3c_hsotg_ep_ops;
  2143. /* Read the FIFO size for the Periodic TX FIFO, even if we're
  2144. * an OUT endpoint, we may as well do this if in future the
  2145. * code is changed to make each endpoint's direction changeable.
  2146. */
  2147. ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
  2148. hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo);
  2149. /* if we're using dma, we need to set the next-endpoint pointer
  2150. * to be something valid.
  2151. */
  2152. if (using_dma(hsotg)) {
  2153. u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
  2154. writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
  2155. writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
  2156. }
  2157. }
  2158. /**
  2159. * s3c_hsotg_otgreset - reset the OtG phy block
  2160. * @hsotg: The host state.
  2161. *
  2162. * Power up the phy, set the basic configuration and start the PHY.
  2163. */
  2164. static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
  2165. {
  2166. u32 osc;
  2167. writel(0, S3C_PHYPWR);
  2168. mdelay(1);
  2169. osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
  2170. writel(osc | 0x10, S3C_PHYCLK);
  2171. /* issue a full set of resets to the otg and core */
  2172. writel(S3C_RSTCON_PHY, S3C_RSTCON);
  2173. udelay(20); /* at-least 10uS */
  2174. writel(0, S3C_RSTCON);
  2175. }
  2176. static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
  2177. {
  2178. /* unmask subset of endpoint interrupts */
  2179. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2180. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2181. hsotg->regs + S3C_DIEPMSK);
  2182. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2183. S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
  2184. hsotg->regs + S3C_DOEPMSK);
  2185. writel(0, hsotg->regs + S3C_DAINTMSK);
  2186. if (0) {
  2187. /* post global nak until we're ready */
  2188. writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
  2189. hsotg->regs + S3C_DCTL);
  2190. }
  2191. /* setup fifos */
  2192. dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2193. readl(hsotg->regs + S3C_GRXFSIZ),
  2194. readl(hsotg->regs + S3C_GNPTXFSIZ));
  2195. s3c_hsotg_init_fifo(hsotg);
  2196. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2197. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
  2198. hsotg->regs + S3C_GUSBCFG);
  2199. writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
  2200. hsotg->regs + S3C_GAHBCFG);
  2201. }
  2202. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
  2203. {
  2204. struct device *dev = hsotg->dev;
  2205. void __iomem *regs = hsotg->regs;
  2206. u32 val;
  2207. int idx;
  2208. dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
  2209. readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
  2210. readl(regs + S3C_DIEPMSK));
  2211. dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
  2212. readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
  2213. dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2214. readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
  2215. /* show periodic fifo settings */
  2216. for (idx = 1; idx <= 15; idx++) {
  2217. val = readl(regs + S3C_DPTXFSIZn(idx));
  2218. dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
  2219. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2220. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2221. }
  2222. for (idx = 0; idx < 15; idx++) {
  2223. dev_info(dev,
  2224. "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
  2225. readl(regs + S3C_DIEPCTL(idx)),
  2226. readl(regs + S3C_DIEPTSIZ(idx)),
  2227. readl(regs + S3C_DIEPDMA(idx)));
  2228. val = readl(regs + S3C_DOEPCTL(idx));
  2229. dev_info(dev,
  2230. "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
  2231. idx, readl(regs + S3C_DOEPCTL(idx)),
  2232. readl(regs + S3C_DOEPTSIZ(idx)),
  2233. readl(regs + S3C_DOEPDMA(idx)));
  2234. }
  2235. dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
  2236. readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
  2237. }
  2238. /**
  2239. * state_show - debugfs: show overall driver and device state.
  2240. * @seq: The seq file to write to.
  2241. * @v: Unused parameter.
  2242. *
  2243. * This debugfs entry shows the overall state of the hardware and
  2244. * some general information about each of the endpoints available
  2245. * to the system.
  2246. */
  2247. static int state_show(struct seq_file *seq, void *v)
  2248. {
  2249. struct s3c_hsotg *hsotg = seq->private;
  2250. void __iomem *regs = hsotg->regs;
  2251. int idx;
  2252. seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
  2253. readl(regs + S3C_DCFG),
  2254. readl(regs + S3C_DCTL),
  2255. readl(regs + S3C_DSTS));
  2256. seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
  2257. readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
  2258. seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
  2259. readl(regs + S3C_GINTMSK),
  2260. readl(regs + S3C_GINTSTS));
  2261. seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
  2262. readl(regs + S3C_DAINTMSK),
  2263. readl(regs + S3C_DAINT));
  2264. seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
  2265. readl(regs + S3C_GNPTXSTS),
  2266. readl(regs + S3C_GRXSTSR));
  2267. seq_printf(seq, "\nEndpoint status:\n");
  2268. for (idx = 0; idx < 15; idx++) {
  2269. u32 in, out;
  2270. in = readl(regs + S3C_DIEPCTL(idx));
  2271. out = readl(regs + S3C_DOEPCTL(idx));
  2272. seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
  2273. idx, in, out);
  2274. in = readl(regs + S3C_DIEPTSIZ(idx));
  2275. out = readl(regs + S3C_DOEPTSIZ(idx));
  2276. seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
  2277. in, out);
  2278. seq_printf(seq, "\n");
  2279. }
  2280. return 0;
  2281. }
  2282. static int state_open(struct inode *inode, struct file *file)
  2283. {
  2284. return single_open(file, state_show, inode->i_private);
  2285. }
  2286. static const struct file_operations state_fops = {
  2287. .owner = THIS_MODULE,
  2288. .open = state_open,
  2289. .read = seq_read,
  2290. .llseek = seq_lseek,
  2291. .release = single_release,
  2292. };
  2293. /**
  2294. * fifo_show - debugfs: show the fifo information
  2295. * @seq: The seq_file to write data to.
  2296. * @v: Unused parameter.
  2297. *
  2298. * Show the FIFO information for the overall fifo and all the
  2299. * periodic transmission FIFOs.
  2300. */
  2301. static int fifo_show(struct seq_file *seq, void *v)
  2302. {
  2303. struct s3c_hsotg *hsotg = seq->private;
  2304. void __iomem *regs = hsotg->regs;
  2305. u32 val;
  2306. int idx;
  2307. seq_printf(seq, "Non-periodic FIFOs:\n");
  2308. seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
  2309. val = readl(regs + S3C_GNPTXFSIZ);
  2310. seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
  2311. val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
  2312. val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
  2313. seq_printf(seq, "\nPeriodic TXFIFOs:\n");
  2314. for (idx = 1; idx <= 15; idx++) {
  2315. val = readl(regs + S3C_DPTXFSIZn(idx));
  2316. seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
  2317. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2318. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2319. }
  2320. return 0;
  2321. }
  2322. static int fifo_open(struct inode *inode, struct file *file)
  2323. {
  2324. return single_open(file, fifo_show, inode->i_private);
  2325. }
  2326. static const struct file_operations fifo_fops = {
  2327. .owner = THIS_MODULE,
  2328. .open = fifo_open,
  2329. .read = seq_read,
  2330. .llseek = seq_lseek,
  2331. .release = single_release,
  2332. };
  2333. static const char *decode_direction(int is_in)
  2334. {
  2335. return is_in ? "in" : "out";
  2336. }
  2337. /**
  2338. * ep_show - debugfs: show the state of an endpoint.
  2339. * @seq: The seq_file to write data to.
  2340. * @v: Unused parameter.
  2341. *
  2342. * This debugfs entry shows the state of the given endpoint (one is
  2343. * registered for each available).
  2344. */
  2345. static int ep_show(struct seq_file *seq, void *v)
  2346. {
  2347. struct s3c_hsotg_ep *ep = seq->private;
  2348. struct s3c_hsotg *hsotg = ep->parent;
  2349. struct s3c_hsotg_req *req;
  2350. void __iomem *regs = hsotg->regs;
  2351. int index = ep->index;
  2352. int show_limit = 15;
  2353. unsigned long flags;
  2354. seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
  2355. ep->index, ep->ep.name, decode_direction(ep->dir_in));
  2356. /* first show the register state */
  2357. seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
  2358. readl(regs + S3C_DIEPCTL(index)),
  2359. readl(regs + S3C_DOEPCTL(index)));
  2360. seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
  2361. readl(regs + S3C_DIEPDMA(index)),
  2362. readl(regs + S3C_DOEPDMA(index)));
  2363. seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
  2364. readl(regs + S3C_DIEPINT(index)),
  2365. readl(regs + S3C_DOEPINT(index)));
  2366. seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
  2367. readl(regs + S3C_DIEPTSIZ(index)),
  2368. readl(regs + S3C_DOEPTSIZ(index)));
  2369. seq_printf(seq, "\n");
  2370. seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
  2371. seq_printf(seq, "total_data=%ld\n", ep->total_data);
  2372. seq_printf(seq, "request list (%p,%p):\n",
  2373. ep->queue.next, ep->queue.prev);
  2374. spin_lock_irqsave(&ep->lock, flags);
  2375. list_for_each_entry(req, &ep->queue, queue) {
  2376. if (--show_limit < 0) {
  2377. seq_printf(seq, "not showing more requests...\n");
  2378. break;
  2379. }
  2380. seq_printf(seq, "%c req %p: %d bytes @%p, ",
  2381. req == ep->req ? '*' : ' ',
  2382. req, req->req.length, req->req.buf);
  2383. seq_printf(seq, "%d done, res %d\n",
  2384. req->req.actual, req->req.status);
  2385. }
  2386. spin_unlock_irqrestore(&ep->lock, flags);
  2387. return 0;
  2388. }
  2389. static int ep_open(struct inode *inode, struct file *file)
  2390. {
  2391. return single_open(file, ep_show, inode->i_private);
  2392. }
  2393. static const struct file_operations ep_fops = {
  2394. .owner = THIS_MODULE,
  2395. .open = ep_open,
  2396. .read = seq_read,
  2397. .llseek = seq_lseek,
  2398. .release = single_release,
  2399. };
  2400. /**
  2401. * s3c_hsotg_create_debug - create debugfs directory and files
  2402. * @hsotg: The driver state
  2403. *
  2404. * Create the debugfs files to allow the user to get information
  2405. * about the state of the system. The directory name is created
  2406. * with the same name as the device itself, in case we end up
  2407. * with multiple blocks in future systems.
  2408. */
  2409. static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
  2410. {
  2411. struct dentry *root;
  2412. unsigned epidx;
  2413. root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
  2414. hsotg->debug_root = root;
  2415. if (IS_ERR(root)) {
  2416. dev_err(hsotg->dev, "cannot create debug root\n");
  2417. return;
  2418. }
  2419. /* create general state file */
  2420. hsotg->debug_file = debugfs_create_file("state", 0444, root,
  2421. hsotg, &state_fops);
  2422. if (IS_ERR(hsotg->debug_file))
  2423. dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
  2424. hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
  2425. hsotg, &fifo_fops);
  2426. if (IS_ERR(hsotg->debug_fifo))
  2427. dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
  2428. /* create one file for each endpoint */
  2429. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2430. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2431. ep->debugfs = debugfs_create_file(ep->name, 0444,
  2432. root, ep, &ep_fops);
  2433. if (IS_ERR(ep->debugfs))
  2434. dev_err(hsotg->dev, "failed to create %s debug file\n",
  2435. ep->name);
  2436. }
  2437. }
  2438. /**
  2439. * s3c_hsotg_delete_debug - cleanup debugfs entries
  2440. * @hsotg: The driver state
  2441. *
  2442. * Cleanup (remove) the debugfs files for use on module exit.
  2443. */
  2444. static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
  2445. {
  2446. unsigned epidx;
  2447. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2448. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2449. debugfs_remove(ep->debugfs);
  2450. }
  2451. debugfs_remove(hsotg->debug_file);
  2452. debugfs_remove(hsotg->debug_fifo);
  2453. debugfs_remove(hsotg->debug_root);
  2454. }
  2455. /**
  2456. * s3c_hsotg_gate - set the hardware gate for the block
  2457. * @pdev: The device we bound to
  2458. * @on: On or off.
  2459. *
  2460. * Set the hardware gate setting into the block. If we end up on
  2461. * something other than an S3C64XX, then we might need to change this
  2462. * to using a platform data callback, or some other mechanism.
  2463. */
  2464. static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
  2465. {
  2466. unsigned long flags;
  2467. u32 others;
  2468. local_irq_save(flags);
  2469. others = __raw_readl(S3C64XX_OTHERS);
  2470. if (on)
  2471. others |= S3C64XX_OTHERS_USBMASK;
  2472. else
  2473. others &= ~S3C64XX_OTHERS_USBMASK;
  2474. __raw_writel(others, S3C64XX_OTHERS);
  2475. local_irq_restore(flags);
  2476. }
  2477. static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
  2478. static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
  2479. {
  2480. struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
  2481. struct device *dev = &pdev->dev;
  2482. struct s3c_hsotg *hsotg;
  2483. struct resource *res;
  2484. int epnum;
  2485. int ret;
  2486. if (!plat)
  2487. plat = &s3c_hsotg_default_pdata;
  2488. hsotg = kzalloc(sizeof(struct s3c_hsotg) +
  2489. sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
  2490. GFP_KERNEL);
  2491. if (!hsotg) {
  2492. dev_err(dev, "cannot get memory\n");
  2493. return -ENOMEM;
  2494. }
  2495. hsotg->dev = dev;
  2496. hsotg->plat = plat;
  2497. platform_set_drvdata(pdev, hsotg);
  2498. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2499. if (!res) {
  2500. dev_err(dev, "cannot find register resource 0\n");
  2501. ret = -EINVAL;
  2502. goto err_mem;
  2503. }
  2504. hsotg->regs_res = request_mem_region(res->start, resource_size(res),
  2505. dev_name(dev));
  2506. if (!hsotg->regs_res) {
  2507. dev_err(dev, "cannot reserve registers\n");
  2508. ret = -ENOENT;
  2509. goto err_mem;
  2510. }
  2511. hsotg->regs = ioremap(res->start, resource_size(res));
  2512. if (!hsotg->regs) {
  2513. dev_err(dev, "cannot map registers\n");
  2514. ret = -ENXIO;
  2515. goto err_regs_res;
  2516. }
  2517. ret = platform_get_irq(pdev, 0);
  2518. if (ret < 0) {
  2519. dev_err(dev, "cannot find IRQ\n");
  2520. goto err_regs;
  2521. }
  2522. hsotg->irq = ret;
  2523. ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
  2524. if (ret < 0) {
  2525. dev_err(dev, "cannot claim IRQ\n");
  2526. goto err_regs;
  2527. }
  2528. dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
  2529. device_initialize(&hsotg->gadget.dev);
  2530. dev_set_name(&hsotg->gadget.dev, "gadget");
  2531. hsotg->gadget.is_dualspeed = 1;
  2532. hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
  2533. hsotg->gadget.name = dev_name(dev);
  2534. hsotg->gadget.dev.parent = dev;
  2535. hsotg->gadget.dev.dma_mask = dev->dma_mask;
  2536. /* setup endpoint information */
  2537. INIT_LIST_HEAD(&hsotg->gadget.ep_list);
  2538. hsotg->gadget.ep0 = &hsotg->eps[0].ep;
  2539. /* allocate EP0 request */
  2540. hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
  2541. GFP_KERNEL);
  2542. if (!hsotg->ctrl_req) {
  2543. dev_err(dev, "failed to allocate ctrl req\n");
  2544. goto err_regs;
  2545. }
  2546. /* reset the system */
  2547. s3c_hsotg_gate(pdev, true);
  2548. s3c_hsotg_otgreset(hsotg);
  2549. s3c_hsotg_corereset(hsotg);
  2550. s3c_hsotg_init(hsotg);
  2551. /* initialise the endpoints now the core has been initialised */
  2552. for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
  2553. s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
  2554. s3c_hsotg_create_debug(hsotg);
  2555. s3c_hsotg_dump(hsotg);
  2556. our_hsotg = hsotg;
  2557. return 0;
  2558. err_regs:
  2559. iounmap(hsotg->regs);
  2560. err_regs_res:
  2561. release_resource(hsotg->regs_res);
  2562. kfree(hsotg->regs_res);
  2563. err_mem:
  2564. kfree(hsotg);
  2565. return ret;
  2566. }
  2567. static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
  2568. {
  2569. struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
  2570. s3c_hsotg_delete_debug(hsotg);
  2571. usb_gadget_unregister_driver(hsotg->driver);
  2572. free_irq(hsotg->irq, hsotg);
  2573. iounmap(hsotg->regs);
  2574. release_resource(hsotg->regs_res);
  2575. kfree(hsotg->regs_res);
  2576. s3c_hsotg_gate(pdev, false);
  2577. kfree(hsotg);
  2578. return 0;
  2579. }
  2580. #if 1
  2581. #define s3c_hsotg_suspend NULL
  2582. #define s3c_hsotg_resume NULL
  2583. #endif
  2584. static struct platform_driver s3c_hsotg_driver = {
  2585. .driver = {
  2586. .name = "s3c-hsotg",
  2587. .owner = THIS_MODULE,
  2588. },
  2589. .probe = s3c_hsotg_probe,
  2590. .remove = __devexit_p(s3c_hsotg_remove),
  2591. .suspend = s3c_hsotg_suspend,
  2592. .resume = s3c_hsotg_resume,
  2593. };
  2594. static int __init s3c_hsotg_modinit(void)
  2595. {
  2596. return platform_driver_register(&s3c_hsotg_driver);
  2597. }
  2598. static void __exit s3c_hsotg_modexit(void)
  2599. {
  2600. platform_driver_unregister(&s3c_hsotg_driver);
  2601. }
  2602. module_init(s3c_hsotg_modinit);
  2603. module_exit(s3c_hsotg_modexit);
  2604. MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
  2605. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  2606. MODULE_LICENSE("GPL");
  2607. MODULE_ALIAS("platform:s3c-hsotg");