skge.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/debugfs.h>
  40. #include <linux/sched.h>
  41. #include <linux/seq_file.h>
  42. #include <linux/mii.h>
  43. #include <asm/irq.h>
  44. #include "skge.h"
  45. #define DRV_NAME "skge"
  46. #define DRV_VERSION "1.13"
  47. #define DEFAULT_TX_RING_SIZE 128
  48. #define DEFAULT_RX_RING_SIZE 512
  49. #define MAX_TX_RING_SIZE 1024
  50. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  51. #define MAX_RX_RING_SIZE 4096
  52. #define RX_COPY_THRESHOLD 128
  53. #define RX_BUF_SIZE 1536
  54. #define PHY_RETRIES 1000
  55. #define ETH_JUMBO_MTU 9000
  56. #define TX_WATCHDOG (5 * HZ)
  57. #define NAPI_WEIGHT 64
  58. #define BLINK_MS 250
  59. #define LINK_HZ HZ
  60. #define SKGE_EEPROM_MAGIC 0x9933aabb
  61. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  62. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  63. MODULE_LICENSE("GPL");
  64. MODULE_VERSION(DRV_VERSION);
  65. static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  66. NETIF_MSG_LINK | NETIF_MSG_IFUP |
  67. NETIF_MSG_IFDOWN);
  68. static int debug = -1; /* defaults above */
  69. module_param(debug, int, 0);
  70. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  71. static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  72. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  78. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  79. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  80. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  81. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  82. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  83. { 0 }
  84. };
  85. MODULE_DEVICE_TABLE(pci, skge_id_table);
  86. static int skge_up(struct net_device *dev);
  87. static int skge_down(struct net_device *dev);
  88. static void skge_phy_reset(struct skge_port *skge);
  89. static void skge_tx_clean(struct net_device *dev);
  90. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  91. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  92. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  93. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  94. static void yukon_init(struct skge_hw *hw, int port);
  95. static void genesis_mac_init(struct skge_hw *hw, int port);
  96. static void genesis_link_up(struct skge_port *skge);
  97. static void skge_set_multicast(struct net_device *dev);
  98. /* Avoid conditionals by using array */
  99. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  100. static const int rxqaddr[] = { Q_R1, Q_R2 };
  101. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  102. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  103. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  104. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  105. static int skge_get_regs_len(struct net_device *dev)
  106. {
  107. return 0x4000;
  108. }
  109. /*
  110. * Returns copy of whole control register region
  111. * Note: skip RAM address register because accessing it will
  112. * cause bus hangs!
  113. */
  114. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  115. void *p)
  116. {
  117. const struct skge_port *skge = netdev_priv(dev);
  118. const void __iomem *io = skge->hw->regs;
  119. regs->version = 1;
  120. memset(p, 0, regs->len);
  121. memcpy_fromio(p, io, B3_RAM_ADDR);
  122. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  123. regs->len - B3_RI_WTO_R1);
  124. }
  125. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  126. static u32 wol_supported(const struct skge_hw *hw)
  127. {
  128. if (hw->chip_id == CHIP_ID_GENESIS)
  129. return 0;
  130. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  131. return 0;
  132. return WAKE_MAGIC | WAKE_PHY;
  133. }
  134. static void skge_wol_init(struct skge_port *skge)
  135. {
  136. struct skge_hw *hw = skge->hw;
  137. int port = skge->port;
  138. u16 ctrl;
  139. skge_write16(hw, B0_CTST, CS_RST_CLR);
  140. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  141. /* Turn on Vaux */
  142. skge_write8(hw, B0_POWER_CTRL,
  143. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  144. /* WA code for COMA mode -- clear PHY reset */
  145. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  146. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  147. u32 reg = skge_read32(hw, B2_GP_IO);
  148. reg |= GP_DIR_9;
  149. reg &= ~GP_IO_9;
  150. skge_write32(hw, B2_GP_IO, reg);
  151. }
  152. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  153. GPC_DIS_SLEEP |
  154. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  155. GPC_ANEG_1 | GPC_RST_SET);
  156. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  157. GPC_DIS_SLEEP |
  158. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  159. GPC_ANEG_1 | GPC_RST_CLR);
  160. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  161. /* Force to 10/100 skge_reset will re-enable on resume */
  162. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  163. (PHY_AN_100FULL | PHY_AN_100HALF |
  164. PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
  165. /* no 1000 HD/FD */
  166. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  167. gm_phy_write(hw, port, PHY_MARV_CTRL,
  168. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  169. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  170. /* Set GMAC to no flow control and auto update for speed/duplex */
  171. gma_write16(hw, port, GM_GP_CTRL,
  172. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  173. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  174. /* Set WOL address */
  175. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  176. skge->netdev->dev_addr, ETH_ALEN);
  177. /* Turn on appropriate WOL control bits */
  178. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  179. ctrl = 0;
  180. if (skge->wol & WAKE_PHY)
  181. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  182. else
  183. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  184. if (skge->wol & WAKE_MAGIC)
  185. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  186. else
  187. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  188. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  189. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  190. /* block receiver */
  191. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  192. }
  193. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  194. {
  195. struct skge_port *skge = netdev_priv(dev);
  196. wol->supported = wol_supported(skge->hw);
  197. wol->wolopts = skge->wol;
  198. }
  199. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  200. {
  201. struct skge_port *skge = netdev_priv(dev);
  202. struct skge_hw *hw = skge->hw;
  203. if ((wol->wolopts & ~wol_supported(hw)) ||
  204. !device_can_wakeup(&hw->pdev->dev))
  205. return -EOPNOTSUPP;
  206. skge->wol = wol->wolopts;
  207. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  208. return 0;
  209. }
  210. /* Determine supported/advertised modes based on hardware.
  211. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  212. */
  213. static u32 skge_supported_modes(const struct skge_hw *hw)
  214. {
  215. u32 supported;
  216. if (hw->copper) {
  217. supported = (SUPPORTED_10baseT_Half |
  218. SUPPORTED_10baseT_Full |
  219. SUPPORTED_100baseT_Half |
  220. SUPPORTED_100baseT_Full |
  221. SUPPORTED_1000baseT_Half |
  222. SUPPORTED_1000baseT_Full |
  223. SUPPORTED_Autoneg |
  224. SUPPORTED_TP);
  225. if (hw->chip_id == CHIP_ID_GENESIS)
  226. supported &= ~(SUPPORTED_10baseT_Half |
  227. SUPPORTED_10baseT_Full |
  228. SUPPORTED_100baseT_Half |
  229. SUPPORTED_100baseT_Full);
  230. else if (hw->chip_id == CHIP_ID_YUKON)
  231. supported &= ~SUPPORTED_1000baseT_Half;
  232. } else
  233. supported = (SUPPORTED_1000baseT_Full |
  234. SUPPORTED_1000baseT_Half |
  235. SUPPORTED_FIBRE |
  236. SUPPORTED_Autoneg);
  237. return supported;
  238. }
  239. static int skge_get_settings(struct net_device *dev,
  240. struct ethtool_cmd *ecmd)
  241. {
  242. struct skge_port *skge = netdev_priv(dev);
  243. struct skge_hw *hw = skge->hw;
  244. ecmd->transceiver = XCVR_INTERNAL;
  245. ecmd->supported = skge_supported_modes(hw);
  246. if (hw->copper) {
  247. ecmd->port = PORT_TP;
  248. ecmd->phy_address = hw->phy_addr;
  249. } else
  250. ecmd->port = PORT_FIBRE;
  251. ecmd->advertising = skge->advertising;
  252. ecmd->autoneg = skge->autoneg;
  253. ecmd->speed = skge->speed;
  254. ecmd->duplex = skge->duplex;
  255. return 0;
  256. }
  257. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  258. {
  259. struct skge_port *skge = netdev_priv(dev);
  260. const struct skge_hw *hw = skge->hw;
  261. u32 supported = skge_supported_modes(hw);
  262. int err = 0;
  263. if (ecmd->autoneg == AUTONEG_ENABLE) {
  264. ecmd->advertising = supported;
  265. skge->duplex = -1;
  266. skge->speed = -1;
  267. } else {
  268. u32 setting;
  269. switch (ecmd->speed) {
  270. case SPEED_1000:
  271. if (ecmd->duplex == DUPLEX_FULL)
  272. setting = SUPPORTED_1000baseT_Full;
  273. else if (ecmd->duplex == DUPLEX_HALF)
  274. setting = SUPPORTED_1000baseT_Half;
  275. else
  276. return -EINVAL;
  277. break;
  278. case SPEED_100:
  279. if (ecmd->duplex == DUPLEX_FULL)
  280. setting = SUPPORTED_100baseT_Full;
  281. else if (ecmd->duplex == DUPLEX_HALF)
  282. setting = SUPPORTED_100baseT_Half;
  283. else
  284. return -EINVAL;
  285. break;
  286. case SPEED_10:
  287. if (ecmd->duplex == DUPLEX_FULL)
  288. setting = SUPPORTED_10baseT_Full;
  289. else if (ecmd->duplex == DUPLEX_HALF)
  290. setting = SUPPORTED_10baseT_Half;
  291. else
  292. return -EINVAL;
  293. break;
  294. default:
  295. return -EINVAL;
  296. }
  297. if ((setting & supported) == 0)
  298. return -EINVAL;
  299. skge->speed = ecmd->speed;
  300. skge->duplex = ecmd->duplex;
  301. }
  302. skge->autoneg = ecmd->autoneg;
  303. skge->advertising = ecmd->advertising;
  304. if (netif_running(dev)) {
  305. skge_down(dev);
  306. err = skge_up(dev);
  307. if (err) {
  308. dev_close(dev);
  309. return err;
  310. }
  311. }
  312. return 0;
  313. }
  314. static void skge_get_drvinfo(struct net_device *dev,
  315. struct ethtool_drvinfo *info)
  316. {
  317. struct skge_port *skge = netdev_priv(dev);
  318. strcpy(info->driver, DRV_NAME);
  319. strcpy(info->version, DRV_VERSION);
  320. strcpy(info->fw_version, "N/A");
  321. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  322. }
  323. static const struct skge_stat {
  324. char name[ETH_GSTRING_LEN];
  325. u16 xmac_offset;
  326. u16 gma_offset;
  327. } skge_stats[] = {
  328. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  329. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  330. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  331. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  332. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  333. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  334. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  335. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  336. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  337. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  338. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  339. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  340. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  341. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  342. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  343. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  344. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  345. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  346. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  347. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  348. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  349. };
  350. static int skge_get_sset_count(struct net_device *dev, int sset)
  351. {
  352. switch (sset) {
  353. case ETH_SS_STATS:
  354. return ARRAY_SIZE(skge_stats);
  355. default:
  356. return -EOPNOTSUPP;
  357. }
  358. }
  359. static void skge_get_ethtool_stats(struct net_device *dev,
  360. struct ethtool_stats *stats, u64 *data)
  361. {
  362. struct skge_port *skge = netdev_priv(dev);
  363. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  364. genesis_get_stats(skge, data);
  365. else
  366. yukon_get_stats(skge, data);
  367. }
  368. /* Use hardware MIB variables for critical path statistics and
  369. * transmit feedback not reported at interrupt.
  370. * Other errors are accounted for in interrupt handler.
  371. */
  372. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  373. {
  374. struct skge_port *skge = netdev_priv(dev);
  375. u64 data[ARRAY_SIZE(skge_stats)];
  376. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  377. genesis_get_stats(skge, data);
  378. else
  379. yukon_get_stats(skge, data);
  380. dev->stats.tx_bytes = data[0];
  381. dev->stats.rx_bytes = data[1];
  382. dev->stats.tx_packets = data[2] + data[4] + data[6];
  383. dev->stats.rx_packets = data[3] + data[5] + data[7];
  384. dev->stats.multicast = data[3] + data[5];
  385. dev->stats.collisions = data[10];
  386. dev->stats.tx_aborted_errors = data[12];
  387. return &dev->stats;
  388. }
  389. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  390. {
  391. int i;
  392. switch (stringset) {
  393. case ETH_SS_STATS:
  394. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  395. memcpy(data + i * ETH_GSTRING_LEN,
  396. skge_stats[i].name, ETH_GSTRING_LEN);
  397. break;
  398. }
  399. }
  400. static void skge_get_ring_param(struct net_device *dev,
  401. struct ethtool_ringparam *p)
  402. {
  403. struct skge_port *skge = netdev_priv(dev);
  404. p->rx_max_pending = MAX_RX_RING_SIZE;
  405. p->tx_max_pending = MAX_TX_RING_SIZE;
  406. p->rx_mini_max_pending = 0;
  407. p->rx_jumbo_max_pending = 0;
  408. p->rx_pending = skge->rx_ring.count;
  409. p->tx_pending = skge->tx_ring.count;
  410. p->rx_mini_pending = 0;
  411. p->rx_jumbo_pending = 0;
  412. }
  413. static int skge_set_ring_param(struct net_device *dev,
  414. struct ethtool_ringparam *p)
  415. {
  416. struct skge_port *skge = netdev_priv(dev);
  417. int err = 0;
  418. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  419. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  420. return -EINVAL;
  421. skge->rx_ring.count = p->rx_pending;
  422. skge->tx_ring.count = p->tx_pending;
  423. if (netif_running(dev)) {
  424. skge_down(dev);
  425. err = skge_up(dev);
  426. if (err)
  427. dev_close(dev);
  428. }
  429. return err;
  430. }
  431. static u32 skge_get_msglevel(struct net_device *netdev)
  432. {
  433. struct skge_port *skge = netdev_priv(netdev);
  434. return skge->msg_enable;
  435. }
  436. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  437. {
  438. struct skge_port *skge = netdev_priv(netdev);
  439. skge->msg_enable = value;
  440. }
  441. static int skge_nway_reset(struct net_device *dev)
  442. {
  443. struct skge_port *skge = netdev_priv(dev);
  444. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  445. return -EINVAL;
  446. skge_phy_reset(skge);
  447. return 0;
  448. }
  449. static int skge_set_sg(struct net_device *dev, u32 data)
  450. {
  451. struct skge_port *skge = netdev_priv(dev);
  452. struct skge_hw *hw = skge->hw;
  453. if (hw->chip_id == CHIP_ID_GENESIS && data)
  454. return -EOPNOTSUPP;
  455. return ethtool_op_set_sg(dev, data);
  456. }
  457. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  458. {
  459. struct skge_port *skge = netdev_priv(dev);
  460. struct skge_hw *hw = skge->hw;
  461. if (hw->chip_id == CHIP_ID_GENESIS && data)
  462. return -EOPNOTSUPP;
  463. return ethtool_op_set_tx_csum(dev, data);
  464. }
  465. static u32 skge_get_rx_csum(struct net_device *dev)
  466. {
  467. struct skge_port *skge = netdev_priv(dev);
  468. return skge->rx_csum;
  469. }
  470. /* Only Yukon supports checksum offload. */
  471. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  472. {
  473. struct skge_port *skge = netdev_priv(dev);
  474. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  475. return -EOPNOTSUPP;
  476. skge->rx_csum = data;
  477. return 0;
  478. }
  479. static void skge_get_pauseparam(struct net_device *dev,
  480. struct ethtool_pauseparam *ecmd)
  481. {
  482. struct skge_port *skge = netdev_priv(dev);
  483. ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
  484. (skge->flow_control == FLOW_MODE_SYM_OR_REM));
  485. ecmd->tx_pause = (ecmd->rx_pause ||
  486. (skge->flow_control == FLOW_MODE_LOC_SEND));
  487. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  488. }
  489. static int skge_set_pauseparam(struct net_device *dev,
  490. struct ethtool_pauseparam *ecmd)
  491. {
  492. struct skge_port *skge = netdev_priv(dev);
  493. struct ethtool_pauseparam old;
  494. int err = 0;
  495. skge_get_pauseparam(dev, &old);
  496. if (ecmd->autoneg != old.autoneg)
  497. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  498. else {
  499. if (ecmd->rx_pause && ecmd->tx_pause)
  500. skge->flow_control = FLOW_MODE_SYMMETRIC;
  501. else if (ecmd->rx_pause && !ecmd->tx_pause)
  502. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  503. else if (!ecmd->rx_pause && ecmd->tx_pause)
  504. skge->flow_control = FLOW_MODE_LOC_SEND;
  505. else
  506. skge->flow_control = FLOW_MODE_NONE;
  507. }
  508. if (netif_running(dev)) {
  509. skge_down(dev);
  510. err = skge_up(dev);
  511. if (err) {
  512. dev_close(dev);
  513. return err;
  514. }
  515. }
  516. return 0;
  517. }
  518. /* Chip internal frequency for clock calculations */
  519. static inline u32 hwkhz(const struct skge_hw *hw)
  520. {
  521. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  522. }
  523. /* Chip HZ to microseconds */
  524. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  525. {
  526. return (ticks * 1000) / hwkhz(hw);
  527. }
  528. /* Microseconds to chip HZ */
  529. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  530. {
  531. return hwkhz(hw) * usec / 1000;
  532. }
  533. static int skge_get_coalesce(struct net_device *dev,
  534. struct ethtool_coalesce *ecmd)
  535. {
  536. struct skge_port *skge = netdev_priv(dev);
  537. struct skge_hw *hw = skge->hw;
  538. int port = skge->port;
  539. ecmd->rx_coalesce_usecs = 0;
  540. ecmd->tx_coalesce_usecs = 0;
  541. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  542. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  543. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  544. if (msk & rxirqmask[port])
  545. ecmd->rx_coalesce_usecs = delay;
  546. if (msk & txirqmask[port])
  547. ecmd->tx_coalesce_usecs = delay;
  548. }
  549. return 0;
  550. }
  551. /* Note: interrupt timer is per board, but can turn on/off per port */
  552. static int skge_set_coalesce(struct net_device *dev,
  553. struct ethtool_coalesce *ecmd)
  554. {
  555. struct skge_port *skge = netdev_priv(dev);
  556. struct skge_hw *hw = skge->hw;
  557. int port = skge->port;
  558. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  559. u32 delay = 25;
  560. if (ecmd->rx_coalesce_usecs == 0)
  561. msk &= ~rxirqmask[port];
  562. else if (ecmd->rx_coalesce_usecs < 25 ||
  563. ecmd->rx_coalesce_usecs > 33333)
  564. return -EINVAL;
  565. else {
  566. msk |= rxirqmask[port];
  567. delay = ecmd->rx_coalesce_usecs;
  568. }
  569. if (ecmd->tx_coalesce_usecs == 0)
  570. msk &= ~txirqmask[port];
  571. else if (ecmd->tx_coalesce_usecs < 25 ||
  572. ecmd->tx_coalesce_usecs > 33333)
  573. return -EINVAL;
  574. else {
  575. msk |= txirqmask[port];
  576. delay = min(delay, ecmd->rx_coalesce_usecs);
  577. }
  578. skge_write32(hw, B2_IRQM_MSK, msk);
  579. if (msk == 0)
  580. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  581. else {
  582. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  583. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  584. }
  585. return 0;
  586. }
  587. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  588. static void skge_led(struct skge_port *skge, enum led_mode mode)
  589. {
  590. struct skge_hw *hw = skge->hw;
  591. int port = skge->port;
  592. spin_lock_bh(&hw->phy_lock);
  593. if (hw->chip_id == CHIP_ID_GENESIS) {
  594. switch (mode) {
  595. case LED_MODE_OFF:
  596. if (hw->phy_type == SK_PHY_BCOM)
  597. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  598. else {
  599. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  600. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  601. }
  602. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  603. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  604. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  605. break;
  606. case LED_MODE_ON:
  607. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  608. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  609. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  610. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  611. break;
  612. case LED_MODE_TST:
  613. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  614. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  615. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  616. if (hw->phy_type == SK_PHY_BCOM)
  617. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  618. else {
  619. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  620. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  621. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  622. }
  623. }
  624. } else {
  625. switch (mode) {
  626. case LED_MODE_OFF:
  627. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  628. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  629. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  630. PHY_M_LED_MO_10(MO_LED_OFF) |
  631. PHY_M_LED_MO_100(MO_LED_OFF) |
  632. PHY_M_LED_MO_1000(MO_LED_OFF) |
  633. PHY_M_LED_MO_RX(MO_LED_OFF));
  634. break;
  635. case LED_MODE_ON:
  636. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  637. PHY_M_LED_PULS_DUR(PULS_170MS) |
  638. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  639. PHY_M_LEDC_TX_CTRL |
  640. PHY_M_LEDC_DP_CTRL);
  641. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  642. PHY_M_LED_MO_RX(MO_LED_OFF) |
  643. (skge->speed == SPEED_100 ?
  644. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  645. break;
  646. case LED_MODE_TST:
  647. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  648. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  649. PHY_M_LED_MO_DUP(MO_LED_ON) |
  650. PHY_M_LED_MO_10(MO_LED_ON) |
  651. PHY_M_LED_MO_100(MO_LED_ON) |
  652. PHY_M_LED_MO_1000(MO_LED_ON) |
  653. PHY_M_LED_MO_RX(MO_LED_ON));
  654. }
  655. }
  656. spin_unlock_bh(&hw->phy_lock);
  657. }
  658. /* blink LED's for finding board */
  659. static int skge_phys_id(struct net_device *dev, u32 data)
  660. {
  661. struct skge_port *skge = netdev_priv(dev);
  662. unsigned long ms;
  663. enum led_mode mode = LED_MODE_TST;
  664. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  665. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  666. else
  667. ms = data * 1000;
  668. while (ms > 0) {
  669. skge_led(skge, mode);
  670. mode ^= LED_MODE_TST;
  671. if (msleep_interruptible(BLINK_MS))
  672. break;
  673. ms -= BLINK_MS;
  674. }
  675. /* back to regular LED state */
  676. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  677. return 0;
  678. }
  679. static int skge_get_eeprom_len(struct net_device *dev)
  680. {
  681. struct skge_port *skge = netdev_priv(dev);
  682. u32 reg2;
  683. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  684. return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  685. }
  686. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  687. {
  688. u32 val;
  689. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  690. do {
  691. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  692. } while (!(offset & PCI_VPD_ADDR_F));
  693. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  694. return val;
  695. }
  696. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  697. {
  698. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  699. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  700. offset | PCI_VPD_ADDR_F);
  701. do {
  702. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  703. } while (offset & PCI_VPD_ADDR_F);
  704. }
  705. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  706. u8 *data)
  707. {
  708. struct skge_port *skge = netdev_priv(dev);
  709. struct pci_dev *pdev = skge->hw->pdev;
  710. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  711. int length = eeprom->len;
  712. u16 offset = eeprom->offset;
  713. if (!cap)
  714. return -EINVAL;
  715. eeprom->magic = SKGE_EEPROM_MAGIC;
  716. while (length > 0) {
  717. u32 val = skge_vpd_read(pdev, cap, offset);
  718. int n = min_t(int, length, sizeof(val));
  719. memcpy(data, &val, n);
  720. length -= n;
  721. data += n;
  722. offset += n;
  723. }
  724. return 0;
  725. }
  726. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  727. u8 *data)
  728. {
  729. struct skge_port *skge = netdev_priv(dev);
  730. struct pci_dev *pdev = skge->hw->pdev;
  731. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  732. int length = eeprom->len;
  733. u16 offset = eeprom->offset;
  734. if (!cap)
  735. return -EINVAL;
  736. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  737. return -EINVAL;
  738. while (length > 0) {
  739. u32 val;
  740. int n = min_t(int, length, sizeof(val));
  741. if (n < sizeof(val))
  742. val = skge_vpd_read(pdev, cap, offset);
  743. memcpy(&val, data, n);
  744. skge_vpd_write(pdev, cap, offset, val);
  745. length -= n;
  746. data += n;
  747. offset += n;
  748. }
  749. return 0;
  750. }
  751. static const struct ethtool_ops skge_ethtool_ops = {
  752. .get_settings = skge_get_settings,
  753. .set_settings = skge_set_settings,
  754. .get_drvinfo = skge_get_drvinfo,
  755. .get_regs_len = skge_get_regs_len,
  756. .get_regs = skge_get_regs,
  757. .get_wol = skge_get_wol,
  758. .set_wol = skge_set_wol,
  759. .get_msglevel = skge_get_msglevel,
  760. .set_msglevel = skge_set_msglevel,
  761. .nway_reset = skge_nway_reset,
  762. .get_link = ethtool_op_get_link,
  763. .get_eeprom_len = skge_get_eeprom_len,
  764. .get_eeprom = skge_get_eeprom,
  765. .set_eeprom = skge_set_eeprom,
  766. .get_ringparam = skge_get_ring_param,
  767. .set_ringparam = skge_set_ring_param,
  768. .get_pauseparam = skge_get_pauseparam,
  769. .set_pauseparam = skge_set_pauseparam,
  770. .get_coalesce = skge_get_coalesce,
  771. .set_coalesce = skge_set_coalesce,
  772. .set_sg = skge_set_sg,
  773. .set_tx_csum = skge_set_tx_csum,
  774. .get_rx_csum = skge_get_rx_csum,
  775. .set_rx_csum = skge_set_rx_csum,
  776. .get_strings = skge_get_strings,
  777. .phys_id = skge_phys_id,
  778. .get_sset_count = skge_get_sset_count,
  779. .get_ethtool_stats = skge_get_ethtool_stats,
  780. };
  781. /*
  782. * Allocate ring elements and chain them together
  783. * One-to-one association of board descriptors with ring elements
  784. */
  785. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  786. {
  787. struct skge_tx_desc *d;
  788. struct skge_element *e;
  789. int i;
  790. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  791. if (!ring->start)
  792. return -ENOMEM;
  793. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  794. e->desc = d;
  795. if (i == ring->count - 1) {
  796. e->next = ring->start;
  797. d->next_offset = base;
  798. } else {
  799. e->next = e + 1;
  800. d->next_offset = base + (i+1) * sizeof(*d);
  801. }
  802. }
  803. ring->to_use = ring->to_clean = ring->start;
  804. return 0;
  805. }
  806. /* Allocate and setup a new buffer for receiving */
  807. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  808. struct sk_buff *skb, unsigned int bufsize)
  809. {
  810. struct skge_rx_desc *rd = e->desc;
  811. u64 map;
  812. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  813. PCI_DMA_FROMDEVICE);
  814. rd->dma_lo = map;
  815. rd->dma_hi = map >> 32;
  816. e->skb = skb;
  817. rd->csum1_start = ETH_HLEN;
  818. rd->csum2_start = ETH_HLEN;
  819. rd->csum1 = 0;
  820. rd->csum2 = 0;
  821. wmb();
  822. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  823. pci_unmap_addr_set(e, mapaddr, map);
  824. pci_unmap_len_set(e, maplen, bufsize);
  825. }
  826. /* Resume receiving using existing skb,
  827. * Note: DMA address is not changed by chip.
  828. * MTU not changed while receiver active.
  829. */
  830. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  831. {
  832. struct skge_rx_desc *rd = e->desc;
  833. rd->csum2 = 0;
  834. rd->csum2_start = ETH_HLEN;
  835. wmb();
  836. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  837. }
  838. /* Free all buffers in receive ring, assumes receiver stopped */
  839. static void skge_rx_clean(struct skge_port *skge)
  840. {
  841. struct skge_hw *hw = skge->hw;
  842. struct skge_ring *ring = &skge->rx_ring;
  843. struct skge_element *e;
  844. e = ring->start;
  845. do {
  846. struct skge_rx_desc *rd = e->desc;
  847. rd->control = 0;
  848. if (e->skb) {
  849. pci_unmap_single(hw->pdev,
  850. pci_unmap_addr(e, mapaddr),
  851. pci_unmap_len(e, maplen),
  852. PCI_DMA_FROMDEVICE);
  853. dev_kfree_skb(e->skb);
  854. e->skb = NULL;
  855. }
  856. } while ((e = e->next) != ring->start);
  857. }
  858. /* Allocate buffers for receive ring
  859. * For receive: to_clean is next received frame.
  860. */
  861. static int skge_rx_fill(struct net_device *dev)
  862. {
  863. struct skge_port *skge = netdev_priv(dev);
  864. struct skge_ring *ring = &skge->rx_ring;
  865. struct skge_element *e;
  866. e = ring->start;
  867. do {
  868. struct sk_buff *skb;
  869. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  870. GFP_KERNEL);
  871. if (!skb)
  872. return -ENOMEM;
  873. skb_reserve(skb, NET_IP_ALIGN);
  874. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  875. } while ((e = e->next) != ring->start);
  876. ring->to_clean = ring->start;
  877. return 0;
  878. }
  879. static const char *skge_pause(enum pause_status status)
  880. {
  881. switch (status) {
  882. case FLOW_STAT_NONE:
  883. return "none";
  884. case FLOW_STAT_REM_SEND:
  885. return "rx only";
  886. case FLOW_STAT_LOC_SEND:
  887. return "tx_only";
  888. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  889. return "both";
  890. default:
  891. return "indeterminated";
  892. }
  893. }
  894. static void skge_link_up(struct skge_port *skge)
  895. {
  896. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  897. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  898. netif_carrier_on(skge->netdev);
  899. netif_wake_queue(skge->netdev);
  900. netif_info(skge, link, skge->netdev,
  901. "Link is up at %d Mbps, %s duplex, flow control %s\n",
  902. skge->speed,
  903. skge->duplex == DUPLEX_FULL ? "full" : "half",
  904. skge_pause(skge->flow_status));
  905. }
  906. static void skge_link_down(struct skge_port *skge)
  907. {
  908. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  909. netif_carrier_off(skge->netdev);
  910. netif_stop_queue(skge->netdev);
  911. netif_info(skge, link, skge->netdev, "Link is down\n");
  912. }
  913. static void xm_link_down(struct skge_hw *hw, int port)
  914. {
  915. struct net_device *dev = hw->dev[port];
  916. struct skge_port *skge = netdev_priv(dev);
  917. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  918. if (netif_carrier_ok(dev))
  919. skge_link_down(skge);
  920. }
  921. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  922. {
  923. int i;
  924. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  925. *val = xm_read16(hw, port, XM_PHY_DATA);
  926. if (hw->phy_type == SK_PHY_XMAC)
  927. goto ready;
  928. for (i = 0; i < PHY_RETRIES; i++) {
  929. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  930. goto ready;
  931. udelay(1);
  932. }
  933. return -ETIMEDOUT;
  934. ready:
  935. *val = xm_read16(hw, port, XM_PHY_DATA);
  936. return 0;
  937. }
  938. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  939. {
  940. u16 v = 0;
  941. if (__xm_phy_read(hw, port, reg, &v))
  942. pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
  943. return v;
  944. }
  945. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  946. {
  947. int i;
  948. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  949. for (i = 0; i < PHY_RETRIES; i++) {
  950. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  951. goto ready;
  952. udelay(1);
  953. }
  954. return -EIO;
  955. ready:
  956. xm_write16(hw, port, XM_PHY_DATA, val);
  957. for (i = 0; i < PHY_RETRIES; i++) {
  958. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  959. return 0;
  960. udelay(1);
  961. }
  962. return -ETIMEDOUT;
  963. }
  964. static void genesis_init(struct skge_hw *hw)
  965. {
  966. /* set blink source counter */
  967. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  968. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  969. /* configure mac arbiter */
  970. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  971. /* configure mac arbiter timeout values */
  972. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  973. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  974. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  975. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  976. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  977. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  978. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  979. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  980. /* configure packet arbiter timeout */
  981. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  982. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  983. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  984. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  985. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  986. }
  987. static void genesis_reset(struct skge_hw *hw, int port)
  988. {
  989. const u8 zero[8] = { 0 };
  990. u32 reg;
  991. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  992. /* reset the statistics module */
  993. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  994. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  995. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  996. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  997. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  998. /* disable Broadcom PHY IRQ */
  999. if (hw->phy_type == SK_PHY_BCOM)
  1000. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  1001. xm_outhash(hw, port, XM_HSM, zero);
  1002. /* Flush TX and RX fifo */
  1003. reg = xm_read32(hw, port, XM_MODE);
  1004. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  1005. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  1006. }
  1007. /* Convert mode to MII values */
  1008. static const u16 phy_pause_map[] = {
  1009. [FLOW_MODE_NONE] = 0,
  1010. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1011. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1012. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1013. };
  1014. /* special defines for FIBER (88E1011S only) */
  1015. static const u16 fiber_pause_map[] = {
  1016. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1017. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1018. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1019. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1020. };
  1021. /* Check status of Broadcom phy link */
  1022. static void bcom_check_link(struct skge_hw *hw, int port)
  1023. {
  1024. struct net_device *dev = hw->dev[port];
  1025. struct skge_port *skge = netdev_priv(dev);
  1026. u16 status;
  1027. /* read twice because of latch */
  1028. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1029. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1030. if ((status & PHY_ST_LSYNC) == 0) {
  1031. xm_link_down(hw, port);
  1032. return;
  1033. }
  1034. if (skge->autoneg == AUTONEG_ENABLE) {
  1035. u16 lpa, aux;
  1036. if (!(status & PHY_ST_AN_OVER))
  1037. return;
  1038. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1039. if (lpa & PHY_B_AN_RF) {
  1040. netdev_notice(dev, "remote fault\n");
  1041. return;
  1042. }
  1043. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1044. /* Check Duplex mismatch */
  1045. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1046. case PHY_B_RES_1000FD:
  1047. skge->duplex = DUPLEX_FULL;
  1048. break;
  1049. case PHY_B_RES_1000HD:
  1050. skge->duplex = DUPLEX_HALF;
  1051. break;
  1052. default:
  1053. netdev_notice(dev, "duplex mismatch\n");
  1054. return;
  1055. }
  1056. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1057. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1058. case PHY_B_AS_PAUSE_MSK:
  1059. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1060. break;
  1061. case PHY_B_AS_PRR:
  1062. skge->flow_status = FLOW_STAT_REM_SEND;
  1063. break;
  1064. case PHY_B_AS_PRT:
  1065. skge->flow_status = FLOW_STAT_LOC_SEND;
  1066. break;
  1067. default:
  1068. skge->flow_status = FLOW_STAT_NONE;
  1069. }
  1070. skge->speed = SPEED_1000;
  1071. }
  1072. if (!netif_carrier_ok(dev))
  1073. genesis_link_up(skge);
  1074. }
  1075. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1076. * Phy on for 100 or 10Mbit operation
  1077. */
  1078. static void bcom_phy_init(struct skge_port *skge)
  1079. {
  1080. struct skge_hw *hw = skge->hw;
  1081. int port = skge->port;
  1082. int i;
  1083. u16 id1, r, ext, ctl;
  1084. /* magic workaround patterns for Broadcom */
  1085. static const struct {
  1086. u16 reg;
  1087. u16 val;
  1088. } A1hack[] = {
  1089. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1090. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1091. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1092. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1093. }, C0hack[] = {
  1094. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1095. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1096. };
  1097. /* read Id from external PHY (all have the same address) */
  1098. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1099. /* Optimize MDIO transfer by suppressing preamble. */
  1100. r = xm_read16(hw, port, XM_MMU_CMD);
  1101. r |= XM_MMU_NO_PRE;
  1102. xm_write16(hw, port, XM_MMU_CMD, r);
  1103. switch (id1) {
  1104. case PHY_BCOM_ID1_C0:
  1105. /*
  1106. * Workaround BCOM Errata for the C0 type.
  1107. * Write magic patterns to reserved registers.
  1108. */
  1109. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1110. xm_phy_write(hw, port,
  1111. C0hack[i].reg, C0hack[i].val);
  1112. break;
  1113. case PHY_BCOM_ID1_A1:
  1114. /*
  1115. * Workaround BCOM Errata for the A1 type.
  1116. * Write magic patterns to reserved registers.
  1117. */
  1118. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1119. xm_phy_write(hw, port,
  1120. A1hack[i].reg, A1hack[i].val);
  1121. break;
  1122. }
  1123. /*
  1124. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1125. * Disable Power Management after reset.
  1126. */
  1127. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1128. r |= PHY_B_AC_DIS_PM;
  1129. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1130. /* Dummy read */
  1131. xm_read16(hw, port, XM_ISRC);
  1132. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1133. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1134. if (skge->autoneg == AUTONEG_ENABLE) {
  1135. /*
  1136. * Workaround BCOM Errata #1 for the C5 type.
  1137. * 1000Base-T Link Acquisition Failure in Slave Mode
  1138. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1139. */
  1140. u16 adv = PHY_B_1000C_RD;
  1141. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1142. adv |= PHY_B_1000C_AHD;
  1143. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1144. adv |= PHY_B_1000C_AFD;
  1145. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1146. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1147. } else {
  1148. if (skge->duplex == DUPLEX_FULL)
  1149. ctl |= PHY_CT_DUP_MD;
  1150. /* Force to slave */
  1151. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1152. }
  1153. /* Set autonegotiation pause parameters */
  1154. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1155. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1156. /* Handle Jumbo frames */
  1157. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1158. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1159. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1160. ext |= PHY_B_PEC_HIGH_LA;
  1161. }
  1162. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1163. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1164. /* Use link status change interrupt */
  1165. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1166. }
  1167. static void xm_phy_init(struct skge_port *skge)
  1168. {
  1169. struct skge_hw *hw = skge->hw;
  1170. int port = skge->port;
  1171. u16 ctrl = 0;
  1172. if (skge->autoneg == AUTONEG_ENABLE) {
  1173. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1174. ctrl |= PHY_X_AN_HD;
  1175. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1176. ctrl |= PHY_X_AN_FD;
  1177. ctrl |= fiber_pause_map[skge->flow_control];
  1178. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1179. /* Restart Auto-negotiation */
  1180. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1181. } else {
  1182. /* Set DuplexMode in Config register */
  1183. if (skge->duplex == DUPLEX_FULL)
  1184. ctrl |= PHY_CT_DUP_MD;
  1185. /*
  1186. * Do NOT enable Auto-negotiation here. This would hold
  1187. * the link down because no IDLEs are transmitted
  1188. */
  1189. }
  1190. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1191. /* Poll PHY for status changes */
  1192. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1193. }
  1194. static int xm_check_link(struct net_device *dev)
  1195. {
  1196. struct skge_port *skge = netdev_priv(dev);
  1197. struct skge_hw *hw = skge->hw;
  1198. int port = skge->port;
  1199. u16 status;
  1200. /* read twice because of latch */
  1201. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1202. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1203. if ((status & PHY_ST_LSYNC) == 0) {
  1204. xm_link_down(hw, port);
  1205. return 0;
  1206. }
  1207. if (skge->autoneg == AUTONEG_ENABLE) {
  1208. u16 lpa, res;
  1209. if (!(status & PHY_ST_AN_OVER))
  1210. return 0;
  1211. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1212. if (lpa & PHY_B_AN_RF) {
  1213. netdev_notice(dev, "remote fault\n");
  1214. return 0;
  1215. }
  1216. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1217. /* Check Duplex mismatch */
  1218. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1219. case PHY_X_RS_FD:
  1220. skge->duplex = DUPLEX_FULL;
  1221. break;
  1222. case PHY_X_RS_HD:
  1223. skge->duplex = DUPLEX_HALF;
  1224. break;
  1225. default:
  1226. netdev_notice(dev, "duplex mismatch\n");
  1227. return 0;
  1228. }
  1229. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1230. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1231. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1232. (lpa & PHY_X_P_SYM_MD))
  1233. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1234. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1235. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1236. /* Enable PAUSE receive, disable PAUSE transmit */
  1237. skge->flow_status = FLOW_STAT_REM_SEND;
  1238. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1239. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1240. /* Disable PAUSE receive, enable PAUSE transmit */
  1241. skge->flow_status = FLOW_STAT_LOC_SEND;
  1242. else
  1243. skge->flow_status = FLOW_STAT_NONE;
  1244. skge->speed = SPEED_1000;
  1245. }
  1246. if (!netif_carrier_ok(dev))
  1247. genesis_link_up(skge);
  1248. return 1;
  1249. }
  1250. /* Poll to check for link coming up.
  1251. *
  1252. * Since internal PHY is wired to a level triggered pin, can't
  1253. * get an interrupt when carrier is detected, need to poll for
  1254. * link coming up.
  1255. */
  1256. static void xm_link_timer(unsigned long arg)
  1257. {
  1258. struct skge_port *skge = (struct skge_port *) arg;
  1259. struct net_device *dev = skge->netdev;
  1260. struct skge_hw *hw = skge->hw;
  1261. int port = skge->port;
  1262. int i;
  1263. unsigned long flags;
  1264. if (!netif_running(dev))
  1265. return;
  1266. spin_lock_irqsave(&hw->phy_lock, flags);
  1267. /*
  1268. * Verify that the link by checking GPIO register three times.
  1269. * This pin has the signal from the link_sync pin connected to it.
  1270. */
  1271. for (i = 0; i < 3; i++) {
  1272. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1273. goto link_down;
  1274. }
  1275. /* Re-enable interrupt to detect link down */
  1276. if (xm_check_link(dev)) {
  1277. u16 msk = xm_read16(hw, port, XM_IMSK);
  1278. msk &= ~XM_IS_INP_ASS;
  1279. xm_write16(hw, port, XM_IMSK, msk);
  1280. xm_read16(hw, port, XM_ISRC);
  1281. } else {
  1282. link_down:
  1283. mod_timer(&skge->link_timer,
  1284. round_jiffies(jiffies + LINK_HZ));
  1285. }
  1286. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1287. }
  1288. static void genesis_mac_init(struct skge_hw *hw, int port)
  1289. {
  1290. struct net_device *dev = hw->dev[port];
  1291. struct skge_port *skge = netdev_priv(dev);
  1292. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1293. int i;
  1294. u32 r;
  1295. const u8 zero[6] = { 0 };
  1296. for (i = 0; i < 10; i++) {
  1297. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1298. MFF_SET_MAC_RST);
  1299. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1300. goto reset_ok;
  1301. udelay(1);
  1302. }
  1303. netdev_warn(dev, "genesis reset failed\n");
  1304. reset_ok:
  1305. /* Unreset the XMAC. */
  1306. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1307. /*
  1308. * Perform additional initialization for external PHYs,
  1309. * namely for the 1000baseTX cards that use the XMAC's
  1310. * GMII mode.
  1311. */
  1312. if (hw->phy_type != SK_PHY_XMAC) {
  1313. /* Take external Phy out of reset */
  1314. r = skge_read32(hw, B2_GP_IO);
  1315. if (port == 0)
  1316. r |= GP_DIR_0|GP_IO_0;
  1317. else
  1318. r |= GP_DIR_2|GP_IO_2;
  1319. skge_write32(hw, B2_GP_IO, r);
  1320. /* Enable GMII interface */
  1321. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1322. }
  1323. switch (hw->phy_type) {
  1324. case SK_PHY_XMAC:
  1325. xm_phy_init(skge);
  1326. break;
  1327. case SK_PHY_BCOM:
  1328. bcom_phy_init(skge);
  1329. bcom_check_link(hw, port);
  1330. }
  1331. /* Set Station Address */
  1332. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1333. /* We don't use match addresses so clear */
  1334. for (i = 1; i < 16; i++)
  1335. xm_outaddr(hw, port, XM_EXM(i), zero);
  1336. /* Clear MIB counters */
  1337. xm_write16(hw, port, XM_STAT_CMD,
  1338. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1339. /* Clear two times according to Errata #3 */
  1340. xm_write16(hw, port, XM_STAT_CMD,
  1341. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1342. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1343. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1344. /* We don't need the FCS appended to the packet. */
  1345. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1346. if (jumbo)
  1347. r |= XM_RX_BIG_PK_OK;
  1348. if (skge->duplex == DUPLEX_HALF) {
  1349. /*
  1350. * If in manual half duplex mode the other side might be in
  1351. * full duplex mode, so ignore if a carrier extension is not seen
  1352. * on frames received
  1353. */
  1354. r |= XM_RX_DIS_CEXT;
  1355. }
  1356. xm_write16(hw, port, XM_RX_CMD, r);
  1357. /* We want short frames padded to 60 bytes. */
  1358. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1359. /* Increase threshold for jumbo frames on dual port */
  1360. if (hw->ports > 1 && jumbo)
  1361. xm_write16(hw, port, XM_TX_THR, 1020);
  1362. else
  1363. xm_write16(hw, port, XM_TX_THR, 512);
  1364. /*
  1365. * Enable the reception of all error frames. This is is
  1366. * a necessary evil due to the design of the XMAC. The
  1367. * XMAC's receive FIFO is only 8K in size, however jumbo
  1368. * frames can be up to 9000 bytes in length. When bad
  1369. * frame filtering is enabled, the XMAC's RX FIFO operates
  1370. * in 'store and forward' mode. For this to work, the
  1371. * entire frame has to fit into the FIFO, but that means
  1372. * that jumbo frames larger than 8192 bytes will be
  1373. * truncated. Disabling all bad frame filtering causes
  1374. * the RX FIFO to operate in streaming mode, in which
  1375. * case the XMAC will start transferring frames out of the
  1376. * RX FIFO as soon as the FIFO threshold is reached.
  1377. */
  1378. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1379. /*
  1380. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1381. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1382. * and 'Octets Rx OK Hi Cnt Ov'.
  1383. */
  1384. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1385. /*
  1386. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1387. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1388. * and 'Octets Tx OK Hi Cnt Ov'.
  1389. */
  1390. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1391. /* Configure MAC arbiter */
  1392. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1393. /* configure timeout values */
  1394. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1395. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1396. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1397. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1398. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1399. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1400. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1401. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1402. /* Configure Rx MAC FIFO */
  1403. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1404. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1405. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1406. /* Configure Tx MAC FIFO */
  1407. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1408. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1409. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1410. if (jumbo) {
  1411. /* Enable frame flushing if jumbo frames used */
  1412. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1413. } else {
  1414. /* enable timeout timers if normal frames */
  1415. skge_write16(hw, B3_PA_CTRL,
  1416. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1417. }
  1418. }
  1419. static void genesis_stop(struct skge_port *skge)
  1420. {
  1421. struct skge_hw *hw = skge->hw;
  1422. int port = skge->port;
  1423. unsigned retries = 1000;
  1424. u16 cmd;
  1425. /* Disable Tx and Rx */
  1426. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1427. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1428. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1429. genesis_reset(hw, port);
  1430. /* Clear Tx packet arbiter timeout IRQ */
  1431. skge_write16(hw, B3_PA_CTRL,
  1432. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1433. /* Reset the MAC */
  1434. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1435. do {
  1436. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1437. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1438. break;
  1439. } while (--retries > 0);
  1440. /* For external PHYs there must be special handling */
  1441. if (hw->phy_type != SK_PHY_XMAC) {
  1442. u32 reg = skge_read32(hw, B2_GP_IO);
  1443. if (port == 0) {
  1444. reg |= GP_DIR_0;
  1445. reg &= ~GP_IO_0;
  1446. } else {
  1447. reg |= GP_DIR_2;
  1448. reg &= ~GP_IO_2;
  1449. }
  1450. skge_write32(hw, B2_GP_IO, reg);
  1451. skge_read32(hw, B2_GP_IO);
  1452. }
  1453. xm_write16(hw, port, XM_MMU_CMD,
  1454. xm_read16(hw, port, XM_MMU_CMD)
  1455. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1456. xm_read16(hw, port, XM_MMU_CMD);
  1457. }
  1458. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1459. {
  1460. struct skge_hw *hw = skge->hw;
  1461. int port = skge->port;
  1462. int i;
  1463. unsigned long timeout = jiffies + HZ;
  1464. xm_write16(hw, port,
  1465. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1466. /* wait for update to complete */
  1467. while (xm_read16(hw, port, XM_STAT_CMD)
  1468. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1469. if (time_after(jiffies, timeout))
  1470. break;
  1471. udelay(10);
  1472. }
  1473. /* special case for 64 bit octet counter */
  1474. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1475. | xm_read32(hw, port, XM_TXO_OK_LO);
  1476. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1477. | xm_read32(hw, port, XM_RXO_OK_LO);
  1478. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1479. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1480. }
  1481. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1482. {
  1483. struct net_device *dev = hw->dev[port];
  1484. struct skge_port *skge = netdev_priv(dev);
  1485. u16 status = xm_read16(hw, port, XM_ISRC);
  1486. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1487. "mac interrupt status 0x%x\n", status);
  1488. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1489. xm_link_down(hw, port);
  1490. mod_timer(&skge->link_timer, jiffies + 1);
  1491. }
  1492. if (status & XM_IS_TXF_UR) {
  1493. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1494. ++dev->stats.tx_fifo_errors;
  1495. }
  1496. }
  1497. static void genesis_link_up(struct skge_port *skge)
  1498. {
  1499. struct skge_hw *hw = skge->hw;
  1500. int port = skge->port;
  1501. u16 cmd, msk;
  1502. u32 mode;
  1503. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1504. /*
  1505. * enabling pause frame reception is required for 1000BT
  1506. * because the XMAC is not reset if the link is going down
  1507. */
  1508. if (skge->flow_status == FLOW_STAT_NONE ||
  1509. skge->flow_status == FLOW_STAT_LOC_SEND)
  1510. /* Disable Pause Frame Reception */
  1511. cmd |= XM_MMU_IGN_PF;
  1512. else
  1513. /* Enable Pause Frame Reception */
  1514. cmd &= ~XM_MMU_IGN_PF;
  1515. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1516. mode = xm_read32(hw, port, XM_MODE);
  1517. if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
  1518. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1519. /*
  1520. * Configure Pause Frame Generation
  1521. * Use internal and external Pause Frame Generation.
  1522. * Sending pause frames is edge triggered.
  1523. * Send a Pause frame with the maximum pause time if
  1524. * internal oder external FIFO full condition occurs.
  1525. * Send a zero pause time frame to re-start transmission.
  1526. */
  1527. /* XM_PAUSE_DA = '010000C28001' (default) */
  1528. /* XM_MAC_PTIME = 0xffff (maximum) */
  1529. /* remember this value is defined in big endian (!) */
  1530. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1531. mode |= XM_PAUSE_MODE;
  1532. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1533. } else {
  1534. /*
  1535. * disable pause frame generation is required for 1000BT
  1536. * because the XMAC is not reset if the link is going down
  1537. */
  1538. /* Disable Pause Mode in Mode Register */
  1539. mode &= ~XM_PAUSE_MODE;
  1540. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1541. }
  1542. xm_write32(hw, port, XM_MODE, mode);
  1543. /* Turn on detection of Tx underrun */
  1544. msk = xm_read16(hw, port, XM_IMSK);
  1545. msk &= ~XM_IS_TXF_UR;
  1546. xm_write16(hw, port, XM_IMSK, msk);
  1547. xm_read16(hw, port, XM_ISRC);
  1548. /* get MMU Command Reg. */
  1549. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1550. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1551. cmd |= XM_MMU_GMII_FD;
  1552. /*
  1553. * Workaround BCOM Errata (#10523) for all BCom Phys
  1554. * Enable Power Management after link up
  1555. */
  1556. if (hw->phy_type == SK_PHY_BCOM) {
  1557. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1558. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1559. & ~PHY_B_AC_DIS_PM);
  1560. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1561. }
  1562. /* enable Rx/Tx */
  1563. xm_write16(hw, port, XM_MMU_CMD,
  1564. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1565. skge_link_up(skge);
  1566. }
  1567. static inline void bcom_phy_intr(struct skge_port *skge)
  1568. {
  1569. struct skge_hw *hw = skge->hw;
  1570. int port = skge->port;
  1571. u16 isrc;
  1572. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1573. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1574. "phy interrupt status 0x%x\n", isrc);
  1575. if (isrc & PHY_B_IS_PSE)
  1576. pr_err("%s: uncorrectable pair swap error\n",
  1577. hw->dev[port]->name);
  1578. /* Workaround BCom Errata:
  1579. * enable and disable loopback mode if "NO HCD" occurs.
  1580. */
  1581. if (isrc & PHY_B_IS_NO_HDCL) {
  1582. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1583. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1584. ctrl | PHY_CT_LOOP);
  1585. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1586. ctrl & ~PHY_CT_LOOP);
  1587. }
  1588. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1589. bcom_check_link(hw, port);
  1590. }
  1591. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1592. {
  1593. int i;
  1594. gma_write16(hw, port, GM_SMI_DATA, val);
  1595. gma_write16(hw, port, GM_SMI_CTRL,
  1596. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1597. for (i = 0; i < PHY_RETRIES; i++) {
  1598. udelay(1);
  1599. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1600. return 0;
  1601. }
  1602. pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
  1603. return -EIO;
  1604. }
  1605. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1606. {
  1607. int i;
  1608. gma_write16(hw, port, GM_SMI_CTRL,
  1609. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1610. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1611. for (i = 0; i < PHY_RETRIES; i++) {
  1612. udelay(1);
  1613. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1614. goto ready;
  1615. }
  1616. return -ETIMEDOUT;
  1617. ready:
  1618. *val = gma_read16(hw, port, GM_SMI_DATA);
  1619. return 0;
  1620. }
  1621. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1622. {
  1623. u16 v = 0;
  1624. if (__gm_phy_read(hw, port, reg, &v))
  1625. pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
  1626. return v;
  1627. }
  1628. /* Marvell Phy Initialization */
  1629. static void yukon_init(struct skge_hw *hw, int port)
  1630. {
  1631. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1632. u16 ctrl, ct1000, adv;
  1633. if (skge->autoneg == AUTONEG_ENABLE) {
  1634. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1635. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1636. PHY_M_EC_MAC_S_MSK);
  1637. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1638. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1639. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1640. }
  1641. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1642. if (skge->autoneg == AUTONEG_DISABLE)
  1643. ctrl &= ~PHY_CT_ANE;
  1644. ctrl |= PHY_CT_RESET;
  1645. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1646. ctrl = 0;
  1647. ct1000 = 0;
  1648. adv = PHY_AN_CSMA;
  1649. if (skge->autoneg == AUTONEG_ENABLE) {
  1650. if (hw->copper) {
  1651. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1652. ct1000 |= PHY_M_1000C_AFD;
  1653. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1654. ct1000 |= PHY_M_1000C_AHD;
  1655. if (skge->advertising & ADVERTISED_100baseT_Full)
  1656. adv |= PHY_M_AN_100_FD;
  1657. if (skge->advertising & ADVERTISED_100baseT_Half)
  1658. adv |= PHY_M_AN_100_HD;
  1659. if (skge->advertising & ADVERTISED_10baseT_Full)
  1660. adv |= PHY_M_AN_10_FD;
  1661. if (skge->advertising & ADVERTISED_10baseT_Half)
  1662. adv |= PHY_M_AN_10_HD;
  1663. /* Set Flow-control capabilities */
  1664. adv |= phy_pause_map[skge->flow_control];
  1665. } else {
  1666. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1667. adv |= PHY_M_AN_1000X_AFD;
  1668. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1669. adv |= PHY_M_AN_1000X_AHD;
  1670. adv |= fiber_pause_map[skge->flow_control];
  1671. }
  1672. /* Restart Auto-negotiation */
  1673. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1674. } else {
  1675. /* forced speed/duplex settings */
  1676. ct1000 = PHY_M_1000C_MSE;
  1677. if (skge->duplex == DUPLEX_FULL)
  1678. ctrl |= PHY_CT_DUP_MD;
  1679. switch (skge->speed) {
  1680. case SPEED_1000:
  1681. ctrl |= PHY_CT_SP1000;
  1682. break;
  1683. case SPEED_100:
  1684. ctrl |= PHY_CT_SP100;
  1685. break;
  1686. }
  1687. ctrl |= PHY_CT_RESET;
  1688. }
  1689. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1690. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1691. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1692. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1693. if (skge->autoneg == AUTONEG_ENABLE)
  1694. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1695. else
  1696. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1697. }
  1698. static void yukon_reset(struct skge_hw *hw, int port)
  1699. {
  1700. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1701. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1702. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1703. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1704. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1705. gma_write16(hw, port, GM_RX_CTRL,
  1706. gma_read16(hw, port, GM_RX_CTRL)
  1707. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1708. }
  1709. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1710. static int is_yukon_lite_a0(struct skge_hw *hw)
  1711. {
  1712. u32 reg;
  1713. int ret;
  1714. if (hw->chip_id != CHIP_ID_YUKON)
  1715. return 0;
  1716. reg = skge_read32(hw, B2_FAR);
  1717. skge_write8(hw, B2_FAR + 3, 0xff);
  1718. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1719. skge_write32(hw, B2_FAR, reg);
  1720. return ret;
  1721. }
  1722. static void yukon_mac_init(struct skge_hw *hw, int port)
  1723. {
  1724. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1725. int i;
  1726. u32 reg;
  1727. const u8 *addr = hw->dev[port]->dev_addr;
  1728. /* WA code for COMA mode -- set PHY reset */
  1729. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1730. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1731. reg = skge_read32(hw, B2_GP_IO);
  1732. reg |= GP_DIR_9 | GP_IO_9;
  1733. skge_write32(hw, B2_GP_IO, reg);
  1734. }
  1735. /* hard reset */
  1736. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1737. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1738. /* WA code for COMA mode -- clear PHY reset */
  1739. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1740. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1741. reg = skge_read32(hw, B2_GP_IO);
  1742. reg |= GP_DIR_9;
  1743. reg &= ~GP_IO_9;
  1744. skge_write32(hw, B2_GP_IO, reg);
  1745. }
  1746. /* Set hardware config mode */
  1747. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1748. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1749. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1750. /* Clear GMC reset */
  1751. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1752. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1753. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1754. if (skge->autoneg == AUTONEG_DISABLE) {
  1755. reg = GM_GPCR_AU_ALL_DIS;
  1756. gma_write16(hw, port, GM_GP_CTRL,
  1757. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1758. switch (skge->speed) {
  1759. case SPEED_1000:
  1760. reg &= ~GM_GPCR_SPEED_100;
  1761. reg |= GM_GPCR_SPEED_1000;
  1762. break;
  1763. case SPEED_100:
  1764. reg &= ~GM_GPCR_SPEED_1000;
  1765. reg |= GM_GPCR_SPEED_100;
  1766. break;
  1767. case SPEED_10:
  1768. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1769. break;
  1770. }
  1771. if (skge->duplex == DUPLEX_FULL)
  1772. reg |= GM_GPCR_DUP_FULL;
  1773. } else
  1774. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1775. switch (skge->flow_control) {
  1776. case FLOW_MODE_NONE:
  1777. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1778. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1779. break;
  1780. case FLOW_MODE_LOC_SEND:
  1781. /* disable Rx flow-control */
  1782. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1783. break;
  1784. case FLOW_MODE_SYMMETRIC:
  1785. case FLOW_MODE_SYM_OR_REM:
  1786. /* enable Tx & Rx flow-control */
  1787. break;
  1788. }
  1789. gma_write16(hw, port, GM_GP_CTRL, reg);
  1790. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1791. yukon_init(hw, port);
  1792. /* MIB clear */
  1793. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1794. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1795. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1796. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1797. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1798. /* transmit control */
  1799. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1800. /* receive control reg: unicast + multicast + no FCS */
  1801. gma_write16(hw, port, GM_RX_CTRL,
  1802. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1803. /* transmit flow control */
  1804. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1805. /* transmit parameter */
  1806. gma_write16(hw, port, GM_TX_PARAM,
  1807. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1808. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1809. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1810. /* configure the Serial Mode Register */
  1811. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1812. | GM_SMOD_VLAN_ENA
  1813. | IPG_DATA_VAL(IPG_DATA_DEF);
  1814. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1815. reg |= GM_SMOD_JUMBO_ENA;
  1816. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1817. /* physical address: used for pause frames */
  1818. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1819. /* virtual address for data */
  1820. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1821. /* enable interrupt mask for counter overflows */
  1822. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1823. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1824. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1825. /* Initialize Mac Fifo */
  1826. /* Configure Rx MAC FIFO */
  1827. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1828. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1829. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1830. if (is_yukon_lite_a0(hw))
  1831. reg &= ~GMF_RX_F_FL_ON;
  1832. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1833. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1834. /*
  1835. * because Pause Packet Truncation in GMAC is not working
  1836. * we have to increase the Flush Threshold to 64 bytes
  1837. * in order to flush pause packets in Rx FIFO on Yukon-1
  1838. */
  1839. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1840. /* Configure Tx MAC FIFO */
  1841. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1842. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1843. }
  1844. /* Go into power down mode */
  1845. static void yukon_suspend(struct skge_hw *hw, int port)
  1846. {
  1847. u16 ctrl;
  1848. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1849. ctrl |= PHY_M_PC_POL_R_DIS;
  1850. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1851. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1852. ctrl |= PHY_CT_RESET;
  1853. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1854. /* switch IEEE compatible power down mode on */
  1855. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1856. ctrl |= PHY_CT_PDOWN;
  1857. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1858. }
  1859. static void yukon_stop(struct skge_port *skge)
  1860. {
  1861. struct skge_hw *hw = skge->hw;
  1862. int port = skge->port;
  1863. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1864. yukon_reset(hw, port);
  1865. gma_write16(hw, port, GM_GP_CTRL,
  1866. gma_read16(hw, port, GM_GP_CTRL)
  1867. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1868. gma_read16(hw, port, GM_GP_CTRL);
  1869. yukon_suspend(hw, port);
  1870. /* set GPHY Control reset */
  1871. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1872. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1873. }
  1874. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1875. {
  1876. struct skge_hw *hw = skge->hw;
  1877. int port = skge->port;
  1878. int i;
  1879. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1880. | gma_read32(hw, port, GM_TXO_OK_LO);
  1881. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1882. | gma_read32(hw, port, GM_RXO_OK_LO);
  1883. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1884. data[i] = gma_read32(hw, port,
  1885. skge_stats[i].gma_offset);
  1886. }
  1887. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1888. {
  1889. struct net_device *dev = hw->dev[port];
  1890. struct skge_port *skge = netdev_priv(dev);
  1891. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1892. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1893. "mac interrupt status 0x%x\n", status);
  1894. if (status & GM_IS_RX_FF_OR) {
  1895. ++dev->stats.rx_fifo_errors;
  1896. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1897. }
  1898. if (status & GM_IS_TX_FF_UR) {
  1899. ++dev->stats.tx_fifo_errors;
  1900. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1901. }
  1902. }
  1903. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1904. {
  1905. switch (aux & PHY_M_PS_SPEED_MSK) {
  1906. case PHY_M_PS_SPEED_1000:
  1907. return SPEED_1000;
  1908. case PHY_M_PS_SPEED_100:
  1909. return SPEED_100;
  1910. default:
  1911. return SPEED_10;
  1912. }
  1913. }
  1914. static void yukon_link_up(struct skge_port *skge)
  1915. {
  1916. struct skge_hw *hw = skge->hw;
  1917. int port = skge->port;
  1918. u16 reg;
  1919. /* Enable Transmit FIFO Underrun */
  1920. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1921. reg = gma_read16(hw, port, GM_GP_CTRL);
  1922. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1923. reg |= GM_GPCR_DUP_FULL;
  1924. /* enable Rx/Tx */
  1925. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1926. gma_write16(hw, port, GM_GP_CTRL, reg);
  1927. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1928. skge_link_up(skge);
  1929. }
  1930. static void yukon_link_down(struct skge_port *skge)
  1931. {
  1932. struct skge_hw *hw = skge->hw;
  1933. int port = skge->port;
  1934. u16 ctrl;
  1935. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1936. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1937. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1938. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1939. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1940. ctrl |= PHY_M_AN_ASP;
  1941. /* restore Asymmetric Pause bit */
  1942. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1943. }
  1944. skge_link_down(skge);
  1945. yukon_init(hw, port);
  1946. }
  1947. static void yukon_phy_intr(struct skge_port *skge)
  1948. {
  1949. struct skge_hw *hw = skge->hw;
  1950. int port = skge->port;
  1951. const char *reason = NULL;
  1952. u16 istatus, phystat;
  1953. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1954. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1955. netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
  1956. "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
  1957. if (istatus & PHY_M_IS_AN_COMPL) {
  1958. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1959. & PHY_M_AN_RF) {
  1960. reason = "remote fault";
  1961. goto failed;
  1962. }
  1963. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1964. reason = "master/slave fault";
  1965. goto failed;
  1966. }
  1967. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1968. reason = "speed/duplex";
  1969. goto failed;
  1970. }
  1971. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1972. ? DUPLEX_FULL : DUPLEX_HALF;
  1973. skge->speed = yukon_speed(hw, phystat);
  1974. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1975. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1976. case PHY_M_PS_PAUSE_MSK:
  1977. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1978. break;
  1979. case PHY_M_PS_RX_P_EN:
  1980. skge->flow_status = FLOW_STAT_REM_SEND;
  1981. break;
  1982. case PHY_M_PS_TX_P_EN:
  1983. skge->flow_status = FLOW_STAT_LOC_SEND;
  1984. break;
  1985. default:
  1986. skge->flow_status = FLOW_STAT_NONE;
  1987. }
  1988. if (skge->flow_status == FLOW_STAT_NONE ||
  1989. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1990. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1991. else
  1992. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1993. yukon_link_up(skge);
  1994. return;
  1995. }
  1996. if (istatus & PHY_M_IS_LSP_CHANGE)
  1997. skge->speed = yukon_speed(hw, phystat);
  1998. if (istatus & PHY_M_IS_DUP_CHANGE)
  1999. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  2000. if (istatus & PHY_M_IS_LST_CHANGE) {
  2001. if (phystat & PHY_M_PS_LINK_UP)
  2002. yukon_link_up(skge);
  2003. else
  2004. yukon_link_down(skge);
  2005. }
  2006. return;
  2007. failed:
  2008. pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
  2009. /* XXX restart autonegotiation? */
  2010. }
  2011. static void skge_phy_reset(struct skge_port *skge)
  2012. {
  2013. struct skge_hw *hw = skge->hw;
  2014. int port = skge->port;
  2015. struct net_device *dev = hw->dev[port];
  2016. netif_stop_queue(skge->netdev);
  2017. netif_carrier_off(skge->netdev);
  2018. spin_lock_bh(&hw->phy_lock);
  2019. if (hw->chip_id == CHIP_ID_GENESIS) {
  2020. genesis_reset(hw, port);
  2021. genesis_mac_init(hw, port);
  2022. } else {
  2023. yukon_reset(hw, port);
  2024. yukon_init(hw, port);
  2025. }
  2026. spin_unlock_bh(&hw->phy_lock);
  2027. skge_set_multicast(dev);
  2028. }
  2029. /* Basic MII support */
  2030. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2031. {
  2032. struct mii_ioctl_data *data = if_mii(ifr);
  2033. struct skge_port *skge = netdev_priv(dev);
  2034. struct skge_hw *hw = skge->hw;
  2035. int err = -EOPNOTSUPP;
  2036. if (!netif_running(dev))
  2037. return -ENODEV; /* Phy still in reset */
  2038. switch (cmd) {
  2039. case SIOCGMIIPHY:
  2040. data->phy_id = hw->phy_addr;
  2041. /* fallthru */
  2042. case SIOCGMIIREG: {
  2043. u16 val = 0;
  2044. spin_lock_bh(&hw->phy_lock);
  2045. if (hw->chip_id == CHIP_ID_GENESIS)
  2046. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2047. else
  2048. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2049. spin_unlock_bh(&hw->phy_lock);
  2050. data->val_out = val;
  2051. break;
  2052. }
  2053. case SIOCSMIIREG:
  2054. spin_lock_bh(&hw->phy_lock);
  2055. if (hw->chip_id == CHIP_ID_GENESIS)
  2056. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2057. data->val_in);
  2058. else
  2059. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2060. data->val_in);
  2061. spin_unlock_bh(&hw->phy_lock);
  2062. break;
  2063. }
  2064. return err;
  2065. }
  2066. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2067. {
  2068. u32 end;
  2069. start /= 8;
  2070. len /= 8;
  2071. end = start + len - 1;
  2072. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2073. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2074. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2075. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2076. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2077. if (q == Q_R1 || q == Q_R2) {
  2078. /* Set thresholds on receive queue's */
  2079. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2080. start + (2*len)/3);
  2081. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2082. start + (len/3));
  2083. } else {
  2084. /* Enable store & forward on Tx queue's because
  2085. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2086. */
  2087. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2088. }
  2089. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2090. }
  2091. /* Setup Bus Memory Interface */
  2092. static void skge_qset(struct skge_port *skge, u16 q,
  2093. const struct skge_element *e)
  2094. {
  2095. struct skge_hw *hw = skge->hw;
  2096. u32 watermark = 0x600;
  2097. u64 base = skge->dma + (e->desc - skge->mem);
  2098. /* optimization to reduce window on 32bit/33mhz */
  2099. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2100. watermark /= 2;
  2101. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2102. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2103. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2104. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2105. }
  2106. static int skge_up(struct net_device *dev)
  2107. {
  2108. struct skge_port *skge = netdev_priv(dev);
  2109. struct skge_hw *hw = skge->hw;
  2110. int port = skge->port;
  2111. u32 chunk, ram_addr;
  2112. size_t rx_size, tx_size;
  2113. int err;
  2114. if (!is_valid_ether_addr(dev->dev_addr))
  2115. return -EINVAL;
  2116. netif_info(skge, ifup, skge->netdev, "enabling interface\n");
  2117. if (dev->mtu > RX_BUF_SIZE)
  2118. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2119. else
  2120. skge->rx_buf_size = RX_BUF_SIZE;
  2121. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2122. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2123. skge->mem_size = tx_size + rx_size;
  2124. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2125. if (!skge->mem)
  2126. return -ENOMEM;
  2127. BUG_ON(skge->dma & 7);
  2128. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2129. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2130. err = -EINVAL;
  2131. goto free_pci_mem;
  2132. }
  2133. memset(skge->mem, 0, skge->mem_size);
  2134. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2135. if (err)
  2136. goto free_pci_mem;
  2137. err = skge_rx_fill(dev);
  2138. if (err)
  2139. goto free_rx_ring;
  2140. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2141. skge->dma + rx_size);
  2142. if (err)
  2143. goto free_rx_ring;
  2144. /* Initialize MAC */
  2145. spin_lock_bh(&hw->phy_lock);
  2146. if (hw->chip_id == CHIP_ID_GENESIS)
  2147. genesis_mac_init(hw, port);
  2148. else
  2149. yukon_mac_init(hw, port);
  2150. spin_unlock_bh(&hw->phy_lock);
  2151. /* Configure RAMbuffers - equally between ports and tx/rx */
  2152. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2153. ram_addr = hw->ram_offset + 2 * chunk * port;
  2154. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2155. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2156. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2157. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2158. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2159. /* Start receiver BMU */
  2160. wmb();
  2161. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2162. skge_led(skge, LED_MODE_ON);
  2163. spin_lock_irq(&hw->hw_lock);
  2164. hw->intr_mask |= portmask[port];
  2165. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2166. spin_unlock_irq(&hw->hw_lock);
  2167. napi_enable(&skge->napi);
  2168. return 0;
  2169. free_rx_ring:
  2170. skge_rx_clean(skge);
  2171. kfree(skge->rx_ring.start);
  2172. free_pci_mem:
  2173. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2174. skge->mem = NULL;
  2175. return err;
  2176. }
  2177. /* stop receiver */
  2178. static void skge_rx_stop(struct skge_hw *hw, int port)
  2179. {
  2180. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2181. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2182. RB_RST_SET|RB_DIS_OP_MD);
  2183. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2184. }
  2185. static int skge_down(struct net_device *dev)
  2186. {
  2187. struct skge_port *skge = netdev_priv(dev);
  2188. struct skge_hw *hw = skge->hw;
  2189. int port = skge->port;
  2190. if (skge->mem == NULL)
  2191. return 0;
  2192. netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
  2193. netif_tx_disable(dev);
  2194. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2195. del_timer_sync(&skge->link_timer);
  2196. napi_disable(&skge->napi);
  2197. netif_carrier_off(dev);
  2198. spin_lock_irq(&hw->hw_lock);
  2199. hw->intr_mask &= ~portmask[port];
  2200. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2201. spin_unlock_irq(&hw->hw_lock);
  2202. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2203. if (hw->chip_id == CHIP_ID_GENESIS)
  2204. genesis_stop(skge);
  2205. else
  2206. yukon_stop(skge);
  2207. /* Stop transmitter */
  2208. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2209. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2210. RB_RST_SET|RB_DIS_OP_MD);
  2211. /* Disable Force Sync bit and Enable Alloc bit */
  2212. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2213. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2214. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2215. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2216. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2217. /* Reset PCI FIFO */
  2218. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2219. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2220. /* Reset the RAM Buffer async Tx queue */
  2221. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2222. skge_rx_stop(hw, port);
  2223. if (hw->chip_id == CHIP_ID_GENESIS) {
  2224. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2225. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2226. } else {
  2227. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2228. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2229. }
  2230. skge_led(skge, LED_MODE_OFF);
  2231. netif_tx_lock_bh(dev);
  2232. skge_tx_clean(dev);
  2233. netif_tx_unlock_bh(dev);
  2234. skge_rx_clean(skge);
  2235. kfree(skge->rx_ring.start);
  2236. kfree(skge->tx_ring.start);
  2237. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2238. skge->mem = NULL;
  2239. return 0;
  2240. }
  2241. static inline int skge_avail(const struct skge_ring *ring)
  2242. {
  2243. smp_mb();
  2244. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2245. + (ring->to_clean - ring->to_use) - 1;
  2246. }
  2247. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2248. struct net_device *dev)
  2249. {
  2250. struct skge_port *skge = netdev_priv(dev);
  2251. struct skge_hw *hw = skge->hw;
  2252. struct skge_element *e;
  2253. struct skge_tx_desc *td;
  2254. int i;
  2255. u32 control, len;
  2256. u64 map;
  2257. if (skb_padto(skb, ETH_ZLEN))
  2258. return NETDEV_TX_OK;
  2259. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2260. return NETDEV_TX_BUSY;
  2261. e = skge->tx_ring.to_use;
  2262. td = e->desc;
  2263. BUG_ON(td->control & BMU_OWN);
  2264. e->skb = skb;
  2265. len = skb_headlen(skb);
  2266. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2267. pci_unmap_addr_set(e, mapaddr, map);
  2268. pci_unmap_len_set(e, maplen, len);
  2269. td->dma_lo = map;
  2270. td->dma_hi = map >> 32;
  2271. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2272. const int offset = skb_transport_offset(skb);
  2273. /* This seems backwards, but it is what the sk98lin
  2274. * does. Looks like hardware is wrong?
  2275. */
  2276. if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
  2277. hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2278. control = BMU_TCP_CHECK;
  2279. else
  2280. control = BMU_UDP_CHECK;
  2281. td->csum_offs = 0;
  2282. td->csum_start = offset;
  2283. td->csum_write = offset + skb->csum_offset;
  2284. } else
  2285. control = BMU_CHECK;
  2286. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2287. control |= BMU_EOF | BMU_IRQ_EOF;
  2288. else {
  2289. struct skge_tx_desc *tf = td;
  2290. control |= BMU_STFWD;
  2291. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2292. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2293. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2294. frag->size, PCI_DMA_TODEVICE);
  2295. e = e->next;
  2296. e->skb = skb;
  2297. tf = e->desc;
  2298. BUG_ON(tf->control & BMU_OWN);
  2299. tf->dma_lo = map;
  2300. tf->dma_hi = (u64) map >> 32;
  2301. pci_unmap_addr_set(e, mapaddr, map);
  2302. pci_unmap_len_set(e, maplen, frag->size);
  2303. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2304. }
  2305. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2306. }
  2307. /* Make sure all the descriptors written */
  2308. wmb();
  2309. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2310. wmb();
  2311. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2312. netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
  2313. "tx queued, slot %td, len %d\n",
  2314. e - skge->tx_ring.start, skb->len);
  2315. skge->tx_ring.to_use = e->next;
  2316. smp_wmb();
  2317. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2318. netdev_dbg(dev, "transmit queue full\n");
  2319. netif_stop_queue(dev);
  2320. }
  2321. return NETDEV_TX_OK;
  2322. }
  2323. /* Free resources associated with this reing element */
  2324. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2325. u32 control)
  2326. {
  2327. struct pci_dev *pdev = skge->hw->pdev;
  2328. /* skb header vs. fragment */
  2329. if (control & BMU_STF)
  2330. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2331. pci_unmap_len(e, maplen),
  2332. PCI_DMA_TODEVICE);
  2333. else
  2334. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2335. pci_unmap_len(e, maplen),
  2336. PCI_DMA_TODEVICE);
  2337. if (control & BMU_EOF) {
  2338. netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
  2339. "tx done slot %td\n", e - skge->tx_ring.start);
  2340. dev_kfree_skb(e->skb);
  2341. }
  2342. }
  2343. /* Free all buffers in transmit ring */
  2344. static void skge_tx_clean(struct net_device *dev)
  2345. {
  2346. struct skge_port *skge = netdev_priv(dev);
  2347. struct skge_element *e;
  2348. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2349. struct skge_tx_desc *td = e->desc;
  2350. skge_tx_free(skge, e, td->control);
  2351. td->control = 0;
  2352. }
  2353. skge->tx_ring.to_clean = e;
  2354. }
  2355. static void skge_tx_timeout(struct net_device *dev)
  2356. {
  2357. struct skge_port *skge = netdev_priv(dev);
  2358. netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
  2359. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2360. skge_tx_clean(dev);
  2361. netif_wake_queue(dev);
  2362. }
  2363. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2364. {
  2365. int err;
  2366. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2367. return -EINVAL;
  2368. if (!netif_running(dev)) {
  2369. dev->mtu = new_mtu;
  2370. return 0;
  2371. }
  2372. skge_down(dev);
  2373. dev->mtu = new_mtu;
  2374. err = skge_up(dev);
  2375. if (err)
  2376. dev_close(dev);
  2377. return err;
  2378. }
  2379. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2380. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2381. {
  2382. u32 crc, bit;
  2383. crc = ether_crc_le(ETH_ALEN, addr);
  2384. bit = ~crc & 0x3f;
  2385. filter[bit/8] |= 1 << (bit%8);
  2386. }
  2387. static void genesis_set_multicast(struct net_device *dev)
  2388. {
  2389. struct skge_port *skge = netdev_priv(dev);
  2390. struct skge_hw *hw = skge->hw;
  2391. int port = skge->port;
  2392. struct dev_mc_list *list;
  2393. u32 mode;
  2394. u8 filter[8];
  2395. mode = xm_read32(hw, port, XM_MODE);
  2396. mode |= XM_MD_ENA_HASH;
  2397. if (dev->flags & IFF_PROMISC)
  2398. mode |= XM_MD_ENA_PROM;
  2399. else
  2400. mode &= ~XM_MD_ENA_PROM;
  2401. if (dev->flags & IFF_ALLMULTI)
  2402. memset(filter, 0xff, sizeof(filter));
  2403. else {
  2404. memset(filter, 0, sizeof(filter));
  2405. if (skge->flow_status == FLOW_STAT_REM_SEND ||
  2406. skge->flow_status == FLOW_STAT_SYMMETRIC)
  2407. genesis_add_filter(filter, pause_mc_addr);
  2408. netdev_for_each_mc_addr(list, dev)
  2409. genesis_add_filter(filter, list->dmi_addr);
  2410. }
  2411. xm_write32(hw, port, XM_MODE, mode);
  2412. xm_outhash(hw, port, XM_HSM, filter);
  2413. }
  2414. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2415. {
  2416. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2417. filter[bit/8] |= 1 << (bit%8);
  2418. }
  2419. static void yukon_set_multicast(struct net_device *dev)
  2420. {
  2421. struct skge_port *skge = netdev_priv(dev);
  2422. struct skge_hw *hw = skge->hw;
  2423. int port = skge->port;
  2424. struct dev_mc_list *list;
  2425. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
  2426. skge->flow_status == FLOW_STAT_SYMMETRIC);
  2427. u16 reg;
  2428. u8 filter[8];
  2429. memset(filter, 0, sizeof(filter));
  2430. reg = gma_read16(hw, port, GM_RX_CTRL);
  2431. reg |= GM_RXCR_UCF_ENA;
  2432. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2433. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2434. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2435. memset(filter, 0xff, sizeof(filter));
  2436. else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
  2437. reg &= ~GM_RXCR_MCF_ENA;
  2438. else {
  2439. reg |= GM_RXCR_MCF_ENA;
  2440. if (rx_pause)
  2441. yukon_add_filter(filter, pause_mc_addr);
  2442. netdev_for_each_mc_addr(list, dev)
  2443. yukon_add_filter(filter, list->dmi_addr);
  2444. }
  2445. gma_write16(hw, port, GM_MC_ADDR_H1,
  2446. (u16)filter[0] | ((u16)filter[1] << 8));
  2447. gma_write16(hw, port, GM_MC_ADDR_H2,
  2448. (u16)filter[2] | ((u16)filter[3] << 8));
  2449. gma_write16(hw, port, GM_MC_ADDR_H3,
  2450. (u16)filter[4] | ((u16)filter[5] << 8));
  2451. gma_write16(hw, port, GM_MC_ADDR_H4,
  2452. (u16)filter[6] | ((u16)filter[7] << 8));
  2453. gma_write16(hw, port, GM_RX_CTRL, reg);
  2454. }
  2455. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2456. {
  2457. if (hw->chip_id == CHIP_ID_GENESIS)
  2458. return status >> XMR_FS_LEN_SHIFT;
  2459. else
  2460. return status >> GMR_FS_LEN_SHIFT;
  2461. }
  2462. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2463. {
  2464. if (hw->chip_id == CHIP_ID_GENESIS)
  2465. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2466. else
  2467. return (status & GMR_FS_ANY_ERR) ||
  2468. (status & GMR_FS_RX_OK) == 0;
  2469. }
  2470. static void skge_set_multicast(struct net_device *dev)
  2471. {
  2472. struct skge_port *skge = netdev_priv(dev);
  2473. struct skge_hw *hw = skge->hw;
  2474. if (hw->chip_id == CHIP_ID_GENESIS)
  2475. genesis_set_multicast(dev);
  2476. else
  2477. yukon_set_multicast(dev);
  2478. }
  2479. /* Get receive buffer from descriptor.
  2480. * Handles copy of small buffers and reallocation failures
  2481. */
  2482. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2483. struct skge_element *e,
  2484. u32 control, u32 status, u16 csum)
  2485. {
  2486. struct skge_port *skge = netdev_priv(dev);
  2487. struct sk_buff *skb;
  2488. u16 len = control & BMU_BBC;
  2489. netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
  2490. "rx slot %td status 0x%x len %d\n",
  2491. e - skge->rx_ring.start, status, len);
  2492. if (len > skge->rx_buf_size)
  2493. goto error;
  2494. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2495. goto error;
  2496. if (bad_phy_status(skge->hw, status))
  2497. goto error;
  2498. if (phy_length(skge->hw, status) != len)
  2499. goto error;
  2500. if (len < RX_COPY_THRESHOLD) {
  2501. skb = netdev_alloc_skb_ip_align(dev, len);
  2502. if (!skb)
  2503. goto resubmit;
  2504. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2505. pci_unmap_addr(e, mapaddr),
  2506. len, PCI_DMA_FROMDEVICE);
  2507. skb_copy_from_linear_data(e->skb, skb->data, len);
  2508. pci_dma_sync_single_for_device(skge->hw->pdev,
  2509. pci_unmap_addr(e, mapaddr),
  2510. len, PCI_DMA_FROMDEVICE);
  2511. skge_rx_reuse(e, skge->rx_buf_size);
  2512. } else {
  2513. struct sk_buff *nskb;
  2514. nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
  2515. if (!nskb)
  2516. goto resubmit;
  2517. pci_unmap_single(skge->hw->pdev,
  2518. pci_unmap_addr(e, mapaddr),
  2519. pci_unmap_len(e, maplen),
  2520. PCI_DMA_FROMDEVICE);
  2521. skb = e->skb;
  2522. prefetch(skb->data);
  2523. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2524. }
  2525. skb_put(skb, len);
  2526. if (skge->rx_csum) {
  2527. skb->csum = csum;
  2528. skb->ip_summed = CHECKSUM_COMPLETE;
  2529. }
  2530. skb->protocol = eth_type_trans(skb, dev);
  2531. return skb;
  2532. error:
  2533. netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
  2534. "rx err, slot %td control 0x%x status 0x%x\n",
  2535. e - skge->rx_ring.start, control, status);
  2536. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2537. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2538. dev->stats.rx_length_errors++;
  2539. if (status & XMR_FS_FRA_ERR)
  2540. dev->stats.rx_frame_errors++;
  2541. if (status & XMR_FS_FCS_ERR)
  2542. dev->stats.rx_crc_errors++;
  2543. } else {
  2544. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2545. dev->stats.rx_length_errors++;
  2546. if (status & GMR_FS_FRAGMENT)
  2547. dev->stats.rx_frame_errors++;
  2548. if (status & GMR_FS_CRC_ERR)
  2549. dev->stats.rx_crc_errors++;
  2550. }
  2551. resubmit:
  2552. skge_rx_reuse(e, skge->rx_buf_size);
  2553. return NULL;
  2554. }
  2555. /* Free all buffers in Tx ring which are no longer owned by device */
  2556. static void skge_tx_done(struct net_device *dev)
  2557. {
  2558. struct skge_port *skge = netdev_priv(dev);
  2559. struct skge_ring *ring = &skge->tx_ring;
  2560. struct skge_element *e;
  2561. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2562. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2563. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2564. if (control & BMU_OWN)
  2565. break;
  2566. skge_tx_free(skge, e, control);
  2567. }
  2568. skge->tx_ring.to_clean = e;
  2569. /* Can run lockless until we need to synchronize to restart queue. */
  2570. smp_mb();
  2571. if (unlikely(netif_queue_stopped(dev) &&
  2572. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2573. netif_tx_lock(dev);
  2574. if (unlikely(netif_queue_stopped(dev) &&
  2575. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2576. netif_wake_queue(dev);
  2577. }
  2578. netif_tx_unlock(dev);
  2579. }
  2580. }
  2581. static int skge_poll(struct napi_struct *napi, int to_do)
  2582. {
  2583. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2584. struct net_device *dev = skge->netdev;
  2585. struct skge_hw *hw = skge->hw;
  2586. struct skge_ring *ring = &skge->rx_ring;
  2587. struct skge_element *e;
  2588. int work_done = 0;
  2589. skge_tx_done(dev);
  2590. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2591. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2592. struct skge_rx_desc *rd = e->desc;
  2593. struct sk_buff *skb;
  2594. u32 control;
  2595. rmb();
  2596. control = rd->control;
  2597. if (control & BMU_OWN)
  2598. break;
  2599. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2600. if (likely(skb)) {
  2601. netif_receive_skb(skb);
  2602. ++work_done;
  2603. }
  2604. }
  2605. ring->to_clean = e;
  2606. /* restart receiver */
  2607. wmb();
  2608. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2609. if (work_done < to_do) {
  2610. unsigned long flags;
  2611. spin_lock_irqsave(&hw->hw_lock, flags);
  2612. __napi_complete(napi);
  2613. hw->intr_mask |= napimask[skge->port];
  2614. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2615. skge_read32(hw, B0_IMSK);
  2616. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2617. }
  2618. return work_done;
  2619. }
  2620. /* Parity errors seem to happen when Genesis is connected to a switch
  2621. * with no other ports present. Heartbeat error??
  2622. */
  2623. static void skge_mac_parity(struct skge_hw *hw, int port)
  2624. {
  2625. struct net_device *dev = hw->dev[port];
  2626. ++dev->stats.tx_heartbeat_errors;
  2627. if (hw->chip_id == CHIP_ID_GENESIS)
  2628. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2629. MFF_CLR_PERR);
  2630. else
  2631. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2632. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2633. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2634. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2635. }
  2636. static void skge_mac_intr(struct skge_hw *hw, int port)
  2637. {
  2638. if (hw->chip_id == CHIP_ID_GENESIS)
  2639. genesis_mac_intr(hw, port);
  2640. else
  2641. yukon_mac_intr(hw, port);
  2642. }
  2643. /* Handle device specific framing and timeout interrupts */
  2644. static void skge_error_irq(struct skge_hw *hw)
  2645. {
  2646. struct pci_dev *pdev = hw->pdev;
  2647. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2648. if (hw->chip_id == CHIP_ID_GENESIS) {
  2649. /* clear xmac errors */
  2650. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2651. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2652. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2653. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2654. } else {
  2655. /* Timestamp (unused) overflow */
  2656. if (hwstatus & IS_IRQ_TIST_OV)
  2657. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2658. }
  2659. if (hwstatus & IS_RAM_RD_PAR) {
  2660. dev_err(&pdev->dev, "Ram read data parity error\n");
  2661. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2662. }
  2663. if (hwstatus & IS_RAM_WR_PAR) {
  2664. dev_err(&pdev->dev, "Ram write data parity error\n");
  2665. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2666. }
  2667. if (hwstatus & IS_M1_PAR_ERR)
  2668. skge_mac_parity(hw, 0);
  2669. if (hwstatus & IS_M2_PAR_ERR)
  2670. skge_mac_parity(hw, 1);
  2671. if (hwstatus & IS_R1_PAR_ERR) {
  2672. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2673. hw->dev[0]->name);
  2674. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2675. }
  2676. if (hwstatus & IS_R2_PAR_ERR) {
  2677. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2678. hw->dev[1]->name);
  2679. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2680. }
  2681. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2682. u16 pci_status, pci_cmd;
  2683. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2684. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2685. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2686. pci_cmd, pci_status);
  2687. /* Write the error bits back to clear them. */
  2688. pci_status &= PCI_STATUS_ERROR_BITS;
  2689. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2690. pci_write_config_word(pdev, PCI_COMMAND,
  2691. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2692. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2693. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2694. /* if error still set then just ignore it */
  2695. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2696. if (hwstatus & IS_IRQ_STAT) {
  2697. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2698. hw->intr_mask &= ~IS_HW_ERR;
  2699. }
  2700. }
  2701. }
  2702. /*
  2703. * Interrupt from PHY are handled in tasklet (softirq)
  2704. * because accessing phy registers requires spin wait which might
  2705. * cause excess interrupt latency.
  2706. */
  2707. static void skge_extirq(unsigned long arg)
  2708. {
  2709. struct skge_hw *hw = (struct skge_hw *) arg;
  2710. int port;
  2711. for (port = 0; port < hw->ports; port++) {
  2712. struct net_device *dev = hw->dev[port];
  2713. if (netif_running(dev)) {
  2714. struct skge_port *skge = netdev_priv(dev);
  2715. spin_lock(&hw->phy_lock);
  2716. if (hw->chip_id != CHIP_ID_GENESIS)
  2717. yukon_phy_intr(skge);
  2718. else if (hw->phy_type == SK_PHY_BCOM)
  2719. bcom_phy_intr(skge);
  2720. spin_unlock(&hw->phy_lock);
  2721. }
  2722. }
  2723. spin_lock_irq(&hw->hw_lock);
  2724. hw->intr_mask |= IS_EXT_REG;
  2725. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2726. skge_read32(hw, B0_IMSK);
  2727. spin_unlock_irq(&hw->hw_lock);
  2728. }
  2729. static irqreturn_t skge_intr(int irq, void *dev_id)
  2730. {
  2731. struct skge_hw *hw = dev_id;
  2732. u32 status;
  2733. int handled = 0;
  2734. spin_lock(&hw->hw_lock);
  2735. /* Reading this register masks IRQ */
  2736. status = skge_read32(hw, B0_SP_ISRC);
  2737. if (status == 0 || status == ~0)
  2738. goto out;
  2739. handled = 1;
  2740. status &= hw->intr_mask;
  2741. if (status & IS_EXT_REG) {
  2742. hw->intr_mask &= ~IS_EXT_REG;
  2743. tasklet_schedule(&hw->phy_task);
  2744. }
  2745. if (status & (IS_XA1_F|IS_R1_F)) {
  2746. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2747. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2748. napi_schedule(&skge->napi);
  2749. }
  2750. if (status & IS_PA_TO_TX1)
  2751. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2752. if (status & IS_PA_TO_RX1) {
  2753. ++hw->dev[0]->stats.rx_over_errors;
  2754. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2755. }
  2756. if (status & IS_MAC1)
  2757. skge_mac_intr(hw, 0);
  2758. if (hw->dev[1]) {
  2759. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2760. if (status & (IS_XA2_F|IS_R2_F)) {
  2761. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2762. napi_schedule(&skge->napi);
  2763. }
  2764. if (status & IS_PA_TO_RX2) {
  2765. ++hw->dev[1]->stats.rx_over_errors;
  2766. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2767. }
  2768. if (status & IS_PA_TO_TX2)
  2769. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2770. if (status & IS_MAC2)
  2771. skge_mac_intr(hw, 1);
  2772. }
  2773. if (status & IS_HW_ERR)
  2774. skge_error_irq(hw);
  2775. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2776. skge_read32(hw, B0_IMSK);
  2777. out:
  2778. spin_unlock(&hw->hw_lock);
  2779. return IRQ_RETVAL(handled);
  2780. }
  2781. #ifdef CONFIG_NET_POLL_CONTROLLER
  2782. static void skge_netpoll(struct net_device *dev)
  2783. {
  2784. struct skge_port *skge = netdev_priv(dev);
  2785. disable_irq(dev->irq);
  2786. skge_intr(dev->irq, skge->hw);
  2787. enable_irq(dev->irq);
  2788. }
  2789. #endif
  2790. static int skge_set_mac_address(struct net_device *dev, void *p)
  2791. {
  2792. struct skge_port *skge = netdev_priv(dev);
  2793. struct skge_hw *hw = skge->hw;
  2794. unsigned port = skge->port;
  2795. const struct sockaddr *addr = p;
  2796. u16 ctrl;
  2797. if (!is_valid_ether_addr(addr->sa_data))
  2798. return -EADDRNOTAVAIL;
  2799. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2800. if (!netif_running(dev)) {
  2801. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2802. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2803. } else {
  2804. /* disable Rx */
  2805. spin_lock_bh(&hw->phy_lock);
  2806. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2807. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2808. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2809. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2810. if (hw->chip_id == CHIP_ID_GENESIS)
  2811. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2812. else {
  2813. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2814. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2815. }
  2816. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2817. spin_unlock_bh(&hw->phy_lock);
  2818. }
  2819. return 0;
  2820. }
  2821. static const struct {
  2822. u8 id;
  2823. const char *name;
  2824. } skge_chips[] = {
  2825. { CHIP_ID_GENESIS, "Genesis" },
  2826. { CHIP_ID_YUKON, "Yukon" },
  2827. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2828. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2829. };
  2830. static const char *skge_board_name(const struct skge_hw *hw)
  2831. {
  2832. int i;
  2833. static char buf[16];
  2834. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2835. if (skge_chips[i].id == hw->chip_id)
  2836. return skge_chips[i].name;
  2837. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2838. return buf;
  2839. }
  2840. /*
  2841. * Setup the board data structure, but don't bring up
  2842. * the port(s)
  2843. */
  2844. static int skge_reset(struct skge_hw *hw)
  2845. {
  2846. u32 reg;
  2847. u16 ctst, pci_status;
  2848. u8 t8, mac_cfg, pmd_type;
  2849. int i;
  2850. ctst = skge_read16(hw, B0_CTST);
  2851. /* do a SW reset */
  2852. skge_write8(hw, B0_CTST, CS_RST_SET);
  2853. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2854. /* clear PCI errors, if any */
  2855. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2856. skge_write8(hw, B2_TST_CTRL2, 0);
  2857. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2858. pci_write_config_word(hw->pdev, PCI_STATUS,
  2859. pci_status | PCI_STATUS_ERROR_BITS);
  2860. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2861. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2862. /* restore CLK_RUN bits (for Yukon-Lite) */
  2863. skge_write16(hw, B0_CTST,
  2864. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2865. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2866. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2867. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2868. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2869. switch (hw->chip_id) {
  2870. case CHIP_ID_GENESIS:
  2871. switch (hw->phy_type) {
  2872. case SK_PHY_XMAC:
  2873. hw->phy_addr = PHY_ADDR_XMAC;
  2874. break;
  2875. case SK_PHY_BCOM:
  2876. hw->phy_addr = PHY_ADDR_BCOM;
  2877. break;
  2878. default:
  2879. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2880. hw->phy_type);
  2881. return -EOPNOTSUPP;
  2882. }
  2883. break;
  2884. case CHIP_ID_YUKON:
  2885. case CHIP_ID_YUKON_LITE:
  2886. case CHIP_ID_YUKON_LP:
  2887. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2888. hw->copper = 1;
  2889. hw->phy_addr = PHY_ADDR_MARV;
  2890. break;
  2891. default:
  2892. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2893. hw->chip_id);
  2894. return -EOPNOTSUPP;
  2895. }
  2896. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2897. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2898. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2899. /* read the adapters RAM size */
  2900. t8 = skge_read8(hw, B2_E_0);
  2901. if (hw->chip_id == CHIP_ID_GENESIS) {
  2902. if (t8 == 3) {
  2903. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2904. hw->ram_size = 0x100000;
  2905. hw->ram_offset = 0x80000;
  2906. } else
  2907. hw->ram_size = t8 * 512;
  2908. } else if (t8 == 0)
  2909. hw->ram_size = 0x20000;
  2910. else
  2911. hw->ram_size = t8 * 4096;
  2912. hw->intr_mask = IS_HW_ERR;
  2913. /* Use PHY IRQ for all but fiber based Genesis board */
  2914. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2915. hw->intr_mask |= IS_EXT_REG;
  2916. if (hw->chip_id == CHIP_ID_GENESIS)
  2917. genesis_init(hw);
  2918. else {
  2919. /* switch power to VCC (WA for VAUX problem) */
  2920. skge_write8(hw, B0_POWER_CTRL,
  2921. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2922. /* avoid boards with stuck Hardware error bits */
  2923. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2924. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2925. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2926. hw->intr_mask &= ~IS_HW_ERR;
  2927. }
  2928. /* Clear PHY COMA */
  2929. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2930. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2931. reg &= ~PCI_PHY_COMA;
  2932. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2933. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2934. for (i = 0; i < hw->ports; i++) {
  2935. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2936. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2937. }
  2938. }
  2939. /* turn off hardware timer (unused) */
  2940. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2941. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2942. skge_write8(hw, B0_LED, LED_STAT_ON);
  2943. /* enable the Tx Arbiters */
  2944. for (i = 0; i < hw->ports; i++)
  2945. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2946. /* Initialize ram interface */
  2947. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2948. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2949. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2950. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2951. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2952. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2953. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2954. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2955. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2956. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2957. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2958. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2959. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2960. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2961. /* Set interrupt moderation for Transmit only
  2962. * Receive interrupts avoided by NAPI
  2963. */
  2964. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2965. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2966. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2967. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2968. for (i = 0; i < hw->ports; i++) {
  2969. if (hw->chip_id == CHIP_ID_GENESIS)
  2970. genesis_reset(hw, i);
  2971. else
  2972. yukon_reset(hw, i);
  2973. }
  2974. return 0;
  2975. }
  2976. #ifdef CONFIG_SKGE_DEBUG
  2977. static struct dentry *skge_debug;
  2978. static int skge_debug_show(struct seq_file *seq, void *v)
  2979. {
  2980. struct net_device *dev = seq->private;
  2981. const struct skge_port *skge = netdev_priv(dev);
  2982. const struct skge_hw *hw = skge->hw;
  2983. const struct skge_element *e;
  2984. if (!netif_running(dev))
  2985. return -ENETDOWN;
  2986. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  2987. skge_read32(hw, B0_IMSK));
  2988. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  2989. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2990. const struct skge_tx_desc *t = e->desc;
  2991. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  2992. t->control, t->dma_hi, t->dma_lo, t->status,
  2993. t->csum_offs, t->csum_write, t->csum_start);
  2994. }
  2995. seq_printf(seq, "\nRx Ring: \n");
  2996. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  2997. const struct skge_rx_desc *r = e->desc;
  2998. if (r->control & BMU_OWN)
  2999. break;
  3000. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3001. r->control, r->dma_hi, r->dma_lo, r->status,
  3002. r->timestamp, r->csum1, r->csum1_start);
  3003. }
  3004. return 0;
  3005. }
  3006. static int skge_debug_open(struct inode *inode, struct file *file)
  3007. {
  3008. return single_open(file, skge_debug_show, inode->i_private);
  3009. }
  3010. static const struct file_operations skge_debug_fops = {
  3011. .owner = THIS_MODULE,
  3012. .open = skge_debug_open,
  3013. .read = seq_read,
  3014. .llseek = seq_lseek,
  3015. .release = single_release,
  3016. };
  3017. /*
  3018. * Use network device events to create/remove/rename
  3019. * debugfs file entries
  3020. */
  3021. static int skge_device_event(struct notifier_block *unused,
  3022. unsigned long event, void *ptr)
  3023. {
  3024. struct net_device *dev = ptr;
  3025. struct skge_port *skge;
  3026. struct dentry *d;
  3027. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3028. goto done;
  3029. skge = netdev_priv(dev);
  3030. switch (event) {
  3031. case NETDEV_CHANGENAME:
  3032. if (skge->debugfs) {
  3033. d = debugfs_rename(skge_debug, skge->debugfs,
  3034. skge_debug, dev->name);
  3035. if (d)
  3036. skge->debugfs = d;
  3037. else {
  3038. netdev_info(dev, "rename failed\n");
  3039. debugfs_remove(skge->debugfs);
  3040. }
  3041. }
  3042. break;
  3043. case NETDEV_GOING_DOWN:
  3044. if (skge->debugfs) {
  3045. debugfs_remove(skge->debugfs);
  3046. skge->debugfs = NULL;
  3047. }
  3048. break;
  3049. case NETDEV_UP:
  3050. d = debugfs_create_file(dev->name, S_IRUGO,
  3051. skge_debug, dev,
  3052. &skge_debug_fops);
  3053. if (!d || IS_ERR(d))
  3054. netdev_info(dev, "debugfs create failed\n");
  3055. else
  3056. skge->debugfs = d;
  3057. break;
  3058. }
  3059. done:
  3060. return NOTIFY_DONE;
  3061. }
  3062. static struct notifier_block skge_notifier = {
  3063. .notifier_call = skge_device_event,
  3064. };
  3065. static __init void skge_debug_init(void)
  3066. {
  3067. struct dentry *ent;
  3068. ent = debugfs_create_dir("skge", NULL);
  3069. if (!ent || IS_ERR(ent)) {
  3070. pr_info("debugfs create directory failed\n");
  3071. return;
  3072. }
  3073. skge_debug = ent;
  3074. register_netdevice_notifier(&skge_notifier);
  3075. }
  3076. static __exit void skge_debug_cleanup(void)
  3077. {
  3078. if (skge_debug) {
  3079. unregister_netdevice_notifier(&skge_notifier);
  3080. debugfs_remove(skge_debug);
  3081. skge_debug = NULL;
  3082. }
  3083. }
  3084. #else
  3085. #define skge_debug_init()
  3086. #define skge_debug_cleanup()
  3087. #endif
  3088. static const struct net_device_ops skge_netdev_ops = {
  3089. .ndo_open = skge_up,
  3090. .ndo_stop = skge_down,
  3091. .ndo_start_xmit = skge_xmit_frame,
  3092. .ndo_do_ioctl = skge_ioctl,
  3093. .ndo_get_stats = skge_get_stats,
  3094. .ndo_tx_timeout = skge_tx_timeout,
  3095. .ndo_change_mtu = skge_change_mtu,
  3096. .ndo_validate_addr = eth_validate_addr,
  3097. .ndo_set_multicast_list = skge_set_multicast,
  3098. .ndo_set_mac_address = skge_set_mac_address,
  3099. #ifdef CONFIG_NET_POLL_CONTROLLER
  3100. .ndo_poll_controller = skge_netpoll,
  3101. #endif
  3102. };
  3103. /* Initialize network device */
  3104. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3105. int highmem)
  3106. {
  3107. struct skge_port *skge;
  3108. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3109. if (!dev) {
  3110. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3111. return NULL;
  3112. }
  3113. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3114. dev->netdev_ops = &skge_netdev_ops;
  3115. dev->ethtool_ops = &skge_ethtool_ops;
  3116. dev->watchdog_timeo = TX_WATCHDOG;
  3117. dev->irq = hw->pdev->irq;
  3118. if (highmem)
  3119. dev->features |= NETIF_F_HIGHDMA;
  3120. skge = netdev_priv(dev);
  3121. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3122. skge->netdev = dev;
  3123. skge->hw = hw;
  3124. skge->msg_enable = netif_msg_init(debug, default_msg);
  3125. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3126. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3127. /* Auto speed and flow control */
  3128. skge->autoneg = AUTONEG_ENABLE;
  3129. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3130. skge->duplex = -1;
  3131. skge->speed = -1;
  3132. skge->advertising = skge_supported_modes(hw);
  3133. if (device_can_wakeup(&hw->pdev->dev)) {
  3134. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3135. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3136. }
  3137. hw->dev[port] = dev;
  3138. skge->port = port;
  3139. /* Only used for Genesis XMAC */
  3140. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3141. if (hw->chip_id != CHIP_ID_GENESIS) {
  3142. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3143. skge->rx_csum = 1;
  3144. }
  3145. /* read the mac address */
  3146. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3147. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3148. /* device is off until link detection */
  3149. netif_carrier_off(dev);
  3150. netif_stop_queue(dev);
  3151. return dev;
  3152. }
  3153. static void __devinit skge_show_addr(struct net_device *dev)
  3154. {
  3155. const struct skge_port *skge = netdev_priv(dev);
  3156. netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
  3157. }
  3158. static int __devinit skge_probe(struct pci_dev *pdev,
  3159. const struct pci_device_id *ent)
  3160. {
  3161. struct net_device *dev, *dev1;
  3162. struct skge_hw *hw;
  3163. int err, using_dac = 0;
  3164. err = pci_enable_device(pdev);
  3165. if (err) {
  3166. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3167. goto err_out;
  3168. }
  3169. err = pci_request_regions(pdev, DRV_NAME);
  3170. if (err) {
  3171. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3172. goto err_out_disable_pdev;
  3173. }
  3174. pci_set_master(pdev);
  3175. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3176. using_dac = 1;
  3177. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3178. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3179. using_dac = 0;
  3180. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3181. }
  3182. if (err) {
  3183. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3184. goto err_out_free_regions;
  3185. }
  3186. #ifdef __BIG_ENDIAN
  3187. /* byte swap descriptors in hardware */
  3188. {
  3189. u32 reg;
  3190. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3191. reg |= PCI_REV_DESC;
  3192. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3193. }
  3194. #endif
  3195. err = -ENOMEM;
  3196. /* space for skge@pci:0000:04:00.0 */
  3197. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
  3198. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3199. if (!hw) {
  3200. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3201. goto err_out_free_regions;
  3202. }
  3203. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3204. hw->pdev = pdev;
  3205. spin_lock_init(&hw->hw_lock);
  3206. spin_lock_init(&hw->phy_lock);
  3207. tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
  3208. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3209. if (!hw->regs) {
  3210. dev_err(&pdev->dev, "cannot map device registers\n");
  3211. goto err_out_free_hw;
  3212. }
  3213. err = skge_reset(hw);
  3214. if (err)
  3215. goto err_out_iounmap;
  3216. pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
  3217. DRV_VERSION,
  3218. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3219. skge_board_name(hw), hw->chip_rev);
  3220. dev = skge_devinit(hw, 0, using_dac);
  3221. if (!dev)
  3222. goto err_out_led_off;
  3223. /* Some motherboards are broken and has zero in ROM. */
  3224. if (!is_valid_ether_addr(dev->dev_addr))
  3225. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3226. err = register_netdev(dev);
  3227. if (err) {
  3228. dev_err(&pdev->dev, "cannot register net device\n");
  3229. goto err_out_free_netdev;
  3230. }
  3231. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
  3232. if (err) {
  3233. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3234. dev->name, pdev->irq);
  3235. goto err_out_unregister;
  3236. }
  3237. skge_show_addr(dev);
  3238. if (hw->ports > 1) {
  3239. dev1 = skge_devinit(hw, 1, using_dac);
  3240. if (dev1 && register_netdev(dev1) == 0)
  3241. skge_show_addr(dev1);
  3242. else {
  3243. /* Failure to register second port need not be fatal */
  3244. dev_warn(&pdev->dev, "register of second port failed\n");
  3245. hw->dev[1] = NULL;
  3246. hw->ports = 1;
  3247. if (dev1)
  3248. free_netdev(dev1);
  3249. }
  3250. }
  3251. pci_set_drvdata(pdev, hw);
  3252. return 0;
  3253. err_out_unregister:
  3254. unregister_netdev(dev);
  3255. err_out_free_netdev:
  3256. free_netdev(dev);
  3257. err_out_led_off:
  3258. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3259. err_out_iounmap:
  3260. iounmap(hw->regs);
  3261. err_out_free_hw:
  3262. kfree(hw);
  3263. err_out_free_regions:
  3264. pci_release_regions(pdev);
  3265. err_out_disable_pdev:
  3266. pci_disable_device(pdev);
  3267. pci_set_drvdata(pdev, NULL);
  3268. err_out:
  3269. return err;
  3270. }
  3271. static void __devexit skge_remove(struct pci_dev *pdev)
  3272. {
  3273. struct skge_hw *hw = pci_get_drvdata(pdev);
  3274. struct net_device *dev0, *dev1;
  3275. if (!hw)
  3276. return;
  3277. flush_scheduled_work();
  3278. dev1 = hw->dev[1];
  3279. if (dev1)
  3280. unregister_netdev(dev1);
  3281. dev0 = hw->dev[0];
  3282. unregister_netdev(dev0);
  3283. tasklet_disable(&hw->phy_task);
  3284. spin_lock_irq(&hw->hw_lock);
  3285. hw->intr_mask = 0;
  3286. skge_write32(hw, B0_IMSK, 0);
  3287. skge_read32(hw, B0_IMSK);
  3288. spin_unlock_irq(&hw->hw_lock);
  3289. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3290. skge_write8(hw, B0_CTST, CS_RST_SET);
  3291. free_irq(pdev->irq, hw);
  3292. pci_release_regions(pdev);
  3293. pci_disable_device(pdev);
  3294. if (dev1)
  3295. free_netdev(dev1);
  3296. free_netdev(dev0);
  3297. iounmap(hw->regs);
  3298. kfree(hw);
  3299. pci_set_drvdata(pdev, NULL);
  3300. }
  3301. #ifdef CONFIG_PM
  3302. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3303. {
  3304. struct skge_hw *hw = pci_get_drvdata(pdev);
  3305. int i, err, wol = 0;
  3306. if (!hw)
  3307. return 0;
  3308. err = pci_save_state(pdev);
  3309. if (err)
  3310. return err;
  3311. for (i = 0; i < hw->ports; i++) {
  3312. struct net_device *dev = hw->dev[i];
  3313. struct skge_port *skge = netdev_priv(dev);
  3314. if (netif_running(dev))
  3315. skge_down(dev);
  3316. if (skge->wol)
  3317. skge_wol_init(skge);
  3318. wol |= skge->wol;
  3319. }
  3320. skge_write32(hw, B0_IMSK, 0);
  3321. pci_prepare_to_sleep(pdev);
  3322. return 0;
  3323. }
  3324. static int skge_resume(struct pci_dev *pdev)
  3325. {
  3326. struct skge_hw *hw = pci_get_drvdata(pdev);
  3327. int i, err;
  3328. if (!hw)
  3329. return 0;
  3330. err = pci_back_from_sleep(pdev);
  3331. if (err)
  3332. goto out;
  3333. err = pci_restore_state(pdev);
  3334. if (err)
  3335. goto out;
  3336. err = skge_reset(hw);
  3337. if (err)
  3338. goto out;
  3339. for (i = 0; i < hw->ports; i++) {
  3340. struct net_device *dev = hw->dev[i];
  3341. if (netif_running(dev)) {
  3342. err = skge_up(dev);
  3343. if (err) {
  3344. netdev_err(dev, "could not up: %d\n", err);
  3345. dev_close(dev);
  3346. goto out;
  3347. }
  3348. }
  3349. }
  3350. out:
  3351. return err;
  3352. }
  3353. #endif
  3354. static void skge_shutdown(struct pci_dev *pdev)
  3355. {
  3356. struct skge_hw *hw = pci_get_drvdata(pdev);
  3357. int i, wol = 0;
  3358. if (!hw)
  3359. return;
  3360. for (i = 0; i < hw->ports; i++) {
  3361. struct net_device *dev = hw->dev[i];
  3362. struct skge_port *skge = netdev_priv(dev);
  3363. if (skge->wol)
  3364. skge_wol_init(skge);
  3365. wol |= skge->wol;
  3366. }
  3367. if (pci_enable_wake(pdev, PCI_D3cold, wol))
  3368. pci_enable_wake(pdev, PCI_D3hot, wol);
  3369. pci_disable_device(pdev);
  3370. pci_set_power_state(pdev, PCI_D3hot);
  3371. }
  3372. static struct pci_driver skge_driver = {
  3373. .name = DRV_NAME,
  3374. .id_table = skge_id_table,
  3375. .probe = skge_probe,
  3376. .remove = __devexit_p(skge_remove),
  3377. #ifdef CONFIG_PM
  3378. .suspend = skge_suspend,
  3379. .resume = skge_resume,
  3380. #endif
  3381. .shutdown = skge_shutdown,
  3382. };
  3383. static int __init skge_init_module(void)
  3384. {
  3385. skge_debug_init();
  3386. return pci_register_driver(&skge_driver);
  3387. }
  3388. static void __exit skge_cleanup_module(void)
  3389. {
  3390. pci_unregister_driver(&skge_driver);
  3391. skge_debug_cleanup();
  3392. }
  3393. module_init(skge_init_module);
  3394. module_exit(skge_cleanup_module);