dw_spi.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989
  1. /*
  2. * dw_spi.c - Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/highmem.h>
  22. #include <linux/delay.h>
  23. #include <linux/spi/dw_spi.h>
  24. #include <linux/spi/spi.h>
  25. #ifdef CONFIG_DEBUG_FS
  26. #include <linux/debugfs.h>
  27. #endif
  28. #define START_STATE ((void *)0)
  29. #define RUNNING_STATE ((void *)1)
  30. #define DONE_STATE ((void *)2)
  31. #define ERROR_STATE ((void *)-1)
  32. #define QUEUE_RUNNING 0
  33. #define QUEUE_STOPPED 1
  34. #define MRST_SPI_DEASSERT 0
  35. #define MRST_SPI_ASSERT 1
  36. /* Slave spi_dev related */
  37. struct chip_data {
  38. u16 cr0;
  39. u8 cs; /* chip select pin */
  40. u8 n_bytes; /* current is a 1/2/4 byte op */
  41. u8 tmode; /* TR/TO/RO/EEPROM */
  42. u8 type; /* SPI/SSP/MicroWire */
  43. u8 poll_mode; /* 1 means use poll mode */
  44. u32 dma_width;
  45. u32 rx_threshold;
  46. u32 tx_threshold;
  47. u8 enable_dma;
  48. u8 bits_per_word;
  49. u16 clk_div; /* baud rate divider */
  50. u32 speed_hz; /* baud rate */
  51. int (*write)(struct dw_spi *dws);
  52. int (*read)(struct dw_spi *dws);
  53. void (*cs_control)(u32 command);
  54. };
  55. #ifdef CONFIG_DEBUG_FS
  56. static int spi_show_regs_open(struct inode *inode, struct file *file)
  57. {
  58. file->private_data = inode->i_private;
  59. return 0;
  60. }
  61. #define SPI_REGS_BUFSIZE 1024
  62. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  63. size_t count, loff_t *ppos)
  64. {
  65. struct dw_spi *dws;
  66. char *buf;
  67. u32 len = 0;
  68. ssize_t ret;
  69. dws = file->private_data;
  70. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  71. if (!buf)
  72. return 0;
  73. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  74. "MRST SPI0 registers:\n");
  75. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  76. "=================================\n");
  77. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  78. "CTRL0: \t\t0x%08x\n", dw_readl(dws, ctrl0));
  79. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  80. "CTRL1: \t\t0x%08x\n", dw_readl(dws, ctrl1));
  81. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  82. "SSIENR: \t0x%08x\n", dw_readl(dws, ssienr));
  83. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  84. "SER: \t\t0x%08x\n", dw_readl(dws, ser));
  85. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  86. "BAUDR: \t\t0x%08x\n", dw_readl(dws, baudr));
  87. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  88. "TXFTLR: \t0x%08x\n", dw_readl(dws, txfltr));
  89. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  90. "RXFTLR: \t0x%08x\n", dw_readl(dws, rxfltr));
  91. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  92. "TXFLR: \t\t0x%08x\n", dw_readl(dws, txflr));
  93. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  94. "RXFLR: \t\t0x%08x\n", dw_readl(dws, rxflr));
  95. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  96. "SR: \t\t0x%08x\n", dw_readl(dws, sr));
  97. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  98. "IMR: \t\t0x%08x\n", dw_readl(dws, imr));
  99. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  100. "ISR: \t\t0x%08x\n", dw_readl(dws, isr));
  101. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  102. "DMACR: \t\t0x%08x\n", dw_readl(dws, dmacr));
  103. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  104. "DMATDLR: \t0x%08x\n", dw_readl(dws, dmatdlr));
  105. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  106. "DMARDLR: \t0x%08x\n", dw_readl(dws, dmardlr));
  107. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  108. "=================================\n");
  109. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  110. kfree(buf);
  111. return ret;
  112. }
  113. static const struct file_operations mrst_spi_regs_ops = {
  114. .owner = THIS_MODULE,
  115. .open = spi_show_regs_open,
  116. .read = spi_show_regs,
  117. };
  118. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  119. {
  120. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  121. if (!dws->debugfs)
  122. return -ENOMEM;
  123. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  124. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  125. return 0;
  126. }
  127. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  128. {
  129. if (dws->debugfs)
  130. debugfs_remove_recursive(dws->debugfs);
  131. }
  132. #else
  133. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  134. {
  135. return 0;
  136. }
  137. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  138. {
  139. }
  140. #endif /* CONFIG_DEBUG_FS */
  141. static void wait_till_not_busy(struct dw_spi *dws)
  142. {
  143. unsigned long end = jiffies + 1 + usecs_to_jiffies(1000);
  144. while (time_before(jiffies, end)) {
  145. if (!(dw_readw(dws, sr) & SR_BUSY))
  146. return;
  147. }
  148. dev_err(&dws->master->dev,
  149. "DW SPI: Status keeps busy for 1000us after a read/write!\n");
  150. }
  151. static void flush(struct dw_spi *dws)
  152. {
  153. while (dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  154. dw_readw(dws, dr);
  155. wait_till_not_busy(dws);
  156. }
  157. static void null_cs_control(u32 command)
  158. {
  159. }
  160. static int null_writer(struct dw_spi *dws)
  161. {
  162. u8 n_bytes = dws->n_bytes;
  163. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  164. || (dws->tx == dws->tx_end))
  165. return 0;
  166. dw_writew(dws, dr, 0);
  167. dws->tx += n_bytes;
  168. wait_till_not_busy(dws);
  169. return 1;
  170. }
  171. static int null_reader(struct dw_spi *dws)
  172. {
  173. u8 n_bytes = dws->n_bytes;
  174. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  175. && (dws->rx < dws->rx_end)) {
  176. dw_readw(dws, dr);
  177. dws->rx += n_bytes;
  178. }
  179. wait_till_not_busy(dws);
  180. return dws->rx == dws->rx_end;
  181. }
  182. static int u8_writer(struct dw_spi *dws)
  183. {
  184. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  185. || (dws->tx == dws->tx_end))
  186. return 0;
  187. dw_writew(dws, dr, *(u8 *)(dws->tx));
  188. ++dws->tx;
  189. wait_till_not_busy(dws);
  190. return 1;
  191. }
  192. static int u8_reader(struct dw_spi *dws)
  193. {
  194. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  195. && (dws->rx < dws->rx_end)) {
  196. *(u8 *)(dws->rx) = dw_readw(dws, dr);
  197. ++dws->rx;
  198. }
  199. wait_till_not_busy(dws);
  200. return dws->rx == dws->rx_end;
  201. }
  202. static int u16_writer(struct dw_spi *dws)
  203. {
  204. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  205. || (dws->tx == dws->tx_end))
  206. return 0;
  207. dw_writew(dws, dr, *(u16 *)(dws->tx));
  208. dws->tx += 2;
  209. wait_till_not_busy(dws);
  210. return 1;
  211. }
  212. static int u16_reader(struct dw_spi *dws)
  213. {
  214. u16 temp;
  215. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  216. && (dws->rx < dws->rx_end)) {
  217. temp = dw_readw(dws, dr);
  218. *(u16 *)(dws->rx) = temp;
  219. dws->rx += 2;
  220. }
  221. wait_till_not_busy(dws);
  222. return dws->rx == dws->rx_end;
  223. }
  224. static void *next_transfer(struct dw_spi *dws)
  225. {
  226. struct spi_message *msg = dws->cur_msg;
  227. struct spi_transfer *trans = dws->cur_transfer;
  228. /* Move to next transfer */
  229. if (trans->transfer_list.next != &msg->transfers) {
  230. dws->cur_transfer =
  231. list_entry(trans->transfer_list.next,
  232. struct spi_transfer,
  233. transfer_list);
  234. return RUNNING_STATE;
  235. } else
  236. return DONE_STATE;
  237. }
  238. /*
  239. * Note: first step is the protocol driver prepares
  240. * a dma-capable memory, and this func just need translate
  241. * the virt addr to physical
  242. */
  243. static int map_dma_buffers(struct dw_spi *dws)
  244. {
  245. if (!dws->cur_msg->is_dma_mapped || !dws->dma_inited
  246. || !dws->cur_chip->enable_dma)
  247. return 0;
  248. if (dws->cur_transfer->tx_dma)
  249. dws->tx_dma = dws->cur_transfer->tx_dma;
  250. if (dws->cur_transfer->rx_dma)
  251. dws->rx_dma = dws->cur_transfer->rx_dma;
  252. return 1;
  253. }
  254. /* Caller already set message->status; dma and pio irqs are blocked */
  255. static void giveback(struct dw_spi *dws)
  256. {
  257. struct spi_transfer *last_transfer;
  258. unsigned long flags;
  259. struct spi_message *msg;
  260. spin_lock_irqsave(&dws->lock, flags);
  261. msg = dws->cur_msg;
  262. dws->cur_msg = NULL;
  263. dws->cur_transfer = NULL;
  264. dws->prev_chip = dws->cur_chip;
  265. dws->cur_chip = NULL;
  266. dws->dma_mapped = 0;
  267. queue_work(dws->workqueue, &dws->pump_messages);
  268. spin_unlock_irqrestore(&dws->lock, flags);
  269. last_transfer = list_entry(msg->transfers.prev,
  270. struct spi_transfer,
  271. transfer_list);
  272. if (!last_transfer->cs_change)
  273. dws->cs_control(MRST_SPI_DEASSERT);
  274. msg->state = NULL;
  275. if (msg->complete)
  276. msg->complete(msg->context);
  277. }
  278. static void int_error_stop(struct dw_spi *dws, const char *msg)
  279. {
  280. /* Stop and reset hw */
  281. flush(dws);
  282. spi_enable_chip(dws, 0);
  283. dev_err(&dws->master->dev, "%s\n", msg);
  284. dws->cur_msg->state = ERROR_STATE;
  285. tasklet_schedule(&dws->pump_transfers);
  286. }
  287. static void transfer_complete(struct dw_spi *dws)
  288. {
  289. /* Update total byte transfered return count actual bytes read */
  290. dws->cur_msg->actual_length += dws->len;
  291. /* Move to next transfer */
  292. dws->cur_msg->state = next_transfer(dws);
  293. /* Handle end of message */
  294. if (dws->cur_msg->state == DONE_STATE) {
  295. dws->cur_msg->status = 0;
  296. giveback(dws);
  297. } else
  298. tasklet_schedule(&dws->pump_transfers);
  299. }
  300. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  301. {
  302. u16 irq_status, irq_mask = 0x3f;
  303. u32 int_level = dws->fifo_len / 2;
  304. u32 left;
  305. irq_status = dw_readw(dws, isr) & irq_mask;
  306. /* Error handling */
  307. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  308. dw_readw(dws, txoicr);
  309. dw_readw(dws, rxoicr);
  310. dw_readw(dws, rxuicr);
  311. int_error_stop(dws, "interrupt_transfer: fifo overrun");
  312. return IRQ_HANDLED;
  313. }
  314. if (irq_status & SPI_INT_TXEI) {
  315. spi_mask_intr(dws, SPI_INT_TXEI);
  316. left = (dws->tx_end - dws->tx) / dws->n_bytes;
  317. left = (left > int_level) ? int_level : left;
  318. while (left--)
  319. dws->write(dws);
  320. dws->read(dws);
  321. /* Re-enable the IRQ if there is still data left to tx */
  322. if (dws->tx_end > dws->tx)
  323. spi_umask_intr(dws, SPI_INT_TXEI);
  324. else
  325. transfer_complete(dws);
  326. }
  327. return IRQ_HANDLED;
  328. }
  329. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  330. {
  331. struct dw_spi *dws = dev_id;
  332. if (!dws->cur_msg) {
  333. spi_mask_intr(dws, SPI_INT_TXEI);
  334. /* Never fail */
  335. return IRQ_HANDLED;
  336. }
  337. return dws->transfer_handler(dws);
  338. }
  339. /* Must be called inside pump_transfers() */
  340. static void poll_transfer(struct dw_spi *dws)
  341. {
  342. while (dws->write(dws))
  343. dws->read(dws);
  344. transfer_complete(dws);
  345. }
  346. static void dma_transfer(struct dw_spi *dws, int cs_change)
  347. {
  348. }
  349. static void pump_transfers(unsigned long data)
  350. {
  351. struct dw_spi *dws = (struct dw_spi *)data;
  352. struct spi_message *message = NULL;
  353. struct spi_transfer *transfer = NULL;
  354. struct spi_transfer *previous = NULL;
  355. struct spi_device *spi = NULL;
  356. struct chip_data *chip = NULL;
  357. u8 bits = 0;
  358. u8 imask = 0;
  359. u8 cs_change = 0;
  360. u16 txint_level = 0;
  361. u16 clk_div = 0;
  362. u32 speed = 0;
  363. u32 cr0 = 0;
  364. /* Get current state information */
  365. message = dws->cur_msg;
  366. transfer = dws->cur_transfer;
  367. chip = dws->cur_chip;
  368. spi = message->spi;
  369. if (unlikely(!chip->clk_div))
  370. chip->clk_div = dws->max_freq / chip->speed_hz;
  371. if (message->state == ERROR_STATE) {
  372. message->status = -EIO;
  373. goto early_exit;
  374. }
  375. /* Handle end of message */
  376. if (message->state == DONE_STATE) {
  377. message->status = 0;
  378. goto early_exit;
  379. }
  380. /* Delay if requested at end of transfer*/
  381. if (message->state == RUNNING_STATE) {
  382. previous = list_entry(transfer->transfer_list.prev,
  383. struct spi_transfer,
  384. transfer_list);
  385. if (previous->delay_usecs)
  386. udelay(previous->delay_usecs);
  387. }
  388. dws->n_bytes = chip->n_bytes;
  389. dws->dma_width = chip->dma_width;
  390. dws->cs_control = chip->cs_control;
  391. dws->rx_dma = transfer->rx_dma;
  392. dws->tx_dma = transfer->tx_dma;
  393. dws->tx = (void *)transfer->tx_buf;
  394. dws->tx_end = dws->tx + transfer->len;
  395. dws->rx = transfer->rx_buf;
  396. dws->rx_end = dws->rx + transfer->len;
  397. dws->write = dws->tx ? chip->write : null_writer;
  398. dws->read = dws->rx ? chip->read : null_reader;
  399. dws->cs_change = transfer->cs_change;
  400. dws->len = dws->cur_transfer->len;
  401. if (chip != dws->prev_chip)
  402. cs_change = 1;
  403. cr0 = chip->cr0;
  404. /* Handle per transfer options for bpw and speed */
  405. if (transfer->speed_hz) {
  406. speed = chip->speed_hz;
  407. if (transfer->speed_hz != speed) {
  408. speed = transfer->speed_hz;
  409. if (speed > dws->max_freq) {
  410. printk(KERN_ERR "MRST SPI0: unsupported"
  411. "freq: %dHz\n", speed);
  412. message->status = -EIO;
  413. goto early_exit;
  414. }
  415. /* clk_div doesn't support odd number */
  416. clk_div = dws->max_freq / speed;
  417. clk_div = (clk_div + 1) & 0xfffe;
  418. chip->speed_hz = speed;
  419. chip->clk_div = clk_div;
  420. }
  421. }
  422. if (transfer->bits_per_word) {
  423. bits = transfer->bits_per_word;
  424. switch (bits) {
  425. case 8:
  426. dws->n_bytes = 1;
  427. dws->dma_width = 1;
  428. dws->read = (dws->read != null_reader) ?
  429. u8_reader : null_reader;
  430. dws->write = (dws->write != null_writer) ?
  431. u8_writer : null_writer;
  432. break;
  433. case 16:
  434. dws->n_bytes = 2;
  435. dws->dma_width = 2;
  436. dws->read = (dws->read != null_reader) ?
  437. u16_reader : null_reader;
  438. dws->write = (dws->write != null_writer) ?
  439. u16_writer : null_writer;
  440. break;
  441. default:
  442. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  443. "%db\n", bits);
  444. message->status = -EIO;
  445. goto early_exit;
  446. }
  447. cr0 = (bits - 1)
  448. | (chip->type << SPI_FRF_OFFSET)
  449. | (spi->mode << SPI_MODE_OFFSET)
  450. | (chip->tmode << SPI_TMOD_OFFSET);
  451. }
  452. message->state = RUNNING_STATE;
  453. /*
  454. * Adjust transfer mode if necessary. Requires platform dependent
  455. * chipselect mechanism.
  456. */
  457. if (dws->cs_control) {
  458. if (dws->rx && dws->tx)
  459. chip->tmode = 0x00;
  460. else if (dws->rx)
  461. chip->tmode = 0x02;
  462. else
  463. chip->tmode = 0x01;
  464. cr0 &= ~(0x3 << SPI_MODE_OFFSET);
  465. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  466. }
  467. /* Check if current transfer is a DMA transaction */
  468. dws->dma_mapped = map_dma_buffers(dws);
  469. /*
  470. * Interrupt mode
  471. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  472. */
  473. if (!dws->dma_mapped && !chip->poll_mode) {
  474. int templen = dws->len / dws->n_bytes;
  475. txint_level = dws->fifo_len / 2;
  476. txint_level = (templen > txint_level) ? txint_level : templen;
  477. imask |= SPI_INT_TXEI;
  478. dws->transfer_handler = interrupt_transfer;
  479. }
  480. /*
  481. * Reprogram registers only if
  482. * 1. chip select changes
  483. * 2. clk_div is changed
  484. * 3. control value changes
  485. */
  486. if (dw_readw(dws, ctrl0) != cr0 || cs_change || clk_div || imask) {
  487. spi_enable_chip(dws, 0);
  488. if (dw_readw(dws, ctrl0) != cr0)
  489. dw_writew(dws, ctrl0, cr0);
  490. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  491. spi_chip_sel(dws, spi->chip_select);
  492. /* Set the interrupt mask, for poll mode just diable all int */
  493. spi_mask_intr(dws, 0xff);
  494. if (imask)
  495. spi_umask_intr(dws, imask);
  496. if (txint_level)
  497. dw_writew(dws, txfltr, txint_level);
  498. spi_enable_chip(dws, 1);
  499. if (cs_change)
  500. dws->prev_chip = chip;
  501. }
  502. if (dws->dma_mapped)
  503. dma_transfer(dws, cs_change);
  504. if (chip->poll_mode)
  505. poll_transfer(dws);
  506. return;
  507. early_exit:
  508. giveback(dws);
  509. return;
  510. }
  511. static void pump_messages(struct work_struct *work)
  512. {
  513. struct dw_spi *dws =
  514. container_of(work, struct dw_spi, pump_messages);
  515. unsigned long flags;
  516. /* Lock queue and check for queue work */
  517. spin_lock_irqsave(&dws->lock, flags);
  518. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  519. dws->busy = 0;
  520. spin_unlock_irqrestore(&dws->lock, flags);
  521. return;
  522. }
  523. /* Make sure we are not already running a message */
  524. if (dws->cur_msg) {
  525. spin_unlock_irqrestore(&dws->lock, flags);
  526. return;
  527. }
  528. /* Extract head of queue */
  529. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  530. list_del_init(&dws->cur_msg->queue);
  531. /* Initial message state*/
  532. dws->cur_msg->state = START_STATE;
  533. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  534. struct spi_transfer,
  535. transfer_list);
  536. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  537. /* Mark as busy and launch transfers */
  538. tasklet_schedule(&dws->pump_transfers);
  539. dws->busy = 1;
  540. spin_unlock_irqrestore(&dws->lock, flags);
  541. }
  542. /* spi_device use this to queue in their spi_msg */
  543. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  544. {
  545. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  546. unsigned long flags;
  547. spin_lock_irqsave(&dws->lock, flags);
  548. if (dws->run == QUEUE_STOPPED) {
  549. spin_unlock_irqrestore(&dws->lock, flags);
  550. return -ESHUTDOWN;
  551. }
  552. msg->actual_length = 0;
  553. msg->status = -EINPROGRESS;
  554. msg->state = START_STATE;
  555. list_add_tail(&msg->queue, &dws->queue);
  556. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  557. if (dws->cur_transfer || dws->cur_msg)
  558. queue_work(dws->workqueue,
  559. &dws->pump_messages);
  560. else {
  561. /* If no other data transaction in air, just go */
  562. spin_unlock_irqrestore(&dws->lock, flags);
  563. pump_messages(&dws->pump_messages);
  564. return 0;
  565. }
  566. }
  567. spin_unlock_irqrestore(&dws->lock, flags);
  568. return 0;
  569. }
  570. /* This may be called twice for each spi dev */
  571. static int dw_spi_setup(struct spi_device *spi)
  572. {
  573. struct dw_spi_chip *chip_info = NULL;
  574. struct chip_data *chip;
  575. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  576. return -EINVAL;
  577. /* Only alloc on first setup */
  578. chip = spi_get_ctldata(spi);
  579. if (!chip) {
  580. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  581. if (!chip)
  582. return -ENOMEM;
  583. chip->cs_control = null_cs_control;
  584. chip->enable_dma = 0;
  585. }
  586. /*
  587. * Protocol drivers may change the chip settings, so...
  588. * if chip_info exists, use it
  589. */
  590. chip_info = spi->controller_data;
  591. /* chip_info doesn't always exist */
  592. if (chip_info) {
  593. if (chip_info->cs_control)
  594. chip->cs_control = chip_info->cs_control;
  595. chip->poll_mode = chip_info->poll_mode;
  596. chip->type = chip_info->type;
  597. chip->rx_threshold = 0;
  598. chip->tx_threshold = 0;
  599. chip->enable_dma = chip_info->enable_dma;
  600. }
  601. if (spi->bits_per_word <= 8) {
  602. chip->n_bytes = 1;
  603. chip->dma_width = 1;
  604. chip->read = u8_reader;
  605. chip->write = u8_writer;
  606. } else if (spi->bits_per_word <= 16) {
  607. chip->n_bytes = 2;
  608. chip->dma_width = 2;
  609. chip->read = u16_reader;
  610. chip->write = u16_writer;
  611. } else {
  612. /* Never take >16b case for MRST SPIC */
  613. dev_err(&spi->dev, "invalid wordsize\n");
  614. return -EINVAL;
  615. }
  616. chip->bits_per_word = spi->bits_per_word;
  617. if (!spi->max_speed_hz) {
  618. dev_err(&spi->dev, "No max speed HZ parameter\n");
  619. return -EINVAL;
  620. }
  621. chip->speed_hz = spi->max_speed_hz;
  622. chip->tmode = 0; /* Tx & Rx */
  623. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  624. chip->cr0 = (chip->bits_per_word - 1)
  625. | (chip->type << SPI_FRF_OFFSET)
  626. | (spi->mode << SPI_MODE_OFFSET)
  627. | (chip->tmode << SPI_TMOD_OFFSET);
  628. spi_set_ctldata(spi, chip);
  629. return 0;
  630. }
  631. static void dw_spi_cleanup(struct spi_device *spi)
  632. {
  633. struct chip_data *chip = spi_get_ctldata(spi);
  634. kfree(chip);
  635. }
  636. static int __devinit init_queue(struct dw_spi *dws)
  637. {
  638. INIT_LIST_HEAD(&dws->queue);
  639. spin_lock_init(&dws->lock);
  640. dws->run = QUEUE_STOPPED;
  641. dws->busy = 0;
  642. tasklet_init(&dws->pump_transfers,
  643. pump_transfers, (unsigned long)dws);
  644. INIT_WORK(&dws->pump_messages, pump_messages);
  645. dws->workqueue = create_singlethread_workqueue(
  646. dev_name(dws->master->dev.parent));
  647. if (dws->workqueue == NULL)
  648. return -EBUSY;
  649. return 0;
  650. }
  651. static int start_queue(struct dw_spi *dws)
  652. {
  653. unsigned long flags;
  654. spin_lock_irqsave(&dws->lock, flags);
  655. if (dws->run == QUEUE_RUNNING || dws->busy) {
  656. spin_unlock_irqrestore(&dws->lock, flags);
  657. return -EBUSY;
  658. }
  659. dws->run = QUEUE_RUNNING;
  660. dws->cur_msg = NULL;
  661. dws->cur_transfer = NULL;
  662. dws->cur_chip = NULL;
  663. dws->prev_chip = NULL;
  664. spin_unlock_irqrestore(&dws->lock, flags);
  665. queue_work(dws->workqueue, &dws->pump_messages);
  666. return 0;
  667. }
  668. static int stop_queue(struct dw_spi *dws)
  669. {
  670. unsigned long flags;
  671. unsigned limit = 50;
  672. int status = 0;
  673. spin_lock_irqsave(&dws->lock, flags);
  674. dws->run = QUEUE_STOPPED;
  675. while (!list_empty(&dws->queue) && dws->busy && limit--) {
  676. spin_unlock_irqrestore(&dws->lock, flags);
  677. msleep(10);
  678. spin_lock_irqsave(&dws->lock, flags);
  679. }
  680. if (!list_empty(&dws->queue) || dws->busy)
  681. status = -EBUSY;
  682. spin_unlock_irqrestore(&dws->lock, flags);
  683. return status;
  684. }
  685. static int destroy_queue(struct dw_spi *dws)
  686. {
  687. int status;
  688. status = stop_queue(dws);
  689. if (status != 0)
  690. return status;
  691. destroy_workqueue(dws->workqueue);
  692. return 0;
  693. }
  694. /* Restart the controller, disable all interrupts, clean rx fifo */
  695. static void spi_hw_init(struct dw_spi *dws)
  696. {
  697. spi_enable_chip(dws, 0);
  698. spi_mask_intr(dws, 0xff);
  699. spi_enable_chip(dws, 1);
  700. flush(dws);
  701. /*
  702. * Try to detect the FIFO depth if not set by interface driver,
  703. * the depth could be from 2 to 256 from HW spec
  704. */
  705. if (!dws->fifo_len) {
  706. u32 fifo;
  707. for (fifo = 2; fifo <= 257; fifo++) {
  708. dw_writew(dws, txfltr, fifo);
  709. if (fifo != dw_readw(dws, txfltr))
  710. break;
  711. }
  712. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  713. dw_writew(dws, txfltr, 0);
  714. }
  715. }
  716. int __devinit dw_spi_add_host(struct dw_spi *dws)
  717. {
  718. struct spi_master *master;
  719. int ret;
  720. BUG_ON(dws == NULL);
  721. master = spi_alloc_master(dws->parent_dev, 0);
  722. if (!master) {
  723. ret = -ENOMEM;
  724. goto exit;
  725. }
  726. dws->master = master;
  727. dws->type = SSI_MOTO_SPI;
  728. dws->prev_chip = NULL;
  729. dws->dma_inited = 0;
  730. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  731. ret = request_irq(dws->irq, dw_spi_irq, 0,
  732. "dw_spi", dws);
  733. if (ret < 0) {
  734. dev_err(&master->dev, "can not get IRQ\n");
  735. goto err_free_master;
  736. }
  737. master->mode_bits = SPI_CPOL | SPI_CPHA;
  738. master->bus_num = dws->bus_num;
  739. master->num_chipselect = dws->num_cs;
  740. master->cleanup = dw_spi_cleanup;
  741. master->setup = dw_spi_setup;
  742. master->transfer = dw_spi_transfer;
  743. dws->dma_inited = 0;
  744. /* Basic HW init */
  745. spi_hw_init(dws);
  746. /* Initial and start queue */
  747. ret = init_queue(dws);
  748. if (ret) {
  749. dev_err(&master->dev, "problem initializing queue\n");
  750. goto err_diable_hw;
  751. }
  752. ret = start_queue(dws);
  753. if (ret) {
  754. dev_err(&master->dev, "problem starting queue\n");
  755. goto err_diable_hw;
  756. }
  757. spi_master_set_devdata(master, dws);
  758. ret = spi_register_master(master);
  759. if (ret) {
  760. dev_err(&master->dev, "problem registering spi master\n");
  761. goto err_queue_alloc;
  762. }
  763. mrst_spi_debugfs_init(dws);
  764. return 0;
  765. err_queue_alloc:
  766. destroy_queue(dws);
  767. err_diable_hw:
  768. spi_enable_chip(dws, 0);
  769. free_irq(dws->irq, dws);
  770. err_free_master:
  771. spi_master_put(master);
  772. exit:
  773. return ret;
  774. }
  775. EXPORT_SYMBOL(dw_spi_add_host);
  776. void __devexit dw_spi_remove_host(struct dw_spi *dws)
  777. {
  778. int status = 0;
  779. if (!dws)
  780. return;
  781. mrst_spi_debugfs_remove(dws);
  782. /* Remove the queue */
  783. status = destroy_queue(dws);
  784. if (status != 0)
  785. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  786. "complete, message memory not freed\n");
  787. spi_enable_chip(dws, 0);
  788. /* Disable clk */
  789. spi_set_clk(dws, 0);
  790. free_irq(dws->irq, dws);
  791. /* Disconnect from the SPI framework */
  792. spi_unregister_master(dws->master);
  793. }
  794. EXPORT_SYMBOL(dw_spi_remove_host);
  795. int dw_spi_suspend_host(struct dw_spi *dws)
  796. {
  797. int ret = 0;
  798. ret = stop_queue(dws);
  799. if (ret)
  800. return ret;
  801. spi_enable_chip(dws, 0);
  802. spi_set_clk(dws, 0);
  803. return ret;
  804. }
  805. EXPORT_SYMBOL(dw_spi_suspend_host);
  806. int dw_spi_resume_host(struct dw_spi *dws)
  807. {
  808. int ret;
  809. spi_hw_init(dws);
  810. ret = start_queue(dws);
  811. if (ret)
  812. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  813. return ret;
  814. }
  815. EXPORT_SYMBOL(dw_spi_resume_host);
  816. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  817. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  818. MODULE_LICENSE("GPL v2");