phy_lp.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11a/g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. Copyright (c) 2009 Gábor Stefanik <netrolller.3d@gmail.com>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; see the file COPYING. If not, write to
  16. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  17. Boston, MA 02110-1301, USA.
  18. */
  19. #include "b43.h"
  20. #include "main.h"
  21. #include "phy_lp.h"
  22. #include "phy_common.h"
  23. #include "tables_lpphy.h"
  24. static inline u16 channel2freq_lp(u8 channel)
  25. {
  26. if (channel < 14)
  27. return (2407 + 5 * channel);
  28. else if (channel == 14)
  29. return 2484;
  30. else if (channel < 184)
  31. return (5000 + 5 * channel);
  32. else
  33. return (4000 + 5 * channel);
  34. }
  35. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  36. {
  37. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  38. return 1;
  39. return 36;
  40. }
  41. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  42. {
  43. struct b43_phy_lp *lpphy;
  44. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  45. if (!lpphy)
  46. return -ENOMEM;
  47. dev->phy.lp = lpphy;
  48. return 0;
  49. }
  50. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  51. {
  52. struct b43_phy *phy = &dev->phy;
  53. struct b43_phy_lp *lpphy = phy->lp;
  54. memset(lpphy, 0, sizeof(*lpphy));
  55. lpphy->antenna = B43_ANTENNA_DEFAULT;
  56. //TODO
  57. }
  58. static void b43_lpphy_op_free(struct b43_wldev *dev)
  59. {
  60. struct b43_phy_lp *lpphy = dev->phy.lp;
  61. kfree(lpphy);
  62. dev->phy.lp = NULL;
  63. }
  64. /* http://bcm-v4.sipsolutions.net/802.11/PHY/LP/ReadBandSrom */
  65. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  66. {
  67. struct b43_phy_lp *lpphy = dev->phy.lp;
  68. struct ssb_bus *bus = dev->dev->bus;
  69. u16 cckpo, maxpwr;
  70. u32 ofdmpo;
  71. int i;
  72. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  73. lpphy->tx_isolation_med_band = bus->sprom.tri2g;
  74. lpphy->bx_arch = bus->sprom.bxa2g;
  75. lpphy->rx_pwr_offset = bus->sprom.rxpo2g;
  76. lpphy->rssi_vf = bus->sprom.rssismf2g;
  77. lpphy->rssi_vc = bus->sprom.rssismc2g;
  78. lpphy->rssi_gs = bus->sprom.rssisav2g;
  79. lpphy->txpa[0] = bus->sprom.pa0b0;
  80. lpphy->txpa[1] = bus->sprom.pa0b1;
  81. lpphy->txpa[2] = bus->sprom.pa0b2;
  82. maxpwr = bus->sprom.maxpwr_bg;
  83. lpphy->max_tx_pwr_med_band = maxpwr;
  84. cckpo = bus->sprom.cck2gpo;
  85. /*
  86. * We don't read SPROM's opo as specs say. On rev8 SPROMs
  87. * opo == ofdm2gpo and we don't know any SSB with LP-PHY
  88. * and SPROM rev below 8.
  89. */
  90. B43_WARN_ON(bus->sprom.revision < 8);
  91. ofdmpo = bus->sprom.ofdm2gpo;
  92. if (cckpo) {
  93. for (i = 0; i < 4; i++) {
  94. lpphy->tx_max_rate[i] =
  95. maxpwr - (ofdmpo & 0xF) * 2;
  96. ofdmpo >>= 4;
  97. }
  98. ofdmpo = bus->sprom.ofdm2gpo;
  99. for (i = 4; i < 15; i++) {
  100. lpphy->tx_max_rate[i] =
  101. maxpwr - (ofdmpo & 0xF) * 2;
  102. ofdmpo >>= 4;
  103. }
  104. } else {
  105. ofdmpo &= 0xFF;
  106. for (i = 0; i < 4; i++)
  107. lpphy->tx_max_rate[i] = maxpwr;
  108. for (i = 4; i < 15; i++)
  109. lpphy->tx_max_rate[i] = maxpwr - ofdmpo;
  110. }
  111. } else { /* 5GHz */
  112. lpphy->tx_isolation_low_band = bus->sprom.tri5gl;
  113. lpphy->tx_isolation_med_band = bus->sprom.tri5g;
  114. lpphy->tx_isolation_hi_band = bus->sprom.tri5gh;
  115. lpphy->bx_arch = bus->sprom.bxa5g;
  116. lpphy->rx_pwr_offset = bus->sprom.rxpo5g;
  117. lpphy->rssi_vf = bus->sprom.rssismf5g;
  118. lpphy->rssi_vc = bus->sprom.rssismc5g;
  119. lpphy->rssi_gs = bus->sprom.rssisav5g;
  120. lpphy->txpa[0] = bus->sprom.pa1b0;
  121. lpphy->txpa[1] = bus->sprom.pa1b1;
  122. lpphy->txpa[2] = bus->sprom.pa1b2;
  123. lpphy->txpal[0] = bus->sprom.pa1lob0;
  124. lpphy->txpal[1] = bus->sprom.pa1lob1;
  125. lpphy->txpal[2] = bus->sprom.pa1lob2;
  126. lpphy->txpah[0] = bus->sprom.pa1hib0;
  127. lpphy->txpah[1] = bus->sprom.pa1hib1;
  128. lpphy->txpah[2] = bus->sprom.pa1hib2;
  129. maxpwr = bus->sprom.maxpwr_al;
  130. ofdmpo = bus->sprom.ofdm5glpo;
  131. lpphy->max_tx_pwr_low_band = maxpwr;
  132. for (i = 4; i < 12; i++) {
  133. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  134. ofdmpo >>= 4;
  135. }
  136. maxpwr = bus->sprom.maxpwr_a;
  137. ofdmpo = bus->sprom.ofdm5gpo;
  138. lpphy->max_tx_pwr_med_band = maxpwr;
  139. for (i = 4; i < 12; i++) {
  140. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  141. ofdmpo >>= 4;
  142. }
  143. maxpwr = bus->sprom.maxpwr_ah;
  144. ofdmpo = bus->sprom.ofdm5ghpo;
  145. lpphy->max_tx_pwr_hi_band = maxpwr;
  146. for (i = 4; i < 12; i++) {
  147. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  148. ofdmpo >>= 4;
  149. }
  150. }
  151. }
  152. static void lpphy_adjust_gain_table(struct b43_wldev *dev, u32 freq)
  153. {
  154. struct b43_phy_lp *lpphy = dev->phy.lp;
  155. u16 temp[3];
  156. u16 isolation;
  157. B43_WARN_ON(dev->phy.rev >= 2);
  158. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  159. isolation = lpphy->tx_isolation_med_band;
  160. else if (freq <= 5320)
  161. isolation = lpphy->tx_isolation_low_band;
  162. else if (freq <= 5700)
  163. isolation = lpphy->tx_isolation_med_band;
  164. else
  165. isolation = lpphy->tx_isolation_hi_band;
  166. temp[0] = ((isolation - 26) / 12) << 12;
  167. temp[1] = temp[0] + 0x1000;
  168. temp[2] = temp[0] + 0x2000;
  169. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  170. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  171. }
  172. static void lpphy_table_init(struct b43_wldev *dev)
  173. {
  174. u32 freq = channel2freq_lp(b43_lpphy_op_get_default_chan(dev));
  175. if (dev->phy.rev < 2)
  176. lpphy_rev0_1_table_init(dev);
  177. else
  178. lpphy_rev2plus_table_init(dev);
  179. lpphy_init_tx_gain_table(dev);
  180. if (dev->phy.rev < 2)
  181. lpphy_adjust_gain_table(dev, freq);
  182. }
  183. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  184. {
  185. struct ssb_bus *bus = dev->dev->bus;
  186. struct b43_phy_lp *lpphy = dev->phy.lp;
  187. u16 tmp, tmp2;
  188. b43_phy_mask(dev, B43_LPPHY_AFE_DAC_CTL, 0xF7FF);
  189. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0);
  190. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  191. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  192. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  193. b43_phy_set(dev, B43_LPPHY_AFE_DAC_CTL, 0x0004);
  194. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0x0078);
  195. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  196. b43_phy_write(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x0016);
  197. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_0, 0xFFF8, 0x0004);
  198. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5400);
  199. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2400);
  200. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  201. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0x0006);
  202. b43_phy_mask(dev, B43_LPPHY_RX_RADIO_CTL, 0xFFFE);
  203. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x0005);
  204. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC1F, 0x0180);
  205. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x3C00);
  206. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFFF0, 0x0005);
  207. b43_phy_maskset(dev, B43_LPPHY_GAIN_MISMATCH_LIMIT, 0xFFC0, 0x001A);
  208. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0x00B3);
  209. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  210. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB,
  211. 0xFF00, lpphy->rx_pwr_offset);
  212. if ((bus->sprom.boardflags_lo & B43_BFL_FEM) &&
  213. ((b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ) ||
  214. (bus->sprom.boardflags_hi & B43_BFH_PAREF))) {
  215. ssb_pmu_set_ldo_voltage(&bus->chipco, LDO_PAREF, 0x28);
  216. ssb_pmu_set_ldo_paref(&bus->chipco, true);
  217. if (dev->phy.rev == 0) {
  218. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  219. 0xFFCF, 0x0010);
  220. }
  221. b43_lptab_write(dev, B43_LPTAB16(11, 7), 60);
  222. } else {
  223. ssb_pmu_set_ldo_paref(&bus->chipco, false);
  224. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  225. 0xFFCF, 0x0020);
  226. b43_lptab_write(dev, B43_LPTAB16(11, 7), 100);
  227. }
  228. tmp = lpphy->rssi_vf | lpphy->rssi_vc << 4 | 0xA000;
  229. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, tmp);
  230. if (bus->sprom.boardflags_hi & B43_BFH_RSSIINV)
  231. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x0AAA);
  232. else
  233. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x02AA);
  234. b43_lptab_write(dev, B43_LPTAB16(11, 1), 24);
  235. b43_phy_maskset(dev, B43_LPPHY_RX_RADIO_CTL,
  236. 0xFFF9, (lpphy->bx_arch << 1));
  237. if (dev->phy.rev == 1 &&
  238. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  239. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  240. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  241. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  242. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  243. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  244. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  245. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  246. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  247. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  248. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  249. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  250. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  251. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  252. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  253. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  254. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  255. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  256. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  257. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  258. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  259. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  260. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  261. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  262. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  263. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  264. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  265. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  266. } else if (dev->phy.rev == 1 ||
  267. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  268. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  269. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  270. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  271. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  272. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  273. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  274. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  275. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  276. } else {
  277. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  278. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  279. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  280. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  281. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  282. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  283. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  284. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  285. }
  286. if (dev->phy.rev == 1 && (bus->sprom.boardflags_hi & B43_BFH_PAREF)) {
  287. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  288. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  289. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  290. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  291. }
  292. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  293. (bus->chip_id == 0x5354) &&
  294. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  295. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  296. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  297. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  298. //FIXME the Broadcom driver caches & delays this HF write!
  299. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  300. }
  301. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  302. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  303. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  304. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  305. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  306. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  307. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  308. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  309. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  310. } else { /* 5GHz */
  311. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  312. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  313. }
  314. if (dev->phy.rev == 1) {
  315. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  316. tmp2 = (tmp & 0x03E0) >> 5;
  317. tmp2 |= tmp2 << 5;
  318. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  319. tmp = b43_phy_read(dev, B43_LPPHY_GAINDIRECTMISMATCH);
  320. tmp2 = (tmp & 0x1F00) >> 8;
  321. tmp2 |= tmp2 << 5;
  322. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  323. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  324. tmp2 = tmp & 0x00FF;
  325. tmp2 |= tmp << 8;
  326. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  327. }
  328. }
  329. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  330. {
  331. static const u16 addr[] = {
  332. B43_PHY_OFDM(0xC1),
  333. B43_PHY_OFDM(0xC2),
  334. B43_PHY_OFDM(0xC3),
  335. B43_PHY_OFDM(0xC4),
  336. B43_PHY_OFDM(0xC5),
  337. B43_PHY_OFDM(0xC6),
  338. B43_PHY_OFDM(0xC7),
  339. B43_PHY_OFDM(0xC8),
  340. B43_PHY_OFDM(0xCF),
  341. };
  342. static const u16 coefs[] = {
  343. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  344. 0x0026, 0x1420, 0x0020, 0xFE08,
  345. 0x0008,
  346. };
  347. struct b43_phy_lp *lpphy = dev->phy.lp;
  348. int i;
  349. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  350. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  351. b43_phy_write(dev, addr[i], coefs[i]);
  352. }
  353. }
  354. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  355. {
  356. static const u16 addr[] = {
  357. B43_PHY_OFDM(0xC1),
  358. B43_PHY_OFDM(0xC2),
  359. B43_PHY_OFDM(0xC3),
  360. B43_PHY_OFDM(0xC4),
  361. B43_PHY_OFDM(0xC5),
  362. B43_PHY_OFDM(0xC6),
  363. B43_PHY_OFDM(0xC7),
  364. B43_PHY_OFDM(0xC8),
  365. B43_PHY_OFDM(0xCF),
  366. };
  367. struct b43_phy_lp *lpphy = dev->phy.lp;
  368. int i;
  369. for (i = 0; i < ARRAY_SIZE(addr); i++)
  370. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  371. }
  372. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  373. {
  374. struct ssb_bus *bus = dev->dev->bus;
  375. struct b43_phy_lp *lpphy = dev->phy.lp;
  376. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  377. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  378. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  379. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  380. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  381. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  382. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  383. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  384. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  385. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  386. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  387. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  388. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  389. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  390. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  391. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  392. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  393. if (bus->boardinfo.rev >= 0x18) {
  394. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  395. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  396. } else {
  397. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  398. }
  399. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  400. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  401. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  402. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  403. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  404. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  405. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  406. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  407. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC1F, 0xA0);
  408. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  409. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  410. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  411. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  412. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  413. } else {
  414. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  415. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  416. }
  417. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  418. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  419. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  420. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  421. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  422. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  423. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  424. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  425. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  426. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  427. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  428. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  429. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  430. }
  431. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  432. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  433. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  434. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  435. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  436. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  437. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  438. } else /* 5GHz */
  439. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  440. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  441. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  442. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  443. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  444. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  445. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  446. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  447. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  448. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  449. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  450. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  451. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  452. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  453. }
  454. lpphy_save_dig_flt_state(dev);
  455. }
  456. static void lpphy_baseband_init(struct b43_wldev *dev)
  457. {
  458. lpphy_table_init(dev);
  459. if (dev->phy.rev >= 2)
  460. lpphy_baseband_rev2plus_init(dev);
  461. else
  462. lpphy_baseband_rev0_1_init(dev);
  463. }
  464. struct b2062_freqdata {
  465. u16 freq;
  466. u8 data[6];
  467. };
  468. /* Initialize the 2062 radio. */
  469. static void lpphy_2062_init(struct b43_wldev *dev)
  470. {
  471. struct b43_phy_lp *lpphy = dev->phy.lp;
  472. struct ssb_bus *bus = dev->dev->bus;
  473. u32 crystalfreq, tmp, ref;
  474. unsigned int i;
  475. const struct b2062_freqdata *fd = NULL;
  476. static const struct b2062_freqdata freqdata_tab[] = {
  477. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  478. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  479. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  480. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  481. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  482. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  483. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  484. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  485. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  486. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  487. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  488. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  489. };
  490. b2062_upload_init_table(dev);
  491. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  492. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  493. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  494. b43_radio_write(dev, B2062_N_TX_CTL6, 0);
  495. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  496. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  497. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  498. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  499. if (dev->phy.rev > 0) {
  500. b43_radio_write(dev, B2062_S_BG_CTL1,
  501. (b43_radio_read(dev, B2062_N_COMM2) >> 1) | 0x80);
  502. }
  503. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  504. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  505. else
  506. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  507. /* Get the crystal freq, in Hz. */
  508. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  509. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  510. B43_WARN_ON(crystalfreq == 0);
  511. if (crystalfreq <= 30000000) {
  512. lpphy->pdiv = 1;
  513. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  514. } else {
  515. lpphy->pdiv = 2;
  516. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  517. }
  518. tmp = (((800000000 * lpphy->pdiv + crystalfreq) /
  519. (2 * crystalfreq)) - 8) & 0xFF;
  520. b43_radio_write(dev, B2062_S_RFPLL_CTL7, tmp);
  521. tmp = (((100 * crystalfreq + 16000000 * lpphy->pdiv) /
  522. (32000000 * lpphy->pdiv)) - 1) & 0xFF;
  523. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  524. tmp = (((2 * crystalfreq + 1000000 * lpphy->pdiv) /
  525. (2000000 * lpphy->pdiv)) - 1) & 0xFF;
  526. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  527. ref = (1000 * lpphy->pdiv + 2 * crystalfreq) / (2000 * lpphy->pdiv);
  528. ref &= 0xFFFF;
  529. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  530. if (ref < freqdata_tab[i].freq) {
  531. fd = &freqdata_tab[i];
  532. break;
  533. }
  534. }
  535. if (!fd)
  536. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  537. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  538. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  539. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  540. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  541. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  542. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  543. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  544. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  545. }
  546. /* Initialize the 2063 radio. */
  547. static void lpphy_2063_init(struct b43_wldev *dev)
  548. {
  549. b2063_upload_init_table(dev);
  550. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  551. b43_radio_set(dev, B2063_COMM8, 0x38);
  552. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  553. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  554. b43_radio_write(dev, B2063_PA_SP7, 0);
  555. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  556. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  557. if (dev->phy.rev == 2) {
  558. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  559. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  560. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  561. } else {
  562. b43_radio_write(dev, B2063_PA_SP3, 0x20);
  563. b43_radio_write(dev, B2063_PA_SP2, 0x20);
  564. }
  565. }
  566. struct lpphy_stx_table_entry {
  567. u16 phy_offset;
  568. u16 phy_shift;
  569. u16 rf_addr;
  570. u16 rf_shift;
  571. u16 mask;
  572. };
  573. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  574. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  575. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  576. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  577. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  578. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  579. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  580. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  581. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  582. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  583. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  584. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  585. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  586. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  587. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  588. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  589. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  590. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  591. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  592. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  593. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  594. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  595. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  596. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  597. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  598. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  599. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  600. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  601. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  602. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  603. };
  604. static void lpphy_sync_stx(struct b43_wldev *dev)
  605. {
  606. const struct lpphy_stx_table_entry *e;
  607. unsigned int i;
  608. u16 tmp;
  609. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  610. e = &lpphy_stx_table[i];
  611. tmp = b43_radio_read(dev, e->rf_addr);
  612. tmp >>= e->rf_shift;
  613. tmp <<= e->phy_shift;
  614. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  615. ~(e->mask << e->phy_shift), tmp);
  616. }
  617. }
  618. static void lpphy_radio_init(struct b43_wldev *dev)
  619. {
  620. /* The radio is attached through the 4wire bus. */
  621. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  622. udelay(1);
  623. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  624. udelay(1);
  625. if (dev->phy.radio_ver == 0x2062) {
  626. lpphy_2062_init(dev);
  627. } else {
  628. lpphy_2063_init(dev);
  629. lpphy_sync_stx(dev);
  630. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  631. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  632. if (dev->dev->bus->chip_id == 0x4325) {
  633. // TODO SSB PMU recalibration
  634. }
  635. }
  636. }
  637. struct lpphy_iq_est { u32 iq_prod, i_pwr, q_pwr; };
  638. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  639. {
  640. struct b43_phy_lp *lpphy = dev->phy.lp;
  641. u8 rc_cap = (lpphy->rc_cap & 0x1F) >> 1;
  642. if (dev->phy.rev == 1) //FIXME check channel 14!
  643. rc_cap = min_t(u8, rc_cap + 5, 15);
  644. b43_radio_write(dev, B2062_N_RXBB_CALIB2,
  645. max_t(u8, lpphy->rc_cap - 4, 0x80));
  646. b43_radio_write(dev, B2062_N_TX_CTL_A, rc_cap | 0x80);
  647. b43_radio_write(dev, B2062_S_RXG_CNT16,
  648. ((lpphy->rc_cap & 0x1F) >> 2) | 0x80);
  649. }
  650. static u8 lpphy_get_bb_mult(struct b43_wldev *dev)
  651. {
  652. return (b43_lptab_read(dev, B43_LPTAB16(0, 87)) & 0xFF00) >> 8;
  653. }
  654. static void lpphy_set_bb_mult(struct b43_wldev *dev, u8 bb_mult)
  655. {
  656. b43_lptab_write(dev, B43_LPTAB16(0, 87), (u16)bb_mult << 8);
  657. }
  658. static void lpphy_set_deaf(struct b43_wldev *dev, bool user)
  659. {
  660. struct b43_phy_lp *lpphy = dev->phy.lp;
  661. if (user)
  662. lpphy->crs_usr_disable = 1;
  663. else
  664. lpphy->crs_sys_disable = 1;
  665. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x80);
  666. }
  667. static void lpphy_clear_deaf(struct b43_wldev *dev, bool user)
  668. {
  669. struct b43_phy_lp *lpphy = dev->phy.lp;
  670. if (user)
  671. lpphy->crs_usr_disable = 0;
  672. else
  673. lpphy->crs_sys_disable = 0;
  674. if (!lpphy->crs_usr_disable && !lpphy->crs_sys_disable) {
  675. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  676. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL,
  677. 0xFF1F, 0x60);
  678. else
  679. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL,
  680. 0xFF1F, 0x20);
  681. }
  682. }
  683. static void lpphy_set_trsw_over(struct b43_wldev *dev, bool tx, bool rx)
  684. {
  685. u16 trsw = (tx << 1) | rx;
  686. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, trsw);
  687. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  688. }
  689. static void lpphy_disable_crs(struct b43_wldev *dev, bool user)
  690. {
  691. lpphy_set_deaf(dev, user);
  692. lpphy_set_trsw_over(dev, false, true);
  693. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFB);
  694. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x4);
  695. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFF7);
  696. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  697. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x10);
  698. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  699. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFDF);
  700. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  701. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFBF);
  702. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  703. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x7);
  704. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x38);
  705. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F);
  706. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x100);
  707. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFDFF);
  708. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL0, 0);
  709. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL1, 1);
  710. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL2, 0x20);
  711. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFBFF);
  712. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xF7FF);
  713. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL, 0);
  714. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, 0x45AF);
  715. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0x3FF);
  716. }
  717. static void lpphy_restore_crs(struct b43_wldev *dev, bool user)
  718. {
  719. lpphy_clear_deaf(dev, user);
  720. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFF80);
  721. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFC00);
  722. }
  723. struct lpphy_tx_gains { u16 gm, pga, pad, dac; };
  724. static void lpphy_disable_rx_gain_override(struct b43_wldev *dev)
  725. {
  726. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFE);
  727. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFEF);
  728. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFBF);
  729. if (dev->phy.rev >= 2) {
  730. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  731. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  732. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFBFF);
  733. b43_phy_mask(dev, B43_PHY_OFDM(0xE5), 0xFFF7);
  734. }
  735. } else {
  736. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFDFF);
  737. }
  738. }
  739. static void lpphy_enable_rx_gain_override(struct b43_wldev *dev)
  740. {
  741. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1);
  742. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  743. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  744. if (dev->phy.rev >= 2) {
  745. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  746. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  747. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x400);
  748. b43_phy_set(dev, B43_PHY_OFDM(0xE5), 0x8);
  749. }
  750. } else {
  751. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x200);
  752. }
  753. }
  754. static void lpphy_disable_tx_gain_override(struct b43_wldev *dev)
  755. {
  756. if (dev->phy.rev < 2)
  757. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  758. else {
  759. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFF7F);
  760. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xBFFF);
  761. }
  762. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFBF);
  763. }
  764. static void lpphy_enable_tx_gain_override(struct b43_wldev *dev)
  765. {
  766. if (dev->phy.rev < 2)
  767. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  768. else {
  769. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x80);
  770. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x4000);
  771. }
  772. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 0x40);
  773. }
  774. static struct lpphy_tx_gains lpphy_get_tx_gains(struct b43_wldev *dev)
  775. {
  776. struct lpphy_tx_gains gains;
  777. u16 tmp;
  778. gains.dac = (b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0x380) >> 7;
  779. if (dev->phy.rev < 2) {
  780. tmp = b43_phy_read(dev,
  781. B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL) & 0x7FF;
  782. gains.gm = tmp & 0x0007;
  783. gains.pga = (tmp & 0x0078) >> 3;
  784. gains.pad = (tmp & 0x780) >> 7;
  785. } else {
  786. tmp = b43_phy_read(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL);
  787. gains.pad = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0xFF;
  788. gains.gm = tmp & 0xFF;
  789. gains.pga = (tmp >> 8) & 0xFF;
  790. }
  791. return gains;
  792. }
  793. static void lpphy_set_dac_gain(struct b43_wldev *dev, u16 dac)
  794. {
  795. u16 ctl = b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0xC7F;
  796. ctl |= dac << 7;
  797. b43_phy_maskset(dev, B43_LPPHY_AFE_DAC_CTL, 0xF000, ctl);
  798. }
  799. static u16 lpphy_get_pa_gain(struct b43_wldev *dev)
  800. {
  801. return b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0x7F;
  802. }
  803. static void lpphy_set_pa_gain(struct b43_wldev *dev, u16 gain)
  804. {
  805. b43_phy_maskset(dev, B43_PHY_OFDM(0xFB), 0xE03F, gain << 6);
  806. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD), 0x80FF, gain << 8);
  807. }
  808. static void lpphy_set_tx_gains(struct b43_wldev *dev,
  809. struct lpphy_tx_gains gains)
  810. {
  811. u16 rf_gain, pa_gain;
  812. if (dev->phy.rev < 2) {
  813. rf_gain = (gains.pad << 7) | (gains.pga << 3) | gains.gm;
  814. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  815. 0xF800, rf_gain);
  816. } else {
  817. pa_gain = lpphy_get_pa_gain(dev);
  818. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  819. (gains.pga << 8) | gains.gm);
  820. /*
  821. * SPEC FIXME The spec calls for (pa_gain << 8) here, but that
  822. * conflicts with the spec for set_pa_gain! Vendor driver bug?
  823. */
  824. b43_phy_maskset(dev, B43_PHY_OFDM(0xFB),
  825. 0x8000, gains.pad | (pa_gain << 6));
  826. b43_phy_write(dev, B43_PHY_OFDM(0xFC),
  827. (gains.pga << 8) | gains.gm);
  828. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD),
  829. 0x8000, gains.pad | (pa_gain << 8));
  830. }
  831. lpphy_set_dac_gain(dev, gains.dac);
  832. lpphy_enable_tx_gain_override(dev);
  833. }
  834. static void lpphy_rev0_1_set_rx_gain(struct b43_wldev *dev, u32 gain)
  835. {
  836. u16 trsw = gain & 0x1;
  837. u16 lna = (gain & 0xFFFC) | ((gain & 0xC) >> 2);
  838. u16 ext_lna = (gain & 2) >> 1;
  839. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  840. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  841. 0xFBFF, ext_lna << 10);
  842. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  843. 0xF7FF, ext_lna << 11);
  844. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, lna);
  845. }
  846. static void lpphy_rev2plus_set_rx_gain(struct b43_wldev *dev, u32 gain)
  847. {
  848. u16 low_gain = gain & 0xFFFF;
  849. u16 high_gain = (gain >> 16) & 0xF;
  850. u16 ext_lna = (gain >> 21) & 0x1;
  851. u16 trsw = ~(gain >> 20) & 0x1;
  852. u16 tmp;
  853. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  854. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  855. 0xFDFF, ext_lna << 9);
  856. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  857. 0xFBFF, ext_lna << 10);
  858. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, low_gain);
  859. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF0, high_gain);
  860. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  861. tmp = (gain >> 2) & 0x3;
  862. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  863. 0xE7FF, tmp<<11);
  864. b43_phy_maskset(dev, B43_PHY_OFDM(0xE6), 0xFFE7, tmp << 3);
  865. }
  866. }
  867. static void lpphy_set_rx_gain(struct b43_wldev *dev, u32 gain)
  868. {
  869. if (dev->phy.rev < 2)
  870. lpphy_rev0_1_set_rx_gain(dev, gain);
  871. else
  872. lpphy_rev2plus_set_rx_gain(dev, gain);
  873. lpphy_enable_rx_gain_override(dev);
  874. }
  875. static void lpphy_set_rx_gain_by_index(struct b43_wldev *dev, u16 idx)
  876. {
  877. u32 gain = b43_lptab_read(dev, B43_LPTAB16(12, idx));
  878. lpphy_set_rx_gain(dev, gain);
  879. }
  880. static void lpphy_stop_ddfs(struct b43_wldev *dev)
  881. {
  882. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFD);
  883. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xFFDF);
  884. }
  885. static void lpphy_run_ddfs(struct b43_wldev *dev, int i_on, int q_on,
  886. int incr1, int incr2, int scale_idx)
  887. {
  888. lpphy_stop_ddfs(dev);
  889. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0xFF80);
  890. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0x80FF);
  891. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0xFF80, incr1);
  892. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0x80FF, incr2 << 8);
  893. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF7, i_on << 3);
  894. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFEF, q_on << 4);
  895. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFF9F, scale_idx << 5);
  896. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFB);
  897. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x2);
  898. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x20);
  899. }
  900. static bool lpphy_rx_iq_est(struct b43_wldev *dev, u16 samples, u8 time,
  901. struct lpphy_iq_est *iq_est)
  902. {
  903. int i;
  904. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFF7);
  905. b43_phy_write(dev, B43_LPPHY_IQ_NUM_SMPLS_ADDR, samples);
  906. b43_phy_maskset(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFF00, time);
  907. b43_phy_mask(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFEFF);
  908. b43_phy_set(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0x200);
  909. for (i = 0; i < 500; i++) {
  910. if (!(b43_phy_read(dev,
  911. B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200))
  912. break;
  913. msleep(1);
  914. }
  915. if ((b43_phy_read(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200)) {
  916. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  917. return false;
  918. }
  919. iq_est->iq_prod = b43_phy_read(dev, B43_LPPHY_IQ_ACC_HI_ADDR);
  920. iq_est->iq_prod <<= 16;
  921. iq_est->iq_prod |= b43_phy_read(dev, B43_LPPHY_IQ_ACC_LO_ADDR);
  922. iq_est->i_pwr = b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_HI_ADDR);
  923. iq_est->i_pwr <<= 16;
  924. iq_est->i_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_LO_ADDR);
  925. iq_est->q_pwr = b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_HI_ADDR);
  926. iq_est->q_pwr <<= 16;
  927. iq_est->q_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_LO_ADDR);
  928. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  929. return true;
  930. }
  931. static int lpphy_loopback(struct b43_wldev *dev)
  932. {
  933. struct lpphy_iq_est iq_est;
  934. int i, index = -1;
  935. u32 tmp;
  936. memset(&iq_est, 0, sizeof(iq_est));
  937. lpphy_set_trsw_over(dev, true, true);
  938. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 1);
  939. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  940. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  941. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  942. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  943. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x8);
  944. b43_radio_write(dev, B2062_N_TX_CTL_A, 0x80);
  945. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x80);
  946. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x80);
  947. for (i = 0; i < 32; i++) {
  948. lpphy_set_rx_gain_by_index(dev, i);
  949. lpphy_run_ddfs(dev, 1, 1, 5, 5, 0);
  950. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  951. continue;
  952. tmp = (iq_est.i_pwr + iq_est.q_pwr) / 1000;
  953. if ((tmp > 4000) && (tmp < 10000)) {
  954. index = i;
  955. break;
  956. }
  957. }
  958. lpphy_stop_ddfs(dev);
  959. return index;
  960. }
  961. /* Fixed-point division algorithm using only integer math. */
  962. static u32 lpphy_qdiv_roundup(u32 dividend, u32 divisor, u8 precision)
  963. {
  964. u32 quotient, remainder;
  965. if (divisor == 0)
  966. return 0;
  967. quotient = dividend / divisor;
  968. remainder = dividend % divisor;
  969. while (precision > 0) {
  970. quotient <<= 1;
  971. if (remainder << 1 >= divisor) {
  972. quotient++;
  973. remainder = (remainder << 1) - divisor;
  974. }
  975. precision--;
  976. }
  977. if (remainder << 1 >= divisor)
  978. quotient++;
  979. return quotient;
  980. }
  981. /* Read the TX power control mode from hardware. */
  982. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  983. {
  984. struct b43_phy_lp *lpphy = dev->phy.lp;
  985. u16 ctl;
  986. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  987. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  988. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  989. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  990. break;
  991. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  992. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  993. break;
  994. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  995. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  996. break;
  997. default:
  998. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  999. B43_WARN_ON(1);
  1000. break;
  1001. }
  1002. }
  1003. /* Set the TX power control mode in hardware. */
  1004. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  1005. {
  1006. struct b43_phy_lp *lpphy = dev->phy.lp;
  1007. u16 ctl;
  1008. switch (lpphy->txpctl_mode) {
  1009. case B43_LPPHY_TXPCTL_OFF:
  1010. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  1011. break;
  1012. case B43_LPPHY_TXPCTL_HW:
  1013. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  1014. break;
  1015. case B43_LPPHY_TXPCTL_SW:
  1016. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  1017. break;
  1018. default:
  1019. ctl = 0;
  1020. B43_WARN_ON(1);
  1021. }
  1022. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1023. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  1024. }
  1025. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  1026. enum b43_lpphy_txpctl_mode mode)
  1027. {
  1028. struct b43_phy_lp *lpphy = dev->phy.lp;
  1029. enum b43_lpphy_txpctl_mode oldmode;
  1030. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1031. oldmode = lpphy->txpctl_mode;
  1032. if (oldmode == mode)
  1033. return;
  1034. lpphy->txpctl_mode = mode;
  1035. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  1036. //TODO Update TX Power NPT
  1037. //TODO Clear all TX Power offsets
  1038. } else {
  1039. if (mode == B43_LPPHY_TXPCTL_HW) {
  1040. //TODO Recalculate target TX power
  1041. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1042. 0xFF80, lpphy->tssi_idx);
  1043. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  1044. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  1045. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  1046. lpphy_disable_tx_gain_override(dev);
  1047. lpphy->tx_pwr_idx_over = -1;
  1048. }
  1049. }
  1050. if (dev->phy.rev >= 2) {
  1051. if (mode == B43_LPPHY_TXPCTL_HW)
  1052. b43_phy_set(dev, B43_PHY_OFDM(0xD0), 0x2);
  1053. else
  1054. b43_phy_mask(dev, B43_PHY_OFDM(0xD0), 0xFFFD);
  1055. }
  1056. lpphy_write_tx_pctl_mode_to_hardware(dev);
  1057. }
  1058. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1059. unsigned int new_channel);
  1060. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  1061. {
  1062. struct b43_phy_lp *lpphy = dev->phy.lp;
  1063. struct lpphy_iq_est iq_est;
  1064. struct lpphy_tx_gains tx_gains;
  1065. static const u32 ideal_pwr_table[21] = {
  1066. 0x10000, 0x10557, 0x10e2d, 0x113e0, 0x10f22, 0x0ff64,
  1067. 0x0eda2, 0x0e5d4, 0x0efd1, 0x0fbe8, 0x0b7b8, 0x04b35,
  1068. 0x01a5e, 0x00a0b, 0x00444, 0x001fd, 0x000ff, 0x00088,
  1069. 0x0004c, 0x0002c, 0x0001a,
  1070. };
  1071. bool old_txg_ovr;
  1072. u8 old_bbmult;
  1073. u16 old_rf_ovr, old_rf_ovrval, old_afe_ovr, old_afe_ovrval,
  1074. old_rf2_ovr, old_rf2_ovrval, old_phy_ctl;
  1075. enum b43_lpphy_txpctl_mode old_txpctl;
  1076. u32 normal_pwr, ideal_pwr, mean_sq_pwr, tmp = 0, mean_sq_pwr_min = 0;
  1077. int loopback, i, j, inner_sum, err;
  1078. memset(&iq_est, 0, sizeof(iq_est));
  1079. err = b43_lpphy_op_switch_channel(dev, 7);
  1080. if (err) {
  1081. b43dbg(dev->wl,
  1082. "RC calib: Failed to switch to channel 7, error = %d\n",
  1083. err);
  1084. }
  1085. old_txg_ovr = !!(b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40);
  1086. old_bbmult = lpphy_get_bb_mult(dev);
  1087. if (old_txg_ovr)
  1088. tx_gains = lpphy_get_tx_gains(dev);
  1089. old_rf_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_0);
  1090. old_rf_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_VAL_0);
  1091. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR);
  1092. old_afe_ovrval = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVRVAL);
  1093. old_rf2_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2);
  1094. old_rf2_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2_VAL);
  1095. old_phy_ctl = b43_phy_read(dev, B43_LPPHY_LP_PHY_CTL);
  1096. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1097. old_txpctl = lpphy->txpctl_mode;
  1098. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1099. lpphy_disable_crs(dev, true);
  1100. loopback = lpphy_loopback(dev);
  1101. if (loopback == -1)
  1102. goto finish;
  1103. lpphy_set_rx_gain_by_index(dev, loopback);
  1104. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFFBF, 0x40);
  1105. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFF8, 0x1);
  1106. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFC7, 0x8);
  1107. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F, 0xC0);
  1108. for (i = 128; i <= 159; i++) {
  1109. b43_radio_write(dev, B2062_N_RXBB_CALIB2, i);
  1110. inner_sum = 0;
  1111. for (j = 5; j <= 25; j++) {
  1112. lpphy_run_ddfs(dev, 1, 1, j, j, 0);
  1113. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  1114. goto finish;
  1115. mean_sq_pwr = iq_est.i_pwr + iq_est.q_pwr;
  1116. if (j == 5)
  1117. tmp = mean_sq_pwr;
  1118. ideal_pwr = ((ideal_pwr_table[j-5] >> 3) + 1) >> 1;
  1119. normal_pwr = lpphy_qdiv_roundup(mean_sq_pwr, tmp, 12);
  1120. mean_sq_pwr = ideal_pwr - normal_pwr;
  1121. mean_sq_pwr *= mean_sq_pwr;
  1122. inner_sum += mean_sq_pwr;
  1123. if ((i == 128) || (inner_sum < mean_sq_pwr_min)) {
  1124. lpphy->rc_cap = i;
  1125. mean_sq_pwr_min = inner_sum;
  1126. }
  1127. }
  1128. }
  1129. lpphy_stop_ddfs(dev);
  1130. finish:
  1131. lpphy_restore_crs(dev, true);
  1132. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, old_rf_ovrval);
  1133. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, old_rf_ovr);
  1134. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, old_afe_ovrval);
  1135. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, old_afe_ovr);
  1136. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, old_rf2_ovrval);
  1137. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, old_rf2_ovr);
  1138. b43_phy_write(dev, B43_LPPHY_LP_PHY_CTL, old_phy_ctl);
  1139. lpphy_set_bb_mult(dev, old_bbmult);
  1140. if (old_txg_ovr) {
  1141. /*
  1142. * SPEC FIXME: The specs say "get_tx_gains" here, which is
  1143. * illogical. According to lwfinger, vendor driver v4.150.10.5
  1144. * has a Set here, while v4.174.64.19 has a Get - regression in
  1145. * the vendor driver? This should be tested this once the code
  1146. * is testable.
  1147. */
  1148. lpphy_set_tx_gains(dev, tx_gains);
  1149. }
  1150. lpphy_set_tx_power_control(dev, old_txpctl);
  1151. if (lpphy->rc_cap)
  1152. lpphy_set_rc_cap(dev);
  1153. }
  1154. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  1155. {
  1156. struct ssb_bus *bus = dev->dev->bus;
  1157. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1158. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  1159. int i;
  1160. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  1161. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1162. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  1163. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1164. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  1165. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  1166. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  1167. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1168. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  1169. for (i = 0; i < 10000; i++) {
  1170. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1171. break;
  1172. msleep(1);
  1173. }
  1174. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1175. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  1176. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  1177. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  1178. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1179. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1180. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  1181. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  1182. if (crystal_freq == 24000000) {
  1183. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  1184. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  1185. } else {
  1186. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  1187. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1188. }
  1189. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  1190. for (i = 0; i < 10000; i++) {
  1191. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1192. break;
  1193. msleep(1);
  1194. }
  1195. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1196. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  1197. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1198. }
  1199. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  1200. {
  1201. struct b43_phy_lp *lpphy = dev->phy.lp;
  1202. if (dev->phy.rev >= 2) {
  1203. lpphy_rev2plus_rc_calib(dev);
  1204. } else if (!lpphy->rc_cap) {
  1205. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1206. lpphy_rev0_1_rc_calib(dev);
  1207. } else {
  1208. lpphy_set_rc_cap(dev);
  1209. }
  1210. }
  1211. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  1212. {
  1213. if (dev->phy.rev >= 2)
  1214. return; // rev2+ doesn't support antenna diversity
  1215. if (B43_WARN_ON(antenna > B43_ANTENNA_AUTO1))
  1216. return;
  1217. b43_hf_write(dev, b43_hf_read(dev) & ~B43_HF_ANTDIVHELP);
  1218. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFFD, antenna & 0x2);
  1219. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFFE, antenna & 0x1);
  1220. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_ANTDIVHELP);
  1221. dev->phy.lp->antenna = antenna;
  1222. }
  1223. static void lpphy_set_tx_iqcc(struct b43_wldev *dev, u16 a, u16 b)
  1224. {
  1225. u16 tmp[2];
  1226. tmp[0] = a;
  1227. tmp[1] = b;
  1228. b43_lptab_write_bulk(dev, B43_LPTAB16(0, 80), 2, tmp);
  1229. }
  1230. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  1231. {
  1232. struct b43_phy_lp *lpphy = dev->phy.lp;
  1233. struct lpphy_tx_gains gains;
  1234. u32 iq_comp, tx_gain, coeff, rf_power;
  1235. lpphy->tx_pwr_idx_over = index;
  1236. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1237. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  1238. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  1239. if (dev->phy.rev >= 2) {
  1240. iq_comp = b43_lptab_read(dev, B43_LPTAB32(7, index + 320));
  1241. tx_gain = b43_lptab_read(dev, B43_LPTAB32(7, index + 192));
  1242. gains.pad = (tx_gain >> 16) & 0xFF;
  1243. gains.gm = tx_gain & 0xFF;
  1244. gains.pga = (tx_gain >> 8) & 0xFF;
  1245. gains.dac = (iq_comp >> 28) & 0xFF;
  1246. lpphy_set_tx_gains(dev, gains);
  1247. } else {
  1248. iq_comp = b43_lptab_read(dev, B43_LPTAB32(10, index + 320));
  1249. tx_gain = b43_lptab_read(dev, B43_LPTAB32(10, index + 192));
  1250. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  1251. 0xF800, (tx_gain >> 4) & 0x7FFF);
  1252. lpphy_set_dac_gain(dev, tx_gain & 0x7);
  1253. lpphy_set_pa_gain(dev, (tx_gain >> 24) & 0x7F);
  1254. }
  1255. lpphy_set_bb_mult(dev, (iq_comp >> 20) & 0xFF);
  1256. lpphy_set_tx_iqcc(dev, (iq_comp >> 10) & 0x3FF, iq_comp & 0x3FF);
  1257. if (dev->phy.rev >= 2) {
  1258. coeff = b43_lptab_read(dev, B43_LPTAB32(7, index + 448));
  1259. } else {
  1260. coeff = b43_lptab_read(dev, B43_LPTAB32(10, index + 448));
  1261. }
  1262. b43_lptab_write(dev, B43_LPTAB16(0, 85), coeff & 0xFFFF);
  1263. if (dev->phy.rev >= 2) {
  1264. rf_power = b43_lptab_read(dev, B43_LPTAB32(7, index + 576));
  1265. b43_phy_maskset(dev, B43_LPPHY_RF_PWR_OVERRIDE, 0xFF00,
  1266. rf_power & 0xFFFF);//SPEC FIXME mask & set != 0
  1267. }
  1268. lpphy_enable_tx_gain_override(dev);
  1269. }
  1270. static void lpphy_btcoex_override(struct b43_wldev *dev)
  1271. {
  1272. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  1273. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  1274. }
  1275. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  1276. bool blocked)
  1277. {
  1278. //TODO check MAC control register
  1279. if (blocked) {
  1280. if (dev->phy.rev >= 2) {
  1281. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x83FF);
  1282. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1F00);
  1283. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0x80FF);
  1284. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xDFFF);
  1285. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x0808);
  1286. } else {
  1287. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xE0FF);
  1288. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1F00);
  1289. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFCFF);
  1290. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x0018);
  1291. }
  1292. } else {
  1293. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xE0FF);
  1294. if (dev->phy.rev >= 2)
  1295. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xF7F7);
  1296. else
  1297. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFE7);
  1298. }
  1299. }
  1300. /* This was previously called lpphy_japan_filter */
  1301. static void lpphy_set_analog_filter(struct b43_wldev *dev, int channel)
  1302. {
  1303. struct b43_phy_lp *lpphy = dev->phy.lp;
  1304. u16 tmp = (channel == 14); //SPEC FIXME check japanwidefilter!
  1305. if (dev->phy.rev < 2) { //SPEC FIXME Isn't this rev0/1-specific?
  1306. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFCFF, tmp << 9);
  1307. if ((dev->phy.rev == 1) && (lpphy->rc_cap))
  1308. lpphy_set_rc_cap(dev);
  1309. } else {
  1310. b43_radio_write(dev, B2063_TX_BB_SP3, 0x3F);
  1311. }
  1312. }
  1313. static void lpphy_set_tssi_mux(struct b43_wldev *dev, enum tssi_mux_mode mode)
  1314. {
  1315. if (mode != TSSI_MUX_EXT) {
  1316. b43_radio_set(dev, B2063_PA_SP1, 0x2);
  1317. b43_phy_set(dev, B43_PHY_OFDM(0xF3), 0x1000);
  1318. b43_radio_write(dev, B2063_PA_CTL10, 0x51);
  1319. if (mode == TSSI_MUX_POSTPA) {
  1320. b43_radio_mask(dev, B2063_PA_SP1, 0xFFFE);
  1321. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFC7);
  1322. } else {
  1323. b43_radio_maskset(dev, B2063_PA_SP1, 0xFFFE, 0x1);
  1324. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL_OVRVAL,
  1325. 0xFFC7, 0x20);
  1326. }
  1327. } else {
  1328. B43_WARN_ON(1);
  1329. }
  1330. }
  1331. static void lpphy_tx_pctl_init_hw(struct b43_wldev *dev)
  1332. {
  1333. u16 tmp;
  1334. int i;
  1335. //SPEC TODO Call LP PHY Clear TX Power offsets
  1336. for (i = 0; i < 64; i++) {
  1337. if (dev->phy.rev >= 2)
  1338. b43_lptab_write(dev, B43_LPTAB32(7, i + 1), i);
  1339. else
  1340. b43_lptab_write(dev, B43_LPTAB32(10, i + 1), i);
  1341. }
  1342. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xFF00, 0xFF);
  1343. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0x8FFF, 0x5000);
  1344. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0xFFC0, 0x1F);
  1345. if (dev->phy.rev < 2) {
  1346. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xEFFF);
  1347. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xDFFF, 0x2000);
  1348. } else {
  1349. b43_phy_mask(dev, B43_PHY_OFDM(0x103), 0xFFFE);
  1350. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFFB, 0x4);
  1351. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFEF, 0x10);
  1352. b43_radio_maskset(dev, B2063_IQ_CALIB_CTL2, 0xF3, 0x1);
  1353. lpphy_set_tssi_mux(dev, TSSI_MUX_POSTPA);
  1354. }
  1355. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0x7FFF, 0x8000);
  1356. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xFF);
  1357. b43_phy_write(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xA);
  1358. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1359. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1360. B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1361. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xF8FF);
  1362. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1363. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1364. B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW);
  1365. if (dev->phy.rev < 2) {
  1366. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF, 0x1000);
  1367. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xEFFF);
  1368. } else {
  1369. lpphy_set_tx_power_by_index(dev, 0x7F);
  1370. }
  1371. b43_dummy_transmission(dev, true, true);
  1372. tmp = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_STAT);
  1373. if (tmp & 0x8000) {
  1374. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI,
  1375. 0xFFC0, (tmp & 0xFF) - 32);
  1376. }
  1377. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF);
  1378. // (SPEC?) TODO Set "Target TX frequency" variable to 0
  1379. // SPEC FIXME "Set BB Multiplier to 0xE000" impossible - bb_mult is u8!
  1380. }
  1381. static void lpphy_tx_pctl_init_sw(struct b43_wldev *dev)
  1382. {
  1383. struct lpphy_tx_gains gains;
  1384. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1385. gains.gm = 4;
  1386. gains.pad = 12;
  1387. gains.pga = 12;
  1388. gains.dac = 0;
  1389. } else {
  1390. gains.gm = 7;
  1391. gains.pad = 14;
  1392. gains.pga = 15;
  1393. gains.dac = 0;
  1394. }
  1395. lpphy_set_tx_gains(dev, gains);
  1396. lpphy_set_bb_mult(dev, 150);
  1397. }
  1398. /* Initialize TX power control */
  1399. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  1400. {
  1401. if (0/*FIXME HWPCTL capable */) {
  1402. lpphy_tx_pctl_init_hw(dev);
  1403. } else { /* This device is only software TX power control capable. */
  1404. lpphy_tx_pctl_init_sw(dev);
  1405. }
  1406. }
  1407. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  1408. {
  1409. struct b43_phy_lp *lpphy = dev->phy.lp;
  1410. u32 *saved_tab;
  1411. const unsigned int saved_tab_size = 256;
  1412. enum b43_lpphy_txpctl_mode txpctl_mode;
  1413. s8 tx_pwr_idx_over;
  1414. u16 tssi_npt, tssi_idx;
  1415. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  1416. if (!saved_tab) {
  1417. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  1418. return;
  1419. }
  1420. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1421. txpctl_mode = lpphy->txpctl_mode;
  1422. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  1423. tssi_npt = lpphy->tssi_npt;
  1424. tssi_idx = lpphy->tssi_idx;
  1425. if (dev->phy.rev < 2) {
  1426. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  1427. saved_tab_size, saved_tab);
  1428. } else {
  1429. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  1430. saved_tab_size, saved_tab);
  1431. }
  1432. //FIXME PHY reset
  1433. lpphy_table_init(dev); //FIXME is table init needed?
  1434. lpphy_baseband_init(dev);
  1435. lpphy_tx_pctl_init(dev);
  1436. b43_lpphy_op_software_rfkill(dev, false);
  1437. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1438. if (dev->phy.rev < 2) {
  1439. b43_lptab_write_bulk(dev, B43_LPTAB32(10, 0x140),
  1440. saved_tab_size, saved_tab);
  1441. } else {
  1442. b43_lptab_write_bulk(dev, B43_LPTAB32(7, 0x140),
  1443. saved_tab_size, saved_tab);
  1444. }
  1445. b43_write16(dev, B43_MMIO_CHANNEL, lpphy->channel);
  1446. lpphy->tssi_npt = tssi_npt;
  1447. lpphy->tssi_idx = tssi_idx;
  1448. lpphy_set_analog_filter(dev, lpphy->channel);
  1449. if (tx_pwr_idx_over != -1)
  1450. lpphy_set_tx_power_by_index(dev, tx_pwr_idx_over);
  1451. if (lpphy->rc_cap)
  1452. lpphy_set_rc_cap(dev);
  1453. b43_lpphy_op_set_rx_antenna(dev, lpphy->antenna);
  1454. lpphy_set_tx_power_control(dev, txpctl_mode);
  1455. kfree(saved_tab);
  1456. }
  1457. struct lpphy_rx_iq_comp { u8 chan; s8 c1, c0; };
  1458. static const struct lpphy_rx_iq_comp lpphy_5354_iq_table[] = {
  1459. { .chan = 1, .c1 = -66, .c0 = 15, },
  1460. { .chan = 2, .c1 = -66, .c0 = 15, },
  1461. { .chan = 3, .c1 = -66, .c0 = 15, },
  1462. { .chan = 4, .c1 = -66, .c0 = 15, },
  1463. { .chan = 5, .c1 = -66, .c0 = 15, },
  1464. { .chan = 6, .c1 = -66, .c0 = 15, },
  1465. { .chan = 7, .c1 = -66, .c0 = 14, },
  1466. { .chan = 8, .c1 = -66, .c0 = 14, },
  1467. { .chan = 9, .c1 = -66, .c0 = 14, },
  1468. { .chan = 10, .c1 = -66, .c0 = 14, },
  1469. { .chan = 11, .c1 = -66, .c0 = 14, },
  1470. { .chan = 12, .c1 = -66, .c0 = 13, },
  1471. { .chan = 13, .c1 = -66, .c0 = 13, },
  1472. { .chan = 14, .c1 = -66, .c0 = 13, },
  1473. };
  1474. static const struct lpphy_rx_iq_comp lpphy_rev0_1_iq_table[] = {
  1475. { .chan = 1, .c1 = -64, .c0 = 13, },
  1476. { .chan = 2, .c1 = -64, .c0 = 13, },
  1477. { .chan = 3, .c1 = -64, .c0 = 13, },
  1478. { .chan = 4, .c1 = -64, .c0 = 13, },
  1479. { .chan = 5, .c1 = -64, .c0 = 12, },
  1480. { .chan = 6, .c1 = -64, .c0 = 12, },
  1481. { .chan = 7, .c1 = -64, .c0 = 12, },
  1482. { .chan = 8, .c1 = -64, .c0 = 12, },
  1483. { .chan = 9, .c1 = -64, .c0 = 12, },
  1484. { .chan = 10, .c1 = -64, .c0 = 11, },
  1485. { .chan = 11, .c1 = -64, .c0 = 11, },
  1486. { .chan = 12, .c1 = -64, .c0 = 11, },
  1487. { .chan = 13, .c1 = -64, .c0 = 11, },
  1488. { .chan = 14, .c1 = -64, .c0 = 10, },
  1489. { .chan = 34, .c1 = -62, .c0 = 24, },
  1490. { .chan = 38, .c1 = -62, .c0 = 24, },
  1491. { .chan = 42, .c1 = -62, .c0 = 24, },
  1492. { .chan = 46, .c1 = -62, .c0 = 23, },
  1493. { .chan = 36, .c1 = -62, .c0 = 24, },
  1494. { .chan = 40, .c1 = -62, .c0 = 24, },
  1495. { .chan = 44, .c1 = -62, .c0 = 23, },
  1496. { .chan = 48, .c1 = -62, .c0 = 23, },
  1497. { .chan = 52, .c1 = -62, .c0 = 23, },
  1498. { .chan = 56, .c1 = -62, .c0 = 22, },
  1499. { .chan = 60, .c1 = -62, .c0 = 22, },
  1500. { .chan = 64, .c1 = -62, .c0 = 22, },
  1501. { .chan = 100, .c1 = -62, .c0 = 16, },
  1502. { .chan = 104, .c1 = -62, .c0 = 16, },
  1503. { .chan = 108, .c1 = -62, .c0 = 15, },
  1504. { .chan = 112, .c1 = -62, .c0 = 14, },
  1505. { .chan = 116, .c1 = -62, .c0 = 14, },
  1506. { .chan = 120, .c1 = -62, .c0 = 13, },
  1507. { .chan = 124, .c1 = -62, .c0 = 12, },
  1508. { .chan = 128, .c1 = -62, .c0 = 12, },
  1509. { .chan = 132, .c1 = -62, .c0 = 12, },
  1510. { .chan = 136, .c1 = -62, .c0 = 11, },
  1511. { .chan = 140, .c1 = -62, .c0 = 10, },
  1512. { .chan = 149, .c1 = -61, .c0 = 9, },
  1513. { .chan = 153, .c1 = -61, .c0 = 9, },
  1514. { .chan = 157, .c1 = -61, .c0 = 9, },
  1515. { .chan = 161, .c1 = -61, .c0 = 8, },
  1516. { .chan = 165, .c1 = -61, .c0 = 8, },
  1517. { .chan = 184, .c1 = -62, .c0 = 25, },
  1518. { .chan = 188, .c1 = -62, .c0 = 25, },
  1519. { .chan = 192, .c1 = -62, .c0 = 25, },
  1520. { .chan = 196, .c1 = -62, .c0 = 25, },
  1521. { .chan = 200, .c1 = -62, .c0 = 25, },
  1522. { .chan = 204, .c1 = -62, .c0 = 25, },
  1523. { .chan = 208, .c1 = -62, .c0 = 25, },
  1524. { .chan = 212, .c1 = -62, .c0 = 25, },
  1525. { .chan = 216, .c1 = -62, .c0 = 26, },
  1526. };
  1527. static const struct lpphy_rx_iq_comp lpphy_rev2plus_iq_comp = {
  1528. .chan = 0,
  1529. .c1 = -64,
  1530. .c0 = 0,
  1531. };
  1532. static int lpphy_calc_rx_iq_comp(struct b43_wldev *dev, u16 samples)
  1533. {
  1534. struct lpphy_iq_est iq_est;
  1535. u16 c0, c1;
  1536. int prod, ipwr, qpwr, prod_msb, q_msb, tmp1, tmp2, tmp3, tmp4, ret;
  1537. c1 = b43_phy_read(dev, B43_LPPHY_RX_COMP_COEFF_S);
  1538. c0 = c1 >> 8;
  1539. c1 |= 0xFF;
  1540. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, 0x00C0);
  1541. b43_phy_mask(dev, B43_LPPHY_RX_COMP_COEFF_S, 0x00FF);
  1542. ret = lpphy_rx_iq_est(dev, samples, 32, &iq_est);
  1543. if (!ret)
  1544. goto out;
  1545. prod = iq_est.iq_prod;
  1546. ipwr = iq_est.i_pwr;
  1547. qpwr = iq_est.q_pwr;
  1548. if (ipwr + qpwr < 2) {
  1549. ret = 0;
  1550. goto out;
  1551. }
  1552. prod_msb = fls(abs(prod));
  1553. q_msb = fls(abs(qpwr));
  1554. tmp1 = prod_msb - 20;
  1555. if (tmp1 >= 0) {
  1556. tmp3 = ((prod << (30 - prod_msb)) + (ipwr >> (1 + tmp1))) /
  1557. (ipwr >> tmp1);
  1558. } else {
  1559. tmp3 = ((prod << (30 - prod_msb)) + (ipwr << (-1 - tmp1))) /
  1560. (ipwr << -tmp1);
  1561. }
  1562. tmp2 = q_msb - 11;
  1563. if (tmp2 >= 0)
  1564. tmp4 = (qpwr << (31 - q_msb)) / (ipwr >> tmp2);
  1565. else
  1566. tmp4 = (qpwr << (31 - q_msb)) / (ipwr << -tmp2);
  1567. tmp4 -= tmp3 * tmp3;
  1568. tmp4 = -int_sqrt(tmp4);
  1569. c0 = tmp3 >> 3;
  1570. c1 = tmp4 >> 4;
  1571. out:
  1572. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, c1);
  1573. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0x00FF, c0 << 8);
  1574. return ret;
  1575. }
  1576. static void lpphy_run_samples(struct b43_wldev *dev, u16 samples, u16 loops,
  1577. u16 wait)
  1578. {
  1579. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_BUFFER_CTL,
  1580. 0xFFC0, samples - 1);
  1581. if (loops != 0xFFFF)
  1582. loops--;
  1583. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_COUNT, 0xF000, loops);
  1584. b43_phy_maskset(dev, B43_LPPHY_SMPL_PLAY_BUFFER_CTL, 0x3F, wait << 6);
  1585. b43_phy_set(dev, B43_LPPHY_A_PHY_CTL_ADDR, 0x1);
  1586. }
  1587. //SPEC FIXME what does a negative freq mean?
  1588. static void lpphy_start_tx_tone(struct b43_wldev *dev, s32 freq, u16 max)
  1589. {
  1590. struct b43_phy_lp *lpphy = dev->phy.lp;
  1591. u16 buf[64];
  1592. int i, samples = 0, angle = 0;
  1593. int rotation = (((36 * freq) / 20) << 16) / 100;
  1594. struct b43_c32 sample;
  1595. lpphy->tx_tone_freq = freq;
  1596. if (freq) {
  1597. /* Find i for which abs(freq) integrally divides 20000 * i */
  1598. for (i = 1; samples * abs(freq) != 20000 * i; i++) {
  1599. samples = (20000 * i) / abs(freq);
  1600. if(B43_WARN_ON(samples > 63))
  1601. return;
  1602. }
  1603. } else {
  1604. samples = 2;
  1605. }
  1606. for (i = 0; i < samples; i++) {
  1607. sample = b43_cordic(angle);
  1608. angle += rotation;
  1609. buf[i] = CORDIC_CONVERT((sample.i * max) & 0xFF) << 8;
  1610. buf[i] |= CORDIC_CONVERT((sample.q * max) & 0xFF);
  1611. }
  1612. b43_lptab_write_bulk(dev, B43_LPTAB16(5, 0), samples, buf);
  1613. lpphy_run_samples(dev, samples, 0xFFFF, 0);
  1614. }
  1615. static void lpphy_stop_tx_tone(struct b43_wldev *dev)
  1616. {
  1617. struct b43_phy_lp *lpphy = dev->phy.lp;
  1618. int i;
  1619. lpphy->tx_tone_freq = 0;
  1620. b43_phy_mask(dev, B43_LPPHY_SMPL_PLAY_COUNT, 0xF000);
  1621. for (i = 0; i < 31; i++) {
  1622. if (!(b43_phy_read(dev, B43_LPPHY_A_PHY_CTL_ADDR) & 0x1))
  1623. break;
  1624. udelay(100);
  1625. }
  1626. }
  1627. static void lpphy_papd_cal(struct b43_wldev *dev, struct lpphy_tx_gains gains,
  1628. int mode, bool useindex, u8 index)
  1629. {
  1630. //TODO
  1631. }
  1632. static void lpphy_papd_cal_txpwr(struct b43_wldev *dev)
  1633. {
  1634. struct b43_phy_lp *lpphy = dev->phy.lp;
  1635. struct ssb_bus *bus = dev->dev->bus;
  1636. struct lpphy_tx_gains gains, oldgains;
  1637. int old_txpctl, old_afe_ovr, old_rf, old_bbmult;
  1638. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1639. old_txpctl = lpphy->txpctl_mode;
  1640. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40;
  1641. if (old_afe_ovr)
  1642. oldgains = lpphy_get_tx_gains(dev);
  1643. old_rf = b43_phy_read(dev, B43_LPPHY_RF_PWR_OVERRIDE) & 0xFF;
  1644. old_bbmult = lpphy_get_bb_mult(dev);
  1645. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1646. if (bus->chip_id == 0x4325 && bus->chip_rev == 0)
  1647. lpphy_papd_cal(dev, gains, 0, 1, 30);
  1648. else
  1649. lpphy_papd_cal(dev, gains, 0, 1, 65);
  1650. if (old_afe_ovr)
  1651. lpphy_set_tx_gains(dev, oldgains);
  1652. lpphy_set_bb_mult(dev, old_bbmult);
  1653. lpphy_set_tx_power_control(dev, old_txpctl);
  1654. b43_phy_maskset(dev, B43_LPPHY_RF_PWR_OVERRIDE, 0xFF00, old_rf);
  1655. }
  1656. static int lpphy_rx_iq_cal(struct b43_wldev *dev, bool noise, bool tx,
  1657. bool rx, bool pa, struct lpphy_tx_gains *gains)
  1658. {
  1659. struct b43_phy_lp *lpphy = dev->phy.lp;
  1660. struct ssb_bus *bus = dev->dev->bus;
  1661. const struct lpphy_rx_iq_comp *iqcomp = NULL;
  1662. struct lpphy_tx_gains nogains, oldgains;
  1663. u16 tmp;
  1664. int i, ret;
  1665. memset(&nogains, 0, sizeof(nogains));
  1666. memset(&oldgains, 0, sizeof(oldgains));
  1667. if (bus->chip_id == 0x5354) {
  1668. for (i = 0; i < ARRAY_SIZE(lpphy_5354_iq_table); i++) {
  1669. if (lpphy_5354_iq_table[i].chan == lpphy->channel) {
  1670. iqcomp = &lpphy_5354_iq_table[i];
  1671. }
  1672. }
  1673. } else if (dev->phy.rev >= 2) {
  1674. iqcomp = &lpphy_rev2plus_iq_comp;
  1675. } else {
  1676. for (i = 0; i < ARRAY_SIZE(lpphy_rev0_1_iq_table); i++) {
  1677. if (lpphy_rev0_1_iq_table[i].chan == lpphy->channel) {
  1678. iqcomp = &lpphy_rev0_1_iq_table[i];
  1679. }
  1680. }
  1681. }
  1682. if (B43_WARN_ON(!iqcomp))
  1683. return 0;
  1684. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S, 0xFF00, iqcomp->c1);
  1685. b43_phy_maskset(dev, B43_LPPHY_RX_COMP_COEFF_S,
  1686. 0x00FF, iqcomp->c0 << 8);
  1687. if (noise) {
  1688. tx = true;
  1689. rx = false;
  1690. pa = false;
  1691. }
  1692. lpphy_set_trsw_over(dev, tx, rx);
  1693. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1694. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  1695. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0,
  1696. 0xFFF7, pa << 3);
  1697. } else {
  1698. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  1699. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0,
  1700. 0xFFDF, pa << 5);
  1701. }
  1702. tmp = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) & 0x40;
  1703. if (noise)
  1704. lpphy_set_rx_gain(dev, 0x2D5D);
  1705. else {
  1706. if (tmp)
  1707. oldgains = lpphy_get_tx_gains(dev);
  1708. if (!gains)
  1709. gains = &nogains;
  1710. lpphy_set_tx_gains(dev, *gains);
  1711. }
  1712. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFFE);
  1713. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  1714. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  1715. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  1716. lpphy_set_deaf(dev, false);
  1717. if (noise)
  1718. ret = lpphy_calc_rx_iq_comp(dev, 0xFFF0);
  1719. else {
  1720. lpphy_start_tx_tone(dev, 4000, 100);
  1721. ret = lpphy_calc_rx_iq_comp(dev, 0x4000);
  1722. lpphy_stop_tx_tone(dev);
  1723. }
  1724. lpphy_clear_deaf(dev, false);
  1725. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFC);
  1726. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFF7);
  1727. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFDF);
  1728. if (!noise) {
  1729. if (tmp)
  1730. lpphy_set_tx_gains(dev, oldgains);
  1731. else
  1732. lpphy_disable_tx_gain_override(dev);
  1733. }
  1734. lpphy_disable_rx_gain_override(dev);
  1735. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xFFFE);
  1736. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xF7FF);
  1737. return ret;
  1738. }
  1739. static void lpphy_calibration(struct b43_wldev *dev)
  1740. {
  1741. struct b43_phy_lp *lpphy = dev->phy.lp;
  1742. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  1743. bool full_cal = false;
  1744. if (lpphy->full_calib_chan != lpphy->channel) {
  1745. full_cal = true;
  1746. lpphy->full_calib_chan = lpphy->channel;
  1747. }
  1748. b43_mac_suspend(dev);
  1749. lpphy_btcoex_override(dev);
  1750. if (dev->phy.rev >= 2)
  1751. lpphy_save_dig_flt_state(dev);
  1752. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1753. saved_pctl_mode = lpphy->txpctl_mode;
  1754. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1755. //TODO Perform transmit power table I/Q LO calibration
  1756. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  1757. lpphy_pr41573_workaround(dev);
  1758. if ((dev->phy.rev >= 2) && full_cal) {
  1759. lpphy_papd_cal_txpwr(dev);
  1760. }
  1761. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  1762. if (dev->phy.rev >= 2)
  1763. lpphy_restore_dig_flt_state(dev);
  1764. lpphy_rx_iq_cal(dev, true, true, false, false, NULL);
  1765. b43_mac_enable(dev);
  1766. }
  1767. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  1768. {
  1769. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1770. return b43_read16(dev, B43_MMIO_PHY_DATA);
  1771. }
  1772. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  1773. {
  1774. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1775. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  1776. }
  1777. static void b43_lpphy_op_maskset(struct b43_wldev *dev, u16 reg, u16 mask,
  1778. u16 set)
  1779. {
  1780. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1781. b43_write16(dev, B43_MMIO_PHY_DATA,
  1782. (b43_read16(dev, B43_MMIO_PHY_DATA) & mask) | set);
  1783. }
  1784. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  1785. {
  1786. /* Register 1 is a 32-bit register. */
  1787. B43_WARN_ON(reg == 1);
  1788. /* LP-PHY needs a special bit set for read access */
  1789. if (dev->phy.rev < 2) {
  1790. if (reg != 0x4001)
  1791. reg |= 0x100;
  1792. } else
  1793. reg |= 0x200;
  1794. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1795. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  1796. }
  1797. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  1798. {
  1799. /* Register 1 is a 32-bit register. */
  1800. B43_WARN_ON(reg == 1);
  1801. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1802. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  1803. }
  1804. struct b206x_channel {
  1805. u8 channel;
  1806. u16 freq;
  1807. u8 data[12];
  1808. };
  1809. static const struct b206x_channel b2062_chantbl[] = {
  1810. { .channel = 1, .freq = 2412, .data[0] = 0xFF, .data[1] = 0xFF,
  1811. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1812. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1813. { .channel = 2, .freq = 2417, .data[0] = 0xFF, .data[1] = 0xFF,
  1814. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1815. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1816. { .channel = 3, .freq = 2422, .data[0] = 0xFF, .data[1] = 0xFF,
  1817. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1818. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1819. { .channel = 4, .freq = 2427, .data[0] = 0xFF, .data[1] = 0xFF,
  1820. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1821. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1822. { .channel = 5, .freq = 2432, .data[0] = 0xFF, .data[1] = 0xFF,
  1823. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1824. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1825. { .channel = 6, .freq = 2437, .data[0] = 0xFF, .data[1] = 0xFF,
  1826. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1827. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1828. { .channel = 7, .freq = 2442, .data[0] = 0xFF, .data[1] = 0xFF,
  1829. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1830. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1831. { .channel = 8, .freq = 2447, .data[0] = 0xFF, .data[1] = 0xFF,
  1832. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1833. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1834. { .channel = 9, .freq = 2452, .data[0] = 0xFF, .data[1] = 0xFF,
  1835. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1836. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1837. { .channel = 10, .freq = 2457, .data[0] = 0xFF, .data[1] = 0xFF,
  1838. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1839. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1840. { .channel = 11, .freq = 2462, .data[0] = 0xFF, .data[1] = 0xFF,
  1841. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1842. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1843. { .channel = 12, .freq = 2467, .data[0] = 0xFF, .data[1] = 0xFF,
  1844. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1845. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1846. { .channel = 13, .freq = 2472, .data[0] = 0xFF, .data[1] = 0xFF,
  1847. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1848. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1849. { .channel = 14, .freq = 2484, .data[0] = 0xFF, .data[1] = 0xFF,
  1850. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1851. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1852. { .channel = 34, .freq = 5170, .data[0] = 0x00, .data[1] = 0x22,
  1853. .data[2] = 0x20, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1854. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1855. { .channel = 38, .freq = 5190, .data[0] = 0x00, .data[1] = 0x11,
  1856. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1857. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1858. { .channel = 42, .freq = 5210, .data[0] = 0x00, .data[1] = 0x11,
  1859. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1860. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1861. { .channel = 46, .freq = 5230, .data[0] = 0x00, .data[1] = 0x00,
  1862. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1863. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1864. { .channel = 36, .freq = 5180, .data[0] = 0x00, .data[1] = 0x11,
  1865. .data[2] = 0x20, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1866. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1867. { .channel = 40, .freq = 5200, .data[0] = 0x00, .data[1] = 0x11,
  1868. .data[2] = 0x10, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1869. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1870. { .channel = 44, .freq = 5220, .data[0] = 0x00, .data[1] = 0x11,
  1871. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1872. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1873. { .channel = 48, .freq = 5240, .data[0] = 0x00, .data[1] = 0x00,
  1874. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1875. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1876. { .channel = 52, .freq = 5260, .data[0] = 0x00, .data[1] = 0x00,
  1877. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1878. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1879. { .channel = 56, .freq = 5280, .data[0] = 0x00, .data[1] = 0x00,
  1880. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1881. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1882. { .channel = 60, .freq = 5300, .data[0] = 0x00, .data[1] = 0x00,
  1883. .data[2] = 0x00, .data[3] = 0x63, .data[4] = 0x3C, .data[5] = 0x77,
  1884. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1885. { .channel = 64, .freq = 5320, .data[0] = 0x00, .data[1] = 0x00,
  1886. .data[2] = 0x00, .data[3] = 0x62, .data[4] = 0x3C, .data[5] = 0x77,
  1887. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1888. { .channel = 100, .freq = 5500, .data[0] = 0x00, .data[1] = 0x00,
  1889. .data[2] = 0x00, .data[3] = 0x30, .data[4] = 0x3C, .data[5] = 0x77,
  1890. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1891. { .channel = 104, .freq = 5520, .data[0] = 0x00, .data[1] = 0x00,
  1892. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1893. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1894. { .channel = 108, .freq = 5540, .data[0] = 0x00, .data[1] = 0x00,
  1895. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1896. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1897. { .channel = 112, .freq = 5560, .data[0] = 0x00, .data[1] = 0x00,
  1898. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1899. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1900. { .channel = 116, .freq = 5580, .data[0] = 0x00, .data[1] = 0x00,
  1901. .data[2] = 0x00, .data[3] = 0x10, .data[4] = 0x3C, .data[5] = 0x77,
  1902. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1903. { .channel = 120, .freq = 5600, .data[0] = 0x00, .data[1] = 0x00,
  1904. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1905. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1906. { .channel = 124, .freq = 5620, .data[0] = 0x00, .data[1] = 0x00,
  1907. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1908. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1909. { .channel = 128, .freq = 5640, .data[0] = 0x00, .data[1] = 0x00,
  1910. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1911. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1912. { .channel = 132, .freq = 5660, .data[0] = 0x00, .data[1] = 0x00,
  1913. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1914. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1915. { .channel = 136, .freq = 5680, .data[0] = 0x00, .data[1] = 0x00,
  1916. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1917. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1918. { .channel = 140, .freq = 5700, .data[0] = 0x00, .data[1] = 0x00,
  1919. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1920. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1921. { .channel = 149, .freq = 5745, .data[0] = 0x00, .data[1] = 0x00,
  1922. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1923. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1924. { .channel = 153, .freq = 5765, .data[0] = 0x00, .data[1] = 0x00,
  1925. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1926. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1927. { .channel = 157, .freq = 5785, .data[0] = 0x00, .data[1] = 0x00,
  1928. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1929. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1930. { .channel = 161, .freq = 5805, .data[0] = 0x00, .data[1] = 0x00,
  1931. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1932. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1933. { .channel = 165, .freq = 5825, .data[0] = 0x00, .data[1] = 0x00,
  1934. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1935. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1936. { .channel = 184, .freq = 4920, .data[0] = 0x55, .data[1] = 0x77,
  1937. .data[2] = 0x90, .data[3] = 0xF7, .data[4] = 0x3C, .data[5] = 0x77,
  1938. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1939. { .channel = 188, .freq = 4940, .data[0] = 0x44, .data[1] = 0x77,
  1940. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1941. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1942. { .channel = 192, .freq = 4960, .data[0] = 0x44, .data[1] = 0x66,
  1943. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1944. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1945. { .channel = 196, .freq = 4980, .data[0] = 0x33, .data[1] = 0x66,
  1946. .data[2] = 0x70, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1947. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1948. { .channel = 200, .freq = 5000, .data[0] = 0x22, .data[1] = 0x55,
  1949. .data[2] = 0x60, .data[3] = 0xD7, .data[4] = 0x3C, .data[5] = 0x77,
  1950. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1951. { .channel = 204, .freq = 5020, .data[0] = 0x22, .data[1] = 0x55,
  1952. .data[2] = 0x60, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1953. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1954. { .channel = 208, .freq = 5040, .data[0] = 0x22, .data[1] = 0x44,
  1955. .data[2] = 0x50, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1956. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1957. { .channel = 212, .freq = 5060, .data[0] = 0x11, .data[1] = 0x44,
  1958. .data[2] = 0x50, .data[3] = 0xA5, .data[4] = 0x3C, .data[5] = 0x77,
  1959. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1960. { .channel = 216, .freq = 5080, .data[0] = 0x00, .data[1] = 0x44,
  1961. .data[2] = 0x40, .data[3] = 0xB6, .data[4] = 0x3C, .data[5] = 0x77,
  1962. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1963. };
  1964. static const struct b206x_channel b2063_chantbl[] = {
  1965. { .channel = 1, .freq = 2412, .data[0] = 0x6F, .data[1] = 0x3C,
  1966. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1967. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1968. .data[10] = 0x80, .data[11] = 0x70, },
  1969. { .channel = 2, .freq = 2417, .data[0] = 0x6F, .data[1] = 0x3C,
  1970. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1971. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1972. .data[10] = 0x80, .data[11] = 0x70, },
  1973. { .channel = 3, .freq = 2422, .data[0] = 0x6F, .data[1] = 0x3C,
  1974. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1975. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1976. .data[10] = 0x80, .data[11] = 0x70, },
  1977. { .channel = 4, .freq = 2427, .data[0] = 0x6F, .data[1] = 0x2C,
  1978. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1979. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1980. .data[10] = 0x80, .data[11] = 0x70, },
  1981. { .channel = 5, .freq = 2432, .data[0] = 0x6F, .data[1] = 0x2C,
  1982. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1983. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1984. .data[10] = 0x80, .data[11] = 0x70, },
  1985. { .channel = 6, .freq = 2437, .data[0] = 0x6F, .data[1] = 0x2C,
  1986. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1987. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1988. .data[10] = 0x80, .data[11] = 0x70, },
  1989. { .channel = 7, .freq = 2442, .data[0] = 0x6F, .data[1] = 0x2C,
  1990. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1991. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1992. .data[10] = 0x80, .data[11] = 0x70, },
  1993. { .channel = 8, .freq = 2447, .data[0] = 0x6F, .data[1] = 0x2C,
  1994. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1995. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1996. .data[10] = 0x80, .data[11] = 0x70, },
  1997. { .channel = 9, .freq = 2452, .data[0] = 0x6F, .data[1] = 0x1C,
  1998. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1999. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2000. .data[10] = 0x80, .data[11] = 0x70, },
  2001. { .channel = 10, .freq = 2457, .data[0] = 0x6F, .data[1] = 0x1C,
  2002. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2003. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2004. .data[10] = 0x80, .data[11] = 0x70, },
  2005. { .channel = 11, .freq = 2462, .data[0] = 0x6E, .data[1] = 0x1C,
  2006. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2007. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2008. .data[10] = 0x80, .data[11] = 0x70, },
  2009. { .channel = 12, .freq = 2467, .data[0] = 0x6E, .data[1] = 0x1C,
  2010. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2011. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2012. .data[10] = 0x80, .data[11] = 0x70, },
  2013. { .channel = 13, .freq = 2472, .data[0] = 0x6E, .data[1] = 0x1C,
  2014. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2015. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2016. .data[10] = 0x80, .data[11] = 0x70, },
  2017. { .channel = 14, .freq = 2484, .data[0] = 0x6E, .data[1] = 0x0C,
  2018. .data[2] = 0x0C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  2019. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  2020. .data[10] = 0x80, .data[11] = 0x70, },
  2021. { .channel = 34, .freq = 5170, .data[0] = 0x6A, .data[1] = 0x0C,
  2022. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x02, .data[5] = 0x05,
  2023. .data[6] = 0x0D, .data[7] = 0x0D, .data[8] = 0x77, .data[9] = 0x80,
  2024. .data[10] = 0x20, .data[11] = 0x00, },
  2025. { .channel = 36, .freq = 5180, .data[0] = 0x6A, .data[1] = 0x0C,
  2026. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x05,
  2027. .data[6] = 0x0D, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  2028. .data[10] = 0x20, .data[11] = 0x00, },
  2029. { .channel = 38, .freq = 5190, .data[0] = 0x6A, .data[1] = 0x0C,
  2030. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2031. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  2032. .data[10] = 0x20, .data[11] = 0x00, },
  2033. { .channel = 40, .freq = 5200, .data[0] = 0x69, .data[1] = 0x0C,
  2034. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2035. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  2036. .data[10] = 0x20, .data[11] = 0x00, },
  2037. { .channel = 42, .freq = 5210, .data[0] = 0x69, .data[1] = 0x0C,
  2038. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  2039. .data[6] = 0x0B, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  2040. .data[10] = 0x20, .data[11] = 0x00, },
  2041. { .channel = 44, .freq = 5220, .data[0] = 0x69, .data[1] = 0x0C,
  2042. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x04,
  2043. .data[6] = 0x0B, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  2044. .data[10] = 0x20, .data[11] = 0x00, },
  2045. { .channel = 46, .freq = 5230, .data[0] = 0x69, .data[1] = 0x0C,
  2046. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  2047. .data[6] = 0x0A, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  2048. .data[10] = 0x20, .data[11] = 0x00, },
  2049. { .channel = 48, .freq = 5240, .data[0] = 0x69, .data[1] = 0x0C,
  2050. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  2051. .data[6] = 0x0A, .data[7] = 0x0A, .data[8] = 0x77, .data[9] = 0x60,
  2052. .data[10] = 0x20, .data[11] = 0x00, },
  2053. { .channel = 52, .freq = 5260, .data[0] = 0x68, .data[1] = 0x0C,
  2054. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x02,
  2055. .data[6] = 0x09, .data[7] = 0x09, .data[8] = 0x77, .data[9] = 0x60,
  2056. .data[10] = 0x20, .data[11] = 0x00, },
  2057. { .channel = 56, .freq = 5280, .data[0] = 0x68, .data[1] = 0x0C,
  2058. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  2059. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2060. .data[10] = 0x10, .data[11] = 0x00, },
  2061. { .channel = 60, .freq = 5300, .data[0] = 0x68, .data[1] = 0x0C,
  2062. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  2063. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2064. .data[10] = 0x10, .data[11] = 0x00, },
  2065. { .channel = 64, .freq = 5320, .data[0] = 0x67, .data[1] = 0x0C,
  2066. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2067. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  2068. .data[10] = 0x10, .data[11] = 0x00, },
  2069. { .channel = 100, .freq = 5500, .data[0] = 0x64, .data[1] = 0x0C,
  2070. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2071. .data[6] = 0x02, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  2072. .data[10] = 0x00, .data[11] = 0x00, },
  2073. { .channel = 104, .freq = 5520, .data[0] = 0x64, .data[1] = 0x0C,
  2074. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2075. .data[6] = 0x01, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  2076. .data[10] = 0x00, .data[11] = 0x00, },
  2077. { .channel = 108, .freq = 5540, .data[0] = 0x63, .data[1] = 0x0C,
  2078. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2079. .data[6] = 0x01, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2080. .data[10] = 0x00, .data[11] = 0x00, },
  2081. { .channel = 112, .freq = 5560, .data[0] = 0x63, .data[1] = 0x0C,
  2082. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2083. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2084. .data[10] = 0x00, .data[11] = 0x00, },
  2085. { .channel = 116, .freq = 5580, .data[0] = 0x62, .data[1] = 0x0C,
  2086. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2087. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  2088. .data[10] = 0x00, .data[11] = 0x00, },
  2089. { .channel = 120, .freq = 5600, .data[0] = 0x62, .data[1] = 0x0C,
  2090. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2091. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2092. .data[10] = 0x00, .data[11] = 0x00, },
  2093. { .channel = 124, .freq = 5620, .data[0] = 0x62, .data[1] = 0x0C,
  2094. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2095. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2096. .data[10] = 0x00, .data[11] = 0x00, },
  2097. { .channel = 128, .freq = 5640, .data[0] = 0x61, .data[1] = 0x0C,
  2098. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2099. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2100. .data[10] = 0x00, .data[11] = 0x00, },
  2101. { .channel = 132, .freq = 5660, .data[0] = 0x61, .data[1] = 0x0C,
  2102. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2103. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2104. .data[10] = 0x00, .data[11] = 0x00, },
  2105. { .channel = 136, .freq = 5680, .data[0] = 0x61, .data[1] = 0x0C,
  2106. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2107. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2108. .data[10] = 0x00, .data[11] = 0x00, },
  2109. { .channel = 140, .freq = 5700, .data[0] = 0x60, .data[1] = 0x0C,
  2110. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2111. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2112. .data[10] = 0x00, .data[11] = 0x00, },
  2113. { .channel = 149, .freq = 5745, .data[0] = 0x60, .data[1] = 0x0C,
  2114. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2115. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2116. .data[10] = 0x00, .data[11] = 0x00, },
  2117. { .channel = 153, .freq = 5765, .data[0] = 0x60, .data[1] = 0x0C,
  2118. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2119. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2120. .data[10] = 0x00, .data[11] = 0x00, },
  2121. { .channel = 157, .freq = 5785, .data[0] = 0x60, .data[1] = 0x0C,
  2122. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2123. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2124. .data[10] = 0x00, .data[11] = 0x00, },
  2125. { .channel = 161, .freq = 5805, .data[0] = 0x60, .data[1] = 0x0C,
  2126. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2127. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2128. .data[10] = 0x00, .data[11] = 0x00, },
  2129. { .channel = 165, .freq = 5825, .data[0] = 0x60, .data[1] = 0x0C,
  2130. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  2131. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  2132. .data[10] = 0x00, .data[11] = 0x00, },
  2133. { .channel = 184, .freq = 4920, .data[0] = 0x6E, .data[1] = 0x0C,
  2134. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0E,
  2135. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xC0,
  2136. .data[10] = 0x50, .data[11] = 0x00, },
  2137. { .channel = 188, .freq = 4940, .data[0] = 0x6E, .data[1] = 0x0C,
  2138. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0D,
  2139. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  2140. .data[10] = 0x50, .data[11] = 0x00, },
  2141. { .channel = 192, .freq = 4960, .data[0] = 0x6E, .data[1] = 0x0C,
  2142. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  2143. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  2144. .data[10] = 0x50, .data[11] = 0x00, },
  2145. { .channel = 196, .freq = 4980, .data[0] = 0x6D, .data[1] = 0x0C,
  2146. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  2147. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2148. .data[10] = 0x40, .data[11] = 0x00, },
  2149. { .channel = 200, .freq = 5000, .data[0] = 0x6D, .data[1] = 0x0C,
  2150. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0B,
  2151. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2152. .data[10] = 0x40, .data[11] = 0x00, },
  2153. { .channel = 204, .freq = 5020, .data[0] = 0x6D, .data[1] = 0x0C,
  2154. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0A,
  2155. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  2156. .data[10] = 0x40, .data[11] = 0x00, },
  2157. { .channel = 208, .freq = 5040, .data[0] = 0x6C, .data[1] = 0x0C,
  2158. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x07, .data[5] = 0x09,
  2159. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2160. .data[10] = 0x40, .data[11] = 0x00, },
  2161. { .channel = 212, .freq = 5060, .data[0] = 0x6C, .data[1] = 0x0C,
  2162. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x06, .data[5] = 0x08,
  2163. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2164. .data[10] = 0x40, .data[11] = 0x00, },
  2165. { .channel = 216, .freq = 5080, .data[0] = 0x6C, .data[1] = 0x0C,
  2166. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x05, .data[5] = 0x08,
  2167. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  2168. .data[10] = 0x40, .data[11] = 0x00, },
  2169. };
  2170. static void lpphy_b2062_reset_pll_bias(struct b43_wldev *dev)
  2171. {
  2172. struct ssb_bus *bus = dev->dev->bus;
  2173. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0xFF);
  2174. udelay(20);
  2175. if (bus->chip_id == 0x5354) {
  2176. b43_radio_write(dev, B2062_N_COMM1, 4);
  2177. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 4);
  2178. } else {
  2179. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0);
  2180. }
  2181. udelay(5);
  2182. }
  2183. static void lpphy_b2062_vco_calib(struct b43_wldev *dev)
  2184. {
  2185. b43_radio_write(dev, B2062_S_RFPLL_CTL21, 0x42);
  2186. b43_radio_write(dev, B2062_S_RFPLL_CTL21, 0x62);
  2187. udelay(200);
  2188. }
  2189. static int lpphy_b2062_tune(struct b43_wldev *dev,
  2190. unsigned int channel)
  2191. {
  2192. struct b43_phy_lp *lpphy = dev->phy.lp;
  2193. struct ssb_bus *bus = dev->dev->bus;
  2194. const struct b206x_channel *chandata = NULL;
  2195. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  2196. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
  2197. int i, err = 0;
  2198. for (i = 0; i < ARRAY_SIZE(b2062_chantbl); i++) {
  2199. if (b2062_chantbl[i].channel == channel) {
  2200. chandata = &b2062_chantbl[i];
  2201. break;
  2202. }
  2203. }
  2204. if (B43_WARN_ON(!chandata))
  2205. return -EINVAL;
  2206. b43_radio_set(dev, B2062_S_RFPLL_CTL14, 0x04);
  2207. b43_radio_write(dev, B2062_N_LGENA_TUNE0, chandata->data[0]);
  2208. b43_radio_write(dev, B2062_N_LGENA_TUNE2, chandata->data[1]);
  2209. b43_radio_write(dev, B2062_N_LGENA_TUNE3, chandata->data[2]);
  2210. b43_radio_write(dev, B2062_N_TX_TUNE, chandata->data[3]);
  2211. b43_radio_write(dev, B2062_S_LGENG_CTL1, chandata->data[4]);
  2212. b43_radio_write(dev, B2062_N_LGENA_CTL5, chandata->data[5]);
  2213. b43_radio_write(dev, B2062_N_LGENA_CTL6, chandata->data[6]);
  2214. b43_radio_write(dev, B2062_N_TX_PGA, chandata->data[7]);
  2215. b43_radio_write(dev, B2062_N_TX_PAD, chandata->data[8]);
  2216. tmp1 = crystal_freq / 1000;
  2217. tmp2 = lpphy->pdiv * 1000;
  2218. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xCC);
  2219. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0x07);
  2220. lpphy_b2062_reset_pll_bias(dev);
  2221. tmp3 = tmp2 * channel2freq_lp(channel);
  2222. if (channel2freq_lp(channel) < 4000)
  2223. tmp3 *= 2;
  2224. tmp4 = 48 * tmp1;
  2225. tmp6 = tmp3 / tmp4;
  2226. tmp7 = tmp3 % tmp4;
  2227. b43_radio_write(dev, B2062_S_RFPLL_CTL26, tmp6);
  2228. tmp5 = tmp7 * 0x100;
  2229. tmp6 = tmp5 / tmp4;
  2230. tmp7 = tmp5 % tmp4;
  2231. b43_radio_write(dev, B2062_S_RFPLL_CTL27, tmp6);
  2232. tmp5 = tmp7 * 0x100;
  2233. tmp6 = tmp5 / tmp4;
  2234. tmp7 = tmp5 % tmp4;
  2235. b43_radio_write(dev, B2062_S_RFPLL_CTL28, tmp6);
  2236. tmp5 = tmp7 * 0x100;
  2237. tmp6 = tmp5 / tmp4;
  2238. tmp7 = tmp5 % tmp4;
  2239. b43_radio_write(dev, B2062_S_RFPLL_CTL29, tmp6 + ((2 * tmp7) / tmp4));
  2240. tmp8 = b43_radio_read(dev, B2062_S_RFPLL_CTL19);
  2241. tmp9 = ((2 * tmp3 * (tmp8 + 1)) + (3 * tmp1)) / (6 * tmp1);
  2242. b43_radio_write(dev, B2062_S_RFPLL_CTL23, (tmp9 >> 8) + 16);
  2243. b43_radio_write(dev, B2062_S_RFPLL_CTL24, tmp9 & 0xFF);
  2244. lpphy_b2062_vco_calib(dev);
  2245. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10) {
  2246. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xFC);
  2247. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0);
  2248. lpphy_b2062_reset_pll_bias(dev);
  2249. lpphy_b2062_vco_calib(dev);
  2250. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10)
  2251. err = -EIO;
  2252. }
  2253. b43_radio_mask(dev, B2062_S_RFPLL_CTL14, ~0x04);
  2254. return err;
  2255. }
  2256. static void lpphy_b2063_vco_calib(struct b43_wldev *dev)
  2257. {
  2258. u16 tmp;
  2259. b43_radio_mask(dev, B2063_PLL_SP1, ~0x40);
  2260. tmp = b43_radio_read(dev, B2063_PLL_JTAG_CALNRST) & 0xF8;
  2261. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp);
  2262. udelay(1);
  2263. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x4);
  2264. udelay(1);
  2265. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x6);
  2266. udelay(1);
  2267. b43_radio_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x7);
  2268. udelay(300);
  2269. b43_radio_set(dev, B2063_PLL_SP1, 0x40);
  2270. }
  2271. static int lpphy_b2063_tune(struct b43_wldev *dev,
  2272. unsigned int channel)
  2273. {
  2274. struct ssb_bus *bus = dev->dev->bus;
  2275. static const struct b206x_channel *chandata = NULL;
  2276. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  2277. u32 freqref, vco_freq, val1, val2, val3, timeout, timeoutref, count;
  2278. u16 old_comm15, scale;
  2279. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
  2280. int i, div = (crystal_freq <= 26000000 ? 1 : 2);
  2281. for (i = 0; i < ARRAY_SIZE(b2063_chantbl); i++) {
  2282. if (b2063_chantbl[i].channel == channel) {
  2283. chandata = &b2063_chantbl[i];
  2284. break;
  2285. }
  2286. }
  2287. if (B43_WARN_ON(!chandata))
  2288. return -EINVAL;
  2289. b43_radio_write(dev, B2063_LOGEN_VCOBUF1, chandata->data[0]);
  2290. b43_radio_write(dev, B2063_LOGEN_MIXER2, chandata->data[1]);
  2291. b43_radio_write(dev, B2063_LOGEN_BUF2, chandata->data[2]);
  2292. b43_radio_write(dev, B2063_LOGEN_RCCR1, chandata->data[3]);
  2293. b43_radio_write(dev, B2063_A_RX_1ST3, chandata->data[4]);
  2294. b43_radio_write(dev, B2063_A_RX_2ND1, chandata->data[5]);
  2295. b43_radio_write(dev, B2063_A_RX_2ND4, chandata->data[6]);
  2296. b43_radio_write(dev, B2063_A_RX_2ND7, chandata->data[7]);
  2297. b43_radio_write(dev, B2063_A_RX_PS6, chandata->data[8]);
  2298. b43_radio_write(dev, B2063_TX_RF_CTL2, chandata->data[9]);
  2299. b43_radio_write(dev, B2063_TX_RF_CTL5, chandata->data[10]);
  2300. b43_radio_write(dev, B2063_PA_CTL11, chandata->data[11]);
  2301. old_comm15 = b43_radio_read(dev, B2063_COMM15);
  2302. b43_radio_set(dev, B2063_COMM15, 0x1E);
  2303. if (chandata->freq > 4000) /* spec says 2484, but 4000 is safer */
  2304. vco_freq = chandata->freq << 1;
  2305. else
  2306. vco_freq = chandata->freq << 2;
  2307. freqref = crystal_freq * 3;
  2308. val1 = lpphy_qdiv_roundup(crystal_freq, 1000000, 16);
  2309. val2 = lpphy_qdiv_roundup(crystal_freq, 1000000 * div, 16);
  2310. val3 = lpphy_qdiv_roundup(vco_freq, 3, 16);
  2311. timeout = ((((8 * crystal_freq) / (div * 5000000)) + 1) >> 1) - 1;
  2312. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB3, 0x2);
  2313. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB6,
  2314. 0xFFF8, timeout >> 2);
  2315. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  2316. 0xFF9F,timeout << 5);
  2317. timeoutref = ((((8 * crystal_freq) / (div * (timeout + 1))) +
  2318. 999999) / 1000000) + 1;
  2319. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB5, timeoutref);
  2320. count = lpphy_qdiv_roundup(val3, val2 + 16, 16);
  2321. count *= (timeout + 1) * (timeoutref + 1);
  2322. count--;
  2323. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  2324. 0xF0, count >> 8);
  2325. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB8, count & 0xFF);
  2326. tmp1 = ((val3 * 62500) / freqref) << 4;
  2327. tmp2 = ((val3 * 62500) % freqref) << 4;
  2328. while (tmp2 >= freqref) {
  2329. tmp1++;
  2330. tmp2 -= freqref;
  2331. }
  2332. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG1, 0xFFE0, tmp1 >> 4);
  2333. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFE0F, tmp1 << 4);
  2334. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFFF0, tmp1 >> 16);
  2335. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG3, (tmp2 >> 8) & 0xFF);
  2336. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG4, tmp2 & 0xFF);
  2337. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF1, 0xB9);
  2338. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF2, 0x88);
  2339. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF3, 0x28);
  2340. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF4, 0x63);
  2341. tmp3 = ((41 * (val3 - 3000)) /1200) + 27;
  2342. tmp4 = lpphy_qdiv_roundup(132000 * tmp1, 8451, 16);
  2343. if ((tmp4 + tmp3 - 1) / tmp3 > 60) {
  2344. scale = 1;
  2345. tmp5 = ((tmp4 + tmp3) / (tmp3 << 1)) - 8;
  2346. } else {
  2347. scale = 0;
  2348. tmp5 = ((tmp4 + (tmp3 >> 1)) / tmp3) - 8;
  2349. }
  2350. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFC0, tmp5);
  2351. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFBF, scale << 6);
  2352. tmp6 = lpphy_qdiv_roundup(100 * val1, val3, 16);
  2353. tmp6 *= (tmp5 * 8) * (scale + 1);
  2354. if (tmp6 > 150)
  2355. tmp6 = 0;
  2356. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFE0, tmp6);
  2357. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFDF, scale << 5);
  2358. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFFFB, 0x4);
  2359. if (crystal_freq > 26000000)
  2360. b43_radio_set(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0x2);
  2361. else
  2362. b43_radio_mask(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFD);
  2363. if (val1 == 45)
  2364. b43_radio_set(dev, B2063_PLL_JTAG_PLL_VCO1, 0x2);
  2365. else
  2366. b43_radio_mask(dev, B2063_PLL_JTAG_PLL_VCO1, 0xFD);
  2367. b43_radio_set(dev, B2063_PLL_SP2, 0x3);
  2368. udelay(1);
  2369. b43_radio_mask(dev, B2063_PLL_SP2, 0xFFFC);
  2370. lpphy_b2063_vco_calib(dev);
  2371. b43_radio_write(dev, B2063_COMM15, old_comm15);
  2372. return 0;
  2373. }
  2374. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  2375. unsigned int new_channel)
  2376. {
  2377. struct b43_phy_lp *lpphy = dev->phy.lp;
  2378. int err;
  2379. if (dev->phy.radio_ver == 0x2063) {
  2380. err = lpphy_b2063_tune(dev, new_channel);
  2381. if (err)
  2382. return err;
  2383. } else {
  2384. err = lpphy_b2062_tune(dev, new_channel);
  2385. if (err)
  2386. return err;
  2387. lpphy_set_analog_filter(dev, new_channel);
  2388. lpphy_adjust_gain_table(dev, channel2freq_lp(new_channel));
  2389. }
  2390. lpphy->channel = new_channel;
  2391. b43_write16(dev, B43_MMIO_CHANNEL, new_channel);
  2392. return 0;
  2393. }
  2394. static int b43_lpphy_op_init(struct b43_wldev *dev)
  2395. {
  2396. int err;
  2397. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  2398. lpphy_baseband_init(dev);
  2399. lpphy_radio_init(dev);
  2400. lpphy_calibrate_rc(dev);
  2401. err = b43_lpphy_op_switch_channel(dev, 7);
  2402. if (err) {
  2403. b43dbg(dev->wl, "Switch to channel 7 failed, error = %d.\n",
  2404. err);
  2405. }
  2406. lpphy_tx_pctl_init(dev);
  2407. lpphy_calibration(dev);
  2408. //TODO ACI init
  2409. return 0;
  2410. }
  2411. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  2412. {
  2413. //TODO
  2414. }
  2415. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  2416. bool ignore_tssi)
  2417. {
  2418. //TODO
  2419. return B43_TXPWR_RES_DONE;
  2420. }
  2421. void b43_lpphy_op_switch_analog(struct b43_wldev *dev, bool on)
  2422. {
  2423. if (on) {
  2424. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVR, 0xfff8);
  2425. } else {
  2426. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0x0007);
  2427. b43_phy_set(dev, B43_LPPHY_AFE_CTL_OVR, 0x0007);
  2428. }
  2429. }
  2430. static void b43_lpphy_op_pwork_15sec(struct b43_wldev *dev)
  2431. {
  2432. //TODO
  2433. }
  2434. const struct b43_phy_operations b43_phyops_lp = {
  2435. .allocate = b43_lpphy_op_allocate,
  2436. .free = b43_lpphy_op_free,
  2437. .prepare_structs = b43_lpphy_op_prepare_structs,
  2438. .init = b43_lpphy_op_init,
  2439. .phy_read = b43_lpphy_op_read,
  2440. .phy_write = b43_lpphy_op_write,
  2441. .phy_maskset = b43_lpphy_op_maskset,
  2442. .radio_read = b43_lpphy_op_radio_read,
  2443. .radio_write = b43_lpphy_op_radio_write,
  2444. .software_rfkill = b43_lpphy_op_software_rfkill,
  2445. .switch_analog = b43_lpphy_op_switch_analog,
  2446. .switch_channel = b43_lpphy_op_switch_channel,
  2447. .get_default_chan = b43_lpphy_op_get_default_chan,
  2448. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  2449. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  2450. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  2451. .pwork_15sec = b43_lpphy_op_pwork_15sec,
  2452. .pwork_60sec = lpphy_calibration,
  2453. };