rt2500usb.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/usb.h>
  28. #include "rt2x00.h"
  29. #include "rt2x00usb.h"
  30. #include "rt2500usb.h"
  31. /*
  32. * Allow hardware encryption to be disabled.
  33. */
  34. static int modparam_nohwcrypt = 0;
  35. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  36. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  37. /*
  38. * Register access.
  39. * All access to the CSR registers will go through the methods
  40. * rt2500usb_register_read and rt2500usb_register_write.
  41. * BBP and RF register require indirect register access,
  42. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  43. * These indirect registers work with busy bits,
  44. * and we will try maximal REGISTER_BUSY_COUNT times to access
  45. * the register while taking a REGISTER_BUSY_DELAY us delay
  46. * between each attampt. When the busy bit is still set at that time,
  47. * the access attempt is considered to have failed,
  48. * and we will print an error.
  49. * If the csr_mutex is already held then the _lock variants must
  50. * be used instead.
  51. */
  52. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  53. const unsigned int offset,
  54. u16 *value)
  55. {
  56. __le16 reg;
  57. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  58. USB_VENDOR_REQUEST_IN, offset,
  59. &reg, sizeof(reg), REGISTER_TIMEOUT);
  60. *value = le16_to_cpu(reg);
  61. }
  62. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  63. const unsigned int offset,
  64. u16 *value)
  65. {
  66. __le16 reg;
  67. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  68. USB_VENDOR_REQUEST_IN, offset,
  69. &reg, sizeof(reg), REGISTER_TIMEOUT);
  70. *value = le16_to_cpu(reg);
  71. }
  72. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  73. const unsigned int offset,
  74. void *value, const u16 length)
  75. {
  76. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  77. USB_VENDOR_REQUEST_IN, offset,
  78. value, length,
  79. REGISTER_TIMEOUT16(length));
  80. }
  81. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  82. const unsigned int offset,
  83. u16 value)
  84. {
  85. __le16 reg = cpu_to_le16(value);
  86. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  87. USB_VENDOR_REQUEST_OUT, offset,
  88. &reg, sizeof(reg), REGISTER_TIMEOUT);
  89. }
  90. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  91. const unsigned int offset,
  92. u16 value)
  93. {
  94. __le16 reg = cpu_to_le16(value);
  95. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  96. USB_VENDOR_REQUEST_OUT, offset,
  97. &reg, sizeof(reg), REGISTER_TIMEOUT);
  98. }
  99. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  100. const unsigned int offset,
  101. void *value, const u16 length)
  102. {
  103. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  104. USB_VENDOR_REQUEST_OUT, offset,
  105. value, length,
  106. REGISTER_TIMEOUT16(length));
  107. }
  108. static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  109. const unsigned int offset,
  110. struct rt2x00_field16 field,
  111. u16 *reg)
  112. {
  113. unsigned int i;
  114. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  115. rt2500usb_register_read_lock(rt2x00dev, offset, reg);
  116. if (!rt2x00_get_field16(*reg, field))
  117. return 1;
  118. udelay(REGISTER_BUSY_DELAY);
  119. }
  120. ERROR(rt2x00dev, "Indirect register access failed: "
  121. "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
  122. *reg = ~0;
  123. return 0;
  124. }
  125. #define WAIT_FOR_BBP(__dev, __reg) \
  126. rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
  127. #define WAIT_FOR_RF(__dev, __reg) \
  128. rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
  129. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  130. const unsigned int word, const u8 value)
  131. {
  132. u16 reg;
  133. mutex_lock(&rt2x00dev->csr_mutex);
  134. /*
  135. * Wait until the BBP becomes available, afterwards we
  136. * can safely write the new data into the register.
  137. */
  138. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  139. reg = 0;
  140. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  141. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  142. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  143. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  144. }
  145. mutex_unlock(&rt2x00dev->csr_mutex);
  146. }
  147. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  148. const unsigned int word, u8 *value)
  149. {
  150. u16 reg;
  151. mutex_lock(&rt2x00dev->csr_mutex);
  152. /*
  153. * Wait until the BBP becomes available, afterwards we
  154. * can safely write the read request into the register.
  155. * After the data has been written, we wait until hardware
  156. * returns the correct value, if at any time the register
  157. * doesn't become available in time, reg will be 0xffffffff
  158. * which means we return 0xff to the caller.
  159. */
  160. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  161. reg = 0;
  162. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  163. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  164. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  165. if (WAIT_FOR_BBP(rt2x00dev, &reg))
  166. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  167. }
  168. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  169. mutex_unlock(&rt2x00dev->csr_mutex);
  170. }
  171. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  172. const unsigned int word, const u32 value)
  173. {
  174. u16 reg;
  175. mutex_lock(&rt2x00dev->csr_mutex);
  176. /*
  177. * Wait until the RF becomes available, afterwards we
  178. * can safely write the new data into the register.
  179. */
  180. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  181. reg = 0;
  182. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  183. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  184. reg = 0;
  185. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  186. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  187. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  188. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  189. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  190. rt2x00_rf_write(rt2x00dev, word, value);
  191. }
  192. mutex_unlock(&rt2x00dev->csr_mutex);
  193. }
  194. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  195. static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  196. const unsigned int offset,
  197. u32 *value)
  198. {
  199. rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
  200. }
  201. static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  202. const unsigned int offset,
  203. u32 value)
  204. {
  205. rt2500usb_register_write(rt2x00dev, offset, value);
  206. }
  207. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  208. .owner = THIS_MODULE,
  209. .csr = {
  210. .read = _rt2500usb_register_read,
  211. .write = _rt2500usb_register_write,
  212. .flags = RT2X00DEBUGFS_OFFSET,
  213. .word_base = CSR_REG_BASE,
  214. .word_size = sizeof(u16),
  215. .word_count = CSR_REG_SIZE / sizeof(u16),
  216. },
  217. .eeprom = {
  218. .read = rt2x00_eeprom_read,
  219. .write = rt2x00_eeprom_write,
  220. .word_base = EEPROM_BASE,
  221. .word_size = sizeof(u16),
  222. .word_count = EEPROM_SIZE / sizeof(u16),
  223. },
  224. .bbp = {
  225. .read = rt2500usb_bbp_read,
  226. .write = rt2500usb_bbp_write,
  227. .word_base = BBP_BASE,
  228. .word_size = sizeof(u8),
  229. .word_count = BBP_SIZE / sizeof(u8),
  230. },
  231. .rf = {
  232. .read = rt2x00_rf_read,
  233. .write = rt2500usb_rf_write,
  234. .word_base = RF_BASE,
  235. .word_size = sizeof(u32),
  236. .word_count = RF_SIZE / sizeof(u32),
  237. },
  238. };
  239. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  240. static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  241. {
  242. u16 reg;
  243. rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
  244. return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
  245. }
  246. #ifdef CONFIG_RT2X00_LIB_LEDS
  247. static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
  248. enum led_brightness brightness)
  249. {
  250. struct rt2x00_led *led =
  251. container_of(led_cdev, struct rt2x00_led, led_dev);
  252. unsigned int enabled = brightness != LED_OFF;
  253. u16 reg;
  254. rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
  255. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  256. rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
  257. else if (led->type == LED_TYPE_ACTIVITY)
  258. rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
  259. rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
  260. }
  261. static int rt2500usb_blink_set(struct led_classdev *led_cdev,
  262. unsigned long *delay_on,
  263. unsigned long *delay_off)
  264. {
  265. struct rt2x00_led *led =
  266. container_of(led_cdev, struct rt2x00_led, led_dev);
  267. u16 reg;
  268. rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
  269. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
  270. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
  271. rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
  272. return 0;
  273. }
  274. static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
  275. struct rt2x00_led *led,
  276. enum led_type type)
  277. {
  278. led->rt2x00dev = rt2x00dev;
  279. led->type = type;
  280. led->led_dev.brightness_set = rt2500usb_brightness_set;
  281. led->led_dev.blink_set = rt2500usb_blink_set;
  282. led->flags = LED_INITIALIZED;
  283. }
  284. #endif /* CONFIG_RT2X00_LIB_LEDS */
  285. /*
  286. * Configuration handlers.
  287. */
  288. /*
  289. * rt2500usb does not differentiate between shared and pairwise
  290. * keys, so we should use the same function for both key types.
  291. */
  292. static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
  293. struct rt2x00lib_crypto *crypto,
  294. struct ieee80211_key_conf *key)
  295. {
  296. int timeout;
  297. u32 mask;
  298. u16 reg;
  299. if (crypto->cmd == SET_KEY) {
  300. /*
  301. * Pairwise key will always be entry 0, but this
  302. * could collide with a shared key on the same
  303. * position...
  304. */
  305. mask = TXRX_CSR0_KEY_ID.bit_mask;
  306. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  307. reg &= mask;
  308. if (reg && reg == mask)
  309. return -ENOSPC;
  310. reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  311. key->hw_key_idx += reg ? ffz(reg) : 0;
  312. /*
  313. * The encryption key doesn't fit within the CSR cache,
  314. * this means we should allocate it seperately and use
  315. * rt2x00usb_vendor_request() to send the key to the hardware.
  316. */
  317. reg = KEY_ENTRY(key->hw_key_idx);
  318. timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
  319. rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
  320. USB_VENDOR_REQUEST_OUT, reg,
  321. crypto->key,
  322. sizeof(crypto->key),
  323. timeout);
  324. /*
  325. * The driver does not support the IV/EIV generation
  326. * in hardware. However it demands the data to be provided
  327. * both seperately as well as inside the frame.
  328. * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
  329. * to ensure rt2x00lib will not strip the data from the
  330. * frame after the copy, now we must tell mac80211
  331. * to generate the IV/EIV data.
  332. */
  333. key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
  334. key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
  335. }
  336. /*
  337. * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
  338. * a particular key is valid.
  339. */
  340. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  341. rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
  342. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  343. mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
  344. if (crypto->cmd == SET_KEY)
  345. mask |= 1 << key->hw_key_idx;
  346. else if (crypto->cmd == DISABLE_KEY)
  347. mask &= ~(1 << key->hw_key_idx);
  348. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
  349. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  350. return 0;
  351. }
  352. static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
  353. const unsigned int filter_flags)
  354. {
  355. u16 reg;
  356. /*
  357. * Start configuration steps.
  358. * Note that the version error will always be dropped
  359. * and broadcast frames will always be accepted since
  360. * there is no filter for it at this time.
  361. */
  362. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  363. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  364. !(filter_flags & FIF_FCSFAIL));
  365. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  366. !(filter_flags & FIF_PLCPFAIL));
  367. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  368. !(filter_flags & FIF_CONTROL));
  369. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  370. !(filter_flags & FIF_PROMISC_IN_BSS));
  371. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  372. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  373. !rt2x00dev->intf_ap_count);
  374. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  375. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  376. !(filter_flags & FIF_ALLMULTI));
  377. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  378. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  379. }
  380. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  381. struct rt2x00_intf *intf,
  382. struct rt2x00intf_conf *conf,
  383. const unsigned int flags)
  384. {
  385. unsigned int bcn_preload;
  386. u16 reg;
  387. if (flags & CONFIG_UPDATE_TYPE) {
  388. /*
  389. * Enable beacon config
  390. */
  391. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  392. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  393. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  394. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  395. 2 * (conf->type != NL80211_IFTYPE_STATION));
  396. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  397. /*
  398. * Enable synchronisation.
  399. */
  400. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  401. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  402. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  403. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  404. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  405. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  406. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  407. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  408. }
  409. if (flags & CONFIG_UPDATE_MAC)
  410. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  411. (3 * sizeof(__le16)));
  412. if (flags & CONFIG_UPDATE_BSSID)
  413. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  414. (3 * sizeof(__le16)));
  415. }
  416. static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
  417. struct rt2x00lib_erp *erp)
  418. {
  419. u16 reg;
  420. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  421. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  422. !!erp->short_preamble);
  423. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  424. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
  425. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  426. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
  427. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  428. rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
  429. rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
  430. rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
  431. }
  432. static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
  433. struct antenna_setup *ant)
  434. {
  435. u8 r2;
  436. u8 r14;
  437. u16 csr5;
  438. u16 csr6;
  439. /*
  440. * We should never come here because rt2x00lib is supposed
  441. * to catch this and send us the correct antenna explicitely.
  442. */
  443. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  444. ant->tx == ANTENNA_SW_DIVERSITY);
  445. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  446. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  447. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  448. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  449. /*
  450. * Configure the TX antenna.
  451. */
  452. switch (ant->tx) {
  453. case ANTENNA_HW_DIVERSITY:
  454. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  455. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  456. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  457. break;
  458. case ANTENNA_A:
  459. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  460. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  461. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  462. break;
  463. case ANTENNA_B:
  464. default:
  465. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  466. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  467. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  468. break;
  469. }
  470. /*
  471. * Configure the RX antenna.
  472. */
  473. switch (ant->rx) {
  474. case ANTENNA_HW_DIVERSITY:
  475. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  476. break;
  477. case ANTENNA_A:
  478. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  479. break;
  480. case ANTENNA_B:
  481. default:
  482. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  483. break;
  484. }
  485. /*
  486. * RT2525E and RT5222 need to flip TX I/Q
  487. */
  488. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  489. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  490. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  491. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  492. /*
  493. * RT2525E does not need RX I/Q Flip.
  494. */
  495. if (rt2x00_rf(rt2x00dev, RF2525E))
  496. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  497. } else {
  498. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  499. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  500. }
  501. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  502. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  503. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  504. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  505. }
  506. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  507. struct rf_channel *rf, const int txpower)
  508. {
  509. /*
  510. * Set TXpower.
  511. */
  512. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  513. /*
  514. * For RT2525E we should first set the channel to half band higher.
  515. */
  516. if (rt2x00_rf(rt2x00dev, RF2525E)) {
  517. static const u32 vals[] = {
  518. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  519. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  520. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  521. 0x00000902, 0x00000906
  522. };
  523. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  524. if (rf->rf4)
  525. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  526. }
  527. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  528. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  529. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  530. if (rf->rf4)
  531. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  532. }
  533. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  534. const int txpower)
  535. {
  536. u32 rf3;
  537. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  538. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  539. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  540. }
  541. static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
  542. struct rt2x00lib_conf *libconf)
  543. {
  544. enum dev_state state =
  545. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  546. STATE_SLEEP : STATE_AWAKE;
  547. u16 reg;
  548. if (state == STATE_SLEEP) {
  549. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  550. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
  551. rt2x00dev->beacon_int - 20);
  552. rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
  553. libconf->conf->listen_interval - 1);
  554. /* We must first disable autowake before it can be enabled */
  555. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
  556. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  557. rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
  558. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  559. }
  560. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  561. }
  562. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  563. struct rt2x00lib_conf *libconf,
  564. const unsigned int flags)
  565. {
  566. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  567. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  568. libconf->conf->power_level);
  569. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  570. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  571. rt2500usb_config_txpower(rt2x00dev,
  572. libconf->conf->power_level);
  573. if (flags & IEEE80211_CONF_CHANGE_PS)
  574. rt2500usb_config_ps(rt2x00dev, libconf);
  575. }
  576. /*
  577. * Link tuning
  578. */
  579. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  580. struct link_qual *qual)
  581. {
  582. u16 reg;
  583. /*
  584. * Update FCS error count from register.
  585. */
  586. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  587. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  588. /*
  589. * Update False CCA count from register.
  590. */
  591. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  592. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  593. }
  594. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
  595. struct link_qual *qual)
  596. {
  597. u16 eeprom;
  598. u16 value;
  599. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  600. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  601. rt2500usb_bbp_write(rt2x00dev, 24, value);
  602. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  603. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  604. rt2500usb_bbp_write(rt2x00dev, 25, value);
  605. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  606. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  607. rt2500usb_bbp_write(rt2x00dev, 61, value);
  608. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  609. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  610. rt2500usb_bbp_write(rt2x00dev, 17, value);
  611. qual->vgc_level = value;
  612. }
  613. /*
  614. * Initialization functions.
  615. */
  616. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  617. {
  618. u16 reg;
  619. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  620. USB_MODE_TEST, REGISTER_TIMEOUT);
  621. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  622. 0x00f0, REGISTER_TIMEOUT);
  623. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  624. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  625. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  626. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  627. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  628. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  629. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  630. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  631. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  632. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  633. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  634. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  635. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  636. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  637. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  638. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  639. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  640. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  641. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  642. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  643. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  644. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  645. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  646. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  647. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  648. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  649. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  650. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  651. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  652. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  653. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  654. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  655. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  656. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  657. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  658. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  659. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  660. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  661. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  662. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  663. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
  664. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
  665. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
  666. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  667. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  668. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  669. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  670. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  671. return -EBUSY;
  672. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  673. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  674. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  675. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  676. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  677. if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
  678. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  679. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  680. } else {
  681. reg = 0;
  682. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  683. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  684. }
  685. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  686. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  687. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  688. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  689. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  690. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  691. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  692. rt2x00dev->rx->data_size);
  693. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  694. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  695. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  696. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
  697. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  698. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  699. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  700. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  701. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  702. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  703. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  704. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  705. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  706. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  707. return 0;
  708. }
  709. static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  710. {
  711. unsigned int i;
  712. u8 value;
  713. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  714. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  715. if ((value != 0xff) && (value != 0x00))
  716. return 0;
  717. udelay(REGISTER_BUSY_DELAY);
  718. }
  719. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  720. return -EACCES;
  721. }
  722. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  723. {
  724. unsigned int i;
  725. u16 eeprom;
  726. u8 value;
  727. u8 reg_id;
  728. if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
  729. return -EACCES;
  730. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  731. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  732. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  733. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  734. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  735. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  736. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  737. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  738. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  739. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  740. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  741. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  742. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  743. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  744. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  745. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  746. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  747. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  748. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  749. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  750. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  751. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  752. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  753. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  754. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  755. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  756. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  757. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  758. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  759. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  760. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  761. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  762. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  763. if (eeprom != 0xffff && eeprom != 0x0000) {
  764. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  765. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  766. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  767. }
  768. }
  769. return 0;
  770. }
  771. /*
  772. * Device state switch handlers.
  773. */
  774. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  775. enum dev_state state)
  776. {
  777. u16 reg;
  778. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  779. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  780. (state == STATE_RADIO_RX_OFF) ||
  781. (state == STATE_RADIO_RX_OFF_LINK));
  782. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  783. }
  784. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  785. {
  786. /*
  787. * Initialize all registers.
  788. */
  789. if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
  790. rt2500usb_init_bbp(rt2x00dev)))
  791. return -EIO;
  792. return 0;
  793. }
  794. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  795. {
  796. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  797. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  798. /*
  799. * Disable synchronisation.
  800. */
  801. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  802. rt2x00usb_disable_radio(rt2x00dev);
  803. }
  804. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  805. enum dev_state state)
  806. {
  807. u16 reg;
  808. u16 reg2;
  809. unsigned int i;
  810. char put_to_sleep;
  811. char bbp_state;
  812. char rf_state;
  813. put_to_sleep = (state != STATE_AWAKE);
  814. reg = 0;
  815. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  816. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  817. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  818. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  819. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  820. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  821. /*
  822. * Device is not guaranteed to be in the requested state yet.
  823. * We must wait until the register indicates that the
  824. * device has entered the correct state.
  825. */
  826. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  827. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  828. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  829. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  830. if (bbp_state == state && rf_state == state)
  831. return 0;
  832. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  833. msleep(30);
  834. }
  835. return -EBUSY;
  836. }
  837. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  838. enum dev_state state)
  839. {
  840. int retval = 0;
  841. switch (state) {
  842. case STATE_RADIO_ON:
  843. retval = rt2500usb_enable_radio(rt2x00dev);
  844. break;
  845. case STATE_RADIO_OFF:
  846. rt2500usb_disable_radio(rt2x00dev);
  847. break;
  848. case STATE_RADIO_RX_ON:
  849. case STATE_RADIO_RX_ON_LINK:
  850. case STATE_RADIO_RX_OFF:
  851. case STATE_RADIO_RX_OFF_LINK:
  852. rt2500usb_toggle_rx(rt2x00dev, state);
  853. break;
  854. case STATE_RADIO_IRQ_ON:
  855. case STATE_RADIO_IRQ_OFF:
  856. /* No support, but no error either */
  857. break;
  858. case STATE_DEEP_SLEEP:
  859. case STATE_SLEEP:
  860. case STATE_STANDBY:
  861. case STATE_AWAKE:
  862. retval = rt2500usb_set_state(rt2x00dev, state);
  863. break;
  864. default:
  865. retval = -ENOTSUPP;
  866. break;
  867. }
  868. if (unlikely(retval))
  869. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  870. state, retval);
  871. return retval;
  872. }
  873. /*
  874. * TX descriptor initialization
  875. */
  876. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  877. struct sk_buff *skb,
  878. struct txentry_desc *txdesc)
  879. {
  880. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  881. __le32 *txd = skbdesc->desc;
  882. u32 word;
  883. /*
  884. * Start writing the descriptor words.
  885. */
  886. rt2x00_desc_read(txd, 1, &word);
  887. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
  888. rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
  889. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  890. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  891. rt2x00_desc_write(txd, 1, word);
  892. rt2x00_desc_read(txd, 2, &word);
  893. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  894. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  895. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  896. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  897. rt2x00_desc_write(txd, 2, word);
  898. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
  899. _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
  900. _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
  901. }
  902. rt2x00_desc_read(txd, 0, &word);
  903. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
  904. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  905. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  906. rt2x00_set_field32(&word, TXD_W0_ACK,
  907. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  908. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  909. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  910. rt2x00_set_field32(&word, TXD_W0_OFDM,
  911. (txdesc->rate_mode == RATE_MODE_OFDM));
  912. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  913. test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
  914. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  915. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  916. rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
  917. rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
  918. rt2x00_desc_write(txd, 0, word);
  919. }
  920. /*
  921. * TX data initialization
  922. */
  923. static void rt2500usb_beacondone(struct urb *urb);
  924. static void rt2500usb_write_beacon(struct queue_entry *entry)
  925. {
  926. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  927. struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
  928. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  929. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  930. int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
  931. int length;
  932. u16 reg;
  933. /*
  934. * Add the descriptor in front of the skb.
  935. */
  936. skb_push(entry->skb, entry->queue->desc_size);
  937. memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
  938. skbdesc->desc = entry->skb->data;
  939. /*
  940. * Disable beaconing while we are reloading the beacon data,
  941. * otherwise we might be sending out invalid data.
  942. */
  943. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  944. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  945. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  946. /*
  947. * USB devices cannot blindly pass the skb->len as the
  948. * length of the data to usb_fill_bulk_urb. Pass the skb
  949. * to the driver to determine what the length should be.
  950. */
  951. length = rt2x00dev->ops->lib->get_tx_data_len(entry);
  952. usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
  953. entry->skb->data, length, rt2500usb_beacondone,
  954. entry);
  955. /*
  956. * Second we need to create the guardian byte.
  957. * We only need a single byte, so lets recycle
  958. * the 'flags' field we are not using for beacons.
  959. */
  960. bcn_priv->guardian_data = 0;
  961. usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
  962. &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
  963. entry);
  964. /*
  965. * Send out the guardian byte.
  966. */
  967. usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
  968. }
  969. static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
  970. {
  971. int length;
  972. /*
  973. * The length _must_ be a multiple of 2,
  974. * but it must _not_ be a multiple of the USB packet size.
  975. */
  976. length = roundup(entry->skb->len, 2);
  977. length += (2 * !(length % entry->queue->usb_maxpacket));
  978. return length;
  979. }
  980. static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  981. const enum data_queue_qid queue)
  982. {
  983. u16 reg, reg0;
  984. if (queue != QID_BEACON) {
  985. rt2x00usb_kick_tx_queue(rt2x00dev, queue);
  986. return;
  987. }
  988. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  989. if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
  990. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  991. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
  992. reg0 = reg;
  993. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  994. /*
  995. * Beacon generation will fail initially.
  996. * To prevent this we need to change the TXRX_CSR19
  997. * register several times (reg0 is the same as reg
  998. * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
  999. * and 1 in reg).
  1000. */
  1001. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1002. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  1003. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1004. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
  1005. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  1006. }
  1007. }
  1008. /*
  1009. * RX control handlers
  1010. */
  1011. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  1012. struct rxdone_entry_desc *rxdesc)
  1013. {
  1014. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1015. struct queue_entry_priv_usb *entry_priv = entry->priv_data;
  1016. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1017. __le32 *rxd =
  1018. (__le32 *)(entry->skb->data +
  1019. (entry_priv->urb->actual_length -
  1020. entry->queue->desc_size));
  1021. u32 word0;
  1022. u32 word1;
  1023. /*
  1024. * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
  1025. * frame data in rt2x00usb.
  1026. */
  1027. memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
  1028. rxd = (__le32 *)skbdesc->desc;
  1029. /*
  1030. * It is now safe to read the descriptor on all architectures.
  1031. */
  1032. rt2x00_desc_read(rxd, 0, &word0);
  1033. rt2x00_desc_read(rxd, 1, &word1);
  1034. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1035. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1036. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1037. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1038. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  1039. rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
  1040. if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
  1041. rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
  1042. }
  1043. if (rxdesc->cipher != CIPHER_NONE) {
  1044. _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
  1045. _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
  1046. rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
  1047. /* ICV is located at the end of frame */
  1048. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  1049. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  1050. rxdesc->flags |= RX_FLAG_DECRYPTED;
  1051. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  1052. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  1053. }
  1054. /*
  1055. * Obtain the status about this packet.
  1056. * When frame was received with an OFDM bitrate,
  1057. * the signal is the PLCP value. If it was received with
  1058. * a CCK bitrate the signal is the rate in 100kbit/s.
  1059. */
  1060. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  1061. rxdesc->rssi =
  1062. rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
  1063. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1064. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1065. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1066. else
  1067. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1068. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1069. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1070. /*
  1071. * Adjust the skb memory window to the frame boundaries.
  1072. */
  1073. skb_trim(entry->skb, rxdesc->size);
  1074. }
  1075. /*
  1076. * Interrupt functions.
  1077. */
  1078. static void rt2500usb_beacondone(struct urb *urb)
  1079. {
  1080. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1081. struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
  1082. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1083. return;
  1084. /*
  1085. * Check if this was the guardian beacon,
  1086. * if that was the case we need to send the real beacon now.
  1087. * Otherwise we should free the sk_buffer, the device
  1088. * should be doing the rest of the work now.
  1089. */
  1090. if (bcn_priv->guardian_urb == urb) {
  1091. usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
  1092. } else if (bcn_priv->urb == urb) {
  1093. dev_kfree_skb(entry->skb);
  1094. entry->skb = NULL;
  1095. }
  1096. }
  1097. /*
  1098. * Device probe functions.
  1099. */
  1100. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1101. {
  1102. u16 word;
  1103. u8 *mac;
  1104. u8 bbp;
  1105. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1106. /*
  1107. * Start validation of the data that has been read.
  1108. */
  1109. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1110. if (!is_valid_ether_addr(mac)) {
  1111. random_ether_addr(mac);
  1112. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1113. }
  1114. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1115. if (word == 0xffff) {
  1116. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1117. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1118. ANTENNA_SW_DIVERSITY);
  1119. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1120. ANTENNA_SW_DIVERSITY);
  1121. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1122. LED_MODE_DEFAULT);
  1123. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1124. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1125. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1126. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1127. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1128. }
  1129. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1130. if (word == 0xffff) {
  1131. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1132. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1133. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1134. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1135. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1136. }
  1137. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1138. if (word == 0xffff) {
  1139. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1140. DEFAULT_RSSI_OFFSET);
  1141. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1142. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1143. }
  1144. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1145. if (word == 0xffff) {
  1146. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1147. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1148. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1149. }
  1150. /*
  1151. * Switch lower vgc bound to current BBP R17 value,
  1152. * lower the value a bit for better quality.
  1153. */
  1154. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1155. bbp -= 6;
  1156. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1157. if (word == 0xffff) {
  1158. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1159. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1160. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1161. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1162. } else {
  1163. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1164. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1165. }
  1166. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1167. if (word == 0xffff) {
  1168. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1169. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1170. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1171. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1172. }
  1173. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1174. if (word == 0xffff) {
  1175. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1176. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1177. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1178. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1179. }
  1180. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1181. if (word == 0xffff) {
  1182. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1183. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1184. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1185. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1186. }
  1187. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1188. if (word == 0xffff) {
  1189. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1190. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1191. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1192. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1193. }
  1194. return 0;
  1195. }
  1196. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1197. {
  1198. u16 reg;
  1199. u16 value;
  1200. u16 eeprom;
  1201. /*
  1202. * Read EEPROM word for configuration.
  1203. */
  1204. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1205. /*
  1206. * Identify RF chipset.
  1207. */
  1208. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1209. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1210. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1211. if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
  1212. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1213. return -ENODEV;
  1214. }
  1215. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1216. !rt2x00_rf(rt2x00dev, RF2523) &&
  1217. !rt2x00_rf(rt2x00dev, RF2524) &&
  1218. !rt2x00_rf(rt2x00dev, RF2525) &&
  1219. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1220. !rt2x00_rf(rt2x00dev, RF5222)) {
  1221. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1222. return -ENODEV;
  1223. }
  1224. /*
  1225. * Identify default antenna configuration.
  1226. */
  1227. rt2x00dev->default_ant.tx =
  1228. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1229. rt2x00dev->default_ant.rx =
  1230. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1231. /*
  1232. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1233. * I am not 100% sure about this, but the legacy drivers do not
  1234. * indicate antenna swapping in software is required when
  1235. * diversity is enabled.
  1236. */
  1237. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1238. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1239. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1240. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1241. /*
  1242. * Store led mode, for correct led behaviour.
  1243. */
  1244. #ifdef CONFIG_RT2X00_LIB_LEDS
  1245. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1246. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1247. if (value == LED_MODE_TXRX_ACTIVITY ||
  1248. value == LED_MODE_DEFAULT ||
  1249. value == LED_MODE_ASUS)
  1250. rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1251. LED_TYPE_ACTIVITY);
  1252. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1253. /*
  1254. * Detect if this device has an hardware controlled radio.
  1255. */
  1256. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1257. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1258. /*
  1259. * Check if the BBP tuning should be disabled.
  1260. */
  1261. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1262. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1263. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1264. /*
  1265. * Read the RSSI <-> dBm offset information.
  1266. */
  1267. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1268. rt2x00dev->rssi_offset =
  1269. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1270. return 0;
  1271. }
  1272. /*
  1273. * RF value list for RF2522
  1274. * Supports: 2.4 GHz
  1275. */
  1276. static const struct rf_channel rf_vals_bg_2522[] = {
  1277. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1278. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1279. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1280. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1281. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1282. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1283. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1284. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1285. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1286. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1287. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1288. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1289. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1290. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1291. };
  1292. /*
  1293. * RF value list for RF2523
  1294. * Supports: 2.4 GHz
  1295. */
  1296. static const struct rf_channel rf_vals_bg_2523[] = {
  1297. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1298. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1299. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1300. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1301. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1302. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1303. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1304. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1305. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1306. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1307. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1308. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1309. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1310. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1311. };
  1312. /*
  1313. * RF value list for RF2524
  1314. * Supports: 2.4 GHz
  1315. */
  1316. static const struct rf_channel rf_vals_bg_2524[] = {
  1317. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1318. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1319. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1320. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1321. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1322. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1323. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1324. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1325. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1326. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1327. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1328. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1329. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1330. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1331. };
  1332. /*
  1333. * RF value list for RF2525
  1334. * Supports: 2.4 GHz
  1335. */
  1336. static const struct rf_channel rf_vals_bg_2525[] = {
  1337. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1338. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1339. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1340. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1341. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1342. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1343. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1344. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1345. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1346. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1347. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1348. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1349. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1350. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1351. };
  1352. /*
  1353. * RF value list for RF2525e
  1354. * Supports: 2.4 GHz
  1355. */
  1356. static const struct rf_channel rf_vals_bg_2525e[] = {
  1357. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1358. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1359. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1360. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1361. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1362. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1363. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1364. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1365. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1366. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1367. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1368. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1369. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1370. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1371. };
  1372. /*
  1373. * RF value list for RF5222
  1374. * Supports: 2.4 GHz & 5.2 GHz
  1375. */
  1376. static const struct rf_channel rf_vals_5222[] = {
  1377. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1378. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1379. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1380. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1381. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1382. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1383. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1384. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1385. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1386. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1387. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1388. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1389. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1390. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1391. /* 802.11 UNI / HyperLan 2 */
  1392. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1393. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1394. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1395. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1396. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1397. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1398. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1399. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1400. /* 802.11 HyperLan 2 */
  1401. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1402. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1403. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1404. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1405. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1406. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1407. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1408. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1409. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1410. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1411. /* 802.11 UNII */
  1412. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1413. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1414. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1415. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1416. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1417. };
  1418. static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1419. {
  1420. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1421. struct channel_info *info;
  1422. char *tx_power;
  1423. unsigned int i;
  1424. /*
  1425. * Initialize all hw fields.
  1426. */
  1427. rt2x00dev->hw->flags =
  1428. IEEE80211_HW_RX_INCLUDES_FCS |
  1429. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1430. IEEE80211_HW_SIGNAL_DBM |
  1431. IEEE80211_HW_SUPPORTS_PS |
  1432. IEEE80211_HW_PS_NULLFUNC_STACK;
  1433. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1434. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1435. rt2x00_eeprom_addr(rt2x00dev,
  1436. EEPROM_MAC_ADDR_0));
  1437. /*
  1438. * Initialize hw_mode information.
  1439. */
  1440. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1441. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1442. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1443. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1444. spec->channels = rf_vals_bg_2522;
  1445. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1446. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1447. spec->channels = rf_vals_bg_2523;
  1448. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1449. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1450. spec->channels = rf_vals_bg_2524;
  1451. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1452. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1453. spec->channels = rf_vals_bg_2525;
  1454. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1455. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1456. spec->channels = rf_vals_bg_2525e;
  1457. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1458. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1459. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1460. spec->channels = rf_vals_5222;
  1461. }
  1462. /*
  1463. * Create channel information array
  1464. */
  1465. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1466. if (!info)
  1467. return -ENOMEM;
  1468. spec->channels_info = info;
  1469. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1470. for (i = 0; i < 14; i++)
  1471. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1472. if (spec->num_channels > 14) {
  1473. for (i = 14; i < spec->num_channels; i++)
  1474. info[i].tx_power1 = DEFAULT_TXPOWER;
  1475. }
  1476. return 0;
  1477. }
  1478. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1479. {
  1480. int retval;
  1481. /*
  1482. * Allocate eeprom data.
  1483. */
  1484. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1485. if (retval)
  1486. return retval;
  1487. retval = rt2500usb_init_eeprom(rt2x00dev);
  1488. if (retval)
  1489. return retval;
  1490. /*
  1491. * Initialize hw specifications.
  1492. */
  1493. retval = rt2500usb_probe_hw_mode(rt2x00dev);
  1494. if (retval)
  1495. return retval;
  1496. /*
  1497. * This device requires the atim queue
  1498. */
  1499. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1500. __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
  1501. if (!modparam_nohwcrypt) {
  1502. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1503. __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
  1504. }
  1505. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1506. /*
  1507. * Set the rssi offset.
  1508. */
  1509. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1510. return 0;
  1511. }
  1512. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1513. .tx = rt2x00mac_tx,
  1514. .start = rt2x00mac_start,
  1515. .stop = rt2x00mac_stop,
  1516. .add_interface = rt2x00mac_add_interface,
  1517. .remove_interface = rt2x00mac_remove_interface,
  1518. .config = rt2x00mac_config,
  1519. .configure_filter = rt2x00mac_configure_filter,
  1520. .set_tim = rt2x00mac_set_tim,
  1521. .set_key = rt2x00mac_set_key,
  1522. .get_stats = rt2x00mac_get_stats,
  1523. .bss_info_changed = rt2x00mac_bss_info_changed,
  1524. .conf_tx = rt2x00mac_conf_tx,
  1525. .rfkill_poll = rt2x00mac_rfkill_poll,
  1526. };
  1527. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1528. .probe_hw = rt2500usb_probe_hw,
  1529. .initialize = rt2x00usb_initialize,
  1530. .uninitialize = rt2x00usb_uninitialize,
  1531. .clear_entry = rt2x00usb_clear_entry,
  1532. .set_device_state = rt2500usb_set_device_state,
  1533. .rfkill_poll = rt2500usb_rfkill_poll,
  1534. .link_stats = rt2500usb_link_stats,
  1535. .reset_tuner = rt2500usb_reset_tuner,
  1536. .write_tx_desc = rt2500usb_write_tx_desc,
  1537. .write_tx_data = rt2x00usb_write_tx_data,
  1538. .write_beacon = rt2500usb_write_beacon,
  1539. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1540. .kick_tx_queue = rt2500usb_kick_tx_queue,
  1541. .kill_tx_queue = rt2x00usb_kill_tx_queue,
  1542. .fill_rxdone = rt2500usb_fill_rxdone,
  1543. .config_shared_key = rt2500usb_config_key,
  1544. .config_pairwise_key = rt2500usb_config_key,
  1545. .config_filter = rt2500usb_config_filter,
  1546. .config_intf = rt2500usb_config_intf,
  1547. .config_erp = rt2500usb_config_erp,
  1548. .config_ant = rt2500usb_config_ant,
  1549. .config = rt2500usb_config,
  1550. };
  1551. static const struct data_queue_desc rt2500usb_queue_rx = {
  1552. .entry_num = RX_ENTRIES,
  1553. .data_size = DATA_FRAME_SIZE,
  1554. .desc_size = RXD_DESC_SIZE,
  1555. .priv_size = sizeof(struct queue_entry_priv_usb),
  1556. };
  1557. static const struct data_queue_desc rt2500usb_queue_tx = {
  1558. .entry_num = TX_ENTRIES,
  1559. .data_size = DATA_FRAME_SIZE,
  1560. .desc_size = TXD_DESC_SIZE,
  1561. .priv_size = sizeof(struct queue_entry_priv_usb),
  1562. };
  1563. static const struct data_queue_desc rt2500usb_queue_bcn = {
  1564. .entry_num = BEACON_ENTRIES,
  1565. .data_size = MGMT_FRAME_SIZE,
  1566. .desc_size = TXD_DESC_SIZE,
  1567. .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
  1568. };
  1569. static const struct data_queue_desc rt2500usb_queue_atim = {
  1570. .entry_num = ATIM_ENTRIES,
  1571. .data_size = DATA_FRAME_SIZE,
  1572. .desc_size = TXD_DESC_SIZE,
  1573. .priv_size = sizeof(struct queue_entry_priv_usb),
  1574. };
  1575. static const struct rt2x00_ops rt2500usb_ops = {
  1576. .name = KBUILD_MODNAME,
  1577. .max_sta_intf = 1,
  1578. .max_ap_intf = 1,
  1579. .eeprom_size = EEPROM_SIZE,
  1580. .rf_size = RF_SIZE,
  1581. .tx_queues = NUM_TX_QUEUES,
  1582. .extra_tx_headroom = TXD_DESC_SIZE,
  1583. .rx = &rt2500usb_queue_rx,
  1584. .tx = &rt2500usb_queue_tx,
  1585. .bcn = &rt2500usb_queue_bcn,
  1586. .atim = &rt2500usb_queue_atim,
  1587. .lib = &rt2500usb_rt2x00_ops,
  1588. .hw = &rt2500usb_mac80211_ops,
  1589. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1590. .debugfs = &rt2500usb_rt2x00debug,
  1591. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1592. };
  1593. /*
  1594. * rt2500usb module information.
  1595. */
  1596. static struct usb_device_id rt2500usb_device_table[] = {
  1597. /* ASUS */
  1598. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1599. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1600. /* Belkin */
  1601. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1602. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1603. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1604. /* Cisco Systems */
  1605. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1606. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1607. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1608. /* CNet */
  1609. { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
  1610. /* Conceptronic */
  1611. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1612. /* D-LINK */
  1613. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1614. /* Gigabyte */
  1615. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1616. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1617. /* Hercules */
  1618. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1619. /* Melco */
  1620. { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
  1621. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1622. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1623. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1624. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1625. /* MSI */
  1626. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1627. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1628. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1629. /* Ralink */
  1630. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1631. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1632. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1633. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1634. /* Sagem */
  1635. { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1636. /* Siemens */
  1637. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1638. /* SMC */
  1639. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1640. /* Spairon */
  1641. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1642. /* SURECOM */
  1643. { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
  1644. /* Trust */
  1645. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1646. /* VTech */
  1647. { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
  1648. /* Zinwell */
  1649. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1650. { 0, }
  1651. };
  1652. MODULE_AUTHOR(DRV_PROJECT);
  1653. MODULE_VERSION(DRV_VERSION);
  1654. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1655. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1656. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1657. MODULE_LICENSE("GPL");
  1658. static struct usb_driver rt2500usb_driver = {
  1659. .name = KBUILD_MODNAME,
  1660. .id_table = rt2500usb_device_table,
  1661. .probe = rt2x00usb_probe,
  1662. .disconnect = rt2x00usb_disconnect,
  1663. .suspend = rt2x00usb_suspend,
  1664. .resume = rt2x00usb_resume,
  1665. };
  1666. static int __init rt2500usb_init(void)
  1667. {
  1668. return usb_register(&rt2500usb_driver);
  1669. }
  1670. static void __exit rt2500usb_exit(void)
  1671. {
  1672. usb_deregister(&rt2500usb_driver);
  1673. }
  1674. module_init(rt2500usb_init);
  1675. module_exit(rt2500usb_exit);