zfcp_qdio.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. /*
  2. * zfcp device driver
  3. *
  4. * Setup and helper functions to access QDIO.
  5. *
  6. * Copyright IBM Corporation 2002, 2009
  7. */
  8. #define KMSG_COMPONENT "zfcp"
  9. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  10. #include "zfcp_ext.h"
  11. #include "zfcp_qdio.h"
  12. #define QBUFF_PER_PAGE (PAGE_SIZE / sizeof(struct qdio_buffer))
  13. static int zfcp_qdio_buffers_enqueue(struct qdio_buffer **sbal)
  14. {
  15. int pos;
  16. for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos += QBUFF_PER_PAGE) {
  17. sbal[pos] = (struct qdio_buffer *) get_zeroed_page(GFP_KERNEL);
  18. if (!sbal[pos])
  19. return -ENOMEM;
  20. }
  21. for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos++)
  22. if (pos % QBUFF_PER_PAGE)
  23. sbal[pos] = sbal[pos - 1] + 1;
  24. return 0;
  25. }
  26. static void zfcp_qdio_handler_error(struct zfcp_qdio *qdio, char *id)
  27. {
  28. struct zfcp_adapter *adapter = qdio->adapter;
  29. dev_warn(&adapter->ccw_device->dev, "A QDIO problem occurred\n");
  30. zfcp_erp_adapter_reopen(adapter,
  31. ZFCP_STATUS_ADAPTER_LINK_UNPLUGGED |
  32. ZFCP_STATUS_COMMON_ERP_FAILED, id, NULL);
  33. }
  34. static void zfcp_qdio_zero_sbals(struct qdio_buffer *sbal[], int first, int cnt)
  35. {
  36. int i, sbal_idx;
  37. for (i = first; i < first + cnt; i++) {
  38. sbal_idx = i % QDIO_MAX_BUFFERS_PER_Q;
  39. memset(sbal[sbal_idx], 0, sizeof(struct qdio_buffer));
  40. }
  41. }
  42. /* this needs to be called prior to updating the queue fill level */
  43. static inline void zfcp_qdio_account(struct zfcp_qdio *qdio)
  44. {
  45. unsigned long long now, span;
  46. int free, used;
  47. spin_lock(&qdio->stat_lock);
  48. now = get_clock_monotonic();
  49. span = (now - qdio->req_q_time) >> 12;
  50. free = atomic_read(&qdio->req_q.count);
  51. used = QDIO_MAX_BUFFERS_PER_Q - free;
  52. qdio->req_q_util += used * span;
  53. qdio->req_q_time = now;
  54. spin_unlock(&qdio->stat_lock);
  55. }
  56. static void zfcp_qdio_int_req(struct ccw_device *cdev, unsigned int qdio_err,
  57. int queue_no, int first, int count,
  58. unsigned long parm)
  59. {
  60. struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm;
  61. struct zfcp_qdio_queue *queue = &qdio->req_q;
  62. if (unlikely(qdio_err)) {
  63. zfcp_dbf_hba_qdio(qdio->adapter->dbf, qdio_err, first,
  64. count);
  65. zfcp_qdio_handler_error(qdio, "qdireq1");
  66. return;
  67. }
  68. /* cleanup all SBALs being program-owned now */
  69. zfcp_qdio_zero_sbals(queue->sbal, first, count);
  70. zfcp_qdio_account(qdio);
  71. atomic_add(count, &queue->count);
  72. wake_up(&qdio->req_q_wq);
  73. }
  74. static void zfcp_qdio_resp_put_back(struct zfcp_qdio *qdio, int processed)
  75. {
  76. struct zfcp_qdio_queue *queue = &qdio->resp_q;
  77. struct ccw_device *cdev = qdio->adapter->ccw_device;
  78. u8 count, start = queue->first;
  79. unsigned int retval;
  80. count = atomic_read(&queue->count) + processed;
  81. retval = do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, start, count);
  82. if (unlikely(retval)) {
  83. atomic_set(&queue->count, count);
  84. zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdrpb_1", NULL);
  85. } else {
  86. queue->first += count;
  87. queue->first %= QDIO_MAX_BUFFERS_PER_Q;
  88. atomic_set(&queue->count, 0);
  89. }
  90. }
  91. static void zfcp_qdio_int_resp(struct ccw_device *cdev, unsigned int qdio_err,
  92. int queue_no, int first, int count,
  93. unsigned long parm)
  94. {
  95. struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm;
  96. int sbal_idx, sbal_no;
  97. if (unlikely(qdio_err)) {
  98. zfcp_dbf_hba_qdio(qdio->adapter->dbf, qdio_err, first,
  99. count);
  100. zfcp_qdio_handler_error(qdio, "qdires1");
  101. return;
  102. }
  103. /*
  104. * go through all SBALs from input queue currently
  105. * returned by QDIO layer
  106. */
  107. for (sbal_no = 0; sbal_no < count; sbal_no++) {
  108. sbal_idx = (first + sbal_no) % QDIO_MAX_BUFFERS_PER_Q;
  109. /* go through all SBALEs of SBAL */
  110. zfcp_fsf_reqid_check(qdio, sbal_idx);
  111. }
  112. /*
  113. * put range of SBALs back to response queue
  114. * (including SBALs which have already been free before)
  115. */
  116. zfcp_qdio_resp_put_back(qdio, count);
  117. }
  118. static void zfcp_qdio_sbal_limit(struct zfcp_qdio *qdio,
  119. struct zfcp_qdio_req *q_req, int max_sbals)
  120. {
  121. int count = atomic_read(&qdio->req_q.count);
  122. count = min(count, max_sbals);
  123. q_req->sbal_limit = (q_req->sbal_first + count - 1)
  124. % QDIO_MAX_BUFFERS_PER_Q;
  125. }
  126. static struct qdio_buffer_element *
  127. zfcp_qdio_sbal_chain(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req,
  128. unsigned long sbtype)
  129. {
  130. struct qdio_buffer_element *sbale;
  131. /* set last entry flag in current SBALE of current SBAL */
  132. sbale = zfcp_qdio_sbale_curr(qdio, q_req);
  133. sbale->flags |= SBAL_FLAGS_LAST_ENTRY;
  134. /* don't exceed last allowed SBAL */
  135. if (q_req->sbal_last == q_req->sbal_limit)
  136. return NULL;
  137. /* set chaining flag in first SBALE of current SBAL */
  138. sbale = zfcp_qdio_sbale_req(qdio, q_req);
  139. sbale->flags |= SBAL_FLAGS0_MORE_SBALS;
  140. /* calculate index of next SBAL */
  141. q_req->sbal_last++;
  142. q_req->sbal_last %= QDIO_MAX_BUFFERS_PER_Q;
  143. /* keep this requests number of SBALs up-to-date */
  144. q_req->sbal_number++;
  145. /* start at first SBALE of new SBAL */
  146. q_req->sbale_curr = 0;
  147. /* set storage-block type for new SBAL */
  148. sbale = zfcp_qdio_sbale_curr(qdio, q_req);
  149. sbale->flags |= sbtype;
  150. return sbale;
  151. }
  152. static struct qdio_buffer_element *
  153. zfcp_qdio_sbale_next(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req,
  154. unsigned int sbtype)
  155. {
  156. if (q_req->sbale_curr == ZFCP_LAST_SBALE_PER_SBAL)
  157. return zfcp_qdio_sbal_chain(qdio, q_req, sbtype);
  158. q_req->sbale_curr++;
  159. return zfcp_qdio_sbale_curr(qdio, q_req);
  160. }
  161. static void zfcp_qdio_undo_sbals(struct zfcp_qdio *qdio,
  162. struct zfcp_qdio_req *q_req)
  163. {
  164. struct qdio_buffer **sbal = qdio->req_q.sbal;
  165. int first = q_req->sbal_first;
  166. int last = q_req->sbal_last;
  167. int count = (last - first + QDIO_MAX_BUFFERS_PER_Q) %
  168. QDIO_MAX_BUFFERS_PER_Q + 1;
  169. zfcp_qdio_zero_sbals(sbal, first, count);
  170. }
  171. static int zfcp_qdio_fill_sbals(struct zfcp_qdio *qdio,
  172. struct zfcp_qdio_req *q_req,
  173. unsigned int sbtype, void *start_addr,
  174. unsigned int total_length)
  175. {
  176. struct qdio_buffer_element *sbale;
  177. unsigned long remaining, length;
  178. void *addr;
  179. /* split segment up */
  180. for (addr = start_addr, remaining = total_length; remaining > 0;
  181. addr += length, remaining -= length) {
  182. sbale = zfcp_qdio_sbale_next(qdio, q_req, sbtype);
  183. if (!sbale) {
  184. atomic_inc(&qdio->req_q_full);
  185. zfcp_qdio_undo_sbals(qdio, q_req);
  186. return -EINVAL;
  187. }
  188. /* new piece must not exceed next page boundary */
  189. length = min(remaining,
  190. (PAGE_SIZE - ((unsigned long)addr &
  191. (PAGE_SIZE - 1))));
  192. sbale->addr = addr;
  193. sbale->length = length;
  194. }
  195. return 0;
  196. }
  197. /**
  198. * zfcp_qdio_sbals_from_sg - fill SBALs from scatter-gather list
  199. * @fsf_req: request to be processed
  200. * @sbtype: SBALE flags
  201. * @sg: scatter-gather list
  202. * @max_sbals: upper bound for number of SBALs to be used
  203. * Returns: number of bytes, or error (negativ)
  204. */
  205. int zfcp_qdio_sbals_from_sg(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req,
  206. unsigned long sbtype, struct scatterlist *sg,
  207. int max_sbals)
  208. {
  209. struct qdio_buffer_element *sbale;
  210. int retval, bytes = 0;
  211. /* figure out last allowed SBAL */
  212. zfcp_qdio_sbal_limit(qdio, q_req, max_sbals);
  213. /* set storage-block type for this request */
  214. sbale = zfcp_qdio_sbale_req(qdio, q_req);
  215. sbale->flags |= sbtype;
  216. for (; sg; sg = sg_next(sg)) {
  217. retval = zfcp_qdio_fill_sbals(qdio, q_req, sbtype,
  218. sg_virt(sg), sg->length);
  219. if (retval < 0)
  220. return retval;
  221. bytes += sg->length;
  222. }
  223. /* assume that no other SBALEs are to follow in the same SBAL */
  224. sbale = zfcp_qdio_sbale_curr(qdio, q_req);
  225. sbale->flags |= SBAL_FLAGS_LAST_ENTRY;
  226. return bytes;
  227. }
  228. /**
  229. * zfcp_qdio_send - set PCI flag in first SBALE and send req to QDIO
  230. * @qdio: pointer to struct zfcp_qdio
  231. * @q_req: pointer to struct zfcp_qdio_req
  232. * Returns: 0 on success, error otherwise
  233. */
  234. int zfcp_qdio_send(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req)
  235. {
  236. struct zfcp_qdio_queue *req_q = &qdio->req_q;
  237. int first = q_req->sbal_first;
  238. int count = q_req->sbal_number;
  239. int retval;
  240. unsigned int qdio_flags = QDIO_FLAG_SYNC_OUTPUT;
  241. zfcp_qdio_account(qdio);
  242. retval = do_QDIO(qdio->adapter->ccw_device, qdio_flags, 0, first,
  243. count);
  244. if (unlikely(retval)) {
  245. zfcp_qdio_zero_sbals(req_q->sbal, first, count);
  246. return retval;
  247. }
  248. /* account for transferred buffers */
  249. atomic_sub(count, &req_q->count);
  250. req_q->first += count;
  251. req_q->first %= QDIO_MAX_BUFFERS_PER_Q;
  252. return 0;
  253. }
  254. static void zfcp_qdio_setup_init_data(struct qdio_initialize *id,
  255. struct zfcp_qdio *qdio)
  256. {
  257. id->cdev = qdio->adapter->ccw_device;
  258. id->q_format = QDIO_ZFCP_QFMT;
  259. memcpy(id->adapter_name, dev_name(&id->cdev->dev), 8);
  260. ASCEBC(id->adapter_name, 8);
  261. id->qib_param_field_format = 0;
  262. id->qib_param_field = NULL;
  263. id->input_slib_elements = NULL;
  264. id->output_slib_elements = NULL;
  265. id->no_input_qs = 1;
  266. id->no_output_qs = 1;
  267. id->input_handler = zfcp_qdio_int_resp;
  268. id->output_handler = zfcp_qdio_int_req;
  269. id->int_parm = (unsigned long) qdio;
  270. id->input_sbal_addr_array = (void **) (qdio->resp_q.sbal);
  271. id->output_sbal_addr_array = (void **) (qdio->req_q.sbal);
  272. }
  273. /**
  274. * zfcp_qdio_allocate - allocate queue memory and initialize QDIO data
  275. * @adapter: pointer to struct zfcp_adapter
  276. * Returns: -ENOMEM on memory allocation error or return value from
  277. * qdio_allocate
  278. */
  279. static int zfcp_qdio_allocate(struct zfcp_qdio *qdio)
  280. {
  281. struct qdio_initialize init_data;
  282. if (zfcp_qdio_buffers_enqueue(qdio->req_q.sbal) ||
  283. zfcp_qdio_buffers_enqueue(qdio->resp_q.sbal))
  284. return -ENOMEM;
  285. zfcp_qdio_setup_init_data(&init_data, qdio);
  286. return qdio_allocate(&init_data);
  287. }
  288. /**
  289. * zfcp_close_qdio - close qdio queues for an adapter
  290. * @qdio: pointer to structure zfcp_qdio
  291. */
  292. void zfcp_qdio_close(struct zfcp_qdio *qdio)
  293. {
  294. struct zfcp_qdio_queue *req_q;
  295. int first, count;
  296. if (!(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP))
  297. return;
  298. /* clear QDIOUP flag, thus do_QDIO is not called during qdio_shutdown */
  299. req_q = &qdio->req_q;
  300. spin_lock_bh(&qdio->req_q_lock);
  301. atomic_clear_mask(ZFCP_STATUS_ADAPTER_QDIOUP, &qdio->adapter->status);
  302. spin_unlock_bh(&qdio->req_q_lock);
  303. qdio_shutdown(qdio->adapter->ccw_device,
  304. QDIO_FLAG_CLEANUP_USING_CLEAR);
  305. /* cleanup used outbound sbals */
  306. count = atomic_read(&req_q->count);
  307. if (count < QDIO_MAX_BUFFERS_PER_Q) {
  308. first = (req_q->first + count) % QDIO_MAX_BUFFERS_PER_Q;
  309. count = QDIO_MAX_BUFFERS_PER_Q - count;
  310. zfcp_qdio_zero_sbals(req_q->sbal, first, count);
  311. }
  312. req_q->first = 0;
  313. atomic_set(&req_q->count, 0);
  314. qdio->resp_q.first = 0;
  315. atomic_set(&qdio->resp_q.count, 0);
  316. }
  317. /**
  318. * zfcp_qdio_open - prepare and initialize response queue
  319. * @qdio: pointer to struct zfcp_qdio
  320. * Returns: 0 on success, otherwise -EIO
  321. */
  322. int zfcp_qdio_open(struct zfcp_qdio *qdio)
  323. {
  324. struct qdio_buffer_element *sbale;
  325. struct qdio_initialize init_data;
  326. struct ccw_device *cdev = qdio->adapter->ccw_device;
  327. int cc;
  328. if (atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP)
  329. return -EIO;
  330. zfcp_qdio_setup_init_data(&init_data, qdio);
  331. if (qdio_establish(&init_data))
  332. goto failed_establish;
  333. if (qdio_activate(cdev))
  334. goto failed_qdio;
  335. for (cc = 0; cc < QDIO_MAX_BUFFERS_PER_Q; cc++) {
  336. sbale = &(qdio->resp_q.sbal[cc]->element[0]);
  337. sbale->length = 0;
  338. sbale->flags = SBAL_FLAGS_LAST_ENTRY;
  339. sbale->addr = NULL;
  340. }
  341. if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, 0,
  342. QDIO_MAX_BUFFERS_PER_Q))
  343. goto failed_qdio;
  344. /* set index of first avalable SBALS / number of available SBALS */
  345. qdio->req_q.first = 0;
  346. atomic_set(&qdio->req_q.count, QDIO_MAX_BUFFERS_PER_Q);
  347. return 0;
  348. failed_qdio:
  349. qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
  350. failed_establish:
  351. dev_err(&cdev->dev,
  352. "Setting up the QDIO connection to the FCP adapter failed\n");
  353. return -EIO;
  354. }
  355. void zfcp_qdio_destroy(struct zfcp_qdio *qdio)
  356. {
  357. struct qdio_buffer **sbal_req, **sbal_resp;
  358. int p;
  359. if (!qdio)
  360. return;
  361. if (qdio->adapter->ccw_device)
  362. qdio_free(qdio->adapter->ccw_device);
  363. sbal_req = qdio->req_q.sbal;
  364. sbal_resp = qdio->resp_q.sbal;
  365. for (p = 0; p < QDIO_MAX_BUFFERS_PER_Q; p += QBUFF_PER_PAGE) {
  366. free_page((unsigned long) sbal_req[p]);
  367. free_page((unsigned long) sbal_resp[p]);
  368. }
  369. kfree(qdio);
  370. }
  371. int zfcp_qdio_setup(struct zfcp_adapter *adapter)
  372. {
  373. struct zfcp_qdio *qdio;
  374. qdio = kzalloc(sizeof(struct zfcp_qdio), GFP_KERNEL);
  375. if (!qdio)
  376. return -ENOMEM;
  377. qdio->adapter = adapter;
  378. if (zfcp_qdio_allocate(qdio)) {
  379. zfcp_qdio_destroy(qdio);
  380. return -ENOMEM;
  381. }
  382. spin_lock_init(&qdio->req_q_lock);
  383. spin_lock_init(&qdio->stat_lock);
  384. adapter->qdio = qdio;
  385. return 0;
  386. }